/[svn]/linuxsampler/trunk/src/engines/sf2/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/sf2/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2012 by iliev, Fri Oct 23 17:53:17 2009 UTC revision 3034 by schoenebeck, Mon Oct 31 00:05:00 2016 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *   *   Copyright (C) 2005 - 2008 Christian Schoenebeck                       *
7     *   Copyright (C) 2009 - 2016 Christian Schoenebeck and Grigor Iliev      *
8   *                                                                         *   *                                                                         *
9   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
10   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 22 
22   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
23   ***************************************************************************/   ***************************************************************************/
24    
25  #include "../../common/Features.h"  #include "Voice.h"
26  #include "../gig/Synthesizer.h"  
 #include "../gig/Profiler.h"  
27  #include "Engine.h"  #include "Engine.h"
28  #include "EngineChannel.h"  #include "EngineChannel.h"
29    
 #include "Voice.h"  
   
30  namespace LinuxSampler { namespace sf2 {  namespace LinuxSampler { namespace sf2 {
31    
32      typedef LinuxSampler::gig::Profiler Profiler; // TODO: remove      typedef LinuxSampler::VoiceBase<EngineChannel, ::sf2::Region, ::sf2::Sample, DiskThread> SF2VoiceBase;
   
     Voice::Voice() {  
         pEngine     = NULL;  
         pDiskThread = NULL;  
         PlaybackState = playback_state_end;  
         pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)  
         pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)  
         pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)  
         KeyGroup = 0;  
         SynthesisMode = 0; // set all mode bits to 0 first  
         // select synthesis implementation (asm core is not supported ATM)  
         #if 0 // CONFIG_ASM && ARCH_X86  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());  
         #else  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);  
         #endif  
         SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());  
33    
34          finalSynthesisParameters.filterLeft.Reset();      Voice::Voice(): SF2VoiceBase(&SignalRack), SignalRack(this) {
35          finalSynthesisParameters.filterRight.Reset();          pEngine = NULL;
36            pEG1 = NULL;
37            pEG2 = NULL;
38      }      }
39    
40      Voice::~Voice() {      Voice::~Voice() {
41          if (pLFO1) delete pLFO1;  
42          if (pLFO2) delete pLFO2;      }
43          if (pLFO3) delete pLFO3;  
44        void Voice::AboutToTrigger() {
45            
46        }
47    
48        EngineChannel* Voice::GetSf2EngineChannel() {
49            return static_cast<EngineChannel*>(pEngineChannel);
50      }      }
51    
52      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {
# Line 67  namespace LinuxSampler { namespace sf2 { Line 56  namespace LinuxSampler { namespace sf2 {
56          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
57      }      }
58    
59      /**      Voice::SampleInfo Voice::GetSampleInfo() {
60       *  Initializes and triggers the voice, a disk stream will be launched if          SampleInfo si;
61       *  needed.          si.SampleRate       = pSample->SampleRate;
62       *          si.ChannelCount     = pSample->GetChannelCount();
63       *  @param pEngineChannel - engine channel on which this voice was ordered          si.FrameSize        = pSample->GetFrameSize();
64       *  @param itNoteOnEvent  - event that caused triggering of this voice          si.BitDepth         = (pSample->GetFrameSize() / pSample->GetChannelCount()) * 8;
65       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)          si.TotalFrameCount  = pSample->GetTotalFrameCount();
66       *  @param pRegion        - points to the dimension region which provides sample wave(s) and articulation data  
67       *  @param VoiceType      - type of this voice          si.HasLoops       = pRegion->HasLoop;
68       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of          si.LoopStart      = (si.HasLoops) ? pRegion->LoopStart : 0;
69       *  @returns 0 on success, a value < 0 if the voice wasn't triggered          si.LoopLength     = (si.HasLoops) ? ((pRegion->LoopEnd) - pRegion->LoopStart): 0;
70       *           (either due to an error or e.g. because no region is          si.LoopPlayCount  = 0; // TODO:
71       *           defined for the given key)          si.Unpitched      = pSample->IsUnpitched();
72       */  
73      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::sf2::Region* pRegion, type_t VoiceType, int iKeyGroup) {          return si;
74          this->pEngineChannel = pEngineChannel;      }
75          this->pRegion        = pRegion;  
76          Orphan = false;      Voice::RegionInfo Voice::GetRegionInfo() {
77            ::sf2::Region* reg = NULL;
78          #if CONFIG_DEVMODE          ::sf2::Preset* preset = GetSf2EngineChannel()->pInstrument;
79          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          for (int i = 0; i < preset->GetRegionCount(); i++) { // TODO: some optimization?
80              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              if (preset->GetRegion(i)->pInstrument == pRegion->GetParentInstrument()) {
81          }                  reg = preset->GetRegion(i); // TODO: Can the instrument belong to more than one preset region?
         #endif // CONFIG_DEVMODE  
   
         Type            = VoiceType;  
         MIDIKey         = itNoteOnEvent->Param.Note.Key;  
         PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet  
         Delay           = itNoteOnEvent->FragmentPos();  
         itTriggerEvent  = itNoteOnEvent;  
         itKillEvent     = Pool<Event>::Iterator();  
         KeyGroup        = iKeyGroup;  
         pSample         = pRegion->pSample; // sample won't change until the voice is finished  
   
         /*// calculate volume  
         const double velocityAttenuation = pRegion->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);  
   
         // For 16 bit samples, we downscale by 32768 to convert from  
         // int16 value range to DSP value range (which is  
         // -1.0..1.0). For 24 bit, we downscale from int32.  
         float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);  
   
         float volume = pRegion->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;  
          */ // TODO: ^^^  
         float volume = pEngineChannel->GlobalVolume * GLOBAL_VOLUME;  
   
         // the volume of release triggered samples depends on note length  
         /**if (Type == type_release_trigger) {  
             float noteLength = float(pEngine->FrameTime + Delay -  
                                      pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;  
             float attenuation = 1 - 0.01053 * (256 >> pRegion->ReleaseTriggerDecay) * noteLength;  
             if (attenuation <= 0) return -1;  
             volume *= attenuation;  
         }  
          */ // TODO: ^^^  
   
         // select channel mode (mono or stereo)  
         SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->GetChannelCount() == 2);  
         // select bit depth (16 or 24)  
         SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, (pSample->GetFrameSize() / pSample->GetChannelCount()) > 2);  
   
         // get starting crossfade volume level  
         /*float crossfadeVolume;  
         switch (pRegion->AttenuationController.type) {  
             case ::gig::attenuation_ctrl_t::type_channelaftertouch:  
                 crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];  
                 break;  
             case ::gig::attenuation_ctrl_t::type_velocity:  
                 crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];  
                 break;  
             case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate  
                 crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pRegion->AttenuationController.controller_number])];  
82                  break;                  break;
             case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined  
             default:  
                 crossfadeVolume = 1.0f;  
         }*/ // TODO: ^^^  
   
         VolumeLeft  = volume * Engine::PanCurve[64 - pRegion->pan];  
         VolumeRight = volume * Engine::PanCurve[64 + pRegion->pan];  
   
         float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;  
         //CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate); // TODO:  
         VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);  
         PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);  
         PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);  
   
         /*finalSynthesisParameters.dPos = pRegion->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)  
         Pos = pRegion->SampleStartOffset;*/ // TODO: ^^^  
         Pos = finalSynthesisParameters.dPos = 0;  
   
         // Check if the sample needs disk streaming or is too short for that  
         long cachedsamples = pSample->GetCache().Size / pSample->GetFrameSize();  
         DiskVoice          = cachedsamples < pSample->GetTotalFrameCount();  
   
         //const DLS::sample_loop_t& loopinfo = pRegion->pSampleLoops[0]; // TODO:  
   
         if (DiskVoice) { // voice to be streamed from disk  
             if (cachedsamples > (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {  
                 MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->GetChannelCount(); //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)  
             } else {  
                 // The cache is too small to fit a max sample buffer.  
                 // Setting MaxRAMPos to 0 will probably cause a click  
                 // in the audio, but it's better than not handling  
                 // this case at all, which would have caused the  
                 // unsigned MaxRAMPos to be set to a negative number.  
                 MaxRAMPos = 0;  
             }  
   
             // check if there's a loop defined which completely fits into the cached (RAM) part of the sample  
             //RAMLoop = (pRegion->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos); // TODO:  
             if (pDiskThread->OrderNewStream(&DiskStreamRef, pRegion, MaxRAMPos, false) < 0) {  
                 dmsg(1,("Disk stream order failed!\n"));  
                 KillImmediately();  
                 return -1;  
83              }              }
             dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->GetTotalFrameCount(), MaxRAMPos, (RAMLoop) ? "yes" : "no"));  
         }  
         else { // RAM only voice  
             MaxRAMPos = cachedsamples;  
             /*RAMLoop = (pRegion->SampleLoops != 0);  
             dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no")); */ // TODO:  
         }  
         /*if (RAMLoop) {  
             loop.uiTotalCycles = pSample->LoopPlayCount;  
             loop.uiCyclesLeft  = pSample->LoopPlayCount;  
             loop.uiStart       = loopinfo.LoopStart;  
             loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;  
             loop.uiSize        = loopinfo.LoopLength;  
         }*/ // TODO: ^^^  
   
         // calculate initial pitch value  
         {  
             double pitchbasecents = /* TODO: pEngineChannel->pInstrument->FineTune*/ + pRegion->fineTune + pEngine->ScaleTuning[MIDIKey % 12];  
   
             // GSt behaviour: maximum transpose up is 40 semitones. If  
             // MIDI key is more than 40 semitones above unity note,  
             // the transpose is not done.  
             /*if (pRegion->PitchTrack && (MIDIKey - (int) pRegion->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pRegion->UnityNote) * 100;  
   
             this->PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));  
             this->PitchBendRange = 1.0 / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange;  
             this->PitchBend = RTMath::CentsToFreqRatio(PitchBend * PitchBendRange);*/ // TODO: ^^^  
84          }          }
85            pPresetRegion = reg;
86    
87          // the length of the decay and release curves are dependent on the velocity          RegionInfo ri;
88          //const double velrelease = 1 / pRegion->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity); //TODO:          ri.UnityNote = pRegion->GetUnityNote();
89            ri.FineTune  = pRegion->GetFineTune(reg) + (pRegion->GetCoarseTune(reg) * 100);
90            ri.Pan       = pRegion->GetPan(reg);
91            ri.SampleStartOffset = pRegion->startAddrsOffset + pRegion->startAddrsCoarseOffset;
92    
93          // setup EG 1 (VCA EG)          // sample pitch
94          {          ri.VCFEnabled    = true; // TODO:
95          /*    // get current value of EG1 controller          ri.VCFType       = Filter::vcf_type_2p_lowpass; // TODO:
96              double eg1controllervalue;          ri.VCFResonance  = 0; // TODO:
             switch (pRegion->EG1Controller.type) {  
                 case ::gig::eg1_ctrl_t::type_none: // no controller defined  
                     eg1controllervalue = 0;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_channelaftertouch:  
                     eg1controllervalue = pEngineChannel->ControllerTable[128];  
                     break;  
                 case ::gig::eg1_ctrl_t::type_velocity:  
                     eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg1controllervalue = pEngineChannel->ControllerTable[pRegion->EG1Controller.controller_number];  
                     break;  
             }  
             if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;  
97    
98              // calculate influence of EG1 controller on EG1's parameters          ri.ReleaseTriggerDecay = 0; // TODO:
             // (eg1attack is different from the others)  
             double eg1attack  = (pRegion->EG1ControllerAttackInfluence)  ?  
                 1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?  
                                       1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;  
             double eg1decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;  
             double eg1release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;  
   
             EG1.trigger(pRegion->EG1PreAttack,  
                         pRegion->EG1Attack * eg1attack,  
                         pRegion->EG1Hold,  
                         pRegion->EG1Decay1 * eg1decay * velrelease,  
                         pRegion->EG1Decay2 * eg1decay * velrelease,  
                         pRegion->EG1InfiniteSustain,  
                         pRegion->EG1Sustain,  
                         pRegion->EG1Release * eg1release * velrelease,  
                         velocityAttenuation,  
                         pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
         }*/ // TODO: ^^^  
             EG1.trigger(0,  
                         0,  
                         false,  
                         0,  
                         0,  
                         true,  
                         100,  
                         0,  
                         1,  
                         pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
         }  
   
 #ifdef CONFIG_INTERPOLATE_VOLUME  
         // setup initial volume in synthesis parameters  
 #ifdef CONFIG_PROCESS_MUTED_CHANNELS  
         if (pEngineChannel->GetMute()) {  
             finalSynthesisParameters.fFinalVolumeLeft  = 0;  
             finalSynthesisParameters.fFinalVolumeRight = 0;  
         }  
         else  
 #else  
         {  
             //float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel(); // TODO:  
             float finalVolume = pEngineChannel->MidiVolume;  
99    
100              finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;          return ri;
101              finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;      }
         }  
 #endif  
 #endif  
   
         // setup EG 2 (VCF Cutoff EG)  
         /*{  
             // get current value of EG2 controller  
             double eg2controllervalue;  
             switch (pRegion->EG2Controller.type) {  
                 case ::gig::eg2_ctrl_t::type_none: // no controller defined  
                     eg2controllervalue = 0;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_channelaftertouch:  
                     eg2controllervalue = pEngineChannel->ControllerTable[128];  
                     break;  
                 case ::gig::eg2_ctrl_t::type_velocity:  
                     eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg2controllervalue = pEngineChannel->ControllerTable[pRegion->EG2Controller.controller_number];  
                     break;  
             }  
             if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;  
   
             // calculate influence of EG2 controller on EG2's parameters  
             double eg2attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;  
             double eg2decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;  
             double eg2release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;  
   
             EG2.trigger(pRegion->EG2PreAttack,  
                         pRegion->EG2Attack * eg2attack,  
                         false,  
                         pRegion->EG2Decay1 * eg2decay * velrelease,  
                         pRegion->EG2Decay2 * eg2decay * velrelease,  
                         pRegion->EG2InfiniteSustain,  
                         pRegion->EG2Sustain,  
                         pRegion->EG2Release * eg2release * velrelease,  
                         velocityAttenuation,  
                         pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
         }  
   
   
         // setup EG 3 (VCO EG)  
         {  
             // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch  
             bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;  
             float eg3depth = (bPortamento)  
                                  ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)  
                                  : RTMath::CentsToFreqRatio(pRegion->EG3Depth);  
             float eg3time = (bPortamento)  
                                 ? pEngineChannel->PortamentoTime  
                                 : pRegion->EG3Attack;  
             EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));  
         }  
102    
103        Voice::InstrumentInfo Voice::GetInstrumentInfo() {
104            InstrumentInfo ii;
105            ii.FineTune = 0; // TODO:
106            ii.PitchbendRange = 2; // TODO:
107    
108          // setup LFO 1 (VCA LFO)          return ii;
109          {      }
             uint16_t lfo1_internal_depth;  
             switch (pRegion->LFO1Controller) {  
                 case ::gig::lfo1_ctrl_internal:  
                     lfo1_internal_depth  = pRegion->LFO1InternalDepth;  
                     pLFO1->ExtController = 0; // no external controller  
                     bLFO1Enabled         = (lfo1_internal_depth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_modwheel:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_breath:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_internal_modwheel:  
                     lfo1_internal_depth  = pRegion->LFO1InternalDepth;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_internal_breath:  
                     lfo1_internal_depth  = pRegion->LFO1InternalDepth;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);  
                     break;  
                 default:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 0; // no external controller  
                     bLFO1Enabled         = false;  
             }  
             if (bLFO1Enabled) {  
                 pLFO1->trigger(pRegion->LFO1Frequency,  
                                start_level_min,  
                                lfo1_internal_depth,  
                                pRegion->LFO1ControlDepth,  
                                pRegion->LFO1FlipPhase,  
                                pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);  
             }  
         }  
110    
111        double Voice::GetSampleAttenuation() {
112            return 1.0; // TODO:
113        }
114    
115          // setup LFO 2 (VCF Cutoff LFO)      double Voice::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
116          {          return double(MIDIKeyVelocity) / 127.0f; // TODO:
117              uint16_t lfo2_internal_depth;      }
             switch (pRegion->LFO2Controller) {  
                 case ::gig::lfo2_ctrl_internal:  
                     lfo2_internal_depth  = pRegion->LFO2InternalDepth;  
                     pLFO2->ExtController = 0; // no external controller  
                     bLFO2Enabled         = (lfo2_internal_depth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_modwheel:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_foot:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_internal_modwheel:  
                     lfo2_internal_depth  = pRegion->LFO2InternalDepth;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_internal_foot:  
                     lfo2_internal_depth  = pRegion->LFO2InternalDepth;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);  
                     break;  
                 default:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 0; // no external controller  
                     bLFO2Enabled         = false;  
             }  
             if (bLFO2Enabled) {  
                 pLFO2->trigger(pRegion->LFO2Frequency,  
                                start_level_max,  
                                lfo2_internal_depth,  
                                pRegion->LFO2ControlDepth,  
                                pRegion->LFO2FlipPhase,  
                                pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);  
             }  
         }  
118    
119        double Voice::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
120            return 0.9; // TODO:
121        }
122    
123          // setup LFO 3 (VCO LFO)      void Voice::ProcessCCEvent(RTList<Event>::Iterator& itEvent) {
124          {          /*if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
125              uint16_t lfo3_internal_depth;              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
126              switch (pRegion->LFO3Controller) {                  itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {
127                  case ::gig::lfo3_ctrl_internal:                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
                     lfo3_internal_depth  = pRegion->LFO3InternalDepth;  
                     pLFO3->ExtController = 0; // no external controller  
                     bLFO3Enabled         = (lfo3_internal_depth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_modwheel:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     bLFO3Enabled         = (pRegion->LFO3ControlDepth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_aftertouch:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 128;  
                     bLFO3Enabled         = true;  
                     break;  
                 case ::gig::lfo3_ctrl_internal_modwheel:  
                     lfo3_internal_depth  = pRegion->LFO3InternalDepth;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_internal_aftertouch:  
                     lfo3_internal_depth  = pRegion->LFO3InternalDepth;  
                     pLFO1->ExtController = 128;  
                     bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);  
                     break;  
                 default:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // no external controller  
                     bLFO3Enabled         = false;  
             }  
             if (bLFO3Enabled) {  
                 pLFO3->trigger(pRegion->LFO3Frequency,  
                                start_level_mid,  
                                lfo3_internal_depth,  
                                pRegion->LFO3ControlDepth,  
                                false,  
                                pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);  
128              }              }
129          }*/ // TODO: ^^^          }*/ // TODO: ^^^
130        }
131        
132        void Voice::ProcessChannelPressureEvent(RTList<Event>::Iterator& itEvent) {
133            //TODO: ...
134        }
135        
136        void Voice::ProcessPolyphonicKeyPressureEvent(RTList<Event>::Iterator& itEvent) {
137            //TODO: ...
138        }
139    
140        void Voice::ProcessCutoffEvent(RTList<Event>::Iterator& itEvent) {
141            /*int ccvalue = itEvent->Param.CC.Value;
142            if (VCFCutoffCtrl.value == ccvalue) return;
143            VCFCutoffCtrl.value == ccvalue;
144            if (pRegion->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
145            if (ccvalue < pRegion->VCFVelocityScale) ccvalue = pRegion->VCFVelocityScale;
146            float cutoff = CutoffBase * float(ccvalue);
147            if (cutoff > 127.0f) cutoff = 127.0f;
148    
149          /*#if CONFIG_FORCE_FILTER          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
150          const bool bUseFilter = true;          fFinalCutoff = cutoff;*/ // TODO: ^^^
         #else // use filter only if instrument file told so  
         const bool bUseFilter = pRegion->VCFEnabled;  
         #endif // CONFIG_FORCE_FILTER  
         SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);  
         if (bUseFilter) {  
             #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL  
             VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pRegion->VCFCutoffController) {  
                 case ::gig::vcf_cutoff_ctrl_modwheel:  
                     VCFCutoffCtrl.controller = 1;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect1:  
                     VCFCutoffCtrl.controller = 12;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect2:  
                     VCFCutoffCtrl.controller = 13;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_breath:  
                     VCFCutoffCtrl.controller = 2;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_foot:  
                     VCFCutoffCtrl.controller = 4;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_sustainpedal:  
                     VCFCutoffCtrl.controller = 64;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_softpedal:  
                     VCFCutoffCtrl.controller = 67;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose7:  
                     VCFCutoffCtrl.controller = 82;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose8:  
                     VCFCutoffCtrl.controller = 83;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_aftertouch:  
                     VCFCutoffCtrl.controller = 128;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_none:  
                 default:  
                     VCFCutoffCtrl.controller = 0;  
                     break;  
             }  
             #endif // CONFIG_OVERRIDE_CUTOFF_CTRL  
   
             #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL  
             VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pRegion->VCFResonanceController) {  
                 case ::gig::vcf_res_ctrl_genpurpose3:  
                     VCFResonanceCtrl.controller = 18;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose4:  
                     VCFResonanceCtrl.controller = 19;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose5:  
                     VCFResonanceCtrl.controller = 80;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose6:  
                     VCFResonanceCtrl.controller = 81;  
                     break;  
                 case ::gig::vcf_res_ctrl_none:  
                 default:  
                     VCFResonanceCtrl.controller = 0;  
             }  
             #endif // CONFIG_OVERRIDE_RESONANCE_CTRL  
   
             #ifndef CONFIG_OVERRIDE_FILTER_TYPE  
             finalSynthesisParameters.filterLeft.SetType(pRegion->VCFType);  
             finalSynthesisParameters.filterRight.SetType(pRegion->VCFType);  
             #else // override filter type  
             finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             #endif // CONFIG_OVERRIDE_FILTER_TYPE  
   
             VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
             VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];  
   
             // calculate cutoff frequency  
             float cutoff = pRegion->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);  
             if (pRegion->VCFKeyboardTracking) {  
                 cutoff *= exp((itNoteOnEvent->Param.Note.Key - pRegion->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)  
             }  
             CutoffBase = cutoff;  
   
             int cvalue;  
             if (VCFCutoffCtrl.controller) {  
                 cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
                 if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;  
                 // VCFVelocityScale in this case means Minimum cutoff  
                 if (cvalue < pRegion->VCFVelocityScale) cvalue = pRegion->VCFVelocityScale;  
             }  
             else {  
                 cvalue = pRegion->VCFCutoff;  
             }  
             cutoff *= float(cvalue);  
             if (cutoff > 127.0f) cutoff = 127.0f;  
   
             // calculate resonance  
             float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pRegion->VCFResonance);  
   
             VCFCutoffCtrl.fvalue    = cutoff;  
             VCFResonanceCtrl.fvalue = resonance;  
         }  
         else {  
             VCFCutoffCtrl.controller    = 0;  
             VCFResonanceCtrl.controller = 0;  
         }*/ // TODO: ^^^  
   
         return 0; // success  
151      }      }
152    
153      /**      double Voice::CalculateCrossfadeVolume(uint8_t MIDIKeyVelocity) {
154       *  Renders the audio data for this voice for the current audio fragment.          /*float crossfadeVolume;
155       *  The sample input data can either come from RAM (cached sample or sample          switch (pRegion->AttenuationController.type) {
156       *  part) or directly from disk. The output signal will be rendered by              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
157       *  resampling / interpolation. If this voice is a disk streaming voice and                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetSf2EngineChannel()->ControllerTable[128])];
      *  the voice completely played back the cached RAM part of the sample, it  
      *  will automatically switch to disk playback for the next RenderAudio()  
      *  call.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::Render(uint Samples) {  
         // select default values for synthesis mode bits  
         SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);  
   
         switch (this->PlaybackState) {  
   
             case playback_state_init:  
                 this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
                 // no break - continue with playback_state_ram  
   
             case playback_state_ram: {  
                     //if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping  
   
                     // render current fragment  
                     Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
                     /*uint8_t* pBuf = (uint8_t*)pSample->GetCache().pStart;  
                     pBuf += pRegion->startAddrsOffset * pSample->GetFrameSize();  
                     Synthesize(Samples, (sample_t*) pBuf, Delay);*/ // TODO: implement startAddrsOffset  
   
                     if (DiskVoice) {  
                         // check if we reached the allowed limit of the sample RAM cache  
                         if (finalSynthesisParameters.dPos > MaxRAMPos) {  
                             dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));  
                             this->PlaybackState = playback_state_disk;  
                         }  
                     } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->GetFrameSize()) {  
                         this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_disk: {  
                     if (!DiskStreamRef.pStream) {  
                         // check if the disk thread created our ordered disk stream in the meantime  
                         DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);  
                         if (!DiskStreamRef.pStream) {  
                             std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;  
                             KillImmediately();  
                             return;  
                         }  
                         DiskStreamRef.pStream->IncrementReadPos(pSample->GetChannelCount() * (int(finalSynthesisParameters.dPos) - MaxRAMPos));  
                         finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);  
                         RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet  
                     }  
   
                     const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();  
   
                     // add silence sample at the end if we reached the end of the stream (for the interpolator)  
                     if (DiskStreamRef.State == Stream::state_end) {  
                         const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->GetChannelCount() + 6; // +6 for the interpolator algorithm  
                         if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {  
                             // remember how many sample words there are before any silence has been added  
                             if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;  
                             DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);  
                         }  
                     }  
   
                     sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from  
   
                     // render current audio fragment  
                     Synthesize(Samples, ptr, Delay);  
   
                     const int iPos = (int) finalSynthesisParameters.dPos;  
                     const int readSampleWords = iPos * pSample->GetChannelCount(); // amount of sample words actually been read  
                     DiskStreamRef.pStream->IncrementReadPos(readSampleWords);  
                     finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position  
   
                     // change state of voice to 'end' if we really reached the end of the sample data  
                     if (RealSampleWordsLeftToRead >= 0) {  
                         RealSampleWordsLeftToRead -= readSampleWords;  
                         if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;  
                     }  
                 }  
158                  break;                  break;
159                case ::gig::attenuation_ctrl_t::type_velocity:
160              case playback_state_end:                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(MIDIKeyVelocity)];
                 std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;  
161                  break;                  break;
162                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
163                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetSf2EngineChannel()->ControllerTable[pRegion->AttenuationController.controller_number])];
164                    break;
165                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
166                default:
167                    crossfadeVolume = 1.0f;
168          }          }
169    
170          // Reset delay          return crossfadeVolume;*/ // TODO: ^^^
171          Delay = 0;          return 1.0f;
   
         itTriggerEvent = Pool<Event>::Iterator();  
   
         // If sample stream or release stage finished, kill the voice  
         if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();  
172      }      }
173    
174      /**      double Voice::GetEG1ControllerValue(uint8_t MIDIKeyVelocity) {
175       *  Resets voice variables. Should only be called if rendering process is          /*double eg1controllervalue = 0;
176       *  suspended / not running.          switch (pRegion->EG1Controller.type) {
177       */              case ::gig::eg1_ctrl_t::type_none: // no controller defined
178      void Voice::Reset() {                  eg1controllervalue = 0;
179          finalSynthesisParameters.filterLeft.Reset();                  break;
180          finalSynthesisParameters.filterRight.Reset();              case ::gig::eg1_ctrl_t::type_channelaftertouch:
181          DiskStreamRef.pStream = NULL;                  eg1controllervalue = GetSf2EngineChannel()->ControllerTable[128];
182          DiskStreamRef.hStream = 0;                  break;
183          DiskStreamRef.State   = Stream::state_unused;              case ::gig::eg1_ctrl_t::type_velocity:
184          DiskStreamRef.OrderID = 0;                  eg1controllervalue = MIDIKeyVelocity;
185          PlaybackState = playback_state_end;                  break;
186          itTriggerEvent = Pool<Event>::Iterator();              case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
187          itKillEvent    = Pool<Event>::Iterator();                  eg1controllervalue = GetSf2EngineChannel()->ControllerTable[pRegion->EG1Controller.controller_number];
188      }                  break;
   
     /**  
      * Process given list of MIDI note on, note off and sustain pedal events  
      * for the given time.  
      *  
      * @param itEvent - iterator pointing to the next event to be processed  
      * @param End     - youngest time stamp where processing should be stopped  
      */  
     void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {  
         for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {  
             if (itEvent->Type == Event::type_release) {  
                 EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             } else if (itEvent->Type == Event::type_cancel_release) {  
                 EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             }  
189          }          }
190            if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
191    
192            return eg1controllervalue;*/ // TODO: ^^^
193            return 0;
194      }      }
195    
196      /**      Voice::EGInfo Voice::CalculateEG1ControllerInfluence(double eg1ControllerValue) {
197       * Process given list of MIDI control change and pitch bend events for          /*EGInfo eg;
198       * the given time.          // (eg1attack is different from the others)
199       *          eg.Attack  = (pRegion->EG1ControllerAttackInfluence)  ?
200       * @param itEvent - iterator pointing to the next event to be processed              1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?
201       * @param End     - youngest time stamp where processing should be stopped                                    1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1ControllerValue : 1.0;
202       */          eg.Decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1ControllerValue : 1.0;
203      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {          eg.Release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1ControllerValue : 1.0;
204          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {  
205              if (itEvent->Type == Event::type_control_change &&          return eg;*/ // TODO: ^^^
206                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event          EGInfo eg;
207                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {          eg.Attack = 1.0;
208                      processCutoffEvent(itEvent);          eg.Decay = 1.0;
209                  }          eg.Release = 1.0;
210                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {          return eg;
211                      processResonanceEvent(itEvent);      }
212                  }  
213                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {      double Voice::GetEG2ControllerValue(uint8_t MIDIKeyVelocity) {
214                      pLFO1->update(itEvent->Param.CC.Value);          /*double eg2controllervalue = 0;
215                  }          switch (pRegion->EG2Controller.type) {
216                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {              case ::gig::eg2_ctrl_t::type_none: // no controller defined
217                      pLFO2->update(itEvent->Param.CC.Value);                  eg2controllervalue = 0;
218                  }                  break;
219                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {              case ::gig::eg2_ctrl_t::type_channelaftertouch:
220                      pLFO3->update(itEvent->Param.CC.Value);                  eg2controllervalue = GetSf2EngineChannel()->ControllerTable[128];
221                  }                  break;
222                  /*if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&              case ::gig::eg2_ctrl_t::type_velocity:
223                      itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {                  eg2controllervalue = MIDIKeyVelocity;
224                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);                  break;
225                  }*/ // TODO:              case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
226                  if (itEvent->Param.CC.Controller == 7) { // volume                  eg2controllervalue = GetSf2EngineChannel()->ControllerTable[pRegion->EG2Controller.controller_number];
227                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);                  break;
                 } else if (itEvent->Param.CC.Controller == 10) { // panpot  
                     PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);  
                     PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);  
                 }  
             } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event  
                 processPitchEvent(itEvent);  
             }  
228          }          }
229      }          if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
230    
231      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {          return eg2controllervalue;*/ // TODO: ^^^
232          PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch * PitchBendRange);          return 0;
233      }      }
234    
235      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {      Voice::EGInfo Voice::CalculateEG2ControllerInfluence(double eg2ControllerValue) {
236          /*int ccvalue = itEvent->Param.CC.Value;          /*EGInfo eg;
237          if (VCFCutoffCtrl.value == ccvalue) return;          eg.Attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2ControllerValue : 1.0;
238          VCFCutoffCtrl.value == ccvalue;          eg.Decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2ControllerValue : 1.0;
239          if (pRegion->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;          eg.Release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2ControllerValue : 1.0;
         if (ccvalue < pRegion->VCFVelocityScale) ccvalue = pRegion->VCFVelocityScale;  
         float cutoff = CutoffBase * float(ccvalue);  
         if (cutoff > 127.0f) cutoff = 127.0f;  
240    
241          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time          return eg;*/ // TODO: ^^^
242          fFinalCutoff = cutoff;*/ // TODO: ^^^          EGInfo eg;
243            eg.Attack = 1.0;
244            eg.Decay = 1.0;
245            eg.Release = 1.0;
246            return eg;
247      }      }
248    
249      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {      float Voice::CalculateCutoffBase(uint8_t MIDIKeyVelocity) {
250          // convert absolute controller value to differential          float cutoff = pRegion->GetInitialFilterFc(pPresetRegion);
251          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;          if (MIDIKeyVelocity == 0) return cutoff;
         VCFResonanceCtrl.value = itEvent->Param.CC.Value;  
         const float resonancedelta = (float) ctrldelta;  
         fFinalResonance += resonancedelta;  
         // needed for initialization of parameter  
         VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;  
     }  
   
     /**  
      *  Synthesizes the current audio fragment for this voice.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {  
         finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];  
         finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];  
         finalSynthesisParameters.pSrc      = pSrc;  
252    
253          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();          cutoff *= RTMath::CentsToFreqRatioUnlimited (
254          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();              ((127 - MIDIKeyVelocity) / 127.0) * -2400 // 8.4.2 MIDI Note-On Velocity to Filter Cutoff
255                    );
256    
257          if (itTriggerEvent) { // skip events that happened before this voice was triggered          return cutoff;
258              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;      }
             // we can't simply compare the timestamp here, because note events  
             // might happen on the same time stamp, so we have to deal on the  
             // actual sequence the note events arrived instead (see bug #112)  
             for (; itNoteEvent; ++itNoteEvent) {  
                 if (itTriggerEvent == itNoteEvent) {  
                     ++itNoteEvent;  
                     break;  
                 }  
             }  
         }  
259    
260          uint killPos;      float Voice::CalculateFinalCutoff(float cutoffBase) {
261          if (itKillEvent) {          /*int cvalue;
262              int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;          if (VCFCutoffCtrl.controller) {
263              if (maxFadeOutPos < 0) {              cvalue = GetSf2EngineChannel()->ControllerTable[VCFCutoffCtrl.controller];
264                  // There's not enough space in buffer to do a fade out              if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
265                  // from max volume (this can only happen for audio              // VCFVelocityScale in this case means Minimum cutoff
266                  // drivers that use Samples < MaxSamplesPerCycle).              if (cvalue < pRegion->VCFVelocityScale) cvalue = pRegion->VCFVelocityScale;
                 // End the EG1 here, at pos 0, with a shorter max fade  
                 // out time.  
                 EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 itKillEvent = Pool<Event>::Iterator();  
             } else {  
                 killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);  
             }  
267          }          }
268            else {
269                cvalue = pRegion->VCFCutoff;
270            }
271            float fco = cutoffBase * float(cvalue);
272            if (fco > 127.0f) fco = 127.0f;
273    
274          uint i = Skip;          return fco;*/ // TODO: ^^^
275          /*while (i < Samples) {          return cutoffBase;
276              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);      }
   
             // initialize all final synthesis parameters  
             fFinalCutoff    = VCFCutoffCtrl.fvalue;  
             fFinalResonance = VCFResonanceCtrl.fvalue;  
   
             // process MIDI control change and pitchbend events for this subfragment  
             processCCEvents(itCCEvent, iSubFragmentEnd);  
   
             finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;  
             float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();  
 #ifdef CONFIG_PROCESS_MUTED_CHANNELS  
             if (pEngineChannel->GetMute()) fFinalVolume = 0;  
 #endif  
   
             // process transition events (note on, note off & sustain pedal)  
             processTransitionEvents(itNoteEvent, iSubFragmentEnd);  
   
             // if the voice was killed in this subfragment, or if the  
             // filter EG is finished, switch EG1 to fade out stage  
             if ((itKillEvent && killPos <= iSubFragmentEnd) ||  
                 (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&  
                  EG2.getSegmentType() == EGADSR::segment_end)) {  
                 EG1.enterFadeOutStage();  
                 itKillEvent = Pool<Event>::Iterator();  
             }  
   
             // process envelope generators  
             switch (EG1.getSegmentType()) {  
                 case EGADSR::segment_lin:  
                     fFinalVolume *= EG1.processLin();  
                     break;  
                 case EGADSR::segment_exp:  
                     fFinalVolume *= EG1.processExp();  
                     break;  
                 case EGADSR::segment_end:  
                     fFinalVolume *= EG1.getLevel();  
                     break; // noop  
             }  
             switch (EG2.getSegmentType()) {  
                 case EGADSR::segment_lin:  
                     fFinalCutoff *= EG2.processLin();  
                     break;  
                 case EGADSR::segment_exp:  
                     fFinalCutoff *= EG2.processExp();  
                     break;  
                 case EGADSR::segment_end:  
                     fFinalCutoff *= EG2.getLevel();  
                     break; // noop  
             }  
             if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();  
277    
278              // process low frequency oscillators      uint8_t Voice::GetVCFCutoffCtrl() {
279              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());          /*uint8_t ctrl;
280              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();          switch (pRegion->VCFCutoffController) {
281              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());              case ::gig::vcf_cutoff_ctrl_modwheel:
282                    ctrl = 1;
283              // limit the pitch so we don't read outside the buffer                  break;
284              finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));              case ::gig::vcf_cutoff_ctrl_effect1:
285                    ctrl = 12;
286              // if filter enabled then update filter coefficients                  break;
287              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {              case ::gig::vcf_cutoff_ctrl_effect2:
288                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);                  ctrl = 13;
289                  finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);                  break;
290              }              case ::gig::vcf_cutoff_ctrl_breath:
291                    ctrl = 2;
292                    break;
293                case ::gig::vcf_cutoff_ctrl_foot:
294                    ctrl = 4;
295                    break;
296                case ::gig::vcf_cutoff_ctrl_sustainpedal:
297                    ctrl = 64;
298                    break;
299                case ::gig::vcf_cutoff_ctrl_softpedal:
300                    ctrl = 67;
301                    break;
302                case ::gig::vcf_cutoff_ctrl_genpurpose7:
303                    ctrl = 82;
304                    break;
305                case ::gig::vcf_cutoff_ctrl_genpurpose8:
306                    ctrl = 83;
307                    break;
308                case ::gig::vcf_cutoff_ctrl_aftertouch:
309                    ctrl = CTRL_TABLE_IDX_AFTERTOUCH;
310                    break;
311                case ::gig::vcf_cutoff_ctrl_none:
312                default:
313                    ctrl = 0;
314                    break;
315            }
316    
317              // do we need resampling?          return ctrl;*/ // TODO: ^^^
318              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;          return 0;
319              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;      }
             const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&  
                                                finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);  
   
             fFinalVolume = 1.0;  
             // prepare final synthesis parameters structure  
             finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;  
 #ifdef CONFIG_INTERPOLATE_VOLUME  
             finalSynthesisParameters.fFinalVolumeDeltaLeft  = 1;  
             finalSynthesisParameters.fFinalVolumeDeltaRight = 1;  
 #else  
             finalSynthesisParameters.fFinalVolumeLeft  =1;  
             finalSynthesisParameters.fFinalVolumeRight =1;  
 #endif  
             // render audio for one subfragment  
             //RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);  
   
             // stop the rendering if volume EG is finished  
             if (EG1.getSegmentType() == EGADSR::segment_end) break;  
   
             const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;  
   
             // increment envelopes' positions  
             if (EG1.active()) {  
   
                 // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage  
                 if (pRegion->SampleLoops && Pos <= pRegion->pSampleLoops[0].LoopStart && pRegion->pSampleLoops[0].LoopStart < newPos) {  
                     EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 } // TODO:  
320    
321                  EG1.increment(1);      uint8_t Voice::GetVCFResonanceCtrl() {
322                  if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);          /*uint8_t ctrl;
323              }          switch (pRegion->VCFResonanceController) {
324              if (EG2.active()) {              case ::gig::vcf_res_ctrl_genpurpose3:
325                  EG2.increment(1);                  ctrl = 18;
326                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);                  break;
327              }              case ::gig::vcf_res_ctrl_genpurpose4:
328              EG3.increment(1);                  ctrl = 19;
329              if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached                  break;
330                case ::gig::vcf_res_ctrl_genpurpose5:
331                    ctrl = 80;
332                    break;
333                case ::gig::vcf_res_ctrl_genpurpose6:
334                    ctrl = 81;
335                    break;
336                case ::gig::vcf_res_ctrl_none:
337                default:
338                    ctrl = 0;
339            }
340    
341              Pos = newPos;          return ctrl;*/ // TODO: ^^^
342              i = iSubFragmentEnd;          return 0;
         }*/  
   
             int32_t* pSrc2 = NULL;  
             if((pSample->GetFrameSize() / pSample->GetChannelCount()) == 4) pSrc2 = (int32_t*)pSrc;  
             for(int j = 0; j < Samples; j++) {  
                 int lp, rp;  
                 if(pSample->GetChannelCount() == 1) {  
                     lp = (int)(finalSynthesisParameters.dPos + j);  
                     rp = (int)(finalSynthesisParameters.dPos + j);  
                 } else {  
                     lp = (int)(finalSynthesisParameters.dPos + j) * 2;  
                     rp = (int)(finalSynthesisParameters.dPos + j) * 2 + 1;  
                 }  
                 float left, right;  
                 if(pSrc2 != NULL) {  
                     left = pSrc2[lp]; right = pSrc2[rp];  
                 } else {  
                     left = pSrc[lp]; right = pSrc[rp];  
                 }  
                 float f = (pSrc2 == NULL ? 32768.0f : 32768.0f * 65536.0f);  
                 left /= f; right /= f;  
                 finalSynthesisParameters.pOutLeft[j] += left;  
                 finalSynthesisParameters.pOutRight[j] += right;  
             }  
             finalSynthesisParameters.dPos += Samples;  
343      }      }
344    
345      /** @brief Update current portamento position.      void Voice::ProcessGroupEvent(RTList<Event>::Iterator& itEvent) {
346       *          if (itEvent->Param.Note.Key != HostKey()) {
347       * Will be called when portamento mode is enabled to get the final              // kill the voice fast
348       * portamento position of this active voice from where the next voice(s)              SignalRack.EnterFadeOutStage();
      * might continue to slide on.  
      *  
      * @param itNoteOffEvent - event which causes this voice to die soon  
      */  
     void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {  
         const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());  
         pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;  
     }  
   
     /**  
      *  Immediately kill the voice. This method should not be used to kill  
      *  a normal, active voice, because it doesn't take care of things like  
      *  fading down the volume level to avoid clicks and regular processing  
      *  until the kill event actually occured!  
      *  
      * If it's necessary to know when the voice's disk stream was actually  
      * deleted, then one can set the optional @a bRequestNotification  
      * parameter and this method will then return the handle of the disk  
      * stream (unique identifier) and one can use this handle to poll the  
      * disk thread if this stream has been deleted. In any case this method  
      * will return immediately and will not block until the stream actually  
      * was deleted.  
      *  
      * @param bRequestNotification - (optional) whether the disk thread shall  
      *                                provide a notification once it deleted  
      *                               the respective disk stream  
      *                               (default=false)  
      * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE  
      *          if the voice did not use a disk stream at all  
      * @see Kill()  
      */  
     Stream::Handle Voice::KillImmediately(bool bRequestNotification) {  
         Stream::Handle hStream = Stream::INVALID_HANDLE;  
         if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {  
             pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);  
             hStream = DiskStreamRef.hStream;  
349          }          }
         Reset();  
         return hStream;  
350      }      }
351    
352      /**      void Voice::CalculateFadeOutCoeff(float FadeOutTime, float SampleRate) {
353       *  Kill the voice in regular sense. Let the voice render audio until          SignalRack.CalculateFadeOutCoeff(FadeOutTime, SampleRate);
354       *  the kill event actually occured and then fade down the volume level      }
355       *  very quickly and let the voice die finally. Unlike a normal release  
356       *  of a voice, a kill process cannot be cancalled and is therefore      int Voice::CalculatePan(uint8_t pan) {
357       *  usually used for voice stealing and key group conflicts.          int p = pan + RgnInfo.Pan;
      *  
      *  @param itKillEvent - event which caused the voice to be killed  
      */  
     void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {  
         #if CONFIG_DEVMODE  
         if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));  
         if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));  
         #endif // CONFIG_DEVMODE  
358    
359          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (p < 0) return 0;
360          this->itKillEvent = itKillEvent;          if (p > 127) return 127;
361            return p;
362      }      }
363    
364  }} // namespace LinuxSampler::sf2  }} // namespace LinuxSampler::sf2

Legend:
Removed from v.2012  
changed lines
  Added in v.3034

  ViewVC Help
Powered by ViewVC