/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 830 by persson, Sun Jan 15 18:23:11 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 26 
26    
27  #include "../../common/global.h"  #include "../../common/global.h"
28    
29  #if DEBUG_HEADERS  #include <gig.h>
 # warning Voice.h included  
 #endif // DEBUG_HEADERS  
30    
31  #include "../../common/RTMath.h"  #include "../../common/RTMath.h"
32  #include "../../common/RingBuffer.h"  #include "../../common/RingBuffer.h"
33  #include "../../common/Pool.h"  #include "../../common/Pool.h"
34  #include "../../drivers/audio/AudioOutputDevice.h"  #include "../../drivers/audio/AudioOutputDevice.h"
 #include "../../lib/fileloader/libgig/gig.h"  
35  #include "../common/BiquadFilter.h"  #include "../common/BiquadFilter.h"
36  #include "Engine.h"  #include "Engine.h"
37    #include "EngineChannel.h"
38  #include "Stream.h"  #include "Stream.h"
39  #include "DiskThread.h"  #include "DiskThread.h"
40    #include "EGADSR.h"
41  #include "EGDecay.h"  #include "EGDecay.h"
42  #include "Filter.h"  #include "Filter.h"
43  #include "../common/LFO.h"  #include "../common/LFOBase.h"
44    #include "SynthesisParam.h"
 #define USE_LINEAR_INTERPOLATION        0  ///< set to 0 if you prefer cubic interpolation (slower, better quality)  
 #define ENABLE_FILTER                   1  ///< if set to 0 then filter (VCF) code is ignored on compile time  
 #define FILTER_UPDATE_PERIOD            64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)  
 #define FORCE_FILTER_USAGE              0  ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one  
 #define FILTER_CUTOFF_MAX               10000.0f ///< maximum cutoff frequency (10kHz)  
 #define FILTER_CUTOFF_MIN               100.0f   ///< minimum cutoff frequency (100Hz)  
   
 // Uncomment following line to override external cutoff controller  
 //#define OVERRIDE_FILTER_CUTOFF_CTRL   1  ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')  
45    
46  // Uncomment following line to override external resonance controller  // include the appropriate (unsigned) triangle LFO implementation
47  //#define OVERRIDE_FILTER_RES_CTRL      91  ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')  #if CONFIG_UNSIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
48    # include "../common/LFOTriangleIntMath.h"
49  // Uncomment following line to override filter type  #elif CONFIG_UNSIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
50  //#define OVERRIDE_FILTER_TYPE          ::gig::vcf_type_lowpass  ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass  # include "../common/LFOTriangleIntAbsMath.h"
51    #elif CONFIG_UNSIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
52    # include "../common/LFOTriangleDiHarmonic.h"
53    #else
54    # error "Unknown or no (unsigned) triangle LFO implementation selected!"
55    #endif
56    
57    // include the appropriate (signed) triangle LFO implementation
58    #if CONFIG_SIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
59    # include "../common/LFOTriangleIntMath.h"
60    #elif CONFIG_SIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
61    # include "../common/LFOTriangleIntAbsMath.h"
62    #elif CONFIG_SIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
63    # include "../common/LFOTriangleDiHarmonic.h"
64    #else
65    # error "Unknown or no (signed) triangle LFO implementation selected!"
66    #endif
67    
68  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
69    
70      class Engine;      class Engine;
     class EGADSR;  
     class VCAManipulator;  
     class VCFCManipulator;  
     class VCOManipulator;  
71    
72      /// Reflects a MIDI controller      /// Reflects a MIDI controller
73      struct midi_ctrl {      struct midi_ctrl {
# Line 74  namespace LinuxSampler { namespace gig { Line 76  namespace LinuxSampler { namespace gig {
76          float   fvalue;     ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)          float   fvalue;     ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
77      };      };
78    
79        #if CONFIG_UNSIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
80        typedef LFOTriangleIntMath<range_unsigned> LFOUnsigned;
81        #elif CONFIG_UNSIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
82        typedef LFOTriangleIntAbsMath<range_unsigned> LFOUnsigned;
83        #elif CONFIG_UNSIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
84        typedef LFOTriangleDiHarmonic<range_unsigned> LFOUnsigned;
85        #endif
86    
87        #if CONFIG_SIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
88        typedef LFOTriangleIntMath<range_signed> LFOSigned;
89        #elif CONFIG_SIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
90        typedef LFOTriangleIntAbsMath<range_signed> LFOSigned;
91        #elif CONFIG_SIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
92        typedef LFOTriangleDiHarmonic<range_signed> LFOSigned;
93        #endif
94    
95      /** Gig Voice      /** Gig Voice
96       *       *
97       * Renders a voice for the Gigasampler format.       * Renders a voice for the Gigasampler format.
# Line 86  namespace LinuxSampler { namespace gig { Line 104  namespace LinuxSampler { namespace gig {
104                  type_release_trigger_required,  ///< If the key of this voice will be released, it causes a release triggered voice to be spawned                  type_release_trigger_required,  ///< If the key of this voice will be released, it causes a release triggered voice to be spawned
105                  type_release_trigger            ///< Release triggered voice which cannot be killed by releasing its key                  type_release_trigger            ///< Release triggered voice which cannot be killed by releasing its key
106              };              };
107                
108              // Attributes              // Attributes
109              type_t       Type;         ///< Voice Type              type_t       Type;         ///< Voice Type
110              int          MIDIKey;      ///< MIDI key number of the key that triggered the voice              int          MIDIKey;      ///< MIDI key number of the key that triggered the voice
111              uint         KeyGroup;              uint         KeyGroup;
112              DiskThread*  pDiskThread;  ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again              DiskThread*  pDiskThread;  ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
             RTList<Voice>::Iterator itChildVoice; ///< Points to the next layer voice (if any). This field is currently only used by the voice stealing algorithm.  
113    
114              // Methods              // Methods
115              Voice();              Voice();
116             ~Voice();              virtual ~Voice();
117              void Kill(Pool<Event>::Iterator& itKillEvent);              void Kill(Pool<Event>::Iterator& itKillEvent);
118              void Render(uint Samples);              void Render(uint Samples);
119              void Reset();              void Reset();
120              void SetOutput(AudioOutputDevice* pAudioOutputDevice);              void SetOutput(AudioOutputDevice* pAudioOutputDevice);
121              void SetEngine(Engine* pEngine);              void SetEngine(Engine* pEngine);
122              int  Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing);              int  Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup);
123              inline bool IsActive() { return PlaybackState; }              inline bool IsActive() { return PlaybackState; }
124          private:              inline bool IsStealable() { return !itKillEvent && PlaybackState >= playback_state_ram; }
125                void UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent);
126    
127            //private:
128              // Types              // Types
129              enum playback_state_t {              enum playback_state_t {
130                  playback_state_end  = 0,                  playback_state_end  = 0,
131                  playback_state_ram  = 1,                  playback_state_init = 1,
132                  playback_state_disk = 2                  playback_state_ram  = 2,
133                    playback_state_disk = 3
134              };              };
135    
136              // Attributes              // Attributes
137              gig::Engine*                pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.              EngineChannel*              pEngineChannel;
138                Engine*                     pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.
139              float                       Volume;             ///< Volume level of the voice              float                       Volume;             ///< Volume level of the voice
140              float                       PanLeft;              float                       PanLeft;
141              float                       PanRight;              float                       PanRight;
142              float                       CrossfadeVolume;    ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course)              float                       CrossfadeVolume;    ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course)
143              double                      Pos;                ///< Current playback position in sample              double                      Pos;                ///< Current playback position in sample
144              double                      PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice              float                       PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice
145              double                      PitchBend;          ///< Current pitch value of the pitchbend wheel              float                       PitchBend;          ///< Current pitch value of the pitchbend wheel
146                float                       CutoffBase;         ///< Cutoff frequency before control change, EG and LFO are applied
147              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back
             ::gig::Region*              pRegion;            ///< Pointer to the articulation information of the respective keyboard region of this voice  
148              ::gig::DimensionRegion*     pDimRgn;            ///< Pointer to the articulation information of current dimension region of this voice              ::gig::DimensionRegion*     pDimRgn;            ///< Pointer to the articulation information of current dimension region of this voice
149              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
150              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
151              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream
152                int                         RealSampleWordsLeftToRead; ///< Number of samples left to read, not including the silence added for the interpolator
153              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
154              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
155              int                         LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed              //uint                        LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
156              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
157              EGADSR*                     pEG1;               ///< Envelope Generator 1 (Amplification)              EGADSR                      EG1;                ///< Envelope Generator 1 (Amplification)
158              EGADSR*                     pEG2;               ///< Envelope Generator 2 (Filter cutoff frequency)              EGADSR                      EG2;                ///< Envelope Generator 2 (Filter cutoff frequency)
159              EGDecay*                    pEG3;               ///< Envelope Generator 3 (Pitch)              EGDecay                     EG3;                ///< Envelope Generator 3 (Pitch)
             Filter                      FilterLeft;  
             Filter                      FilterRight;  
160              midi_ctrl                   VCFCutoffCtrl;              midi_ctrl                   VCFCutoffCtrl;
161              midi_ctrl                   VCFResonanceCtrl;              midi_ctrl                   VCFResonanceCtrl;
             int                         FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples  
162              static const float          FILTER_CUTOFF_COEFF;              static const float          FILTER_CUTOFF_COEFF;
163              static const int            FILTER_UPDATE_MASK;              LFOUnsigned*                pLFO1;               ///< Low Frequency Oscillator 1 (Amplification)
164              VCAManipulator*             pVCAManipulator;              LFOUnsigned*                pLFO2;               ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
165              VCFCManipulator*            pVCFCManipulator;              LFOSigned*                  pLFO3;               ///< Low Frequency Oscillator 3 (Pitch)
166              VCOManipulator*             pVCOManipulator;              bool                        bLFO1Enabled;        ///< Should we use the Amplitude LFO for this voice?
167              LFO<gig::VCAManipulator>*   pLFO1;              ///< Low Frequency Oscillator 1 (Amplification)              bool                        bLFO2Enabled;        ///< Should we use the Filter Cutoff LFO for this voice?
168              LFO<gig::VCFCManipulator>*  pLFO2;             ///< Low Frequency Oscillator 2 (Filter cutoff frequency)              bool                        bLFO3Enabled;        ///< Should we use the Pitch LFO for this voice?
             LFO<gig::VCOManipulator>*   pLFO3;              ///< Low Frequency Oscillator 3 (Pitch)  
169              Pool<Event>::Iterator       itTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).              Pool<Event>::Iterator       itTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
170          public: // FIXME: just made public for debugging (sanity check in Engine::RenderAudio()), should be changed to private before the final release          //public: // FIXME: just made public for debugging (sanity check in Engine::RenderAudio()), should be changed to private before the final release
171              Pool<Event>::Iterator       itKillEvent;         ///< Event which caused this voice to be killed              Pool<Event>::Iterator       itKillEvent;         ///< Event which caused this voice to be killed
172          private:          //private:
173                int                         SynthesisMode;
174                float                       fFinalVolume;
175                float                       fFinalCutoff;
176                float                       fFinalResonance;
177                SynthesisParam              finalSynthesisParameters;
178                Loop                        loop;
179    
180              // Static Methods              // Static Methods
181              static float CalculateFilterCutoffCoeff();              static float CalculateFilterCutoffCoeff();
             static int   CalculateFilterUpdateMask();  
182    
183              // Methods              // Methods
184              void        KillImmediately();              void KillImmediately();
185              void        ProcessEvents(uint Samples);              void ProcessEvents(uint Samples);
186              #if ENABLE_FILTER              void Synthesize(uint Samples, sample_t* pSrc, uint Skip);
187              void        CalculateBiquadParameters(uint Samples);              void processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End);
188              #endif // ENABLE_FILTER              void processCCEvents(RTList<Event>::Iterator& itEvent, uint End);
189              void        InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip);              void processPitchEvent(RTList<Event>::Iterator& itEvent);
190              void        InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);              void processCrossFadeEvent(RTList<Event>::Iterator& itEvent);
191                void processCutoffEvent(RTList<Event>::Iterator& itEvent);
192              inline void InterpolateMono(sample_t* pSrc, int& i) {              void processResonanceEvent(RTList<Event>::Iterator& itEvent);
193                  InterpolateOneStep_Mono(pSrc, i,              float getVolume();
                                         pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight,  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
   
             inline void InterpolateStereo(sample_t* pSrc, int& i) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight,  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
   
             inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {  
                 int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position  
                 float pos_fract = this->Pos - pos_int;             // fractional part of position  
                 pos_int <<= 1;  
   
                 #if USE_LINEAR_INTERPOLATION  
                     #if ENABLE_FILTER  
                         // left channel  
                         pEngine->pOutputLeft[i]    += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));  
                         // right channel  
                         pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));  
                     #else // no filter  
                         // left channel  
                         pEngine->pOutputLeft[i]    += volume_left * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));  
                         // right channel  
                         pEngine->pOutputRight[i++] += volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));  
                     #endif // ENABLE_FILTER  
                 #else // polynomial interpolation  
                     // calculate left channel  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+2];  
                     float x1  = pSrc[pos_int+4];  
                     float x2  = pSrc[pos_int+6];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pEngine->pOutputLeft[i] += volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
   
                     //calculate right channel  
                     xm1 = pSrc[pos_int+1];  
                     x0  = pSrc[pos_int+3];  
                     x1  = pSrc[pos_int+5];  
                     x2  = pSrc[pos_int+7];  
                     a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pEngine->pOutputRight[i++] += volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 this->Pos += pitch;  
             }  
   
             inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch,  biquad_param_t& bq_base, biquad_param_t& bq_main) {  
                 int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position  
                 float pos_fract = this->Pos - pos_int;             // fractional part of position  
   
                 #if USE_LINEAR_INTERPOLATION  
                     float sample_point  = pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]);  
                 #else // polynomial interpolation  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+1];  
                     float x1  = pSrc[pos_int+2];  
                     float x2  = pSrc[pos_int+3];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     float sample_point =  (((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0;  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 #if ENABLE_FILTER  
                     sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);  
                 #endif // ENABLE_FILTER  
   
                 pEngine->pOutputLeft[i]    += sample_point * volume_left;  
                 pEngine->pOutputRight[i++] += sample_point * volume_right;  
   
                 this->Pos += pitch;  
             }  
194    
195              inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {              inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {
196                  return (CrossfadeControllerValue <= pDimRgn->Crossfade.in_start)  ? 0.0f                  float att = (!pDimRgn->Crossfade.out_end) ? CrossfadeControllerValue / 127.0f /* 0,0,0,0 means no crossfade defined */
197                       : (CrossfadeControllerValue < pDimRgn->Crossfade.in_end)     ? float(CrossfadeControllerValue - pDimRgn->Crossfade.in_start) / float(pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start)                            : (CrossfadeControllerValue < pDimRgn->Crossfade.in_end) ?
198                       : (CrossfadeControllerValue <= pDimRgn->Crossfade.out_start) ? 1.0f                                  ((CrossfadeControllerValue <= pDimRgn->Crossfade.in_start) ? 0.0f
199                       : (CrossfadeControllerValue < pDimRgn->Crossfade.out_end)    ? float(CrossfadeControllerValue - pDimRgn->Crossfade.out_start) / float(pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)                                  : float(CrossfadeControllerValue - pDimRgn->Crossfade.in_start) / float(pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start))
200                       : 0.0f;                            : (CrossfadeControllerValue <= pDimRgn->Crossfade.out_start) ? 1.0f
201                              : (CrossfadeControllerValue < pDimRgn->Crossfade.out_end) ? float(pDimRgn->Crossfade.out_end - CrossfadeControllerValue) / float(pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)
202                              : 0.0f;
203                    return pDimRgn->InvertAttenuationController ? 1 - att : att;
204              }              }
205    
206              inline float Constrain(float ValueToCheck, float Min, float Max) {              inline float Constrain(float ValueToCheck, float Min, float Max) {

Legend:
Removed from v.287  
changed lines
  Added in v.830

  ViewVC Help
Powered by ViewVC