/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 203 by schoenebeck, Tue Jul 13 22:44:13 2004 UTC revision 1923 by persson, Sat Jun 27 16:55:41 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2007 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 24 
24  #ifndef __LS_GIG_VOICE_H__  #ifndef __LS_GIG_VOICE_H__
25  #define __LS_GIG_VOICE_H__  #define __LS_GIG_VOICE_H__
26    
27  #include "../../common/global.h"  #include "../../common/global_private.h"
28    
29  #if DEBUG_HEADERS  #include <gig.h>
 # warning Voice.h included  
 #endif // DEBUG_HEADERS  
30    
31  #include "../../common/RTMath.h"  #include "../../common/RTMath.h"
32  #include "../../common/RingBuffer.h"  #include "../../common/Pool.h"
 #include "../../common/RTELMemoryPool.h"  
33  #include "../../drivers/audio/AudioOutputDevice.h"  #include "../../drivers/audio/AudioOutputDevice.h"
 #include "../../lib/fileloader/libgig/gig.h"  
 #include "../common/BiquadFilter.h"  
34  #include "Engine.h"  #include "Engine.h"
35    #include "EngineChannel.h"
36  #include "Stream.h"  #include "Stream.h"
37  #include "DiskThread.h"  #include "DiskThread.h"
38    #include "EGADSR.h"
39  #include "EGDecay.h"  #include "EGDecay.h"
40  #include "Filter.h"  #include "Filter.h"
41  #include "../common/LFO.h"  #include "../common/LFOBase.h"
42    #include "SynthesisParam.h"
43  #define USE_LINEAR_INTERPOLATION        0  ///< set to 0 if you prefer cubic interpolation (slower, better quality)  #include "SmoothVolume.h"
44  #define ENABLE_FILTER                   1  ///< if set to 0 then filter (VCF) code is ignored on compile time  
45  #define FILTER_UPDATE_PERIOD            64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)  // include the appropriate (unsigned) triangle LFO implementation
46  #define FORCE_FILTER_USAGE              0  ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one  #if CONFIG_UNSIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
47  #define FILTER_CUTOFF_MAX               10000.0f ///< maximum cutoff frequency (10kHz)  # include "../common/LFOTriangleIntMath.h"
48  #define FILTER_CUTOFF_MIN               100.0f   ///< minimum cutoff frequency (100Hz)  #elif CONFIG_UNSIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
49    # include "../common/LFOTriangleIntAbsMath.h"
50  // Uncomment following line to override external cutoff controller  #elif CONFIG_UNSIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
51  //#define OVERRIDE_FILTER_CUTOFF_CTRL   1  ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')  # include "../common/LFOTriangleDiHarmonic.h"
52    #else
53  // Uncomment following line to override external resonance controller  # error "Unknown or no (unsigned) triangle LFO implementation selected!"
54  //#define OVERRIDE_FILTER_RES_CTRL      91  ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')  #endif
55    
56  // Uncomment following line to override filter type  // include the appropriate (signed) triangle LFO implementation
57  //#define OVERRIDE_FILTER_TYPE          ::gig::vcf_type_lowpass  ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass  #if CONFIG_SIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
58    # include "../common/LFOTriangleIntMath.h"
59    #elif CONFIG_SIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
60    # include "../common/LFOTriangleIntAbsMath.h"
61    #elif CONFIG_SIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
62    # include "../common/LFOTriangleDiHarmonic.h"
63    #else
64    # error "Unknown or no (signed) triangle LFO implementation selected!"
65    #endif
66    
67  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
68    
69      class Engine;      class Engine;
     class EGADSR;  
     class VCAManipulator;  
     class VCFCManipulator;  
     class VCOManipulator;  
70    
71      /// Reflects a MIDI controller      /// Reflects a MIDI controller
72      struct midi_ctrl {      struct midi_ctrl {
# Line 74  namespace LinuxSampler { namespace gig { Line 75  namespace LinuxSampler { namespace gig {
75          float   fvalue;     ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)          float   fvalue;     ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
76      };      };
77    
78        #if CONFIG_UNSIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
79        typedef LFOTriangleIntMath<range_unsigned> LFOUnsigned;
80        #elif CONFIG_UNSIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
81        typedef LFOTriangleIntAbsMath<range_unsigned> LFOUnsigned;
82        #elif CONFIG_UNSIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
83        typedef LFOTriangleDiHarmonic<range_unsigned> LFOUnsigned;
84        #endif
85    
86        #if CONFIG_SIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
87        typedef LFOTriangleIntMath<range_signed> LFOSigned;
88        #elif CONFIG_SIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
89        typedef LFOTriangleIntAbsMath<range_signed> LFOSigned;
90        #elif CONFIG_SIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
91        typedef LFOTriangleDiHarmonic<range_signed> LFOSigned;
92        #endif
93    
94      /** Gig Voice      /** Gig Voice
95       *       *
96       * Renders a voice for the Gigasampler format.       * Renders a voice for the Gigasampler format.
97       */       */
98      class Voice {      class Voice {
99          public:          public:
100                // Types
101                enum type_t {
102                    type_normal,
103                    type_release_trigger_required,  ///< If the key of this voice will be released, it causes a release triggered voice to be spawned
104                    type_release_trigger            ///< Release triggered voice which cannot be killed by releasing its key
105                };
106    
107              // Attributes              // Attributes
108                type_t       Type;         ///< Voice Type
109              int          MIDIKey;      ///< MIDI key number of the key that triggered the voice              int          MIDIKey;      ///< MIDI key number of the key that triggered the voice
110                uint         KeyGroup;
111              DiskThread*  pDiskThread;  ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again              DiskThread*  pDiskThread;  ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
112    
113              // Methods              // Methods
114              Voice();              Voice();
115             ~Voice();              virtual ~Voice();
116              void Kill();              void Kill(Pool<Event>::Iterator& itKillEvent);
117              void Render(uint Samples);              void Render(uint Samples);
118              void Reset();              void Reset();
119              void SetOutput(AudioOutputDevice* pAudioOutputDevice);              void SetOutput(AudioOutputDevice* pAudioOutputDevice);
120              void SetEngine(Engine* pEngine);              void SetEngine(Engine* pEngine);
121              int  Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument);              int  Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup);
122              inline bool IsActive() { return Active; }              inline bool IsActive() { return PlaybackState; }
123          private:              inline bool IsStealable() { return !itKillEvent && PlaybackState >= playback_state_ram; }
124                void UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent);
125    
126            //private:
127              // Types              // Types
128              enum playback_state_t {              enum playback_state_t {
129                  playback_state_ram,                  playback_state_end  = 0,
130                  playback_state_disk,                  playback_state_init = 1,
131                  playback_state_end                  playback_state_ram  = 2,
132                    playback_state_disk = 3
133              };              };
134    
135              // Attributes              // Attributes
136              gig::Engine*                pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.              EngineChannel*              pEngineChannel;
137              float                       Volume;             ///< Volume level of the voice              Engine*                     pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.
138              float*                      pOutputLeft;        ///< Audio output channel buffer (left)              float                       VolumeLeft;         ///< Left channel volume. This factor is calculated when the voice is triggered and doesn't change after that.
139              float*                      pOutputRight;       ///< Audio output channel buffer (right)              float                       VolumeRight;        ///< Right channel volume. This factor is calculated when the voice is triggered and doesn't change after that.
140              uint                        SampleRate;         ///< Sample rate of the engines output audio signal (in Hz)              SmoothVolume                CrossfadeSmoother;  ///< Crossfade volume, updated by crossfade CC events
141              uint                        MaxSamplesPerCycle; ///< Size of each audio output buffer              SmoothVolume                VolumeSmoother;     ///< Volume, updated by CC 7 (volume) events
142                SmoothVolume                PanLeftSmoother;    ///< Left channel volume, updated by CC 10 (pan) events
143                SmoothVolume                PanRightSmoother;   ///< Right channel volume, updated by CC 10 (pan) events
144              double                      Pos;                ///< Current playback position in sample              double                      Pos;                ///< Current playback position in sample
145              double                      PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice              float                       PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice
146              double                      PitchBend;          ///< Current pitch value of the pitchbend wheel              float                       PitchBend;          ///< Current pitch value of the pitchbend wheel
147                float                       PitchBendRange;     ///< The pitch range of the pitchbend wheel, value is in cents / 8192
148                float                       CutoffBase;         ///< Cutoff frequency before control change, EG and LFO are applied
149              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back
150              ::gig::Region*              pRegion;            ///< Pointer to the articulation information of the respective keyboard region of this voice              ::gig::DimensionRegion*     pDimRgn;            ///< Pointer to the articulation information of current dimension region of this voice
151              bool                        Active;             ///< If this voice object is currently in usage              bool                        Orphan;             ///< true if this voice is playing a sample from an instrument that is unloaded. When the voice dies, the sample (and dimension region) will be handed back to the instrument resource manager.
152              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
153              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
154              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream
155                int                         RealSampleWordsLeftToRead; ///< Number of samples left to read, not including the silence added for the interpolator
156              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
157              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
158              int                         LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed              //uint                        LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
159              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
160              EGADSR*                     pEG1;               ///< Envelope Generator 1 (Amplification)              EGADSR                      EG1;                ///< Envelope Generator 1 (Amplification)
161              EGADSR*                     pEG2;               ///< Envelope Generator 2 (Filter cutoff frequency)              EGADSR                      EG2;                ///< Envelope Generator 2 (Filter cutoff frequency)
162              EGDecay*                    pEG3;               ///< Envelope Generator 3 (Pitch)              EGDecay                     EG3;                ///< Envelope Generator 3 (Pitch)
             Filter                      FilterLeft;  
             Filter                      FilterRight;  
163              midi_ctrl                   VCFCutoffCtrl;              midi_ctrl                   VCFCutoffCtrl;
164              midi_ctrl                   VCFResonanceCtrl;              midi_ctrl                   VCFResonanceCtrl;
165              int                         FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples              LFOUnsigned*                pLFO1;               ///< Low Frequency Oscillator 1 (Amplification)
166              static const float          FILTER_CUTOFF_COEFF;              LFOUnsigned*                pLFO2;               ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
167              static const int            FILTER_UPDATE_MASK;              LFOSigned*                  pLFO3;               ///< Low Frequency Oscillator 3 (Pitch)
168              VCAManipulator*             pVCAManipulator;              bool                        bLFO1Enabled;        ///< Should we use the Amplitude LFO for this voice?
169              VCFCManipulator*            pVCFCManipulator;              bool                        bLFO2Enabled;        ///< Should we use the Filter Cutoff LFO for this voice?
170              VCOManipulator*             pVCOManipulator;              bool                        bLFO3Enabled;        ///< Should we use the Pitch LFO for this voice?
171              LFO<gig::VCAManipulator>*   pLFO1;              ///< Low Frequency Oscillator 1 (Amplification)              Pool<Event>::Iterator       itTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
172              LFO<gig::VCFCManipulator>*  pLFO2;             ///< Low Frequency Oscillator 2 (Filter cutoff frequency)          //public: // FIXME: just made public for debugging (sanity check in Engine::RenderAudio()), should be changed to private before the final release
173              LFO<gig::VCOManipulator>*   pLFO3;              ///< Low Frequency Oscillator 3 (Pitch)              Pool<Event>::Iterator       itKillEvent;         ///< Event which caused this voice to be killed
174              Event*                      pTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).          //private:
175                int                         SynthesisMode;
176                float                       fFinalCutoff;
177                float                       fFinalResonance;
178                SynthesisParam              finalSynthesisParameters;
179                Loop                        loop;
180    
181              // Static Methods              // Static Methods
182              static float CalculateFilterCutoffCoeff();              static float CalculateFilterCutoffCoeff();
             static int   CalculateFilterUpdateMask();  
183    
184              // Methods              // Methods
185              void        ProcessEvents(uint Samples);              Stream::Handle KillImmediately(bool bRequestNotification = false);
186              #if ENABLE_FILTER              void ProcessEvents(uint Samples);
187              void        CalculateBiquadParameters(uint Samples);              void Synthesize(uint Samples, sample_t* pSrc, uint Skip);
188              #endif // ENABLE_FILTER              void processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End);
189              void        Interpolate(uint Samples, sample_t* pSrc, uint Skip);              void processCCEvents(RTList<Event>::Iterator& itEvent, uint End);
190              void        InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);              void processPitchEvent(RTList<Event>::Iterator& itEvent);
191              inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {              void processCrossFadeEvent(RTList<Event>::Iterator& itEvent);
192                  int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position              void processCutoffEvent(RTList<Event>::Iterator& itEvent);
193                  float pos_fract = this->Pos - pos_int;             // fractional part of position              void processResonanceEvent(RTList<Event>::Iterator& itEvent);
194                  pos_int <<= 1;  
195                inline uint8_t CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {
196                  #if USE_LINEAR_INTERPOLATION                  uint8_t c = std::max(CrossfadeControllerValue, pDimRgn->AttenuationControllerThreshold);
197                      #if ENABLE_FILTER                  c = (!pDimRgn->Crossfade.out_end) ? c /* 0,0,0,0 means no crossfade defined */
198                          // left channel                            : (c < pDimRgn->Crossfade.in_end) ?
199                          pOutputLeft[i]    += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));                                  ((c <= pDimRgn->Crossfade.in_start) ? 0
200                          // right channel                                  : 127 * (c - pDimRgn->Crossfade.in_start) / (pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start))
201                          pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));                            : (c <= pDimRgn->Crossfade.out_start) ? 127
202                      #else // no filter                            : (c < pDimRgn->Crossfade.out_end) ? 127 * (pDimRgn->Crossfade.out_end - c) / (pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)
203                          // left channel                            : 0;
204                          pOutputLeft[i]    += effective_volume * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));                  return pDimRgn->InvertAttenuationController ? 127 - c : c;
                         // right channel  
                         pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));  
                     #endif // ENABLE_FILTER  
                 #else // polynomial interpolation  
                     // calculate left channel  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+2];  
                     float x1  = pSrc[pos_int+4];  
                     float x2  = pSrc[pos_int+6];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
   
                     //calculate right channel  
                     xm1 = pSrc[pos_int+1];  
                     x0  = pSrc[pos_int+3];  
                     x1  = pSrc[pos_int+5];  
                     x2  = pSrc[pos_int+7];  
                     a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 this->Pos += pitch;  
             }  
   
             inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch,  biquad_param_t& bq_base, biquad_param_t& bq_main) {  
                 int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position  
                 float pos_fract = this->Pos - pos_int;             // fractional part of position  
   
                 #if USE_LINEAR_INTERPOLATION  
                     float sample_point  = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));  
                 #else // polynomial interpolation  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+1];  
                     float x1  = pSrc[pos_int+2];  
                     float x2  = pSrc[pos_int+3];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 #if ENABLE_FILTER  
                     sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);  
                 #endif // ENABLE_FILTER  
   
                 pOutputLeft[i]    += sample_point;  
                 pOutputRight[i++] += sample_point;  
   
                 this->Pos += pitch;  
205              }              }
206    
207              inline float Constrain(float ValueToCheck, float Min, float Max) {              inline float Constrain(float ValueToCheck, float Min, float Max) {

Legend:
Removed from v.203  
changed lines
  Added in v.1923

  ViewVC Help
Powered by ViewVC