/[svn]/linuxsampler/trunk/src/scriptvm/common.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/scriptvm/common.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3577 - (hide annotations) (download) (as text)
Wed Aug 28 15:23:23 2019 UTC (4 years, 7 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 78649 byte(s)
NKSP: Introducing variable return type for built-in functions.

* Changed method signature VMFunction::returnType() ->
  VMFunction::returnType(VMFnArgs* args) to allow built-in
  functions to proclaim a different result value type depending
  on the arguments to be passed to the function.

* Built-in script function abs() optionally accepts and returns
  real number.

* Built-in script functions min() and max() optionally accept
  real number arguments and return real number as result in that
  case.

* Added real number test cases for the built-in abs(), min() and
  max() functions.

* Bumped version (2.1.1.svn7).

1 schoenebeck 2581 /*
2 schoenebeck 3551 * Copyright (c) 2014-2019 Christian Schoenebeck
3 schoenebeck 2581 *
4     * http://www.linuxsampler.org
5     *
6     * This file is part of LinuxSampler and released under the same terms.
7     * See README file for details.
8     */
9    
10     // This header defines data types shared between the VM core implementation
11     // (inside the current source directory) and other parts of the sampler
12 schoenebeck 3292 // (located at other source directories). It also acts as public API of the
13     // Real-Time script engine for other applications.
14 schoenebeck 2581
15     #ifndef LS_INSTR_SCRIPT_PARSER_COMMON_H
16     #define LS_INSTR_SCRIPT_PARSER_COMMON_H
17    
18     #include "../common/global.h"
19 schoenebeck 2588 #include <vector>
20 schoenebeck 2594 #include <map>
21     #include <stddef.h> // offsetof()
22 schoenebeck 2581
23     namespace LinuxSampler {
24 schoenebeck 2727
25     /**
26 schoenebeck 3557 * Native data type used by the script engine both internally, as well as
27     * for all integer data types used by scripts (i.e. for all $foo variables
28     * in NKSP scripts). Note that this is different from the original KSP which
29     * is limited to 32 bit for integer variables in KSP scripts.
30     */
31     typedef int64_t vmint;
32    
33     /**
34     * Native data type used internally by the script engine for all unsigned
35     * integer types. This type is currently not exposed to scripts.
36     */
37     typedef uint64_t vmuint;
38    
39     /**
40 schoenebeck 3573 * Native data type used by the script engine both internally for floating
41     * point data, as well as for all @c real data types used by scripts (i.e.
42     * for all ~foo variables in NKSP scripts).
43 schoenebeck 3561 */
44     typedef float vmfloat;
45    
46     /**
47 schoenebeck 2727 * Identifies the type of a noteworthy issue identified by the script
48     * parser. That's either a parser error or parser warning.
49     */
50 schoenebeck 2581 enum ParserIssueType_t {
51 schoenebeck 2727 PARSER_ERROR, ///< Script parser encountered an error, the script cannot be executed.
52     PARSER_WARNING ///< Script parser encountered a warning, the script may be executed if desired, but the script may not necessarily behave as originally intended by the script author.
53 schoenebeck 2581 };
54    
55 schoenebeck 2727 /** @brief Expression's data type.
56     *
57     * Identifies to which data type an expression within a script evaluates to.
58     * This can for example reflect the data type of script function arguments,
59     * script function return values, but also the resulting data type of some
60     * mathematical formula within a script.
61     */
62 schoenebeck 2581 enum ExprType_t {
63 schoenebeck 2727 EMPTY_EXPR, ///< i.e. on invalid expressions or i.e. a function call that does not return a result value (the built-in wait() or message() functions for instance)
64     INT_EXPR, ///< integer (scalar) expression
65     INT_ARR_EXPR, ///< integer array expression
66     STRING_EXPR, ///< string expression
67     STRING_ARR_EXPR, ///< string array expression
68 schoenebeck 3573 REAL_EXPR, ///< floating point (scalar) expression
69     REAL_ARR_EXPR, ///< floating point array expression
70 schoenebeck 2581 };
71    
72 schoenebeck 2727 /** @brief Result flags of a script statement or script function call.
73     *
74     * A set of bit flags which provide informations about the success or
75     * failure of a statement within a script. That's also especially used for
76     * providing informations about success / failure of a call to a built-in
77     * script function. The virtual machine evaluates these flags during runtime
78     * to decide whether it should i.e. stop or suspend execution of a script.
79     *
80     * Since these are bit flags, these constants are bitwise combined.
81     */
82 schoenebeck 2581 enum StmtFlags_t {
83     STMT_SUCCESS = 0, ///< Function / statement was executed successfully, no error occurred.
84 schoenebeck 2727 STMT_ABORT_SIGNALLED = 1, ///< VM should stop the current callback execution (usually because of an error, but might also be without an error reason, i.e. when the built-in script function exit() was called).
85     STMT_SUSPEND_SIGNALLED = (1<<1), ///< VM supended execution, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time
86     STMT_ERROR_OCCURRED = (1<<2), ///< VM stopped execution due to some script runtime error that occurred
87 schoenebeck 2581 };
88    
89 schoenebeck 2727 /** @brief Virtual machine execution status.
90     *
91     * A set of bit flags which reflect the current overall execution status of
92     * the virtual machine concerning a certain script execution instance.
93     *
94     * Since these are bit flags, these constants are bitwise combined.
95     */
96 schoenebeck 2581 enum VMExecStatus_t {
97 schoenebeck 2727 VM_EXEC_NOT_RUNNING = 0, ///< Script is currently not executed by the VM.
98     VM_EXEC_RUNNING = 1, ///< The VM is currently executing the script.
99     VM_EXEC_SUSPENDED = (1<<1), ///< Script is currently suspended by the VM, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time.
100     VM_EXEC_ERROR = (1<<2), ///< A runtime error occurred while executing the script (i.e. a call to some built-in script function failed).
101 schoenebeck 2581 };
102    
103 schoenebeck 2879 /** @brief Script event handler type.
104     *
105     * Identifies one of the possible event handler callback types defined by
106     * the NKSP script language.
107 schoenebeck 3557 *
108     * IMPORTANT: this type is forced to be emitted as int32_t type ATM, because
109     * that's the native size expected by the built-in instrument script
110     * variable bindings (see occurrences of VMInt32RelPtr and DECLARE_VMINT
111     * respectively. A native type mismatch between the two could lead to
112     * undefined behavior! Background: By definition the C/C++ compiler is free
113     * to choose a bit size for individual enums which it might find
114     * appropriate, which is usually decided by the compiler according to the
115     * biggest enum constant value defined (in practice it is usually 32 bit).
116 schoenebeck 2879 */
117 schoenebeck 3557 enum VMEventHandlerType_t : int32_t {
118 schoenebeck 2879 VM_EVENT_HANDLER_INIT, ///< Initilization event handler, that is script's "on init ... end on" code block.
119     VM_EVENT_HANDLER_NOTE, ///< Note event handler, that is script's "on note ... end on" code block.
120     VM_EVENT_HANDLER_RELEASE, ///< Release event handler, that is script's "on release ... end on" code block.
121     VM_EVENT_HANDLER_CONTROLLER, ///< Controller event handler, that is script's "on controller ... end on" code block.
122     };
123    
124 schoenebeck 3561 /**
125     * All metric unit prefixes (actually just scale factors) supported by this
126     * script engine.
127     */
128     enum MetricPrefix_t {
129     VM_NO_PREFIX = 0, ///< = 1
130     VM_KILO, ///< = 10^3, short 'k'
131     VM_HECTO, ///< = 10^2, short 'h'
132     VM_DECA, ///< = 10, short 'da'
133     VM_DECI, ///< = 10^-1, short 'd'
134     VM_CENTI, ///< = 10^-2, short 'c' (this is also used for tuning "cents")
135     VM_MILLI, ///< = 10^-3, short 'm'
136     VM_MICRO, ///< = 10^-6, short 'u'
137     };
138    
139     /**
140     * All measurement unit types supported by this script engine.
141     *
142     * @e Note: there is no standard unit "cents" here (for pitch/tuning), use
143     * @c VM_CENTI for the latter instad. That's because the commonly cited
144     * "cents" unit is actually no measurement unit type but rather a metric
145     * unit prefix.
146     *
147     * @see MetricPrefix_t
148     */
149     enum StdUnit_t {
150     VM_NO_UNIT = 0, ///< No unit used, the number is just an abstract number.
151     VM_SECOND, ///< Measuring time.
152     VM_HERTZ, ///< Measuring frequency.
153     VM_BEL, ///< Measuring relation between two energy levels (in logarithmic scale). Since we are using it for accoustics, we are always referring to A-weighted Bels (i.e. dBA).
154     };
155    
156 schoenebeck 2727 // just symbol prototyping
157 schoenebeck 2596 class VMIntExpr;
158 schoenebeck 3573 class VMRealExpr;
159 schoenebeck 2596 class VMStringExpr;
160 schoenebeck 3573 class VMScalarNumberExpr;
161 schoenebeck 2619 class VMIntArrayExpr;
162 schoenebeck 3573 class VMRealArrayExpr;
163 schoenebeck 2619 class VMStringArrayExpr;
164 schoenebeck 3311 class VMParserContext;
165 schoenebeck 2596
166 schoenebeck 3561 /** @brief Virtual machine measuring unit.
167     *
168     * Abstract base class representing standard measurement units throughout
169     * the script engine. These might be i.e. "dB" (deci Bel) for loudness,
170     * "Hz" (Hertz) for frequencies or "s" for "seconds".
171     *
172     * Originally the script engine only supported abstract integer values for
173     * controlling any synthesis parameter or built-in function argument or
174     * variable. Under certain situations it makes sense though for an
175     * instrument script author to provide values in real, standard measurement
176     * units, for example setting the frequency of some LFO directly to "20Hz".
177     * Hence support for standard units in scripts was added as an extension to
178     * the NKSP script engine.
179     */
180     class VMUnit {
181     public:
182     /**
183     * Returns the metric prefix of this unit. A metric prefix essentially
184     * is just a mathematical scale factor that should be applied to the
185     * number associated with the measurement unit. Usually a unit either
186     * has exactly none or one prefix, but note that there might also be
187     * units with more than one prefix, for example mdB (mili deci bel)
188     * is used sometimes which has two prefixes. This is an exception though
189     * and more than two prefixes is currently not supported by the script
190     * engine.
191     *
192     * Start iterating over the prefixes of this unit by passing @c 0 as
193     * argument to this method. The prefixes are terminated with return
194     * value VM_NO_PREFIX being always the last element.
195     *
196     * @param i - index of prefix
197     * @returns prefix of requested index or VM_NO_PREFIX otherwise
198     * @see unitFactor()
199     */
200     virtual MetricPrefix_t unitPrefix(vmuint i) const = 0;
201    
202     /**
203     * Conveniently returns the final mathematical factor that should be
204     * multiplied against the number associated with this unit. This factor
205     * results from the sequence of metric prefixes of this unit.
206     *
207     * @see unitPrefix()
208     */
209     vmfloat unitFactor() const;
210    
211     /**
212     * This is the actual fundamental measuring unit base type of this unit,
213     * which might be either Hertz, second or Bel.
214     *
215     * @returns standard unit type identifier or VM_NO_UNIT if no unit used
216     */
217     virtual StdUnit_t unitType() const = 0;
218    
219     /**
220     * Returns the actual mathematical factor represented by the passed
221     * @a prefix argument.
222     */
223     static vmfloat unitFactor(MetricPrefix_t prefix);
224    
225     /**
226     * Returns the actual mathematical factor represented by the passed
227     * two @a prefix1 and @a prefix2 arguments.
228     */
229     static vmfloat unitFactor(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
230     };
231    
232 schoenebeck 2727 /** @brief Virtual machine expression
233     *
234     * This is the abstract base class for all expressions of scripts.
235     * Deriving classes must implement the abstract method exprType().
236     *
237     * An expression within a script is translated into one instance of this
238     * class. It allows a high level access for the virtual machine to evaluate
239     * and handle expressions appropriately during execution. Expressions are
240     * for example all kinds of formulas, function calls, statements or a
241     * combination of them. Most of them evaluate to some kind of value, which
242     * might be further processed as part of encompassing expressions to outer
243     * expression results and so forth.
244     */
245 schoenebeck 2581 class VMExpr {
246     public:
247 schoenebeck 2727 /**
248     * Identifies the data type to which the result of this expression
249     * evaluates to. This abstract method must be implemented by deriving
250     * classes.
251     */
252 schoenebeck 2581 virtual ExprType_t exprType() const = 0;
253 schoenebeck 2727
254     /**
255     * In case this expression is an integer expression, then this method
256     * returns a casted pointer to that VMIntExpr object. It returns NULL
257     * if this expression is not an integer expression.
258     *
259     * @b Note: type casting performed by this method is strict! That means
260     * if this expression is i.e. actually a string expression like "12",
261     * calling asInt() will @b not cast that numerical string expression to
262     * an integer expression 12 for you, instead this method will simply
263 schoenebeck 3573 * return NULL! Same applies if this expression is actually a real
264     * number expression: asInt() would return NULL in that case as well.
265 schoenebeck 2727 *
266 schoenebeck 3573 * @see exprType(), asReal(), asScalarNumberExpr()
267 schoenebeck 2727 */
268 schoenebeck 2596 VMIntExpr* asInt() const;
269 schoenebeck 2727
270     /**
271 schoenebeck 3573 * In case this expression is a real number (floating point) expression,
272     * then this method returns a casted pointer to that VMRealExpr object.
273     * It returns NULL if this expression is not a real number expression.
274     *
275     * @b Note: type casting performed by this method is strict! That means
276     * if this expression is i.e. actually a string expression like "12",
277     * calling asReal() will @b not cast that numerical string expression to
278     * a real number expression 12.0 for you, instead this method will
279     * simply return NULL! Same applies if this expression is actually an
280     * integer expression: asReal() would return NULL in that case as well.
281     *
282     * @see exprType(), asInt(), asScalarNumberExpr()
283     */
284     VMRealExpr* asReal() const;
285    
286     /**
287     * In case this expression is a scalar number expression, that is either
288     * an integer (scalar) expression or a real number (floating point
289     * scalar) expression, then this method returns a casted pointer to that
290     * VMScalarNumberExpr base class object. It returns NULL if this
291     * expression is neither an integer (scalar), nor a real number (scalar)
292     * expression.
293     *
294     * Since the methods asInt() and asReal() are very strict, this method
295     * is provided as convenience access in case only very general
296     * information (e.g. which standard measurement unit is being used or
297     * whether final operator being effective to this expression) is
298     * intended to be retrieved of this scalar number expression independent
299     * from whether this expression is actually an integer or a real number
300     * expression.
301     *
302     * @see exprType(), asInt(), asReal()
303     */
304     VMScalarNumberExpr* asScalarNumberExpr() const;
305    
306     /**
307 schoenebeck 2727 * In case this expression is a string expression, then this method
308     * returns a casted pointer to that VMStringExpr object. It returns NULL
309     * if this expression is not a string expression.
310     *
311     * @b Note: type casting performed by this method is strict! That means
312     * if this expression is i.e. actually an integer expression like 120,
313     * calling asString() will @b not cast that integer expression to a
314     * string expression "120" for you, instead this method will simply
315     * return NULL!
316     *
317     * @see exprType()
318     */
319 schoenebeck 2596 VMStringExpr* asString() const;
320 schoenebeck 2727
321     /**
322     * In case this expression is an integer array expression, then this
323     * method returns a casted pointer to that VMIntArrayExpr object. It
324     * returns NULL if this expression is not an integer array expression.
325     *
326     * @b Note: type casting performed by this method is strict! That means
327 schoenebeck 3573 * if this expression is i.e. an integer scalar expression, a real
328     * number expression or a string expression, calling asIntArray() will
329     * @b not cast those expressions to an integer array expression for you,
330     * instead this method will simply return NULL!
331 schoenebeck 2727 *
332 schoenebeck 3056 * @b Note: this method is currently, and in contrast to its other
333     * counter parts, declared as virtual method. Some deriving classes are
334     * currently using this to override this default implementation in order
335     * to implement an "evaluate now as integer array" behavior. This has
336     * efficiency reasons, however this also currently makes this part of
337     * the API less clean and should thus be addressed in future with
338     * appropriate changes to the API.
339     *
340 schoenebeck 2727 * @see exprType()
341     */
342 schoenebeck 3056 virtual VMIntArrayExpr* asIntArray() const;
343 schoenebeck 2945
344     /**
345 schoenebeck 3573 * In case this expression is a real number (floating point) array
346     * expression, then this method returns a casted pointer to that
347     * VMRealArrayExpr object. It returns NULL if this expression is not a
348     * real number array expression.
349     *
350     * @b Note: type casting performed by this method is strict! That means
351     * if this expression is i.e. a real number scalar expression, an
352     * integer expression or a string expression, calling asRealArray() will
353     * @b not cast those scalar expressions to a real number array
354     * expression for you, instead this method will simply return NULL!
355     *
356     * @b Note: this method is currently, and in contrast to its other
357     * counter parts, declared as virtual method. Some deriving classes are
358     * currently using this to override this default implementation in order
359     * to implement an "evaluate now as real number array" behavior. This
360     * has efficiency reasons, however this also currently makes this part
361     * of the API less clean and should thus be addressed in future with
362     * appropriate changes to the API.
363     *
364     * @see exprType()
365     */
366     virtual VMRealArrayExpr* asRealArray() const;
367    
368     /**
369 schoenebeck 2945 * Returns true in case this expression can be considered to be a
370     * constant expression. A constant expression will retain the same
371     * value throughout the entire life time of a script and the
372     * expression's constant value may be evaluated already at script
373     * parse time, which may result in performance benefits during script
374     * runtime.
375 schoenebeck 2960 *
376     * @b NOTE: A constant expression is per se always also non modifyable.
377     * But a non modifyable expression may not necessarily be a constant
378     * expression!
379     *
380     * @see isModifyable()
381 schoenebeck 2945 */
382     virtual bool isConstExpr() const = 0;
383    
384 schoenebeck 2960 /**
385     * Returns true in case this expression is allowed to be modified.
386     * If this method returns @c false then this expression must be handled
387     * as read-only expression, which means that assigning a new value to it
388     * is either not possible or not allowed.
389     *
390     * @b NOTE: A constant expression is per se always also non modifyable.
391     * But a non modifyable expression may not necessarily be a constant
392     * expression!
393     *
394     * @see isConstExpr()
395     */
396 schoenebeck 2945 bool isModifyable() const;
397 schoenebeck 2581 };
398    
399 schoenebeck 3573 /** @brief Virtual machine scalar number expression
400     *
401     * This is the abstract base class for integer (scalar) expressions and
402     * real number (floating point scalar) expressions of scripts.
403     */
404     class VMScalarNumberExpr : virtual public VMExpr, virtual public VMUnit {
405     public:
406     /**
407     * Returns @c true if the value of this expression should be applied
408     * as final value to the respective destination synthesis chain
409     * parameter.
410     *
411     * This property is somewhat special and dedicated for the purpose of
412     * this expression's (integer or real number) value to be applied as
413     * parameter to the synthesis chain of the sampler (i.e. for altering a
414     * filter cutoff frequency). Now historically and by default all values
415     * of scripts are applied relatively to the sampler's synthesis chain,
416     * that is the synthesis parameter value of a script is multiplied
417     * against other sources for the same synthesis parameter (i.e. an LFO
418     * or a dedicated MIDI controller either hard wired in the engine or
419     * defined by the instrument patch). So by default the resulting actual
420     * final synthesis parameter is a combination of all these sources. This
421     * has the advantage that it creates a very living and dynamic overall
422     * sound.
423     *
424     * However sometimes there are requirements by script authors where this
425     * is not what you want. Therefore the NKSP script engine added a
426     * language extension by prefixing a value in scripts with a @c !
427     * character the value will be defined as being the "final" value of the
428     * destination synthesis parameter, so that causes this value to be
429     * applied exclusively, and the values of all other sources are thus
430     * entirely ignored by the sampler's synthesis core as long as this
431     * value is assigned by the script engine as "final" value for the
432     * requested synthesis parameter.
433     */
434     virtual bool isFinal() const = 0;
435     };
436    
437 schoenebeck 2727 /** @brief Virtual machine integer expression
438     *
439     * This is the abstract base class for all expressions inside scripts which
440     * evaluate to an integer (scalar) value. Deriving classes implement the
441     * abstract method evalInt() to return the actual integer result value of
442     * the expression.
443     */
444 schoenebeck 3573 class VMIntExpr : virtual public VMScalarNumberExpr {
445 schoenebeck 2581 public:
446 schoenebeck 2727 /**
447     * Returns the result of this expression as integer (scalar) value.
448     * This abstract method must be implemented by deriving classes.
449     */
450 schoenebeck 3557 virtual vmint evalInt() = 0;
451 schoenebeck 2727
452     /**
453 schoenebeck 3561 * Returns the result of this expression as integer (scalar) value and
454     * thus behaves similar to the previous method, however this overridden
455     * method automatically takes unit prefixes into account and returns a
456     * value corresponding to the expected given unit @a prefix.
457     *
458     * @param prefix - default measurement unit prefix expected by caller
459     */
460     vmint evalInt(MetricPrefix_t prefix);
461    
462     /**
463     * This method behaves like the previous method, just that it takes
464     * a default measurement prefix with two elements (i.e. "milli cents"
465     * for tuning).
466     */
467     vmint evalInt(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
468    
469     /**
470 schoenebeck 2727 * Returns always INT_EXPR for instances of this class.
471     */
472     ExprType_t exprType() const OVERRIDE { return INT_EXPR; }
473 schoenebeck 3573 };
474 schoenebeck 3561
475 schoenebeck 3573 /** @brief Virtual machine real number (floating point scalar) expression
476     *
477     * This is the abstract base class for all expressions inside scripts which
478     * evaluate to a real number (floating point scalar) value. Deriving classes
479     * implement the abstract method evalReal() to return the actual floating
480     * point result value of the expression.
481     */
482     class VMRealExpr : virtual public VMScalarNumberExpr {
483     public:
484 schoenebeck 3561 /**
485 schoenebeck 3573 * Returns the result of this expression as real number (floating point
486     * scalar) value. This abstract method must be implemented by deriving
487     * classes.
488     */
489     virtual vmfloat evalReal() = 0;
490    
491     /**
492     * Returns the result of this expression as real number (floating point
493     * scalar) value and thus behaves similar to the previous method,
494     * however this overridden method automatically takes unit prefixes into
495     * account and returns a value corresponding to the expected given unit
496     * @a prefix.
497 schoenebeck 3561 *
498 schoenebeck 3573 * @param prefix - default measurement unit prefix expected by caller
499 schoenebeck 3561 */
500 schoenebeck 3573 vmfloat evalReal(MetricPrefix_t prefix);
501    
502     /**
503     * This method behaves like the previous method, just that it takes
504     * a default measurement prefix with two elements (i.e. "milli cents"
505     * for tuning).
506     */
507     vmfloat evalReal(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
508    
509     /**
510     * Returns always REAL_EXPR for instances of this class.
511     */
512     ExprType_t exprType() const OVERRIDE { return REAL_EXPR; }
513 schoenebeck 2581 };
514    
515 schoenebeck 2727 /** @brief Virtual machine string expression
516     *
517     * This is the abstract base class for all expressions inside scripts which
518     * evaluate to a string value. Deriving classes implement the abstract
519     * method evalStr() to return the actual string result value of the
520     * expression.
521     */
522 schoenebeck 2581 class VMStringExpr : virtual public VMExpr {
523     public:
524 schoenebeck 2727 /**
525     * Returns the result of this expression as string value. This abstract
526     * method must be implemented by deriving classes.
527     */
528 schoenebeck 2581 virtual String evalStr() = 0;
529 schoenebeck 2727
530     /**
531     * Returns always STRING_EXPR for instances of this class.
532     */
533     ExprType_t exprType() const OVERRIDE { return STRING_EXPR; }
534 schoenebeck 2581 };
535    
536 schoenebeck 2727 /** @brief Virtual Machine Array Value Expression
537     *
538     * This is the abstract base class for all expressions inside scripts which
539     * evaluate to some kind of array value. Deriving classes implement the
540     * abstract method arraySize() to return the amount of elements within the
541     * array.
542     */
543 schoenebeck 2619 class VMArrayExpr : virtual public VMExpr {
544     public:
545 schoenebeck 2727 /**
546     * Returns amount of elements in this array. This abstract method must
547     * be implemented by deriving classes.
548     */
549 schoenebeck 3557 virtual vmint arraySize() const = 0;
550 schoenebeck 2619 };
551    
552 schoenebeck 2727 /** @brief Virtual Machine Integer Array Expression
553     *
554     * This is the abstract base class for all expressions inside scripts which
555     * evaluate to an array of integer values. Deriving classes implement the
556     * abstract methods arraySize(), evalIntElement() and assignIntElement() to
557     * access the individual integer array values.
558     */
559 schoenebeck 2619 class VMIntArrayExpr : virtual public VMArrayExpr {
560     public:
561 schoenebeck 2727 /**
562     * Returns the (scalar) integer value of the array element given by
563     * element index @a i.
564     *
565     * @param i - array element index (must be between 0 .. arraySize() - 1)
566     */
567 schoenebeck 3557 virtual vmint evalIntElement(vmuint i) = 0;
568 schoenebeck 2727
569     /**
570     * Changes the current value of an element (given by array element
571     * index @a i) of this integer array.
572     *
573     * @param i - array element index (must be between 0 .. arraySize() - 1)
574     * @param value - new integer scalar value to be assigned to that array element
575     */
576 schoenebeck 3557 virtual void assignIntElement(vmuint i, vmint value) = 0;
577 schoenebeck 2727
578     /**
579     * Returns always INT_ARR_EXPR for instances of this class.
580     */
581     ExprType_t exprType() const OVERRIDE { return INT_ARR_EXPR; }
582 schoenebeck 2619 };
583    
584 schoenebeck 3573 /** @brief Virtual Machine Real Number Array Expression
585     *
586     * This is the abstract base class for all expressions inside scripts which
587     * evaluate to an array of real numbers (floating point values). Deriving
588     * classes implement the abstract methods arraySize(), evalRealElement() and
589     * assignRealElement() to access the array's individual real numbers.
590     */
591     class VMRealArrayExpr : virtual public VMArrayExpr {
592     public:
593     /**
594     * Returns the (scalar) real mumber (floating point value) of the array
595     * element given by element index @a i.
596     *
597     * @param i - array element index (must be between 0 .. arraySize() - 1)
598     */
599     virtual vmfloat evalRealElement(vmuint i) = 0;
600    
601     /**
602     * Changes the current value of an element (given by array element
603     * index @a i) of this real number array.
604     *
605     * @param i - array element index (must be between 0 .. arraySize() - 1)
606     * @param value - new real number value to be assigned to that array element
607     */
608     virtual void assignRealElement(vmuint i, vmfloat value) = 0;
609    
610     /**
611     * Returns always REAL_ARR_EXPR for instances of this class.
612     */
613     ExprType_t exprType() const OVERRIDE { return REAL_ARR_EXPR; }
614     };
615    
616 schoenebeck 2727 /** @brief Arguments (parameters) for being passed to a built-in script function.
617     *
618     * An argument or a set of arguments passed to a script function are
619     * translated by the parser to an instance of this class. This abstract
620     * interface class is used by implementations of built-in functions to
621     * obtain the individual function argument values being passed to them at
622     * runtime.
623     */
624 schoenebeck 2581 class VMFnArgs {
625     public:
626 schoenebeck 2727 /**
627     * Returns the amount of arguments going to be passed to the script
628     * function.
629     */
630 schoenebeck 3557 virtual vmint argsCount() const = 0;
631 schoenebeck 2727
632     /**
633     * Returns the respective argument (requested by argument index @a i) of
634     * this set of arguments. This method is called by implementations of
635     * built-in script functions to obtain the value of each function
636     * argument passed to the function at runtime.
637     *
638     * @param i - function argument index (indexed from left to right)
639     */
640 schoenebeck 3557 virtual VMExpr* arg(vmint i) = 0;
641 schoenebeck 2581 };
642    
643 schoenebeck 2727 /** @brief Result value returned from a call to a built-in script function.
644     *
645     * Implementations of built-in script functions return an instance of this
646     * object to let the virtual machine obtain the result value of the function
647     * call, which might then be further processed by the virtual machine
648     * according to the script. It also provides informations about the success
649     * or failure of the function call.
650     */
651 schoenebeck 2581 class VMFnResult {
652     public:
653 schoenebeck 2727 /**
654     * Returns the result value of the function call, represented by a high
655     * level expression object.
656     */
657 schoenebeck 2581 virtual VMExpr* resultValue() = 0;
658 schoenebeck 2727
659     /**
660     * Provides detailed informations of the success / failure of the
661     * function call. The virtual machine is evaluating the flags returned
662     * here to decide whether it must abort or suspend execution of the
663     * script at this point.
664     */
665 schoenebeck 2581 virtual StmtFlags_t resultFlags() { return STMT_SUCCESS; }
666     };
667    
668 schoenebeck 2727 /** @brief Virtual machine built-in function.
669 schoenebeck 2612 *
670     * Abstract base class for built-in script functions, defining the interface
671 schoenebeck 2727 * for all built-in script function implementations. All built-in script
672     * functions are deriving from this abstract interface class in order to
673     * provide their functionality to the virtual machine with this unified
674     * interface.
675     *
676     * The methods of this interface class provide two purposes:
677     *
678     * 1. When a script is loaded, the script parser uses the methods of this
679     * interface to check whether the script author was calling the
680     * respective built-in script function in a correct way. For example
681     * the parser checks whether the required amount of parameters were
682     * passed to the function and whether the data types passed match the
683     * data types expected by the function. If not, loading the script will
684     * be aborted with a parser error, describing to the user (i.e. script
685     * author) the precise misusage of the respective function.
686     * 2. After the script was loaded successfully and the script is executed,
687     * the virtual machine calls the exec() method of the respective built-in
688     * function to provide the actual functionality of the built-in function
689     * call.
690 schoenebeck 2612 */
691 schoenebeck 2581 class VMFunction {
692     public:
693 schoenebeck 2612 /**
694     * Script data type of the function's return value. If the function does
695 schoenebeck 2727 * not return any value (void), then it returns EMPTY_EXPR here.
696 schoenebeck 3577 *
697     * Some functions may have a different return type depending on the
698     * arguments to be passed to this function. That's what the @a args
699     * parameter is for, so that the method implementation can look ahead
700     * of what kind of parameters are going to be passed to the built-in
701     * function later on in order to decide which return value type would
702     * be used and returned by the function accordingly in that case.
703     *
704     * @param args - function arguments going to be passed for executing
705     * this built-in function later on
706 schoenebeck 2612 */
707 schoenebeck 3577 virtual ExprType_t returnType(VMFnArgs* args) = 0;
708 schoenebeck 2612
709     /**
710     * Minimum amount of function arguments this function accepts. If a
711     * script is calling this function with less arguments, the script
712     * parser will throw a parser error.
713     */
714 schoenebeck 3557 virtual vmint minRequiredArgs() const = 0;
715 schoenebeck 2612
716     /**
717     * Maximum amount of function arguments this functions accepts. If a
718     * script is calling this function with more arguments, the script
719     * parser will throw a parser error.
720     */
721 schoenebeck 3557 virtual vmint maxAllowedArgs() const = 0;
722 schoenebeck 2612
723     /**
724     * Script data type of the function's @c iArg 'th function argument.
725     * The information provided here is less strong than acceptsArgType().
726     * The parser will compare argument data types provided in scripts by
727 schoenebeck 2871 * calling acceptsArgType(). The return value of argType() is used by the
728 schoenebeck 2612 * parser instead to show an appropriate parser error which data type
729     * this function usually expects as "default" data type. Reason: a
730     * function may accept multiple data types for a certain function
731     * argument and would automatically cast the passed argument value in
732     * that case to the type it actually needs.
733     *
734     * @param iArg - index of the function argument in question
735 schoenebeck 2727 * (must be between 0 .. maxAllowedArgs() - 1)
736 schoenebeck 2612 */
737 schoenebeck 3557 virtual ExprType_t argType(vmint iArg) const = 0;
738 schoenebeck 2612
739     /**
740 schoenebeck 2945 * This method is called by the parser to check whether arguments
741 schoenebeck 2612 * passed in scripts to this function are accepted by this function. If
742     * a script calls this function with an argument's data type not
743 schoenebeck 2727 * accepted by this function, the parser will throw a parser error. On
744     * such errors the data type returned by argType() will be used to
745     * assemble an appropriate error message regarding the precise misusage
746     * of the built-in function.
747 schoenebeck 2612 *
748     * @param iArg - index of the function argument in question
749 schoenebeck 2727 * (must be between 0 .. maxAllowedArgs() - 1)
750 schoenebeck 2612 * @param type - script data type used for this function argument by
751     * currently parsed script
752 schoenebeck 2727 * @return true if the given data type would be accepted for the
753     * respective function argument by the function
754 schoenebeck 2612 */
755 schoenebeck 3557 virtual bool acceptsArgType(vmint iArg, ExprType_t type) const = 0;
756 schoenebeck 2612
757     /**
758 schoenebeck 3561 * This method is called by the parser to check whether arguments
759     * passed in scripts to this function are accepted by this function. If
760     * a script calls this function with an argument's measuremnt unit type
761     * not accepted by this function, the parser will throw a parser error.
762     *
763     * This default implementation of this method does not accept any
764     * measurement unit. Deriving subclasses would override this method
765     * implementation in case they do accept any measurement unit for its
766     * function arguments.
767     *
768     * @param iArg - index of the function argument in question
769     * (must be between 0 .. maxAllowedArgs() - 1)
770     * @param type - standard measurement unit data type used for this
771     * function argument by currently parsed script
772     * @return true if the given standard measurement unit type would be
773     * accepted for the respective function argument by the function
774     */
775     virtual bool acceptsArgUnitType(vmint iArg, StdUnit_t type) const;
776    
777     /**
778     * This method is called by the parser to check whether arguments
779     * passed in scripts to this function are accepted by this function. If
780     * a script calls this function with a metric unit prefix and metric
781     * prefixes are not accepted for that argument by this function, then
782     * the parser will throw a parser error.
783     *
784     * This default implementation of this method does not accept any
785     * metric prefix. Deriving subclasses would override this method
786     * implementation in case they do accept any metric prefix for its
787     * function arguments.
788     *
789     * @param iArg - index of the function argument in question
790     * (must be between 0 .. maxAllowedArgs() - 1)
791 schoenebeck 3564 * @param type - standard measurement unit data type used for that
792     * function argument by currently parsed script
793 schoenebeck 3561 *
794     * @return true if a metric prefix would be accepted for the respective
795     * function argument by this function
796     *
797     * @see MetricPrefix_t
798     */
799 schoenebeck 3564 virtual bool acceptsArgUnitPrefix(vmint iArg, StdUnit_t type) const;
800 schoenebeck 3561
801     /**
802     * This method is called by the parser to check whether arguments
803     * passed in scripts to this function are accepted by this function. If
804     * a script calls this function with an argument that is declared to be
805     * a "final" value and this is not accepted by this function, the parser
806     * will throw a parser error.
807     *
808     * This default implementation of this method does not accept a "final"
809     * value. Deriving subclasses would override this method implementation
810     * in case they do accept a "final" value for its function arguments.
811     *
812     * @param iArg - index of the function argument in question
813     * (must be between 0 .. maxAllowedArgs() - 1)
814     * @return true if a "final" value would be accepted for the respective
815     * function argument by the function
816     *
817     * @see VMIntExpr::isFinal()
818     */
819     virtual bool acceptsArgFinal(vmint iArg) const;
820    
821     /**
822 schoenebeck 2945 * This method is called by the parser to check whether some arguments
823     * (and if yes which ones) passed to this script function will be
824     * modified by this script function. Most script functions simply use
825     * their arguments as inputs, that is they only read the argument's
826     * values. However some script function may also use passed
827     * argument(s) as output variables. In this case the function
828     * implementation must return @c true for the respective argument
829     * index here.
830     *
831     * @param iArg - index of the function argument in question
832     * (must be between 0 .. maxAllowedArgs() - 1)
833     */
834 schoenebeck 3557 virtual bool modifiesArg(vmint iArg) const = 0;
835 schoenebeck 2945
836     /**
837 schoenebeck 2727 * Implements the actual function execution. This exec() method is
838     * called by the VM whenever this function implementation shall be
839     * executed at script runtime. This method blocks until the function
840     * call completed.
841 schoenebeck 2612 *
842     * @param args - function arguments for executing this built-in function
843 schoenebeck 2727 * @returns function's return value (if any) and general status
844     * informations (i.e. whether the function call caused a
845     * runtime error)
846 schoenebeck 2612 */
847 schoenebeck 2581 virtual VMFnResult* exec(VMFnArgs* args) = 0;
848 schoenebeck 2612
849     /**
850 schoenebeck 2727 * Convenience method for function implementations to show warning
851     * messages during actual execution of the built-in function.
852 schoenebeck 2612 *
853 schoenebeck 2727 * @param txt - runtime warning text to be shown to user
854 schoenebeck 2612 */
855 schoenebeck 2598 void wrnMsg(const String& txt);
856 schoenebeck 2612
857     /**
858 schoenebeck 2727 * Convenience method for function implementations to show error
859     * messages during actual execution of the built-in function.
860 schoenebeck 2612 *
861 schoenebeck 2727 * @param txt - runtime error text to be shown to user
862 schoenebeck 2612 */
863 schoenebeck 2598 void errMsg(const String& txt);
864 schoenebeck 2581 };
865    
866 schoenebeck 2727 /** @brief Virtual machine relative pointer.
867     *
868 schoenebeck 3557 * POD base of VMInt64RelPtr, VMInt32RelPtr and VMInt8RelPtr structures. Not
869     * intended to be used directly. Use VMInt64RelPtr, VMInt32RelPtr,
870     * VMInt8RelPtr instead.
871 schoenebeck 2727 *
872 schoenebeck 3557 * @see VMInt64RelPtr, VMInt32RelPtr, VMInt8RelPtr
873 schoenebeck 2594 */
874     struct VMRelPtr {
875     void** base; ///< Base pointer.
876 schoenebeck 3557 vmint offset; ///< Offset (in bytes) relative to base pointer.
877 schoenebeck 2948 bool readonly; ///< Whether the pointed data may be modified or just be read.
878 schoenebeck 2594 };
879    
880 schoenebeck 3557 /** @brief Pointer to built-in VM integer variable (interface class).
881 schoenebeck 2594 *
882 schoenebeck 3557 * This class acts as an abstract interface to all built-in integer script
883     * variables, independent of their actual native size (i.e. some built-in
884     * script variables are internally using a native int size of 64 bit or 32
885     * bit or 8 bit). The virtual machine is using this interface class instead
886     * of its implementing descendants (VMInt64RelPtr, VMInt32RelPtr,
887     * VMInt8RelPtr) in order for the virtual machine for not being required to
888     * handle each of them differently.
889     */
890     struct VMIntPtr {
891     virtual vmint evalInt() = 0;
892     virtual void assign(vmint i) = 0;
893     virtual bool isAssignable() const = 0;
894     };
895    
896     /** @brief Pointer to built-in VM integer variable (of C/C++ type int64_t).
897     *
898     * Used for defining built-in 64 bit integer script variables.
899     *
900     * @b CAUTION: You may only use this class for pointing to C/C++ variables
901     * of type "int64_t" (thus being exactly 64 bit in size). If the C/C++ int
902     * variable you want to reference is only 32 bit in size then you @b must
903     * use VMInt32RelPtr instead! Respectively for a referenced native variable
904     * with only 8 bit in size you @b must use VMInt8RelPtr instead!
905     *
906     * For efficiency reasons the actual native C/C++ int variable is referenced
907     * by two components here. The actual native int C/C++ variable in memory
908     * is dereferenced at VM run-time by taking the @c base pointer dereference
909     * and adding @c offset bytes. This has the advantage that for a large
910     * number of built-in int variables, only one (or few) base pointer need
911     * to be re-assigned before running a script, instead of updating each
912     * built-in variable each time before a script is executed.
913     *
914     * Refer to DECLARE_VMINT() for example code.
915     *
916     * @see VMInt32RelPtr, VMInt8RelPtr, DECLARE_VMINT()
917     */
918     struct VMInt64RelPtr : VMRelPtr, VMIntPtr {
919     VMInt64RelPtr() {
920     base = NULL;
921     offset = 0;
922     readonly = false;
923     }
924     VMInt64RelPtr(const VMRelPtr& data) {
925     base = data.base;
926     offset = data.offset;
927     readonly = false;
928     }
929     vmint evalInt() OVERRIDE {
930     return (vmint)*(int64_t*)&(*(uint8_t**)base)[offset];
931     }
932     void assign(vmint i) OVERRIDE {
933     *(int64_t*)&(*(uint8_t**)base)[offset] = (int64_t)i;
934     }
935     bool isAssignable() const OVERRIDE { return !readonly; }
936     };
937    
938     /** @brief Pointer to built-in VM integer variable (of C/C++ type int32_t).
939     *
940 schoenebeck 2727 * Used for defining built-in 32 bit integer script variables.
941 schoenebeck 2594 *
942     * @b CAUTION: You may only use this class for pointing to C/C++ variables
943 schoenebeck 3557 * of type "int32_t" (thus being exactly 32 bit in size). If the C/C++ int
944     * variable you want to reference is 64 bit in size then you @b must use
945     * VMInt64RelPtr instead! Respectively for a referenced native variable with
946     * only 8 bit in size you @b must use VMInt8RelPtr instead!
947 schoenebeck 2594 *
948     * For efficiency reasons the actual native C/C++ int variable is referenced
949     * by two components here. The actual native int C/C++ variable in memory
950     * is dereferenced at VM run-time by taking the @c base pointer dereference
951     * and adding @c offset bytes. This has the advantage that for a large
952     * number of built-in int variables, only one (or few) base pointer need
953     * to be re-assigned before running a script, instead of updating each
954     * built-in variable each time before a script is executed.
955     *
956     * Refer to DECLARE_VMINT() for example code.
957     *
958 schoenebeck 3557 * @see VMInt64RelPtr, VMInt8RelPtr, DECLARE_VMINT()
959 schoenebeck 2594 */
960 schoenebeck 3557 struct VMInt32RelPtr : VMRelPtr, VMIntPtr {
961     VMInt32RelPtr() {
962 schoenebeck 2594 base = NULL;
963     offset = 0;
964 schoenebeck 2948 readonly = false;
965 schoenebeck 2594 }
966 schoenebeck 3557 VMInt32RelPtr(const VMRelPtr& data) {
967 schoenebeck 2594 base = data.base;
968     offset = data.offset;
969 schoenebeck 2948 readonly = false;
970 schoenebeck 2594 }
971 schoenebeck 3557 vmint evalInt() OVERRIDE {
972     return (vmint)*(int32_t*)&(*(uint8_t**)base)[offset];
973     }
974     void assign(vmint i) OVERRIDE {
975     *(int32_t*)&(*(uint8_t**)base)[offset] = (int32_t)i;
976     }
977     bool isAssignable() const OVERRIDE { return !readonly; }
978 schoenebeck 2594 };
979    
980     /** @brief Pointer to built-in VM integer variable (of C/C++ type int8_t).
981     *
982 schoenebeck 2727 * Used for defining built-in 8 bit integer script variables.
983 schoenebeck 2594 *
984     * @b CAUTION: You may only use this class for pointing to C/C++ variables
985     * of type "int8_t" (8 bit integer). If the C/C++ int variable you want to
986 schoenebeck 3557 * reference is not exactly 8 bit in size then you @b must respectively use
987     * either VMInt32RelPtr for native 32 bit variables or VMInt64RelPtrl for
988     * native 64 bit variables instead!
989 schoenebeck 2594 *
990     * For efficiency reasons the actual native C/C++ int variable is referenced
991     * by two components here. The actual native int C/C++ variable in memory
992     * is dereferenced at VM run-time by taking the @c base pointer dereference
993     * and adding @c offset bytes. This has the advantage that for a large
994     * number of built-in int variables, only one (or few) base pointer need
995     * to be re-assigned before running a script, instead of updating each
996     * built-in variable each time before a script is executed.
997     *
998     * Refer to DECLARE_VMINT() for example code.
999     *
1000 schoenebeck 3557 * @see VMIntRel32Ptr, VMIntRel64Ptr, DECLARE_VMINT()
1001 schoenebeck 2594 */
1002 schoenebeck 3557 struct VMInt8RelPtr : VMRelPtr, VMIntPtr {
1003     VMInt8RelPtr() {
1004     base = NULL;
1005     offset = 0;
1006     readonly = false;
1007 schoenebeck 2594 }
1008 schoenebeck 3557 VMInt8RelPtr(const VMRelPtr& data) {
1009     base = data.base;
1010     offset = data.offset;
1011     readonly = false;
1012 schoenebeck 2594 }
1013 schoenebeck 3557 vmint evalInt() OVERRIDE {
1014     return (vmint)*(uint8_t*)&(*(uint8_t**)base)[offset];
1015     }
1016     void assign(vmint i) OVERRIDE {
1017     *(uint8_t*)&(*(uint8_t**)base)[offset] = (uint8_t)i;
1018     }
1019     bool isAssignable() const OVERRIDE { return !readonly; }
1020 schoenebeck 2594 };
1021    
1022 schoenebeck 3557 /** @brief Pointer to built-in VM integer variable (of C/C++ type vmint).
1023     *
1024     * Use this typedef if the native variable to be pointed to is using the
1025     * typedef vmint. If the native C/C++ variable to be pointed to is using
1026     * another C/C++ type then better use one of VMInt64RelPtr or VMInt32RelPtr
1027     * instead.
1028     */
1029     typedef VMInt64RelPtr VMIntRelPtr;
1030    
1031 schoenebeck 3035 #if HAVE_CXX_EMBEDDED_PRAGMA_DIAGNOSTICS
1032     # define COMPILER_DISABLE_OFFSETOF_WARNING \
1033     _Pragma("GCC diagnostic push") \
1034     _Pragma("GCC diagnostic ignored \"-Winvalid-offsetof\"")
1035     # define COMPILER_RESTORE_OFFSETOF_WARNING \
1036     _Pragma("GCC diagnostic pop")
1037     #else
1038     # define COMPILER_DISABLE_OFFSETOF_WARNING
1039     # define COMPILER_RESTORE_OFFSETOF_WARNING
1040     #endif
1041    
1042 schoenebeck 2594 /**
1043 schoenebeck 3557 * Convenience macro for initializing VMInt64RelPtr, VMInt32RelPtr and
1044     * VMInt8RelPtr structures. Usage example:
1045 schoenebeck 2594 * @code
1046     * struct Foo {
1047 schoenebeck 2727 * uint8_t a; // native representation of a built-in integer script variable
1048 schoenebeck 3557 * int64_t b; // native representation of another built-in integer script variable
1049     * int64_t c; // native representation of another built-in integer script variable
1050 schoenebeck 2727 * uint8_t d; // native representation of another built-in integer script variable
1051 schoenebeck 2594 * };
1052     *
1053 schoenebeck 2727 * // initializing the built-in script variables to some values
1054     * Foo foo1 = (Foo) { 1, 2000, 3000, 4 };
1055     * Foo foo2 = (Foo) { 5, 6000, 7000, 8 };
1056 schoenebeck 2594 *
1057     * Foo* pFoo;
1058     *
1059 schoenebeck 2727 * VMInt8RelPtr varA = DECLARE_VMINT(pFoo, class Foo, a);
1060 schoenebeck 3557 * VMInt64RelPtr varB = DECLARE_VMINT(pFoo, class Foo, b);
1061     * VMInt64RelPtr varC = DECLARE_VMINT(pFoo, class Foo, c);
1062 schoenebeck 2727 * VMInt8RelPtr varD = DECLARE_VMINT(pFoo, class Foo, d);
1063 schoenebeck 2594 *
1064     * pFoo = &foo1;
1065 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 1
1066     * printf("%d\n", varB->evalInt()); // will print 2000
1067     * printf("%d\n", varC->evalInt()); // will print 3000
1068     * printf("%d\n", varD->evalInt()); // will print 4
1069 schoenebeck 2594 *
1070 schoenebeck 2727 * // same printf() code, just with pFoo pointer being changed ...
1071     *
1072 schoenebeck 2594 * pFoo = &foo2;
1073 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 5
1074     * printf("%d\n", varB->evalInt()); // will print 6000
1075     * printf("%d\n", varC->evalInt()); // will print 7000
1076     * printf("%d\n", varD->evalInt()); // will print 8
1077 schoenebeck 2594 * @endcode
1078 schoenebeck 2727 * As you can see above, by simply changing one single pointer, you can
1079     * remap a huge bunch of built-in integer script variables to completely
1080     * different native values/native variables. Which especially reduces code
1081     * complexity inside the sampler engines which provide the actual script
1082     * functionalities.
1083 schoenebeck 2594 */
1084 schoenebeck 3034 #define DECLARE_VMINT(basePtr, T_struct, T_member) ( \
1085     /* Disable offsetof warning, trust us, we are cautios. */ \
1086 schoenebeck 3035 COMPILER_DISABLE_OFFSETOF_WARNING \
1087 schoenebeck 3034 (VMRelPtr) { \
1088     (void**) &basePtr, \
1089     offsetof(T_struct, T_member), \
1090     false \
1091     } \
1092 schoenebeck 3035 COMPILER_RESTORE_OFFSETOF_WARNING \
1093 schoenebeck 3034 ) \
1094 schoenebeck 2594
1095 schoenebeck 2948 /**
1096 schoenebeck 3557 * Same as DECLARE_VMINT(), but this one defines the VMInt64RelPtr,
1097     * VMInt32RelPtr and VMInt8RelPtr structures to be of read-only type.
1098     * That means the script parser will abort any script at parser time if the
1099     * script is trying to modify such a read-only built-in variable.
1100 schoenebeck 2948 *
1101     * @b NOTE: this is only intended for built-in read-only variables that
1102     * may change during runtime! If your built-in variable's data is rather
1103     * already available at parser time and won't change during runtime, then
1104     * you should rather register a built-in constant in your VM class instead!
1105     *
1106     * @see ScriptVM::builtInConstIntVariables()
1107     */
1108     #define DECLARE_VMINT_READONLY(basePtr, T_struct, T_member) ( \
1109 schoenebeck 3034 /* Disable offsetof warning, trust us, we are cautios. */ \
1110 schoenebeck 3035 COMPILER_DISABLE_OFFSETOF_WARNING \
1111 schoenebeck 3034 (VMRelPtr) { \
1112     (void**) &basePtr, \
1113     offsetof(T_struct, T_member), \
1114     true \
1115     } \
1116 schoenebeck 3035 COMPILER_RESTORE_OFFSETOF_WARNING \
1117 schoenebeck 3034 ) \
1118 schoenebeck 2948
1119 schoenebeck 2594 /** @brief Built-in VM 8 bit integer array variable.
1120     *
1121 schoenebeck 2727 * Used for defining built-in integer array script variables (8 bit per
1122 schoenebeck 3573 * array element). Currently there is no support for any other kind of
1123     * built-in array type. So all built-in integer arrays accessed by scripts
1124     * use 8 bit data types.
1125 schoenebeck 2594 */
1126     struct VMInt8Array {
1127     int8_t* data;
1128 schoenebeck 3557 vmint size;
1129 schoenebeck 3253 bool readonly; ///< Whether the array data may be modified or just be read.
1130 schoenebeck 2594
1131 schoenebeck 3253 VMInt8Array() : data(NULL), size(0), readonly(false) {}
1132 schoenebeck 2594 };
1133    
1134 schoenebeck 2945 /** @brief Virtual machine script variable.
1135     *
1136 schoenebeck 3573 * Common interface for all variables accessed in scripts, independent of
1137     * their precise data type.
1138 schoenebeck 2945 */
1139     class VMVariable : virtual public VMExpr {
1140     public:
1141     /**
1142     * Whether a script may modify the content of this variable by
1143     * assigning a new value to it.
1144     *
1145     * @see isConstExpr(), assign()
1146     */
1147     virtual bool isAssignable() const = 0;
1148    
1149     /**
1150     * In case this variable is assignable, this method will be called to
1151     * perform the value assignment to this variable with @a expr
1152     * reflecting the new value to be assigned.
1153     *
1154     * @param expr - new value to be assigned to this variable
1155     */
1156     virtual void assignExpr(VMExpr* expr) = 0;
1157     };
1158 schoenebeck 3573
1159 schoenebeck 2942 /** @brief Dynamically executed variable (abstract base class).
1160     *
1161     * Interface for the implementation of a dynamically generated content of
1162     * a built-in script variable. Most built-in variables are simply pointers
1163     * to some native location in memory. So when a script reads them, the
1164     * memory location is simply read to get the value of the variable. A
1165     * dynamic variable however is not simply a memory location. For each access
1166     * to a dynamic variable some native code is executed to actually generate
1167     * and provide the content (value) of this type of variable.
1168     */
1169 schoenebeck 2945 class VMDynVar : public VMVariable {
1170 schoenebeck 2942 public:
1171     /**
1172     * Returns true in case this dynamic variable can be considered to be a
1173     * constant expression. A constant expression will retain the same value
1174     * throughout the entire life time of a script and the expression's
1175     * constant value may be evaluated already at script parse time, which
1176     * may result in performance benefits during script runtime.
1177     *
1178     * However due to the "dynamic" behavior of dynamic variables, almost
1179     * all dynamic variables are probably not constant expressions. That's
1180     * why this method returns @c false by default. If you are really sure
1181     * that your dynamic variable implementation can be considered a
1182     * constant expression then you may override this method and return
1183     * @c true instead. Note that when you return @c true here, your
1184     * dynamic variable will really just be executed once; and exectly
1185     * already when the script is loaded!
1186     *
1187     * As an example you may implement a "constant" built-in dynamic
1188     * variable that checks for a certain operating system feature and
1189     * returns the result of that OS feature check as content (value) of
1190     * this dynamic variable. Since the respective OS feature might become
1191     * available/unavailable after OS updates, software migration, etc. the
1192     * OS feature check should at least be performed once each time the
1193     * application is launched. And since the OS feature check might take a
1194     * certain amount of execution time, it might make sense to only
1195     * perform the check if the respective variable name is actually
1196     * referenced at all in the script to be loaded. Note that the dynamic
1197     * variable will still be evaluated again though if the script is
1198     * loaded again. So it is up to you to probably cache the result in the
1199     * implementation of your dynamic variable.
1200     *
1201     * On doubt, please rather consider to use a constant built-in script
1202     * variable instead of implementing a "constant" dynamic variable, due
1203     * to the runtime overhead a dynamic variable may cause.
1204     *
1205     * @see isAssignable()
1206     */
1207 schoenebeck 2945 bool isConstExpr() const OVERRIDE { return false; }
1208 schoenebeck 2942
1209     /**
1210     * In case this dynamic variable is assignable, the new value (content)
1211     * to be assigned to this dynamic variable.
1212     *
1213     * By default this method does nothing. Override and implement this
1214     * method in your subclass in case your dynamic variable allows to
1215     * assign a new value by script.
1216     *
1217     * @param expr - new value to be assigned to this variable
1218     */
1219 schoenebeck 2945 void assignExpr(VMExpr* expr) OVERRIDE {}
1220 schoenebeck 3034
1221     virtual ~VMDynVar() {}
1222 schoenebeck 2942 };
1223    
1224     /** @brief Dynamically executed variable (of integer data type).
1225     *
1226     * This is the base class for all built-in integer script variables whose
1227     * variable content needs to be provided dynamically by executable native
1228     * code on each script variable access.
1229     */
1230     class VMDynIntVar : virtual public VMDynVar, virtual public VMIntExpr {
1231     public:
1232 schoenebeck 3561 MetricPrefix_t unitPrefix(vmuint i) const OVERRIDE { return VM_NO_PREFIX; }
1233     StdUnit_t unitType() const OVERRIDE { return VM_NO_UNIT; }
1234     bool isFinal() const OVERRIDE { return false; }
1235 schoenebeck 2942 };
1236    
1237     /** @brief Dynamically executed variable (of string data type).
1238     *
1239     * This is the base class for all built-in string script variables whose
1240     * variable content needs to be provided dynamically by executable native
1241     * code on each script variable access.
1242     */
1243     class VMDynStringVar : virtual public VMDynVar, virtual public VMStringExpr {
1244     public:
1245     };
1246    
1247 schoenebeck 3073 /** @brief Dynamically executed variable (of integer array data type).
1248     *
1249     * This is the base class for all built-in integer array script variables
1250     * whose variable content needs to be provided dynamically by executable
1251     * native code on each script variable access.
1252     */
1253     class VMDynIntArrayVar : virtual public VMDynVar, virtual public VMIntArrayExpr {
1254     public:
1255     };
1256    
1257 schoenebeck 2612 /** @brief Provider for built-in script functions and variables.
1258     *
1259 schoenebeck 2727 * Abstract base class defining the high-level interface for all classes
1260     * which add and implement built-in script functions and built-in script
1261     * variables.
1262 schoenebeck 2612 */
1263 schoenebeck 2581 class VMFunctionProvider {
1264     public:
1265 schoenebeck 2612 /**
1266     * Returns pointer to the built-in function with the given function
1267 schoenebeck 2727 * @a name, or NULL if there is no built-in function with that function
1268     * name.
1269 schoenebeck 2612 *
1270 schoenebeck 2727 * @param name - function name (i.e. "wait" or "message" or "exit", etc.)
1271 schoenebeck 2612 */
1272 schoenebeck 2581 virtual VMFunction* functionByName(const String& name) = 0;
1273 schoenebeck 2612
1274     /**
1275 schoenebeck 3311 * Returns @c true if the passed built-in function is disabled and
1276     * should be ignored by the parser. This method is called by the
1277     * parser on preprocessor level for each built-in function call within
1278     * a script. Accordingly if this method returns @c true, then the
1279     * respective function call is completely filtered out on preprocessor
1280     * level, so that built-in function won't make into the result virtual
1281     * machine representation, nor would expressions of arguments passed to
1282     * that built-in function call be evaluated, nor would any check
1283     * regarding correct usage of the built-in function be performed.
1284     * In other words: a disabled function call ends up as a comment block.
1285     *
1286     * @param fn - built-in function to be checked
1287     * @param ctx - parser context at the position where the built-in
1288     * function call is located within the script
1289     */
1290     virtual bool isFunctionDisabled(VMFunction* fn, VMParserContext* ctx) = 0;
1291    
1292     /**
1293 schoenebeck 2612 * Returns a variable name indexed map of all built-in script variables
1294 schoenebeck 2727 * which point to native "int" scalar (usually 32 bit) variables.
1295 schoenebeck 2612 */
1296 schoenebeck 3557 virtual std::map<String,VMIntPtr*> builtInIntVariables() = 0;
1297 schoenebeck 2612
1298     /**
1299 schoenebeck 2727 * Returns a variable name indexed map of all built-in script integer
1300     * array variables with array element type "int8_t" (8 bit).
1301 schoenebeck 2612 */
1302 schoenebeck 2594 virtual std::map<String,VMInt8Array*> builtInIntArrayVariables() = 0;
1303 schoenebeck 2612
1304     /**
1305     * Returns a variable name indexed map of all built-in constant script
1306     * variables, which never change their value at runtime.
1307     */
1308 schoenebeck 3557 virtual std::map<String,vmint> builtInConstIntVariables() = 0;
1309 schoenebeck 2942
1310     /**
1311     * Returns a variable name indexed map of all built-in dynamic variables,
1312     * which are not simply data stores, rather each one of them executes
1313     * natively to provide or alter the respective script variable data.
1314     */
1315     virtual std::map<String,VMDynVar*> builtInDynamicVariables() = 0;
1316 schoenebeck 2581 };
1317    
1318 schoenebeck 2594 /** @brief Execution state of a virtual machine.
1319     *
1320     * An instance of this abstract base class represents exactly one execution
1321     * state of a virtual machine. This encompasses most notably the VM
1322 schoenebeck 2612 * execution stack, and VM polyphonic variables. It does not contain global
1323 schoenebeck 2727 * variables. Global variables are contained in the VMParserContext object.
1324 schoenebeck 2612 * You might see a VMExecContext object as one virtual thread of the virtual
1325     * machine.
1326 schoenebeck 2594 *
1327 schoenebeck 2612 * In contrast to a VMParserContext, a VMExecContext is not tied to a
1328     * ScriptVM instance. Thus you can use a VMExecContext with different
1329     * ScriptVM instances, however not concurrently at the same time.
1330     *
1331 schoenebeck 2594 * @see VMParserContext
1332     */
1333 schoenebeck 2581 class VMExecContext {
1334     public:
1335     virtual ~VMExecContext() {}
1336 schoenebeck 2727
1337     /**
1338     * In case the script was suspended for some reason, this method returns
1339     * the amount of microseconds before the script shall continue its
1340     * execution. Note that the virtual machine itself does never put its
1341     * own execution thread(s) to sleep. So the respective class (i.e. sampler
1342     * engine) which is using the virtual machine classes here, must take
1343     * care by itself about taking time stamps, determining the script
1344     * handlers that shall be put aside for the requested amount of
1345 schoenebeck 2871 * microseconds, indicated by this method by comparing the time stamps in
1346 schoenebeck 2727 * real-time, and to continue passing the respective handler to
1347     * ScriptVM::exec() as soon as its suspension exceeded, etc. Or in other
1348     * words: all classes in this directory never have an idea what time it
1349     * is.
1350     *
1351     * You should check the return value of ScriptVM::exec() to determine
1352     * whether the script was actually suspended before calling this method
1353     * here.
1354     *
1355     * @see ScriptVM::exec()
1356     */
1357 schoenebeck 3557 virtual vmint suspensionTimeMicroseconds() const = 0;
1358 schoenebeck 3207
1359     /**
1360     * Causes all polyphonic variables to be reset to zero values. A
1361     * polyphonic variable is expected to be zero when entering a new event
1362     * handler instance. As an exception the values of polyphonic variables
1363     * shall only be preserved from an note event handler instance to its
1364     * correspending specific release handler instance. So in the latter
1365     * case the script author may pass custom data from the note handler to
1366     * the release handler, but only for the same specific note!
1367     */
1368     virtual void resetPolyphonicData() = 0;
1369 schoenebeck 3221
1370     /**
1371     * Returns amount of virtual machine instructions which have been
1372     * performed the last time when this execution context was executing a
1373     * script. So in case you need the overall amount of instructions
1374     * instead, then you need to add them by yourself after each
1375     * ScriptVM::exec() call.
1376     */
1377     virtual size_t instructionsPerformed() const = 0;
1378 schoenebeck 3277
1379     /**
1380     * Sends a signal to this script execution instance to abort its script
1381     * execution as soon as possible. This method is called i.e. when one
1382     * script execution instance intends to stop another script execution
1383     * instance.
1384     */
1385     virtual void signalAbort() = 0;
1386 schoenebeck 3293
1387     /**
1388     * Copies the current entire execution state from this object to the
1389     * given object. So this can be used to "fork" a new script thread which
1390     * then may run independently with its own polyphonic data for instance.
1391     */
1392     virtual void forkTo(VMExecContext* ectx) const = 0;
1393 schoenebeck 3551
1394     /**
1395     * In case the script called the built-in exit() function and passed a
1396     * value as argument to the exit() function, then this method returns
1397     * the value that had been passed as argument to the exit() function.
1398     * Otherwise if the exit() function has not been called by the script
1399     * or no argument had been passed to the exit() function, then this
1400     * method returns NULL instead.
1401     *
1402     * Currently this is only used for automated test cases against the
1403     * script engine, which return some kind of value in the individual
1404     * test case scripts to check their behaviour in automated way. There
1405     * is no purpose for this mechanism in production use. Accordingly this
1406     * exit result value is @b always completely ignored by the sampler
1407     * engines.
1408     *
1409     * Officially the built-in exit() function does not expect any arguments
1410     * to be passed to its function call, and by default this feature is
1411     * hence disabled and will yield in a parser error unless
1412     * ScriptVM::setExitResultEnabled() was explicitly set.
1413     *
1414     * @see ScriptVM::setExitResultEnabled()
1415     */
1416     virtual VMExpr* exitResult() = 0;
1417 schoenebeck 2581 };
1418    
1419 schoenebeck 2645 /** @brief Script callback for a certain event.
1420     *
1421     * Represents a script callback for a certain event, i.e.
1422 schoenebeck 2727 * "on note ... end on" code block.
1423 schoenebeck 2645 */
1424 schoenebeck 2581 class VMEventHandler {
1425     public:
1426 schoenebeck 2645 /**
1427 schoenebeck 2879 * Type of this event handler, which identifies its purpose. For example
1428     * for a "on note ... end on" script callback block,
1429     * @c VM_EVENT_HANDLER_NOTE would be returned here.
1430     */
1431     virtual VMEventHandlerType_t eventHandlerType() const = 0;
1432    
1433     /**
1434 schoenebeck 2645 * Name of the event handler which identifies its purpose. For example
1435     * for a "on note ... end on" script callback block, the name "note"
1436     * would be returned here.
1437     */
1438 schoenebeck 2581 virtual String eventHandlerName() const = 0;
1439 schoenebeck 2645
1440     /**
1441     * Whether or not the event handler makes any use of so called
1442     * "polyphonic" variables.
1443     */
1444     virtual bool isPolyphonic() const = 0;
1445 schoenebeck 2581 };
1446    
1447 schoenebeck 2727 /**
1448 schoenebeck 3285 * Reflects the precise position and span of a specific code block within
1449     * a script. This is currently only used for the locations of commented
1450 schoenebeck 3292 * code blocks due to preprocessor statements, and for parser errors and
1451     * parser warnings.
1452 schoenebeck 3285 *
1453 schoenebeck 3292 * @see ParserIssue for code locations of parser errors and parser warnings
1454     *
1455     * @see VMParserContext::preprocessorComments() for locations of code which
1456     * have been filtered out by preprocessor statements
1457 schoenebeck 3285 */
1458     struct CodeBlock {
1459     int firstLine; ///< The first line number of this code block within the script (indexed with 1 being the very first line).
1460     int lastLine; ///< The last line number of this code block within the script.
1461     int firstColumn; ///< The first column of this code block within the script (indexed with 1 being the very first column).
1462     int lastColumn; ///< The last column of this code block within the script.
1463     };
1464    
1465     /**
1466 schoenebeck 2727 * Encapsulates a noteworty parser issue. This encompasses the type of the
1467     * issue (either a parser error or parser warning), a human readable
1468     * explanation text of the error or warning and the location of the
1469     * encountered parser issue within the script.
1470 schoenebeck 3012 *
1471     * @see VMSourceToken for processing syntax highlighting instead.
1472 schoenebeck 2727 */
1473 schoenebeck 3292 struct ParserIssue : CodeBlock {
1474 schoenebeck 2727 String txt; ///< Human readable explanation text of the parser issue.
1475     ParserIssueType_t type; ///< Whether this issue is either a parser error or just a parser warning.
1476 schoenebeck 2581
1477 schoenebeck 2727 /**
1478     * Print this issue out to the console (stdio).
1479     */
1480 schoenebeck 2581 inline void dump() {
1481     switch (type) {
1482     case PARSER_ERROR:
1483 schoenebeck 2889 printf("[ERROR] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1484 schoenebeck 2581 break;
1485     case PARSER_WARNING:
1486 schoenebeck 2889 printf("[Warning] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1487 schoenebeck 2581 break;
1488     }
1489     }
1490 schoenebeck 2727
1491     /**
1492     * Returns true if this issue is a parser error. In this case the parsed
1493     * script may not be executed!
1494     */
1495 schoenebeck 2581 inline bool isErr() const { return type == PARSER_ERROR; }
1496 schoenebeck 2727
1497     /**
1498     * Returns true if this issue is just a parser warning. A parsed script
1499     * that only raises warnings may be executed if desired, however the
1500     * script may not behave exactly as intended by the script author.
1501     */
1502 schoenebeck 2581 inline bool isWrn() const { return type == PARSER_WARNING; }
1503     };
1504    
1505 schoenebeck 2727 /**
1506     * Convenience function used for converting an ExprType_t constant to a
1507     * string, i.e. for generating error message by the parser.
1508     */
1509 schoenebeck 2581 inline String typeStr(const ExprType_t& type) {
1510     switch (type) {
1511     case EMPTY_EXPR: return "empty";
1512     case INT_EXPR: return "integer";
1513     case INT_ARR_EXPR: return "integer array";
1514 schoenebeck 3573 case REAL_EXPR: return "real number";
1515     case REAL_ARR_EXPR: return "real number array";
1516 schoenebeck 2581 case STRING_EXPR: return "string";
1517     case STRING_ARR_EXPR: return "string array";
1518     }
1519     return "invalid";
1520     }
1521    
1522 schoenebeck 3561 /**
1523 schoenebeck 3573 * Convenience function used for retrieving the data type of a script
1524     * variable name being passed to this function.
1525     *
1526     * @param name - some script variable name (e.g. "$foo")
1527     * @return variable's data type (e.g. INT_EXPR for example above)
1528     */
1529     inline ExprType_t exprTypeOfVarName(const String& name) {
1530     if (name.empty()) return (ExprType_t) -1;
1531     const char prefix = name[0];
1532     switch (prefix) {
1533     case '$': return INT_EXPR;
1534     case '%': return INT_ARR_EXPR;
1535     case '~': return REAL_EXPR;
1536     case '?': return REAL_ARR_EXPR;
1537     case '@': return STRING_EXPR;
1538     case '!': return STRING_ARR_EXPR;
1539     }
1540     return (ExprType_t) -1;
1541     }
1542    
1543     /**
1544     * Returns @c true in case the passed data type is some array data type.
1545     */
1546     inline bool isArray(const ExprType_t& type) {
1547     return type == INT_ARR_EXPR || type == REAL_ARR_EXPR ||
1548     type == STRING_ARR_EXPR;
1549     }
1550    
1551     /**
1552     * Returns @c true in case the passed data type is some scalar number type
1553     * (i.e. not an array and not a string).
1554     */
1555     inline bool isScalarNumber(const ExprType_t& type) {
1556     return type == INT_EXPR || type == REAL_EXPR;
1557     }
1558    
1559     /**
1560 schoenebeck 3561 * Convenience function used for converting an StdUnit_t constant to a
1561     * string, i.e. for generating error message by the parser.
1562     */
1563     inline String unitTypeStr(const StdUnit_t& type) {
1564     switch (type) {
1565     case VM_NO_UNIT: return "none";
1566     case VM_SECOND: return "seconds";
1567     case VM_HERTZ: return "Hz";
1568     case VM_BEL: return "Bel";
1569     }
1570     return "invalid";
1571     }
1572    
1573 schoenebeck 2594 /** @brief Virtual machine representation of a script.
1574     *
1575     * An instance of this abstract base class represents a parsed script,
1576 schoenebeck 2727 * translated into a virtual machine tree. You should first check if there
1577     * were any parser errors. If there were any parser errors, you should
1578     * refrain from executing the virtual machine. Otherwise if there were no
1579     * parser errors (i.e. only warnings), then you might access one of the
1580     * script's event handlers by i.e. calling eventHandlerByName() and pass the
1581     * respective event handler to the ScriptVM class (or to one of the ScriptVM
1582 schoenebeck 2594 * descendants) for execution.
1583     *
1584 schoenebeck 2727 * @see VMExecContext, ScriptVM
1585 schoenebeck 2594 */
1586 schoenebeck 2588 class VMParserContext {
1587     public:
1588     virtual ~VMParserContext() {}
1589 schoenebeck 2727
1590     /**
1591     * Returns all noteworthy issues encountered when the script was parsed.
1592     * These are parser errors and parser warnings.
1593     */
1594 schoenebeck 2588 virtual std::vector<ParserIssue> issues() const = 0;
1595 schoenebeck 2727
1596     /**
1597     * Same as issues(), but this method only returns parser errors.
1598     */
1599 schoenebeck 2588 virtual std::vector<ParserIssue> errors() const = 0;
1600 schoenebeck 2727
1601     /**
1602     * Same as issues(), but this method only returns parser warnings.
1603     */
1604 schoenebeck 2588 virtual std::vector<ParserIssue> warnings() const = 0;
1605 schoenebeck 2727
1606     /**
1607 schoenebeck 3285 * Returns all code blocks of the script which were filtered out by the
1608     * preprocessor.
1609     */
1610     virtual std::vector<CodeBlock> preprocessorComments() const = 0;
1611    
1612     /**
1613 schoenebeck 2727 * Returns the translated virtual machine representation of an event
1614     * handler block (i.e. "on note ... end on" code block) within the
1615     * parsed script. This translated representation of the event handler
1616     * can be executed by the virtual machine.
1617     *
1618     * @param index - index of the event handler within the script
1619     */
1620 schoenebeck 2588 virtual VMEventHandler* eventHandler(uint index) = 0;
1621 schoenebeck 2727
1622     /**
1623     * Same as eventHandler(), but this method returns the event handler by
1624     * its name. So for a "on note ... end on" code block of the parsed
1625     * script you would pass "note" for argument @a name here.
1626     *
1627     * @param name - name of the event handler (i.e. "init", "note",
1628     * "controller", "release")
1629     */
1630 schoenebeck 2588 virtual VMEventHandler* eventHandlerByName(const String& name) = 0;
1631     };
1632    
1633 schoenebeck 2885 class SourceToken;
1634    
1635     /** @brief Recognized token of a script's source code.
1636     *
1637     * Represents one recognized token of a script's source code, for example
1638     * a keyword, variable name, etc. and it provides further informations about
1639     * that particular token, i.e. the precise location (line and column) of the
1640     * token within the original script's source code.
1641     *
1642     * This class is not actually used by the sampler itself. It is rather
1643     * provided for external script editor applications. Primary purpose of
1644     * this class is syntax highlighting for external script editors.
1645 schoenebeck 3012 *
1646     * @see ParserIssue for processing compile errors and warnings instead.
1647 schoenebeck 2885 */
1648     class VMSourceToken {
1649     public:
1650     VMSourceToken();
1651     VMSourceToken(SourceToken* ct);
1652     VMSourceToken(const VMSourceToken& other);
1653     virtual ~VMSourceToken();
1654    
1655     // original text of this token as it is in the script's source code
1656     String text() const;
1657    
1658     // position of token in script
1659 schoenebeck 3012 int firstLine() const; ///< First line this source token is located at in script source code (indexed with 0 being the very first line). Most source code tokens are not spanning over multiple lines, the only current exception are comments, in the latter case you need to process text() to get the last line and last column for the comment.
1660     int firstColumn() const; ///< First column on the first line this source token is located at in script source code (indexed with 0 being the very first column). To get the length of this token use text().length().
1661 schoenebeck 2885
1662     // base types
1663 schoenebeck 3012 bool isEOF() const; ///< Returns true in case this source token represents the end of the source code file.
1664     bool isNewLine() const; ///< Returns true in case this source token represents a line feed character (i.e. "\n" on Unix systems).
1665     bool isKeyword() const; ///< Returns true in case this source token represents a language keyword (i.e. "while", "function", "declare", "on", etc.).
1666     bool isVariableName() const; ///< Returns true in case this source token represents a variable name (i.e. "$someIntVariable", "%someArrayVariable", "\@someStringVariable"). @see isIntegerVariable(), isStringVariable(), isArrayVariable() for the precise variable type.
1667     bool isIdentifier() const; ///< Returns true in case this source token represents an identifier, which currently always means a function name.
1668     bool isNumberLiteral() const; ///< Returns true in case this source token represents a number literal (i.e. 123).
1669     bool isStringLiteral() const; ///< Returns true in case this source token represents a string literal (i.e. "Some text").
1670     bool isComment() const; ///< Returns true in case this source token represents a source code comment.
1671     bool isPreprocessor() const; ///< Returns true in case this source token represents a preprocessor statement.
1672 schoenebeck 3562 bool isMetricPrefix() const;
1673     bool isStdUnit() const;
1674 schoenebeck 3012 bool isOther() const; ///< Returns true in case this source token represents anything else not covered by the token types mentioned above.
1675 schoenebeck 2885
1676     // extended types
1677 schoenebeck 3012 bool isIntegerVariable() const; ///< Returns true in case this source token represents an integer variable name (i.e. "$someIntVariable").
1678 schoenebeck 3573 bool isRealVariable() const; ///< Returns true in case this source token represents a floating point variable name (i.e. "~someRealVariable").
1679 schoenebeck 3012 bool isStringVariable() const; ///< Returns true in case this source token represents an string variable name (i.e. "\@someStringVariable").
1680 schoenebeck 3573 bool isIntArrayVariable() const; ///< Returns true in case this source token represents an integer array variable name (i.e. "%someArrayVariable").
1681     bool isRealArrayVariable() const; ///< Returns true in case this source token represents a real number array variable name (i.e. "?someArrayVariable").
1682     bool isArrayVariable() const DEPRECATED_API; ///< Returns true in case this source token represents an @b integer array variable name (i.e. "%someArrayVariable"). @deprecated This method will be removed, use isIntArrayVariable() instead.
1683 schoenebeck 3012 bool isEventHandlerName() const; ///< Returns true in case this source token represents an event handler name (i.e. "note", "release", "controller").
1684 schoenebeck 2885
1685     VMSourceToken& operator=(const VMSourceToken& other);
1686    
1687     private:
1688     SourceToken* m_token;
1689     };
1690    
1691 schoenebeck 2581 } // namespace LinuxSampler
1692    
1693     #endif // LS_INSTR_SCRIPT_PARSER_COMMON_H

  ViewVC Help
Powered by ViewVC