/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Contents of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 242 - (show annotations) (download) (as text)
Wed Sep 15 13:59:08 2004 UTC (19 years, 6 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 16257 byte(s)
* added support for release trigger dimension (that is voices which are
  spawned when a key was released)
* libgig: bugfix in dimension region switching

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the Free Software *
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20 * MA 02111-1307 USA *
21 ***************************************************************************/
22
23 #ifndef __LS_GIG_VOICE_H__
24 #define __LS_GIG_VOICE_H__
25
26 #include "../../common/global.h"
27
28 #if DEBUG_HEADERS
29 # warning Voice.h included
30 #endif // DEBUG_HEADERS
31
32 #include "../../common/RTMath.h"
33 #include "../../common/RingBuffer.h"
34 #include "../../common/RTELMemoryPool.h"
35 #include "../../drivers/audio/AudioOutputDevice.h"
36 #include "../../lib/fileloader/libgig/gig.h"
37 #include "../common/BiquadFilter.h"
38 #include "Engine.h"
39 #include "Stream.h"
40 #include "DiskThread.h"
41
42 #include "EGDecay.h"
43 #include "Filter.h"
44 #include "../common/LFO.h"
45
46 #define USE_LINEAR_INTERPOLATION 0 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
47 #define ENABLE_FILTER 1 ///< if set to 0 then filter (VCF) code is ignored on compile time
48 #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)
49 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
50 #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz)
51 #define FILTER_CUTOFF_MIN 100.0f ///< minimum cutoff frequency (100Hz)
52
53 // Uncomment following line to override external cutoff controller
54 //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
55
56 // Uncomment following line to override external resonance controller
57 //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
58
59 // Uncomment following line to override filter type
60 //#define OVERRIDE_FILTER_TYPE ::gig::vcf_type_lowpass ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass
61
62 namespace LinuxSampler { namespace gig {
63
64 class Engine;
65 class EGADSR;
66 class VCAManipulator;
67 class VCFCManipulator;
68 class VCOManipulator;
69
70 /// Reflects a MIDI controller
71 struct midi_ctrl {
72 uint8_t controller; ///< MIDI control change controller number
73 uint8_t value; ///< Current MIDI controller value
74 float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
75 };
76
77 /** Gig Voice
78 *
79 * Renders a voice for the Gigasampler format.
80 */
81 class Voice {
82 public:
83 // Types
84 enum type_t {
85 type_normal,
86 type_release_trigger_required, ///< If the key of this voice will be released, it causes a release triggered voice to be spawned
87 type_release_trigger ///< Release triggered voice which cannot be killed by releasing its key
88 };
89
90 // Attributes
91 type_t Type; ///< Voice Type
92 int MIDIKey; ///< MIDI key number of the key that triggered the voice
93 uint KeyGroup;
94 DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
95
96 // Methods
97 Voice();
98 ~Voice();
99 void Kill(Event* pKillEvent);
100 void KillImmediately();
101 void Render(uint Samples);
102 void Reset();
103 void SetOutput(AudioOutputDevice* pAudioOutputDevice);
104 void SetEngine(Engine* pEngine);
105 int Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer = 0, bool ReleaseTriggerVoice = false);
106 inline bool IsActive() { return Active; }
107 private:
108 // Types
109 enum playback_state_t {
110 playback_state_ram,
111 playback_state_disk,
112 playback_state_end
113 };
114
115 // Attributes
116 gig::Engine* pEngine; ///< Pointer to the sampler engine, to be able to access the event lists.
117 float Volume; ///< Volume level of the voice
118 float CrossfadeVolume; ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course)
119 double Pos; ///< Current playback position in sample
120 double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice
121 double PitchBend; ///< Current pitch value of the pitchbend wheel
122 ::gig::Sample* pSample; ///< Pointer to the sample to be played back
123 ::gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
124 ::gig::DimensionRegion* pDimRgn; ///< Pointer to the articulation information of current dimension region of this voice
125 bool Active; ///< If this voice object is currently in usage
126 playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
127 bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
128 Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
129 unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
130 bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
131 int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
132 uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
133 EGADSR* pEG1; ///< Envelope Generator 1 (Amplification)
134 EGADSR* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency)
135 EGDecay* pEG3; ///< Envelope Generator 3 (Pitch)
136 Filter FilterLeft;
137 Filter FilterRight;
138 midi_ctrl VCFCutoffCtrl;
139 midi_ctrl VCFResonanceCtrl;
140 int FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples
141 static const float FILTER_CUTOFF_COEFF;
142 static const int FILTER_UPDATE_MASK;
143 VCAManipulator* pVCAManipulator;
144 VCFCManipulator* pVCFCManipulator;
145 VCOManipulator* pVCOManipulator;
146 LFO<gig::VCAManipulator>* pLFO1; ///< Low Frequency Oscillator 1 (Amplification)
147 LFO<gig::VCFCManipulator>* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
148 LFO<gig::VCOManipulator>* pLFO3; ///< Low Frequency Oscillator 3 (Pitch)
149 Event* pTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
150 Event* pKillEvent; ///< Event which caused this voice to be killed
151
152 // Static Methods
153 static float CalculateFilterCutoffCoeff();
154 static int CalculateFilterUpdateMask();
155
156 // Methods
157 void ProcessEvents(uint Samples);
158 #if ENABLE_FILTER
159 void CalculateBiquadParameters(uint Samples);
160 #endif // ENABLE_FILTER
161 void Interpolate(uint Samples, sample_t* pSrc, uint Skip);
162 void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
163 inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
164 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
165 float pos_fract = this->Pos - pos_int; // fractional part of position
166 pos_int <<= 1;
167
168 #if USE_LINEAR_INTERPOLATION
169 #if ENABLE_FILTER
170 // left channel
171 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
172 // right channel
173 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
174 #else // no filter
175 // left channel
176 pEngine->pOutputLeft[i] += effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
177 // right channel
178 pEngine->pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
179 #endif // ENABLE_FILTER
180 #else // polynomial interpolation
181 // calculate left channel
182 float xm1 = pSrc[pos_int];
183 float x0 = pSrc[pos_int+2];
184 float x1 = pSrc[pos_int+4];
185 float x2 = pSrc[pos_int+6];
186 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
187 float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
188 float c = (x1 - xm1) * 0.5f;
189 #if ENABLE_FILTER
190 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
191 #else // no filter
192 pEngine->pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
193 #endif // ENABLE_FILTER
194
195 //calculate right channel
196 xm1 = pSrc[pos_int+1];
197 x0 = pSrc[pos_int+3];
198 x1 = pSrc[pos_int+5];
199 x2 = pSrc[pos_int+7];
200 a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
201 b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
202 c = (x1 - xm1) * 0.5f;
203 #if ENABLE_FILTER
204 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
205 #else // no filter
206 pEngine->pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
207 #endif // ENABLE_FILTER
208 #endif // USE_LINEAR_INTERPOLATION
209
210 this->Pos += pitch;
211 }
212
213 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
214 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
215 float pos_fract = this->Pos - pos_int; // fractional part of position
216
217 #if USE_LINEAR_INTERPOLATION
218 float sample_point = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));
219 #else // polynomial interpolation
220 float xm1 = pSrc[pos_int];
221 float x0 = pSrc[pos_int+1];
222 float x1 = pSrc[pos_int+2];
223 float x2 = pSrc[pos_int+3];
224 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
225 float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
226 float c = (x1 - xm1) * 0.5f;
227 float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
228 #endif // USE_LINEAR_INTERPOLATION
229
230 #if ENABLE_FILTER
231 sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);
232 #endif // ENABLE_FILTER
233
234 pEngine->pOutputLeft[i] += sample_point;
235 pEngine->pOutputRight[i++] += sample_point;
236
237 this->Pos += pitch;
238 }
239
240 inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {
241 return (CrossfadeControllerValue <= pDimRgn->Crossfade.in_start) ? 0.0f
242 : (CrossfadeControllerValue < pDimRgn->Crossfade.in_end) ? float(CrossfadeControllerValue - pDimRgn->Crossfade.in_start) / float(pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start)
243 : (CrossfadeControllerValue <= pDimRgn->Crossfade.out_start) ? 1.0f
244 : (CrossfadeControllerValue < pDimRgn->Crossfade.out_end) ? float(CrossfadeControllerValue - pDimRgn->Crossfade.out_start) / float(pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)
245 : 0.0f;
246 }
247
248 inline float Constrain(float ValueToCheck, float Min, float Max) {
249 if (ValueToCheck > Max) ValueToCheck = Max;
250 else if (ValueToCheck < Min) ValueToCheck = Min;
251 return ValueToCheck;
252 }
253 };
254
255 }} // namespace LinuxSampler::gig
256
257 #endif // __LS_GIG_VOICE_H__

  ViewVC Help
Powered by ViewVC