/[svn]/linuxsampler/trunk/src/scriptvm/common.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/scriptvm/common.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3573 - (hide annotations) (download) (as text)
Tue Aug 27 21:36:53 2019 UTC (4 years, 7 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 78020 byte(s)
NKSP: Introducing floating point support.

* NKSP language: Added support for NKSP real number literals and
  arithmetic operations on them (e.g. "(3.9 + 2.9) / 12.3 - 42.0").

* NKSP language: Added support for NKSP real number (floating point)
  script variables (declare ~foo := 3.4).

* NKSP language: Added support for NKSP real number (floating point)
  array script variables (declare ?foo[3] := ( 1.1, 2.7, 49.0 )).

* NKSP built-in script function "message()" accepts now real number
  argument as well.

* Added built-in NKSP script function "real_to_int()" and its short
  hand form "int()" for casting from real number to integer in NKSP
  scripts.

* Added built-in NKSP script function "int_to_real()" and its short
  hand form "real()" for casting from integer to real number in NKSP
  scripts.

* Bumped version (2.1.1.svn6).

1 schoenebeck 2581 /*
2 schoenebeck 3551 * Copyright (c) 2014-2019 Christian Schoenebeck
3 schoenebeck 2581 *
4     * http://www.linuxsampler.org
5     *
6     * This file is part of LinuxSampler and released under the same terms.
7     * See README file for details.
8     */
9    
10     // This header defines data types shared between the VM core implementation
11     // (inside the current source directory) and other parts of the sampler
12 schoenebeck 3292 // (located at other source directories). It also acts as public API of the
13     // Real-Time script engine for other applications.
14 schoenebeck 2581
15     #ifndef LS_INSTR_SCRIPT_PARSER_COMMON_H
16     #define LS_INSTR_SCRIPT_PARSER_COMMON_H
17    
18     #include "../common/global.h"
19 schoenebeck 2588 #include <vector>
20 schoenebeck 2594 #include <map>
21     #include <stddef.h> // offsetof()
22 schoenebeck 2581
23     namespace LinuxSampler {
24 schoenebeck 2727
25     /**
26 schoenebeck 3557 * Native data type used by the script engine both internally, as well as
27     * for all integer data types used by scripts (i.e. for all $foo variables
28     * in NKSP scripts). Note that this is different from the original KSP which
29     * is limited to 32 bit for integer variables in KSP scripts.
30     */
31     typedef int64_t vmint;
32    
33     /**
34     * Native data type used internally by the script engine for all unsigned
35     * integer types. This type is currently not exposed to scripts.
36     */
37     typedef uint64_t vmuint;
38    
39     /**
40 schoenebeck 3573 * Native data type used by the script engine both internally for floating
41     * point data, as well as for all @c real data types used by scripts (i.e.
42     * for all ~foo variables in NKSP scripts).
43 schoenebeck 3561 */
44     typedef float vmfloat;
45    
46     /**
47 schoenebeck 2727 * Identifies the type of a noteworthy issue identified by the script
48     * parser. That's either a parser error or parser warning.
49     */
50 schoenebeck 2581 enum ParserIssueType_t {
51 schoenebeck 2727 PARSER_ERROR, ///< Script parser encountered an error, the script cannot be executed.
52     PARSER_WARNING ///< Script parser encountered a warning, the script may be executed if desired, but the script may not necessarily behave as originally intended by the script author.
53 schoenebeck 2581 };
54    
55 schoenebeck 2727 /** @brief Expression's data type.
56     *
57     * Identifies to which data type an expression within a script evaluates to.
58     * This can for example reflect the data type of script function arguments,
59     * script function return values, but also the resulting data type of some
60     * mathematical formula within a script.
61     */
62 schoenebeck 2581 enum ExprType_t {
63 schoenebeck 2727 EMPTY_EXPR, ///< i.e. on invalid expressions or i.e. a function call that does not return a result value (the built-in wait() or message() functions for instance)
64     INT_EXPR, ///< integer (scalar) expression
65     INT_ARR_EXPR, ///< integer array expression
66     STRING_EXPR, ///< string expression
67     STRING_ARR_EXPR, ///< string array expression
68 schoenebeck 3573 REAL_EXPR, ///< floating point (scalar) expression
69     REAL_ARR_EXPR, ///< floating point array expression
70 schoenebeck 2581 };
71    
72 schoenebeck 2727 /** @brief Result flags of a script statement or script function call.
73     *
74     * A set of bit flags which provide informations about the success or
75     * failure of a statement within a script. That's also especially used for
76     * providing informations about success / failure of a call to a built-in
77     * script function. The virtual machine evaluates these flags during runtime
78     * to decide whether it should i.e. stop or suspend execution of a script.
79     *
80     * Since these are bit flags, these constants are bitwise combined.
81     */
82 schoenebeck 2581 enum StmtFlags_t {
83     STMT_SUCCESS = 0, ///< Function / statement was executed successfully, no error occurred.
84 schoenebeck 2727 STMT_ABORT_SIGNALLED = 1, ///< VM should stop the current callback execution (usually because of an error, but might also be without an error reason, i.e. when the built-in script function exit() was called).
85     STMT_SUSPEND_SIGNALLED = (1<<1), ///< VM supended execution, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time
86     STMT_ERROR_OCCURRED = (1<<2), ///< VM stopped execution due to some script runtime error that occurred
87 schoenebeck 2581 };
88    
89 schoenebeck 2727 /** @brief Virtual machine execution status.
90     *
91     * A set of bit flags which reflect the current overall execution status of
92     * the virtual machine concerning a certain script execution instance.
93     *
94     * Since these are bit flags, these constants are bitwise combined.
95     */
96 schoenebeck 2581 enum VMExecStatus_t {
97 schoenebeck 2727 VM_EXEC_NOT_RUNNING = 0, ///< Script is currently not executed by the VM.
98     VM_EXEC_RUNNING = 1, ///< The VM is currently executing the script.
99     VM_EXEC_SUSPENDED = (1<<1), ///< Script is currently suspended by the VM, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time.
100     VM_EXEC_ERROR = (1<<2), ///< A runtime error occurred while executing the script (i.e. a call to some built-in script function failed).
101 schoenebeck 2581 };
102    
103 schoenebeck 2879 /** @brief Script event handler type.
104     *
105     * Identifies one of the possible event handler callback types defined by
106     * the NKSP script language.
107 schoenebeck 3557 *
108     * IMPORTANT: this type is forced to be emitted as int32_t type ATM, because
109     * that's the native size expected by the built-in instrument script
110     * variable bindings (see occurrences of VMInt32RelPtr and DECLARE_VMINT
111     * respectively. A native type mismatch between the two could lead to
112     * undefined behavior! Background: By definition the C/C++ compiler is free
113     * to choose a bit size for individual enums which it might find
114     * appropriate, which is usually decided by the compiler according to the
115     * biggest enum constant value defined (in practice it is usually 32 bit).
116 schoenebeck 2879 */
117 schoenebeck 3557 enum VMEventHandlerType_t : int32_t {
118 schoenebeck 2879 VM_EVENT_HANDLER_INIT, ///< Initilization event handler, that is script's "on init ... end on" code block.
119     VM_EVENT_HANDLER_NOTE, ///< Note event handler, that is script's "on note ... end on" code block.
120     VM_EVENT_HANDLER_RELEASE, ///< Release event handler, that is script's "on release ... end on" code block.
121     VM_EVENT_HANDLER_CONTROLLER, ///< Controller event handler, that is script's "on controller ... end on" code block.
122     };
123    
124 schoenebeck 3561 /**
125     * All metric unit prefixes (actually just scale factors) supported by this
126     * script engine.
127     */
128     enum MetricPrefix_t {
129     VM_NO_PREFIX = 0, ///< = 1
130     VM_KILO, ///< = 10^3, short 'k'
131     VM_HECTO, ///< = 10^2, short 'h'
132     VM_DECA, ///< = 10, short 'da'
133     VM_DECI, ///< = 10^-1, short 'd'
134     VM_CENTI, ///< = 10^-2, short 'c' (this is also used for tuning "cents")
135     VM_MILLI, ///< = 10^-3, short 'm'
136     VM_MICRO, ///< = 10^-6, short 'u'
137     };
138    
139     /**
140     * All measurement unit types supported by this script engine.
141     *
142     * @e Note: there is no standard unit "cents" here (for pitch/tuning), use
143     * @c VM_CENTI for the latter instad. That's because the commonly cited
144     * "cents" unit is actually no measurement unit type but rather a metric
145     * unit prefix.
146     *
147     * @see MetricPrefix_t
148     */
149     enum StdUnit_t {
150     VM_NO_UNIT = 0, ///< No unit used, the number is just an abstract number.
151     VM_SECOND, ///< Measuring time.
152     VM_HERTZ, ///< Measuring frequency.
153     VM_BEL, ///< Measuring relation between two energy levels (in logarithmic scale). Since we are using it for accoustics, we are always referring to A-weighted Bels (i.e. dBA).
154     };
155    
156 schoenebeck 2727 // just symbol prototyping
157 schoenebeck 2596 class VMIntExpr;
158 schoenebeck 3573 class VMRealExpr;
159 schoenebeck 2596 class VMStringExpr;
160 schoenebeck 3573 class VMScalarNumberExpr;
161 schoenebeck 2619 class VMIntArrayExpr;
162 schoenebeck 3573 class VMRealArrayExpr;
163 schoenebeck 2619 class VMStringArrayExpr;
164 schoenebeck 3311 class VMParserContext;
165 schoenebeck 2596
166 schoenebeck 3561 /** @brief Virtual machine measuring unit.
167     *
168     * Abstract base class representing standard measurement units throughout
169     * the script engine. These might be i.e. "dB" (deci Bel) for loudness,
170     * "Hz" (Hertz) for frequencies or "s" for "seconds".
171     *
172     * Originally the script engine only supported abstract integer values for
173     * controlling any synthesis parameter or built-in function argument or
174     * variable. Under certain situations it makes sense though for an
175     * instrument script author to provide values in real, standard measurement
176     * units, for example setting the frequency of some LFO directly to "20Hz".
177     * Hence support for standard units in scripts was added as an extension to
178     * the NKSP script engine.
179     */
180     class VMUnit {
181     public:
182     /**
183     * Returns the metric prefix of this unit. A metric prefix essentially
184     * is just a mathematical scale factor that should be applied to the
185     * number associated with the measurement unit. Usually a unit either
186     * has exactly none or one prefix, but note that there might also be
187     * units with more than one prefix, for example mdB (mili deci bel)
188     * is used sometimes which has two prefixes. This is an exception though
189     * and more than two prefixes is currently not supported by the script
190     * engine.
191     *
192     * Start iterating over the prefixes of this unit by passing @c 0 as
193     * argument to this method. The prefixes are terminated with return
194     * value VM_NO_PREFIX being always the last element.
195     *
196     * @param i - index of prefix
197     * @returns prefix of requested index or VM_NO_PREFIX otherwise
198     * @see unitFactor()
199     */
200     virtual MetricPrefix_t unitPrefix(vmuint i) const = 0;
201    
202     /**
203     * Conveniently returns the final mathematical factor that should be
204     * multiplied against the number associated with this unit. This factor
205     * results from the sequence of metric prefixes of this unit.
206     *
207     * @see unitPrefix()
208     */
209     vmfloat unitFactor() const;
210    
211     /**
212     * This is the actual fundamental measuring unit base type of this unit,
213     * which might be either Hertz, second or Bel.
214     *
215     * @returns standard unit type identifier or VM_NO_UNIT if no unit used
216     */
217     virtual StdUnit_t unitType() const = 0;
218    
219     /**
220     * Returns the actual mathematical factor represented by the passed
221     * @a prefix argument.
222     */
223     static vmfloat unitFactor(MetricPrefix_t prefix);
224    
225     /**
226     * Returns the actual mathematical factor represented by the passed
227     * two @a prefix1 and @a prefix2 arguments.
228     */
229     static vmfloat unitFactor(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
230     };
231    
232 schoenebeck 2727 /** @brief Virtual machine expression
233     *
234     * This is the abstract base class for all expressions of scripts.
235     * Deriving classes must implement the abstract method exprType().
236     *
237     * An expression within a script is translated into one instance of this
238     * class. It allows a high level access for the virtual machine to evaluate
239     * and handle expressions appropriately during execution. Expressions are
240     * for example all kinds of formulas, function calls, statements or a
241     * combination of them. Most of them evaluate to some kind of value, which
242     * might be further processed as part of encompassing expressions to outer
243     * expression results and so forth.
244     */
245 schoenebeck 2581 class VMExpr {
246     public:
247 schoenebeck 2727 /**
248     * Identifies the data type to which the result of this expression
249     * evaluates to. This abstract method must be implemented by deriving
250     * classes.
251     */
252 schoenebeck 2581 virtual ExprType_t exprType() const = 0;
253 schoenebeck 2727
254     /**
255     * In case this expression is an integer expression, then this method
256     * returns a casted pointer to that VMIntExpr object. It returns NULL
257     * if this expression is not an integer expression.
258     *
259     * @b Note: type casting performed by this method is strict! That means
260     * if this expression is i.e. actually a string expression like "12",
261     * calling asInt() will @b not cast that numerical string expression to
262     * an integer expression 12 for you, instead this method will simply
263 schoenebeck 3573 * return NULL! Same applies if this expression is actually a real
264     * number expression: asInt() would return NULL in that case as well.
265 schoenebeck 2727 *
266 schoenebeck 3573 * @see exprType(), asReal(), asScalarNumberExpr()
267 schoenebeck 2727 */
268 schoenebeck 2596 VMIntExpr* asInt() const;
269 schoenebeck 2727
270     /**
271 schoenebeck 3573 * In case this expression is a real number (floating point) expression,
272     * then this method returns a casted pointer to that VMRealExpr object.
273     * It returns NULL if this expression is not a real number expression.
274     *
275     * @b Note: type casting performed by this method is strict! That means
276     * if this expression is i.e. actually a string expression like "12",
277     * calling asReal() will @b not cast that numerical string expression to
278     * a real number expression 12.0 for you, instead this method will
279     * simply return NULL! Same applies if this expression is actually an
280     * integer expression: asReal() would return NULL in that case as well.
281     *
282     * @see exprType(), asInt(), asScalarNumberExpr()
283     */
284     VMRealExpr* asReal() const;
285    
286     /**
287     * In case this expression is a scalar number expression, that is either
288     * an integer (scalar) expression or a real number (floating point
289     * scalar) expression, then this method returns a casted pointer to that
290     * VMScalarNumberExpr base class object. It returns NULL if this
291     * expression is neither an integer (scalar), nor a real number (scalar)
292     * expression.
293     *
294     * Since the methods asInt() and asReal() are very strict, this method
295     * is provided as convenience access in case only very general
296     * information (e.g. which standard measurement unit is being used or
297     * whether final operator being effective to this expression) is
298     * intended to be retrieved of this scalar number expression independent
299     * from whether this expression is actually an integer or a real number
300     * expression.
301     *
302     * @see exprType(), asInt(), asReal()
303     */
304     VMScalarNumberExpr* asScalarNumberExpr() const;
305    
306     /**
307 schoenebeck 2727 * In case this expression is a string expression, then this method
308     * returns a casted pointer to that VMStringExpr object. It returns NULL
309     * if this expression is not a string expression.
310     *
311     * @b Note: type casting performed by this method is strict! That means
312     * if this expression is i.e. actually an integer expression like 120,
313     * calling asString() will @b not cast that integer expression to a
314     * string expression "120" for you, instead this method will simply
315     * return NULL!
316     *
317     * @see exprType()
318     */
319 schoenebeck 2596 VMStringExpr* asString() const;
320 schoenebeck 2727
321     /**
322     * In case this expression is an integer array expression, then this
323     * method returns a casted pointer to that VMIntArrayExpr object. It
324     * returns NULL if this expression is not an integer array expression.
325     *
326     * @b Note: type casting performed by this method is strict! That means
327 schoenebeck 3573 * if this expression is i.e. an integer scalar expression, a real
328     * number expression or a string expression, calling asIntArray() will
329     * @b not cast those expressions to an integer array expression for you,
330     * instead this method will simply return NULL!
331 schoenebeck 2727 *
332 schoenebeck 3056 * @b Note: this method is currently, and in contrast to its other
333     * counter parts, declared as virtual method. Some deriving classes are
334     * currently using this to override this default implementation in order
335     * to implement an "evaluate now as integer array" behavior. This has
336     * efficiency reasons, however this also currently makes this part of
337     * the API less clean and should thus be addressed in future with
338     * appropriate changes to the API.
339     *
340 schoenebeck 2727 * @see exprType()
341     */
342 schoenebeck 3056 virtual VMIntArrayExpr* asIntArray() const;
343 schoenebeck 2945
344     /**
345 schoenebeck 3573 * In case this expression is a real number (floating point) array
346     * expression, then this method returns a casted pointer to that
347     * VMRealArrayExpr object. It returns NULL if this expression is not a
348     * real number array expression.
349     *
350     * @b Note: type casting performed by this method is strict! That means
351     * if this expression is i.e. a real number scalar expression, an
352     * integer expression or a string expression, calling asRealArray() will
353     * @b not cast those scalar expressions to a real number array
354     * expression for you, instead this method will simply return NULL!
355     *
356     * @b Note: this method is currently, and in contrast to its other
357     * counter parts, declared as virtual method. Some deriving classes are
358     * currently using this to override this default implementation in order
359     * to implement an "evaluate now as real number array" behavior. This
360     * has efficiency reasons, however this also currently makes this part
361     * of the API less clean and should thus be addressed in future with
362     * appropriate changes to the API.
363     *
364     * @see exprType()
365     */
366     virtual VMRealArrayExpr* asRealArray() const;
367    
368     /**
369 schoenebeck 2945 * Returns true in case this expression can be considered to be a
370     * constant expression. A constant expression will retain the same
371     * value throughout the entire life time of a script and the
372     * expression's constant value may be evaluated already at script
373     * parse time, which may result in performance benefits during script
374     * runtime.
375 schoenebeck 2960 *
376     * @b NOTE: A constant expression is per se always also non modifyable.
377     * But a non modifyable expression may not necessarily be a constant
378     * expression!
379     *
380     * @see isModifyable()
381 schoenebeck 2945 */
382     virtual bool isConstExpr() const = 0;
383    
384 schoenebeck 2960 /**
385     * Returns true in case this expression is allowed to be modified.
386     * If this method returns @c false then this expression must be handled
387     * as read-only expression, which means that assigning a new value to it
388     * is either not possible or not allowed.
389     *
390     * @b NOTE: A constant expression is per se always also non modifyable.
391     * But a non modifyable expression may not necessarily be a constant
392     * expression!
393     *
394     * @see isConstExpr()
395     */
396 schoenebeck 2945 bool isModifyable() const;
397 schoenebeck 2581 };
398    
399 schoenebeck 3573 /** @brief Virtual machine scalar number expression
400     *
401     * This is the abstract base class for integer (scalar) expressions and
402     * real number (floating point scalar) expressions of scripts.
403     */
404     class VMScalarNumberExpr : virtual public VMExpr, virtual public VMUnit {
405     public:
406     /**
407     * Returns @c true if the value of this expression should be applied
408     * as final value to the respective destination synthesis chain
409     * parameter.
410     *
411     * This property is somewhat special and dedicated for the purpose of
412     * this expression's (integer or real number) value to be applied as
413     * parameter to the synthesis chain of the sampler (i.e. for altering a
414     * filter cutoff frequency). Now historically and by default all values
415     * of scripts are applied relatively to the sampler's synthesis chain,
416     * that is the synthesis parameter value of a script is multiplied
417     * against other sources for the same synthesis parameter (i.e. an LFO
418     * or a dedicated MIDI controller either hard wired in the engine or
419     * defined by the instrument patch). So by default the resulting actual
420     * final synthesis parameter is a combination of all these sources. This
421     * has the advantage that it creates a very living and dynamic overall
422     * sound.
423     *
424     * However sometimes there are requirements by script authors where this
425     * is not what you want. Therefore the NKSP script engine added a
426     * language extension by prefixing a value in scripts with a @c !
427     * character the value will be defined as being the "final" value of the
428     * destination synthesis parameter, so that causes this value to be
429     * applied exclusively, and the values of all other sources are thus
430     * entirely ignored by the sampler's synthesis core as long as this
431     * value is assigned by the script engine as "final" value for the
432     * requested synthesis parameter.
433     */
434     virtual bool isFinal() const = 0;
435     };
436    
437 schoenebeck 2727 /** @brief Virtual machine integer expression
438     *
439     * This is the abstract base class for all expressions inside scripts which
440     * evaluate to an integer (scalar) value. Deriving classes implement the
441     * abstract method evalInt() to return the actual integer result value of
442     * the expression.
443     */
444 schoenebeck 3573 class VMIntExpr : virtual public VMScalarNumberExpr {
445 schoenebeck 2581 public:
446 schoenebeck 2727 /**
447     * Returns the result of this expression as integer (scalar) value.
448     * This abstract method must be implemented by deriving classes.
449     */
450 schoenebeck 3557 virtual vmint evalInt() = 0;
451 schoenebeck 2727
452     /**
453 schoenebeck 3561 * Returns the result of this expression as integer (scalar) value and
454     * thus behaves similar to the previous method, however this overridden
455     * method automatically takes unit prefixes into account and returns a
456     * value corresponding to the expected given unit @a prefix.
457     *
458     * @param prefix - default measurement unit prefix expected by caller
459     */
460     vmint evalInt(MetricPrefix_t prefix);
461    
462     /**
463     * This method behaves like the previous method, just that it takes
464     * a default measurement prefix with two elements (i.e. "milli cents"
465     * for tuning).
466     */
467     vmint evalInt(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
468    
469     /**
470 schoenebeck 2727 * Returns always INT_EXPR for instances of this class.
471     */
472     ExprType_t exprType() const OVERRIDE { return INT_EXPR; }
473 schoenebeck 3573 };
474 schoenebeck 3561
475 schoenebeck 3573 /** @brief Virtual machine real number (floating point scalar) expression
476     *
477     * This is the abstract base class for all expressions inside scripts which
478     * evaluate to a real number (floating point scalar) value. Deriving classes
479     * implement the abstract method evalReal() to return the actual floating
480     * point result value of the expression.
481     */
482     class VMRealExpr : virtual public VMScalarNumberExpr {
483     public:
484 schoenebeck 3561 /**
485 schoenebeck 3573 * Returns the result of this expression as real number (floating point
486     * scalar) value. This abstract method must be implemented by deriving
487     * classes.
488     */
489     virtual vmfloat evalReal() = 0;
490    
491     /**
492     * Returns the result of this expression as real number (floating point
493     * scalar) value and thus behaves similar to the previous method,
494     * however this overridden method automatically takes unit prefixes into
495     * account and returns a value corresponding to the expected given unit
496     * @a prefix.
497 schoenebeck 3561 *
498 schoenebeck 3573 * @param prefix - default measurement unit prefix expected by caller
499 schoenebeck 3561 */
500 schoenebeck 3573 vmfloat evalReal(MetricPrefix_t prefix);
501    
502     /**
503     * This method behaves like the previous method, just that it takes
504     * a default measurement prefix with two elements (i.e. "milli cents"
505     * for tuning).
506     */
507     vmfloat evalReal(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
508    
509     /**
510     * Returns always REAL_EXPR for instances of this class.
511     */
512     ExprType_t exprType() const OVERRIDE { return REAL_EXPR; }
513 schoenebeck 2581 };
514    
515 schoenebeck 2727 /** @brief Virtual machine string expression
516     *
517     * This is the abstract base class for all expressions inside scripts which
518     * evaluate to a string value. Deriving classes implement the abstract
519     * method evalStr() to return the actual string result value of the
520     * expression.
521     */
522 schoenebeck 2581 class VMStringExpr : virtual public VMExpr {
523     public:
524 schoenebeck 2727 /**
525     * Returns the result of this expression as string value. This abstract
526     * method must be implemented by deriving classes.
527     */
528 schoenebeck 2581 virtual String evalStr() = 0;
529 schoenebeck 2727
530     /**
531     * Returns always STRING_EXPR for instances of this class.
532     */
533     ExprType_t exprType() const OVERRIDE { return STRING_EXPR; }
534 schoenebeck 2581 };
535    
536 schoenebeck 2727 /** @brief Virtual Machine Array Value Expression
537     *
538     * This is the abstract base class for all expressions inside scripts which
539     * evaluate to some kind of array value. Deriving classes implement the
540     * abstract method arraySize() to return the amount of elements within the
541     * array.
542     */
543 schoenebeck 2619 class VMArrayExpr : virtual public VMExpr {
544     public:
545 schoenebeck 2727 /**
546     * Returns amount of elements in this array. This abstract method must
547     * be implemented by deriving classes.
548     */
549 schoenebeck 3557 virtual vmint arraySize() const = 0;
550 schoenebeck 2619 };
551    
552 schoenebeck 2727 /** @brief Virtual Machine Integer Array Expression
553     *
554     * This is the abstract base class for all expressions inside scripts which
555     * evaluate to an array of integer values. Deriving classes implement the
556     * abstract methods arraySize(), evalIntElement() and assignIntElement() to
557     * access the individual integer array values.
558     */
559 schoenebeck 2619 class VMIntArrayExpr : virtual public VMArrayExpr {
560     public:
561 schoenebeck 2727 /**
562     * Returns the (scalar) integer value of the array element given by
563     * element index @a i.
564     *
565     * @param i - array element index (must be between 0 .. arraySize() - 1)
566     */
567 schoenebeck 3557 virtual vmint evalIntElement(vmuint i) = 0;
568 schoenebeck 2727
569     /**
570     * Changes the current value of an element (given by array element
571     * index @a i) of this integer array.
572     *
573     * @param i - array element index (must be between 0 .. arraySize() - 1)
574     * @param value - new integer scalar value to be assigned to that array element
575     */
576 schoenebeck 3557 virtual void assignIntElement(vmuint i, vmint value) = 0;
577 schoenebeck 2727
578     /**
579     * Returns always INT_ARR_EXPR for instances of this class.
580     */
581     ExprType_t exprType() const OVERRIDE { return INT_ARR_EXPR; }
582 schoenebeck 2619 };
583    
584 schoenebeck 3573 /** @brief Virtual Machine Real Number Array Expression
585     *
586     * This is the abstract base class for all expressions inside scripts which
587     * evaluate to an array of real numbers (floating point values). Deriving
588     * classes implement the abstract methods arraySize(), evalRealElement() and
589     * assignRealElement() to access the array's individual real numbers.
590     */
591     class VMRealArrayExpr : virtual public VMArrayExpr {
592     public:
593     /**
594     * Returns the (scalar) real mumber (floating point value) of the array
595     * element given by element index @a i.
596     *
597     * @param i - array element index (must be between 0 .. arraySize() - 1)
598     */
599     virtual vmfloat evalRealElement(vmuint i) = 0;
600    
601     /**
602     * Changes the current value of an element (given by array element
603     * index @a i) of this real number array.
604     *
605     * @param i - array element index (must be between 0 .. arraySize() - 1)
606     * @param value - new real number value to be assigned to that array element
607     */
608     virtual void assignRealElement(vmuint i, vmfloat value) = 0;
609    
610     /**
611     * Returns always REAL_ARR_EXPR for instances of this class.
612     */
613     ExprType_t exprType() const OVERRIDE { return REAL_ARR_EXPR; }
614     };
615    
616 schoenebeck 2727 /** @brief Arguments (parameters) for being passed to a built-in script function.
617     *
618     * An argument or a set of arguments passed to a script function are
619     * translated by the parser to an instance of this class. This abstract
620     * interface class is used by implementations of built-in functions to
621     * obtain the individual function argument values being passed to them at
622     * runtime.
623     */
624 schoenebeck 2581 class VMFnArgs {
625     public:
626 schoenebeck 2727 /**
627     * Returns the amount of arguments going to be passed to the script
628     * function.
629     */
630 schoenebeck 3557 virtual vmint argsCount() const = 0;
631 schoenebeck 2727
632     /**
633     * Returns the respective argument (requested by argument index @a i) of
634     * this set of arguments. This method is called by implementations of
635     * built-in script functions to obtain the value of each function
636     * argument passed to the function at runtime.
637     *
638     * @param i - function argument index (indexed from left to right)
639     */
640 schoenebeck 3557 virtual VMExpr* arg(vmint i) = 0;
641 schoenebeck 2581 };
642    
643 schoenebeck 2727 /** @brief Result value returned from a call to a built-in script function.
644     *
645     * Implementations of built-in script functions return an instance of this
646     * object to let the virtual machine obtain the result value of the function
647     * call, which might then be further processed by the virtual machine
648     * according to the script. It also provides informations about the success
649     * or failure of the function call.
650     */
651 schoenebeck 2581 class VMFnResult {
652     public:
653 schoenebeck 2727 /**
654     * Returns the result value of the function call, represented by a high
655     * level expression object.
656     */
657 schoenebeck 2581 virtual VMExpr* resultValue() = 0;
658 schoenebeck 2727
659     /**
660     * Provides detailed informations of the success / failure of the
661     * function call. The virtual machine is evaluating the flags returned
662     * here to decide whether it must abort or suspend execution of the
663     * script at this point.
664     */
665 schoenebeck 2581 virtual StmtFlags_t resultFlags() { return STMT_SUCCESS; }
666     };
667    
668 schoenebeck 2727 /** @brief Virtual machine built-in function.
669 schoenebeck 2612 *
670     * Abstract base class for built-in script functions, defining the interface
671 schoenebeck 2727 * for all built-in script function implementations. All built-in script
672     * functions are deriving from this abstract interface class in order to
673     * provide their functionality to the virtual machine with this unified
674     * interface.
675     *
676     * The methods of this interface class provide two purposes:
677     *
678     * 1. When a script is loaded, the script parser uses the methods of this
679     * interface to check whether the script author was calling the
680     * respective built-in script function in a correct way. For example
681     * the parser checks whether the required amount of parameters were
682     * passed to the function and whether the data types passed match the
683     * data types expected by the function. If not, loading the script will
684     * be aborted with a parser error, describing to the user (i.e. script
685     * author) the precise misusage of the respective function.
686     * 2. After the script was loaded successfully and the script is executed,
687     * the virtual machine calls the exec() method of the respective built-in
688     * function to provide the actual functionality of the built-in function
689     * call.
690 schoenebeck 2612 */
691 schoenebeck 2581 class VMFunction {
692     public:
693 schoenebeck 2612 /**
694     * Script data type of the function's return value. If the function does
695 schoenebeck 2727 * not return any value (void), then it returns EMPTY_EXPR here.
696 schoenebeck 2612 */
697 schoenebeck 2581 virtual ExprType_t returnType() = 0;
698 schoenebeck 2612
699     /**
700     * Minimum amount of function arguments this function accepts. If a
701     * script is calling this function with less arguments, the script
702     * parser will throw a parser error.
703     */
704 schoenebeck 3557 virtual vmint minRequiredArgs() const = 0;
705 schoenebeck 2612
706     /**
707     * Maximum amount of function arguments this functions accepts. If a
708     * script is calling this function with more arguments, the script
709     * parser will throw a parser error.
710     */
711 schoenebeck 3557 virtual vmint maxAllowedArgs() const = 0;
712 schoenebeck 2612
713     /**
714     * Script data type of the function's @c iArg 'th function argument.
715     * The information provided here is less strong than acceptsArgType().
716     * The parser will compare argument data types provided in scripts by
717 schoenebeck 2871 * calling acceptsArgType(). The return value of argType() is used by the
718 schoenebeck 2612 * parser instead to show an appropriate parser error which data type
719     * this function usually expects as "default" data type. Reason: a
720     * function may accept multiple data types for a certain function
721     * argument and would automatically cast the passed argument value in
722     * that case to the type it actually needs.
723     *
724     * @param iArg - index of the function argument in question
725 schoenebeck 2727 * (must be between 0 .. maxAllowedArgs() - 1)
726 schoenebeck 2612 */
727 schoenebeck 3557 virtual ExprType_t argType(vmint iArg) const = 0;
728 schoenebeck 2612
729     /**
730 schoenebeck 2945 * This method is called by the parser to check whether arguments
731 schoenebeck 2612 * passed in scripts to this function are accepted by this function. If
732     * a script calls this function with an argument's data type not
733 schoenebeck 2727 * accepted by this function, the parser will throw a parser error. On
734     * such errors the data type returned by argType() will be used to
735     * assemble an appropriate error message regarding the precise misusage
736     * of the built-in function.
737 schoenebeck 2612 *
738     * @param iArg - index of the function argument in question
739 schoenebeck 2727 * (must be between 0 .. maxAllowedArgs() - 1)
740 schoenebeck 2612 * @param type - script data type used for this function argument by
741     * currently parsed script
742 schoenebeck 2727 * @return true if the given data type would be accepted for the
743     * respective function argument by the function
744 schoenebeck 2612 */
745 schoenebeck 3557 virtual bool acceptsArgType(vmint iArg, ExprType_t type) const = 0;
746 schoenebeck 2612
747     /**
748 schoenebeck 3561 * This method is called by the parser to check whether arguments
749     * passed in scripts to this function are accepted by this function. If
750     * a script calls this function with an argument's measuremnt unit type
751     * not accepted by this function, the parser will throw a parser error.
752     *
753     * This default implementation of this method does not accept any
754     * measurement unit. Deriving subclasses would override this method
755     * implementation in case they do accept any measurement unit for its
756     * function arguments.
757     *
758     * @param iArg - index of the function argument in question
759     * (must be between 0 .. maxAllowedArgs() - 1)
760     * @param type - standard measurement unit data type used for this
761     * function argument by currently parsed script
762     * @return true if the given standard measurement unit type would be
763     * accepted for the respective function argument by the function
764     */
765     virtual bool acceptsArgUnitType(vmint iArg, StdUnit_t type) const;
766    
767     /**
768     * This method is called by the parser to check whether arguments
769     * passed in scripts to this function are accepted by this function. If
770     * a script calls this function with a metric unit prefix and metric
771     * prefixes are not accepted for that argument by this function, then
772     * the parser will throw a parser error.
773     *
774     * This default implementation of this method does not accept any
775     * metric prefix. Deriving subclasses would override this method
776     * implementation in case they do accept any metric prefix for its
777     * function arguments.
778     *
779     * @param iArg - index of the function argument in question
780     * (must be between 0 .. maxAllowedArgs() - 1)
781 schoenebeck 3564 * @param type - standard measurement unit data type used for that
782     * function argument by currently parsed script
783 schoenebeck 3561 *
784     * @return true if a metric prefix would be accepted for the respective
785     * function argument by this function
786     *
787     * @see MetricPrefix_t
788     */
789 schoenebeck 3564 virtual bool acceptsArgUnitPrefix(vmint iArg, StdUnit_t type) const;
790 schoenebeck 3561
791     /**
792     * This method is called by the parser to check whether arguments
793     * passed in scripts to this function are accepted by this function. If
794     * a script calls this function with an argument that is declared to be
795     * a "final" value and this is not accepted by this function, the parser
796     * will throw a parser error.
797     *
798     * This default implementation of this method does not accept a "final"
799     * value. Deriving subclasses would override this method implementation
800     * in case they do accept a "final" value for its function arguments.
801     *
802     * @param iArg - index of the function argument in question
803     * (must be between 0 .. maxAllowedArgs() - 1)
804     * @return true if a "final" value would be accepted for the respective
805     * function argument by the function
806     *
807     * @see VMIntExpr::isFinal()
808     */
809     virtual bool acceptsArgFinal(vmint iArg) const;
810    
811     /**
812 schoenebeck 2945 * This method is called by the parser to check whether some arguments
813     * (and if yes which ones) passed to this script function will be
814     * modified by this script function. Most script functions simply use
815     * their arguments as inputs, that is they only read the argument's
816     * values. However some script function may also use passed
817     * argument(s) as output variables. In this case the function
818     * implementation must return @c true for the respective argument
819     * index here.
820     *
821     * @param iArg - index of the function argument in question
822     * (must be between 0 .. maxAllowedArgs() - 1)
823     */
824 schoenebeck 3557 virtual bool modifiesArg(vmint iArg) const = 0;
825 schoenebeck 2945
826     /**
827 schoenebeck 2727 * Implements the actual function execution. This exec() method is
828     * called by the VM whenever this function implementation shall be
829     * executed at script runtime. This method blocks until the function
830     * call completed.
831 schoenebeck 2612 *
832     * @param args - function arguments for executing this built-in function
833 schoenebeck 2727 * @returns function's return value (if any) and general status
834     * informations (i.e. whether the function call caused a
835     * runtime error)
836 schoenebeck 2612 */
837 schoenebeck 2581 virtual VMFnResult* exec(VMFnArgs* args) = 0;
838 schoenebeck 2612
839     /**
840 schoenebeck 2727 * Convenience method for function implementations to show warning
841     * messages during actual execution of the built-in function.
842 schoenebeck 2612 *
843 schoenebeck 2727 * @param txt - runtime warning text to be shown to user
844 schoenebeck 2612 */
845 schoenebeck 2598 void wrnMsg(const String& txt);
846 schoenebeck 2612
847     /**
848 schoenebeck 2727 * Convenience method for function implementations to show error
849     * messages during actual execution of the built-in function.
850 schoenebeck 2612 *
851 schoenebeck 2727 * @param txt - runtime error text to be shown to user
852 schoenebeck 2612 */
853 schoenebeck 2598 void errMsg(const String& txt);
854 schoenebeck 2581 };
855    
856 schoenebeck 2727 /** @brief Virtual machine relative pointer.
857     *
858 schoenebeck 3557 * POD base of VMInt64RelPtr, VMInt32RelPtr and VMInt8RelPtr structures. Not
859     * intended to be used directly. Use VMInt64RelPtr, VMInt32RelPtr,
860     * VMInt8RelPtr instead.
861 schoenebeck 2727 *
862 schoenebeck 3557 * @see VMInt64RelPtr, VMInt32RelPtr, VMInt8RelPtr
863 schoenebeck 2594 */
864     struct VMRelPtr {
865     void** base; ///< Base pointer.
866 schoenebeck 3557 vmint offset; ///< Offset (in bytes) relative to base pointer.
867 schoenebeck 2948 bool readonly; ///< Whether the pointed data may be modified or just be read.
868 schoenebeck 2594 };
869    
870 schoenebeck 3557 /** @brief Pointer to built-in VM integer variable (interface class).
871 schoenebeck 2594 *
872 schoenebeck 3557 * This class acts as an abstract interface to all built-in integer script
873     * variables, independent of their actual native size (i.e. some built-in
874     * script variables are internally using a native int size of 64 bit or 32
875     * bit or 8 bit). The virtual machine is using this interface class instead
876     * of its implementing descendants (VMInt64RelPtr, VMInt32RelPtr,
877     * VMInt8RelPtr) in order for the virtual machine for not being required to
878     * handle each of them differently.
879     */
880     struct VMIntPtr {
881     virtual vmint evalInt() = 0;
882     virtual void assign(vmint i) = 0;
883     virtual bool isAssignable() const = 0;
884     };
885    
886     /** @brief Pointer to built-in VM integer variable (of C/C++ type int64_t).
887     *
888     * Used for defining built-in 64 bit integer script variables.
889     *
890     * @b CAUTION: You may only use this class for pointing to C/C++ variables
891     * of type "int64_t" (thus being exactly 64 bit in size). If the C/C++ int
892     * variable you want to reference is only 32 bit in size then you @b must
893     * use VMInt32RelPtr instead! Respectively for a referenced native variable
894     * with only 8 bit in size you @b must use VMInt8RelPtr instead!
895     *
896     * For efficiency reasons the actual native C/C++ int variable is referenced
897     * by two components here. The actual native int C/C++ variable in memory
898     * is dereferenced at VM run-time by taking the @c base pointer dereference
899     * and adding @c offset bytes. This has the advantage that for a large
900     * number of built-in int variables, only one (or few) base pointer need
901     * to be re-assigned before running a script, instead of updating each
902     * built-in variable each time before a script is executed.
903     *
904     * Refer to DECLARE_VMINT() for example code.
905     *
906     * @see VMInt32RelPtr, VMInt8RelPtr, DECLARE_VMINT()
907     */
908     struct VMInt64RelPtr : VMRelPtr, VMIntPtr {
909     VMInt64RelPtr() {
910     base = NULL;
911     offset = 0;
912     readonly = false;
913     }
914     VMInt64RelPtr(const VMRelPtr& data) {
915     base = data.base;
916     offset = data.offset;
917     readonly = false;
918     }
919     vmint evalInt() OVERRIDE {
920     return (vmint)*(int64_t*)&(*(uint8_t**)base)[offset];
921     }
922     void assign(vmint i) OVERRIDE {
923     *(int64_t*)&(*(uint8_t**)base)[offset] = (int64_t)i;
924     }
925     bool isAssignable() const OVERRIDE { return !readonly; }
926     };
927    
928     /** @brief Pointer to built-in VM integer variable (of C/C++ type int32_t).
929     *
930 schoenebeck 2727 * Used for defining built-in 32 bit integer script variables.
931 schoenebeck 2594 *
932     * @b CAUTION: You may only use this class for pointing to C/C++ variables
933 schoenebeck 3557 * of type "int32_t" (thus being exactly 32 bit in size). If the C/C++ int
934     * variable you want to reference is 64 bit in size then you @b must use
935     * VMInt64RelPtr instead! Respectively for a referenced native variable with
936     * only 8 bit in size you @b must use VMInt8RelPtr instead!
937 schoenebeck 2594 *
938     * For efficiency reasons the actual native C/C++ int variable is referenced
939     * by two components here. The actual native int C/C++ variable in memory
940     * is dereferenced at VM run-time by taking the @c base pointer dereference
941     * and adding @c offset bytes. This has the advantage that for a large
942     * number of built-in int variables, only one (or few) base pointer need
943     * to be re-assigned before running a script, instead of updating each
944     * built-in variable each time before a script is executed.
945     *
946     * Refer to DECLARE_VMINT() for example code.
947     *
948 schoenebeck 3557 * @see VMInt64RelPtr, VMInt8RelPtr, DECLARE_VMINT()
949 schoenebeck 2594 */
950 schoenebeck 3557 struct VMInt32RelPtr : VMRelPtr, VMIntPtr {
951     VMInt32RelPtr() {
952 schoenebeck 2594 base = NULL;
953     offset = 0;
954 schoenebeck 2948 readonly = false;
955 schoenebeck 2594 }
956 schoenebeck 3557 VMInt32RelPtr(const VMRelPtr& data) {
957 schoenebeck 2594 base = data.base;
958     offset = data.offset;
959 schoenebeck 2948 readonly = false;
960 schoenebeck 2594 }
961 schoenebeck 3557 vmint evalInt() OVERRIDE {
962     return (vmint)*(int32_t*)&(*(uint8_t**)base)[offset];
963     }
964     void assign(vmint i) OVERRIDE {
965     *(int32_t*)&(*(uint8_t**)base)[offset] = (int32_t)i;
966     }
967     bool isAssignable() const OVERRIDE { return !readonly; }
968 schoenebeck 2594 };
969    
970     /** @brief Pointer to built-in VM integer variable (of C/C++ type int8_t).
971     *
972 schoenebeck 2727 * Used for defining built-in 8 bit integer script variables.
973 schoenebeck 2594 *
974     * @b CAUTION: You may only use this class for pointing to C/C++ variables
975     * of type "int8_t" (8 bit integer). If the C/C++ int variable you want to
976 schoenebeck 3557 * reference is not exactly 8 bit in size then you @b must respectively use
977     * either VMInt32RelPtr for native 32 bit variables or VMInt64RelPtrl for
978     * native 64 bit variables instead!
979 schoenebeck 2594 *
980     * For efficiency reasons the actual native C/C++ int variable is referenced
981     * by two components here. The actual native int C/C++ variable in memory
982     * is dereferenced at VM run-time by taking the @c base pointer dereference
983     * and adding @c offset bytes. This has the advantage that for a large
984     * number of built-in int variables, only one (or few) base pointer need
985     * to be re-assigned before running a script, instead of updating each
986     * built-in variable each time before a script is executed.
987     *
988     * Refer to DECLARE_VMINT() for example code.
989     *
990 schoenebeck 3557 * @see VMIntRel32Ptr, VMIntRel64Ptr, DECLARE_VMINT()
991 schoenebeck 2594 */
992 schoenebeck 3557 struct VMInt8RelPtr : VMRelPtr, VMIntPtr {
993     VMInt8RelPtr() {
994     base = NULL;
995     offset = 0;
996     readonly = false;
997 schoenebeck 2594 }
998 schoenebeck 3557 VMInt8RelPtr(const VMRelPtr& data) {
999     base = data.base;
1000     offset = data.offset;
1001     readonly = false;
1002 schoenebeck 2594 }
1003 schoenebeck 3557 vmint evalInt() OVERRIDE {
1004     return (vmint)*(uint8_t*)&(*(uint8_t**)base)[offset];
1005     }
1006     void assign(vmint i) OVERRIDE {
1007     *(uint8_t*)&(*(uint8_t**)base)[offset] = (uint8_t)i;
1008     }
1009     bool isAssignable() const OVERRIDE { return !readonly; }
1010 schoenebeck 2594 };
1011    
1012 schoenebeck 3557 /** @brief Pointer to built-in VM integer variable (of C/C++ type vmint).
1013     *
1014     * Use this typedef if the native variable to be pointed to is using the
1015     * typedef vmint. If the native C/C++ variable to be pointed to is using
1016     * another C/C++ type then better use one of VMInt64RelPtr or VMInt32RelPtr
1017     * instead.
1018     */
1019     typedef VMInt64RelPtr VMIntRelPtr;
1020    
1021 schoenebeck 3035 #if HAVE_CXX_EMBEDDED_PRAGMA_DIAGNOSTICS
1022     # define COMPILER_DISABLE_OFFSETOF_WARNING \
1023     _Pragma("GCC diagnostic push") \
1024     _Pragma("GCC diagnostic ignored \"-Winvalid-offsetof\"")
1025     # define COMPILER_RESTORE_OFFSETOF_WARNING \
1026     _Pragma("GCC diagnostic pop")
1027     #else
1028     # define COMPILER_DISABLE_OFFSETOF_WARNING
1029     # define COMPILER_RESTORE_OFFSETOF_WARNING
1030     #endif
1031    
1032 schoenebeck 2594 /**
1033 schoenebeck 3557 * Convenience macro for initializing VMInt64RelPtr, VMInt32RelPtr and
1034     * VMInt8RelPtr structures. Usage example:
1035 schoenebeck 2594 * @code
1036     * struct Foo {
1037 schoenebeck 2727 * uint8_t a; // native representation of a built-in integer script variable
1038 schoenebeck 3557 * int64_t b; // native representation of another built-in integer script variable
1039     * int64_t c; // native representation of another built-in integer script variable
1040 schoenebeck 2727 * uint8_t d; // native representation of another built-in integer script variable
1041 schoenebeck 2594 * };
1042     *
1043 schoenebeck 2727 * // initializing the built-in script variables to some values
1044     * Foo foo1 = (Foo) { 1, 2000, 3000, 4 };
1045     * Foo foo2 = (Foo) { 5, 6000, 7000, 8 };
1046 schoenebeck 2594 *
1047     * Foo* pFoo;
1048     *
1049 schoenebeck 2727 * VMInt8RelPtr varA = DECLARE_VMINT(pFoo, class Foo, a);
1050 schoenebeck 3557 * VMInt64RelPtr varB = DECLARE_VMINT(pFoo, class Foo, b);
1051     * VMInt64RelPtr varC = DECLARE_VMINT(pFoo, class Foo, c);
1052 schoenebeck 2727 * VMInt8RelPtr varD = DECLARE_VMINT(pFoo, class Foo, d);
1053 schoenebeck 2594 *
1054     * pFoo = &foo1;
1055 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 1
1056     * printf("%d\n", varB->evalInt()); // will print 2000
1057     * printf("%d\n", varC->evalInt()); // will print 3000
1058     * printf("%d\n", varD->evalInt()); // will print 4
1059 schoenebeck 2594 *
1060 schoenebeck 2727 * // same printf() code, just with pFoo pointer being changed ...
1061     *
1062 schoenebeck 2594 * pFoo = &foo2;
1063 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 5
1064     * printf("%d\n", varB->evalInt()); // will print 6000
1065     * printf("%d\n", varC->evalInt()); // will print 7000
1066     * printf("%d\n", varD->evalInt()); // will print 8
1067 schoenebeck 2594 * @endcode
1068 schoenebeck 2727 * As you can see above, by simply changing one single pointer, you can
1069     * remap a huge bunch of built-in integer script variables to completely
1070     * different native values/native variables. Which especially reduces code
1071     * complexity inside the sampler engines which provide the actual script
1072     * functionalities.
1073 schoenebeck 2594 */
1074 schoenebeck 3034 #define DECLARE_VMINT(basePtr, T_struct, T_member) ( \
1075     /* Disable offsetof warning, trust us, we are cautios. */ \
1076 schoenebeck 3035 COMPILER_DISABLE_OFFSETOF_WARNING \
1077 schoenebeck 3034 (VMRelPtr) { \
1078     (void**) &basePtr, \
1079     offsetof(T_struct, T_member), \
1080     false \
1081     } \
1082 schoenebeck 3035 COMPILER_RESTORE_OFFSETOF_WARNING \
1083 schoenebeck 3034 ) \
1084 schoenebeck 2594
1085 schoenebeck 2948 /**
1086 schoenebeck 3557 * Same as DECLARE_VMINT(), but this one defines the VMInt64RelPtr,
1087     * VMInt32RelPtr and VMInt8RelPtr structures to be of read-only type.
1088     * That means the script parser will abort any script at parser time if the
1089     * script is trying to modify such a read-only built-in variable.
1090 schoenebeck 2948 *
1091     * @b NOTE: this is only intended for built-in read-only variables that
1092     * may change during runtime! If your built-in variable's data is rather
1093     * already available at parser time and won't change during runtime, then
1094     * you should rather register a built-in constant in your VM class instead!
1095     *
1096     * @see ScriptVM::builtInConstIntVariables()
1097     */
1098     #define DECLARE_VMINT_READONLY(basePtr, T_struct, T_member) ( \
1099 schoenebeck 3034 /* Disable offsetof warning, trust us, we are cautios. */ \
1100 schoenebeck 3035 COMPILER_DISABLE_OFFSETOF_WARNING \
1101 schoenebeck 3034 (VMRelPtr) { \
1102     (void**) &basePtr, \
1103     offsetof(T_struct, T_member), \
1104     true \
1105     } \
1106 schoenebeck 3035 COMPILER_RESTORE_OFFSETOF_WARNING \
1107 schoenebeck 3034 ) \
1108 schoenebeck 2948
1109 schoenebeck 2594 /** @brief Built-in VM 8 bit integer array variable.
1110     *
1111 schoenebeck 2727 * Used for defining built-in integer array script variables (8 bit per
1112 schoenebeck 3573 * array element). Currently there is no support for any other kind of
1113     * built-in array type. So all built-in integer arrays accessed by scripts
1114     * use 8 bit data types.
1115 schoenebeck 2594 */
1116     struct VMInt8Array {
1117     int8_t* data;
1118 schoenebeck 3557 vmint size;
1119 schoenebeck 3253 bool readonly; ///< Whether the array data may be modified or just be read.
1120 schoenebeck 2594
1121 schoenebeck 3253 VMInt8Array() : data(NULL), size(0), readonly(false) {}
1122 schoenebeck 2594 };
1123    
1124 schoenebeck 2945 /** @brief Virtual machine script variable.
1125     *
1126 schoenebeck 3573 * Common interface for all variables accessed in scripts, independent of
1127     * their precise data type.
1128 schoenebeck 2945 */
1129     class VMVariable : virtual public VMExpr {
1130     public:
1131     /**
1132     * Whether a script may modify the content of this variable by
1133     * assigning a new value to it.
1134     *
1135     * @see isConstExpr(), assign()
1136     */
1137     virtual bool isAssignable() const = 0;
1138    
1139     /**
1140     * In case this variable is assignable, this method will be called to
1141     * perform the value assignment to this variable with @a expr
1142     * reflecting the new value to be assigned.
1143     *
1144     * @param expr - new value to be assigned to this variable
1145     */
1146     virtual void assignExpr(VMExpr* expr) = 0;
1147     };
1148 schoenebeck 3573
1149 schoenebeck 2942 /** @brief Dynamically executed variable (abstract base class).
1150     *
1151     * Interface for the implementation of a dynamically generated content of
1152     * a built-in script variable. Most built-in variables are simply pointers
1153     * to some native location in memory. So when a script reads them, the
1154     * memory location is simply read to get the value of the variable. A
1155     * dynamic variable however is not simply a memory location. For each access
1156     * to a dynamic variable some native code is executed to actually generate
1157     * and provide the content (value) of this type of variable.
1158     */
1159 schoenebeck 2945 class VMDynVar : public VMVariable {
1160 schoenebeck 2942 public:
1161     /**
1162     * Returns true in case this dynamic variable can be considered to be a
1163     * constant expression. A constant expression will retain the same value
1164     * throughout the entire life time of a script and the expression's
1165     * constant value may be evaluated already at script parse time, which
1166     * may result in performance benefits during script runtime.
1167     *
1168     * However due to the "dynamic" behavior of dynamic variables, almost
1169     * all dynamic variables are probably not constant expressions. That's
1170     * why this method returns @c false by default. If you are really sure
1171     * that your dynamic variable implementation can be considered a
1172     * constant expression then you may override this method and return
1173     * @c true instead. Note that when you return @c true here, your
1174     * dynamic variable will really just be executed once; and exectly
1175     * already when the script is loaded!
1176     *
1177     * As an example you may implement a "constant" built-in dynamic
1178     * variable that checks for a certain operating system feature and
1179     * returns the result of that OS feature check as content (value) of
1180     * this dynamic variable. Since the respective OS feature might become
1181     * available/unavailable after OS updates, software migration, etc. the
1182     * OS feature check should at least be performed once each time the
1183     * application is launched. And since the OS feature check might take a
1184     * certain amount of execution time, it might make sense to only
1185     * perform the check if the respective variable name is actually
1186     * referenced at all in the script to be loaded. Note that the dynamic
1187     * variable will still be evaluated again though if the script is
1188     * loaded again. So it is up to you to probably cache the result in the
1189     * implementation of your dynamic variable.
1190     *
1191     * On doubt, please rather consider to use a constant built-in script
1192     * variable instead of implementing a "constant" dynamic variable, due
1193     * to the runtime overhead a dynamic variable may cause.
1194     *
1195     * @see isAssignable()
1196     */
1197 schoenebeck 2945 bool isConstExpr() const OVERRIDE { return false; }
1198 schoenebeck 2942
1199     /**
1200     * In case this dynamic variable is assignable, the new value (content)
1201     * to be assigned to this dynamic variable.
1202     *
1203     * By default this method does nothing. Override and implement this
1204     * method in your subclass in case your dynamic variable allows to
1205     * assign a new value by script.
1206     *
1207     * @param expr - new value to be assigned to this variable
1208     */
1209 schoenebeck 2945 void assignExpr(VMExpr* expr) OVERRIDE {}
1210 schoenebeck 3034
1211     virtual ~VMDynVar() {}
1212 schoenebeck 2942 };
1213    
1214     /** @brief Dynamically executed variable (of integer data type).
1215     *
1216     * This is the base class for all built-in integer script variables whose
1217     * variable content needs to be provided dynamically by executable native
1218     * code on each script variable access.
1219     */
1220     class VMDynIntVar : virtual public VMDynVar, virtual public VMIntExpr {
1221     public:
1222 schoenebeck 3561 MetricPrefix_t unitPrefix(vmuint i) const OVERRIDE { return VM_NO_PREFIX; }
1223     StdUnit_t unitType() const OVERRIDE { return VM_NO_UNIT; }
1224     bool isFinal() const OVERRIDE { return false; }
1225 schoenebeck 2942 };
1226    
1227     /** @brief Dynamically executed variable (of string data type).
1228     *
1229     * This is the base class for all built-in string script variables whose
1230     * variable content needs to be provided dynamically by executable native
1231     * code on each script variable access.
1232     */
1233     class VMDynStringVar : virtual public VMDynVar, virtual public VMStringExpr {
1234     public:
1235     };
1236    
1237 schoenebeck 3073 /** @brief Dynamically executed variable (of integer array data type).
1238     *
1239     * This is the base class for all built-in integer array script variables
1240     * whose variable content needs to be provided dynamically by executable
1241     * native code on each script variable access.
1242     */
1243     class VMDynIntArrayVar : virtual public VMDynVar, virtual public VMIntArrayExpr {
1244     public:
1245     };
1246    
1247 schoenebeck 2612 /** @brief Provider for built-in script functions and variables.
1248     *
1249 schoenebeck 2727 * Abstract base class defining the high-level interface for all classes
1250     * which add and implement built-in script functions and built-in script
1251     * variables.
1252 schoenebeck 2612 */
1253 schoenebeck 2581 class VMFunctionProvider {
1254     public:
1255 schoenebeck 2612 /**
1256     * Returns pointer to the built-in function with the given function
1257 schoenebeck 2727 * @a name, or NULL if there is no built-in function with that function
1258     * name.
1259 schoenebeck 2612 *
1260 schoenebeck 2727 * @param name - function name (i.e. "wait" or "message" or "exit", etc.)
1261 schoenebeck 2612 */
1262 schoenebeck 2581 virtual VMFunction* functionByName(const String& name) = 0;
1263 schoenebeck 2612
1264     /**
1265 schoenebeck 3311 * Returns @c true if the passed built-in function is disabled and
1266     * should be ignored by the parser. This method is called by the
1267     * parser on preprocessor level for each built-in function call within
1268     * a script. Accordingly if this method returns @c true, then the
1269     * respective function call is completely filtered out on preprocessor
1270     * level, so that built-in function won't make into the result virtual
1271     * machine representation, nor would expressions of arguments passed to
1272     * that built-in function call be evaluated, nor would any check
1273     * regarding correct usage of the built-in function be performed.
1274     * In other words: a disabled function call ends up as a comment block.
1275     *
1276     * @param fn - built-in function to be checked
1277     * @param ctx - parser context at the position where the built-in
1278     * function call is located within the script
1279     */
1280     virtual bool isFunctionDisabled(VMFunction* fn, VMParserContext* ctx) = 0;
1281    
1282     /**
1283 schoenebeck 2612 * Returns a variable name indexed map of all built-in script variables
1284 schoenebeck 2727 * which point to native "int" scalar (usually 32 bit) variables.
1285 schoenebeck 2612 */
1286 schoenebeck 3557 virtual std::map<String,VMIntPtr*> builtInIntVariables() = 0;
1287 schoenebeck 2612
1288     /**
1289 schoenebeck 2727 * Returns a variable name indexed map of all built-in script integer
1290     * array variables with array element type "int8_t" (8 bit).
1291 schoenebeck 2612 */
1292 schoenebeck 2594 virtual std::map<String,VMInt8Array*> builtInIntArrayVariables() = 0;
1293 schoenebeck 2612
1294     /**
1295     * Returns a variable name indexed map of all built-in constant script
1296     * variables, which never change their value at runtime.
1297     */
1298 schoenebeck 3557 virtual std::map<String,vmint> builtInConstIntVariables() = 0;
1299 schoenebeck 2942
1300     /**
1301     * Returns a variable name indexed map of all built-in dynamic variables,
1302     * which are not simply data stores, rather each one of them executes
1303     * natively to provide or alter the respective script variable data.
1304     */
1305     virtual std::map<String,VMDynVar*> builtInDynamicVariables() = 0;
1306 schoenebeck 2581 };
1307    
1308 schoenebeck 2594 /** @brief Execution state of a virtual machine.
1309     *
1310     * An instance of this abstract base class represents exactly one execution
1311     * state of a virtual machine. This encompasses most notably the VM
1312 schoenebeck 2612 * execution stack, and VM polyphonic variables. It does not contain global
1313 schoenebeck 2727 * variables. Global variables are contained in the VMParserContext object.
1314 schoenebeck 2612 * You might see a VMExecContext object as one virtual thread of the virtual
1315     * machine.
1316 schoenebeck 2594 *
1317 schoenebeck 2612 * In contrast to a VMParserContext, a VMExecContext is not tied to a
1318     * ScriptVM instance. Thus you can use a VMExecContext with different
1319     * ScriptVM instances, however not concurrently at the same time.
1320     *
1321 schoenebeck 2594 * @see VMParserContext
1322     */
1323 schoenebeck 2581 class VMExecContext {
1324     public:
1325     virtual ~VMExecContext() {}
1326 schoenebeck 2727
1327     /**
1328     * In case the script was suspended for some reason, this method returns
1329     * the amount of microseconds before the script shall continue its
1330     * execution. Note that the virtual machine itself does never put its
1331     * own execution thread(s) to sleep. So the respective class (i.e. sampler
1332     * engine) which is using the virtual machine classes here, must take
1333     * care by itself about taking time stamps, determining the script
1334     * handlers that shall be put aside for the requested amount of
1335 schoenebeck 2871 * microseconds, indicated by this method by comparing the time stamps in
1336 schoenebeck 2727 * real-time, and to continue passing the respective handler to
1337     * ScriptVM::exec() as soon as its suspension exceeded, etc. Or in other
1338     * words: all classes in this directory never have an idea what time it
1339     * is.
1340     *
1341     * You should check the return value of ScriptVM::exec() to determine
1342     * whether the script was actually suspended before calling this method
1343     * here.
1344     *
1345     * @see ScriptVM::exec()
1346     */
1347 schoenebeck 3557 virtual vmint suspensionTimeMicroseconds() const = 0;
1348 schoenebeck 3207
1349     /**
1350     * Causes all polyphonic variables to be reset to zero values. A
1351     * polyphonic variable is expected to be zero when entering a new event
1352     * handler instance. As an exception the values of polyphonic variables
1353     * shall only be preserved from an note event handler instance to its
1354     * correspending specific release handler instance. So in the latter
1355     * case the script author may pass custom data from the note handler to
1356     * the release handler, but only for the same specific note!
1357     */
1358     virtual void resetPolyphonicData() = 0;
1359 schoenebeck 3221
1360     /**
1361     * Returns amount of virtual machine instructions which have been
1362     * performed the last time when this execution context was executing a
1363     * script. So in case you need the overall amount of instructions
1364     * instead, then you need to add them by yourself after each
1365     * ScriptVM::exec() call.
1366     */
1367     virtual size_t instructionsPerformed() const = 0;
1368 schoenebeck 3277
1369     /**
1370     * Sends a signal to this script execution instance to abort its script
1371     * execution as soon as possible. This method is called i.e. when one
1372     * script execution instance intends to stop another script execution
1373     * instance.
1374     */
1375     virtual void signalAbort() = 0;
1376 schoenebeck 3293
1377     /**
1378     * Copies the current entire execution state from this object to the
1379     * given object. So this can be used to "fork" a new script thread which
1380     * then may run independently with its own polyphonic data for instance.
1381     */
1382     virtual void forkTo(VMExecContext* ectx) const = 0;
1383 schoenebeck 3551
1384     /**
1385     * In case the script called the built-in exit() function and passed a
1386     * value as argument to the exit() function, then this method returns
1387     * the value that had been passed as argument to the exit() function.
1388     * Otherwise if the exit() function has not been called by the script
1389     * or no argument had been passed to the exit() function, then this
1390     * method returns NULL instead.
1391     *
1392     * Currently this is only used for automated test cases against the
1393     * script engine, which return some kind of value in the individual
1394     * test case scripts to check their behaviour in automated way. There
1395     * is no purpose for this mechanism in production use. Accordingly this
1396     * exit result value is @b always completely ignored by the sampler
1397     * engines.
1398     *
1399     * Officially the built-in exit() function does not expect any arguments
1400     * to be passed to its function call, and by default this feature is
1401     * hence disabled and will yield in a parser error unless
1402     * ScriptVM::setExitResultEnabled() was explicitly set.
1403     *
1404     * @see ScriptVM::setExitResultEnabled()
1405     */
1406     virtual VMExpr* exitResult() = 0;
1407 schoenebeck 2581 };
1408    
1409 schoenebeck 2645 /** @brief Script callback for a certain event.
1410     *
1411     * Represents a script callback for a certain event, i.e.
1412 schoenebeck 2727 * "on note ... end on" code block.
1413 schoenebeck 2645 */
1414 schoenebeck 2581 class VMEventHandler {
1415     public:
1416 schoenebeck 2645 /**
1417 schoenebeck 2879 * Type of this event handler, which identifies its purpose. For example
1418     * for a "on note ... end on" script callback block,
1419     * @c VM_EVENT_HANDLER_NOTE would be returned here.
1420     */
1421     virtual VMEventHandlerType_t eventHandlerType() const = 0;
1422    
1423     /**
1424 schoenebeck 2645 * Name of the event handler which identifies its purpose. For example
1425     * for a "on note ... end on" script callback block, the name "note"
1426     * would be returned here.
1427     */
1428 schoenebeck 2581 virtual String eventHandlerName() const = 0;
1429 schoenebeck 2645
1430     /**
1431     * Whether or not the event handler makes any use of so called
1432     * "polyphonic" variables.
1433     */
1434     virtual bool isPolyphonic() const = 0;
1435 schoenebeck 2581 };
1436    
1437 schoenebeck 2727 /**
1438 schoenebeck 3285 * Reflects the precise position and span of a specific code block within
1439     * a script. This is currently only used for the locations of commented
1440 schoenebeck 3292 * code blocks due to preprocessor statements, and for parser errors and
1441     * parser warnings.
1442 schoenebeck 3285 *
1443 schoenebeck 3292 * @see ParserIssue for code locations of parser errors and parser warnings
1444     *
1445     * @see VMParserContext::preprocessorComments() for locations of code which
1446     * have been filtered out by preprocessor statements
1447 schoenebeck 3285 */
1448     struct CodeBlock {
1449     int firstLine; ///< The first line number of this code block within the script (indexed with 1 being the very first line).
1450     int lastLine; ///< The last line number of this code block within the script.
1451     int firstColumn; ///< The first column of this code block within the script (indexed with 1 being the very first column).
1452     int lastColumn; ///< The last column of this code block within the script.
1453     };
1454    
1455     /**
1456 schoenebeck 2727 * Encapsulates a noteworty parser issue. This encompasses the type of the
1457     * issue (either a parser error or parser warning), a human readable
1458     * explanation text of the error or warning and the location of the
1459     * encountered parser issue within the script.
1460 schoenebeck 3012 *
1461     * @see VMSourceToken for processing syntax highlighting instead.
1462 schoenebeck 2727 */
1463 schoenebeck 3292 struct ParserIssue : CodeBlock {
1464 schoenebeck 2727 String txt; ///< Human readable explanation text of the parser issue.
1465     ParserIssueType_t type; ///< Whether this issue is either a parser error or just a parser warning.
1466 schoenebeck 2581
1467 schoenebeck 2727 /**
1468     * Print this issue out to the console (stdio).
1469     */
1470 schoenebeck 2581 inline void dump() {
1471     switch (type) {
1472     case PARSER_ERROR:
1473 schoenebeck 2889 printf("[ERROR] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1474 schoenebeck 2581 break;
1475     case PARSER_WARNING:
1476 schoenebeck 2889 printf("[Warning] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1477 schoenebeck 2581 break;
1478     }
1479     }
1480 schoenebeck 2727
1481     /**
1482     * Returns true if this issue is a parser error. In this case the parsed
1483     * script may not be executed!
1484     */
1485 schoenebeck 2581 inline bool isErr() const { return type == PARSER_ERROR; }
1486 schoenebeck 2727
1487     /**
1488     * Returns true if this issue is just a parser warning. A parsed script
1489     * that only raises warnings may be executed if desired, however the
1490     * script may not behave exactly as intended by the script author.
1491     */
1492 schoenebeck 2581 inline bool isWrn() const { return type == PARSER_WARNING; }
1493     };
1494    
1495 schoenebeck 2727 /**
1496     * Convenience function used for converting an ExprType_t constant to a
1497     * string, i.e. for generating error message by the parser.
1498     */
1499 schoenebeck 2581 inline String typeStr(const ExprType_t& type) {
1500     switch (type) {
1501     case EMPTY_EXPR: return "empty";
1502     case INT_EXPR: return "integer";
1503     case INT_ARR_EXPR: return "integer array";
1504 schoenebeck 3573 case REAL_EXPR: return "real number";
1505     case REAL_ARR_EXPR: return "real number array";
1506 schoenebeck 2581 case STRING_EXPR: return "string";
1507     case STRING_ARR_EXPR: return "string array";
1508     }
1509     return "invalid";
1510     }
1511    
1512 schoenebeck 3561 /**
1513 schoenebeck 3573 * Convenience function used for retrieving the data type of a script
1514     * variable name being passed to this function.
1515     *
1516     * @param name - some script variable name (e.g. "$foo")
1517     * @return variable's data type (e.g. INT_EXPR for example above)
1518     */
1519     inline ExprType_t exprTypeOfVarName(const String& name) {
1520     if (name.empty()) return (ExprType_t) -1;
1521     const char prefix = name[0];
1522     switch (prefix) {
1523     case '$': return INT_EXPR;
1524     case '%': return INT_ARR_EXPR;
1525     case '~': return REAL_EXPR;
1526     case '?': return REAL_ARR_EXPR;
1527     case '@': return STRING_EXPR;
1528     case '!': return STRING_ARR_EXPR;
1529     }
1530     return (ExprType_t) -1;
1531     }
1532    
1533     /**
1534     * Returns @c true in case the passed data type is some array data type.
1535     */
1536     inline bool isArray(const ExprType_t& type) {
1537     return type == INT_ARR_EXPR || type == REAL_ARR_EXPR ||
1538     type == STRING_ARR_EXPR;
1539     }
1540    
1541     /**
1542     * Returns @c true in case the passed data type is some scalar number type
1543     * (i.e. not an array and not a string).
1544     */
1545     inline bool isScalarNumber(const ExprType_t& type) {
1546     return type == INT_EXPR || type == REAL_EXPR;
1547     }
1548    
1549     /**
1550 schoenebeck 3561 * Convenience function used for converting an StdUnit_t constant to a
1551     * string, i.e. for generating error message by the parser.
1552     */
1553     inline String unitTypeStr(const StdUnit_t& type) {
1554     switch (type) {
1555     case VM_NO_UNIT: return "none";
1556     case VM_SECOND: return "seconds";
1557     case VM_HERTZ: return "Hz";
1558     case VM_BEL: return "Bel";
1559     }
1560     return "invalid";
1561     }
1562    
1563 schoenebeck 2594 /** @brief Virtual machine representation of a script.
1564     *
1565     * An instance of this abstract base class represents a parsed script,
1566 schoenebeck 2727 * translated into a virtual machine tree. You should first check if there
1567     * were any parser errors. If there were any parser errors, you should
1568     * refrain from executing the virtual machine. Otherwise if there were no
1569     * parser errors (i.e. only warnings), then you might access one of the
1570     * script's event handlers by i.e. calling eventHandlerByName() and pass the
1571     * respective event handler to the ScriptVM class (or to one of the ScriptVM
1572 schoenebeck 2594 * descendants) for execution.
1573     *
1574 schoenebeck 2727 * @see VMExecContext, ScriptVM
1575 schoenebeck 2594 */
1576 schoenebeck 2588 class VMParserContext {
1577     public:
1578     virtual ~VMParserContext() {}
1579 schoenebeck 2727
1580     /**
1581     * Returns all noteworthy issues encountered when the script was parsed.
1582     * These are parser errors and parser warnings.
1583     */
1584 schoenebeck 2588 virtual std::vector<ParserIssue> issues() const = 0;
1585 schoenebeck 2727
1586     /**
1587     * Same as issues(), but this method only returns parser errors.
1588     */
1589 schoenebeck 2588 virtual std::vector<ParserIssue> errors() const = 0;
1590 schoenebeck 2727
1591     /**
1592     * Same as issues(), but this method only returns parser warnings.
1593     */
1594 schoenebeck 2588 virtual std::vector<ParserIssue> warnings() const = 0;
1595 schoenebeck 2727
1596     /**
1597 schoenebeck 3285 * Returns all code blocks of the script which were filtered out by the
1598     * preprocessor.
1599     */
1600     virtual std::vector<CodeBlock> preprocessorComments() const = 0;
1601    
1602     /**
1603 schoenebeck 2727 * Returns the translated virtual machine representation of an event
1604     * handler block (i.e. "on note ... end on" code block) within the
1605     * parsed script. This translated representation of the event handler
1606     * can be executed by the virtual machine.
1607     *
1608     * @param index - index of the event handler within the script
1609     */
1610 schoenebeck 2588 virtual VMEventHandler* eventHandler(uint index) = 0;
1611 schoenebeck 2727
1612     /**
1613     * Same as eventHandler(), but this method returns the event handler by
1614     * its name. So for a "on note ... end on" code block of the parsed
1615     * script you would pass "note" for argument @a name here.
1616     *
1617     * @param name - name of the event handler (i.e. "init", "note",
1618     * "controller", "release")
1619     */
1620 schoenebeck 2588 virtual VMEventHandler* eventHandlerByName(const String& name) = 0;
1621     };
1622    
1623 schoenebeck 2885 class SourceToken;
1624    
1625     /** @brief Recognized token of a script's source code.
1626     *
1627     * Represents one recognized token of a script's source code, for example
1628     * a keyword, variable name, etc. and it provides further informations about
1629     * that particular token, i.e. the precise location (line and column) of the
1630     * token within the original script's source code.
1631     *
1632     * This class is not actually used by the sampler itself. It is rather
1633     * provided for external script editor applications. Primary purpose of
1634     * this class is syntax highlighting for external script editors.
1635 schoenebeck 3012 *
1636     * @see ParserIssue for processing compile errors and warnings instead.
1637 schoenebeck 2885 */
1638     class VMSourceToken {
1639     public:
1640     VMSourceToken();
1641     VMSourceToken(SourceToken* ct);
1642     VMSourceToken(const VMSourceToken& other);
1643     virtual ~VMSourceToken();
1644    
1645     // original text of this token as it is in the script's source code
1646     String text() const;
1647    
1648     // position of token in script
1649 schoenebeck 3012 int firstLine() const; ///< First line this source token is located at in script source code (indexed with 0 being the very first line). Most source code tokens are not spanning over multiple lines, the only current exception are comments, in the latter case you need to process text() to get the last line and last column for the comment.
1650     int firstColumn() const; ///< First column on the first line this source token is located at in script source code (indexed with 0 being the very first column). To get the length of this token use text().length().
1651 schoenebeck 2885
1652     // base types
1653 schoenebeck 3012 bool isEOF() const; ///< Returns true in case this source token represents the end of the source code file.
1654     bool isNewLine() const; ///< Returns true in case this source token represents a line feed character (i.e. "\n" on Unix systems).
1655     bool isKeyword() const; ///< Returns true in case this source token represents a language keyword (i.e. "while", "function", "declare", "on", etc.).
1656     bool isVariableName() const; ///< Returns true in case this source token represents a variable name (i.e. "$someIntVariable", "%someArrayVariable", "\@someStringVariable"). @see isIntegerVariable(), isStringVariable(), isArrayVariable() for the precise variable type.
1657     bool isIdentifier() const; ///< Returns true in case this source token represents an identifier, which currently always means a function name.
1658     bool isNumberLiteral() const; ///< Returns true in case this source token represents a number literal (i.e. 123).
1659     bool isStringLiteral() const; ///< Returns true in case this source token represents a string literal (i.e. "Some text").
1660     bool isComment() const; ///< Returns true in case this source token represents a source code comment.
1661     bool isPreprocessor() const; ///< Returns true in case this source token represents a preprocessor statement.
1662 schoenebeck 3562 bool isMetricPrefix() const;
1663     bool isStdUnit() const;
1664 schoenebeck 3012 bool isOther() const; ///< Returns true in case this source token represents anything else not covered by the token types mentioned above.
1665 schoenebeck 2885
1666     // extended types
1667 schoenebeck 3012 bool isIntegerVariable() const; ///< Returns true in case this source token represents an integer variable name (i.e. "$someIntVariable").
1668 schoenebeck 3573 bool isRealVariable() const; ///< Returns true in case this source token represents a floating point variable name (i.e. "~someRealVariable").
1669 schoenebeck 3012 bool isStringVariable() const; ///< Returns true in case this source token represents an string variable name (i.e. "\@someStringVariable").
1670 schoenebeck 3573 bool isIntArrayVariable() const; ///< Returns true in case this source token represents an integer array variable name (i.e. "%someArrayVariable").
1671     bool isRealArrayVariable() const; ///< Returns true in case this source token represents a real number array variable name (i.e. "?someArrayVariable").
1672     bool isArrayVariable() const DEPRECATED_API; ///< Returns true in case this source token represents an @b integer array variable name (i.e. "%someArrayVariable"). @deprecated This method will be removed, use isIntArrayVariable() instead.
1673 schoenebeck 3012 bool isEventHandlerName() const; ///< Returns true in case this source token represents an event handler name (i.e. "note", "release", "controller").
1674 schoenebeck 2885
1675     VMSourceToken& operator=(const VMSourceToken& other);
1676    
1677     private:
1678     SourceToken* m_token;
1679     };
1680    
1681 schoenebeck 2581 } // namespace LinuxSampler
1682    
1683     #endif // LS_INSTR_SCRIPT_PARSER_COMMON_H

  ViewVC Help
Powered by ViewVC