/[svn]/linuxsampler/trunk/src/scriptvm/common.h
ViewVC logotype

Diff of /linuxsampler/trunk/src/scriptvm/common.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2596 by schoenebeck, Thu Jun 5 19:39:12 2014 UTC revision 3562 by schoenebeck, Fri Aug 23 12:51:58 2019 UTC
# Line 1  Line 1 
1  /*  /*
2   * Copyright (c) 2014 Christian Schoenebeck   * Copyright (c) 2014-2019 Christian Schoenebeck
3   *   *
4   * http://www.linuxsampler.org   * http://www.linuxsampler.org
5   *   *
# Line 9  Line 9 
9    
10  // This header defines data types shared between the VM core implementation  // This header defines data types shared between the VM core implementation
11  // (inside the current source directory) and other parts of the sampler  // (inside the current source directory) and other parts of the sampler
12  // (located at other source directories).  // (located at other source directories). It also acts as public API of the
13    // Real-Time script engine for other applications.
14    
15  #ifndef LS_INSTR_SCRIPT_PARSER_COMMON_H  #ifndef LS_INSTR_SCRIPT_PARSER_COMMON_H
16  #define LS_INSTR_SCRIPT_PARSER_COMMON_H  #define LS_INSTR_SCRIPT_PARSER_COMMON_H
# Line 20  Line 21 
21  #include <stddef.h> // offsetof()  #include <stddef.h> // offsetof()
22    
23  namespace LinuxSampler {  namespace LinuxSampler {
24        
25        /**
26         * Native data type used by the script engine both internally, as well as
27         * for all integer data types used by scripts (i.e. for all $foo variables
28         * in NKSP scripts). Note that this is different from the original KSP which
29         * is limited to 32 bit for integer variables in KSP scripts.
30         */
31        typedef int64_t vmint;
32    
33        /**
34         * Native data type used internally by the script engine for all unsigned
35         * integer types. This type is currently not exposed to scripts.
36         */
37        typedef uint64_t vmuint;
38    
39        /**
40         * Native data type used internally by the script engine for floating point
41         * data types. This type is currently not exposed to scripts.
42         */
43        typedef float vmfloat;
44    
45        /**
46         * Identifies the type of a noteworthy issue identified by the script
47         * parser. That's either a parser error or parser warning.
48         */
49      enum ParserIssueType_t {      enum ParserIssueType_t {
50          PARSER_ERROR,          PARSER_ERROR, ///< Script parser encountered an error, the script cannot be executed.
51          PARSER_WARNING          PARSER_WARNING ///< Script parser encountered a warning, the script may be executed if desired, but the script may not necessarily behave as originally intended by the script author.
52      };      };
53    
54        /** @brief Expression's data type.
55         *
56         * Identifies to which data type an expression within a script evaluates to.
57         * This can for example reflect the data type of script function arguments,
58         * script function return values, but also the resulting data type of some
59         * mathematical formula within a script.
60         */
61      enum ExprType_t {      enum ExprType_t {
62          EMPTY_EXPR, ///< i.e. on invalid expressions or i.e. a function call that does not return a result value          EMPTY_EXPR, ///< i.e. on invalid expressions or i.e. a function call that does not return a result value (the built-in wait() or message() functions for instance)
63          INT_EXPR,          INT_EXPR, ///< integer (scalar) expression
64          INT_ARR_EXPR,          INT_ARR_EXPR, ///< integer array expression
65          STRING_EXPR,          STRING_EXPR, ///< string expression
66          STRING_ARR_EXPR,          STRING_ARR_EXPR, ///< string array expression
67      };      };
68    
69        /** @brief Result flags of a script statement or script function call.
70         *
71         * A set of bit flags which provide informations about the success or
72         * failure of a statement within a script. That's also especially used for
73         * providing informations about success / failure of a call to a built-in
74         * script function. The virtual machine evaluates these flags during runtime
75         * to decide whether it should i.e. stop or suspend execution of a script.
76         *
77         * Since these are bit flags, these constants are bitwise combined.
78         */
79      enum StmtFlags_t {      enum StmtFlags_t {
80         STMT_SUCCESS = 0, ///< Function / statement was executed successfully, no error occurred.         STMT_SUCCESS = 0, ///< Function / statement was executed successfully, no error occurred.
81         STMT_ABORT_SIGNALLED = 1, ///< VM should stop the current callback execution (usually because of an error, but might also be without an error reason).         STMT_ABORT_SIGNALLED = 1, ///< VM should stop the current callback execution (usually because of an error, but might also be without an error reason, i.e. when the built-in script function exit() was called).
82         STMT_SUSPEND_SIGNALLED = (1<<1),         STMT_SUSPEND_SIGNALLED = (1<<1), ///< VM supended execution, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time
83         STMT_ERROR_OCCURRED = (1<<2),         STMT_ERROR_OCCURRED = (1<<2), ///< VM stopped execution due to some script runtime error that occurred
84      };      };
85    
86        /** @brief Virtual machine execution status.
87         *
88         * A set of bit flags which reflect the current overall execution status of
89         * the virtual machine concerning a certain script execution instance.
90         *
91         * Since these are bit flags, these constants are bitwise combined.
92         */
93      enum VMExecStatus_t {      enum VMExecStatus_t {
94          VM_EXEC_NOT_RUNNING = 0,          VM_EXEC_NOT_RUNNING = 0, ///< Script is currently not executed by the VM.
95          VM_EXEC_RUNNING = 1,          VM_EXEC_RUNNING = 1, ///< The VM is currently executing the script.
96          VM_EXEC_SUSPENDED = (1<<1),          VM_EXEC_SUSPENDED = (1<<1), ///< Script is currently suspended by the VM, either because the script called the built-in wait() script function or because the script consumed too much execution time and was forced by the VM to be suspended for some time.
97          VM_EXEC_ERROR = (1<<2),          VM_EXEC_ERROR = (1<<2), ///< A runtime error occurred while executing the script (i.e. a call to some built-in script function failed).
98      };      };
99    
100        /** @brief Script event handler type.
101         *
102         * Identifies one of the possible event handler callback types defined by
103         * the NKSP script language.
104         *
105         * IMPORTANT: this type is forced to be emitted as int32_t type ATM, because
106         * that's the native size expected by the built-in instrument script
107         * variable bindings (see occurrences of VMInt32RelPtr and DECLARE_VMINT
108         * respectively. A native type mismatch between the two could lead to
109         * undefined behavior! Background: By definition the C/C++ compiler is free
110         * to choose a bit size for individual enums which it might find
111         * appropriate, which is usually decided by the compiler according to the
112         * biggest enum constant value defined (in practice it is usually 32 bit).
113         */
114        enum VMEventHandlerType_t : int32_t {
115            VM_EVENT_HANDLER_INIT, ///< Initilization event handler, that is script's "on init ... end on" code block.
116            VM_EVENT_HANDLER_NOTE, ///< Note event handler, that is script's "on note ... end on" code block.
117            VM_EVENT_HANDLER_RELEASE, ///< Release event handler, that is script's "on release ... end on" code block.
118            VM_EVENT_HANDLER_CONTROLLER, ///< Controller event handler, that is script's "on controller ... end on" code block.
119        };
120    
121        /**
122         * All metric unit prefixes (actually just scale factors) supported by this
123         * script engine.
124         */
125        enum MetricPrefix_t {
126            VM_NO_PREFIX = 0, ///< = 1
127            VM_KILO,          ///< = 10^3, short 'k'
128            VM_HECTO,         ///< = 10^2, short 'h'
129            VM_DECA,          ///< = 10, short 'da'
130            VM_DECI,          ///< = 10^-1, short 'd'
131            VM_CENTI,         ///< = 10^-2, short 'c' (this is also used for tuning "cents")
132            VM_MILLI,         ///< = 10^-3, short 'm'
133            VM_MICRO,         ///< = 10^-6, short 'u'
134        };
135    
136        /**
137         * All measurement unit types supported by this script engine.
138         *
139         * @e Note: there is no standard unit "cents" here (for pitch/tuning), use
140         * @c VM_CENTI for the latter instad. That's because the commonly cited
141         * "cents" unit is actually no measurement unit type but rather a metric
142         * unit prefix.
143         *
144         * @see MetricPrefix_t
145         */
146        enum StdUnit_t {
147            VM_NO_UNIT = 0, ///< No unit used, the number is just an abstract number.
148            VM_SECOND,      ///< Measuring time.
149            VM_HERTZ,       ///< Measuring frequency.
150            VM_BEL,         ///< Measuring relation between two energy levels (in logarithmic scale). Since we are using it for accoustics, we are always referring to A-weighted Bels (i.e. dBA).
151        };
152    
153        // just symbol prototyping
154      class VMIntExpr;      class VMIntExpr;
155      class VMStringExpr;      class VMStringExpr;
156        class VMIntArrayExpr;
157        class VMStringArrayExpr;
158        class VMParserContext;
159    
160        /** @brief Virtual machine measuring unit.
161         *
162         * Abstract base class representing standard measurement units throughout
163         * the script engine. These might be i.e. "dB" (deci Bel) for loudness,
164         * "Hz" (Hertz) for frequencies or "s" for "seconds".
165         *
166         * Originally the script engine only supported abstract integer values for
167         * controlling any synthesis parameter or built-in function argument or
168         * variable. Under certain situations it makes sense though for an
169         * instrument script author to provide values in real, standard measurement
170         * units, for example setting the frequency of some LFO directly to "20Hz".
171         * Hence support for standard units in scripts was added as an extension to
172         * the NKSP script engine.
173         */
174        class VMUnit {
175        public:
176            /**
177             * Returns the metric prefix of this unit. A metric prefix essentially
178             * is just a mathematical scale factor that should be applied to the
179             * number associated with the measurement unit. Usually a unit either
180             * has exactly none or one prefix, but note that there might also be
181             * units with more than one prefix, for example mdB (mili deci bel)
182             * is used sometimes which has two prefixes. This is an exception though
183             * and more than two prefixes is currently not supported by the script
184             * engine.
185             *
186             * Start iterating over the prefixes of this unit by passing @c 0 as
187             * argument to this method. The prefixes are terminated with return
188             * value VM_NO_PREFIX being always the last element.
189             *
190             * @param i - index of prefix
191             * @returns prefix of requested index or VM_NO_PREFIX otherwise
192             * @see unitFactor()
193             */
194            virtual MetricPrefix_t unitPrefix(vmuint i) const = 0;
195    
196            /**
197             * Conveniently returns the final mathematical factor that should be
198             * multiplied against the number associated with this unit. This factor
199             * results from the sequence of metric prefixes of this unit.
200             *
201             * @see unitPrefix()
202             */
203            vmfloat unitFactor() const;
204    
205            /**
206             * This is the actual fundamental measuring unit base type of this unit,
207             * which might be either Hertz, second or Bel.
208             *
209             * @returns standard unit type identifier or VM_NO_UNIT if no unit used
210             */
211            virtual StdUnit_t unitType() const = 0;
212    
213            /**
214             * Returns the actual mathematical factor represented by the passed
215             * @a prefix argument.
216             */
217            static vmfloat unitFactor(MetricPrefix_t prefix);
218    
219            /**
220             * Returns the actual mathematical factor represented by the passed
221             * two @a prefix1 and @a prefix2 arguments.
222             */
223            static vmfloat unitFactor(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
224        };
225    
226        /** @brief Virtual machine expression
227         *
228         * This is the abstract base class for all expressions of scripts.
229         * Deriving classes must implement the abstract method exprType().
230         *
231         * An expression within a script is translated into one instance of this
232         * class. It allows a high level access for the virtual machine to evaluate
233         * and handle expressions appropriately during execution. Expressions are
234         * for example all kinds of formulas, function calls, statements or a
235         * combination of them. Most of them evaluate to some kind of value, which
236         * might be further processed as part of encompassing expressions to outer
237         * expression results and so forth.
238         */
239      class VMExpr {      class VMExpr {
240      public:      public:
241            /**
242             * Identifies the data type to which the result of this expression
243             * evaluates to. This abstract method must be implemented by deriving
244             * classes.
245             */
246          virtual ExprType_t exprType() const = 0;          virtual ExprType_t exprType() const = 0;
247    
248            /**
249             * In case this expression is an integer expression, then this method
250             * returns a casted pointer to that VMIntExpr object. It returns NULL
251             * if this expression is not an integer expression.
252             *
253             * @b Note: type casting performed by this method is strict! That means
254             * if this expression is i.e. actually a string expression like "12",
255             * calling asInt() will @b not cast that numerical string expression to
256             * an integer expression 12 for you, instead this method will simply
257             * return NULL!
258             *
259             * @see exprType()
260             */
261          VMIntExpr* asInt() const;          VMIntExpr* asInt() const;
262    
263            /**
264             * In case this expression is a string expression, then this method
265             * returns a casted pointer to that VMStringExpr object. It returns NULL
266             * if this expression is not a string expression.
267             *
268             * @b Note: type casting performed by this method is strict! That means
269             * if this expression is i.e. actually an integer expression like 120,
270             * calling asString() will @b not cast that integer expression to a
271             * string expression "120" for you, instead this method will simply
272             * return NULL!
273             *
274             * @see exprType()
275             */
276          VMStringExpr* asString() const;          VMStringExpr* asString() const;
277    
278            /**
279             * In case this expression is an integer array expression, then this
280             * method returns a casted pointer to that VMIntArrayExpr object. It
281             * returns NULL if this expression is not an integer array expression.
282             *
283             * @b Note: type casting performed by this method is strict! That means
284             * if this expression is i.e. an integer expression or a string
285             * expression, calling asIntArray() will @b not cast those scalar
286             * expressions to an array expression for you, instead this method will
287             * simply return NULL!
288             *
289             * @b Note: this method is currently, and in contrast to its other
290             * counter parts, declared as virtual method. Some deriving classes are
291             * currently using this to override this default implementation in order
292             * to implement an "evaluate now as integer array" behavior. This has
293             * efficiency reasons, however this also currently makes this part of
294             * the API less clean and should thus be addressed in future with
295             * appropriate changes to the API.
296             *
297             * @see exprType()
298             */
299            virtual VMIntArrayExpr* asIntArray() const;
300    
301            /**
302             * Returns true in case this expression can be considered to be a
303             * constant expression. A constant expression will retain the same
304             * value throughout the entire life time of a script and the
305             * expression's constant value may be evaluated already at script
306             * parse time, which may result in performance benefits during script
307             * runtime.
308             *
309             * @b NOTE: A constant expression is per se always also non modifyable.
310             * But a non modifyable expression may not necessarily be a constant
311             * expression!
312             *
313             * @see isModifyable()
314             */
315            virtual bool isConstExpr() const = 0;
316    
317            /**
318             * Returns true in case this expression is allowed to be modified.
319             * If this method returns @c false then this expression must be handled
320             * as read-only expression, which means that assigning a new value to it
321             * is either not possible or not allowed.
322             *
323             * @b NOTE: A constant expression is per se always also non modifyable.
324             * But a non modifyable expression may not necessarily be a constant
325             * expression!
326             *
327             * @see isConstExpr()
328             */
329            bool isModifyable() const;
330      };      };
331    
332      class VMIntExpr : virtual public VMExpr {      /** @brief Virtual machine integer expression
333         *
334         * This is the abstract base class for all expressions inside scripts which
335         * evaluate to an integer (scalar) value. Deriving classes implement the
336         * abstract method evalInt() to return the actual integer result value of
337         * the expression.
338         */
339        class VMIntExpr : virtual public VMExpr, virtual public VMUnit {
340      public:      public:
341          virtual int evalInt() = 0;          /**
342          ExprType_t exprType() const { return INT_EXPR; }           * Returns the result of this expression as integer (scalar) value.
343             * This abstract method must be implemented by deriving classes.
344             */
345            virtual vmint evalInt() = 0;
346    
347            /**
348             * Returns the result of this expression as integer (scalar) value and
349             * thus behaves similar to the previous method, however this overridden
350             * method automatically takes unit prefixes into account and returns a
351             * value corresponding to the expected given unit @a prefix.
352             *
353             * @param prefix - default measurement unit prefix expected by caller
354             */
355            vmint evalInt(MetricPrefix_t prefix);
356    
357            /**
358             * This method behaves like the previous method, just that it takes
359             * a default measurement prefix with two elements (i.e. "milli cents"
360             * for tuning).
361             */
362            vmint evalInt(MetricPrefix_t prefix1, MetricPrefix_t prefix2);
363    
364            /**
365             * Returns always INT_EXPR for instances of this class.
366             */
367            ExprType_t exprType() const OVERRIDE { return INT_EXPR; }
368    
369            /**
370             * Returns @c true if the value of this expression should be applied
371             * as final value to the respective destination synthesis chain
372             * parameter.
373             *
374             * This property is somewhat special and dedicated for the purpose of
375             * this expression's integer value to be applied as parameter to the
376             * synthesis chain of the sampler (i.e. for altering a filter cutoff
377             * frequency). Now historically and by default all values of scripts are
378             * applied relatively to the sampler's synthesis chain, that is the
379             * synthesis parameter value of a script is multiplied against other
380             * sources for the same synthesis parameter (i.e. an LFO or a dedicated
381             * MIDI controller either hard wired in the engine or defined by the
382             * instrument patch). So by default the resulting actual final synthesis
383             * parameter is a combination of all these sources. This has the
384             * advantage that it creates a very living and dynamic overall sound.
385             *
386             * However sometimes there are requirements by script authors where this
387             * is not what you want. Therefore the NKSP script engine added a
388             * language extension by prefixing a value in scripts with a @c !
389             * character the value will be defined as being the "final" value of the
390             * destination synthesis parameter, so that causes this value to be
391             * applied exclusively, and the values of all other sources are thus
392             * entirely ignored by the sampler's synthesis core as long as this
393             * value is assigned by the script engine as "final" value for the
394             * requested synthesis parameter.
395             */
396            virtual bool isFinal() const = 0;
397      };      };
398    
399        /** @brief Virtual machine string expression
400         *
401         * This is the abstract base class for all expressions inside scripts which
402         * evaluate to a string value. Deriving classes implement the abstract
403         * method evalStr() to return the actual string result value of the
404         * expression.
405         */
406      class VMStringExpr : virtual public VMExpr {      class VMStringExpr : virtual public VMExpr {
407      public:      public:
408            /**
409             * Returns the result of this expression as string value. This abstract
410             * method must be implemented by deriving classes.
411             */
412          virtual String evalStr() = 0;          virtual String evalStr() = 0;
413          ExprType_t exprType() const { return STRING_EXPR; }  
414            /**
415             * Returns always STRING_EXPR for instances of this class.
416             */
417            ExprType_t exprType() const OVERRIDE { return STRING_EXPR; }
418        };
419    
420        /** @brief Virtual Machine Array Value Expression
421         *
422         * This is the abstract base class for all expressions inside scripts which
423         * evaluate to some kind of array value. Deriving classes implement the
424         * abstract method arraySize() to return the amount of elements within the
425         * array.
426         */
427        class VMArrayExpr : virtual public VMExpr {
428        public:
429            /**
430             * Returns amount of elements in this array. This abstract method must
431             * be implemented by deriving classes.
432             */
433            virtual vmint arraySize() const = 0;
434        };
435    
436        /** @brief Virtual Machine Integer Array Expression
437         *
438         * This is the abstract base class for all expressions inside scripts which
439         * evaluate to an array of integer values. Deriving classes implement the
440         * abstract methods arraySize(), evalIntElement() and assignIntElement() to
441         * access the individual integer array values.
442         */
443        class VMIntArrayExpr : virtual public VMArrayExpr {
444        public:
445            /**
446             * Returns the (scalar) integer value of the array element given by
447             * element index @a i.
448             *
449             * @param i - array element index (must be between 0 .. arraySize() - 1)
450             */
451            virtual vmint evalIntElement(vmuint i) = 0;
452    
453            /**
454             * Changes the current value of an element (given by array element
455             * index @a i) of this integer array.
456             *
457             * @param i - array element index (must be between 0 .. arraySize() - 1)
458             * @param value - new integer scalar value to be assigned to that array element
459             */
460            virtual void assignIntElement(vmuint i, vmint value) = 0;
461    
462            /**
463             * Returns always INT_ARR_EXPR for instances of this class.
464             */
465            ExprType_t exprType() const OVERRIDE { return INT_ARR_EXPR; }
466      };      };
467    
468        /** @brief Arguments (parameters) for being passed to a built-in script function.
469         *
470         * An argument or a set of arguments passed to a script function are
471         * translated by the parser to an instance of this class. This abstract
472         * interface class is used by implementations of built-in functions to
473         * obtain the individual function argument values being passed to them at
474         * runtime.
475         */
476      class VMFnArgs {      class VMFnArgs {
477      public:      public:
478          virtual int argsCount() const = 0;          /**
479          virtual VMExpr* arg(int i) = 0;           * Returns the amount of arguments going to be passed to the script
480             * function.
481             */
482            virtual vmint argsCount() const = 0;
483    
484            /**
485             * Returns the respective argument (requested by argument index @a i) of
486             * this set of arguments. This method is called by implementations of
487             * built-in script functions to obtain the value of each function
488             * argument passed to the function at runtime.
489             *
490             * @param i - function argument index (indexed from left to right)
491             */
492            virtual VMExpr* arg(vmint i) = 0;
493      };      };
494    
495        /** @brief Result value returned from a call to a built-in script function.
496         *
497         * Implementations of built-in script functions return an instance of this
498         * object to let the virtual machine obtain the result value of the function
499         * call, which might then be further processed by the virtual machine
500         * according to the script. It also provides informations about the success
501         * or failure of the function call.
502         */
503      class VMFnResult {      class VMFnResult {
504      public:      public:
505            /**
506             * Returns the result value of the function call, represented by a high
507             * level expression object.
508             */
509          virtual VMExpr* resultValue() = 0;          virtual VMExpr* resultValue() = 0;
510    
511            /**
512             * Provides detailed informations of the success / failure of the
513             * function call. The virtual machine is evaluating the flags returned
514             * here to decide whether it must abort or suspend execution of the
515             * script at this point.
516             */
517          virtual StmtFlags_t resultFlags() { return STMT_SUCCESS; }          virtual StmtFlags_t resultFlags() { return STMT_SUCCESS; }
518      };      };
519    
520        /** @brief Virtual machine built-in function.
521         *
522         * Abstract base class for built-in script functions, defining the interface
523         * for all built-in script function implementations. All built-in script
524         * functions are deriving from this abstract interface class in order to
525         * provide their functionality to the virtual machine with this unified
526         * interface.
527         *
528         * The methods of this interface class provide two purposes:
529         *
530         * 1. When a script is loaded, the script parser uses the methods of this
531         *    interface to check whether the script author was calling the
532         *    respective built-in script function in a correct way. For example
533         *    the parser checks whether the required amount of parameters were
534         *    passed to the function and whether the data types passed match the
535         *    data types expected by the function. If not, loading the script will
536         *    be aborted with a parser error, describing to the user (i.e. script
537         *    author) the precise misusage of the respective function.
538         * 2. After the script was loaded successfully and the script is executed,
539         *    the virtual machine calls the exec() method of the respective built-in
540         *    function to provide the actual functionality of the built-in function
541         *    call.
542         */
543      class VMFunction {      class VMFunction {
544      public:      public:
545            /**
546             * Script data type of the function's return value. If the function does
547             * not return any value (void), then it returns EMPTY_EXPR here.
548             */
549          virtual ExprType_t returnType() = 0;          virtual ExprType_t returnType() = 0;
550          virtual int minRequiredArgs() const = 0;  
551          virtual int maxAllowedArgs() const = 0;          /**
552          virtual ExprType_t argType(int iArg) const = 0;           * Minimum amount of function arguments this function accepts. If a
553          virtual bool acceptsArgType(int iArg, ExprType_t type) const = 0;           * script is calling this function with less arguments, the script
554             * parser will throw a parser error.
555             */
556            virtual vmint minRequiredArgs() const = 0;
557    
558            /**
559             * Maximum amount of function arguments this functions accepts. If a
560             * script is calling this function with more arguments, the script
561             * parser will throw a parser error.
562             */
563            virtual vmint maxAllowedArgs() const = 0;
564    
565            /**
566             * Script data type of the function's @c iArg 'th function argument.
567             * The information provided here is less strong than acceptsArgType().
568             * The parser will compare argument data types provided in scripts by
569             * calling acceptsArgType(). The return value of argType() is used by the
570             * parser instead to show an appropriate parser error which data type
571             * this function usually expects as "default" data type. Reason: a
572             * function may accept multiple data types for a certain function
573             * argument and would automatically cast the passed argument value in
574             * that case to the type it actually needs.
575             *
576             * @param iArg - index of the function argument in question
577             *               (must be between 0 .. maxAllowedArgs() - 1)
578             */
579            virtual ExprType_t argType(vmint iArg) const = 0;
580    
581            /**
582             * This method is called by the parser to check whether arguments
583             * passed in scripts to this function are accepted by this function. If
584             * a script calls this function with an argument's data type not
585             * accepted by this function, the parser will throw a parser error. On
586             * such errors the data type returned by argType() will be used to
587             * assemble an appropriate error message regarding the precise misusage
588             * of the built-in function.
589             *
590             * @param iArg - index of the function argument in question
591             *               (must be between 0 .. maxAllowedArgs() - 1)
592             * @param type - script data type used for this function argument by
593             *               currently parsed script
594             * @return true if the given data type would be accepted for the
595             *         respective function argument by the function
596             */
597            virtual bool acceptsArgType(vmint iArg, ExprType_t type) const = 0;
598    
599            /**
600             * This method is called by the parser to check whether arguments
601             * passed in scripts to this function are accepted by this function. If
602             * a script calls this function with an argument's measuremnt unit type
603             * not accepted by this function, the parser will throw a parser error.
604             *
605             * This default implementation of this method does not accept any
606             * measurement unit. Deriving subclasses would override this method
607             * implementation in case they do accept any measurement unit for its
608             * function arguments.
609             *
610             * @param iArg - index of the function argument in question
611             *               (must be between 0 .. maxAllowedArgs() - 1)
612             * @param type - standard measurement unit data type used for this
613             *               function argument by currently parsed script
614             * @return true if the given standard measurement unit type would be
615             *         accepted for the respective function argument by the function
616             */
617            virtual bool acceptsArgUnitType(vmint iArg, StdUnit_t type) const;
618    
619            /**
620             * This method is called by the parser to check whether arguments
621             * passed in scripts to this function are accepted by this function. If
622             * a script calls this function with a metric unit prefix and metric
623             * prefixes are not accepted for that argument by this function, then
624             * the parser will throw a parser error.
625             *
626             * This default implementation of this method does not accept any
627             * metric prefix. Deriving subclasses would override this method
628             * implementation in case they do accept any metric prefix for its
629             * function arguments.
630             *
631             * @param iArg - index of the function argument in question
632             *               (must be between 0 .. maxAllowedArgs() - 1)
633             *
634             * @return true if a metric prefix would be accepted for the respective
635             *         function argument by this function
636             *
637             * @see MetricPrefix_t
638             */
639            virtual bool acceptsArgUnitPrefix(vmint iArg) const;
640    
641            /**
642             * This method is called by the parser to check whether arguments
643             * passed in scripts to this function are accepted by this function. If
644             * a script calls this function with an argument that is declared to be
645             * a "final" value and this is not accepted by this function, the parser
646             * will throw a parser error.
647             *
648             * This default implementation of this method does not accept a "final"
649             * value. Deriving subclasses would override this method implementation
650             * in case they do accept a "final" value for its function arguments.
651             *
652             * @param iArg - index of the function argument in question
653             *               (must be between 0 .. maxAllowedArgs() - 1)
654             * @return true if a "final" value would be accepted for the respective
655             *         function argument by the function
656             *
657             * @see VMIntExpr::isFinal()
658             */
659            virtual bool acceptsArgFinal(vmint iArg) const;
660    
661            /**
662             * This method is called by the parser to check whether some arguments
663             * (and if yes which ones) passed to this script function will be
664             * modified by this script function. Most script functions simply use
665             * their arguments as inputs, that is they only read the argument's
666             * values. However some script function may also use passed
667             * argument(s) as output variables. In this case the function
668             * implementation must return @c true for the respective argument
669             * index here.
670             *
671             * @param iArg - index of the function argument in question
672             *               (must be between 0 .. maxAllowedArgs() - 1)
673             */
674            virtual bool modifiesArg(vmint iArg) const = 0;
675    
676            /**
677             * Implements the actual function execution. This exec() method is
678             * called by the VM whenever this function implementation shall be
679             * executed at script runtime. This method blocks until the function
680             * call completed.
681             *
682             * @param args - function arguments for executing this built-in function
683             * @returns function's return value (if any) and general status
684             *          informations (i.e. whether the function call caused a
685             *          runtime error)
686             */
687          virtual VMFnResult* exec(VMFnArgs* args) = 0;          virtual VMFnResult* exec(VMFnArgs* args) = 0;
688    
689            /**
690             * Convenience method for function implementations to show warning
691             * messages during actual execution of the built-in function.
692             *
693             * @param txt - runtime warning text to be shown to user
694             */
695            void wrnMsg(const String& txt);
696    
697            /**
698             * Convenience method for function implementations to show error
699             * messages during actual execution of the built-in function.
700             *
701             * @param txt - runtime error text to be shown to user
702             */
703            void errMsg(const String& txt);
704      };      };
705    
706      /**      /** @brief Virtual machine relative pointer.
707       * POD base of VMIntRelPtr and VMInt8RelPtr structures. Not intended to be       *
708       * used directly. Use VMIntRelPtr or VMInt8RelPtr instead.       * POD base of VMInt64RelPtr, VMInt32RelPtr and VMInt8RelPtr structures. Not
709         * intended to be used directly. Use VMInt64RelPtr, VMInt32RelPtr,
710         * VMInt8RelPtr instead.
711         *
712         * @see VMInt64RelPtr, VMInt32RelPtr, VMInt8RelPtr
713       */       */
714      struct VMRelPtr {      struct VMRelPtr {
715          void** base; ///< Base pointer.          void** base; ///< Base pointer.
716          int offset;  ///< Offset (in bytes) to base pointer.          vmint offset;  ///< Offset (in bytes) relative to base pointer.
717            bool readonly; ///< Whether the pointed data may be modified or just be read.
718        };
719    
720        /** @brief Pointer to built-in VM integer variable (interface class).
721         *
722         * This class acts as an abstract interface to all built-in integer script
723         * variables, independent of their actual native size (i.e. some built-in
724         * script variables are internally using a native int size of 64 bit or 32
725         * bit or 8 bit). The virtual machine is using this interface class instead
726         * of its implementing descendants (VMInt64RelPtr, VMInt32RelPtr,
727         * VMInt8RelPtr) in order for the virtual machine for not being required to
728         * handle each of them differently.
729         */
730        struct VMIntPtr {
731            virtual vmint evalInt() = 0;
732            virtual void assign(vmint i) = 0;
733            virtual bool isAssignable() const = 0;
734      };      };
735    
736      /** @brief Pointer to built-in VM integer variable (of C/C++ type int).      /** @brief Pointer to built-in VM integer variable (of C/C++ type int64_t).
737       *       *
738       * Used for defining built-in integer script variables.       * Used for defining built-in 64 bit integer script variables.
739       *       *
740       * @b CAUTION: You may only use this class for pointing to C/C++ variables       * @b CAUTION: You may only use this class for pointing to C/C++ variables
741       * of type "int" (which on most systems is 32 bit in size). If the C/C++ int       * of type "int64_t" (thus being exactly 64 bit in size). If the C/C++ int
742       * variable you want to reference is only 8 bit in size, then you @b must       * variable you want to reference is only 32 bit in size then you @b must
743       * use VMInt8RelPtr instead!       * use VMInt32RelPtr instead! Respectively for a referenced native variable
744         * with only 8 bit in size you @b must use VMInt8RelPtr instead!
745       *       *
746       * For efficiency reasons the actual native C/C++ int variable is referenced       * For efficiency reasons the actual native C/C++ int variable is referenced
747       * by two components here. The actual native int C/C++ variable in memory       * by two components here. The actual native int C/C++ variable in memory
# Line 120  namespace LinuxSampler { Line 753  namespace LinuxSampler {
753       *       *
754       * Refer to DECLARE_VMINT() for example code.       * Refer to DECLARE_VMINT() for example code.
755       *       *
756       * @see VMInt8RelPtr, DECLARE_VMINT()       * @see VMInt32RelPtr, VMInt8RelPtr, DECLARE_VMINT()
757       */       */
758      struct VMIntRelPtr : VMRelPtr {      struct VMInt64RelPtr : VMRelPtr, VMIntPtr {
759          VMIntRelPtr() {          VMInt64RelPtr() {
760              base   = NULL;              base   = NULL;
761              offset = 0;              offset = 0;
762                readonly = false;
763          }          }
764          VMIntRelPtr(const VMRelPtr& data) {          VMInt64RelPtr(const VMRelPtr& data) {
765              base   = data.base;              base   = data.base;
766              offset = data.offset;              offset = data.offset;
767                readonly = false;
768            }
769            vmint evalInt() OVERRIDE {
770                return (vmint)*(int64_t*)&(*(uint8_t**)base)[offset];
771          }          }
772          virtual int evalInt() { return *(int*)&(*(uint8_t**)base)[offset]; }          void assign(vmint i) OVERRIDE {
773          virtual void assign(int i) { *(int*)&(*(uint8_t**)base)[offset] = i; }              *(int64_t*)&(*(uint8_t**)base)[offset] = (int64_t)i;
774            }
775            bool isAssignable() const OVERRIDE { return !readonly; }
776        };
777    
778        /** @brief Pointer to built-in VM integer variable (of C/C++ type int32_t).
779         *
780         * Used for defining built-in 32 bit integer script variables.
781         *
782         * @b CAUTION: You may only use this class for pointing to C/C++ variables
783         * of type "int32_t" (thus being exactly 32 bit in size). If the C/C++ int
784         * variable you want to reference is 64 bit in size then you @b must use
785         * VMInt64RelPtr instead! Respectively for a referenced native variable with
786         * only 8 bit in size you @b must use VMInt8RelPtr instead!
787         *
788         * For efficiency reasons the actual native C/C++ int variable is referenced
789         * by two components here. The actual native int C/C++ variable in memory
790         * is dereferenced at VM run-time by taking the @c base pointer dereference
791         * and adding @c offset bytes. This has the advantage that for a large
792         * number of built-in int variables, only one (or few) base pointer need
793         * to be re-assigned before running a script, instead of updating each
794         * built-in variable each time before a script is executed.
795         *
796         * Refer to DECLARE_VMINT() for example code.
797         *
798         * @see VMInt64RelPtr, VMInt8RelPtr, DECLARE_VMINT()
799         */
800        struct VMInt32RelPtr : VMRelPtr, VMIntPtr {
801            VMInt32RelPtr() {
802                base   = NULL;
803                offset = 0;
804                readonly = false;
805            }
806            VMInt32RelPtr(const VMRelPtr& data) {
807                base   = data.base;
808                offset = data.offset;
809                readonly = false;
810            }
811            vmint evalInt() OVERRIDE {
812                return (vmint)*(int32_t*)&(*(uint8_t**)base)[offset];
813            }
814            void assign(vmint i) OVERRIDE {
815                *(int32_t*)&(*(uint8_t**)base)[offset] = (int32_t)i;
816            }
817            bool isAssignable() const OVERRIDE { return !readonly; }
818      };      };
819    
820      /** @brief Pointer to built-in VM integer variable (of C/C++ type int8_t).      /** @brief Pointer to built-in VM integer variable (of C/C++ type int8_t).
821       *       *
822       * Used for defining built-in integer script variables.       * Used for defining built-in 8 bit integer script variables.
823       *       *
824       * @b CAUTION: You may only use this class for pointing to C/C++ variables       * @b CAUTION: You may only use this class for pointing to C/C++ variables
825       * of type "int8_t" (8 bit integer). If the C/C++ int variable you want to       * of type "int8_t" (8 bit integer). If the C/C++ int variable you want to
826       * reference is an "int" type (which is 32 bit on most systems), then you       * reference is not exactly 8 bit in size then you @b must respectively use
827       * @b must use VMIntRelPtr instead!       * either VMInt32RelPtr for native 32 bit variables or VMInt64RelPtrl for
828         * native 64 bit variables instead!
829       *       *
830       * For efficiency reasons the actual native C/C++ int variable is referenced       * For efficiency reasons the actual native C/C++ int variable is referenced
831       * by two components here. The actual native int C/C++ variable in memory       * by two components here. The actual native int C/C++ variable in memory
# Line 154  namespace LinuxSampler { Line 837  namespace LinuxSampler {
837       *       *
838       * Refer to DECLARE_VMINT() for example code.       * Refer to DECLARE_VMINT() for example code.
839       *       *
840       * @see VMIntRelPtr, DECLARE_VMINT()       * @see VMIntRel32Ptr, VMIntRel64Ptr, DECLARE_VMINT()
841       */       */
842      struct VMInt8RelPtr : VMIntRelPtr {      struct VMInt8RelPtr : VMRelPtr, VMIntPtr {
843          VMInt8RelPtr() : VMIntRelPtr() {}          VMInt8RelPtr() {
844          VMInt8RelPtr(const VMRelPtr& data) : VMIntRelPtr(data) {}              base   = NULL;
845          virtual int evalInt() OVERRIDE {              offset = 0;
846              return *(uint8_t*)&(*(uint8_t**)base)[offset];              readonly = false;
847            }
848            VMInt8RelPtr(const VMRelPtr& data) {
849                base   = data.base;
850                offset = data.offset;
851                readonly = false;
852            }
853            vmint evalInt() OVERRIDE {
854                return (vmint)*(uint8_t*)&(*(uint8_t**)base)[offset];
855          }          }
856          virtual void assign(int i) OVERRIDE {          void assign(vmint i) OVERRIDE {
857              *(uint8_t*)&(*(uint8_t**)base)[offset] = i;              *(uint8_t*)&(*(uint8_t**)base)[offset] = (uint8_t)i;
858          }          }
859            bool isAssignable() const OVERRIDE { return !readonly; }
860      };      };
861    
862        /** @brief Pointer to built-in VM integer variable (of C/C++ type vmint).
863         *
864         * Use this typedef if the native variable to be pointed to is using the
865         * typedef vmint. If the native C/C++ variable to be pointed to is using
866         * another C/C++ type then better use one of VMInt64RelPtr or VMInt32RelPtr
867         * instead.
868         */
869        typedef VMInt64RelPtr VMIntRelPtr;
870    
871        #if HAVE_CXX_EMBEDDED_PRAGMA_DIAGNOSTICS
872        # define COMPILER_DISABLE_OFFSETOF_WARNING                    \
873            _Pragma("GCC diagnostic push")                            \
874            _Pragma("GCC diagnostic ignored \"-Winvalid-offsetof\"")
875        # define COMPILER_RESTORE_OFFSETOF_WARNING \
876            _Pragma("GCC diagnostic pop")
877        #else
878        # define COMPILER_DISABLE_OFFSETOF_WARNING
879        # define COMPILER_RESTORE_OFFSETOF_WARNING
880        #endif
881    
882      /**      /**
883       * Convenience macro for initializing VMIntRelPtr and VMInt8RelPtr       * Convenience macro for initializing VMInt64RelPtr, VMInt32RelPtr and
884       * structures. Example:       * VMInt8RelPtr structures. Usage example:
885       * @code       * @code
886       * struct Foo {       * struct Foo {
887       *   uint8_t a;       *   uint8_t a; // native representation of a built-in integer script variable
888       *   int b;       *   int64_t b; // native representation of another built-in integer script variable
889         *   int64_t c; // native representation of another built-in integer script variable
890         *   uint8_t d; // native representation of another built-in integer script variable
891       * };       * };
892       *       *
893       * Foo foo1 = (Foo) { 1, 3000 };       * // initializing the built-in script variables to some values
894       * Foo foo2 = (Foo) { 2, 4000 };       * Foo foo1 = (Foo) { 1, 2000, 3000, 4 };
895         * Foo foo2 = (Foo) { 5, 6000, 7000, 8 };
896       *       *
897       * Foo* pFoo;       * Foo* pFoo;
898       *       *
899       * VMInt8RelPtr var1 = DECLARE_VMINT(pFoo, class Foo, a);       * VMInt8RelPtr varA = DECLARE_VMINT(pFoo, class Foo, a);
900       * VMIntRelPtr  var2 = DECLARE_VMINT(pFoo, class Foo, b);       * VMInt64RelPtr varB = DECLARE_VMINT(pFoo, class Foo, b);
901         * VMInt64RelPtr varC = DECLARE_VMINT(pFoo, class Foo, c);
902         * VMInt8RelPtr varD = DECLARE_VMINT(pFoo, class Foo, d);
903       *       *
904       * pFoo = &foo1;       * pFoo = &foo1;
905       * printf("%d\n", var1->evalInt()); // will print 1       * printf("%d\n", varA->evalInt()); // will print 1
906       * printf("%d\n", var2->evalInt()); // will print 3000       * printf("%d\n", varB->evalInt()); // will print 2000
907         * printf("%d\n", varC->evalInt()); // will print 3000
908         * printf("%d\n", varD->evalInt()); // will print 4
909         *
910         * // same printf() code, just with pFoo pointer being changed ...
911       *       *
912       * pFoo = &foo2;       * pFoo = &foo2;
913       * printf("%d\n", var1->evalInt()); // will print 2       * printf("%d\n", varA->evalInt()); // will print 5
914       * printf("%d\n", var2->evalInt()); // will print 4000       * printf("%d\n", varB->evalInt()); // will print 6000
915         * printf("%d\n", varC->evalInt()); // will print 7000
916         * printf("%d\n", varD->evalInt()); // will print 8
917       * @endcode       * @endcode
918         * As you can see above, by simply changing one single pointer, you can
919         * remap a huge bunch of built-in integer script variables to completely
920         * different native values/native variables. Which especially reduces code
921         * complexity inside the sampler engines which provide the actual script
922         * functionalities.
923         */
924        #define DECLARE_VMINT(basePtr, T_struct, T_member) (          \
925            /* Disable offsetof warning, trust us, we are cautios. */ \
926            COMPILER_DISABLE_OFFSETOF_WARNING                         \
927            (VMRelPtr) {                                              \
928                (void**) &basePtr,                                    \
929                offsetof(T_struct, T_member),                         \
930                false                                                 \
931            }                                                         \
932            COMPILER_RESTORE_OFFSETOF_WARNING                         \
933        )                                                             \
934    
935        /**
936         * Same as DECLARE_VMINT(), but this one defines the VMInt64RelPtr,
937         * VMInt32RelPtr and VMInt8RelPtr structures to be of read-only type.
938         * That means the script parser will abort any script at parser time if the
939         * script is trying to modify such a read-only built-in variable.
940         *
941         * @b NOTE: this is only intended for built-in read-only variables that
942         * may change during runtime! If your built-in variable's data is rather
943         * already available at parser time and won't change during runtime, then
944         * you should rather register a built-in constant in your VM class instead!
945         *
946         * @see ScriptVM::builtInConstIntVariables()
947       */       */
948      #define DECLARE_VMINT(basePtr, T_struct, T_member) ( \      #define DECLARE_VMINT_READONLY(basePtr, T_struct, T_member) ( \
949          (VMRelPtr) {                                     \          /* Disable offsetof warning, trust us, we are cautios. */ \
950              (void**) &basePtr,                           \          COMPILER_DISABLE_OFFSETOF_WARNING                         \
951              offsetof(T_struct, T_member)                 \          (VMRelPtr) {                                              \
952          }                                                \              (void**) &basePtr,                                    \
953      )                                                    \              offsetof(T_struct, T_member),                         \
954                true                                                  \
955            }                                                         \
956            COMPILER_RESTORE_OFFSETOF_WARNING                         \
957        )                                                             \
958    
959      /** @brief Built-in VM 8 bit integer array variable.      /** @brief Built-in VM 8 bit integer array variable.
960       *       *
961       * Used for defining built-in integer array script variables.       * Used for defining built-in integer array script variables (8 bit per
962         * array element). Currently there is no support for any other kind of array
963         * type. So all integer arrays of scripts use 8 bit data types.
964       */       */
965      struct VMInt8Array {      struct VMInt8Array {
966          int8_t* data;          int8_t* data;
967          int size;          vmint size;
968            bool readonly; ///< Whether the array data may be modified or just be read.
969    
970            VMInt8Array() : data(NULL), size(0), readonly(false) {}
971        };
972    
973        /** @brief Virtual machine script variable.
974         *
975         * Common interface for all variables accessed in scripts.
976         */
977        class VMVariable : virtual public VMExpr {
978        public:
979            /**
980             * Whether a script may modify the content of this variable by
981             * assigning a new value to it.
982             *
983             * @see isConstExpr(), assign()
984             */
985            virtual bool isAssignable() const = 0;
986    
987            /**
988             * In case this variable is assignable, this method will be called to
989             * perform the value assignment to this variable with @a expr
990             * reflecting the new value to be assigned.
991             *
992             * @param expr - new value to be assigned to this variable
993             */
994            virtual void assignExpr(VMExpr* expr) = 0;
995        };
996        
997        /** @brief Dynamically executed variable (abstract base class).
998         *
999         * Interface for the implementation of a dynamically generated content of
1000         * a built-in script variable. Most built-in variables are simply pointers
1001         * to some native location in memory. So when a script reads them, the
1002         * memory location is simply read to get the value of the variable. A
1003         * dynamic variable however is not simply a memory location. For each access
1004         * to a dynamic variable some native code is executed to actually generate
1005         * and provide the content (value) of this type of variable.
1006         */
1007        class VMDynVar : public VMVariable {
1008        public:
1009            /**
1010             * Returns true in case this dynamic variable can be considered to be a
1011             * constant expression. A constant expression will retain the same value
1012             * throughout the entire life time of a script and the expression's
1013             * constant value may be evaluated already at script parse time, which
1014             * may result in performance benefits during script runtime.
1015             *
1016             * However due to the "dynamic" behavior of dynamic variables, almost
1017             * all dynamic variables are probably not constant expressions. That's
1018             * why this method returns @c false by default. If you are really sure
1019             * that your dynamic variable implementation can be considered a
1020             * constant expression then you may override this method and return
1021             * @c true instead. Note that when you return @c true here, your
1022             * dynamic variable will really just be executed once; and exectly
1023             * already when the script is loaded!
1024             *
1025             * As an example you may implement a "constant" built-in dynamic
1026             * variable that checks for a certain operating system feature and
1027             * returns the result of that OS feature check as content (value) of
1028             * this dynamic variable. Since the respective OS feature might become
1029             * available/unavailable after OS updates, software migration, etc. the
1030             * OS feature check should at least be performed once each time the
1031             * application is launched. And since the OS feature check might take a
1032             * certain amount of execution time, it might make sense to only
1033             * perform the check if the respective variable name is actually
1034             * referenced at all in the script to be loaded. Note that the dynamic
1035             * variable will still be evaluated again though if the script is
1036             * loaded again. So it is up to you to probably cache the result in the
1037             * implementation of your dynamic variable.
1038             *
1039             * On doubt, please rather consider to use a constant built-in script
1040             * variable instead of implementing a "constant" dynamic variable, due
1041             * to the runtime overhead a dynamic variable may cause.
1042             *
1043             * @see isAssignable()
1044             */
1045            bool isConstExpr() const OVERRIDE { return false; }
1046    
1047            /**
1048             * In case this dynamic variable is assignable, the new value (content)
1049             * to be assigned to this dynamic variable.
1050             *
1051             * By default this method does nothing. Override and implement this
1052             * method in your subclass in case your dynamic variable allows to
1053             * assign a new value by script.
1054             *
1055             * @param expr - new value to be assigned to this variable
1056             */
1057            void assignExpr(VMExpr* expr) OVERRIDE {}
1058    
1059            virtual ~VMDynVar() {}
1060        };
1061    
1062        /** @brief Dynamically executed variable (of integer data type).
1063         *
1064         * This is the base class for all built-in integer script variables whose
1065         * variable content needs to be provided dynamically by executable native
1066         * code on each script variable access.
1067         */
1068        class VMDynIntVar : virtual public VMDynVar, virtual public VMIntExpr {
1069        public:
1070            MetricPrefix_t unitPrefix(vmuint i) const OVERRIDE { return VM_NO_PREFIX; }
1071            StdUnit_t unitType() const OVERRIDE { return VM_NO_UNIT; }
1072            bool isFinal() const OVERRIDE { return false; }
1073        };
1074    
1075        /** @brief Dynamically executed variable (of string data type).
1076         *
1077         * This is the base class for all built-in string script variables whose
1078         * variable content needs to be provided dynamically by executable native
1079         * code on each script variable access.
1080         */
1081        class VMDynStringVar : virtual public VMDynVar, virtual public VMStringExpr {
1082        public:
1083        };
1084    
1085          VMInt8Array() : data(NULL), size(0) {}      /** @brief Dynamically executed variable (of integer array data type).
1086         *
1087         * This is the base class for all built-in integer array script variables
1088         * whose variable content needs to be provided dynamically by executable
1089         * native code on each script variable access.
1090         */
1091        class VMDynIntArrayVar : virtual public VMDynVar, virtual public VMIntArrayExpr {
1092        public:
1093      };      };
1094    
1095        /** @brief Provider for built-in script functions and variables.
1096         *
1097         * Abstract base class defining the high-level interface for all classes
1098         * which add and implement built-in script functions and built-in script
1099         * variables.
1100         */
1101      class VMFunctionProvider {      class VMFunctionProvider {
1102      public:      public:
1103            /**
1104             * Returns pointer to the built-in function with the given function
1105             * @a name, or NULL if there is no built-in function with that function
1106             * name.
1107             *
1108             * @param name - function name (i.e. "wait" or "message" or "exit", etc.)
1109             */
1110          virtual VMFunction* functionByName(const String& name) = 0;          virtual VMFunction* functionByName(const String& name) = 0;
1111          virtual std::map<String,VMIntRelPtr*> builtInIntVariables() = 0;  
1112            /**
1113             * Returns @c true if the passed built-in function is disabled and
1114             * should be ignored by the parser. This method is called by the
1115             * parser on preprocessor level for each built-in function call within
1116             * a script. Accordingly if this method returns @c true, then the
1117             * respective function call is completely filtered out on preprocessor
1118             * level, so that built-in function won't make into the result virtual
1119             * machine representation, nor would expressions of arguments passed to
1120             * that built-in function call be evaluated, nor would any check
1121             * regarding correct usage of the built-in function be performed.
1122             * In other words: a disabled function call ends up as a comment block.
1123             *
1124             * @param fn - built-in function to be checked
1125             * @param ctx - parser context at the position where the built-in
1126             *              function call is located within the script
1127             */
1128            virtual bool isFunctionDisabled(VMFunction* fn, VMParserContext* ctx) = 0;
1129    
1130            /**
1131             * Returns a variable name indexed map of all built-in script variables
1132             * which point to native "int" scalar (usually 32 bit) variables.
1133             */
1134            virtual std::map<String,VMIntPtr*> builtInIntVariables() = 0;
1135    
1136            /**
1137             * Returns a variable name indexed map of all built-in script integer
1138             * array variables with array element type "int8_t" (8 bit).
1139             */
1140          virtual std::map<String,VMInt8Array*> builtInIntArrayVariables() = 0;          virtual std::map<String,VMInt8Array*> builtInIntArrayVariables() = 0;
1141          virtual std::map<String,int> builtInConstIntVariables() = 0;  
1142            /**
1143             * Returns a variable name indexed map of all built-in constant script
1144             * variables, which never change their value at runtime.
1145             */
1146            virtual std::map<String,vmint> builtInConstIntVariables() = 0;
1147    
1148            /**
1149             * Returns a variable name indexed map of all built-in dynamic variables,
1150             * which are not simply data stores, rather each one of them executes
1151             * natively to provide or alter the respective script variable data.
1152             */
1153            virtual std::map<String,VMDynVar*> builtInDynamicVariables() = 0;
1154      };      };
1155    
1156      /** @brief Execution state of a virtual machine.      /** @brief Execution state of a virtual machine.
1157       *       *
1158       * An instance of this abstract base class represents exactly one execution       * An instance of this abstract base class represents exactly one execution
1159       * state of a virtual machine. This encompasses most notably the VM       * state of a virtual machine. This encompasses most notably the VM
1160       * execution stack, and VM polyphonic variables. You might see it as one       * execution stack, and VM polyphonic variables. It does not contain global
1161       * virtual thread of the virtual machine.       * variables. Global variables are contained in the VMParserContext object.
1162         * You might see a VMExecContext object as one virtual thread of the virtual
1163         * machine.
1164         *
1165         * In contrast to a VMParserContext, a VMExecContext is not tied to a
1166         * ScriptVM instance. Thus you can use a VMExecContext with different
1167         * ScriptVM instances, however not concurrently at the same time.
1168       *       *
1169       * @see VMParserContext       * @see VMParserContext
1170       */       */
1171      class VMExecContext {      class VMExecContext {
1172      public:      public:
1173          virtual ~VMExecContext() {}          virtual ~VMExecContext() {}
1174          virtual int suspensionTimeMicroseconds() const = 0;  
1175            /**
1176             * In case the script was suspended for some reason, this method returns
1177             * the amount of microseconds before the script shall continue its
1178             * execution. Note that the virtual machine itself does never put its
1179             * own execution thread(s) to sleep. So the respective class (i.e. sampler
1180             * engine) which is using the virtual machine classes here, must take
1181             * care by itself about taking time stamps, determining the script
1182             * handlers that shall be put aside for the requested amount of
1183             * microseconds, indicated by this method by comparing the time stamps in
1184             * real-time, and to continue passing the respective handler to
1185             * ScriptVM::exec() as soon as its suspension exceeded, etc. Or in other
1186             * words: all classes in this directory never have an idea what time it
1187             * is.
1188             *
1189             * You should check the return value of ScriptVM::exec() to determine
1190             * whether the script was actually suspended before calling this method
1191             * here.
1192             *
1193             * @see ScriptVM::exec()
1194             */
1195            virtual vmint suspensionTimeMicroseconds() const = 0;
1196    
1197            /**
1198             * Causes all polyphonic variables to be reset to zero values. A
1199             * polyphonic variable is expected to be zero when entering a new event
1200             * handler instance. As an exception the values of polyphonic variables
1201             * shall only be preserved from an note event handler instance to its
1202             * correspending specific release handler instance. So in the latter
1203             * case the script author may pass custom data from the note handler to
1204             * the release handler, but only for the same specific note!
1205             */
1206            virtual void resetPolyphonicData() = 0;
1207    
1208            /**
1209             * Returns amount of virtual machine instructions which have been
1210             * performed the last time when this execution context was executing a
1211             * script. So in case you need the overall amount of instructions
1212             * instead, then you need to add them by yourself after each
1213             * ScriptVM::exec() call.
1214             */
1215            virtual size_t instructionsPerformed() const = 0;
1216    
1217            /**
1218             * Sends a signal to this script execution instance to abort its script
1219             * execution as soon as possible. This method is called i.e. when one
1220             * script execution instance intends to stop another script execution
1221             * instance.
1222             */
1223            virtual void signalAbort() = 0;
1224    
1225            /**
1226             * Copies the current entire execution state from this object to the
1227             * given object. So this can be used to "fork" a new script thread which
1228             * then may run independently with its own polyphonic data for instance.
1229             */
1230            virtual void forkTo(VMExecContext* ectx) const = 0;
1231    
1232            /**
1233             * In case the script called the built-in exit() function and passed a
1234             * value as argument to the exit() function, then this method returns
1235             * the value that had been passed as argument to the exit() function.
1236             * Otherwise if the exit() function has not been called by the script
1237             * or no argument had been passed to the exit() function, then this
1238             * method returns NULL instead.
1239             *
1240             * Currently this is only used for automated test cases against the
1241             * script engine, which return some kind of value in the individual
1242             * test case scripts to check their behaviour in automated way. There
1243             * is no purpose for this mechanism in production use. Accordingly this
1244             * exit result value is @b always completely ignored by the sampler
1245             * engines.
1246             *
1247             * Officially the built-in exit() function does not expect any arguments
1248             * to be passed to its function call, and by default this feature is
1249             * hence disabled and will yield in a parser error unless
1250             * ScriptVM::setExitResultEnabled() was explicitly set.
1251             *
1252             * @see ScriptVM::setExitResultEnabled()
1253             */
1254            virtual VMExpr* exitResult() = 0;
1255      };      };
1256    
1257        /** @brief Script callback for a certain event.
1258         *
1259         * Represents a script callback for a certain event, i.e.
1260         * "on note ... end on" code block.
1261         */
1262      class VMEventHandler {      class VMEventHandler {
1263      public:      public:
1264            /**
1265             * Type of this event handler, which identifies its purpose. For example
1266             * for a "on note ... end on" script callback block,
1267             * @c VM_EVENT_HANDLER_NOTE would be returned here.
1268             */
1269            virtual VMEventHandlerType_t eventHandlerType() const = 0;
1270    
1271            /**
1272             * Name of the event handler which identifies its purpose. For example
1273             * for a "on note ... end on" script callback block, the name "note"
1274             * would be returned here.
1275             */
1276          virtual String eventHandlerName() const = 0;          virtual String eventHandlerName() const = 0;
1277    
1278            /**
1279             * Whether or not the event handler makes any use of so called
1280             * "polyphonic" variables.
1281             */
1282            virtual bool isPolyphonic() const = 0;
1283      };      };
1284    
1285      struct ParserIssue {      /**
1286          String txt;       * Reflects the precise position and span of a specific code block within
1287          int line;       * a script. This is currently only used for the locations of commented
1288          ParserIssueType_t type;       * code blocks due to preprocessor statements, and for parser errors and
1289         * parser warnings.
1290         *
1291         * @see ParserIssue for code locations of parser errors and parser warnings
1292         *
1293         * @see VMParserContext::preprocessorComments() for locations of code which
1294         *      have been filtered out by preprocessor statements
1295         */
1296        struct CodeBlock {
1297            int firstLine; ///< The first line number of this code block within the script (indexed with 1 being the very first line).
1298            int lastLine; ///< The last line number of this code block within the script.
1299            int firstColumn; ///< The first column of this code block within the script (indexed with 1 being the very first column).
1300            int lastColumn; ///< The last column of this code block within the script.
1301        };
1302    
1303        /**
1304         * Encapsulates a noteworty parser issue. This encompasses the type of the
1305         * issue (either a parser error or parser warning), a human readable
1306         * explanation text of the error or warning and the location of the
1307         * encountered parser issue within the script.
1308         *
1309         * @see VMSourceToken for processing syntax highlighting instead.
1310         */
1311        struct ParserIssue : CodeBlock {
1312            String txt; ///< Human readable explanation text of the parser issue.
1313            ParserIssueType_t type; ///< Whether this issue is either a parser error or just a parser warning.
1314    
1315            /**
1316             * Print this issue out to the console (stdio).
1317             */
1318          inline void dump() {          inline void dump() {
1319              switch (type) {              switch (type) {
1320                  case PARSER_ERROR:                  case PARSER_ERROR:
1321                      printf("[ERROR] line %d: %s\n", line, txt.c_str());                      printf("[ERROR] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1322                      break;                      break;
1323                  case PARSER_WARNING:                  case PARSER_WARNING:
1324                      printf("[Warning] line %d: %s\n", line, txt.c_str());                      printf("[Warning] line %d, column %d: %s\n", firstLine, firstColumn, txt.c_str());
1325                      break;                      break;
1326              }              }
1327          }          }
1328            
1329            /**
1330             * Returns true if this issue is a parser error. In this case the parsed
1331             * script may not be executed!
1332             */
1333          inline bool isErr() const { return type == PARSER_ERROR;   }          inline bool isErr() const { return type == PARSER_ERROR;   }
1334    
1335            /**
1336             * Returns true if this issue is just a parser warning. A parsed script
1337             * that only raises warnings may be executed if desired, however the
1338             * script may not behave exactly as intended by the script author.
1339             */
1340          inline bool isWrn() const { return type == PARSER_WARNING; }          inline bool isWrn() const { return type == PARSER_WARNING; }
1341      };      };
1342    
1343        /**
1344         * Convenience function used for converting an ExprType_t constant to a
1345         * string, i.e. for generating error message by the parser.
1346         */
1347      inline String typeStr(const ExprType_t& type) {      inline String typeStr(const ExprType_t& type) {
1348          switch (type) {          switch (type) {
1349              case EMPTY_EXPR: return "empty";              case EMPTY_EXPR: return "empty";
# Line 270  namespace LinuxSampler { Line 1355  namespace LinuxSampler {
1355          return "invalid";          return "invalid";
1356      }      }
1357    
1358        /**
1359         * Convenience function used for converting an StdUnit_t constant to a
1360         * string, i.e. for generating error message by the parser.
1361         */
1362        inline String unitTypeStr(const StdUnit_t& type) {
1363            switch (type) {
1364                case VM_NO_UNIT: return "none";
1365                case VM_SECOND: return "seconds";
1366                case VM_HERTZ: return "Hz";
1367                case VM_BEL: return "Bel";
1368            }
1369            return "invalid";
1370        }
1371    
1372      /** @brief Virtual machine representation of a script.      /** @brief Virtual machine representation of a script.
1373       *       *
1374       * An instance of this abstract base class represents a parsed script,       * An instance of this abstract base class represents a parsed script,
1375       * translated into a virtual machine. You should first check if there were       * translated into a virtual machine tree. You should first check if there
1376       * any parser errors. If there were any parser errors, you should refrain       * were any parser errors. If there were any parser errors, you should
1377       * from executing the virtual machine. Otherwise if there were no parser       * refrain from executing the virtual machine. Otherwise if there were no
1378       * errors (i.e. only warnings), then you might access one of the script's       * parser errors (i.e. only warnings), then you might access one of the
1379       * event handlers by i.e. calling eventHandlerByName() and pass the       * script's event handlers by i.e. calling eventHandlerByName() and pass the
1380       * respective event handler to the ScriptVM class (or to one of its       * respective event handler to the ScriptVM class (or to one of the ScriptVM
1381       * descendants) for execution.       * descendants) for execution.
1382       *       *
1383       * @see VMExecContext       * @see VMExecContext, ScriptVM
1384       */       */
1385      class VMParserContext {      class VMParserContext {
1386      public:      public:
1387          virtual ~VMParserContext() {}          virtual ~VMParserContext() {}
1388    
1389            /**
1390             * Returns all noteworthy issues encountered when the script was parsed.
1391             * These are parser errors and parser warnings.
1392             */
1393          virtual std::vector<ParserIssue> issues() const = 0;          virtual std::vector<ParserIssue> issues() const = 0;
1394    
1395            /**
1396             * Same as issues(), but this method only returns parser errors.
1397             */
1398          virtual std::vector<ParserIssue> errors() const = 0;          virtual std::vector<ParserIssue> errors() const = 0;
1399    
1400            /**
1401             * Same as issues(), but this method only returns parser warnings.
1402             */
1403          virtual std::vector<ParserIssue> warnings() const = 0;          virtual std::vector<ParserIssue> warnings() const = 0;
1404    
1405            /**
1406             * Returns all code blocks of the script which were filtered out by the
1407             * preprocessor.
1408             */
1409            virtual std::vector<CodeBlock> preprocessorComments() const = 0;
1410    
1411            /**
1412             * Returns the translated virtual machine representation of an event
1413             * handler block (i.e. "on note ... end on" code block) within the
1414             * parsed script. This translated representation of the event handler
1415             * can be executed by the virtual machine.
1416             *
1417             * @param index - index of the event handler within the script
1418             */
1419          virtual VMEventHandler* eventHandler(uint index) = 0;          virtual VMEventHandler* eventHandler(uint index) = 0;
1420    
1421            /**
1422             * Same as eventHandler(), but this method returns the event handler by
1423             * its name. So for a "on note ... end on" code block of the parsed
1424             * script you would pass "note" for argument @a name here.
1425             *
1426             * @param name - name of the event handler (i.e. "init", "note",
1427             *               "controller", "release")
1428             */
1429          virtual VMEventHandler* eventHandlerByName(const String& name) = 0;          virtual VMEventHandler* eventHandlerByName(const String& name) = 0;
1430      };      };
1431    
1432        class SourceToken;
1433    
1434        /** @brief Recognized token of a script's source code.
1435         *
1436         * Represents one recognized token of a script's source code, for example
1437         * a keyword, variable name, etc. and it provides further informations about
1438         * that particular token, i.e. the precise location (line and column) of the
1439         * token within the original script's source code.
1440         *
1441         * This class is not actually used by the sampler itself. It is rather
1442         * provided for external script editor applications. Primary purpose of
1443         * this class is syntax highlighting for external script editors.
1444         *
1445         * @see ParserIssue for processing compile errors and warnings instead.
1446         */
1447        class VMSourceToken {
1448        public:
1449            VMSourceToken();
1450            VMSourceToken(SourceToken* ct);
1451            VMSourceToken(const VMSourceToken& other);
1452            virtual ~VMSourceToken();
1453    
1454            // original text of this token as it is in the script's source code
1455            String text() const;
1456    
1457            // position of token in script
1458            int firstLine() const; ///< First line this source token is located at in script source code (indexed with 0 being the very first line). Most source code tokens are not spanning over multiple lines, the only current exception are comments, in the latter case you need to process text() to get the last line and last column for the comment.
1459            int firstColumn() const; ///< First column on the first line this source token is located at in script source code (indexed with 0 being the very first column). To get the length of this token use text().length().
1460    
1461            // base types
1462            bool isEOF() const; ///< Returns true in case this source token represents the end of the source code file.
1463            bool isNewLine() const; ///< Returns true in case this source token represents a line feed character (i.e. "\n" on Unix systems).
1464            bool isKeyword() const; ///< Returns true in case this source token represents a language keyword (i.e. "while", "function", "declare", "on", etc.).
1465            bool isVariableName() const; ///< Returns true in case this source token represents a variable name (i.e. "$someIntVariable", "%someArrayVariable", "\@someStringVariable"). @see isIntegerVariable(), isStringVariable(), isArrayVariable() for the precise variable type.
1466            bool isIdentifier() const; ///< Returns true in case this source token represents an identifier, which currently always means a function name.
1467            bool isNumberLiteral() const; ///< Returns true in case this source token represents a number literal (i.e. 123).
1468            bool isStringLiteral() const; ///< Returns true in case this source token represents a string literal (i.e. "Some text").
1469            bool isComment() const; ///< Returns true in case this source token represents a source code comment.
1470            bool isPreprocessor() const; ///< Returns true in case this source token represents a preprocessor statement.
1471            bool isMetricPrefix() const;
1472            bool isStdUnit() const;
1473            bool isOther() const; ///< Returns true in case this source token represents anything else not covered by the token types mentioned above.
1474    
1475            // extended types
1476            bool isIntegerVariable() const; ///< Returns true in case this source token represents an integer variable name (i.e. "$someIntVariable").
1477            bool isStringVariable() const; ///< Returns true in case this source token represents an string variable name (i.e. "\@someStringVariable").
1478            bool isArrayVariable() const; ///< Returns true in case this source token represents an array variable name (i.e. "%someArryVariable").
1479            bool isEventHandlerName() const; ///< Returns true in case this source token represents an event handler name (i.e. "note", "release", "controller").
1480    
1481            VMSourceToken& operator=(const VMSourceToken& other);
1482    
1483        private:
1484            SourceToken* m_token;
1485        };
1486    
1487  } // namespace LinuxSampler  } // namespace LinuxSampler
1488    
1489  #endif // LS_INSTR_SCRIPT_PARSER_COMMON_H  #endif // LS_INSTR_SCRIPT_PARSER_COMMON_H

Legend:
Removed from v.2596  
changed lines
  Added in v.3562

  ViewVC Help
Powered by ViewVC