/[svn]/linuxsampler/trunk/src/scriptvm/common.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/scriptvm/common.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3587 - (hide annotations) (download) (as text)
Sat Aug 31 12:08:49 2019 UTC (4 years, 7 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 88318 byte(s)
NKSP: Real number support for core instrument built-in functions.

* NKSP: Built-in function "play_note()" accepts now real numbers and
  seconds as unit type as well for its 3rd and 4th function arguments.

* NKSP: The following built-in functions accept now real numbers as well for
  their 2nd function argument: "change_vol()", "change_tune()",
  "change_cutoff()", "change_attack()", "change_decay()",
  "change_release()", "change_sustain()", "change_cutoff_attack()",
  "change_cutoff_decay()", "change_cutoff_sustain()",
  "change_cutoff_release()", "change_amp_lfo_freq()",
  "change_cutoff_lfo_freq()", "change_pitch_lfo_freq()",
  "change_vol_time()", "change_tune_time()", "change_pan_time()",
  "fade_in()", "fade_out()", "change_play_pos()".

* NKSP: Fixed built-in function "change_play_pos()" not having accepted
  metric prefixes at all.

* Bumped version (2.1.1.svn12).

1 schoenebeck 2581 /*
2 schoenebeck 3551 * Copyright (c) 2014-2019 Christian Schoenebeck
3 schoenebeck 2581 *
4     * http://www.linuxsampler.org
5     *
6     * This file is part of LinuxSampler and released under the same terms.
7     * See README file for details.
8     */
9    
10     // This header defines data types shared between the VM core implementation
11     // (inside the current source directory) and other parts of the sampler
12 schoenebeck 3292 // (located at other source directories). It also acts as public API of the
13     // Real-Time script engine for other applications.
14 schoenebeck 2581
15     #ifndef LS_INSTR_SCRIPT_PARSER_COMMON_H
16     #define LS_INSTR_SCRIPT_PARSER_COMMON_H
17    
18     #include "../common/global.h"
19 schoenebeck 2588 #include <vector>
20 schoenebeck 2594 #include <map>
21     #include <stddef.h> // offsetof()
22 schoenebeck 3581 #include <functional> // std::function<>
23 schoenebeck 2581
24     namespace LinuxSampler {
25 schoenebeck 2727
26     /**
27 schoenebeck 3557 * Native data type used by the script engine both internally, as well as
28     * for all integer data types used by scripts (i.e. for all $foo variables
29     * in NKSP scripts). Note that this is different from the original KSP which
30     * is limited to 32 bit for integer variables in KSP scripts.
31     */
32     typedef int64_t vmint;
33    
34     /**
35     * Native data type used internally by the script engine for all unsigned
36     * integer types. This type is currently not exposed to scripts.
37     */
38     typedef uint64_t vmuint;
39    
40     /**
41 schoenebeck 3573 * Native data type used by the script engine both internally for floating
42     * point data, as well as for all @c real data types used by scripts (i.e.
43     * for all ~foo variables in NKSP scripts).
44 schoenebeck 3561 */
45     typedef float vmfloat;
46    
47     /**
48 schoenebeck 2727 * Identifies the type of a noteworthy issue identified by the script
49     * parser. That's either a parser error or parser warning.
50     */
51 schoenebeck 2581 enum ParserIssueType_t {
52 schoenebeck 2727 PARSER_ERROR, ///< Script parser encountered an error, the script cannot be executed.
53     PARSER_WARNING ///< Script parser encountered a warning, the script may be executed if desired, but the script may not necessarily behave as originally intended by the script author.
54 schoenebeck 2581 };
55    
56 schoenebeck 2727 /** @brief Expression's data type.
57     *
58     * Identifies to which data type an expression within a script evaluates to.
59     * This can for example reflect the data type of script function arguments,
60     * script function return values, but also the resulting data type of some
61     * mathematical formula within a script.
62     */
63 schoenebeck 2581 enum ExprType_t {
64 schoenebeck 2727 EMPTY_EXPR, ///< i.e. on invalid expressions or i.e. a function call that does not return a result value (the built-in wait() or message() functions for instance)
65     INT_EXPR, ///< integer (scalar) expression
66     INT_ARR_EXPR, ///< integer array expression
67     STRING_EXPR, ///< string expression
68     STRING_ARR_EXPR, ///< string array expression
69 schoenebeck 3573 REAL_EXPR, ///< floating point (scalar) expression
70     REAL_ARR_EXPR, ///< floating point array expression
71 schoenebeck 2581 };
72    
73 schoenebeck 2727 /** @brief Result flags of a script statement or script function call.
74     *
75     * A set of bit flags which provide informations about the success or
76     * failure of a statement within a script. That's also especially used for
77     * providing informations about success / failure of a call to a built-in
78     * script function. The virtual machine evaluates these flags during runtime
79     * to decide whether it should i.e. stop or suspend execution of a script.
80     *
81     * Since these are bit flags, these constants are bitwise combined.
82     */
83 schoenebeck 2581 enum StmtFlags_t {
84     STMT_SUCCESS = 0, ///< Function / statement was executed successfully, no error occurred.
85 schoenebeck 2727 STMT_ABORT_SIGNALLED = 1, ///< VM should stop the current callback execution (usually because of an error, but might also be without an error reason, i.e. when the built-in script function exit() was called).
86     STMT_SUSPEND_SIGNALLED = (1<<1), ///< VM supended execution, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time
87     STMT_ERROR_OCCURRED = (1<<2), ///< VM stopped execution due to some script runtime error that occurred
88 schoenebeck 2581 };
89    
90 schoenebeck 2727 /** @brief Virtual machine execution status.
91     *
92     * A set of bit flags which reflect the current overall execution status of
93     * the virtual machine concerning a certain script execution instance.
94     *
95     * Since these are bit flags, these constants are bitwise combined.
96     */
97 schoenebeck 2581 enum VMExecStatus_t {
98 schoenebeck 2727 VM_EXEC_NOT_RUNNING = 0, ///< Script is currently not executed by the VM.
99     VM_EXEC_RUNNING = 1, ///< The VM is currently executing the script.
100     VM_EXEC_SUSPENDED = (1<<1), ///< Script is currently suspended by the VM, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time.
101     VM_EXEC_ERROR = (1<<2), ///< A runtime error occurred while executing the script (i.e. a call to some built-in script function failed).
102 schoenebeck 2581 };
103    
104 schoenebeck 2879 /** @brief Script event handler type.
105     *
106     * Identifies one of the possible event handler callback types defined by
107     * the NKSP script language.
108 schoenebeck 3557 *
109     * IMPORTANT: this type is forced to be emitted as int32_t type ATM, because
110     * that's the native size expected by the built-in instrument script
111     * variable bindings (see occurrences of VMInt32RelPtr and DECLARE_VMINT
112     * respectively. A native type mismatch between the two could lead to
113     * undefined behavior! Background: By definition the C/C++ compiler is free
114     * to choose a bit size for individual enums which it might find
115     * appropriate, which is usually decided by the compiler according to the
116     * biggest enum constant value defined (in practice it is usually 32 bit).
117 schoenebeck 2879 */
118 schoenebeck 3557 enum VMEventHandlerType_t : int32_t {
119 schoenebeck 2879 VM_EVENT_HANDLER_INIT, ///< Initilization event handler, that is script's "on init ... end on" code block.
120     VM_EVENT_HANDLER_NOTE, ///< Note event handler, that is script's "on note ... end on" code block.
121     VM_EVENT_HANDLER_RELEASE, ///< Release event handler, that is script's "on release ... end on" code block.
122     VM_EVENT_HANDLER_CONTROLLER, ///< Controller event handler, that is script's "on controller ... end on" code block.
123     };
124    
125 schoenebeck 3561 /**
126     * All metric unit prefixes (actually just scale factors) supported by this
127     * script engine.
128     */
129     enum MetricPrefix_t {
130     VM_NO_PREFIX = 0, ///< = 1
131     VM_KILO, ///< = 10^3, short 'k'
132     VM_HECTO, ///< = 10^2, short 'h'
133     VM_DECA, ///< = 10, short 'da'
134     VM_DECI, ///< = 10^-1, short 'd'
135     VM_CENTI, ///< = 10^-2, short 'c' (this is also used for tuning "cents")
136     VM_MILLI, ///< = 10^-3, short 'm'
137     VM_MICRO, ///< = 10^-6, short 'u'
138     };
139    
140     /**
141 schoenebeck 3581 * This constant is used for comparison with Unit::unitFactor() to check
142     * whether a number does have any metric unit prefix at all.
143     *
144     * @see Unit::unitFactor()
145     */
146     static const vmfloat VM_NO_FACTOR = vmfloat(1);
147    
148     /**
149 schoenebeck 3561 * All measurement unit types supported by this script engine.
150     *
151     * @e Note: there is no standard unit "cents" here (for pitch/tuning), use
152     * @c VM_CENTI for the latter instad. That's because the commonly cited
153     * "cents" unit is actually no measurement unit type but rather a metric
154     * unit prefix.
155     *
156     * @see MetricPrefix_t
157     */
158     enum StdUnit_t {
159     VM_NO_UNIT = 0, ///< No unit used, the number is just an abstract number.
160     VM_SECOND, ///< Measuring time.
161     VM_HERTZ, ///< Measuring frequency.
162     VM_BEL, ///< Measuring relation between two energy levels (in logarithmic scale). Since we are using it for accoustics, we are always referring to A-weighted Bels (i.e. dBA).
163     };
164    
165 schoenebeck 3581 //TODO: see Unit::hasUnitFactorEver()
166     enum EverTriState_t {
167     VM_NEVER = 0,
168     VM_MAYBE,
169     VM_ALWAYS,
170     };
171    
172 schoenebeck 2727 // just symbol prototyping
173 schoenebeck 2596 class VMIntExpr;
174 schoenebeck 3573 class VMRealExpr;
175 schoenebeck 2596 class VMStringExpr;
176 schoenebeck 3582 class VMNumberExpr;
177 schoenebeck 3581 class VMArrayExpr;
178 schoenebeck 2619 class VMIntArrayExpr;
179 schoenebeck 3573 class VMRealArrayExpr;
180 schoenebeck 2619 class VMStringArrayExpr;
181 schoenebeck 3311 class VMParserContext;
182 schoenebeck 2596
183 schoenebeck 3581 /** @brief Virtual machine standard measuring unit.
184 schoenebeck 3561 *
185     * Abstract base class representing standard measurement units throughout
186 schoenebeck 3581 * the script engine. These might be e.g. "dB" (deci Bel) for loudness,
187     * "Hz" (Hertz) for frequencies or "s" for "seconds". These unit types can
188     * combined with metric prefixes, for instance "kHz" (kilo Hertz),
189     * "us" (micro second), etc.
190 schoenebeck 3561 *
191     * Originally the script engine only supported abstract integer values for
192     * controlling any synthesis parameter or built-in function argument or
193     * variable. Under certain situations it makes sense though for an
194     * instrument script author to provide values in real, standard measurement
195 schoenebeck 3581 * units to provide a more natural and intuitive approach for writing
196     * instrument scripts, for example by setting the frequency of some LFO
197     * directly to "20Hz" or reducing loudness by "-4.2dB". Hence support for
198     * standard units in scripts was added as an extension to the NKSP script
199     * engine.
200     *
201     * So a unit consists of 1) a sequence of metric prefixes as scale factor
202     * (e.g. "k" for kilo) and 2) the actual unit type (e.g. "Hz" for Hertz).
203     * The unit type is a constant feature of number literals and variables, so
204     * once a variable was declared with a unit type (or no unit type at all)
205     * then that unit type of that variable cannot be changed for the entire
206     * life time of the script. This is different from the unit's metric
207     * prefix(es) of variables which may freely be changed at runtime.
208 schoenebeck 3561 */
209     class VMUnit {
210     public:
211     /**
212 schoenebeck 3581 * Returns the metric prefix(es) of this unit as unit factor. A metric
213     * prefix essentially is just a mathematical scale factor that should be
214     * applied to the number associated with the measurement unit. Consider
215     * a string literal in an NKSP script like '3kHz' where 'k' (kilo) is
216     * the metric prefix, which essentically is a scale factor of 1000.
217 schoenebeck 3561 *
218 schoenebeck 3581 * Usually a unit either has exactly none or one metric prefix, but note
219     * that there might also be units with more than one prefix, for example
220     * @c mdB (milli deci Bel) is used sometimes which has two prefixes. The
221     * latter is an exception though and more than two prefixes is currently
222     * not supported by the script engine.
223 schoenebeck 3561 *
224 schoenebeck 3581 * The factor returned by this method is the final mathematical factor
225     * that should be multiplied against the number associated with this
226     * unit. This factor results from the sequence of metric prefixes of
227     * this unit.
228     *
229     * @see MetricPrefix_t, hasUnitFactorNow(), hasUnitFactorEver(),
230     * VM_NO_FACTOR
231     * @returns current metric unit factor
232 schoenebeck 3561 */
233 schoenebeck 3581 virtual vmfloat unitFactor() const = 0;
234 schoenebeck 3561
235 schoenebeck 3581 //TODO: this still needs to be implemented in tree.h/.pp, built-in functions and as 2nd pass of parser appropriately
236     /*virtual*/ EverTriState_t hasUnitFactorEver() const { return VM_NEVER; }
237    
238 schoenebeck 3561 /**
239 schoenebeck 3581 * Whether this unit currently does have any metric unit prefix.
240 schoenebeck 3561 *
241 schoenebeck 3581 * This is actually just a convenience method which returns @c true if
242     * unitFactor() is not @c 1.0.
243     *
244     * @see MetricPrefix_t, unitFactor(), hasUnitFactorEver(), VM_NO_FACTOR
245     * @returns @c true if this unit currently has any metric prefix
246 schoenebeck 3561 */
247 schoenebeck 3581 bool hasUnitFactorNow() const;
248 schoenebeck 3561
249     /**
250     * This is the actual fundamental measuring unit base type of this unit,
251     * which might be either Hertz, second or Bel.
252     *
253 schoenebeck 3581 * Note that a number without a unit type may still have metric
254     * prefixes.
255     *
256     * @returns standard unit type identifier or VM_NO_UNIT if no unit type
257     * is used for this object
258 schoenebeck 3561 */
259     virtual StdUnit_t unitType() const = 0;
260    
261     /**
262     * Returns the actual mathematical factor represented by the passed
263     * @a prefix argument.
264     */
265     static vmfloat unitFactor(MetricPrefix_t prefix);
266    
267     /**
268     * Returns the actual mathematical factor represented by the passed
269     * two @a prefix1 and @a prefix2 arguments.
270 schoenebeck 3581 *
271     * @returns scale factor of given metric unit prefixes
272 schoenebeck 3561 */
273     static vmfloat unitFactor(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
274 schoenebeck 3581
275     /**
276     * Returns the actual mathematical factor represented by the passed
277     * @a prefixes array. The passed array should always be terminated by a
278     * VM_NO_PREFIX value as last element.
279     *
280     * @param prefixes - sequence of metric prefixes
281     * @param size - max. amount of elements of array @a prefixes
282     * @returns scale factor of given metric unit prefixes
283     */
284     static vmfloat unitFactor(const MetricPrefix_t* prefixes, vmuint size = 2);
285 schoenebeck 3561 };
286    
287 schoenebeck 2727 /** @brief Virtual machine expression
288     *
289     * This is the abstract base class for all expressions of scripts.
290     * Deriving classes must implement the abstract method exprType().
291     *
292     * An expression within a script is translated into one instance of this
293     * class. It allows a high level access for the virtual machine to evaluate
294     * and handle expressions appropriately during execution. Expressions are
295     * for example all kinds of formulas, function calls, statements or a
296     * combination of them. Most of them evaluate to some kind of value, which
297     * might be further processed as part of encompassing expressions to outer
298     * expression results and so forth.
299     */
300 schoenebeck 2581 class VMExpr {
301     public:
302 schoenebeck 2727 /**
303     * Identifies the data type to which the result of this expression
304     * evaluates to. This abstract method must be implemented by deriving
305     * classes.
306     */
307 schoenebeck 2581 virtual ExprType_t exprType() const = 0;
308 schoenebeck 2727
309     /**
310     * In case this expression is an integer expression, then this method
311     * returns a casted pointer to that VMIntExpr object. It returns NULL
312     * if this expression is not an integer expression.
313     *
314     * @b Note: type casting performed by this method is strict! That means
315     * if this expression is i.e. actually a string expression like "12",
316     * calling asInt() will @b not cast that numerical string expression to
317     * an integer expression 12 for you, instead this method will simply
318 schoenebeck 3573 * return NULL! Same applies if this expression is actually a real
319     * number expression: asInt() would return NULL in that case as well.
320 schoenebeck 2727 *
321 schoenebeck 3582 * @see exprType(), asReal(), asNumber()
322 schoenebeck 2727 */
323 schoenebeck 2596 VMIntExpr* asInt() const;
324 schoenebeck 2727
325     /**
326 schoenebeck 3573 * In case this expression is a real number (floating point) expression,
327     * then this method returns a casted pointer to that VMRealExpr object.
328     * It returns NULL if this expression is not a real number expression.
329     *
330     * @b Note: type casting performed by this method is strict! That means
331     * if this expression is i.e. actually a string expression like "12",
332     * calling asReal() will @b not cast that numerical string expression to
333     * a real number expression 12.0 for you, instead this method will
334     * simply return NULL! Same applies if this expression is actually an
335     * integer expression: asReal() would return NULL in that case as well.
336     *
337 schoenebeck 3582 * @see exprType(), asInt(), asNumber()
338 schoenebeck 3573 */
339     VMRealExpr* asReal() const;
340    
341     /**
342     * In case this expression is a scalar number expression, that is either
343     * an integer (scalar) expression or a real number (floating point
344     * scalar) expression, then this method returns a casted pointer to that
345 schoenebeck 3582 * VMNumberExpr base class object. It returns NULL if this
346 schoenebeck 3573 * expression is neither an integer (scalar), nor a real number (scalar)
347     * expression.
348     *
349     * Since the methods asInt() and asReal() are very strict, this method
350     * is provided as convenience access in case only very general
351     * information (e.g. which standard measurement unit is being used or
352     * whether final operator being effective to this expression) is
353     * intended to be retrieved of this scalar number expression independent
354     * from whether this expression is actually an integer or a real number
355     * expression.
356     *
357     * @see exprType(), asInt(), asReal()
358     */
359 schoenebeck 3582 VMNumberExpr* asNumber() const;
360 schoenebeck 3573
361     /**
362 schoenebeck 2727 * In case this expression is a string expression, then this method
363     * returns a casted pointer to that VMStringExpr object. It returns NULL
364     * if this expression is not a string expression.
365     *
366     * @b Note: type casting performed by this method is strict! That means
367     * if this expression is i.e. actually an integer expression like 120,
368     * calling asString() will @b not cast that integer expression to a
369     * string expression "120" for you, instead this method will simply
370     * return NULL!
371     *
372     * @see exprType()
373     */
374 schoenebeck 2596 VMStringExpr* asString() const;
375 schoenebeck 2727
376     /**
377     * In case this expression is an integer array expression, then this
378     * method returns a casted pointer to that VMIntArrayExpr object. It
379     * returns NULL if this expression is not an integer array expression.
380     *
381     * @b Note: type casting performed by this method is strict! That means
382 schoenebeck 3573 * if this expression is i.e. an integer scalar expression, a real
383     * number expression or a string expression, calling asIntArray() will
384     * @b not cast those expressions to an integer array expression for you,
385     * instead this method will simply return NULL!
386 schoenebeck 2727 *
387 schoenebeck 3056 * @b Note: this method is currently, and in contrast to its other
388     * counter parts, declared as virtual method. Some deriving classes are
389     * currently using this to override this default implementation in order
390     * to implement an "evaluate now as integer array" behavior. This has
391     * efficiency reasons, however this also currently makes this part of
392     * the API less clean and should thus be addressed in future with
393     * appropriate changes to the API.
394     *
395 schoenebeck 2727 * @see exprType()
396     */
397 schoenebeck 3056 virtual VMIntArrayExpr* asIntArray() const;
398 schoenebeck 2945
399     /**
400 schoenebeck 3573 * In case this expression is a real number (floating point) array
401     * expression, then this method returns a casted pointer to that
402     * VMRealArrayExpr object. It returns NULL if this expression is not a
403     * real number array expression.
404     *
405     * @b Note: type casting performed by this method is strict! That means
406     * if this expression is i.e. a real number scalar expression, an
407     * integer expression or a string expression, calling asRealArray() will
408     * @b not cast those scalar expressions to a real number array
409     * expression for you, instead this method will simply return NULL!
410     *
411     * @b Note: this method is currently, and in contrast to its other
412     * counter parts, declared as virtual method. Some deriving classes are
413     * currently using this to override this default implementation in order
414     * to implement an "evaluate now as real number array" behavior. This
415     * has efficiency reasons, however this also currently makes this part
416     * of the API less clean and should thus be addressed in future with
417     * appropriate changes to the API.
418     *
419     * @see exprType()
420     */
421     virtual VMRealArrayExpr* asRealArray() const;
422    
423     /**
424 schoenebeck 3581 * This is an alternative to calling either asIntArray() or
425     * asRealArray(). This method here might be used if the fundamental
426     * scalar data type (real or integer) of the array is not relevant,
427     * i.e. for just getting the size of the array. Since all as*() methods
428     * here are very strict regarding type casting, this asArray() method
429     * sometimes can reduce code complexity.
430     *
431     * Likewise calling this method only returns a valid pointer if the
432     * expression is some array type (currently either integer array or real
433     * number array). For any other expression type this method will return
434     * NULL instead.
435     *
436     * @see exprType()
437     */
438     VMArrayExpr* asArray() const;
439    
440     /**
441 schoenebeck 2945 * Returns true in case this expression can be considered to be a
442     * constant expression. A constant expression will retain the same
443     * value throughout the entire life time of a script and the
444     * expression's constant value may be evaluated already at script
445     * parse time, which may result in performance benefits during script
446     * runtime.
447 schoenebeck 2960 *
448     * @b NOTE: A constant expression is per se always also non modifyable.
449     * But a non modifyable expression may not necessarily be a constant
450     * expression!
451     *
452     * @see isModifyable()
453 schoenebeck 2945 */
454     virtual bool isConstExpr() const = 0;
455    
456 schoenebeck 2960 /**
457     * Returns true in case this expression is allowed to be modified.
458     * If this method returns @c false then this expression must be handled
459     * as read-only expression, which means that assigning a new value to it
460     * is either not possible or not allowed.
461     *
462     * @b NOTE: A constant expression is per se always also non modifyable.
463     * But a non modifyable expression may not necessarily be a constant
464     * expression!
465     *
466     * @see isConstExpr()
467     */
468 schoenebeck 2945 bool isModifyable() const;
469 schoenebeck 2581 };
470    
471 schoenebeck 3573 /** @brief Virtual machine scalar number expression
472     *
473     * This is the abstract base class for integer (scalar) expressions and
474     * real number (floating point scalar) expressions of scripts.
475     */
476 schoenebeck 3582 class VMNumberExpr : virtual public VMExpr, virtual public VMUnit {
477 schoenebeck 3573 public:
478     /**
479     * Returns @c true if the value of this expression should be applied
480     * as final value to the respective destination synthesis chain
481     * parameter.
482     *
483     * This property is somewhat special and dedicated for the purpose of
484     * this expression's (integer or real number) value to be applied as
485     * parameter to the synthesis chain of the sampler (i.e. for altering a
486     * filter cutoff frequency). Now historically and by default all values
487     * of scripts are applied relatively to the sampler's synthesis chain,
488     * that is the synthesis parameter value of a script is multiplied
489     * against other sources for the same synthesis parameter (i.e. an LFO
490     * or a dedicated MIDI controller either hard wired in the engine or
491     * defined by the instrument patch). So by default the resulting actual
492     * final synthesis parameter is a combination of all these sources. This
493     * has the advantage that it creates a very living and dynamic overall
494     * sound.
495     *
496     * However sometimes there are requirements by script authors where this
497     * is not what you want. Therefore the NKSP script engine added a
498     * language extension by prefixing a value in scripts with a @c !
499     * character the value will be defined as being the "final" value of the
500     * destination synthesis parameter, so that causes this value to be
501     * applied exclusively, and the values of all other sources are thus
502     * entirely ignored by the sampler's synthesis core as long as this
503     * value is assigned by the script engine as "final" value for the
504     * requested synthesis parameter.
505     */
506     virtual bool isFinal() const = 0;
507 schoenebeck 3581
508     /**
509     * Calling this method evaluates the expression and returns the value
510     * of the expression as integer. If this scalar number expression is a
511     * real number expression then this method automatically casts the value
512     * from real number to integer.
513     */
514     vmint evalCastInt();
515    
516     /**
517     * Calling this method evaluates the expression and returns the value
518 schoenebeck 3584 * of the expression as integer and thus behaves similar to the previous
519     * method, however this overridden method automatically takes unit
520     * prefixes into account and returns a converted value corresponding to
521     * the given unit @a prefix expected by the caller.
522     *
523     * Example: Assume this expression was an integer expression '12kHz'
524     * then calling this method as @c evalCastInt(VM_MILLI) would return
525     * the value @c 12000000.
526     *
527     * @param prefix - measuring unit prefix expected for result by caller
528     */
529     vmint evalCastInt(MetricPrefix_t prefix);
530    
531     /**
532     * This method behaves like the previous method, just that it takes a
533     * measuring unit prefix with two elements (e.g. "milli cents" for
534     * tuning).
535     *
536     * @param prefix1 - 1st measuring unit prefix element expected by caller
537     * @param prefix2 - 2nd measuring unit prefix element expected by caller
538     */
539     vmint evalCastInt(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
540    
541     /**
542     * Calling this method evaluates the expression and returns the value
543 schoenebeck 3581 * of the expression as real number. If this scalar number expression is
544     * an integer expression then this method automatically casts the value
545     * from integer to real number.
546     */
547     vmfloat evalCastReal();
548 schoenebeck 3584
549     /**
550     * Calling this method evaluates the expression and returns the value
551     * of the expression as real number and thus behaves similar to the
552     * previous method, however this overridden method automatically takes
553     * unit prefixes into account and returns a converted value
554     * corresponding to the given unit @a prefix expected by the caller.
555     *
556     * Example: Assume this expression was an integer expression '8ms' then
557     * calling this method as @c evalCastReal(VM_NO_PREFIX) would return the
558     * value @c 0.008.
559     *
560     * @param prefix - measuring unit prefix expected for result by caller
561     */
562     vmfloat evalCastReal(MetricPrefix_t prefix);
563    
564     /**
565     * This method behaves like the previous method, just that it takes a
566     * measuring unit prefix with two elements (e.g. "milli cents" for
567     * tuning).
568     *
569     * @param prefix1 - 1st measuring unit prefix element expected by caller
570     * @param prefix2 - 2nd measuring unit prefix element expected by caller
571     */
572     vmfloat evalCastReal(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
573 schoenebeck 3573 };
574    
575 schoenebeck 2727 /** @brief Virtual machine integer expression
576     *
577     * This is the abstract base class for all expressions inside scripts which
578     * evaluate to an integer (scalar) value. Deriving classes implement the
579     * abstract method evalInt() to return the actual integer result value of
580     * the expression.
581     */
582 schoenebeck 3582 class VMIntExpr : virtual public VMNumberExpr {
583 schoenebeck 2581 public:
584 schoenebeck 2727 /**
585     * Returns the result of this expression as integer (scalar) value.
586     * This abstract method must be implemented by deriving classes.
587     */
588 schoenebeck 3557 virtual vmint evalInt() = 0;
589 schoenebeck 2727
590     /**
591 schoenebeck 3561 * Returns the result of this expression as integer (scalar) value and
592     * thus behaves similar to the previous method, however this overridden
593     * method automatically takes unit prefixes into account and returns a
594     * value corresponding to the expected given unit @a prefix.
595     *
596     * @param prefix - default measurement unit prefix expected by caller
597     */
598     vmint evalInt(MetricPrefix_t prefix);
599    
600     /**
601     * This method behaves like the previous method, just that it takes
602     * a default measurement prefix with two elements (i.e. "milli cents"
603     * for tuning).
604     */
605     vmint evalInt(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
606    
607     /**
608 schoenebeck 2727 * Returns always INT_EXPR for instances of this class.
609     */
610     ExprType_t exprType() const OVERRIDE { return INT_EXPR; }
611 schoenebeck 3573 };
612 schoenebeck 3561
613 schoenebeck 3573 /** @brief Virtual machine real number (floating point scalar) expression
614     *
615     * This is the abstract base class for all expressions inside scripts which
616     * evaluate to a real number (floating point scalar) value. Deriving classes
617     * implement the abstract method evalReal() to return the actual floating
618     * point result value of the expression.
619     */
620 schoenebeck 3582 class VMRealExpr : virtual public VMNumberExpr {
621 schoenebeck 3573 public:
622 schoenebeck 3561 /**
623 schoenebeck 3573 * Returns the result of this expression as real number (floating point
624     * scalar) value. This abstract method must be implemented by deriving
625     * classes.
626     */
627     virtual vmfloat evalReal() = 0;
628    
629     /**
630     * Returns the result of this expression as real number (floating point
631     * scalar) value and thus behaves similar to the previous method,
632     * however this overridden method automatically takes unit prefixes into
633     * account and returns a value corresponding to the expected given unit
634     * @a prefix.
635 schoenebeck 3561 *
636 schoenebeck 3573 * @param prefix - default measurement unit prefix expected by caller
637 schoenebeck 3561 */
638 schoenebeck 3573 vmfloat evalReal(MetricPrefix_t prefix);
639    
640     /**
641     * This method behaves like the previous method, just that it takes
642     * a default measurement prefix with two elements (i.e. "milli cents"
643     * for tuning).
644     */
645     vmfloat evalReal(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
646    
647     /**
648     * Returns always REAL_EXPR for instances of this class.
649     */
650     ExprType_t exprType() const OVERRIDE { return REAL_EXPR; }
651 schoenebeck 2581 };
652    
653 schoenebeck 2727 /** @brief Virtual machine string expression
654     *
655     * This is the abstract base class for all expressions inside scripts which
656     * evaluate to a string value. Deriving classes implement the abstract
657     * method evalStr() to return the actual string result value of the
658     * expression.
659     */
660 schoenebeck 2581 class VMStringExpr : virtual public VMExpr {
661     public:
662 schoenebeck 2727 /**
663     * Returns the result of this expression as string value. This abstract
664     * method must be implemented by deriving classes.
665     */
666 schoenebeck 2581 virtual String evalStr() = 0;
667 schoenebeck 2727
668     /**
669     * Returns always STRING_EXPR for instances of this class.
670     */
671     ExprType_t exprType() const OVERRIDE { return STRING_EXPR; }
672 schoenebeck 2581 };
673    
674 schoenebeck 2727 /** @brief Virtual Machine Array Value Expression
675     *
676     * This is the abstract base class for all expressions inside scripts which
677     * evaluate to some kind of array value. Deriving classes implement the
678     * abstract method arraySize() to return the amount of elements within the
679     * array.
680     */
681 schoenebeck 2619 class VMArrayExpr : virtual public VMExpr {
682     public:
683 schoenebeck 2727 /**
684     * Returns amount of elements in this array. This abstract method must
685     * be implemented by deriving classes.
686     */
687 schoenebeck 3557 virtual vmint arraySize() const = 0;
688 schoenebeck 2619 };
689    
690 schoenebeck 3581 /** @brief Virtual Machine Number Array Expression
691     *
692     * This is the abstract base class for all expressions which either evaluate
693     * to an integer array or real number array.
694     */
695     class VMNumberArrayExpr : virtual public VMArrayExpr {
696     public:
697     /**
698     * Returns the metric unit factor of the requested array element.
699     *
700     * @param i - array element index (must be between 0 .. arraySize() - 1)
701     * @see VMUnit::unitFactor() for details about metric unit factors
702     */
703     virtual vmfloat unitFactorOfElement(vmuint i) const = 0;
704    
705     /**
706     * Changes the current unit factor of the array element given by element
707     * index @a i.
708     *
709     * @param i - array element index (must be between 0 .. arraySize() - 1)
710     * @param factor - new unit factor to be assigned
711     * @see VMUnit::unitFactor() for details about metric unit factors
712     */
713     virtual void assignElementUnitFactor(vmuint i, vmfloat factor) = 0;
714     };
715    
716 schoenebeck 2727 /** @brief Virtual Machine Integer Array Expression
717     *
718     * This is the abstract base class for all expressions inside scripts which
719     * evaluate to an array of integer values. Deriving classes implement the
720     * abstract methods arraySize(), evalIntElement() and assignIntElement() to
721     * access the individual integer array values.
722     */
723 schoenebeck 3581 class VMIntArrayExpr : virtual public VMNumberArrayExpr {
724 schoenebeck 2619 public:
725 schoenebeck 2727 /**
726     * Returns the (scalar) integer value of the array element given by
727     * element index @a i.
728     *
729     * @param i - array element index (must be between 0 .. arraySize() - 1)
730     */
731 schoenebeck 3557 virtual vmint evalIntElement(vmuint i) = 0;
732 schoenebeck 2727
733     /**
734     * Changes the current value of an element (given by array element
735     * index @a i) of this integer array.
736     *
737     * @param i - array element index (must be between 0 .. arraySize() - 1)
738     * @param value - new integer scalar value to be assigned to that array element
739     */
740 schoenebeck 3557 virtual void assignIntElement(vmuint i, vmint value) = 0;
741 schoenebeck 2727
742     /**
743     * Returns always INT_ARR_EXPR for instances of this class.
744     */
745     ExprType_t exprType() const OVERRIDE { return INT_ARR_EXPR; }
746 schoenebeck 2619 };
747    
748 schoenebeck 3573 /** @brief Virtual Machine Real Number Array Expression
749     *
750     * This is the abstract base class for all expressions inside scripts which
751     * evaluate to an array of real numbers (floating point values). Deriving
752     * classes implement the abstract methods arraySize(), evalRealElement() and
753     * assignRealElement() to access the array's individual real numbers.
754     */
755 schoenebeck 3581 class VMRealArrayExpr : virtual public VMNumberArrayExpr {
756 schoenebeck 3573 public:
757     /**
758     * Returns the (scalar) real mumber (floating point value) of the array
759     * element given by element index @a i.
760     *
761     * @param i - array element index (must be between 0 .. arraySize() - 1)
762     */
763     virtual vmfloat evalRealElement(vmuint i) = 0;
764    
765     /**
766     * Changes the current value of an element (given by array element
767     * index @a i) of this real number array.
768     *
769     * @param i - array element index (must be between 0 .. arraySize() - 1)
770     * @param value - new real number value to be assigned to that array element
771     */
772     virtual void assignRealElement(vmuint i, vmfloat value) = 0;
773    
774     /**
775     * Returns always REAL_ARR_EXPR for instances of this class.
776     */
777     ExprType_t exprType() const OVERRIDE { return REAL_ARR_EXPR; }
778     };
779    
780 schoenebeck 2727 /** @brief Arguments (parameters) for being passed to a built-in script function.
781     *
782     * An argument or a set of arguments passed to a script function are
783     * translated by the parser to an instance of this class. This abstract
784     * interface class is used by implementations of built-in functions to
785     * obtain the individual function argument values being passed to them at
786     * runtime.
787     */
788 schoenebeck 2581 class VMFnArgs {
789     public:
790 schoenebeck 2727 /**
791     * Returns the amount of arguments going to be passed to the script
792     * function.
793     */
794 schoenebeck 3557 virtual vmint argsCount() const = 0;
795 schoenebeck 2727
796     /**
797     * Returns the respective argument (requested by argument index @a i) of
798     * this set of arguments. This method is called by implementations of
799     * built-in script functions to obtain the value of each function
800     * argument passed to the function at runtime.
801     *
802     * @param i - function argument index (indexed from left to right)
803 schoenebeck 3587 * @return requested function argument or NULL if @a i out of bounds
804 schoenebeck 2727 */
805 schoenebeck 3557 virtual VMExpr* arg(vmint i) = 0;
806 schoenebeck 2581 };
807    
808 schoenebeck 2727 /** @brief Result value returned from a call to a built-in script function.
809     *
810     * Implementations of built-in script functions return an instance of this
811     * object to let the virtual machine obtain the result value of the function
812     * call, which might then be further processed by the virtual machine
813     * according to the script. It also provides informations about the success
814     * or failure of the function call.
815     */
816 schoenebeck 2581 class VMFnResult {
817     public:
818 schoenebeck 2727 /**
819     * Returns the result value of the function call, represented by a high
820     * level expression object.
821     */
822 schoenebeck 2581 virtual VMExpr* resultValue() = 0;
823 schoenebeck 2727
824     /**
825     * Provides detailed informations of the success / failure of the
826     * function call. The virtual machine is evaluating the flags returned
827     * here to decide whether it must abort or suspend execution of the
828     * script at this point.
829     */
830 schoenebeck 2581 virtual StmtFlags_t resultFlags() { return STMT_SUCCESS; }
831     };
832    
833 schoenebeck 2727 /** @brief Virtual machine built-in function.
834 schoenebeck 2612 *
835     * Abstract base class for built-in script functions, defining the interface
836 schoenebeck 2727 * for all built-in script function implementations. All built-in script
837     * functions are deriving from this abstract interface class in order to
838     * provide their functionality to the virtual machine with this unified
839     * interface.
840     *
841     * The methods of this interface class provide two purposes:
842     *
843     * 1. When a script is loaded, the script parser uses the methods of this
844     * interface to check whether the script author was calling the
845     * respective built-in script function in a correct way. For example
846     * the parser checks whether the required amount of parameters were
847     * passed to the function and whether the data types passed match the
848     * data types expected by the function. If not, loading the script will
849     * be aborted with a parser error, describing to the user (i.e. script
850     * author) the precise misusage of the respective function.
851     * 2. After the script was loaded successfully and the script is executed,
852     * the virtual machine calls the exec() method of the respective built-in
853     * function to provide the actual functionality of the built-in function
854     * call.
855 schoenebeck 2612 */
856 schoenebeck 2581 class VMFunction {
857     public:
858 schoenebeck 2612 /**
859     * Script data type of the function's return value. If the function does
860 schoenebeck 2727 * not return any value (void), then it returns EMPTY_EXPR here.
861 schoenebeck 3577 *
862     * Some functions may have a different return type depending on the
863     * arguments to be passed to this function. That's what the @a args
864     * parameter is for, so that the method implementation can look ahead
865     * of what kind of parameters are going to be passed to the built-in
866     * function later on in order to decide which return value type would
867     * be used and returned by the function accordingly in that case.
868     *
869     * @param args - function arguments going to be passed for executing
870     * this built-in function later on
871 schoenebeck 2612 */
872 schoenebeck 3577 virtual ExprType_t returnType(VMFnArgs* args) = 0;
873 schoenebeck 2612
874     /**
875 schoenebeck 3581 * Standard measuring unit type of the function's result value
876     * (e.g. second, Hertz).
877     *
878     * Some functions may have a different standard measuring unit type for
879     * their return value depending on the arguments to be passed to this
880     * function. That's what the @a args parameter is for, so that the
881     * method implementation can look ahead of what kind of parameters are
882     * going to be passed to the built-in function later on in order to
883     * decide which return value type would be used and returned by the
884     * function accordingly in that case.
885     *
886     * @param args - function arguments going to be passed for executing
887     * this built-in function later on
888     * @see Unit for details about standard measuring units
889     */
890     virtual StdUnit_t returnUnitType(VMFnArgs* args) = 0;
891    
892     /**
893     * Whether the result value returned by this built-in function is
894     * considered to be a 'final' value.
895     *
896     * Some functions may have a different 'final' feature for their return
897     * value depending on the arguments to be passed to this function.
898     * That's what the @a args parameter is for, so that the method
899     * implementation can look ahead of what kind of parameters are going to
900     * be passed to the built-in function later on in order to decide which
901     * return value type would be used and returned by the function
902     * accordingly in that case.
903     *
904     * @param args - function arguments going to be passed for executing
905     * this built-in function later on
906 schoenebeck 3582 * @see VMNumberExpr::isFinal() for details about 'final' values
907 schoenebeck 3581 */
908     virtual bool returnsFinal(VMFnArgs* args) = 0;
909    
910     /**
911 schoenebeck 2612 * Minimum amount of function arguments this function accepts. If a
912     * script is calling this function with less arguments, the script
913     * parser will throw a parser error.
914     */
915 schoenebeck 3557 virtual vmint minRequiredArgs() const = 0;
916 schoenebeck 2612
917     /**
918     * Maximum amount of function arguments this functions accepts. If a
919     * script is calling this function with more arguments, the script
920     * parser will throw a parser error.
921     */
922 schoenebeck 3557 virtual vmint maxAllowedArgs() const = 0;
923 schoenebeck 2612
924     /**
925 schoenebeck 2945 * This method is called by the parser to check whether arguments
926 schoenebeck 2612 * passed in scripts to this function are accepted by this function. If
927     * a script calls this function with an argument's data type not
928 schoenebeck 3585 * accepted by this function, the parser will throw a parser error.
929 schoenebeck 2612 *
930 schoenebeck 3585 * The parser will also use this method to assemble a list of actually
931     * supported data types accepted by this built-in function for the
932     * function argument in question, that is to provide an appropriate and
933     * precise parser error message in such cases.
934     *
935 schoenebeck 2612 * @param iArg - index of the function argument in question
936 schoenebeck 2727 * (must be between 0 .. maxAllowedArgs() - 1)
937 schoenebeck 2612 * @param type - script data type used for this function argument by
938     * currently parsed script
939 schoenebeck 2727 * @return true if the given data type would be accepted for the
940     * respective function argument by the function
941 schoenebeck 2612 */
942 schoenebeck 3557 virtual bool acceptsArgType(vmint iArg, ExprType_t type) const = 0;
943 schoenebeck 2612
944     /**
945 schoenebeck 3561 * This method is called by the parser to check whether arguments
946     * passed in scripts to this function are accepted by this function. If
947     * a script calls this function with an argument's measuremnt unit type
948     * not accepted by this function, the parser will throw a parser error.
949     *
950     * This default implementation of this method does not accept any
951     * measurement unit. Deriving subclasses would override this method
952     * implementation in case they do accept any measurement unit for its
953     * function arguments.
954     *
955     * @param iArg - index of the function argument in question
956     * (must be between 0 .. maxAllowedArgs() - 1)
957     * @param type - standard measurement unit data type used for this
958     * function argument by currently parsed script
959     * @return true if the given standard measurement unit type would be
960     * accepted for the respective function argument by the function
961     */
962     virtual bool acceptsArgUnitType(vmint iArg, StdUnit_t type) const;
963    
964     /**
965     * This method is called by the parser to check whether arguments
966     * passed in scripts to this function are accepted by this function. If
967     * a script calls this function with a metric unit prefix and metric
968     * prefixes are not accepted for that argument by this function, then
969     * the parser will throw a parser error.
970     *
971     * This default implementation of this method does not accept any
972     * metric prefix. Deriving subclasses would override this method
973     * implementation in case they do accept any metric prefix for its
974     * function arguments.
975     *
976     * @param iArg - index of the function argument in question
977     * (must be between 0 .. maxAllowedArgs() - 1)
978 schoenebeck 3564 * @param type - standard measurement unit data type used for that
979     * function argument by currently parsed script
980 schoenebeck 3561 *
981     * @return true if a metric prefix would be accepted for the respective
982     * function argument by this function
983     *
984     * @see MetricPrefix_t
985     */
986 schoenebeck 3564 virtual bool acceptsArgUnitPrefix(vmint iArg, StdUnit_t type) const;
987 schoenebeck 3561
988     /**
989     * This method is called by the parser to check whether arguments
990     * passed in scripts to this function are accepted by this function. If
991     * a script calls this function with an argument that is declared to be
992     * a "final" value and this is not accepted by this function, the parser
993     * will throw a parser error.
994     *
995     * This default implementation of this method does not accept a "final"
996     * value. Deriving subclasses would override this method implementation
997     * in case they do accept a "final" value for its function arguments.
998     *
999     * @param iArg - index of the function argument in question
1000     * (must be between 0 .. maxAllowedArgs() - 1)
1001     * @return true if a "final" value would be accepted for the respective
1002     * function argument by the function
1003     *
1004 schoenebeck 3582 * @see VMNumberExpr::isFinal(), returnsFinal()
1005 schoenebeck 3561 */
1006     virtual bool acceptsArgFinal(vmint iArg) const;
1007    
1008     /**
1009 schoenebeck 2945 * This method is called by the parser to check whether some arguments
1010     * (and if yes which ones) passed to this script function will be
1011     * modified by this script function. Most script functions simply use
1012     * their arguments as inputs, that is they only read the argument's
1013     * values. However some script function may also use passed
1014     * argument(s) as output variables. In this case the function
1015     * implementation must return @c true for the respective argument
1016     * index here.
1017     *
1018     * @param iArg - index of the function argument in question
1019     * (must be between 0 .. maxAllowedArgs() - 1)
1020     */
1021 schoenebeck 3557 virtual bool modifiesArg(vmint iArg) const = 0;
1022 schoenebeck 2945
1023     /**
1024 schoenebeck 3581 * This method is called by the parser to let the built-in function
1025     * perform its own, individual parse time checks on the arguments to be
1026     * passed to the built-in function. So this method is the place for
1027     * implementing custom checks which are very specific to the individual
1028     * built-in function's purpose and its individual requirements.
1029     *
1030     * For instance the built-in 'in_range()' function uses this method to
1031     * check whether the last 2 of their 3 arguments are of same data type
1032     * and if not it triggers a parser error. 'in_range()' also checks
1033     * whether all of its 3 arguments do have the same standard measuring
1034     * unit type and likewise raises a parser error if not.
1035     *
1036     * For less critical issues built-in functions may also raise parser
1037     * warnings instead.
1038     *
1039     * It is recommended that classes implementing (that is overriding) this
1040     * method should always call their super class's implementation of this
1041     * method to ensure their potential parse time checks are always
1042     * performed as well.
1043     *
1044     * @param args - function arguments going to be passed for executing
1045     * this built-in function later on
1046     * @param err - the parser's error handler to be called by this method
1047     * implementation to trigger a parser error with the
1048     * respective error message text
1049     * @param wrn - the parser's warning handler to be called by this method
1050     * implementation to trigger a parser warning with the
1051     * respective warning message text
1052     */
1053     virtual void checkArgs(VMFnArgs* args,
1054     std::function<void(String)> err,
1055     std::function<void(String)> wrn);
1056    
1057     /**
1058 schoenebeck 2727 * Implements the actual function execution. This exec() method is
1059     * called by the VM whenever this function implementation shall be
1060     * executed at script runtime. This method blocks until the function
1061     * call completed.
1062 schoenebeck 2612 *
1063     * @param args - function arguments for executing this built-in function
1064 schoenebeck 2727 * @returns function's return value (if any) and general status
1065     * informations (i.e. whether the function call caused a
1066     * runtime error)
1067 schoenebeck 2612 */
1068 schoenebeck 2581 virtual VMFnResult* exec(VMFnArgs* args) = 0;
1069 schoenebeck 2612
1070     /**
1071 schoenebeck 2727 * Convenience method for function implementations to show warning
1072     * messages during actual execution of the built-in function.
1073 schoenebeck 2612 *
1074 schoenebeck 2727 * @param txt - runtime warning text to be shown to user
1075 schoenebeck 2612 */
1076 schoenebeck 2598 void wrnMsg(const String& txt);
1077 schoenebeck 2612
1078     /**
1079 schoenebeck 2727 * Convenience method for function implementations to show error
1080     * messages during actual execution of the built-in function.
1081 schoenebeck 2612 *
1082 schoenebeck 2727 * @param txt - runtime error text to be shown to user
1083 schoenebeck 2612 */
1084 schoenebeck 2598 void errMsg(const String& txt);
1085 schoenebeck 2581 };
1086    
1087 schoenebeck 2727 /** @brief Virtual machine relative pointer.
1088     *
1089 schoenebeck 3557 * POD base of VMInt64RelPtr, VMInt32RelPtr and VMInt8RelPtr structures. Not
1090     * intended to be used directly. Use VMInt64RelPtr, VMInt32RelPtr,
1091     * VMInt8RelPtr instead.
1092 schoenebeck 2727 *
1093 schoenebeck 3557 * @see VMInt64RelPtr, VMInt32RelPtr, VMInt8RelPtr
1094 schoenebeck 2594 */
1095     struct VMRelPtr {
1096     void** base; ///< Base pointer.
1097 schoenebeck 3557 vmint offset; ///< Offset (in bytes) relative to base pointer.
1098 schoenebeck 2948 bool readonly; ///< Whether the pointed data may be modified or just be read.
1099 schoenebeck 2594 };
1100    
1101 schoenebeck 3557 /** @brief Pointer to built-in VM integer variable (interface class).
1102 schoenebeck 2594 *
1103 schoenebeck 3557 * This class acts as an abstract interface to all built-in integer script
1104     * variables, independent of their actual native size (i.e. some built-in
1105     * script variables are internally using a native int size of 64 bit or 32
1106     * bit or 8 bit). The virtual machine is using this interface class instead
1107     * of its implementing descendants (VMInt64RelPtr, VMInt32RelPtr,
1108     * VMInt8RelPtr) in order for the virtual machine for not being required to
1109     * handle each of them differently.
1110     */
1111     struct VMIntPtr {
1112     virtual vmint evalInt() = 0;
1113     virtual void assign(vmint i) = 0;
1114     virtual bool isAssignable() const = 0;
1115     };
1116    
1117     /** @brief Pointer to built-in VM integer variable (of C/C++ type int64_t).
1118     *
1119     * Used for defining built-in 64 bit integer script variables.
1120     *
1121     * @b CAUTION: You may only use this class for pointing to C/C++ variables
1122     * of type "int64_t" (thus being exactly 64 bit in size). If the C/C++ int
1123     * variable you want to reference is only 32 bit in size then you @b must
1124     * use VMInt32RelPtr instead! Respectively for a referenced native variable
1125     * with only 8 bit in size you @b must use VMInt8RelPtr instead!
1126     *
1127     * For efficiency reasons the actual native C/C++ int variable is referenced
1128     * by two components here. The actual native int C/C++ variable in memory
1129     * is dereferenced at VM run-time by taking the @c base pointer dereference
1130     * and adding @c offset bytes. This has the advantage that for a large
1131     * number of built-in int variables, only one (or few) base pointer need
1132     * to be re-assigned before running a script, instead of updating each
1133     * built-in variable each time before a script is executed.
1134     *
1135     * Refer to DECLARE_VMINT() for example code.
1136     *
1137     * @see VMInt32RelPtr, VMInt8RelPtr, DECLARE_VMINT()
1138     */
1139     struct VMInt64RelPtr : VMRelPtr, VMIntPtr {
1140     VMInt64RelPtr() {
1141     base = NULL;
1142     offset = 0;
1143     readonly = false;
1144     }
1145     VMInt64RelPtr(const VMRelPtr& data) {
1146     base = data.base;
1147     offset = data.offset;
1148     readonly = false;
1149     }
1150     vmint evalInt() OVERRIDE {
1151     return (vmint)*(int64_t*)&(*(uint8_t**)base)[offset];
1152     }
1153     void assign(vmint i) OVERRIDE {
1154     *(int64_t*)&(*(uint8_t**)base)[offset] = (int64_t)i;
1155     }
1156     bool isAssignable() const OVERRIDE { return !readonly; }
1157     };
1158    
1159     /** @brief Pointer to built-in VM integer variable (of C/C++ type int32_t).
1160     *
1161 schoenebeck 2727 * Used for defining built-in 32 bit integer script variables.
1162 schoenebeck 2594 *
1163     * @b CAUTION: You may only use this class for pointing to C/C++ variables
1164 schoenebeck 3557 * of type "int32_t" (thus being exactly 32 bit in size). If the C/C++ int
1165     * variable you want to reference is 64 bit in size then you @b must use
1166     * VMInt64RelPtr instead! Respectively for a referenced native variable with
1167     * only 8 bit in size you @b must use VMInt8RelPtr instead!
1168 schoenebeck 2594 *
1169     * For efficiency reasons the actual native C/C++ int variable is referenced
1170     * by two components here. The actual native int C/C++ variable in memory
1171     * is dereferenced at VM run-time by taking the @c base pointer dereference
1172     * and adding @c offset bytes. This has the advantage that for a large
1173     * number of built-in int variables, only one (or few) base pointer need
1174     * to be re-assigned before running a script, instead of updating each
1175     * built-in variable each time before a script is executed.
1176     *
1177     * Refer to DECLARE_VMINT() for example code.
1178     *
1179 schoenebeck 3557 * @see VMInt64RelPtr, VMInt8RelPtr, DECLARE_VMINT()
1180 schoenebeck 2594 */
1181 schoenebeck 3557 struct VMInt32RelPtr : VMRelPtr, VMIntPtr {
1182     VMInt32RelPtr() {
1183 schoenebeck 2594 base = NULL;
1184     offset = 0;
1185 schoenebeck 2948 readonly = false;
1186 schoenebeck 2594 }
1187 schoenebeck 3557 VMInt32RelPtr(const VMRelPtr& data) {
1188 schoenebeck 2594 base = data.base;
1189     offset = data.offset;
1190 schoenebeck 2948 readonly = false;
1191 schoenebeck 2594 }
1192 schoenebeck 3557 vmint evalInt() OVERRIDE {
1193     return (vmint)*(int32_t*)&(*(uint8_t**)base)[offset];
1194     }
1195     void assign(vmint i) OVERRIDE {
1196     *(int32_t*)&(*(uint8_t**)base)[offset] = (int32_t)i;
1197     }
1198     bool isAssignable() const OVERRIDE { return !readonly; }
1199 schoenebeck 2594 };
1200    
1201     /** @brief Pointer to built-in VM integer variable (of C/C++ type int8_t).
1202     *
1203 schoenebeck 2727 * Used for defining built-in 8 bit integer script variables.
1204 schoenebeck 2594 *
1205     * @b CAUTION: You may only use this class for pointing to C/C++ variables
1206     * of type "int8_t" (8 bit integer). If the C/C++ int variable you want to
1207 schoenebeck 3557 * reference is not exactly 8 bit in size then you @b must respectively use
1208     * either VMInt32RelPtr for native 32 bit variables or VMInt64RelPtrl for
1209     * native 64 bit variables instead!
1210 schoenebeck 2594 *
1211     * For efficiency reasons the actual native C/C++ int variable is referenced
1212     * by two components here. The actual native int C/C++ variable in memory
1213     * is dereferenced at VM run-time by taking the @c base pointer dereference
1214     * and adding @c offset bytes. This has the advantage that for a large
1215     * number of built-in int variables, only one (or few) base pointer need
1216     * to be re-assigned before running a script, instead of updating each
1217     * built-in variable each time before a script is executed.
1218     *
1219     * Refer to DECLARE_VMINT() for example code.
1220     *
1221 schoenebeck 3557 * @see VMIntRel32Ptr, VMIntRel64Ptr, DECLARE_VMINT()
1222 schoenebeck 2594 */
1223 schoenebeck 3557 struct VMInt8RelPtr : VMRelPtr, VMIntPtr {
1224     VMInt8RelPtr() {
1225     base = NULL;
1226     offset = 0;
1227     readonly = false;
1228 schoenebeck 2594 }
1229 schoenebeck 3557 VMInt8RelPtr(const VMRelPtr& data) {
1230     base = data.base;
1231     offset = data.offset;
1232     readonly = false;
1233 schoenebeck 2594 }
1234 schoenebeck 3557 vmint evalInt() OVERRIDE {
1235     return (vmint)*(uint8_t*)&(*(uint8_t**)base)[offset];
1236     }
1237     void assign(vmint i) OVERRIDE {
1238     *(uint8_t*)&(*(uint8_t**)base)[offset] = (uint8_t)i;
1239     }
1240     bool isAssignable() const OVERRIDE { return !readonly; }
1241 schoenebeck 2594 };
1242    
1243 schoenebeck 3557 /** @brief Pointer to built-in VM integer variable (of C/C++ type vmint).
1244     *
1245     * Use this typedef if the native variable to be pointed to is using the
1246     * typedef vmint. If the native C/C++ variable to be pointed to is using
1247     * another C/C++ type then better use one of VMInt64RelPtr or VMInt32RelPtr
1248     * instead.
1249     */
1250     typedef VMInt64RelPtr VMIntRelPtr;
1251    
1252 schoenebeck 3035 #if HAVE_CXX_EMBEDDED_PRAGMA_DIAGNOSTICS
1253     # define COMPILER_DISABLE_OFFSETOF_WARNING \
1254     _Pragma("GCC diagnostic push") \
1255     _Pragma("GCC diagnostic ignored \"-Winvalid-offsetof\"")
1256     # define COMPILER_RESTORE_OFFSETOF_WARNING \
1257     _Pragma("GCC diagnostic pop")
1258     #else
1259     # define COMPILER_DISABLE_OFFSETOF_WARNING
1260     # define COMPILER_RESTORE_OFFSETOF_WARNING
1261     #endif
1262    
1263 schoenebeck 2594 /**
1264 schoenebeck 3557 * Convenience macro for initializing VMInt64RelPtr, VMInt32RelPtr and
1265     * VMInt8RelPtr structures. Usage example:
1266 schoenebeck 2594 * @code
1267     * struct Foo {
1268 schoenebeck 2727 * uint8_t a; // native representation of a built-in integer script variable
1269 schoenebeck 3557 * int64_t b; // native representation of another built-in integer script variable
1270     * int64_t c; // native representation of another built-in integer script variable
1271 schoenebeck 2727 * uint8_t d; // native representation of another built-in integer script variable
1272 schoenebeck 2594 * };
1273     *
1274 schoenebeck 2727 * // initializing the built-in script variables to some values
1275     * Foo foo1 = (Foo) { 1, 2000, 3000, 4 };
1276     * Foo foo2 = (Foo) { 5, 6000, 7000, 8 };
1277 schoenebeck 2594 *
1278     * Foo* pFoo;
1279     *
1280 schoenebeck 2727 * VMInt8RelPtr varA = DECLARE_VMINT(pFoo, class Foo, a);
1281 schoenebeck 3557 * VMInt64RelPtr varB = DECLARE_VMINT(pFoo, class Foo, b);
1282     * VMInt64RelPtr varC = DECLARE_VMINT(pFoo, class Foo, c);
1283 schoenebeck 2727 * VMInt8RelPtr varD = DECLARE_VMINT(pFoo, class Foo, d);
1284 schoenebeck 2594 *
1285     * pFoo = &foo1;
1286 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 1
1287     * printf("%d\n", varB->evalInt()); // will print 2000
1288     * printf("%d\n", varC->evalInt()); // will print 3000
1289     * printf("%d\n", varD->evalInt()); // will print 4
1290 schoenebeck 2594 *
1291 schoenebeck 2727 * // same printf() code, just with pFoo pointer being changed ...
1292     *
1293 schoenebeck 2594 * pFoo = &foo2;
1294 schoenebeck 2727 * printf("%d\n", varA->evalInt()); // will print 5
1295     * printf("%d\n", varB->evalInt()); // will print 6000
1296     * printf("%d\n", varC->evalInt()); // will print 7000
1297     * printf("%d\n", varD->evalInt()); // will print 8
1298 schoenebeck 2594 * @endcode
1299 schoenebeck 2727 * As you can see above, by simply changing one single pointer, you can
1300     * remap a huge bunch of built-in integer script variables to completely
1301     * different native values/native variables. Which especially reduces code
1302     * complexity inside the sampler engines which provide the actual script
1303     * functionalities.
1304 schoenebeck 2594 */
1305 schoenebeck 3034 #define DECLARE_VMINT(basePtr, T_struct, T_member) ( \
1306     /* Disable offsetof warning, trust us, we are cautios. */ \
1307 schoenebeck 3035 COMPILER_DISABLE_OFFSETOF_WARNING \
1308 schoenebeck 3034 (VMRelPtr) { \
1309     (void**) &basePtr, \
1310     offsetof(T_struct, T_member), \
1311     false \
1312     } \
1313 schoenebeck 3035 COMPILER_RESTORE_OFFSETOF_WARNING \
1314 schoenebeck 3034 ) \
1315 schoenebeck 2594
1316 schoenebeck 2948 /**
1317 schoenebeck 3557 * Same as DECLARE_VMINT(), but this one defines the VMInt64RelPtr,
1318     * VMInt32RelPtr and VMInt8RelPtr structures to be of read-only type.
1319     * That means the script parser will abort any script at parser time if the
1320     * script is trying to modify such a read-only built-in variable.
1321 schoenebeck 2948 *
1322     * @b NOTE: this is only intended for built-in read-only variables that
1323     * may change during runtime! If your built-in variable's data is rather
1324     * already available at parser time and won't change during runtime, then
1325     * you should rather register a built-in constant in your VM class instead!
1326     *
1327     * @see ScriptVM::builtInConstIntVariables()
1328     */
1329     #define DECLARE_VMINT_READONLY(basePtr, T_struct, T_member) ( \
1330 schoenebeck 3034 /* Disable offsetof warning, trust us, we are cautios. */ \
1331 schoenebeck 3035 COMPILER_DISABLE_OFFSETOF_WARNING \
1332 schoenebeck 3034 (VMRelPtr) { \
1333     (void**) &basePtr, \
1334     offsetof(T_struct, T_member), \
1335     true \
1336     } \
1337 schoenebeck 3035 COMPILER_RESTORE_OFFSETOF_WARNING \
1338 schoenebeck 3034 ) \
1339 schoenebeck 2948
1340 schoenebeck 2594 /** @brief Built-in VM 8 bit integer array variable.
1341     *
1342 schoenebeck 2727 * Used for defining built-in integer array script variables (8 bit per
1343 schoenebeck 3573 * array element). Currently there is no support for any other kind of
1344     * built-in array type. So all built-in integer arrays accessed by scripts
1345     * use 8 bit data types.
1346 schoenebeck 2594 */
1347     struct VMInt8Array {
1348     int8_t* data;
1349 schoenebeck 3557 vmint size;
1350 schoenebeck 3253 bool readonly; ///< Whether the array data may be modified or just be read.
1351 schoenebeck 2594
1352 schoenebeck 3253 VMInt8Array() : data(NULL), size(0), readonly(false) {}
1353 schoenebeck 2594 };
1354    
1355 schoenebeck 2945 /** @brief Virtual machine script variable.
1356     *
1357 schoenebeck 3573 * Common interface for all variables accessed in scripts, independent of
1358     * their precise data type.
1359 schoenebeck 2945 */
1360     class VMVariable : virtual public VMExpr {
1361     public:
1362     /**
1363     * Whether a script may modify the content of this variable by
1364     * assigning a new value to it.
1365     *
1366     * @see isConstExpr(), assign()
1367     */
1368     virtual bool isAssignable() const = 0;
1369    
1370     /**
1371     * In case this variable is assignable, this method will be called to
1372     * perform the value assignment to this variable with @a expr
1373     * reflecting the new value to be assigned.
1374     *
1375     * @param expr - new value to be assigned to this variable
1376     */
1377     virtual void assignExpr(VMExpr* expr) = 0;
1378     };
1379 schoenebeck 3573
1380 schoenebeck 2942 /** @brief Dynamically executed variable (abstract base class).
1381     *
1382     * Interface for the implementation of a dynamically generated content of
1383     * a built-in script variable. Most built-in variables are simply pointers
1384     * to some native location in memory. So when a script reads them, the
1385     * memory location is simply read to get the value of the variable. A
1386     * dynamic variable however is not simply a memory location. For each access
1387     * to a dynamic variable some native code is executed to actually generate
1388     * and provide the content (value) of this type of variable.
1389     */
1390 schoenebeck 2945 class VMDynVar : public VMVariable {
1391 schoenebeck 2942 public:
1392     /**
1393     * Returns true in case this dynamic variable can be considered to be a
1394     * constant expression. A constant expression will retain the same value
1395     * throughout the entire life time of a script and the expression's
1396     * constant value may be evaluated already at script parse time, which
1397     * may result in performance benefits during script runtime.
1398     *
1399     * However due to the "dynamic" behavior of dynamic variables, almost
1400     * all dynamic variables are probably not constant expressions. That's
1401     * why this method returns @c false by default. If you are really sure
1402     * that your dynamic variable implementation can be considered a
1403     * constant expression then you may override this method and return
1404     * @c true instead. Note that when you return @c true here, your
1405     * dynamic variable will really just be executed once; and exectly
1406     * already when the script is loaded!
1407     *
1408     * As an example you may implement a "constant" built-in dynamic
1409     * variable that checks for a certain operating system feature and
1410     * returns the result of that OS feature check as content (value) of
1411     * this dynamic variable. Since the respective OS feature might become
1412     * available/unavailable after OS updates, software migration, etc. the
1413     * OS feature check should at least be performed once each time the
1414     * application is launched. And since the OS feature check might take a
1415     * certain amount of execution time, it might make sense to only
1416     * perform the check if the respective variable name is actually
1417     * referenced at all in the script to be loaded. Note that the dynamic
1418     * variable will still be evaluated again though if the script is
1419     * loaded again. So it is up to you to probably cache the result in the
1420     * implementation of your dynamic variable.
1421     *
1422     * On doubt, please rather consider to use a constant built-in script
1423     * variable instead of implementing a "constant" dynamic variable, due
1424     * to the runtime overhead a dynamic variable may cause.
1425     *
1426     * @see isAssignable()
1427     */
1428 schoenebeck 2945 bool isConstExpr() const OVERRIDE { return false; }
1429 schoenebeck 2942
1430     /**
1431     * In case this dynamic variable is assignable, the new value (content)
1432     * to be assigned to this dynamic variable.
1433     *
1434     * By default this method does nothing. Override and implement this
1435     * method in your subclass in case your dynamic variable allows to
1436     * assign a new value by script.
1437     *
1438     * @param expr - new value to be assigned to this variable
1439     */
1440 schoenebeck 2945 void assignExpr(VMExpr* expr) OVERRIDE {}
1441 schoenebeck 3034
1442     virtual ~VMDynVar() {}
1443 schoenebeck 2942 };
1444    
1445     /** @brief Dynamically executed variable (of integer data type).
1446     *
1447     * This is the base class for all built-in integer script variables whose
1448     * variable content needs to be provided dynamically by executable native
1449     * code on each script variable access.
1450     */
1451     class VMDynIntVar : virtual public VMDynVar, virtual public VMIntExpr {
1452     public:
1453 schoenebeck 3581 vmfloat unitFactor() const OVERRIDE { return VM_NO_FACTOR; }
1454 schoenebeck 3561 StdUnit_t unitType() const OVERRIDE { return VM_NO_UNIT; }
1455     bool isFinal() const OVERRIDE { return false; }
1456 schoenebeck 2942 };
1457    
1458     /** @brief Dynamically executed variable (of string data type).
1459     *
1460     * This is the base class for all built-in string script variables whose
1461     * variable content needs to be provided dynamically by executable native
1462     * code on each script variable access.
1463     */
1464     class VMDynStringVar : virtual public VMDynVar, virtual public VMStringExpr {
1465     public:
1466     };
1467    
1468 schoenebeck 3073 /** @brief Dynamically executed variable (of integer array data type).
1469     *
1470     * This is the base class for all built-in integer array script variables
1471     * whose variable content needs to be provided dynamically by executable
1472     * native code on each script variable access.
1473     */
1474     class VMDynIntArrayVar : virtual public VMDynVar, virtual public VMIntArrayExpr {
1475     public:
1476     };
1477    
1478 schoenebeck 2612 /** @brief Provider for built-in script functions and variables.
1479     *
1480 schoenebeck 2727 * Abstract base class defining the high-level interface for all classes
1481     * which add and implement built-in script functions and built-in script
1482     * variables.
1483 schoenebeck 2612 */
1484 schoenebeck 2581 class VMFunctionProvider {
1485     public:
1486 schoenebeck 2612 /**
1487     * Returns pointer to the built-in function with the given function
1488 schoenebeck 2727 * @a name, or NULL if there is no built-in function with that function
1489     * name.
1490 schoenebeck 2612 *
1491 schoenebeck 2727 * @param name - function name (i.e. "wait" or "message" or "exit", etc.)
1492 schoenebeck 2612 */
1493 schoenebeck 2581 virtual VMFunction* functionByName(const String& name) = 0;
1494 schoenebeck 2612
1495     /**
1496 schoenebeck 3311 * Returns @c true if the passed built-in function is disabled and
1497     * should be ignored by the parser. This method is called by the
1498     * parser on preprocessor level for each built-in function call within
1499     * a script. Accordingly if this method returns @c true, then the
1500     * respective function call is completely filtered out on preprocessor
1501     * level, so that built-in function won't make into the result virtual
1502     * machine representation, nor would expressions of arguments passed to
1503     * that built-in function call be evaluated, nor would any check
1504     * regarding correct usage of the built-in function be performed.
1505     * In other words: a disabled function call ends up as a comment block.
1506     *
1507     * @param fn - built-in function to be checked
1508     * @param ctx - parser context at the position where the built-in
1509     * function call is located within the script
1510     */
1511     virtual bool isFunctionDisabled(VMFunction* fn, VMParserContext* ctx) = 0;
1512    
1513     /**
1514 schoenebeck 2612 * Returns a variable name indexed map of all built-in script variables
1515 schoenebeck 2727 * which point to native "int" scalar (usually 32 bit) variables.
1516 schoenebeck 2612 */
1517 schoenebeck 3557 virtual std::map<String,VMIntPtr*> builtInIntVariables() = 0;
1518 schoenebeck 2612
1519     /**
1520 schoenebeck 2727 * Returns a variable name indexed map of all built-in script integer
1521     * array variables with array element type "int8_t" (8 bit).
1522 schoenebeck 2612 */
1523 schoenebeck 2594 virtual std::map<String,VMInt8Array*> builtInIntArrayVariables() = 0;
1524 schoenebeck 2612
1525     /**
1526     * Returns a variable name indexed map of all built-in constant script
1527     * variables, which never change their value at runtime.
1528     */
1529 schoenebeck 3557 virtual std::map<String,vmint> builtInConstIntVariables() = 0;
1530 schoenebeck 2942
1531     /**
1532     * Returns a variable name indexed map of all built-in dynamic variables,
1533     * which are not simply data stores, rather each one of them executes
1534     * natively to provide or alter the respective script variable data.
1535     */
1536     virtual std::map<String,VMDynVar*> builtInDynamicVariables() = 0;
1537 schoenebeck 2581 };
1538    
1539 schoenebeck 2594 /** @brief Execution state of a virtual machine.
1540     *
1541     * An instance of this abstract base class represents exactly one execution
1542     * state of a virtual machine. This encompasses most notably the VM
1543 schoenebeck 2612 * execution stack, and VM polyphonic variables. It does not contain global
1544 schoenebeck 2727 * variables. Global variables are contained in the VMParserContext object.
1545 schoenebeck 2612 * You might see a VMExecContext object as one virtual thread of the virtual
1546     * machine.
1547 schoenebeck 2594 *
1548 schoenebeck 2612 * In contrast to a VMParserContext, a VMExecContext is not tied to a
1549     * ScriptVM instance. Thus you can use a VMExecContext with different
1550     * ScriptVM instances, however not concurrently at the same time.
1551     *
1552 schoenebeck 2594 * @see VMParserContext
1553     */
1554 schoenebeck 2581 class VMExecContext {
1555     public:
1556     virtual ~VMExecContext() {}
1557 schoenebeck 2727
1558     /**
1559     * In case the script was suspended for some reason, this method returns
1560     * the amount of microseconds before the script shall continue its
1561     * execution. Note that the virtual machine itself does never put its
1562     * own execution thread(s) to sleep. So the respective class (i.e. sampler
1563     * engine) which is using the virtual machine classes here, must take
1564     * care by itself about taking time stamps, determining the script
1565     * handlers that shall be put aside for the requested amount of
1566 schoenebeck 2871 * microseconds, indicated by this method by comparing the time stamps in
1567 schoenebeck 2727 * real-time, and to continue passing the respective handler to
1568     * ScriptVM::exec() as soon as its suspension exceeded, etc. Or in other
1569     * words: all classes in this directory never have an idea what time it
1570     * is.
1571     *
1572     * You should check the return value of ScriptVM::exec() to determine
1573     * whether the script was actually suspended before calling this method
1574     * here.
1575     *
1576     * @see ScriptVM::exec()
1577     */
1578 schoenebeck 3557 virtual vmint suspensionTimeMicroseconds() const = 0;
1579 schoenebeck 3207
1580     /**
1581     * Causes all polyphonic variables to be reset to zero values. A
1582     * polyphonic variable is expected to be zero when entering a new event
1583     * handler instance. As an exception the values of polyphonic variables
1584     * shall only be preserved from an note event handler instance to its
1585     * correspending specific release handler instance. So in the latter
1586     * case the script author may pass custom data from the note handler to
1587     * the release handler, but only for the same specific note!
1588     */
1589     virtual void resetPolyphonicData() = 0;
1590 schoenebeck 3221
1591     /**
1592     * Returns amount of virtual machine instructions which have been
1593     * performed the last time when this execution context was executing a
1594     * script. So in case you need the overall amount of instructions
1595     * instead, then you need to add them by yourself after each
1596     * ScriptVM::exec() call.
1597     */
1598     virtual size_t instructionsPerformed() const = 0;
1599 schoenebeck 3277
1600     /**
1601     * Sends a signal to this script execution instance to abort its script
1602     * execution as soon as possible. This method is called i.e. when one
1603     * script execution instance intends to stop another script execution
1604     * instance.
1605     */
1606     virtual void signalAbort() = 0;
1607 schoenebeck 3293
1608     /**
1609     * Copies the current entire execution state from this object to the
1610     * given object. So this can be used to "fork" a new script thread which
1611     * then may run independently with its own polyphonic data for instance.
1612     */
1613     virtual void forkTo(VMExecContext* ectx) const = 0;
1614 schoenebeck 3551
1615     /**
1616     * In case the script called the built-in exit() function and passed a
1617     * value as argument to the exit() function, then this method returns
1618     * the value that had been passed as argument to the exit() function.
1619     * Otherwise if the exit() function has not been called by the script
1620     * or no argument had been passed to the exit() function, then this
1621     * method returns NULL instead.
1622     *
1623     * Currently this is only used for automated test cases against the
1624     * script engine, which return some kind of value in the individual
1625     * test case scripts to check their behaviour in automated way. There
1626     * is no purpose for this mechanism in production use. Accordingly this
1627     * exit result value is @b always completely ignored by the sampler
1628     * engines.
1629     *
1630     * Officially the built-in exit() function does not expect any arguments
1631     * to be passed to its function call, and by default this feature is
1632     * hence disabled and will yield in a parser error unless
1633     * ScriptVM::setExitResultEnabled() was explicitly set.
1634     *
1635     * @see ScriptVM::setExitResultEnabled()
1636     */
1637     virtual VMExpr* exitResult() = 0;
1638 schoenebeck 2581 };
1639    
1640 schoenebeck 2645 /** @brief Script callback for a certain event.
1641     *
1642     * Represents a script callback for a certain event, i.e.
1643 schoenebeck 2727 * "on note ... end on" code block.
1644 schoenebeck 2645 */
1645 schoenebeck 2581 class VMEventHandler {
1646     public:
1647 schoenebeck 2645 /**
1648 schoenebeck 2879 * Type of this event handler, which identifies its purpose. For example
1649     * for a "on note ... end on" script callback block,
1650     * @c VM_EVENT_HANDLER_NOTE would be returned here.
1651     */
1652     virtual VMEventHandlerType_t eventHandlerType() const = 0;
1653    
1654     /**
1655 schoenebeck 2645 * Name of the event handler which identifies its purpose. For example
1656     * for a "on note ... end on" script callback block, the name "note"
1657     * would be returned here.
1658     */
1659 schoenebeck 2581 virtual String eventHandlerName() const = 0;
1660 schoenebeck 2645
1661     /**
1662     * Whether or not the event handler makes any use of so called
1663     * "polyphonic" variables.
1664     */
1665     virtual bool isPolyphonic() const = 0;
1666 schoenebeck 2581 };
1667    
1668 schoenebeck 2727 /**
1669 schoenebeck 3285 * Reflects the precise position and span of a specific code block within
1670     * a script. This is currently only used for the locations of commented
1671 schoenebeck 3292 * code blocks due to preprocessor statements, and for parser errors and
1672     * parser warnings.
1673 schoenebeck 3285 *
1674 schoenebeck 3292 * @see ParserIssue for code locations of parser errors and parser warnings
1675     *
1676     * @see VMParserContext::preprocessorComments() for locations of code which
1677     * have been filtered out by preprocessor statements
1678 schoenebeck 3285 */
1679     struct CodeBlock {
1680     int firstLine; ///< The first line number of this code block within the script (indexed with 1 being the very first line).
1681     int lastLine; ///< The last line number of this code block within the script.
1682     int firstColumn; ///< The first column of this code block within the script (indexed with 1 being the very first column).
1683     int lastColumn; ///< The last column of this code block within the script.
1684     };
1685    
1686     /**
1687 schoenebeck 2727 * Encapsulates a noteworty parser issue. This encompasses the type of the
1688     * issue (either a parser error or parser warning), a human readable
1689     * explanation text of the error or warning and the location of the
1690     * encountered parser issue within the script.
1691 schoenebeck 3012 *
1692     * @see VMSourceToken for processing syntax highlighting instead.
1693 schoenebeck 2727 */
1694 schoenebeck 3292 struct ParserIssue : CodeBlock {
1695 schoenebeck 2727 String txt; ///< Human readable explanation text of the parser issue.
1696     ParserIssueType_t type; ///< Whether this issue is either a parser error or just a parser warning.
1697 schoenebeck 2581
1698 schoenebeck 2727 /**
1699     * Print this issue out to the console (stdio).
1700     */
1701 schoenebeck 2581 inline void dump() {
1702     switch (type) {
1703     case PARSER_ERROR:
1704 schoenebeck 2889 printf("[ERROR] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1705 schoenebeck 2581 break;
1706     case PARSER_WARNING:
1707 schoenebeck 2889 printf("[Warning] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1708 schoenebeck 2581 break;
1709     }
1710     }
1711 schoenebeck 2727
1712     /**
1713     * Returns true if this issue is a parser error. In this case the parsed
1714     * script may not be executed!
1715     */
1716 schoenebeck 2581 inline bool isErr() const { return type == PARSER_ERROR; }
1717 schoenebeck 2727
1718     /**
1719     * Returns true if this issue is just a parser warning. A parsed script
1720     * that only raises warnings may be executed if desired, however the
1721     * script may not behave exactly as intended by the script author.
1722     */
1723 schoenebeck 2581 inline bool isWrn() const { return type == PARSER_WARNING; }
1724     };
1725    
1726 schoenebeck 2727 /**
1727     * Convenience function used for converting an ExprType_t constant to a
1728     * string, i.e. for generating error message by the parser.
1729     */
1730 schoenebeck 2581 inline String typeStr(const ExprType_t& type) {
1731     switch (type) {
1732     case EMPTY_EXPR: return "empty";
1733     case INT_EXPR: return "integer";
1734     case INT_ARR_EXPR: return "integer array";
1735 schoenebeck 3573 case REAL_EXPR: return "real number";
1736     case REAL_ARR_EXPR: return "real number array";
1737 schoenebeck 2581 case STRING_EXPR: return "string";
1738     case STRING_ARR_EXPR: return "string array";
1739     }
1740     return "invalid";
1741     }
1742    
1743 schoenebeck 3561 /**
1744 schoenebeck 3573 * Returns @c true in case the passed data type is some array data type.
1745     */
1746     inline bool isArray(const ExprType_t& type) {
1747     return type == INT_ARR_EXPR || type == REAL_ARR_EXPR ||
1748     type == STRING_ARR_EXPR;
1749     }
1750    
1751     /**
1752     * Returns @c true in case the passed data type is some scalar number type
1753     * (i.e. not an array and not a string).
1754     */
1755 schoenebeck 3582 inline bool isNumber(const ExprType_t& type) {
1756 schoenebeck 3573 return type == INT_EXPR || type == REAL_EXPR;
1757     }
1758    
1759     /**
1760 schoenebeck 3561 * Convenience function used for converting an StdUnit_t constant to a
1761     * string, i.e. for generating error message by the parser.
1762     */
1763     inline String unitTypeStr(const StdUnit_t& type) {
1764     switch (type) {
1765     case VM_NO_UNIT: return "none";
1766     case VM_SECOND: return "seconds";
1767     case VM_HERTZ: return "Hz";
1768     case VM_BEL: return "Bel";
1769     }
1770     return "invalid";
1771     }
1772    
1773 schoenebeck 2594 /** @brief Virtual machine representation of a script.
1774     *
1775     * An instance of this abstract base class represents a parsed script,
1776 schoenebeck 2727 * translated into a virtual machine tree. You should first check if there
1777     * were any parser errors. If there were any parser errors, you should
1778     * refrain from executing the virtual machine. Otherwise if there were no
1779     * parser errors (i.e. only warnings), then you might access one of the
1780     * script's event handlers by i.e. calling eventHandlerByName() and pass the
1781     * respective event handler to the ScriptVM class (or to one of the ScriptVM
1782 schoenebeck 2594 * descendants) for execution.
1783     *
1784 schoenebeck 2727 * @see VMExecContext, ScriptVM
1785 schoenebeck 2594 */
1786 schoenebeck 2588 class VMParserContext {
1787     public:
1788     virtual ~VMParserContext() {}
1789 schoenebeck 2727
1790     /**
1791     * Returns all noteworthy issues encountered when the script was parsed.
1792     * These are parser errors and parser warnings.
1793     */
1794 schoenebeck 2588 virtual std::vector<ParserIssue> issues() const = 0;
1795 schoenebeck 2727
1796     /**
1797     * Same as issues(), but this method only returns parser errors.
1798     */
1799 schoenebeck 2588 virtual std::vector<ParserIssue> errors() const = 0;
1800 schoenebeck 2727
1801     /**
1802     * Same as issues(), but this method only returns parser warnings.
1803     */
1804 schoenebeck 2588 virtual std::vector<ParserIssue> warnings() const = 0;
1805 schoenebeck 2727
1806     /**
1807 schoenebeck 3285 * Returns all code blocks of the script which were filtered out by the
1808     * preprocessor.
1809     */
1810     virtual std::vector<CodeBlock> preprocessorComments() const = 0;
1811    
1812     /**
1813 schoenebeck 2727 * Returns the translated virtual machine representation of an event
1814     * handler block (i.e. "on note ... end on" code block) within the
1815     * parsed script. This translated representation of the event handler
1816     * can be executed by the virtual machine.
1817     *
1818     * @param index - index of the event handler within the script
1819     */
1820 schoenebeck 2588 virtual VMEventHandler* eventHandler(uint index) = 0;
1821 schoenebeck 2727
1822     /**
1823     * Same as eventHandler(), but this method returns the event handler by
1824     * its name. So for a "on note ... end on" code block of the parsed
1825     * script you would pass "note" for argument @a name here.
1826     *
1827     * @param name - name of the event handler (i.e. "init", "note",
1828     * "controller", "release")
1829     */
1830 schoenebeck 2588 virtual VMEventHandler* eventHandlerByName(const String& name) = 0;
1831     };
1832    
1833 schoenebeck 2885 class SourceToken;
1834    
1835     /** @brief Recognized token of a script's source code.
1836     *
1837     * Represents one recognized token of a script's source code, for example
1838     * a keyword, variable name, etc. and it provides further informations about
1839     * that particular token, i.e. the precise location (line and column) of the
1840     * token within the original script's source code.
1841     *
1842     * This class is not actually used by the sampler itself. It is rather
1843     * provided for external script editor applications. Primary purpose of
1844     * this class is syntax highlighting for external script editors.
1845 schoenebeck 3012 *
1846     * @see ParserIssue for processing compile errors and warnings instead.
1847 schoenebeck 2885 */
1848     class VMSourceToken {
1849     public:
1850     VMSourceToken();
1851     VMSourceToken(SourceToken* ct);
1852     VMSourceToken(const VMSourceToken& other);
1853     virtual ~VMSourceToken();
1854    
1855     // original text of this token as it is in the script's source code
1856     String text() const;
1857    
1858     // position of token in script
1859 schoenebeck 3012 int firstLine() const; ///< First line this source token is located at in script source code (indexed with 0 being the very first line). Most source code tokens are not spanning over multiple lines, the only current exception are comments, in the latter case you need to process text() to get the last line and last column for the comment.
1860     int firstColumn() const; ///< First column on the first line this source token is located at in script source code (indexed with 0 being the very first column). To get the length of this token use text().length().
1861 schoenebeck 2885
1862     // base types
1863 schoenebeck 3012 bool isEOF() const; ///< Returns true in case this source token represents the end of the source code file.
1864     bool isNewLine() const; ///< Returns true in case this source token represents a line feed character (i.e. "\n" on Unix systems).
1865     bool isKeyword() const; ///< Returns true in case this source token represents a language keyword (i.e. "while", "function", "declare", "on", etc.).
1866     bool isVariableName() const; ///< Returns true in case this source token represents a variable name (i.e. "$someIntVariable", "%someArrayVariable", "\@someStringVariable"). @see isIntegerVariable(), isStringVariable(), isArrayVariable() for the precise variable type.
1867     bool isIdentifier() const; ///< Returns true in case this source token represents an identifier, which currently always means a function name.
1868     bool isNumberLiteral() const; ///< Returns true in case this source token represents a number literal (i.e. 123).
1869     bool isStringLiteral() const; ///< Returns true in case this source token represents a string literal (i.e. "Some text").
1870     bool isComment() const; ///< Returns true in case this source token represents a source code comment.
1871     bool isPreprocessor() const; ///< Returns true in case this source token represents a preprocessor statement.
1872 schoenebeck 3562 bool isMetricPrefix() const;
1873     bool isStdUnit() const;
1874 schoenebeck 3012 bool isOther() const; ///< Returns true in case this source token represents anything else not covered by the token types mentioned above.
1875 schoenebeck 2885
1876     // extended types
1877 schoenebeck 3012 bool isIntegerVariable() const; ///< Returns true in case this source token represents an integer variable name (i.e. "$someIntVariable").
1878 schoenebeck 3573 bool isRealVariable() const; ///< Returns true in case this source token represents a floating point variable name (i.e. "~someRealVariable").
1879 schoenebeck 3012 bool isStringVariable() const; ///< Returns true in case this source token represents an string variable name (i.e. "\@someStringVariable").
1880 schoenebeck 3573 bool isIntArrayVariable() const; ///< Returns true in case this source token represents an integer array variable name (i.e. "%someArrayVariable").
1881     bool isRealArrayVariable() const; ///< Returns true in case this source token represents a real number array variable name (i.e. "?someArrayVariable").
1882     bool isArrayVariable() const DEPRECATED_API; ///< Returns true in case this source token represents an @b integer array variable name (i.e. "%someArrayVariable"). @deprecated This method will be removed, use isIntArrayVariable() instead.
1883 schoenebeck 3012 bool isEventHandlerName() const; ///< Returns true in case this source token represents an event handler name (i.e. "note", "release", "controller").
1884 schoenebeck 2885
1885     VMSourceToken& operator=(const VMSourceToken& other);
1886    
1887     private:
1888     SourceToken* m_token;
1889     };
1890    
1891 schoenebeck 2581 } // namespace LinuxSampler
1892    
1893     #endif // LS_INSTR_SCRIPT_PARSER_COMMON_H

  ViewVC Help
Powered by ViewVC