/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 99 - (hide annotations) (download) (as text)
Tue Jun 1 16:19:40 2004 UTC (19 years, 10 months ago) by letz
File MIME type: text/x-c++hdr
File size: 14891 byte(s)
* Do polynomial interpolation computation in float

1 schoenebeck 53 /***************************************************************************
2     * *
3     * LinuxSampler - modular, streaming capable sampler *
4     * *
5 schoenebeck 56 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 schoenebeck 53 * *
7     * This program is free software; you can redistribute it and/or modify *
8     * it under the terms of the GNU General Public License as published by *
9     * the Free Software Foundation; either version 2 of the License, or *
10     * (at your option) any later version. *
11     * *
12     * This program is distributed in the hope that it will be useful, *
13     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15     * GNU General Public License for more details. *
16     * *
17     * You should have received a copy of the GNU General Public License *
18     * along with this program; if not, write to the Free Software *
19     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20     * MA 02111-1307 USA *
21     ***************************************************************************/
22    
23     #ifndef __LS_GIG_VOICE_H__
24     #define __LS_GIG_VOICE_H__
25    
26     #include "../../common/global.h"
27    
28     #if DEBUG_HEADERS
29     # warning Voice.h included
30     #endif // DEBUG_HEADERS
31    
32     #include "../../common/RTMath.h"
33     #include "../../common/RingBuffer.h"
34     #include "../../common/RTELMemoryPool.h"
35     #include "../../audiodriver/AudioOutputDevice.h"
36     #include "../../lib/fileloader/libgig/gig.h"
37 schoenebeck 80 #include "../common/BiquadFilter.h"
38 schoenebeck 53 #include "Engine.h"
39     #include "Stream.h"
40     #include "DiskThread.h"
41    
42     #include "EGDecay.h"
43     #include "Filter.h"
44     #include "../common/LFO.h"
45    
46 schoenebeck 80 #define USE_LINEAR_INTERPOLATION 0 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
47     #define ENABLE_FILTER 1 ///< if set to 0 then filter (VCF) code is ignored on compile time
48     #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)
49 schoenebeck 53 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
50     #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz)
51     #define FILTER_CUTOFF_MIN 100.0f ///< minimum cutoff frequency (100Hz)
52    
53     // Uncomment following line to override external cutoff controller
54     //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
55    
56     // Uncomment following line to override external resonance controller
57     //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
58    
59     // Uncomment following line to override filter type
60     //#define OVERRIDE_FILTER_TYPE ::gig::vcf_type_lowpass ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass
61    
62     namespace LinuxSampler { namespace gig {
63    
64     class Engine;
65     class EGADSR;
66     class VCAManipulator;
67     class VCFCManipulator;
68     class VCOManipulator;
69    
70     /// Reflects a MIDI controller
71     struct midi_ctrl {
72     uint8_t controller; ///< MIDI control change controller number
73     uint8_t value; ///< Current MIDI controller value
74     float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
75     };
76    
77     /** Gig Voice
78     *
79     * Renders a voice for the Gigasampler format.
80     */
81     class Voice {
82     public:
83     // Attributes
84     int MIDIKey; ///< MIDI key number of the key that triggered the voice
85     DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
86    
87     // Methods
88     Voice();
89     ~Voice();
90     void Kill();
91     void Render(uint Samples);
92     void Reset();
93     void SetOutput(AudioOutputDevice* pAudioOutputDevice);
94     void SetEngine(Engine* pEngine);
95     int Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument);
96     inline bool IsActive() { return Active; }
97     private:
98     // Types
99     enum playback_state_t {
100     playback_state_ram,
101     playback_state_disk,
102     playback_state_end
103     };
104    
105     // Attributes
106     gig::Engine* pEngine; ///< Pointer to the sampler engine, to be able to access the event lists.
107     float Volume; ///< Volume level of the voice
108     float* pOutputLeft; ///< Audio output channel buffer (left)
109     float* pOutputRight; ///< Audio output channel buffer (right)
110     uint SampleRate; ///< Sample rate of the engines output audio signal (in Hz)
111     uint MaxSamplesPerCycle; ///< Size of each audio output buffer
112     double Pos; ///< Current playback position in sample
113     double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice
114     double PitchBend; ///< Current pitch value of the pitchbend wheel
115     ::gig::Sample* pSample; ///< Pointer to the sample to be played back
116     ::gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
117     bool Active; ///< If this voice object is currently in usage
118     playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
119     bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
120     Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
121     unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
122     bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
123     int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
124     uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
125     EGADSR* pEG1; ///< Envelope Generator 1 (Amplification)
126     EGADSR* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency)
127     EGDecay* pEG3; ///< Envelope Generator 3 (Pitch)
128     Filter FilterLeft;
129     Filter FilterRight;
130     midi_ctrl VCFCutoffCtrl;
131     midi_ctrl VCFResonanceCtrl;
132     int FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples
133     static const float FILTER_CUTOFF_COEFF;
134 schoenebeck 80 static const int FILTER_UPDATE_MASK;
135 schoenebeck 53 VCAManipulator* pVCAManipulator;
136     VCFCManipulator* pVCFCManipulator;
137     VCOManipulator* pVCOManipulator;
138     LFO<gig::VCAManipulator>* pLFO1; ///< Low Frequency Oscillator 1 (Amplification)
139     LFO<gig::VCFCManipulator>* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
140     LFO<gig::VCOManipulator>* pLFO3; ///< Low Frequency Oscillator 3 (Pitch)
141     Event* pTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
142    
143     // Static Methods
144     static float CalculateFilterCutoffCoeff();
145 schoenebeck 80 static int CalculateFilterUpdateMask();
146 schoenebeck 53
147     // Methods
148     void ProcessEvents(uint Samples);
149 schoenebeck 80 #if ENABLE_FILTER
150     void CalculateBiquadParameters(uint Samples);
151     #endif // ENABLE_FILTER
152 schoenebeck 53 void Interpolate(uint Samples, sample_t* pSrc, uint Skip);
153     void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
154 schoenebeck 80 inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
155 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
156     float pos_fract = this->Pos - pos_int; // fractional part of position
157     pos_int <<= 1;
158    
159     #if USE_LINEAR_INTERPOLATION
160     #if ENABLE_FILTER
161     // left channel
162 schoenebeck 80 pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
163 schoenebeck 53 // right channel
164 schoenebeck 80 pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
165 schoenebeck 53 #else // no filter
166     // left channel
167     pOutputLeft[i] += effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
168     // right channel
169     pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
170     #endif // ENABLE_FILTER
171     #else // polynomial interpolation
172     // calculate left channel
173     float xm1 = pSrc[pos_int];
174     float x0 = pSrc[pos_int+2];
175     float x1 = pSrc[pos_int+4];
176     float x2 = pSrc[pos_int+6];
177 letz 99 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
178     float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
179     float c = (x1 - xm1) * 0.5f;
180 schoenebeck 53 #if ENABLE_FILTER
181 schoenebeck 80 pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
182 schoenebeck 53 #else // no filter
183 schoenebeck 97 pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
184 schoenebeck 53 #endif // ENABLE_FILTER
185    
186     //calculate right channel
187     xm1 = pSrc[pos_int+1];
188     x0 = pSrc[pos_int+3];
189     x1 = pSrc[pos_int+5];
190     x2 = pSrc[pos_int+7];
191 letz 99 a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
192     b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
193     c = (x1 - xm1) * 0.5f;
194 schoenebeck 53 #if ENABLE_FILTER
195 schoenebeck 97 pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
196 schoenebeck 53 #else // no filter
197     pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
198     #endif // ENABLE_FILTER
199     #endif // USE_LINEAR_INTERPOLATION
200    
201     this->Pos += pitch;
202     }
203 schoenebeck 97
204 schoenebeck 80 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
205 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
206     float pos_fract = this->Pos - pos_int; // fractional part of position
207    
208     #if USE_LINEAR_INTERPOLATION
209     float sample_point = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));
210     #else // polynomial interpolation
211     float xm1 = pSrc[pos_int];
212     float x0 = pSrc[pos_int+1];
213     float x1 = pSrc[pos_int+2];
214     float x2 = pSrc[pos_int+3];
215 letz 99 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
216     float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
217     float c = (x1 - xm1) * 0.5f;
218 schoenebeck 53 float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
219     #endif // USE_LINEAR_INTERPOLATION
220    
221     #if ENABLE_FILTER
222 schoenebeck 80 sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);
223 schoenebeck 53 #endif // ENABLE_FILTER
224    
225     pOutputLeft[i] += sample_point;
226     pOutputRight[i++] += sample_point;
227    
228     this->Pos += pitch;
229     }
230 schoenebeck 97
231 schoenebeck 53 inline float Constrain(float ValueToCheck, float Min, float Max) {
232     if (ValueToCheck > Max) ValueToCheck = Max;
233     else if (ValueToCheck < Min) ValueToCheck = Min;
234     return ValueToCheck;
235     }
236     };
237    
238     }} // namespace LinuxSampler::gig
239    
240     #endif // __LS_GIG_VOICE_H__

  ViewVC Help
Powered by ViewVC