/[svn]/linuxsampler/trunk/src/scriptvm/common.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/scriptvm/common.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2948 - (hide annotations) (download) (as text)
Fri Jul 15 15:29:04 2016 UTC (7 years, 9 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 43476 byte(s)
* NKSP: Implemented built-in script function "stop_wait()".
* NKSP: Implemented built-in script variable "$NI_CALLBACK_ID".
* NKSP: Implemented built-in script variable "$NI_CALLBACK_TYPE".
* NKSP: Implemented built-in script variable "$NKSP_IGNORE_WAIT".
* NKSP: Added support for read-only built-in variables
  (respectively handled by the script parser).
* NKSP: Added built-in script constant "$NI_CB_TYPE_INIT".
* NKSP: Added built-in script constant "$NI_CB_TYPE_NOTE".
* NKSP: Added built-in script constant "$NI_CB_TYPE_RELEASE".
* NKSP: Added built-in script constant "$NI_CB_TYPE_CONTROLLER".
* Bumped version (2.0.0.svn17).

1 schoenebeck 2581 /*
2 schoenebeck 2871 * Copyright (c) 2014-2016 Christian Schoenebeck
3 schoenebeck 2581 *
4     * http://www.linuxsampler.org
5     *
6     * This file is part of LinuxSampler and released under the same terms.
7     * See README file for details.
8     */
9    
10     // This header defines data types shared between the VM core implementation
11     // (inside the current source directory) and other parts of the sampler
12     // (located at other source directories).
13    
14     #ifndef LS_INSTR_SCRIPT_PARSER_COMMON_H
15     #define LS_INSTR_SCRIPT_PARSER_COMMON_H
16    
17     #include "../common/global.h"
18 schoenebeck 2588 #include <vector>
19 schoenebeck 2594 #include <map>
20     #include <stddef.h> // offsetof()
21 schoenebeck 2581
22     namespace LinuxSampler {
23 schoenebeck 2727
24     /**
25     * Identifies the type of a noteworthy issue identified by the script
26     * parser. That's either a parser error or parser warning.
27     */
28 schoenebeck 2581 enum ParserIssueType_t {
29 schoenebeck 2727 PARSER_ERROR, ///< Script parser encountered an error, the script cannot be executed.
30     PARSER_WARNING ///< Script parser encountered a warning, the script may be executed if desired, but the script may not necessarily behave as originally intended by the script author.
31 schoenebeck 2581 };
32    
33 schoenebeck 2727 /** @brief Expression's data type.
34     *
35     * Identifies to which data type an expression within a script evaluates to.
36     * This can for example reflect the data type of script function arguments,
37     * script function return values, but also the resulting data type of some
38     * mathematical formula within a script.
39     */
40 schoenebeck 2581 enum ExprType_t {
41 schoenebeck 2727 EMPTY_EXPR, ///< i.e. on invalid expressions or i.e. a function call that does not return a result value (the built-in wait() or message() functions for instance)
42     INT_EXPR, ///< integer (scalar) expression
43     INT_ARR_EXPR, ///< integer array expression
44     STRING_EXPR, ///< string expression
45     STRING_ARR_EXPR, ///< string array expression
46 schoenebeck 2581 };
47    
48 schoenebeck 2727 /** @brief Result flags of a script statement or script function call.
49     *
50     * A set of bit flags which provide informations about the success or
51     * failure of a statement within a script. That's also especially used for
52     * providing informations about success / failure of a call to a built-in
53     * script function. The virtual machine evaluates these flags during runtime
54     * to decide whether it should i.e. stop or suspend execution of a script.
55     *
56     * Since these are bit flags, these constants are bitwise combined.
57     */
58 schoenebeck 2581 enum StmtFlags_t {
59     STMT_SUCCESS = 0, ///< Function / statement was executed successfully, no error occurred.
60 schoenebeck 2727 STMT_ABORT_SIGNALLED = 1, ///< VM should stop the current callback execution (usually because of an error, but might also be without an error reason, i.e. when the built-in script function exit() was called).
61     STMT_SUSPEND_SIGNALLED = (1<<1), ///< VM supended execution, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time
62     STMT_ERROR_OCCURRED = (1<<2), ///< VM stopped execution due to some script runtime error that occurred
63 schoenebeck 2581 };
64    
65 schoenebeck 2727 /** @brief Virtual machine execution status.
66     *
67     * A set of bit flags which reflect the current overall execution status of
68     * the virtual machine concerning a certain script execution instance.
69     *
70     * Since these are bit flags, these constants are bitwise combined.
71     */
72 schoenebeck 2581 enum VMExecStatus_t {
73 schoenebeck 2727 VM_EXEC_NOT_RUNNING = 0, ///< Script is currently not executed by the VM.
74     VM_EXEC_RUNNING = 1, ///< The VM is currently executing the script.
75     VM_EXEC_SUSPENDED = (1<<1), ///< Script is currently suspended by the VM, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time.
76     VM_EXEC_ERROR = (1<<2), ///< A runtime error occurred while executing the script (i.e. a call to some built-in script function failed).
77 schoenebeck 2581 };
78    
79 schoenebeck 2879 /** @brief Script event handler type.
80     *
81     * Identifies one of the possible event handler callback types defined by
82     * the NKSP script language.
83     */
84     enum VMEventHandlerType_t {
85     VM_EVENT_HANDLER_INIT, ///< Initilization event handler, that is script's "on init ... end on" code block.
86     VM_EVENT_HANDLER_NOTE, ///< Note event handler, that is script's "on note ... end on" code block.
87     VM_EVENT_HANDLER_RELEASE, ///< Release event handler, that is script's "on release ... end on" code block.
88     VM_EVENT_HANDLER_CONTROLLER, ///< Controller event handler, that is script's "on controller ... end on" code block.
89     };
90    
91 schoenebeck 2727 // just symbol prototyping
92 schoenebeck 2596 class VMIntExpr;
93     class VMStringExpr;
94 schoenebeck 2619 class VMIntArrayExpr;
95     class VMStringArrayExpr;
96 schoenebeck 2596
97 schoenebeck 2727 /** @brief Virtual machine expression
98     *
99     * This is the abstract base class for all expressions of scripts.
100     * Deriving classes must implement the abstract method exprType().
101     *
102     * An expression within a script is translated into one instance of this
103     * class. It allows a high level access for the virtual machine to evaluate
104     * and handle expressions appropriately during execution. Expressions are
105     * for example all kinds of formulas, function calls, statements or a
106     * combination of them. Most of them evaluate to some kind of value, which
107     * might be further processed as part of encompassing expressions to outer
108     * expression results and so forth.
109     */
110 schoenebeck 2581 class VMExpr {
111     public:
112 schoenebeck 2727 /**
113     * Identifies the data type to which the result of this expression
114     * evaluates to. This abstract method must be implemented by deriving
115     * classes.
116     */
117 schoenebeck 2581 virtual ExprType_t exprType() const = 0;
118 schoenebeck 2727
119     /**
120     * In case this expression is an integer expression, then this method
121     * returns a casted pointer to that VMIntExpr object. It returns NULL
122     * if this expression is not an integer expression.
123     *
124     * @b Note: type casting performed by this method is strict! That means
125     * if this expression is i.e. actually a string expression like "12",
126     * calling asInt() will @b not cast that numerical string expression to
127     * an integer expression 12 for you, instead this method will simply
128     * return NULL!
129     *
130     * @see exprType()
131     */
132 schoenebeck 2596 VMIntExpr* asInt() const;
133 schoenebeck 2727
134     /**
135     * In case this expression is a string expression, then this method
136     * returns a casted pointer to that VMStringExpr object. It returns NULL
137     * if this expression is not a string expression.
138     *
139     * @b Note: type casting performed by this method is strict! That means
140     * if this expression is i.e. actually an integer expression like 120,
141     * calling asString() will @b not cast that integer expression to a
142     * string expression "120" for you, instead this method will simply
143     * return NULL!
144     *
145     * @see exprType()
146     */
147 schoenebeck 2596 VMStringExpr* asString() const;
148 schoenebeck 2727
149     /**
150     * In case this expression is an integer array expression, then this
151     * method returns a casted pointer to that VMIntArrayExpr object. It
152     * returns NULL if this expression is not an integer array expression.
153     *
154     * @b Note: type casting performed by this method is strict! That means
155     * if this expression is i.e. an integer expression or a string
156     * expression, calling asIntArray() will @b not cast those scalar
157     * expressions to an array expression for you, instead this method will
158     * simply return NULL!
159     *
160     * @see exprType()
161     */
162 schoenebeck 2619 VMIntArrayExpr* asIntArray() const;
163 schoenebeck 2945
164     /**
165     * Returns true in case this expression can be considered to be a
166     * constant expression. A constant expression will retain the same
167     * value throughout the entire life time of a script and the
168     * expression's constant value may be evaluated already at script
169     * parse time, which may result in performance benefits during script
170     * runtime.
171     */
172     virtual bool isConstExpr() const = 0;
173    
174     bool isModifyable() const;
175 schoenebeck 2581 };
176    
177 schoenebeck 2727 /** @brief Virtual machine integer expression
178     *
179     * This is the abstract base class for all expressions inside scripts which
180     * evaluate to an integer (scalar) value. Deriving classes implement the
181     * abstract method evalInt() to return the actual integer result value of
182     * the expression.
183     */
184 schoenebeck 2581 class VMIntExpr : virtual public VMExpr {
185     public:
186 schoenebeck 2727 /**
187     * Returns the result of this expression as integer (scalar) value.
188     * This abstract method must be implemented by deriving classes.
189     */
190 schoenebeck 2581 virtual int evalInt() = 0;
191 schoenebeck 2727
192     /**
193     * Returns always INT_EXPR for instances of this class.
194     */
195     ExprType_t exprType() const OVERRIDE { return INT_EXPR; }
196 schoenebeck 2581 };
197    
198 schoenebeck 2727 /** @brief Virtual machine string expression
199     *
200     * This is the abstract base class for all expressions inside scripts which
201     * evaluate to a string value. Deriving classes implement the abstract
202     * method evalStr() to return the actual string result value of the
203     * expression.
204     */
205 schoenebeck 2581 class VMStringExpr : virtual public VMExpr {
206     public:
207 schoenebeck 2727 /**
208     * Returns the result of this expression as string value. This abstract
209     * method must be implemented by deriving classes.
210     */
211 schoenebeck 2581 virtual String evalStr() = 0;
212 schoenebeck 2727
213     /**
214     * Returns always STRING_EXPR for instances of this class.
215     */
216     ExprType_t exprType() const OVERRIDE { return STRING_EXPR; }
217 schoenebeck 2581 };
218    
219 schoenebeck 2727 /** @brief Virtual Machine Array Value Expression
220     *
221     * This is the abstract base class for all expressions inside scripts which
222     * evaluate to some kind of array value. Deriving classes implement the
223     * abstract method arraySize() to return the amount of elements within the
224     * array.
225     */
226 schoenebeck 2619 class VMArrayExpr : virtual public VMExpr {
227     public:
228 schoenebeck 2727 /**
229     * Returns amount of elements in this array. This abstract method must
230     * be implemented by deriving classes.
231     */
232 schoenebeck 2619 virtual int arraySize() const = 0;
233     };
234    
235 schoenebeck 2727 /** @brief Virtual Machine Integer Array Expression
236     *
237     * This is the abstract base class for all expressions inside scripts which
238     * evaluate to an array of integer values. Deriving classes implement the
239     * abstract methods arraySize(), evalIntElement() and assignIntElement() to
240     * access the individual integer array values.
241     */
242 schoenebeck 2619 class VMIntArrayExpr : virtual public VMArrayExpr {
243     public:
244 schoenebeck 2727 /**
245     * Returns the (scalar) integer value of the array element given by
246     * element index @a i.
247     *
248     * @param i - array element index (must be between 0 .. arraySize() - 1)
249     */
250 schoenebeck 2619 virtual int evalIntElement(uint i) = 0;
251 schoenebeck 2727
252     /**
253     * Changes the current value of an element (given by array element
254     * index @a i) of this integer array.
255     *
256     * @param i - array element index (must be between 0 .. arraySize() - 1)
257     * @param value - new integer scalar value to be assigned to that array element
258     */
259 schoenebeck 2619 virtual void assignIntElement(uint i, int value) = 0;
260 schoenebeck 2727
261     /**
262     * Returns always INT_ARR_EXPR for instances of this class.
263     */
264     ExprType_t exprType() const OVERRIDE { return INT_ARR_EXPR; }
265 schoenebeck 2619 };
266    
267 schoenebeck 2727 /** @brief Arguments (parameters) for being passed to a built-in script function.
268     *
269     * An argument or a set of arguments passed to a script function are
270     * translated by the parser to an instance of this class. This abstract
271     * interface class is used by implementations of built-in functions to
272     * obtain the individual function argument values being passed to them at
273     * runtime.
274     */
275 schoenebeck 2581 class VMFnArgs {
276     public:
277 schoenebeck 2727 /**
278     * Returns the amount of arguments going to be passed to the script
279     * function.
280     */
281 schoenebeck 2581 virtual int argsCount() const = 0;
282 schoenebeck 2727
283     /**
284     * Returns the respective argument (requested by argument index @a i) of
285     * this set of arguments. This method is called by implementations of
286     * built-in script functions to obtain the value of each function
287     * argument passed to the function at runtime.
288     *
289     * @param i - function argument index (indexed from left to right)
290     */
291 schoenebeck 2581 virtual VMExpr* arg(int i) = 0;
292     };
293    
294 schoenebeck 2727 /** @brief Result value returned from a call to a built-in script function.
295     *
296     * Implementations of built-in script functions return an instance of this
297     * object to let the virtual machine obtain the result value of the function
298     * call, which might then be further processed by the virtual machine
299     * according to the script. It also provides informations about the success
300     * or failure of the function call.
301     */
302 schoenebeck 2581 class VMFnResult {
303     public:
304 schoenebeck 2727 /**
305     * Returns the result value of the function call, represented by a high
306     * level expression object.
307     */
308 schoenebeck 2581 virtual VMExpr* resultValue() = 0;
309 schoenebeck 2727
310     /**
311     * Provides detailed informations of the success / failure of the
312     * function call. The virtual machine is evaluating the flags returned
313     * here to decide whether it must abort or suspend execution of the
314     * script at this point.
315     */
316 schoenebeck 2581 virtual StmtFlags_t resultFlags() { return STMT_SUCCESS; }
317     };
318    
319 schoenebeck 2727 /** @brief Virtual machine built-in function.
320 schoenebeck 2612 *
321     * Abstract base class for built-in script functions, defining the interface
322 schoenebeck 2727 * for all built-in script function implementations. All built-in script
323     * functions are deriving from this abstract interface class in order to
324     * provide their functionality to the virtual machine with this unified
325     * interface.
326     *
327     * The methods of this interface class provide two purposes:
328     *
329     * 1. When a script is loaded, the script parser uses the methods of this
330     * interface to check whether the script author was calling the
331     * respective built-in script function in a correct way. For example
332     * the parser checks whether the required amount of parameters were
333     * passed to the function and whether the data types passed match the
334     * data types expected by the function. If not, loading the script will
335     * be aborted with a parser error, describing to the user (i.e. script
336     * author) the precise misusage of the respective function.
337     * 2. After the script was loaded successfully and the script is executed,
338     * the virtual machine calls the exec() method of the respective built-in
339     * function to provide the actual functionality of the built-in function
340     * call.
341 schoenebeck 2612 */
342 schoenebeck 2581 class VMFunction {
343     public:
344 schoenebeck 2612 /**
345     * Script data type of the function's return value. If the function does
346 schoenebeck 2727 * not return any value (void), then it returns EMPTY_EXPR here.
347 schoenebeck 2612 */
348 schoenebeck 2581 virtual ExprType_t returnType() = 0;
349 schoenebeck 2612
350     /**
351     * Minimum amount of function arguments this function accepts. If a
352     * script is calling this function with less arguments, the script
353     * parser will throw a parser error.
354     */
355 schoenebeck 2581 virtual int minRequiredArgs() const = 0;
356 schoenebeck 2612
357     /**
358     * Maximum amount of function arguments this functions accepts. If a
359     * script is calling this function with more arguments, the script
360     * parser will throw a parser error.
361     */
362 schoenebeck 2581 virtual int maxAllowedArgs() const = 0;
363 schoenebeck 2612
364     /**
365     * Script data type of the function's @c iArg 'th function argument.
366     * The information provided here is less strong than acceptsArgType().
367     * The parser will compare argument data types provided in scripts by
368 schoenebeck 2871 * calling acceptsArgType(). The return value of argType() is used by the
369 schoenebeck 2612 * parser instead to show an appropriate parser error which data type
370     * this function usually expects as "default" data type. Reason: a
371     * function may accept multiple data types for a certain function
372     * argument and would automatically cast the passed argument value in
373     * that case to the type it actually needs.
374     *
375     * @param iArg - index of the function argument in question
376 schoenebeck 2727 * (must be between 0 .. maxAllowedArgs() - 1)
377 schoenebeck 2612 */
378 schoenebeck 2581 virtual ExprType_t argType(int iArg) const = 0;
379 schoenebeck 2612
380     /**
381 schoenebeck 2945 * This method is called by the parser to check whether arguments
382 schoenebeck 2612 * passed in scripts to this function are accepted by this function. If
383     * a script calls this function with an argument's data type not
384 schoenebeck 2727 * accepted by this function, the parser will throw a parser error. On
385     * such errors the data type returned by argType() will be used to
386     * assemble an appropriate error message regarding the precise misusage
387     * of the built-in function.
388 schoenebeck 2612 *
389     * @param iArg - index of the function argument in question
390 schoenebeck 2727 * (must be between 0 .. maxAllowedArgs() - 1)
391 schoenebeck 2612 * @param type - script data type used for this function argument by
392     * currently parsed script
393 schoenebeck 2727 * @return true if the given data type would be accepted for the
394     * respective function argument by the function
395 schoenebeck 2612 */
396 schoenebeck 2581 virtual bool acceptsArgType(int iArg, ExprType_t type) const = 0;
397 schoenebeck 2612
398     /**
399 schoenebeck 2945 * This method is called by the parser to check whether some arguments
400     * (and if yes which ones) passed to this script function will be
401     * modified by this script function. Most script functions simply use
402     * their arguments as inputs, that is they only read the argument's
403     * values. However some script function may also use passed
404     * argument(s) as output variables. In this case the function
405     * implementation must return @c true for the respective argument
406     * index here.
407     *
408     * @param iArg - index of the function argument in question
409     * (must be between 0 .. maxAllowedArgs() - 1)
410     */
411     virtual bool modifiesArg(int iArg) const = 0;
412    
413     /**
414 schoenebeck 2727 * Implements the actual function execution. This exec() method is
415     * called by the VM whenever this function implementation shall be
416     * executed at script runtime. This method blocks until the function
417     * call completed.
418 schoenebeck 2612 *
419     * @param args - function arguments for executing this built-in function
420 schoenebeck 2727 * @returns function's return value (if any) and general status
421     * informations (i.e. whether the function call caused a
422     * runtime error)
423 schoenebeck 2612 */
424 schoenebeck 2581 virtual VMFnResult* exec(VMFnArgs* args) = 0;
425 schoenebeck 2612
426     /**
427 schoenebeck 2727 * Convenience method for function implementations to show warning
428     * messages during actual execution of the built-in function.
429 schoenebeck 2612 *
430 schoenebeck 2727 * @param txt - runtime warning text to be shown to user
431 schoenebeck 2612 */
432 schoenebeck 2598 void wrnMsg(const String& txt);
433 schoenebeck 2612
434     /**
435 schoenebeck 2727 * Convenience method for function implementations to show error
436     * messages during actual execution of the built-in function.
437 schoenebeck 2612 *
438 schoenebeck 2727 * @param txt - runtime error text to be shown to user
439 schoenebeck 2612 */
440 schoenebeck 2598 void errMsg(const String& txt);
441 schoenebeck 2581 };
442    
443 schoenebeck 2727 /** @brief Virtual machine relative pointer.
444     *
445 schoenebeck 2594 * POD base of VMIntRelPtr and VMInt8RelPtr structures. Not intended to be
446     * used directly. Use VMIntRelPtr or VMInt8RelPtr instead.
447 schoenebeck 2727 *
448     * @see VMIntRelPtr, VMInt8RelPtr
449 schoenebeck 2594 */
450     struct VMRelPtr {
451     void** base; ///< Base pointer.
452 schoenebeck 2727 int offset; ///< Offset (in bytes) relative to base pointer.
453 schoenebeck 2948 bool readonly; ///< Whether the pointed data may be modified or just be read.
454 schoenebeck 2594 };
455    
456     /** @brief Pointer to built-in VM integer variable (of C/C++ type int).
457     *
458 schoenebeck 2727 * Used for defining built-in 32 bit integer script variables.
459 schoenebeck 2594 *
460     * @b CAUTION: You may only use this class for pointing to C/C++ variables
461     * of type "int" (which on most systems is 32 bit in size). If the C/C++ int
462     * variable you want to reference is only 8 bit in size, then you @b must
463     * use VMInt8RelPtr instead!
464     *
465     * For efficiency reasons the actual native C/C++ int variable is referenced
466     * by two components here. The actual native int C/C++ variable in memory
467     * is dereferenced at VM run-time by taking the @c base pointer dereference
468     * and adding @c offset bytes. This has the advantage that for a large
469     * number of built-in int variables, only one (or few) base pointer need
470     * to be re-assigned before running a script, instead of updating each
471     * built-in variable each time before a script is executed.
472     *
473     * Refer to DECLARE_VMINT() for example code.
474     *
475     * @see VMInt8RelPtr, DECLARE_VMINT()
476     */
477     struct VMIntRelPtr : VMRelPtr {
478     VMIntRelPtr() {
479     base = NULL;
480     offset = 0;
481 schoenebeck 2948 readonly = false;
482 schoenebeck 2594 }
483     VMIntRelPtr(const VMRelPtr& data) {
484     base = data.base;
485     offset = data.offset;
486 schoenebeck 2948 readonly = false;
487 schoenebeck 2594 }
488     virtual int evalInt() { return *(int*)&(*(uint8_t**)base)[offset]; }
489     virtual void assign(int i) { *(int*)&(*(uint8_t**)base)[offset] = i; }
490     };
491    
492     /** @brief Pointer to built-in VM integer variable (of C/C++ type int8_t).
493     *
494 schoenebeck 2727 * Used for defining built-in 8 bit integer script variables.
495 schoenebeck 2594 *
496     * @b CAUTION: You may only use this class for pointing to C/C++ variables
497     * of type "int8_t" (8 bit integer). If the C/C++ int variable you want to
498     * reference is an "int" type (which is 32 bit on most systems), then you
499     * @b must use VMIntRelPtr instead!
500     *
501     * For efficiency reasons the actual native C/C++ int variable is referenced
502     * by two components here. The actual native int C/C++ variable in memory
503     * is dereferenced at VM run-time by taking the @c base pointer dereference
504     * and adding @c offset bytes. This has the advantage that for a large
505     * number of built-in int variables, only one (or few) base pointer need
506     * to be re-assigned before running a script, instead of updating each
507     * built-in variable each time before a script is executed.
508     *
509     * Refer to DECLARE_VMINT() for example code.
510     *
511     * @see VMIntRelPtr, DECLARE_VMINT()
512     */
513     struct VMInt8RelPtr : VMIntRelPtr {
514     VMInt8RelPtr() : VMIntRelPtr() {}
515     VMInt8RelPtr(const VMRelPtr& data) : VMIntRelPtr(data) {}
516     virtual int evalInt() OVERRIDE {
517     return *(uint8_t*)&(*(uint8_t**)base)[offset];
518     }
519     virtual void assign(int i) OVERRIDE {
520     *(uint8_t*)&(*(uint8_t**)base)[offset] = i;
521     }
522     };
523    
524     /**
525     * Convenience macro for initializing VMIntRelPtr and VMInt8RelPtr
526 schoenebeck 2727 * structures. Usage example:
527 schoenebeck 2594 * @code
528     * struct Foo {
529 schoenebeck 2727 * uint8_t a; // native representation of a built-in integer script variable
530     * int b; // native representation of another built-in integer script variable
531     * int c; // native representation of another built-in integer script variable
532     * uint8_t d; // native representation of another built-in integer script variable
533 schoenebeck 2594 * };
534     *
535 schoenebeck 2727 * // initializing the built-in script variables to some values
536     * Foo foo1 = (Foo) { 1, 2000, 3000, 4 };
537     * Foo foo2 = (Foo) { 5, 6000, 7000, 8 };
538 schoenebeck 2594 *
539     * Foo* pFoo;
540     *
541 schoenebeck 2727 * VMInt8RelPtr varA = DECLARE_VMINT(pFoo, class Foo, a);
542     * VMIntRelPtr varB = DECLARE_VMINT(pFoo, class Foo, b);
543     * VMIntRelPtr varC = DECLARE_VMINT(pFoo, class Foo, c);
544     * VMInt8RelPtr varD = DECLARE_VMINT(pFoo, class Foo, d);
545 schoenebeck 2594 *
546     * pFoo = &foo1;
547 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 1
548     * printf("%d\n", varB->evalInt()); // will print 2000
549     * printf("%d\n", varC->evalInt()); // will print 3000
550     * printf("%d\n", varD->evalInt()); // will print 4
551 schoenebeck 2594 *
552 schoenebeck 2727 * // same printf() code, just with pFoo pointer being changed ...
553     *
554 schoenebeck 2594 * pFoo = &foo2;
555 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 5
556     * printf("%d\n", varB->evalInt()); // will print 6000
557     * printf("%d\n", varC->evalInt()); // will print 7000
558     * printf("%d\n", varD->evalInt()); // will print 8
559 schoenebeck 2594 * @endcode
560 schoenebeck 2727 * As you can see above, by simply changing one single pointer, you can
561     * remap a huge bunch of built-in integer script variables to completely
562     * different native values/native variables. Which especially reduces code
563     * complexity inside the sampler engines which provide the actual script
564     * functionalities.
565 schoenebeck 2594 */
566     #define DECLARE_VMINT(basePtr, T_struct, T_member) ( \
567     (VMRelPtr) { \
568     (void**) &basePtr, \
569 schoenebeck 2948 offsetof(T_struct, T_member), \
570     false \
571 schoenebeck 2594 } \
572     ) \
573    
574 schoenebeck 2948 /**
575     * Same as DECLARE_VMINT(), but this one defines the VMIntRelPtr and
576     * VMInt8RelPtr structures to be of read-only type. That means the script
577     * parser will abort any script at parser time if the script is trying to
578     * modify such a read-only built-in variable.
579     *
580     * @b NOTE: this is only intended for built-in read-only variables that
581     * may change during runtime! If your built-in variable's data is rather
582     * already available at parser time and won't change during runtime, then
583     * you should rather register a built-in constant in your VM class instead!
584     *
585     * @see ScriptVM::builtInConstIntVariables()
586     */
587     #define DECLARE_VMINT_READONLY(basePtr, T_struct, T_member) ( \
588     (VMRelPtr) { \
589     (void**) &basePtr, \
590     offsetof(T_struct, T_member), \
591     true \
592     } \
593     ) \
594    
595 schoenebeck 2594 /** @brief Built-in VM 8 bit integer array variable.
596     *
597 schoenebeck 2727 * Used for defining built-in integer array script variables (8 bit per
598     * array element). Currently there is no support for any other kind of array
599     * type. So all integer arrays of scripts use 8 bit data types.
600 schoenebeck 2594 */
601     struct VMInt8Array {
602     int8_t* data;
603     int size;
604    
605     VMInt8Array() : data(NULL), size(0) {}
606     };
607    
608 schoenebeck 2945 /** @brief Virtual machine script variable.
609     *
610     * Common interface for all variables accessed in scripts.
611     */
612     class VMVariable : virtual public VMExpr {
613     public:
614     /**
615     * Whether a script may modify the content of this variable by
616     * assigning a new value to it.
617     *
618     * @see isConstExpr(), assign()
619     */
620     virtual bool isAssignable() const = 0;
621    
622     /**
623     * In case this variable is assignable, this method will be called to
624     * perform the value assignment to this variable with @a expr
625     * reflecting the new value to be assigned.
626     *
627     * @param expr - new value to be assigned to this variable
628     */
629     virtual void assignExpr(VMExpr* expr) = 0;
630     };
631    
632 schoenebeck 2942 /** @brief Dynamically executed variable (abstract base class).
633     *
634     * Interface for the implementation of a dynamically generated content of
635     * a built-in script variable. Most built-in variables are simply pointers
636     * to some native location in memory. So when a script reads them, the
637     * memory location is simply read to get the value of the variable. A
638     * dynamic variable however is not simply a memory location. For each access
639     * to a dynamic variable some native code is executed to actually generate
640     * and provide the content (value) of this type of variable.
641     */
642 schoenebeck 2945 class VMDynVar : public VMVariable {
643 schoenebeck 2942 public:
644     /**
645     * Returns true in case this dynamic variable can be considered to be a
646     * constant expression. A constant expression will retain the same value
647     * throughout the entire life time of a script and the expression's
648     * constant value may be evaluated already at script parse time, which
649     * may result in performance benefits during script runtime.
650     *
651     * However due to the "dynamic" behavior of dynamic variables, almost
652     * all dynamic variables are probably not constant expressions. That's
653     * why this method returns @c false by default. If you are really sure
654     * that your dynamic variable implementation can be considered a
655     * constant expression then you may override this method and return
656     * @c true instead. Note that when you return @c true here, your
657     * dynamic variable will really just be executed once; and exectly
658     * already when the script is loaded!
659     *
660     * As an example you may implement a "constant" built-in dynamic
661     * variable that checks for a certain operating system feature and
662     * returns the result of that OS feature check as content (value) of
663     * this dynamic variable. Since the respective OS feature might become
664     * available/unavailable after OS updates, software migration, etc. the
665     * OS feature check should at least be performed once each time the
666     * application is launched. And since the OS feature check might take a
667     * certain amount of execution time, it might make sense to only
668     * perform the check if the respective variable name is actually
669     * referenced at all in the script to be loaded. Note that the dynamic
670     * variable will still be evaluated again though if the script is
671     * loaded again. So it is up to you to probably cache the result in the
672     * implementation of your dynamic variable.
673     *
674     * On doubt, please rather consider to use a constant built-in script
675     * variable instead of implementing a "constant" dynamic variable, due
676     * to the runtime overhead a dynamic variable may cause.
677     *
678     * @see isAssignable()
679     */
680 schoenebeck 2945 bool isConstExpr() const OVERRIDE { return false; }
681 schoenebeck 2942
682     /**
683     * In case this dynamic variable is assignable, the new value (content)
684     * to be assigned to this dynamic variable.
685     *
686     * By default this method does nothing. Override and implement this
687     * method in your subclass in case your dynamic variable allows to
688     * assign a new value by script.
689     *
690     * @param expr - new value to be assigned to this variable
691     */
692 schoenebeck 2945 void assignExpr(VMExpr* expr) OVERRIDE {}
693 schoenebeck 2942 };
694    
695     /** @brief Dynamically executed variable (of integer data type).
696     *
697     * This is the base class for all built-in integer script variables whose
698     * variable content needs to be provided dynamically by executable native
699     * code on each script variable access.
700     */
701     class VMDynIntVar : virtual public VMDynVar, virtual public VMIntExpr {
702     public:
703     };
704    
705     /** @brief Dynamically executed variable (of string data type).
706     *
707     * This is the base class for all built-in string script variables whose
708     * variable content needs to be provided dynamically by executable native
709     * code on each script variable access.
710     */
711     class VMDynStringVar : virtual public VMDynVar, virtual public VMStringExpr {
712     public:
713     };
714    
715 schoenebeck 2612 /** @brief Provider for built-in script functions and variables.
716     *
717 schoenebeck 2727 * Abstract base class defining the high-level interface for all classes
718     * which add and implement built-in script functions and built-in script
719     * variables.
720 schoenebeck 2612 */
721 schoenebeck 2581 class VMFunctionProvider {
722     public:
723 schoenebeck 2612 /**
724     * Returns pointer to the built-in function with the given function
725 schoenebeck 2727 * @a name, or NULL if there is no built-in function with that function
726     * name.
727 schoenebeck 2612 *
728 schoenebeck 2727 * @param name - function name (i.e. "wait" or "message" or "exit", etc.)
729 schoenebeck 2612 */
730 schoenebeck 2581 virtual VMFunction* functionByName(const String& name) = 0;
731 schoenebeck 2612
732     /**
733     * Returns a variable name indexed map of all built-in script variables
734 schoenebeck 2727 * which point to native "int" scalar (usually 32 bit) variables.
735 schoenebeck 2612 */
736 schoenebeck 2594 virtual std::map<String,VMIntRelPtr*> builtInIntVariables() = 0;
737 schoenebeck 2612
738     /**
739 schoenebeck 2727 * Returns a variable name indexed map of all built-in script integer
740     * array variables with array element type "int8_t" (8 bit).
741 schoenebeck 2612 */
742 schoenebeck 2594 virtual std::map<String,VMInt8Array*> builtInIntArrayVariables() = 0;
743 schoenebeck 2612
744     /**
745     * Returns a variable name indexed map of all built-in constant script
746     * variables, which never change their value at runtime.
747     */
748 schoenebeck 2594 virtual std::map<String,int> builtInConstIntVariables() = 0;
749 schoenebeck 2942
750     /**
751     * Returns a variable name indexed map of all built-in dynamic variables,
752     * which are not simply data stores, rather each one of them executes
753     * natively to provide or alter the respective script variable data.
754     */
755     virtual std::map<String,VMDynVar*> builtInDynamicVariables() = 0;
756 schoenebeck 2581 };
757    
758 schoenebeck 2594 /** @brief Execution state of a virtual machine.
759     *
760     * An instance of this abstract base class represents exactly one execution
761     * state of a virtual machine. This encompasses most notably the VM
762 schoenebeck 2612 * execution stack, and VM polyphonic variables. It does not contain global
763 schoenebeck 2727 * variables. Global variables are contained in the VMParserContext object.
764 schoenebeck 2612 * You might see a VMExecContext object as one virtual thread of the virtual
765     * machine.
766 schoenebeck 2594 *
767 schoenebeck 2612 * In contrast to a VMParserContext, a VMExecContext is not tied to a
768     * ScriptVM instance. Thus you can use a VMExecContext with different
769     * ScriptVM instances, however not concurrently at the same time.
770     *
771 schoenebeck 2594 * @see VMParserContext
772     */
773 schoenebeck 2581 class VMExecContext {
774     public:
775     virtual ~VMExecContext() {}
776 schoenebeck 2727
777     /**
778     * In case the script was suspended for some reason, this method returns
779     * the amount of microseconds before the script shall continue its
780     * execution. Note that the virtual machine itself does never put its
781     * own execution thread(s) to sleep. So the respective class (i.e. sampler
782     * engine) which is using the virtual machine classes here, must take
783     * care by itself about taking time stamps, determining the script
784     * handlers that shall be put aside for the requested amount of
785 schoenebeck 2871 * microseconds, indicated by this method by comparing the time stamps in
786 schoenebeck 2727 * real-time, and to continue passing the respective handler to
787     * ScriptVM::exec() as soon as its suspension exceeded, etc. Or in other
788     * words: all classes in this directory never have an idea what time it
789     * is.
790     *
791     * You should check the return value of ScriptVM::exec() to determine
792     * whether the script was actually suspended before calling this method
793     * here.
794     *
795     * @see ScriptVM::exec()
796     */
797 schoenebeck 2581 virtual int suspensionTimeMicroseconds() const = 0;
798     };
799    
800 schoenebeck 2645 /** @brief Script callback for a certain event.
801     *
802     * Represents a script callback for a certain event, i.e.
803 schoenebeck 2727 * "on note ... end on" code block.
804 schoenebeck 2645 */
805 schoenebeck 2581 class VMEventHandler {
806     public:
807 schoenebeck 2645 /**
808 schoenebeck 2879 * Type of this event handler, which identifies its purpose. For example
809     * for a "on note ... end on" script callback block,
810     * @c VM_EVENT_HANDLER_NOTE would be returned here.
811     */
812     virtual VMEventHandlerType_t eventHandlerType() const = 0;
813    
814     /**
815 schoenebeck 2645 * Name of the event handler which identifies its purpose. For example
816     * for a "on note ... end on" script callback block, the name "note"
817     * would be returned here.
818     */
819 schoenebeck 2581 virtual String eventHandlerName() const = 0;
820 schoenebeck 2645
821     /**
822     * Whether or not the event handler makes any use of so called
823     * "polyphonic" variables.
824     */
825     virtual bool isPolyphonic() const = 0;
826 schoenebeck 2581 };
827    
828 schoenebeck 2727 /**
829     * Encapsulates a noteworty parser issue. This encompasses the type of the
830     * issue (either a parser error or parser warning), a human readable
831     * explanation text of the error or warning and the location of the
832     * encountered parser issue within the script.
833     */
834 schoenebeck 2581 struct ParserIssue {
835 schoenebeck 2727 String txt; ///< Human readable explanation text of the parser issue.
836 schoenebeck 2889 int firstLine; ///< The first line number within the script where this issue was encountered (indexed with 1 being the very first line).
837     int lastLine; ///< The last line number within the script where this issue was encountered.
838     int firstColumn; ///< The first column within the script where this issue was encountered (indexed with 1 being the very first column).
839     int lastColumn; ///< The last column within the script where this issue was encountered.
840 schoenebeck 2727 ParserIssueType_t type; ///< Whether this issue is either a parser error or just a parser warning.
841 schoenebeck 2581
842 schoenebeck 2727 /**
843     * Print this issue out to the console (stdio).
844     */
845 schoenebeck 2581 inline void dump() {
846     switch (type) {
847     case PARSER_ERROR:
848 schoenebeck 2889 printf("[ERROR] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
849 schoenebeck 2581 break;
850     case PARSER_WARNING:
851 schoenebeck 2889 printf("[Warning] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
852 schoenebeck 2581 break;
853     }
854     }
855 schoenebeck 2727
856     /**
857     * Returns true if this issue is a parser error. In this case the parsed
858     * script may not be executed!
859     */
860 schoenebeck 2581 inline bool isErr() const { return type == PARSER_ERROR; }
861 schoenebeck 2727
862     /**
863     * Returns true if this issue is just a parser warning. A parsed script
864     * that only raises warnings may be executed if desired, however the
865     * script may not behave exactly as intended by the script author.
866     */
867 schoenebeck 2581 inline bool isWrn() const { return type == PARSER_WARNING; }
868     };
869    
870 schoenebeck 2727 /**
871     * Convenience function used for converting an ExprType_t constant to a
872     * string, i.e. for generating error message by the parser.
873     */
874 schoenebeck 2581 inline String typeStr(const ExprType_t& type) {
875     switch (type) {
876     case EMPTY_EXPR: return "empty";
877     case INT_EXPR: return "integer";
878     case INT_ARR_EXPR: return "integer array";
879     case STRING_EXPR: return "string";
880     case STRING_ARR_EXPR: return "string array";
881     }
882     return "invalid";
883     }
884    
885 schoenebeck 2594 /** @brief Virtual machine representation of a script.
886     *
887     * An instance of this abstract base class represents a parsed script,
888 schoenebeck 2727 * translated into a virtual machine tree. You should first check if there
889     * were any parser errors. If there were any parser errors, you should
890     * refrain from executing the virtual machine. Otherwise if there were no
891     * parser errors (i.e. only warnings), then you might access one of the
892     * script's event handlers by i.e. calling eventHandlerByName() and pass the
893     * respective event handler to the ScriptVM class (or to one of the ScriptVM
894 schoenebeck 2594 * descendants) for execution.
895     *
896 schoenebeck 2727 * @see VMExecContext, ScriptVM
897 schoenebeck 2594 */
898 schoenebeck 2588 class VMParserContext {
899     public:
900     virtual ~VMParserContext() {}
901 schoenebeck 2727
902     /**
903     * Returns all noteworthy issues encountered when the script was parsed.
904     * These are parser errors and parser warnings.
905     */
906 schoenebeck 2588 virtual std::vector<ParserIssue> issues() const = 0;
907 schoenebeck 2727
908     /**
909     * Same as issues(), but this method only returns parser errors.
910     */
911 schoenebeck 2588 virtual std::vector<ParserIssue> errors() const = 0;
912 schoenebeck 2727
913     /**
914     * Same as issues(), but this method only returns parser warnings.
915     */
916 schoenebeck 2588 virtual std::vector<ParserIssue> warnings() const = 0;
917 schoenebeck 2727
918     /**
919     * Returns the translated virtual machine representation of an event
920     * handler block (i.e. "on note ... end on" code block) within the
921     * parsed script. This translated representation of the event handler
922     * can be executed by the virtual machine.
923     *
924     * @param index - index of the event handler within the script
925     */
926 schoenebeck 2588 virtual VMEventHandler* eventHandler(uint index) = 0;
927 schoenebeck 2727
928     /**
929     * Same as eventHandler(), but this method returns the event handler by
930     * its name. So for a "on note ... end on" code block of the parsed
931     * script you would pass "note" for argument @a name here.
932     *
933     * @param name - name of the event handler (i.e. "init", "note",
934     * "controller", "release")
935     */
936 schoenebeck 2588 virtual VMEventHandler* eventHandlerByName(const String& name) = 0;
937     };
938    
939 schoenebeck 2885 class SourceToken;
940    
941     /** @brief Recognized token of a script's source code.
942     *
943     * Represents one recognized token of a script's source code, for example
944     * a keyword, variable name, etc. and it provides further informations about
945     * that particular token, i.e. the precise location (line and column) of the
946     * token within the original script's source code.
947     *
948     * This class is not actually used by the sampler itself. It is rather
949     * provided for external script editor applications. Primary purpose of
950     * this class is syntax highlighting for external script editors.
951     */
952     class VMSourceToken {
953     public:
954     VMSourceToken();
955     VMSourceToken(SourceToken* ct);
956     VMSourceToken(const VMSourceToken& other);
957     virtual ~VMSourceToken();
958    
959     // original text of this token as it is in the script's source code
960     String text() const;
961    
962     // position of token in script
963 schoenebeck 2889 int firstLine() const; ///< First line this source token is located at in script source code (indexed with 0 being the very first line).
964     int firstColumn() const; ///< Last line this source token is located at in script source code.
965 schoenebeck 2885
966     // base types
967     bool isEOF() const;
968     bool isNewLine() const;
969     bool isKeyword() const;
970     bool isVariableName() const;
971     bool isIdentifier() const;
972     bool isNumberLiteral() const;
973     bool isStringLiteral() const;
974     bool isComment() const;
975     bool isPreprocessor() const;
976     bool isOther() const;
977    
978     // extended types
979     bool isIntegerVariable() const;
980     bool isStringVariable() const;
981     bool isArrayVariable() const;
982     bool isEventHandlerName() const;
983    
984     VMSourceToken& operator=(const VMSourceToken& other);
985    
986     private:
987     SourceToken* m_token;
988     };
989    
990 schoenebeck 2581 } // namespace LinuxSampler
991    
992     #endif // LS_INSTR_SCRIPT_PARSER_COMMON_H

  ViewVC Help
Powered by ViewVC