--- linuxsampler/trunk/src/engines/gig/Voice.h 2004/12/04 14:18:04 318 +++ linuxsampler/trunk/src/engines/gig/Voice.h 2004/12/13 00:46:42 319 @@ -43,8 +43,6 @@ #include "Filter.h" #include "../common/LFO.h" -#define USE_LINEAR_INTERPOLATION 0 ///< set to 0 if you prefer cubic interpolation (slower, better quality) -#define ENABLE_FILTER 1 ///< if set to 0 then filter (VCF) code is ignored on compile time #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two) #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz) @@ -104,7 +102,7 @@ void SetEngine(Engine* pEngine); int Trigger(Pool::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing); inline bool IsActive() { return PlaybackState; } - private: + //private: // Types enum playback_state_t { playback_state_end = 0, @@ -119,8 +117,8 @@ float PanRight; float CrossfadeVolume; ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course) double Pos; ///< Current playback position in sample - double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice - double PitchBend; ///< Current pitch value of the pitchbend wheel + float PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice + float PitchBend; ///< Current pitch value of the pitchbend wheel ::gig::Sample* pSample; ///< Pointer to the sample to be played back ::gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice ::gig::DimensionRegion* pDimRgn; ///< Pointer to the articulation information of current dimension region of this voice @@ -129,7 +127,7 @@ Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then. bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping - int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed + uint LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle EGADSR* pEG1; ///< Envelope Generator 1 (Amplification) EGADSR* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency) @@ -148,118 +146,22 @@ LFO* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency) LFO* pLFO3; ///< Low Frequency Oscillator 3 (Pitch) Pool::Iterator itTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL). - public: // FIXME: just made public for debugging (sanity check in Engine::RenderAudio()), should be changed to private before the final release + //public: // FIXME: just made public for debugging (sanity check in Engine::RenderAudio()), should be changed to private before the final release Pool::Iterator itKillEvent; ///< Event which caused this voice to be killed - private: - + //private: + int SynthesisMode; + void* SynthesizeFragmentFnPtr; ///< Points to the respective synthesis function for the current synthesis mode. // Static Methods static float CalculateFilterCutoffCoeff(); static int CalculateFilterUpdateMask(); // Methods - void KillImmediately(); - void ProcessEvents(uint Samples); - #if ENABLE_FILTER - void CalculateBiquadParameters(uint Samples); - #endif // ENABLE_FILTER - void InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip); - void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip); - - inline void InterpolateMono(sample_t* pSrc, int& i) { - InterpolateOneStep_Mono(pSrc, i, - pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft, - pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight, - pEngine->pSynthesisParameters[Event::destination_vco][i], - pEngine->pBasicFilterParameters[i], - pEngine->pMainFilterParameters[i]); - } - - inline void InterpolateStereo(sample_t* pSrc, int& i) { - InterpolateOneStep_Stereo(pSrc, i, - pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft, - pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight, - pEngine->pSynthesisParameters[Event::destination_vco][i], - pEngine->pBasicFilterParameters[i], - pEngine->pMainFilterParameters[i]); - } - - inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) { - int pos_int = RTMath::DoubleToInt(this->Pos); // integer position - float pos_fract = this->Pos - pos_int; // fractional part of position - pos_int <<= 1; - - #if USE_LINEAR_INTERPOLATION - #if ENABLE_FILTER - // left channel - pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]))); - // right channel - pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]))); - #else // no filter - // left channel - pEngine->pOutputLeft[i] += volume_left * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])); - // right channel - pEngine->pOutputRight[i++] += volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])); - #endif // ENABLE_FILTER - #else // polynomial interpolation - // calculate left channel - float xm1 = pSrc[pos_int]; - float x0 = pSrc[pos_int+2]; - float x1 = pSrc[pos_int+4]; - float x2 = pSrc[pos_int+6]; - float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f; - float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f; - float c = (x1 - xm1) * 0.5f; - #if ENABLE_FILTER - pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0)); - #else // no filter - pEngine->pOutputLeft[i] += volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0); - #endif // ENABLE_FILTER - - //calculate right channel - xm1 = pSrc[pos_int+1]; - x0 = pSrc[pos_int+3]; - x1 = pSrc[pos_int+5]; - x2 = pSrc[pos_int+7]; - a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f; - b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f; - c = (x1 - xm1) * 0.5f; - #if ENABLE_FILTER - pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0)); - #else // no filter - pEngine->pOutputRight[i++] += volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0); - #endif // ENABLE_FILTER - #endif // USE_LINEAR_INTERPOLATION - - this->Pos += pitch; - } - - inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) { - int pos_int = RTMath::DoubleToInt(this->Pos); // integer position - float pos_fract = this->Pos - pos_int; // fractional part of position - - #if USE_LINEAR_INTERPOLATION - float sample_point = pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]); - #else // polynomial interpolation - float xm1 = pSrc[pos_int]; - float x0 = pSrc[pos_int+1]; - float x1 = pSrc[pos_int+2]; - float x2 = pSrc[pos_int+3]; - float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f; - float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f; - float c = (x1 - xm1) * 0.5f; - float sample_point = (((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0; - #endif // USE_LINEAR_INTERPOLATION - - #if ENABLE_FILTER - sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point); - #endif // ENABLE_FILTER - - pEngine->pOutputLeft[i] += sample_point * volume_left; - pEngine->pOutputRight[i++] += sample_point * volume_right; - - this->Pos += pitch; - } + void KillImmediately(); + void ProcessEvents(uint Samples); + void CalculateBiquadParameters(uint Samples); + void UpdateSynthesisMode(); + void Synthesize(uint Samples, sample_t* pSrc, int Skip); inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) { return (CrossfadeControllerValue <= pDimRgn->Crossfade.in_start) ? 0.0f