/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Contents of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 236 - (show annotations) (download) (as text)
Thu Sep 9 18:44:18 2004 UTC (19 years, 6 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 15613 byte(s)
* added support for crossfades
* support sample playback start offset

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the Free Software *
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20 * MA 02111-1307 USA *
21 ***************************************************************************/
22
23 #ifndef __LS_GIG_VOICE_H__
24 #define __LS_GIG_VOICE_H__
25
26 #include "../../common/global.h"
27
28 #if DEBUG_HEADERS
29 # warning Voice.h included
30 #endif // DEBUG_HEADERS
31
32 #include "../../common/RTMath.h"
33 #include "../../common/RingBuffer.h"
34 #include "../../common/RTELMemoryPool.h"
35 #include "../../drivers/audio/AudioOutputDevice.h"
36 #include "../../lib/fileloader/libgig/gig.h"
37 #include "../common/BiquadFilter.h"
38 #include "Engine.h"
39 #include "Stream.h"
40 #include "DiskThread.h"
41
42 #include "EGDecay.h"
43 #include "Filter.h"
44 #include "../common/LFO.h"
45
46 #define USE_LINEAR_INTERPOLATION 0 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
47 #define ENABLE_FILTER 1 ///< if set to 0 then filter (VCF) code is ignored on compile time
48 #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)
49 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
50 #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz)
51 #define FILTER_CUTOFF_MIN 100.0f ///< minimum cutoff frequency (100Hz)
52
53 // Uncomment following line to override external cutoff controller
54 //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
55
56 // Uncomment following line to override external resonance controller
57 //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
58
59 // Uncomment following line to override filter type
60 //#define OVERRIDE_FILTER_TYPE ::gig::vcf_type_lowpass ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass
61
62 namespace LinuxSampler { namespace gig {
63
64 class Engine;
65 class EGADSR;
66 class VCAManipulator;
67 class VCFCManipulator;
68 class VCOManipulator;
69
70 /// Reflects a MIDI controller
71 struct midi_ctrl {
72 uint8_t controller; ///< MIDI control change controller number
73 uint8_t value; ///< Current MIDI controller value
74 float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
75 };
76
77 /** Gig Voice
78 *
79 * Renders a voice for the Gigasampler format.
80 */
81 class Voice {
82 public:
83 // Attributes
84 int MIDIKey; ///< MIDI key number of the key that triggered the voice
85 DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
86
87 // Methods
88 Voice();
89 ~Voice();
90 void Kill();
91 void Render(uint Samples);
92 void Reset();
93 void SetOutput(AudioOutputDevice* pAudioOutputDevice);
94 void SetEngine(Engine* pEngine);
95 int Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer = 0);
96 inline bool IsActive() { return Active; }
97 private:
98 // Types
99 enum playback_state_t {
100 playback_state_ram,
101 playback_state_disk,
102 playback_state_end
103 };
104
105 // Attributes
106 gig::Engine* pEngine; ///< Pointer to the sampler engine, to be able to access the event lists.
107 float Volume; ///< Volume level of the voice
108 float CrossfadeVolume; ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course)
109 double Pos; ///< Current playback position in sample
110 double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice
111 double PitchBend; ///< Current pitch value of the pitchbend wheel
112 ::gig::Sample* pSample; ///< Pointer to the sample to be played back
113 ::gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
114 ::gig::DimensionRegion* pDimRgn; ///< Pointer to the articulation information of current dimension region of this voice
115 bool Active; ///< If this voice object is currently in usage
116 playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
117 bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
118 Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
119 unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
120 bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
121 int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
122 uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
123 EGADSR* pEG1; ///< Envelope Generator 1 (Amplification)
124 EGADSR* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency)
125 EGDecay* pEG3; ///< Envelope Generator 3 (Pitch)
126 Filter FilterLeft;
127 Filter FilterRight;
128 midi_ctrl VCFCutoffCtrl;
129 midi_ctrl VCFResonanceCtrl;
130 int FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples
131 static const float FILTER_CUTOFF_COEFF;
132 static const int FILTER_UPDATE_MASK;
133 VCAManipulator* pVCAManipulator;
134 VCFCManipulator* pVCFCManipulator;
135 VCOManipulator* pVCOManipulator;
136 LFO<gig::VCAManipulator>* pLFO1; ///< Low Frequency Oscillator 1 (Amplification)
137 LFO<gig::VCFCManipulator>* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
138 LFO<gig::VCOManipulator>* pLFO3; ///< Low Frequency Oscillator 3 (Pitch)
139 Event* pTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
140
141 // Static Methods
142 static float CalculateFilterCutoffCoeff();
143 static int CalculateFilterUpdateMask();
144
145 // Methods
146 void ProcessEvents(uint Samples);
147 #if ENABLE_FILTER
148 void CalculateBiquadParameters(uint Samples);
149 #endif // ENABLE_FILTER
150 void Interpolate(uint Samples, sample_t* pSrc, uint Skip);
151 void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
152 inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
153 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
154 float pos_fract = this->Pos - pos_int; // fractional part of position
155 pos_int <<= 1;
156
157 #if USE_LINEAR_INTERPOLATION
158 #if ENABLE_FILTER
159 // left channel
160 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
161 // right channel
162 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
163 #else // no filter
164 // left channel
165 pEngine->pOutputLeft[i] += effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
166 // right channel
167 pEngine->pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
168 #endif // ENABLE_FILTER
169 #else // polynomial interpolation
170 // calculate left channel
171 float xm1 = pSrc[pos_int];
172 float x0 = pSrc[pos_int+2];
173 float x1 = pSrc[pos_int+4];
174 float x2 = pSrc[pos_int+6];
175 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
176 float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
177 float c = (x1 - xm1) * 0.5f;
178 #if ENABLE_FILTER
179 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
180 #else // no filter
181 pEngine->pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
182 #endif // ENABLE_FILTER
183
184 //calculate right channel
185 xm1 = pSrc[pos_int+1];
186 x0 = pSrc[pos_int+3];
187 x1 = pSrc[pos_int+5];
188 x2 = pSrc[pos_int+7];
189 a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
190 b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
191 c = (x1 - xm1) * 0.5f;
192 #if ENABLE_FILTER
193 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
194 #else // no filter
195 pEngine->pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
196 #endif // ENABLE_FILTER
197 #endif // USE_LINEAR_INTERPOLATION
198
199 this->Pos += pitch;
200 }
201
202 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
203 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
204 float pos_fract = this->Pos - pos_int; // fractional part of position
205
206 #if USE_LINEAR_INTERPOLATION
207 float sample_point = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));
208 #else // polynomial interpolation
209 float xm1 = pSrc[pos_int];
210 float x0 = pSrc[pos_int+1];
211 float x1 = pSrc[pos_int+2];
212 float x2 = pSrc[pos_int+3];
213 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
214 float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
215 float c = (x1 - xm1) * 0.5f;
216 float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
217 #endif // USE_LINEAR_INTERPOLATION
218
219 #if ENABLE_FILTER
220 sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);
221 #endif // ENABLE_FILTER
222
223 pEngine->pOutputLeft[i] += sample_point;
224 pEngine->pOutputRight[i++] += sample_point;
225
226 this->Pos += pitch;
227 }
228
229 inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {
230 return (CrossfadeControllerValue <= pDimRgn->Crossfade.in_start) ? 0.0f
231 : (CrossfadeControllerValue < pDimRgn->Crossfade.in_end) ? float(CrossfadeControllerValue - pDimRgn->Crossfade.in_start) / float(pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start)
232 : (CrossfadeControllerValue <= pDimRgn->Crossfade.out_start) ? 1.0f
233 : (CrossfadeControllerValue < pDimRgn->Crossfade.out_end) ? float(CrossfadeControllerValue - pDimRgn->Crossfade.out_start) / float(pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)
234 : 0.0f;
235 }
236
237 inline float Constrain(float ValueToCheck, float Min, float Max) {
238 if (ValueToCheck > Max) ValueToCheck = Max;
239 else if (ValueToCheck < Min) ValueToCheck = Min;
240 return ValueToCheck;
241 }
242 };
243
244 }} // namespace LinuxSampler::gig
245
246 #endif // __LS_GIG_VOICE_H__

  ViewVC Help
Powered by ViewVC