/[svn]/linuxsampler/trunk/src/engines/sfz/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/sfz/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2012 by iliev, Fri Oct 23 17:53:17 2009 UTC revision 3054 by schoenebeck, Thu Dec 15 12:47:45 2016 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *   *   Copyright (C) 2005 - 2008 Christian Schoenebeck                       *
7     *   Copyright (C) 2009 - 2015 Christian Schoenebeck and Grigor Iliev      *
8   *                                                                         *   *                                                                         *
9   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
10   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 22 
22   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
23   ***************************************************************************/   ***************************************************************************/
24    
25  #include "../../common/Features.h"  #include "Voice.h"
26  #include "../gig/Synthesizer.h"  
 #include "../gig/Profiler.h"  
27  #include "Engine.h"  #include "Engine.h"
28  #include "EngineChannel.h"  #include "EngineChannel.h"
29    
30  #include "Voice.h"  #define LN_10_DIV_20 0.115129254649702
31    
32  namespace LinuxSampler { namespace sfz {  namespace LinuxSampler { namespace sfz {
33    
34      typedef LinuxSampler::gig::Profiler Profiler; // TODO: remove      typedef LinuxSampler::VoiceBase<EngineChannel, ::sfz::Region, Sample, DiskThread> SfzVoiceBase;
35    
36      Voice::Voice() {      Voice::Voice(): SfzVoiceBase(&SignalRack), SignalRack(this) {
37          pEngine     = NULL;          pEngine     = NULL;
38          pDiskThread = NULL;          bEqSupport = true;
         PlaybackState = playback_state_end;  
         pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)  
         pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)  
         pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)  
         KeyGroup = 0;  
         SynthesisMode = 0; // set all mode bits to 0 first  
         // select synthesis implementation (asm core is not supported ATM)  
         #if 0 // CONFIG_ASM && ARCH_X86  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());  
         #else  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);  
         #endif  
         SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());  
   
         finalSynthesisParameters.filterLeft.Reset();  
         finalSynthesisParameters.filterRight.Reset();  
39      }      }
40    
41      Voice::~Voice() {      Voice::~Voice() {
42          if (pLFO1) delete pLFO1;  
43          if (pLFO2) delete pLFO2;      }
44          if (pLFO3) delete pLFO3;  
45        EngineChannel* Voice::GetSfzEngineChannel() {
46            return static_cast<EngineChannel*>(pEngineChannel);
47      }      }
48    
49      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {
# Line 67  namespace LinuxSampler { namespace sfz { Line 53  namespace LinuxSampler { namespace sfz {
53          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
54      }      }
55    
56      /**      Voice::SampleInfo Voice::GetSampleInfo() {
57       *  Initializes and triggers the voice, a disk stream will be launched if          SampleInfo si;
58       *  needed.          si.SampleRate       = pSample->GetSampleRate();
59       *          si.ChannelCount     = pSample->GetChannelCount();
60       *  @param pEngineChannel - engine channel on which this voice was ordered          si.FrameSize        = pSample->GetFrameSize();
61       *  @param itNoteOnEvent  - event that caused triggering of this voice          si.BitDepth         = (pSample->GetFrameSize() / pSample->GetChannelCount()) * 8;
62       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)          si.TotalFrameCount  = (uint)pSample->GetTotalFrameCount();
63       *  @param pRegion        - points to the dimension region which provides sample wave(s) and articulation data  
64       *  @param VoiceType      - type of this voice          si.HasLoops       = pRegion->HasLoop();
65       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of          si.LoopStart      = pRegion->GetLoopStart();
66       *  @returns 0 on success, a value < 0 if the voice wasn't triggered          si.LoopLength     = pRegion->GetLoopEnd() - pRegion->GetLoopStart();
67       *           (either due to an error or e.g. because no region is          si.LoopPlayCount  = pRegion->GetLoopCount();
68       *           defined for the given key)          si.Unpitched      = pRegion->pitch_keytrack == 0;
69       */          return si;
70      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::sfz::Region* pRegion, type_t VoiceType, int iKeyGroup) {      }
71          this->pEngineChannel = pEngineChannel;  
72          this->pRegion        = pRegion;      Voice::RegionInfo Voice::GetRegionInfo() {
73          Orphan = false;          RegionInfo ri;
74            ri.UnityNote = pRegion->pitch_keycenter;
75          #if CONFIG_DEVMODE          ri.FineTune  = pRegion->tune + pRegion->transpose * 100;
76          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          ri.Pan       = int(pRegion->pan * 0.63); // convert from -100..100 to -64..63
77              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));          ri.SampleStartOffset = pRegion->offset ? *(pRegion->offset) : 0;
78          }  
79          #endif // CONFIG_DEVMODE          ri.VCFEnabled    = pRegion->cutoff;
80            switch (pRegion->fil_type) {
81            case ::sfz::LPF_1P:
82                ri.VCFType = Filter::vcf_type_1p_lowpass;
83                break;
84            case ::sfz::LPF_2P:
85                ri.VCFType = Filter::vcf_type_2p_lowpass;
86                break;
87            case ::sfz::LPF_4P:
88                ri.VCFType = Filter::vcf_type_4p_lowpass;
89                break;
90            case ::sfz::LPF_6P:
91                ri.VCFType = Filter::vcf_type_6p_lowpass;
92                break;
93            case ::sfz::HPF_1P:
94                ri.VCFType = Filter::vcf_type_1p_highpass;
95                break;
96            case ::sfz::HPF_2P:
97                ri.VCFType = Filter::vcf_type_2p_highpass;
98                break;
99            case ::sfz::HPF_4P:
100                ri.VCFType = Filter::vcf_type_4p_highpass;
101                break;
102            case ::sfz::HPF_6P:
103                ri.VCFType = Filter::vcf_type_6p_highpass;
104                break;
105            case ::sfz::BPF_1P:
106            case ::sfz::BPF_2P:
107                ri.VCFType = Filter::vcf_type_2p_bandpass;
108                break;
109            case ::sfz::BRF_1P:
110            case ::sfz::BRF_2P:
111                ri.VCFType = Filter::vcf_type_2p_bandreject;
112                break;
113            case ::sfz::APF_1P:
114            case ::sfz::PKF_2P:
115            default:
116                ri.VCFEnabled = false;
117                break;
118            }
119    
120            ri.VCFResonance  = pRegion->resonance;
121    
122            // rt_decay is in dB. Precalculate a suitable value for exp in
123            // GetReleaseTriggerAttenuation: -ln(10) / 20 * rt_decay
124            ri.ReleaseTriggerDecay = -LN_10_DIV_20 * pRegion->rt_decay;
125    
126            return ri;
127        }
128    
129        Voice::InstrumentInfo Voice::GetInstrumentInfo() {
130            InstrumentInfo ii;
131            ii.FineTune = 0; // TODO:
132            ii.PitchbendRange = 2; // TODO:
133    
134            return ii;
135        }
136    
137        double Voice::GetSampleAttenuation() {
138            return exp(LN_10_DIV_20 * pRegion->volume) * pRegion->amplitude / 100;
139        }
140    
141        double Voice::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
142            float offset = -pRegion->amp_veltrack;
143            if (offset <= 0) offset += 100;
144            return (offset + pRegion->amp_veltrack * pRegion->amp_velcurve[MIDIKeyVelocity]) / 100;
145        }
146    
147        double Voice::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
148            return 127.0 / MIDIKeyVelocity;
149        }
150    
151        void Voice::ProcessCCEvent(RTList<Event>::Iterator& itEvent) {
152            /*if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
153                if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
154                    itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {
155                    CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
156                }
157            }*/ // TODO: ^^^
158        }
159    
160          Type            = VoiceType;      void Voice::ProcessChannelPressureEvent(RTList<Event>::Iterator& itEvent) {
161          MIDIKey         = itNoteOnEvent->Param.Note.Key;          //TODO: ...
162          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet      }
         Delay           = itNoteOnEvent->FragmentPos();  
         itTriggerEvent  = itNoteOnEvent;  
         itKillEvent     = Pool<Event>::Iterator();  
         KeyGroup        = iKeyGroup;  
         pSample         = pRegion->pSample; // sample won't change until the voice is finished  
   
         /*// calculate volume  
         const double velocityAttenuation = pRegion->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);  
   
         // For 16 bit samples, we downscale by 32768 to convert from  
         // int16 value range to DSP value range (which is  
         // -1.0..1.0). For 24 bit, we downscale from int32.  
         float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);  
   
         float volume = pRegion->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;  
          */ // TODO: ^^^  
         float volume = pEngineChannel->GlobalVolume * GLOBAL_VOLUME;  
   
         // the volume of release triggered samples depends on note length  
         /**if (Type == type_release_trigger) {  
             float noteLength = float(pEngine->FrameTime + Delay -  
                                      pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;  
             float attenuation = 1 - 0.01053 * (256 >> pRegion->ReleaseTriggerDecay) * noteLength;  
             if (attenuation <= 0) return -1;  
             volume *= attenuation;  
         }  
          */ // TODO: ^^^  
163    
164          // select channel mode (mono or stereo)      void Voice::ProcessPolyphonicKeyPressureEvent(RTList<Event>::Iterator& itEvent) {
165          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->GetChannelCount() == 2);          //TODO: ...
166          // select bit depth (16 or 24)      }
         SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, (pSample->GetFrameSize() / pSample->GetChannelCount()) > 2);  
167    
168          // get starting crossfade volume level      double Voice::CalculateCrossfadeVolume(uint8_t MIDIKeyVelocity) {
169          /*float crossfadeVolume;          /*float crossfadeVolume;
170          switch (pRegion->AttenuationController.type) {          switch (pRegion->AttenuationController.type) {
171              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
172                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetSfzEngineChannel()->ControllerTable[128])];
173                  break;                  break;
174              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
175                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(MIDIKeyVelocity)];
176                  break;                  break;
177              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
178                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pRegion->AttenuationController.controller_number])];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetSfzEngineChannel()->ControllerTable[pRegion->AttenuationController.controller_number])];
179                  break;                  break;
180              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
181              default:              default:
182                  crossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
         }*/ // TODO: ^^^  
   
         VolumeLeft  = volume * Engine::PanCurve[64 - pRegion->pan];  
         VolumeRight = volume * Engine::PanCurve[64 + pRegion->pan];  
   
         float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;  
         //CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate); // TODO:  
         VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);  
         PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);  
         PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);  
   
         /*finalSynthesisParameters.dPos = pRegion->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)  
         Pos = pRegion->SampleStartOffset;*/ // TODO: ^^^  
         Pos = finalSynthesisParameters.dPos = 0;  
   
         // Check if the sample needs disk streaming or is too short for that  
         long cachedsamples = pSample->GetCache().Size / pSample->GetFrameSize();  
         DiskVoice          = cachedsamples < pSample->GetTotalFrameCount();  
   
         //const DLS::sample_loop_t& loopinfo = pRegion->pSampleLoops[0]; // TODO:  
   
         if (DiskVoice) { // voice to be streamed from disk  
             if (cachedsamples > (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {  
                 MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->GetChannelCount(); //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)  
             } else {  
                 // The cache is too small to fit a max sample buffer.  
                 // Setting MaxRAMPos to 0 will probably cause a click  
                 // in the audio, but it's better than not handling  
                 // this case at all, which would have caused the  
                 // unsigned MaxRAMPos to be set to a negative number.  
                 MaxRAMPos = 0;  
             }  
   
             // check if there's a loop defined which completely fits into the cached (RAM) part of the sample  
             //RAMLoop = (pRegion->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos); // TODO:  
             if (pDiskThread->OrderNewStream(&DiskStreamRef, pRegion, MaxRAMPos, false) < 0) {  
                 dmsg(1,("Disk stream order failed!\n"));  
                 KillImmediately();  
                 return -1;  
             }  
             dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->GetTotalFrameCount(), MaxRAMPos, (RAMLoop) ? "yes" : "no"));  
         }  
         else { // RAM only voice  
             MaxRAMPos = cachedsamples;  
             /*RAMLoop = (pRegion->SampleLoops != 0);  
             dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no")); */ // TODO:  
         }  
         /*if (RAMLoop) {  
             loop.uiTotalCycles = pSample->LoopPlayCount;  
             loop.uiCyclesLeft  = pSample->LoopPlayCount;  
             loop.uiStart       = loopinfo.LoopStart;  
             loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;  
             loop.uiSize        = loopinfo.LoopLength;  
         }*/ // TODO: ^^^  
   
         // calculate initial pitch value  
         {  
             double pitchbasecents = /* TODO: pEngineChannel->pInstrument->FineTune*/ + pRegion->tune + pEngine->ScaleTuning[MIDIKey % 12];  
   
             // GSt behaviour: maximum transpose up is 40 semitones. If  
             // MIDI key is more than 40 semitones above unity note,  
             // the transpose is not done.  
             /*if (pRegion->PitchTrack && (MIDIKey - (int) pRegion->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pRegion->UnityNote) * 100;  
   
             this->PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));  
             this->PitchBendRange = 1.0 / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange;  
             this->PitchBend = RTMath::CentsToFreqRatio(PitchBend * PitchBendRange);*/ // TODO: ^^^  
         }  
   
         // the length of the decay and release curves are dependent on the velocity  
         //const double velrelease = 1 / pRegion->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity); //TODO:  
   
         // setup EG 1 (VCA EG)  
         {  
         /*    // get current value of EG1 controller  
             double eg1controllervalue;  
             switch (pRegion->EG1Controller.type) {  
                 case ::gig::eg1_ctrl_t::type_none: // no controller defined  
                     eg1controllervalue = 0;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_channelaftertouch:  
                     eg1controllervalue = pEngineChannel->ControllerTable[128];  
                     break;  
                 case ::gig::eg1_ctrl_t::type_velocity:  
                     eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg1controllervalue = pEngineChannel->ControllerTable[pRegion->EG1Controller.controller_number];  
                     break;  
             }  
             if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;  
   
             // calculate influence of EG1 controller on EG1's parameters  
             // (eg1attack is different from the others)  
             double eg1attack  = (pRegion->EG1ControllerAttackInfluence)  ?  
                 1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?  
                                       1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;  
             double eg1decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;  
             double eg1release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;  
   
             EG1.trigger(pRegion->EG1PreAttack,  
                         pRegion->EG1Attack * eg1attack,  
                         pRegion->EG1Hold,  
                         pRegion->EG1Decay1 * eg1decay * velrelease,  
                         pRegion->EG1Decay2 * eg1decay * velrelease,  
                         pRegion->EG1InfiniteSustain,  
                         pRegion->EG1Sustain,  
                         pRegion->EG1Release * eg1release * velrelease,  
                         velocityAttenuation,  
                         pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
         }*/ // TODO: ^^^  
             EG1.trigger(0,  
                         0,  
                         false,  
                         0,  
                         0,  
                         true,  
                         100,  
                         0,  
                         1,  
                         pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
         }  
   
 #ifdef CONFIG_INTERPOLATE_VOLUME  
         // setup initial volume in synthesis parameters  
 #ifdef CONFIG_PROCESS_MUTED_CHANNELS  
         if (pEngineChannel->GetMute()) {  
             finalSynthesisParameters.fFinalVolumeLeft  = 0;  
             finalSynthesisParameters.fFinalVolumeRight = 0;  
         }  
         else  
 #else  
         {  
             //float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel(); // TODO:  
             float finalVolume = pEngineChannel->MidiVolume;  
   
             finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;  
             finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;  
         }  
 #endif  
 #endif  
   
         // setup EG 2 (VCF Cutoff EG)  
         /*{  
             // get current value of EG2 controller  
             double eg2controllervalue;  
             switch (pRegion->EG2Controller.type) {  
                 case ::gig::eg2_ctrl_t::type_none: // no controller defined  
                     eg2controllervalue = 0;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_channelaftertouch:  
                     eg2controllervalue = pEngineChannel->ControllerTable[128];  
                     break;  
                 case ::gig::eg2_ctrl_t::type_velocity:  
                     eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg2controllervalue = pEngineChannel->ControllerTable[pRegion->EG2Controller.controller_number];  
                     break;  
             }  
             if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;  
   
             // calculate influence of EG2 controller on EG2's parameters  
             double eg2attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;  
             double eg2decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;  
             double eg2release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;  
   
             EG2.trigger(pRegion->EG2PreAttack,  
                         pRegion->EG2Attack * eg2attack,  
                         false,  
                         pRegion->EG2Decay1 * eg2decay * velrelease,  
                         pRegion->EG2Decay2 * eg2decay * velrelease,  
                         pRegion->EG2InfiniteSustain,  
                         pRegion->EG2Sustain,  
                         pRegion->EG2Release * eg2release * velrelease,  
                         velocityAttenuation,  
                         pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
         }  
   
   
         // setup EG 3 (VCO EG)  
         {  
             // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch  
             bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;  
             float eg3depth = (bPortamento)  
                                  ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)  
                                  : RTMath::CentsToFreqRatio(pRegion->EG3Depth);  
             float eg3time = (bPortamento)  
                                 ? pEngineChannel->PortamentoTime  
                                 : pRegion->EG3Attack;  
             EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));  
         }  
   
   
         // setup LFO 1 (VCA LFO)  
         {  
             uint16_t lfo1_internal_depth;  
             switch (pRegion->LFO1Controller) {  
                 case ::gig::lfo1_ctrl_internal:  
                     lfo1_internal_depth  = pRegion->LFO1InternalDepth;  
                     pLFO1->ExtController = 0; // no external controller  
                     bLFO1Enabled         = (lfo1_internal_depth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_modwheel:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_breath:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_internal_modwheel:  
                     lfo1_internal_depth  = pRegion->LFO1InternalDepth;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_internal_breath:  
                     lfo1_internal_depth  = pRegion->LFO1InternalDepth;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);  
                     break;  
                 default:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 0; // no external controller  
                     bLFO1Enabled         = false;  
             }  
             if (bLFO1Enabled) {  
                 pLFO1->trigger(pRegion->LFO1Frequency,  
                                start_level_min,  
                                lfo1_internal_depth,  
                                pRegion->LFO1ControlDepth,  
                                pRegion->LFO1FlipPhase,  
                                pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);  
             }  
         }  
   
   
         // setup LFO 2 (VCF Cutoff LFO)  
         {  
             uint16_t lfo2_internal_depth;  
             switch (pRegion->LFO2Controller) {  
                 case ::gig::lfo2_ctrl_internal:  
                     lfo2_internal_depth  = pRegion->LFO2InternalDepth;  
                     pLFO2->ExtController = 0; // no external controller  
                     bLFO2Enabled         = (lfo2_internal_depth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_modwheel:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_foot:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_internal_modwheel:  
                     lfo2_internal_depth  = pRegion->LFO2InternalDepth;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_internal_foot:  
                     lfo2_internal_depth  = pRegion->LFO2InternalDepth;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);  
                     break;  
                 default:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 0; // no external controller  
                     bLFO2Enabled         = false;  
             }  
             if (bLFO2Enabled) {  
                 pLFO2->trigger(pRegion->LFO2Frequency,  
                                start_level_max,  
                                lfo2_internal_depth,  
                                pRegion->LFO2ControlDepth,  
                                pRegion->LFO2FlipPhase,  
                                pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);  
             }  
183          }          }
184    
185            return crossfadeVolume;*/ // TODO: ^^^
186          // setup LFO 3 (VCO LFO)          return 1.0f;
         {  
             uint16_t lfo3_internal_depth;  
             switch (pRegion->LFO3Controller) {  
                 case ::gig::lfo3_ctrl_internal:  
                     lfo3_internal_depth  = pRegion->LFO3InternalDepth;  
                     pLFO3->ExtController = 0; // no external controller  
                     bLFO3Enabled         = (lfo3_internal_depth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_modwheel:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     bLFO3Enabled         = (pRegion->LFO3ControlDepth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_aftertouch:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 128;  
                     bLFO3Enabled         = true;  
                     break;  
                 case ::gig::lfo3_ctrl_internal_modwheel:  
                     lfo3_internal_depth  = pRegion->LFO3InternalDepth;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_internal_aftertouch:  
                     lfo3_internal_depth  = pRegion->LFO3InternalDepth;  
                     pLFO1->ExtController = 128;  
                     bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);  
                     break;  
                 default:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // no external controller  
                     bLFO3Enabled         = false;  
             }  
             if (bLFO3Enabled) {  
                 pLFO3->trigger(pRegion->LFO3Frequency,  
                                start_level_mid,  
                                lfo3_internal_depth,  
                                pRegion->LFO3ControlDepth,  
                                false,  
                                pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);  
             }  
         }*/ // TODO: ^^^  
   
   
         /*#if CONFIG_FORCE_FILTER  
         const bool bUseFilter = true;  
         #else // use filter only if instrument file told so  
         const bool bUseFilter = pRegion->VCFEnabled;  
         #endif // CONFIG_FORCE_FILTER  
         SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);  
         if (bUseFilter) {  
             #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL  
             VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pRegion->VCFCutoffController) {  
                 case ::gig::vcf_cutoff_ctrl_modwheel:  
                     VCFCutoffCtrl.controller = 1;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect1:  
                     VCFCutoffCtrl.controller = 12;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect2:  
                     VCFCutoffCtrl.controller = 13;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_breath:  
                     VCFCutoffCtrl.controller = 2;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_foot:  
                     VCFCutoffCtrl.controller = 4;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_sustainpedal:  
                     VCFCutoffCtrl.controller = 64;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_softpedal:  
                     VCFCutoffCtrl.controller = 67;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose7:  
                     VCFCutoffCtrl.controller = 82;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose8:  
                     VCFCutoffCtrl.controller = 83;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_aftertouch:  
                     VCFCutoffCtrl.controller = 128;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_none:  
                 default:  
                     VCFCutoffCtrl.controller = 0;  
                     break;  
             }  
             #endif // CONFIG_OVERRIDE_CUTOFF_CTRL  
   
             #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL  
             VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pRegion->VCFResonanceController) {  
                 case ::gig::vcf_res_ctrl_genpurpose3:  
                     VCFResonanceCtrl.controller = 18;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose4:  
                     VCFResonanceCtrl.controller = 19;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose5:  
                     VCFResonanceCtrl.controller = 80;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose6:  
                     VCFResonanceCtrl.controller = 81;  
                     break;  
                 case ::gig::vcf_res_ctrl_none:  
                 default:  
                     VCFResonanceCtrl.controller = 0;  
             }  
             #endif // CONFIG_OVERRIDE_RESONANCE_CTRL  
   
             #ifndef CONFIG_OVERRIDE_FILTER_TYPE  
             finalSynthesisParameters.filterLeft.SetType(pRegion->VCFType);  
             finalSynthesisParameters.filterRight.SetType(pRegion->VCFType);  
             #else // override filter type  
             finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             #endif // CONFIG_OVERRIDE_FILTER_TYPE  
   
             VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
             VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];  
   
             // calculate cutoff frequency  
             float cutoff = pRegion->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);  
             if (pRegion->VCFKeyboardTracking) {  
                 cutoff *= exp((itNoteOnEvent->Param.Note.Key - pRegion->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)  
             }  
             CutoffBase = cutoff;  
   
             int cvalue;  
             if (VCFCutoffCtrl.controller) {  
                 cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
                 if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;  
                 // VCFVelocityScale in this case means Minimum cutoff  
                 if (cvalue < pRegion->VCFVelocityScale) cvalue = pRegion->VCFVelocityScale;  
             }  
             else {  
                 cvalue = pRegion->VCFCutoff;  
             }  
             cutoff *= float(cvalue);  
             if (cutoff > 127.0f) cutoff = 127.0f;  
   
             // calculate resonance  
             float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pRegion->VCFResonance);  
   
             VCFCutoffCtrl.fvalue    = cutoff;  
             VCFResonanceCtrl.fvalue = resonance;  
         }  
         else {  
             VCFCutoffCtrl.controller    = 0;  
             VCFResonanceCtrl.controller = 0;  
         }*/ // TODO: ^^^  
   
         return 0; // success  
187      }      }
188    
189      /**      double Voice::GetEG1ControllerValue(uint8_t MIDIKeyVelocity) {
190       *  Renders the audio data for this voice for the current audio fragment.          /*double eg1controllervalue = 0;
191       *  The sample input data can either come from RAM (cached sample or sample          switch (pRegion->EG1Controller.type) {
192       *  part) or directly from disk. The output signal will be rendered by              case ::gig::eg1_ctrl_t::type_none: // no controller defined
193       *  resampling / interpolation. If this voice is a disk streaming voice and                  eg1controllervalue = 0;
      *  the voice completely played back the cached RAM part of the sample, it  
      *  will automatically switch to disk playback for the next RenderAudio()  
      *  call.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::Render(uint Samples) {  
         // select default values for synthesis mode bits  
         SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);  
   
         switch (this->PlaybackState) {  
   
             case playback_state_init:  
                 this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
                 // no break - continue with playback_state_ram  
   
             case playback_state_ram: {  
                     //if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping  
   
                     // render current fragment  
                     Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
   
                     if (DiskVoice) {  
                         // check if we reached the allowed limit of the sample RAM cache  
                         if (finalSynthesisParameters.dPos > MaxRAMPos) {  
                             dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));  
                             this->PlaybackState = playback_state_disk;  
                         }  
                     } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->GetFrameSize()) {  
                         this->PlaybackState = playback_state_end;  
                     }  
                 }  
194                  break;                  break;
195                case ::gig::eg1_ctrl_t::type_channelaftertouch:
196              case playback_state_disk: {                  eg1controllervalue = GetSfzEngineChannel()->ControllerTable[128];
                     if (!DiskStreamRef.pStream) {  
                         // check if the disk thread created our ordered disk stream in the meantime  
                         DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);  
                         if (!DiskStreamRef.pStream) {  
                             std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;  
                             KillImmediately();  
                             return;  
                         }  
                         DiskStreamRef.pStream->IncrementReadPos(pSample->GetChannelCount() * (int(finalSynthesisParameters.dPos) - MaxRAMPos));  
                         finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);  
                         RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet  
                     }  
   
                     const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();  
   
                     // add silence sample at the end if we reached the end of the stream (for the interpolator)  
                     if (DiskStreamRef.State == Stream::state_end) {  
                         const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->GetChannelCount() + 6; // +6 for the interpolator algorithm  
                         if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {  
                             // remember how many sample words there are before any silence has been added  
                             if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;  
                             DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);  
                         }  
                     }  
   
                     sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from  
   
                     // render current audio fragment  
                     Synthesize(Samples, ptr, Delay);  
   
                     const int iPos = (int) finalSynthesisParameters.dPos;  
                     const int readSampleWords = iPos * pSample->GetChannelCount(); // amount of sample words actually been read  
                     DiskStreamRef.pStream->IncrementReadPos(readSampleWords);  
                     finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position  
   
                     // change state of voice to 'end' if we really reached the end of the sample data  
                     if (RealSampleWordsLeftToRead >= 0) {  
                         RealSampleWordsLeftToRead -= readSampleWords;  
                         if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;  
                     }  
                 }  
197                  break;                  break;
198                case ::gig::eg1_ctrl_t::type_velocity:
199              case playback_state_end:                  eg1controllervalue = MIDIKeyVelocity;
200                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;                  break;
201                case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
202                    eg1controllervalue = GetSfzEngineChannel()->ControllerTable[pRegion->EG1Controller.controller_number];
203                  break;                  break;
204          }          }
205            if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
206    
207          // Reset delay          return eg1controllervalue;*/ // TODO: ^^^
208          Delay = 0;          return 0;
   
         itTriggerEvent = Pool<Event>::Iterator();  
   
         // If sample stream or release stage finished, kill the voice  
         if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();  
     }  
   
     /**  
      *  Resets voice variables. Should only be called if rendering process is  
      *  suspended / not running.  
      */  
     void Voice::Reset() {  
         finalSynthesisParameters.filterLeft.Reset();  
         finalSynthesisParameters.filterRight.Reset();  
         DiskStreamRef.pStream = NULL;  
         DiskStreamRef.hStream = 0;  
         DiskStreamRef.State   = Stream::state_unused;  
         DiskStreamRef.OrderID = 0;  
         PlaybackState = playback_state_end;  
         itTriggerEvent = Pool<Event>::Iterator();  
         itKillEvent    = Pool<Event>::Iterator();  
     }  
   
     /**  
      * Process given list of MIDI note on, note off and sustain pedal events  
      * for the given time.  
      *  
      * @param itEvent - iterator pointing to the next event to be processed  
      * @param End     - youngest time stamp where processing should be stopped  
      */  
     void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {  
         for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {  
             if (itEvent->Type == Event::type_release) {  
                 EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             } else if (itEvent->Type == Event::type_cancel_release) {  
                 EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             }  
         }  
209      }      }
210    
211      /**      Voice::EGInfo Voice::CalculateEG1ControllerInfluence(double eg1ControllerValue) {
212       * Process given list of MIDI control change and pitch bend events for          /*EGInfo eg;
213       * the given time.          // (eg1attack is different from the others)
214       *          eg.Attack  = (pRegion->EG1ControllerAttackInfluence)  ?
215       * @param itEvent - iterator pointing to the next event to be processed              1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?
216       * @param End     - youngest time stamp where processing should be stopped                                    1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1ControllerValue : 1.0;
217       */          eg.Decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1ControllerValue : 1.0;
218      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {          eg.Release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1ControllerValue : 1.0;
219          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {  
220              if (itEvent->Type == Event::type_control_change &&          return eg;*/ // TODO: ^^^
221                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event          EGInfo eg;
222                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {          eg.Attack = 1.0;
223                      processCutoffEvent(itEvent);          eg.Decay = 1.0;
224                  }          eg.Release = 1.0;
225                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {          return eg;
226                      processResonanceEvent(itEvent);      }
227                  }  
228                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {      double Voice::GetEG2ControllerValue(uint8_t MIDIKeyVelocity) {
229                      pLFO1->update(itEvent->Param.CC.Value);          /*double eg2controllervalue = 0;
230                  }          switch (pRegion->EG2Controller.type) {
231                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {              case ::gig::eg2_ctrl_t::type_none: // no controller defined
232                      pLFO2->update(itEvent->Param.CC.Value);                  eg2controllervalue = 0;
233                  }                  break;
234                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {              case ::gig::eg2_ctrl_t::type_channelaftertouch:
235                      pLFO3->update(itEvent->Param.CC.Value);                  eg2controllervalue = GetSfzEngineChannel()->ControllerTable[128];
236                  }                  break;
237                  /*if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&              case ::gig::eg2_ctrl_t::type_velocity:
238                      itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {                  eg2controllervalue = MIDIKeyVelocity;
239                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);                  break;
240                  }*/ // TODO:              case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
241                  if (itEvent->Param.CC.Controller == 7) { // volume                  eg2controllervalue = GetSfzEngineChannel()->ControllerTable[pRegion->EG2Controller.controller_number];
242                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);                  break;
                 } else if (itEvent->Param.CC.Controller == 10) { // panpot  
                     PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);  
                     PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);  
                 }  
             } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event  
                 processPitchEvent(itEvent);  
             }  
243          }          }
244      }          if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
245    
246      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {          return eg2controllervalue;*/ // TODO: ^^^
247          PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch * PitchBendRange);          return 0;
248      }      }
249    
250      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {      Voice::EGInfo Voice::CalculateEG2ControllerInfluence(double eg2ControllerValue) {
251          /*int ccvalue = itEvent->Param.CC.Value;          /*EGInfo eg;
252          if (VCFCutoffCtrl.value == ccvalue) return;          eg.Attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2ControllerValue : 1.0;
253          VCFCutoffCtrl.value == ccvalue;          eg.Decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2ControllerValue : 1.0;
254          if (pRegion->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;          eg.Release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2ControllerValue : 1.0;
255          if (ccvalue < pRegion->VCFVelocityScale) ccvalue = pRegion->VCFVelocityScale;  
256          float cutoff = CutoffBase * float(ccvalue);          return eg;*/ // TODO: ^^^
257          if (cutoff > 127.0f) cutoff = 127.0f;          EGInfo eg;
258            eg.Attack = 1.0;
259          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time          eg.Decay = 1.0;
260          fFinalCutoff = cutoff;*/ // TODO: ^^^          eg.Release = 1.0;
261      }          return eg;
262        }
263      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {  
264          // convert absolute controller value to differential      float Voice::CalculateCutoffBase(uint8_t MIDIKeyVelocity) {
265          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;          float cutoff = *pRegion->cutoff;
266          VCFResonanceCtrl.value = itEvent->Param.CC.Value;          cutoff *= RTMath::CentsToFreqRatioUnlimited(
267          const float resonancedelta = (float) ctrldelta;              MIDIKeyVelocity / 127.0f * pRegion->fil_veltrack +
268          fFinalResonance += resonancedelta;              (MIDIKey() - pRegion->fil_keycenter) * pRegion->fil_keytrack);
269          // needed for initialization of parameter          return cutoff;
270          VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;      }
271      }  
272        float Voice::CalculateFinalCutoff(float cutoffBase) {
273      /**          float cutoff = cutoffBase;
274       *  Synthesizes the current audio fragment for this voice.          if (cutoff > 0.49 * pEngine->SampleRate) cutoff = 0.49 * pEngine->SampleRate;
275       *          return cutoff;
276       *  @param Samples - number of sample points to be rendered in this audio      }
277       *                   fragment cycle  
278       *  @param pSrc    - pointer to input sample data      float Voice::GetReleaseTriggerAttenuation(float noteLength) {
279       *  @param Skip    - number of sample points to skip in output buffer          // pow(10, -rt_decay * noteLength / 20):
280       */          return expf(RgnInfo.ReleaseTriggerDecay * noteLength);
281      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      }
282          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];  
283          finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];      void Voice::ProcessGroupEvent(RTList<Event>::Iterator& itEvent) {
284          finalSynthesisParameters.pSrc      = pSrc;          dmsg(4,("Voice %p processGroupEvents event type=%d", (void*)this, itEvent->Type));
285            if (itEvent->Type == Event::type_control_change ||
286          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();              (Type & Voice::type_controller_triggered) ||
287          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();              itEvent->Param.Note.Key != HostKey()) {
288                        dmsg(4,("Voice %p - kill", (void*)this));
289                if (pRegion->off_mode == ::sfz::OFF_NORMAL) {
290          if (itTriggerEvent) { // skip events that happened before this voice was triggered                  // turn off the voice by entering release envelope stage
291              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;                  EnterReleaseStage();
             // we can't simply compare the timestamp here, because note events  
             // might happen on the same time stamp, so we have to deal on the  
             // actual sequence the note events arrived instead (see bug #112)  
             for (; itNoteEvent; ++itNoteEvent) {  
                 if (itTriggerEvent == itNoteEvent) {  
                     ++itNoteEvent;  
                     break;  
                 }  
             }  
         }  
   
         uint killPos;  
         if (itKillEvent) {  
             int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;  
             if (maxFadeOutPos < 0) {  
                 // There's not enough space in buffer to do a fade out  
                 // from max volume (this can only happen for audio  
                 // drivers that use Samples < MaxSamplesPerCycle).  
                 // End the EG1 here, at pos 0, with a shorter max fade  
                 // out time.  
                 EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 itKillEvent = Pool<Event>::Iterator();  
292              } else {              } else {
293                  killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);                  // kill the voice fast
294                    SignalRack.EnterFadeOutStage();
295              }              }
296          }          }
   
         uint i = Skip;  
         /*while (i < Samples) {  
             int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);  
   
             // initialize all final synthesis parameters  
             fFinalCutoff    = VCFCutoffCtrl.fvalue;  
             fFinalResonance = VCFResonanceCtrl.fvalue;  
   
             // process MIDI control change and pitchbend events for this subfragment  
             processCCEvents(itCCEvent, iSubFragmentEnd);  
   
             finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;  
             float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();  
 #ifdef CONFIG_PROCESS_MUTED_CHANNELS  
             if (pEngineChannel->GetMute()) fFinalVolume = 0;  
 #endif  
   
             // process transition events (note on, note off & sustain pedal)  
             processTransitionEvents(itNoteEvent, iSubFragmentEnd);  
   
             // if the voice was killed in this subfragment, or if the  
             // filter EG is finished, switch EG1 to fade out stage  
             if ((itKillEvent && killPos <= iSubFragmentEnd) ||  
                 (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&  
                  EG2.getSegmentType() == EGADSR::segment_end)) {  
                 EG1.enterFadeOutStage();  
                 itKillEvent = Pool<Event>::Iterator();  
             }  
   
             // process envelope generators  
             switch (EG1.getSegmentType()) {  
                 case EGADSR::segment_lin:  
                     fFinalVolume *= EG1.processLin();  
                     break;  
                 case EGADSR::segment_exp:  
                     fFinalVolume *= EG1.processExp();  
                     break;  
                 case EGADSR::segment_end:  
                     fFinalVolume *= EG1.getLevel();  
                     break; // noop  
             }  
             switch (EG2.getSegmentType()) {  
                 case EGADSR::segment_lin:  
                     fFinalCutoff *= EG2.processLin();  
                     break;  
                 case EGADSR::segment_exp:  
                     fFinalCutoff *= EG2.processExp();  
                     break;  
                 case EGADSR::segment_end:  
                     fFinalCutoff *= EG2.getLevel();  
                     break; // noop  
             }  
             if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();  
   
             // process low frequency oscillators  
             if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());  
             if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();  
             if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());  
   
             // limit the pitch so we don't read outside the buffer  
             finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));  
   
             // if filter enabled then update filter coefficients  
             if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {  
                 finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);  
                 finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);  
             }  
   
             // do we need resampling?  
             const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;  
             const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;  
             const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&  
                                                finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);  
   
             fFinalVolume = 1.0;  
             // prepare final synthesis parameters structure  
             finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;  
 #ifdef CONFIG_INTERPOLATE_VOLUME  
             finalSynthesisParameters.fFinalVolumeDeltaLeft  = 1;  
             finalSynthesisParameters.fFinalVolumeDeltaRight = 1;  
 #else  
             finalSynthesisParameters.fFinalVolumeLeft  =1;  
             finalSynthesisParameters.fFinalVolumeRight =1;  
 #endif  
             // render audio for one subfragment  
             //RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);  
   
             // stop the rendering if volume EG is finished  
             if (EG1.getSegmentType() == EGADSR::segment_end) break;  
   
             const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;  
   
             // increment envelopes' positions  
             if (EG1.active()) {  
   
                 // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage  
                 if (pRegion->SampleLoops && Pos <= pRegion->pSampleLoops[0].LoopStart && pRegion->pSampleLoops[0].LoopStart < newPos) {  
                     EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
                 } // TODO:  
   
                 EG1.increment(1);  
                 if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             }  
             if (EG2.active()) {  
                 EG2.increment(1);  
                 if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             }  
             EG3.increment(1);  
             if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached  
   
             Pos = newPos;  
             i = iSubFragmentEnd;  
         }*/  
   
             int32_t* pSrc2 = NULL;  
             if((pSample->GetFrameSize() / pSample->GetChannelCount()) == 4) pSrc2 = (int32_t*)pSrc;  
             for(int j = 0; j < Samples; j++) {  
                 int lp, rp;  
                 if(pSample->GetChannelCount() == 1) {  
                     lp = (int)(finalSynthesisParameters.dPos + j);  
                     rp = (int)(finalSynthesisParameters.dPos + j);  
                 } else {  
                     lp = (int)(finalSynthesisParameters.dPos + j) * 2;  
                     rp = (int)(finalSynthesisParameters.dPos + j) * 2 + 1;  
                 }  
                 float left, right;  
                 if(pSrc2 != NULL) {  
                     left = pSrc2[lp]; right = pSrc2[rp];  
                 } else {  
                     left = pSrc[lp]; right = pSrc[rp];  
                 }  
                 float f = (pSrc2 == NULL ? 32768.0f : 32768.0f * 65536.0f);  
                 left /= f; right /= f;  
                 finalSynthesisParameters.pOutLeft[j] += left;  
                 finalSynthesisParameters.pOutRight[j] += right;  
             }  
             finalSynthesisParameters.dPos += Samples;  
297      }      }
298        
299      /** @brief Update current portamento position.      void Voice::SetSampleStartOffset() {
300       *          if (DiskVoice && RgnInfo.SampleStartOffset > pSample->MaxOffset) {
301       * Will be called when portamento mode is enabled to get the final              // The offset is applied to the RAM buffer
302       * portamento position of this active voice from where the next voice(s)              finalSynthesisParameters.dPos = 0;
303       * might continue to slide on.              Pos = 0;
304       *          } else {
305       * @param itNoteOffEvent - event which causes this voice to die soon              finalSynthesisParameters.dPos = RgnInfo.SampleStartOffset; // offset where we should start playback of sample
306       */              Pos = RgnInfo.SampleStartOffset;
     void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {  
         const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());  
         pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;  
     }  
   
     /**  
      *  Immediately kill the voice. This method should not be used to kill  
      *  a normal, active voice, because it doesn't take care of things like  
      *  fading down the volume level to avoid clicks and regular processing  
      *  until the kill event actually occured!  
      *  
      * If it's necessary to know when the voice's disk stream was actually  
      * deleted, then one can set the optional @a bRequestNotification  
      * parameter and this method will then return the handle of the disk  
      * stream (unique identifier) and one can use this handle to poll the  
      * disk thread if this stream has been deleted. In any case this method  
      * will return immediately and will not block until the stream actually  
      * was deleted.  
      *  
      * @param bRequestNotification - (optional) whether the disk thread shall  
      *                                provide a notification once it deleted  
      *                               the respective disk stream  
      *                               (default=false)  
      * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE  
      *          if the voice did not use a disk stream at all  
      * @see Kill()  
      */  
     Stream::Handle Voice::KillImmediately(bool bRequestNotification) {  
         Stream::Handle hStream = Stream::INVALID_HANDLE;  
         if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {  
             pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);  
             hStream = DiskStreamRef.hStream;  
307          }          }
         Reset();  
         return hStream;  
308      }      }
309    
310      /**      void Voice::CalculateFadeOutCoeff(float FadeOutTime, float SampleRate) {
311       *  Kill the voice in regular sense. Let the voice render audio until          SignalRack.CalculateFadeOutCoeff(FadeOutTime, SampleRate);
312       *  the kill event actually occured and then fade down the volume level      }
      *  very quickly and let the voice die finally. Unlike a normal release  
      *  of a voice, a kill process cannot be cancalled and is therefore  
      *  usually used for voice stealing and key group conflicts.  
      *  
      *  @param itKillEvent - event which caused the voice to be killed  
      */  
     void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {  
         #if CONFIG_DEVMODE  
         if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));  
         if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));  
         #endif // CONFIG_DEVMODE  
313    
314          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;      int Voice::CalculatePan(uint8_t pan) {
315          this->itKillEvent = itKillEvent;          // the value isn't limited to [0, 127] here, as this is done
316            // later in SignalUnit.CalculatePan
317            return pan + RgnInfo.Pan;
318      }      }
319    
320  }} // namespace LinuxSampler::sfz  }} // namespace LinuxSampler::sfz

Legend:
Removed from v.2012  
changed lines
  Added in v.3054

  ViewVC Help
Powered by ViewVC