/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 245 by schoenebeck, Sat Sep 18 14:12:36 2004 UTC revision 832 by persson, Sun Feb 5 10:24:05 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 26 
26    
27  #include "../../common/global.h"  #include "../../common/global.h"
28    
29  #if DEBUG_HEADERS  #include <gig.h>
 # warning Voice.h included  
 #endif // DEBUG_HEADERS  
30    
31  #include "../../common/RTMath.h"  #include "../../common/RTMath.h"
32  #include "../../common/RingBuffer.h"  #include "../../common/RingBuffer.h"
33  #include "../../common/RTELMemoryPool.h"  #include "../../common/Pool.h"
34  #include "../../drivers/audio/AudioOutputDevice.h"  #include "../../drivers/audio/AudioOutputDevice.h"
 #include "../../lib/fileloader/libgig/gig.h"  
35  #include "../common/BiquadFilter.h"  #include "../common/BiquadFilter.h"
36  #include "Engine.h"  #include "Engine.h"
37    #include "EngineChannel.h"
38  #include "Stream.h"  #include "Stream.h"
39  #include "DiskThread.h"  #include "DiskThread.h"
40    #include "EGADSR.h"
41  #include "EGDecay.h"  #include "EGDecay.h"
42  #include "Filter.h"  #include "Filter.h"
43  #include "../common/LFO.h"  #include "../common/LFOBase.h"
44    #include "SynthesisParam.h"
45  #define USE_LINEAR_INTERPOLATION        0  ///< set to 0 if you prefer cubic interpolation (slower, better quality)  #include "SmoothVolume.h"
46  #define ENABLE_FILTER                   1  ///< if set to 0 then filter (VCF) code is ignored on compile time  
47  #define FILTER_UPDATE_PERIOD            64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)  // include the appropriate (unsigned) triangle LFO implementation
48  #define FORCE_FILTER_USAGE              0  ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one  #if CONFIG_UNSIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
49  #define FILTER_CUTOFF_MAX               10000.0f ///< maximum cutoff frequency (10kHz)  # include "../common/LFOTriangleIntMath.h"
50  #define FILTER_CUTOFF_MIN               100.0f   ///< minimum cutoff frequency (100Hz)  #elif CONFIG_UNSIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
51    # include "../common/LFOTriangleIntAbsMath.h"
52  // Uncomment following line to override external cutoff controller  #elif CONFIG_UNSIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
53  //#define OVERRIDE_FILTER_CUTOFF_CTRL   1  ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')  # include "../common/LFOTriangleDiHarmonic.h"
54    #else
55  // Uncomment following line to override external resonance controller  # error "Unknown or no (unsigned) triangle LFO implementation selected!"
56  //#define OVERRIDE_FILTER_RES_CTRL      91  ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')  #endif
57    
58  // Uncomment following line to override filter type  // include the appropriate (signed) triangle LFO implementation
59  //#define OVERRIDE_FILTER_TYPE          ::gig::vcf_type_lowpass  ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass  #if CONFIG_SIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
60    # include "../common/LFOTriangleIntMath.h"
61    #elif CONFIG_SIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
62    # include "../common/LFOTriangleIntAbsMath.h"
63    #elif CONFIG_SIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
64    # include "../common/LFOTriangleDiHarmonic.h"
65    #else
66    # error "Unknown or no (signed) triangle LFO implementation selected!"
67    #endif
68    
69  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
70    
71      class Engine;      class Engine;
     class EGADSR;  
     class VCAManipulator;  
     class VCFCManipulator;  
     class VCOManipulator;  
72    
73      /// Reflects a MIDI controller      /// Reflects a MIDI controller
74      struct midi_ctrl {      struct midi_ctrl {
# Line 74  namespace LinuxSampler { namespace gig { Line 77  namespace LinuxSampler { namespace gig {
77          float   fvalue;     ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)          float   fvalue;     ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
78      };      };
79    
80        #if CONFIG_UNSIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
81        typedef LFOTriangleIntMath<range_unsigned> LFOUnsigned;
82        #elif CONFIG_UNSIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
83        typedef LFOTriangleIntAbsMath<range_unsigned> LFOUnsigned;
84        #elif CONFIG_UNSIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
85        typedef LFOTriangleDiHarmonic<range_unsigned> LFOUnsigned;
86        #endif
87    
88        #if CONFIG_SIGNED_TRIANG_ALGO == INT_MATH_SOLUTION
89        typedef LFOTriangleIntMath<range_signed> LFOSigned;
90        #elif CONFIG_SIGNED_TRIANG_ALGO == INT_ABS_MATH_SOLUTION
91        typedef LFOTriangleIntAbsMath<range_signed> LFOSigned;
92        #elif CONFIG_SIGNED_TRIANG_ALGO == DI_HARMONIC_SOLUTION
93        typedef LFOTriangleDiHarmonic<range_signed> LFOSigned;
94        #endif
95    
96      /** Gig Voice      /** Gig Voice
97       *       *
98       * Renders a voice for the Gigasampler format.       * Renders a voice for the Gigasampler format.
# Line 95  namespace LinuxSampler { namespace gig { Line 114  namespace LinuxSampler { namespace gig {
114    
115              // Methods              // Methods
116              Voice();              Voice();
117             ~Voice();              virtual ~Voice();
118              void Kill(Event* pKillEvent);              void Kill(Pool<Event>::Iterator& itKillEvent);
             void KillImmediately();  
119              void Render(uint Samples);              void Render(uint Samples);
120              void Reset();              void Reset();
121              void SetOutput(AudioOutputDevice* pAudioOutputDevice);              void SetOutput(AudioOutputDevice* pAudioOutputDevice);
122              void SetEngine(Engine* pEngine);              void SetEngine(Engine* pEngine);
123              int  Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer = 0, bool ReleaseTriggerVoice = false);              int  Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup);
124              inline bool IsActive() { return Active; }              inline bool IsActive() { return PlaybackState; }
125          private:              inline bool IsStealable() { return !itKillEvent && PlaybackState >= playback_state_ram; }
126                void UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent);
127    
128            //private:
129              // Types              // Types
130              enum playback_state_t {              enum playback_state_t {
131                  playback_state_ram,                  playback_state_end  = 0,
132                  playback_state_disk,                  playback_state_init = 1,
133                  playback_state_end                  playback_state_ram  = 2,
134                    playback_state_disk = 3
135              };              };
136    
137              // Attributes              // Attributes
138              gig::Engine*                pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.              EngineChannel*              pEngineChannel;
139              float                       Volume;             ///< Volume level of the voice              Engine*                     pEngine;            ///< Pointer to the sampler engine, to be able to access the event lists.
140              float                       PanLeft;              float                       VolumeLeft;         ///< Left channel volume. This factor is calculated when the voice is triggered and doesn't change after that.
141              float                       PanRight;              float                       VolumeRight;        ///< Right channel volume. This factor is calculated when the voice is triggered and doesn't change after that.
142              float                       CrossfadeVolume;    ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course)              SmoothVolume                CrossfadeSmoother;  ///< Crossfade volume, updated by crossfade CC events
143                SmoothVolume                VolumeSmoother;     ///< Volume, updated by CC 7 (volume) events
144                SmoothVolume                PanLeftSmoother;    ///< Left channel volume, updated by CC 10 (pan) events
145                SmoothVolume                PanRightSmoother;   ///< Right channel volume, updated by CC 10 (pan) events
146              double                      Pos;                ///< Current playback position in sample              double                      Pos;                ///< Current playback position in sample
147              double                      PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice              float                       PitchBase;          ///< Basic pitch depth, stays the same for the whole life time of the voice
148              double                      PitchBend;          ///< Current pitch value of the pitchbend wheel              float                       PitchBend;          ///< Current pitch value of the pitchbend wheel
149                float                       CutoffBase;         ///< Cutoff frequency before control change, EG and LFO are applied
150              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back              ::gig::Sample*              pSample;            ///< Pointer to the sample to be played back
             ::gig::Region*              pRegion;            ///< Pointer to the articulation information of the respective keyboard region of this voice  
151              ::gig::DimensionRegion*     pDimRgn;            ///< Pointer to the articulation information of current dimension region of this voice              ::gig::DimensionRegion*     pDimRgn;            ///< Pointer to the articulation information of current dimension region of this voice
             bool                        Active;             ///< If this voice object is currently in usage  
152              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly              playback_state_t            PlaybackState;      ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
153              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false              bool                        DiskVoice;          ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
154              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream              Stream::reference_t         DiskStreamRef;      ///< Reference / link to the disk stream
155                int                         RealSampleWordsLeftToRead; ///< Number of samples left to read, not including the silence added for the interpolator
156              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.              unsigned long               MaxRAMPos;          ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
157              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping              bool                        RAMLoop;            ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
158              int                         LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed              //uint                        LoopCyclesLeft;     ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
159              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle              uint                        Delay;              ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
160              EGADSR*                     pEG1;               ///< Envelope Generator 1 (Amplification)              EGADSR                      EG1;                ///< Envelope Generator 1 (Amplification)
161              EGADSR*                     pEG2;               ///< Envelope Generator 2 (Filter cutoff frequency)              EGADSR                      EG2;                ///< Envelope Generator 2 (Filter cutoff frequency)
162              EGDecay*                    pEG3;               ///< Envelope Generator 3 (Pitch)              EGDecay                     EG3;                ///< Envelope Generator 3 (Pitch)
             Filter                      FilterLeft;  
             Filter                      FilterRight;  
163              midi_ctrl                   VCFCutoffCtrl;              midi_ctrl                   VCFCutoffCtrl;
164              midi_ctrl                   VCFResonanceCtrl;              midi_ctrl                   VCFResonanceCtrl;
             int                         FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples  
165              static const float          FILTER_CUTOFF_COEFF;              static const float          FILTER_CUTOFF_COEFF;
166              static const int            FILTER_UPDATE_MASK;              LFOUnsigned*                pLFO1;               ///< Low Frequency Oscillator 1 (Amplification)
167              VCAManipulator*             pVCAManipulator;              LFOUnsigned*                pLFO2;               ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
168              VCFCManipulator*            pVCFCManipulator;              LFOSigned*                  pLFO3;               ///< Low Frequency Oscillator 3 (Pitch)
169              VCOManipulator*             pVCOManipulator;              bool                        bLFO1Enabled;        ///< Should we use the Amplitude LFO for this voice?
170              LFO<gig::VCAManipulator>*   pLFO1;              ///< Low Frequency Oscillator 1 (Amplification)              bool                        bLFO2Enabled;        ///< Should we use the Filter Cutoff LFO for this voice?
171              LFO<gig::VCFCManipulator>*  pLFO2;             ///< Low Frequency Oscillator 2 (Filter cutoff frequency)              bool                        bLFO3Enabled;        ///< Should we use the Pitch LFO for this voice?
172              LFO<gig::VCOManipulator>*   pLFO3;              ///< Low Frequency Oscillator 3 (Pitch)              Pool<Event>::Iterator       itTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
173              Event*                      pTriggerEvent;      ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).          //public: // FIXME: just made public for debugging (sanity check in Engine::RenderAudio()), should be changed to private before the final release
174              Event*                      pKillEvent;         ///< Event which caused this voice to be killed              Pool<Event>::Iterator       itKillEvent;         ///< Event which caused this voice to be killed
175            //private:
176                int                         SynthesisMode;
177                float                       fFinalCutoff;
178                float                       fFinalResonance;
179                SynthesisParam              finalSynthesisParameters;
180                Loop                        loop;
181    
182              // Static Methods              // Static Methods
183              static float CalculateFilterCutoffCoeff();              static float CalculateFilterCutoffCoeff();
             static int   CalculateFilterUpdateMask();  
184    
185              // Methods              // Methods
186              void        ProcessEvents(uint Samples);              void KillImmediately();
187              #if ENABLE_FILTER              void ProcessEvents(uint Samples);
188              void        CalculateBiquadParameters(uint Samples);              void Synthesize(uint Samples, sample_t* pSrc, uint Skip);
189              #endif // ENABLE_FILTER              void processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End);
190              void        InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip);              void processCCEvents(RTList<Event>::Iterator& itEvent, uint End);
191              void        InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);              void processPitchEvent(RTList<Event>::Iterator& itEvent);
192                void processCrossFadeEvent(RTList<Event>::Iterator& itEvent);
193              inline void InterpolateMono(sample_t* pSrc, int& i) {              void processCutoffEvent(RTList<Event>::Iterator& itEvent);
194                  InterpolateOneStep_Mono(pSrc, i,              void processResonanceEvent(RTList<Event>::Iterator& itEvent);
195                                          pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft,  
196                                          pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight,              inline uint8_t CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {
197                                          pEngine->pSynthesisParameters[Event::destination_vco][i],                  uint8_t c = std::max(CrossfadeControllerValue, pDimRgn->AttenuationControllerThreshold);
198                                          pEngine->pBasicFilterParameters[i],                  c = (!pDimRgn->Crossfade.out_end) ? c /* 0,0,0,0 means no crossfade defined */
199                                          pEngine->pMainFilterParameters[i]);                            : (c < pDimRgn->Crossfade.in_end) ?
200              }                                  ((c <= pDimRgn->Crossfade.in_start) ? 0
201                                    : 127 * (c - pDimRgn->Crossfade.in_start) / (pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start))
202              inline void InterpolateStereo(sample_t* pSrc, int& i) {                            : (c <= pDimRgn->Crossfade.out_start) ? 127
203                  InterpolateOneStep_Stereo(pSrc, i,                            : (c < pDimRgn->Crossfade.out_end) ? 127 * (pDimRgn->Crossfade.out_end - c) / (pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)
204                                            pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft,                            : 0;
205                                            pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight,                  return pDimRgn->InvertAttenuationController ? 127 - c : c;
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
   
             inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {  
                 int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position  
                 float pos_fract = this->Pos - pos_int;             // fractional part of position  
                 pos_int <<= 1;  
   
                 #if USE_LINEAR_INTERPOLATION  
                     #if ENABLE_FILTER  
                         // left channel  
                         pEngine->pOutputLeft[i]    += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));  
                         // right channel  
                         pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));  
                     #else // no filter  
                         // left channel  
                         pEngine->pOutputLeft[i]    += volume_left * (pSrc[pos_int]   + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));  
                         // right channel  
                         pEngine->pOutputRight[i++] += volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));  
                     #endif // ENABLE_FILTER  
                 #else // polynomial interpolation  
                     // calculate left channel  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+2];  
                     float x1  = pSrc[pos_int+4];  
                     float x2  = pSrc[pos_int+6];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pEngine->pOutputLeft[i] += volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
   
                     //calculate right channel  
                     xm1 = pSrc[pos_int+1];  
                     x0  = pSrc[pos_int+3];  
                     x1  = pSrc[pos_int+5];  
                     x2  = pSrc[pos_int+7];  
                     a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     c   = (x1 - xm1) * 0.5f;  
                     #if ENABLE_FILTER  
                         pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));  
                     #else // no filter  
                         pEngine->pOutputRight[i++] += volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);  
                     #endif // ENABLE_FILTER  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 this->Pos += pitch;  
             }  
   
             inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch,  biquad_param_t& bq_base, biquad_param_t& bq_main) {  
                 int   pos_int   = RTMath::DoubleToInt(this->Pos);  // integer position  
                 float pos_fract = this->Pos - pos_int;             // fractional part of position  
   
                 #if USE_LINEAR_INTERPOLATION  
                     float sample_point  = pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]);  
                 #else // polynomial interpolation  
                     float xm1 = pSrc[pos_int];  
                     float x0  = pSrc[pos_int+1];  
                     float x1  = pSrc[pos_int+2];  
                     float x2  = pSrc[pos_int+3];  
                     float a   = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;  
                     float b   = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;  
                     float c   = (x1 - xm1) * 0.5f;  
                     float sample_point =  (((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0;  
                 #endif // USE_LINEAR_INTERPOLATION  
   
                 #if ENABLE_FILTER  
                     sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);  
                 #endif // ENABLE_FILTER  
   
                 pEngine->pOutputLeft[i]    += sample_point * volume_left;  
                 pEngine->pOutputRight[i++] += sample_point * volume_right;  
   
                 this->Pos += pitch;  
             }  
   
             inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {  
                 return (CrossfadeControllerValue <= pDimRgn->Crossfade.in_start)  ? 0.0f  
                      : (CrossfadeControllerValue < pDimRgn->Crossfade.in_end)     ? float(CrossfadeControllerValue - pDimRgn->Crossfade.in_start) / float(pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start)  
                      : (CrossfadeControllerValue <= pDimRgn->Crossfade.out_start) ? 1.0f  
                      : (CrossfadeControllerValue < pDimRgn->Crossfade.out_end)    ? float(CrossfadeControllerValue - pDimRgn->Crossfade.out_start) / float(pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)  
                      : 0.0f;  
206              }              }
207    
208              inline float Constrain(float ValueToCheck, float Min, float Max) {              inline float Constrain(float ValueToCheck, float Min, float Max) {

Legend:
Removed from v.245  
changed lines
  Added in v.832

  ViewVC Help
Powered by ViewVC