/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 203 by schoenebeck, Tue Jul 13 22:44:13 2004 UTC revision 411 by schoenebeck, Sat Feb 26 02:01:14 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 31  Line 32 
32    
33  #include "../../common/RTMath.h"  #include "../../common/RTMath.h"
34  #include "../../common/RingBuffer.h"  #include "../../common/RingBuffer.h"
35  #include "../../common/RTELMemoryPool.h"  #include "../../common/Pool.h"
36  #include "../../drivers/audio/AudioOutputDevice.h"  #include "../../drivers/audio/AudioOutputDevice.h"
37  #include "../../lib/fileloader/libgig/gig.h"  #include "../../lib/fileloader/libgig/gig.h"
38  #include "../common/BiquadFilter.h"  #include "../common/BiquadFilter.h"
39    //#include "EngineGlobals.h"
40  #include "Engine.h"  #include "Engine.h"
41    #include "EngineChannel.h"
42  #include "Stream.h"  #include "Stream.h"
43  #include "DiskThread.h"  #include "DiskThread.h"
44    
# Line 43  Line 46 
46  #include "Filter.h"  #include "Filter.h"
47  #include "../common/LFO.h"  #include "../common/LFO.h"
48    
 #define USE_LINEAR_INTERPOLATION        0  ///< set to 0 if you prefer cubic interpolation (slower, better quality)  
 #define ENABLE_FILTER                   1  ///< if set to 0 then filter (VCF) code is ignored on compile time  
 #define FILTER_UPDATE_PERIOD            64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)  
 #define FORCE_FILTER_USAGE              0  ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one  
 #define FILTER_CUTOFF_MAX               10000.0f ///< maximum cutoff frequency (10kHz)  
 #define FILTER_CUTOFF_MIN               100.0f   ///< minimum cutoff frequency (100Hz)  
   
 // Uncomment following line to override external cutoff controller  
 //#define OVERRIDE_FILTER_CUTOFF_CTRL   1  ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')  
   
 // Uncomment following line to override external resonance controller  
 //#define OVERRIDE_FILTER_RES_CTRL      91  ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')  
   
 // Uncomment following line to override filter type  
 //#define OVERRIDE_FILTER_TYPE          ::gig::vcf_type_lowpass  ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass  
   
49  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
50    
51      class Engine;      class Engine;
52      class EGADSR;      class EGADSR;
53        class EGDecay;
54      class VCAManipulator;      class VCAManipulator;
55      class VCFCManipulator;      class VCFCManipulator;
56      class VCOManipulator;      class VCOManipulator;
# Line 80  namespace LinuxSampler { namespace gig { Line 68  namespace LinuxSampler { namespace gig {
68       */       */
69      class Voice {      class Voice {
70          public:          public:
71                // Types
72                enum type_t {
73                    type_normal,
74                    type_release_trigger_required,  ///< If the key of this voice will be released, it causes a release triggered voice to be spawned
75                    type_release_trigger            ///< Release triggered voice which cannot be killed by releasing its key
76                };
77    
78              // Attributes              // Attributes
79                type_t       Type;         ///< Voice Type
80              int          MIDIKey;      ///< MIDI key number of the key that triggered the voice              int          MIDIKey;      ///< MIDI key number of the key that triggered the voice
81                uint         KeyGroup;
82              DiskThread*  pDiskThread;  ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again              DiskThread*  pDiskThread;  ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
83                RTList<Voice>::Iterator itChildVoice; ///< Points to the next layer voice (if any). This field is currently only used by the voice stealing algorithm.
84    
85              // Methods              // Methods
86              Voice();              Voice();
87             ~Voice();             ~Voice();
88              void Kill();              void Kill(Pool<Event>::Iterator& itKillEvent);
89              void Render(uint Samples);              void Render(uint Samples);
90              void Reset();              void Reset();
91              void SetOutput(AudioOutputDevice* pAudioOutputDevice);              void SetOutput(AudioOutputDevice* pAudioOutputDevice);
92              void SetEngine(Engine* pEngine);              void SetEngine(Engine* pEngine);
93              int  Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument);              int  Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing);
94              inline bool IsActive() { return Active; }              inline bool IsActive() { return PlaybackState; }
95          private:          //private:
96              // Types              // Types
97              enum playback_state_t {              enum playback_state_t {
98                  playback_state_ram,                  playback_state_end  = 0,
99                  playback_state_disk,                  playback_state_ram  = 1,
100                  playback_state_end                  playback_state_disk = 2
101              };              };
102    
103              // Attributes              // Attributes
104              gig::Engine*                pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.              EngineChannel*              pEngineChannel;
105                Engine*                     pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.
106              float                       Volume;             ///< Volume level of the voice              float                       Volume;             ///< Volume level of the voice
107              float*                      pOutputLeft;        ///< Audio output channel buffer (left)              float                       PanLeft;
108              float*                      pOutputRight;       ///< Audio output channel buffer (right)              float                       PanRight;
109              uint                        SampleRate;         ///< Sample rate of the engines output audio signal (in Hz)              float                       CrossfadeVolume;    ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course)
             uint                        MaxSamplesPerCycle; ///< Size of each audio output buffer  
110              double                      Pos;                ///< Current playback position in sample              double                      Pos;                ///< Current playback position in sample
111              double                      PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice              float                       PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice
112              double                      PitchBend;          ///< Current pitch value of the pitchbend wheel              float                       PitchBend;          ///< Current pitch value of the pitchbend wheel
113              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back
114              ::gig::Region*              pRegion;            ///< Pointer to the articulation information of the respective keyboard region of this voice              ::gig::Region*              pRegion;            ///< Pointer to the articulation information of the respective keyboard region of this voice
115              bool                        Active;             ///< If this voice object is currently in usage              ::gig::DimensionRegion*     pDimRgn;            ///< Pointer to the articulation information of current dimension region of this voice
116              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
117              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
118              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream
119                int                         RealSampleWordsLeftToRead; ///< Number of samples left to read, not including the silence added for the interpolator
120              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
121              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
122              int                         LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed              uint                        LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
123              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
124              EGADSR*                     pEG1;               ///< Envelope Generator 1 (Amplification)              EGADSR*                     pEG1;               ///< Envelope Generator 1 (Amplification)
125              EGADSR*                     pEG2;               ///< Envelope Generator 2 (Filter cutoff frequency)              EGADSR*                     pEG2;               ///< Envelope Generator 2 (Filter cutoff frequency)
# Line 138  namespace LinuxSampler { namespace gig { Line 137  namespace LinuxSampler { namespace gig {
137              LFO<gig::VCAManipulator>*   pLFO1;              ///< Low Frequency Oscillator 1 (Amplification)              LFO<gig::VCAManipulator>*   pLFO1;              ///< Low Frequency Oscillator 1 (Amplification)
138              LFO<gig::VCFCManipulator>*  pLFO2;             ///< Low Frequency Oscillator 2 (Filter cutoff frequency)              LFO<gig::VCFCManipulator>*  pLFO2;             ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
139              LFO<gig::VCOManipulator>*   pLFO3;              ///< Low Frequency Oscillator 3 (Pitch)              LFO<gig::VCOManipulator>*   pLFO3;              ///< Low Frequency Oscillator 3 (Pitch)
140              Event*                      pTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).              Pool<Event>::Iterator       itTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
141            //public: // FIXME: just made public for debugging (sanity check in Engine::RenderAudio()), should be changed to private before the final release
142                Pool<Event>::Iterator       itKillEvent;         ///< Event which caused this voice to be killed
143            //private:
144                int                         SynthesisMode;
145    
146              // Static Methods              // Static Methods
147              static float CalculateFilterCutoffCoeff();              static float CalculateFilterCutoffCoeff();
148              static int   CalculateFilterUpdateMask();              static int   CalculateFilterUpdateMask();
149    
150              // Methods              // Methods
151              void        ProcessEvents(uint Samples);              void KillImmediately();
152              #if ENABLE_FILTER              void ProcessEvents(uint Samples);
153              void        CalculateBiquadParameters(uint Samples);              void CalculateBiquadParameters(uint Samples);
154              #endif // ENABLE_FILTER              void Synthesize(uint Samples, sample_t* pSrc, uint Skip);
155              void        Interpolate(uint Samples, sample_t* pSrc, uint Skip);  
156              void        InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);              inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {
157              inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {                  float att = (!pDimRgn->Crossfade.out_end) ? CrossfadeControllerValue / 127.0f /* 0,0,0,0 means no crossfade defined */
158                  int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position                            : (CrossfadeControllerValue < pDimRgn->Crossfade.in_end) ?
159                  float pos_fract = this->Pos - pos_int;             // fractional part of position                                  ((CrossfadeControllerValue <= pDimRgn->Crossfade.in_start) ? 0.0f
160                  pos_int <<= 1;                                  : float(CrossfadeControllerValue - pDimRgn->Crossfade.in_start) / float(pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start))
161                              : (CrossfadeControllerValue <= pDimRgn->Crossfade.out_start) ? 1.0f
162                  #if USE_LINEAR_INTERPOLATION                            : (CrossfadeControllerValue < pDimRgn->Crossfade.out_end) ? float(pDimRgn->Crossfade.out_end - CrossfadeControllerValue) / float(pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)
163                      #if ENABLE_FILTER                            : 0.0f;
164                          // left channel                  return pDimRgn->InvertAttenuationController ? 1 - att : att;
                         pOutputLeft[i]    += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));  
                         // right channel  
                         pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));  
                     #else // no filter  
                         // left channel  
                         pOutputLeft[i]    += effective_volume * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));  
                         // right channel  
                         pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));  
                     #endif // ENABLE_FILTER  
                 #else // polynomial interpolation  
                     // calculate left channel  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+2];  
                     float x1  = pSrc[pos_int+4];  
                     float x2  = pSrc[pos_int+6];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
   
                     //calculate right channel  
                     xm1 = pSrc[pos_int+1];  
                     x0  = pSrc[pos_int+3];  
                     x1  = pSrc[pos_int+5];  
                     x2  = pSrc[pos_int+7];  
                     a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 this->Pos += pitch;  
             }  
   
             inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch,  biquad_param_t& bq_base, biquad_param_t& bq_main) {  
                 int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position  
                 float pos_fract = this->Pos - pos_int;             // fractional part of position  
   
                 #if USE_LINEAR_INTERPOLATION  
                     float sample_point  = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));  
                 #else // polynomial interpolation  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+1];  
                     float x1  = pSrc[pos_int+2];  
                     float x2  = pSrc[pos_int+3];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 #if ENABLE_FILTER  
                     sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);  
                 #endif // ENABLE_FILTER  
   
                 pOutputLeft[i]    += sample_point;  
                 pOutputRight[i++] += sample_point;  
   
                 this->Pos += pitch;  
165              }              }
166    
167              inline float Constrain(float ValueToCheck, float Min, float Max) {              inline float Constrain(float ValueToCheck, float Min, float Max) {

Legend:
Removed from v.203  
changed lines
  Added in v.411

  ViewVC Help
Powered by ViewVC