/[svn]/linuxsampler/trunk/src/scriptvm/tree.cpp
ViewVC logotype

Contents of /linuxsampler/trunk/src/scriptvm/tree.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3804 - (show annotations) (download)
Thu Aug 6 12:15:02 2020 UTC (3 years, 8 months ago) by schoenebeck
File size: 60741 byte(s)
NKSP: Fixed built-in exit() function to behave as return statement.

* VM API: Introduced new signal STMT_RETURN_SIGNALLED.

* NKSP exit() function: signal STMT_RETURN_SIGNALLED instead of
  STMT_ABORT_SIGNALLED.

* NKSP AST: Introduced common base class 'Subroutine' for 'EventHandler'
  and for new 'UserFunction' class.

* NKSP parser: Use 'UserFunction' class instead of 'Statements' class
  for user declared NKSP functions.

* ScriptVM: Handle new STMT_RETURN_SIGNALLED signal by unwinding the
  stack to previous, calling subroutine.

* NKSP tests: Added test cases for exit() acting as return statement.

* Bumped version (2.1.1.svn62).

1 /*
2 * Copyright (c) 2014 - 2019 Christian Schoenebeck and Andreas Persson
3 *
4 * http://www.linuxsampler.org
5 *
6 * This file is part of LinuxSampler and released under the same terms.
7 * See README file for details.
8 */
9
10 #include <cstdio>
11 #include <string.h>
12 #include "tree.h"
13 #include "../common/global_private.h"
14 #include "../common/RTMath.h"
15 #include <assert.h>
16 #include "CoreVMFunctions.h" // for VMIntResult, VMRealResult
17
18 namespace LinuxSampler {
19
20 bool isNoOperation(StatementRef statement) {
21 return statement->statementType() == STMT_NOOP;
22 }
23
24 String acceptedArgTypesStr(VMFunction* fn, vmint iArg) {
25 static const ExprType_t allTypes[] = {
26 INT_EXPR,
27 INT_ARR_EXPR,
28 REAL_EXPR,
29 REAL_ARR_EXPR,
30 STRING_EXPR,
31 STRING_ARR_EXPR,
32 };
33 const size_t nTypes = sizeof(allTypes) / sizeof(ExprType_t);
34
35 std::vector<ExprType_t> supportedTypes;
36 for (int iType = 0; iType < nTypes; ++iType) {
37 const ExprType_t& type = allTypes[iType];
38 if (fn->acceptsArgType(iArg, type))
39 supportedTypes.push_back(type);
40 }
41 assert(!supportedTypes.empty());
42
43 if (supportedTypes.size() == 1) {
44 return typeStr(*supportedTypes.begin());
45 } else {
46 String s = "either ";
47 for (size_t i = 0; i < supportedTypes.size(); ++i) {
48 const ExprType_t& type = supportedTypes[i];
49 if (i == 0) {
50 s += typeStr(type);
51 } else if (i == supportedTypes.size() - 1) {
52 s += " or " + typeStr(type);
53 } else {
54 s += ", " + typeStr(type);
55 }
56 }
57 return s;
58 }
59 }
60
61 Node::Node() {
62 }
63
64 Node::~Node() {
65 }
66
67 void Node::printIndents(int n) {
68 for (int i = 0; i < n; ++i) printf(" ");
69 fflush(stdout);
70 }
71
72 vmint Unit::convIntToUnitFactor(vmint iValue, VMUnit* srcUnit, VMUnit* dstUnit) {
73 vmfloat f = (vmfloat) iValue;
74 vmfloat factor = srcUnit->unitFactor() / dstUnit->unitFactor();
75 if (sizeof(vmfloat) == sizeof(float))
76 return llroundf(f * factor);
77 else
78 return llround(f * factor);
79 }
80
81 vmint Unit::convIntToUnitFactor(vmint iValue, vmfloat srcFactor, vmfloat dstFactor) {
82 vmfloat f = (vmfloat) iValue;
83 vmfloat factor = srcFactor / dstFactor;
84 if (sizeof(vmfloat) == sizeof(float))
85 return llroundf(f * factor);
86 else
87 return llround(f * factor);
88 }
89
90 vmfloat Unit::convRealToUnitFactor(vmfloat fValue, VMUnit* srcUnit, VMUnit* dstUnit) {
91 vmfloat factor = srcUnit->unitFactor() / dstUnit->unitFactor();
92 return fValue * factor;
93 }
94
95 vmfloat Unit::convRealToUnitFactor(vmfloat fValue, vmfloat srcFactor, vmfloat dstFactor) {
96 vmfloat factor = srcFactor / dstFactor;
97 return fValue * factor;
98 }
99
100 vmint IntExpr::evalIntToUnitFactor(vmfloat unitFactor) {
101 vmfloat f = (vmfloat) evalInt();
102 vmfloat factor = this->unitFactor() / unitFactor;
103 if (sizeof(vmfloat) == sizeof(float))
104 return llroundf(f * factor);
105 else
106 return llround(f * factor);
107 }
108
109 static String _unitFactorToShortStr(vmfloat unitFactor) {
110 const long int tens = lround( log10(unitFactor) );
111 switch (tens) {
112 case 3: return "k"; // kilo = 10^3
113 case 2: return "h"; // hecto = 10^2
114 case 1: return "da"; // deca = 10
115 case 0: return "" ; // -- = 1
116 case -1: return "d"; // deci = 10^-1
117 case -2: return "c"; // centi = 10^-2 (this is also used for tuning "cents")
118 case -3: return "m"; // milli = 10^-3
119 case -4: return "md"; // milli deci = 10^-4
120 case -5: return "mc"; // milli centi = 10^-5 (this is also used for tuning "cents")
121 case -6: return "u"; // micro = 10^-6
122 default: return "*10^" + ToString(tens);
123 }
124 }
125
126 static String _unitToStr(VMUnit* unit) {
127 const StdUnit_t type = unit->unitType();
128 String sType;
129 switch (type) {
130 case VM_NO_UNIT: break;
131 case VM_SECOND: sType = "s"; break;
132 case VM_HERTZ: sType = "Hz"; break;
133 case VM_BEL: sType = "B"; break;
134 }
135
136 String prefix = _unitFactorToShortStr( unit->unitFactor() );
137
138 return prefix + sType;
139 }
140
141 String IntExpr::evalCastToStr() {
142 return ToString(evalInt()) + _unitToStr(this);
143 }
144
145 vmfloat RealExpr::evalRealToUnitFactor(vmfloat unitFactor) {
146 vmfloat f = evalReal();
147 vmfloat factor = this->unitFactor() / unitFactor;
148 return f * factor;
149 }
150
151 String RealExpr::evalCastToStr() {
152 return ToString(evalReal()) + _unitToStr(this);
153 }
154
155 String IntArrayExpr::evalCastToStr() {
156 String s = "{";
157 for (vmint i = 0; i < arraySize(); ++i) {
158 vmint val = evalIntElement(i);
159 vmfloat factor = unitFactorOfElement(i);
160 if (i) s += ",";
161 s += ToString(val) + _unitFactorToShortStr(factor);
162 }
163 s += "}";
164 return s;
165 }
166
167 String RealArrayExpr::evalCastToStr() {
168 String s = "{";
169 for (vmint i = 0; i < arraySize(); ++i) {
170 vmfloat val = evalRealElement(i);
171 vmfloat factor = unitFactorOfElement(i);
172 if (i) s += ",";
173 s += ToString(val) + _unitFactorToShortStr(factor);
174 }
175 s += "}";
176 return s;
177 }
178
179 IntLiteral::IntLiteral(const IntLitDef& def) :
180 IntExpr(), Unit(def.unitType),
181 value(def.value), unitPrefixFactor(def.unitFactor),
182 finalVal(def.isFinal)
183 {
184 }
185
186 vmint IntLiteral::evalInt() {
187 return value;
188 }
189
190 void IntLiteral::dump(int level) {
191 printIndents(level);
192 printf("IntLiteral %" PRId64 "\n", (int64_t)value);
193 }
194
195 RealLiteral::RealLiteral(const RealLitDef& def) :
196 RealExpr(), Unit(def.unitType),
197 value(def.value), unitPrefixFactor(def.unitFactor),
198 finalVal(def.isFinal)
199 {
200 }
201
202 vmfloat RealLiteral::evalReal() {
203 return value;
204 }
205
206 void RealLiteral::dump(int level) {
207 printIndents(level);
208 printf("RealLiteral %f\n", value);
209 }
210
211 void StringLiteral::dump(int level) {
212 printIndents(level);
213 printf("StringLiteral: '%s'\n", value.c_str());
214 }
215
216 Add::Add(NumberExprRef lhs, NumberExprRef rhs) :
217 VaritypeScalarBinaryOp(lhs, rhs),
218 Unit(
219 // lhs and rhs are forced to be same unit type at parse time, so either one is fine here
220 (lhs) ? lhs->unitType() : VM_NO_UNIT
221 )
222 {
223 }
224
225 vmint Add::evalInt() {
226 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
227 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
228 if (!pLHS || !pRHS) return 0;
229 // eval*() call is required before calling unitFactor(), since the latter does not evaluate expressions!
230 vmint lvalue = pLHS->evalInt();
231 vmint rvalue = pRHS->evalInt();
232 if (pLHS->unitFactor() == pRHS->unitFactor())
233 return lvalue + rvalue;
234 if (pLHS->unitFactor() < pRHS->unitFactor())
235 return lvalue + Unit::convIntToUnitFactor(rvalue, pRHS, pLHS);
236 else
237 return Unit::convIntToUnitFactor(lvalue, pLHS, pRHS) + rvalue;
238 }
239
240 vmfloat Add::evalReal() {
241 RealExpr* pLHS = dynamic_cast<RealExpr*>(&*lhs);
242 RealExpr* pRHS = dynamic_cast<RealExpr*>(&*rhs);
243 if (!pLHS || !pRHS) return 0;
244 // eval*() call is required before calling unitFactor(), since the latter does not evaluate expressions!
245 vmfloat lvalue = pLHS->evalReal();
246 vmfloat rvalue = pRHS->evalReal();
247 if (pLHS->unitFactor() == pRHS->unitFactor())
248 return lvalue + rvalue;
249 if (pLHS->unitFactor() < pRHS->unitFactor())
250 return lvalue + Unit::convRealToUnitFactor(rvalue, pRHS, pLHS);
251 else
252 return Unit::convRealToUnitFactor(lvalue, pLHS, pRHS) + rvalue;
253 }
254
255 vmfloat Add::unitFactor() const {
256 const NumberExpr* pLHS = dynamic_cast<const NumberExpr*>(&*lhs);
257 const NumberExpr* pRHS = dynamic_cast<const NumberExpr*>(&*rhs);
258 return (pLHS->unitFactor() < pRHS->unitFactor()) ? pLHS->unitFactor() : pRHS->unitFactor();
259 }
260
261 void Add::dump(int level) {
262 printIndents(level);
263 printf("Add(\n");
264 lhs->dump(level+1);
265 printIndents(level);
266 printf(",\n");
267 rhs->dump(level+1);
268 printIndents(level);
269 printf(")\n");
270 }
271
272 Sub::Sub(NumberExprRef lhs, NumberExprRef rhs) :
273 VaritypeScalarBinaryOp(lhs, rhs),
274 Unit(
275 // lhs and rhs are forced to be same unit type at parse time, so either one is fine here
276 (lhs) ? lhs->unitType() : VM_NO_UNIT
277 )
278 {
279 }
280
281 vmint Sub::evalInt() {
282 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
283 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
284 if (!pLHS || !pRHS) return 0;
285 // eval*() call is required before calling unitFactor(), since the latter does not evaluate expressions!
286 vmint lvalue = pLHS->evalInt();
287 vmint rvalue = pRHS->evalInt();
288 if (pLHS->unitFactor() == pRHS->unitFactor())
289 return lvalue - rvalue;
290 if (pLHS->unitFactor() < pRHS->unitFactor())
291 return lvalue - Unit::convIntToUnitFactor(rvalue, pRHS, pLHS);
292 else
293 return Unit::convIntToUnitFactor(lvalue, pLHS, pRHS) - rvalue;
294 }
295
296 vmfloat Sub::evalReal() {
297 RealExpr* pLHS = dynamic_cast<RealExpr*>(&*lhs);
298 RealExpr* pRHS = dynamic_cast<RealExpr*>(&*rhs);
299 if (!pLHS || !pRHS) return 0;
300 // eval*() call is required before calling unitFactor(), since the latter does not evaluate expressions!
301 vmfloat lvalue = pLHS->evalReal();
302 vmfloat rvalue = pRHS->evalReal();
303 if (pLHS->unitFactor() == pRHS->unitFactor())
304 return lvalue - rvalue;
305 if (pLHS->unitFactor() < pRHS->unitFactor())
306 return lvalue - Unit::convRealToUnitFactor(rvalue, pRHS, pLHS);
307 else
308 return Unit::convRealToUnitFactor(lvalue, pLHS, pRHS) - rvalue;
309 }
310
311 vmfloat Sub::unitFactor() const {
312 const NumberExpr* pLHS = dynamic_cast<const NumberExpr*>(&*lhs);
313 const NumberExpr* pRHS = dynamic_cast<const NumberExpr*>(&*rhs);
314 return (pLHS->unitFactor() < pRHS->unitFactor()) ? pLHS->unitFactor() : pRHS->unitFactor();
315 }
316
317 void Sub::dump(int level) {
318 printIndents(level);
319 printf("Sub(\n");
320 lhs->dump(level+1);
321 printIndents(level);
322 printf(",\n");
323 rhs->dump(level+1);
324 printIndents(level);
325 printf(")\n");
326 }
327
328 Mul::Mul(NumberExprRef lhs, NumberExprRef rhs) :
329 VaritypeScalarBinaryOp(lhs, rhs),
330 Unit(
331 // currently the NKSP parser only allows a unit type on either side on multiplications
332 (lhs->unitType()) ? lhs->unitType() : rhs->unitType()
333 )
334 {
335 }
336
337 vmint Mul::evalInt() {
338 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
339 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);;
340 return (pLHS && pRHS) ? pLHS->evalInt() * pRHS->evalInt() : 0;
341 }
342
343 vmfloat Mul::evalReal() {
344 RealExpr* pLHS = dynamic_cast<RealExpr*>(&*lhs);
345 RealExpr* pRHS = dynamic_cast<RealExpr*>(&*rhs);;
346 return (pLHS && pRHS) ? pLHS->evalReal() * pRHS->evalReal() : 0;
347 }
348
349 void Mul::dump(int level) {
350 printIndents(level);
351 printf("Mul(\n");
352 lhs->dump(level+1);
353 printIndents(level);
354 printf(",\n");
355 rhs->dump(level+1);
356 printIndents(level);
357 printf(")\n");
358 }
359
360 vmfloat Mul::unitFactor() const {
361 const NumberExpr* pLHS = dynamic_cast<const NumberExpr*>(&*lhs);
362 const NumberExpr* pRHS = dynamic_cast<const NumberExpr*>(&*rhs);
363 return pLHS->unitFactor() * pRHS->unitFactor();
364 }
365
366 Div::Div(NumberExprRef lhs, NumberExprRef rhs) :
367 VaritypeScalarBinaryOp(lhs, rhs),
368 Unit(
369 // the NKSP parser only allows either A) a unit type on left side and none
370 // on right side or B) an identical unit type on both sides
371 (lhs->unitType() && rhs->unitType()) ? VM_NO_UNIT : lhs->unitType()
372 )
373 {
374 }
375
376 vmint Div::evalInt() {
377 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
378 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
379 if (!pLHS || !pRHS) return 0;
380 vmint l = pLHS->evalInt();
381 vmint r = pRHS->evalInt();
382 if (r == 0) return 0;
383 return l / r;
384 }
385
386 vmfloat Div::evalReal() {
387 RealExpr* pLHS = dynamic_cast<RealExpr*>(&*lhs);
388 RealExpr* pRHS = dynamic_cast<RealExpr*>(&*rhs);
389 if (!pLHS || !pRHS) return 0;
390 vmfloat l = pLHS->evalReal();
391 vmfloat r = pRHS->evalReal();
392 if (r == vmfloat(0)) return 0;
393 return l / r;
394 }
395
396 void Div::dump(int level) {
397 printIndents(level);
398 printf("Div(\n");
399 lhs->dump(level+1);
400 printIndents(level);
401 printf(",\n");
402 rhs->dump(level+1);
403 printIndents(level);
404 printf(")\n");
405 }
406
407 vmfloat Div::unitFactor() const {
408 const NumberExpr* pLHS = dynamic_cast<const NumberExpr*>(&*lhs);
409 const NumberExpr* pRHS = dynamic_cast<const NumberExpr*>(&*rhs);
410 return pLHS->unitFactor() / pRHS->unitFactor();
411 }
412
413 vmint Mod::evalInt() {
414 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
415 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
416 return (pLHS && pRHS) ? pLHS->evalInt() % pRHS->evalInt() : 0;
417 }
418
419 void Mod::dump(int level) {
420 printIndents(level);
421 printf("Mod(\n");
422 lhs->dump(level+1);
423 printIndents(level);
424 printf(",\n");
425 rhs->dump(level+1);
426 printIndents(level);
427 printf(")\n");
428 }
429
430 void Args::dump(int level) {
431 printIndents(level);
432 printf("Args(\n");
433 for (std::vector<ExpressionRef>::iterator it = args.begin() ; it != args.end() ; ++it) {
434 (*it)->dump(level+1);
435 }
436 printIndents(level);
437 printf(")\n");
438 }
439
440 bool Args::isPolyphonic() const {
441 for (vmint i = 0; i < args.size(); ++i)
442 if (args[i]->isPolyphonic())
443 return true;
444 return false;
445 }
446
447 EventHandlers::EventHandlers() {
448 //printf("EventHandlers::Constructor 0x%lx\n", (long long)this);
449 }
450
451 EventHandlers::~EventHandlers() {
452 }
453
454 void EventHandlers::add(EventHandlerRef arg) {
455 args.push_back(arg);
456 }
457
458 void EventHandlers::dump(int level) {
459 printIndents(level);
460 printf("EventHandlers {\n");
461 for (std::vector<EventHandlerRef>::iterator it = args.begin() ; it != args.end() ; ++it) {
462 (*it)->dump(level+1);
463 }
464 printIndents(level);
465 printf("}\n");
466 }
467
468 EventHandler* EventHandlers::eventHandlerByName(const String& name) const {
469 for (vmint i = 0; i < args.size(); ++i)
470 if (args.at(i)->eventHandlerName() == name)
471 return const_cast<EventHandler*>(&*args.at(i));
472 return NULL;
473 }
474
475 EventHandler* EventHandlers::eventHandler(uint index) const {
476 if (index >= args.size()) return NULL;
477 return const_cast<EventHandler*>(&*args.at(index));
478 }
479
480 bool EventHandlers::isPolyphonic() const {
481 for (vmint i = 0; i < args.size(); ++i)
482 if (args[i]->isPolyphonic())
483 return true;
484 return false;
485 }
486
487 Assignment::Assignment(VariableRef variable, ExpressionRef value)
488 : variable(variable), value(value)
489 {
490 }
491
492 void Assignment::dump(int level) {
493 printIndents(level);
494 printf("Assignment\n");
495 }
496
497 StmtFlags_t Assignment::exec() {
498 if (!variable)
499 return StmtFlags_t(STMT_ABORT_SIGNALLED | STMT_ERROR_OCCURRED);
500 variable->assign(&*value);
501 return STMT_SUCCESS;
502 }
503
504 Subroutine::Subroutine(StatementsRef statements) {
505 this->statements = statements;
506 }
507
508 void Subroutine::dump(int level) {
509 printIndents(level);
510 printf("Subroutine {\n");
511 statements->dump(level+1);
512 printIndents(level);
513 printf("}\n");
514 }
515
516 UserFunction::UserFunction(StatementsRef statements)
517 : Subroutine(statements)
518 {
519 }
520
521 EventHandler::EventHandler(StatementsRef statements)
522 : Subroutine(statements)
523 {
524 usingPolyphonics = statements->isPolyphonic();
525 }
526
527 void EventHandler::dump(int level) {
528 printIndents(level);
529 printf("EventHandler {\n");
530 Subroutine::dump(level+1);
531 printIndents(level);
532 printf("}\n");
533 }
534
535 void Statements::dump(int level) {
536 printIndents(level);
537 printf("Statements {\n");
538 for (std::vector<StatementRef>::iterator it = args.begin() ; it != args.end() ; ++it) {
539 (*it)->dump(level+1);
540 }
541 printIndents(level);
542 printf("}\n");
543 }
544
545 Statement* Statements::statement(uint i) {
546 if (i >= args.size()) return NULL;
547 return &*args.at(i);
548 }
549
550 bool Statements::isPolyphonic() const {
551 for (vmint i = 0; i < args.size(); ++i)
552 if (args[i]->isPolyphonic())
553 return true;
554 return false;
555 }
556
557 DynamicVariableCall::DynamicVariableCall(const String& name, ParserContext* ctx, VMDynVar* v) :
558 Variable({
559 .ctx = ctx,
560 .elements = 0
561 }),
562 Unit(VM_NO_UNIT),
563 dynVar(v), varName(name)
564 {
565 }
566
567 vmint DynamicVariableCall::evalInt() {
568 VMIntExpr* expr = dynamic_cast<VMIntExpr*>(dynVar);
569 if (!expr) return 0;
570 return expr->evalInt();
571 }
572
573 String DynamicVariableCall::evalStr() {
574 VMStringExpr* expr = dynamic_cast<VMStringExpr*>(dynVar);
575 if (!expr) return "";
576 return expr->evalStr();
577 }
578
579 String DynamicVariableCall::evalCastToStr() {
580 if (dynVar->exprType() == STRING_EXPR) {
581 return evalStr();
582 } else {
583 VMIntExpr* intExpr = dynamic_cast<VMIntExpr*>(dynVar);
584 return intExpr ? ToString(intExpr->evalInt()) : "";
585 }
586 }
587
588 void DynamicVariableCall::dump(int level) {
589 printIndents(level);
590 printf("Dynamic Variable '%s'\n", varName.c_str());
591 }
592
593 FunctionCall::FunctionCall(const char* function, ArgsRef args, VMFunction* fn) :
594 Unit(
595 (fn) ? fn->returnUnitType(dynamic_cast<VMFnArgs*>(&*args)) : VM_NO_UNIT
596 ),
597 functionName(function), args(args), fn(fn),
598 result( (fn) ? fn->allocResult(dynamic_cast<VMFnArgs*>(&*args)) : NULL )
599 {
600 }
601
602 FunctionCall::~FunctionCall() {
603 if (result) {
604 delete result;
605 result = NULL;
606 }
607 }
608
609 void FunctionCall::dump(int level) {
610 printIndents(level);
611 printf("FunctionCall '%s' args={\n", functionName.c_str());
612 args->dump(level+1);
613 printIndents(level);
614 printf("}\n");
615 }
616
617 ExprType_t FunctionCall::exprType() const {
618 if (!fn) return EMPTY_EXPR;
619 FunctionCall* self = const_cast<FunctionCall*>(this);
620 return fn->returnType(dynamic_cast<VMFnArgs*>(&*self->args));
621 }
622
623 vmfloat FunctionCall::unitFactor() const {
624 if (!fn || !result) return VM_NO_FACTOR;
625 VMExpr* expr = result->resultValue();
626 if (!expr) return VM_NO_FACTOR;
627 VMNumberExpr* scalar = expr->asNumber();
628 if (!scalar) return VM_NO_FACTOR;
629 return scalar->unitFactor();
630 }
631
632 bool FunctionCall::isFinal() const {
633 if (!fn) return false;
634 FunctionCall* self = const_cast<FunctionCall*>(this);
635 return fn->returnsFinal(dynamic_cast<VMFnArgs*>(&*self->args));
636 }
637
638 VMFnResult* FunctionCall::execVMFn() {
639 if (!fn) return NULL;
640
641 // tell function where it shall dump its return value to
642 VMFnResult* oldRes = fn->boundResult();
643 fn->bindResult(result);
644
645 // assuming here that all argument checks (amount and types) have been made
646 // at parse time, to avoid time intensive checks on each function call
647 VMFnResult* res = fn->exec(dynamic_cast<VMFnArgs*>(&*args));
648
649 // restore previous result binding of some potential toplevel or concurrent
650 // caller, i.e. if exactly same function is called more than one time,
651 // concurrently in a term by other FunctionCall objects, e.g.:
652 // ~c := ceil( ceil(~a) + ~b)
653 fn->bindResult(oldRes);
654
655 if (!res) return res;
656
657 VMExpr* expr = res->resultValue();
658 if (!expr) return res;
659
660 // For performance reasons we always only let 'FunctionCall' assign the unit
661 // type to the function's result expression, never by the function
662 // implementation itself, nor by other classes, because a FunctionCall
663 // object solely knows the unit type in O(1).
664 ExprType_t type = expr->exprType();
665 if (type == INT_EXPR) {
666 VMIntResult* intRes = dynamic_cast<VMIntResult*>(res);
667 intRes->unitBaseType = unitType();
668 } else if (type == REAL_EXPR) {
669 VMRealResult* realRes = dynamic_cast<VMRealResult*>(res);
670 realRes->unitBaseType = unitType();
671 }
672
673 return res;
674 }
675
676 StmtFlags_t FunctionCall::exec() {
677 VMFnResult* result = execVMFn();
678 if (!result)
679 return StmtFlags_t(STMT_ABORT_SIGNALLED | STMT_ERROR_OCCURRED);
680 return result->resultFlags();
681 }
682
683 vmint FunctionCall::evalInt() {
684 VMFnResult* result = execVMFn();
685 if (!result) return 0;
686 VMIntExpr* intExpr = dynamic_cast<VMIntExpr*>(result->resultValue());
687 if (!intExpr) return 0;
688 return intExpr->evalInt();
689 }
690
691 vmfloat FunctionCall::evalReal() {
692 VMFnResult* result = execVMFn();
693 if (!result) return 0;
694 VMRealExpr* realExpr = dynamic_cast<VMRealExpr*>(result->resultValue());
695 if (!realExpr) return 0;
696 return realExpr->evalReal();
697 }
698
699 VMIntArrayExpr* FunctionCall::asIntArray() const {
700 //FIXME: asIntArray() not intended for evaluation semantics (for both
701 // performance reasons with arrays, but also to prevent undesired value
702 // mutation by implied (hidden) evaluation, as actually done here. We must
703 // force function evaluation here though, because we need it for function
704 // calls to be evaluated at all. This issue should be addressed cleanly by
705 // adjusting the API appropriately.
706 FunctionCall* rwSelf = const_cast<FunctionCall*>(this);
707 VMFnResult* result = rwSelf->execVMFn();
708
709 if (!result) return 0;
710 VMIntArrayExpr* intArrExpr = dynamic_cast<VMIntArrayExpr*>(result->resultValue());
711 return intArrExpr;
712 }
713
714 VMRealArrayExpr* FunctionCall::asRealArray() const {
715 //FIXME: asRealArray() not intended for evaluation semantics (for both
716 // performance reasons with arrays, but also to prevent undesired value
717 // mutation by implied (hidden) evaluation, as actually done here. We must
718 // force function evaluation here though, because we need it for function
719 // calls to be evaluated at all. This issue should be addressed cleanly by
720 // adjusting the API appropriately.
721 FunctionCall* rwSelf = const_cast<FunctionCall*>(this);
722 VMFnResult* result = rwSelf->execVMFn();
723
724 if (!result) return 0;
725 VMRealArrayExpr* realArrExpr = dynamic_cast<VMRealArrayExpr*>(result->resultValue());
726 return realArrExpr;
727 }
728
729 String FunctionCall::evalStr() {
730 VMFnResult* result = execVMFn();
731 if (!result) return "";
732 VMStringExpr* strExpr = dynamic_cast<VMStringExpr*>(result->resultValue());
733 if (!strExpr) return "";
734 return strExpr->evalStr();
735 }
736
737 String FunctionCall::evalCastToStr() {
738 VMFnResult* result = execVMFn();
739 if (!result) return "";
740 const ExprType_t resultType = result->resultValue()->exprType();
741 if (resultType == STRING_EXPR) {
742 VMStringExpr* strExpr = dynamic_cast<VMStringExpr*>(result->resultValue());
743 return strExpr ? strExpr->evalStr() : "";
744 } else if (resultType == REAL_EXPR) {
745 VMRealExpr* realExpr = dynamic_cast<VMRealExpr*>(result->resultValue());
746 return realExpr ? ToString(realExpr->evalReal()) + _unitToStr(realExpr) : "";
747 } else {
748 VMIntExpr* intExpr = dynamic_cast<VMIntExpr*>(result->resultValue());
749 return intExpr ? ToString(intExpr->evalInt()) + _unitToStr(intExpr) : "";
750 }
751 }
752
753 Variable::Variable(const VariableDecl& decl) :
754 context(decl.ctx), memPos(decl.memPos), bConst(decl.isConst)
755 {
756 }
757
758 NumberVariable::NumberVariable(const VariableDecl& decl) :
759 Variable(decl),
760 Unit(decl.unitType),
761 unitFactorMemPos(decl.unitFactorMemPos), polyphonic(decl.isPolyphonic),
762 finalVal(decl.isFinal)
763 {
764 }
765
766 vmfloat NumberVariable::unitFactor() const {
767 if (isPolyphonic()) {
768 return context->execContext->polyphonicUnitFactorMemory[unitFactorMemPos];
769 }
770 return (*context->globalUnitFactorMemory)[unitFactorMemPos];
771 }
772
773 inline static vmint postfixInc(vmint& object, vmint incBy) {
774 const vmint i = object;
775 object += incBy;
776 return i;
777 }
778
779 IntVariable::IntVariable(const VariableDecl& decl) :
780 NumberVariable({
781 .ctx = decl.ctx,
782 .isPolyphonic = decl.isPolyphonic,
783 .isConst = decl.isConst,
784 .elements = decl.elements,
785 .memPos = (
786 (!decl.ctx) ? 0 :
787 (decl.isPolyphonic) ?
788 postfixInc(decl.ctx->polyphonicIntVarCount, decl.elements) :
789 postfixInc(decl.ctx->globalIntVarCount, decl.elements)
790 ),
791 .unitFactorMemPos = (
792 (!decl.ctx) ? 0 :
793 (decl.isPolyphonic) ?
794 postfixInc(decl.ctx->polyphonicUnitFactorCount, decl.elements) :
795 postfixInc(decl.ctx->globalUnitFactorCount, decl.elements)
796 ),
797 .unitType = decl.unitType,
798 .isFinal = decl.isFinal,
799 }),
800 Unit(decl.unitType)
801 {
802 //printf("IntVar parserctx=0x%lx memPOS=%d\n", ctx, memPos);
803 assert(!decl.isPolyphonic || decl.ctx);
804 }
805
806 void IntVariable::assign(Expression* expr) {
807 IntExpr* intExpr = dynamic_cast<IntExpr*>(expr);
808 if (intExpr) {
809 //NOTE: sequence matters! evalInt() must be called before getting unitFactor() !
810 if (isPolyphonic()) {
811 context->execContext->polyphonicIntMemory[memPos] = intExpr->evalInt();
812 context->execContext->polyphonicUnitFactorMemory[unitFactorMemPos] = intExpr->unitFactor();
813 } else {
814 (*context->globalIntMemory)[memPos] = intExpr->evalInt();
815 (*context->globalUnitFactorMemory)[unitFactorMemPos] = intExpr->unitFactor();
816 }
817 }
818 }
819
820 vmint IntVariable::evalInt() {
821 //printf("IntVariable::eval pos=%d\n", memPos);
822 if (isPolyphonic()) {
823 //printf("evalInt() poly memPos=%d execCtx=0x%lx\n", memPos, (uint64_t)context->execContext);
824 return context->execContext->polyphonicIntMemory[memPos];
825 }
826 return (*context->globalIntMemory)[memPos];
827 }
828
829 void IntVariable::dump(int level) {
830 printIndents(level);
831 printf("IntVariable\n");
832 //printf("IntVariable memPos=%d\n", memPos);
833 }
834
835 RealVariable::RealVariable(const VariableDecl& decl) :
836 NumberVariable({
837 .ctx = decl.ctx,
838 .isPolyphonic = decl.isPolyphonic,
839 .isConst = decl.isConst,
840 .elements = decl.elements,
841 .memPos = (
842 (!decl.ctx) ? 0 :
843 (decl.isPolyphonic) ?
844 postfixInc(decl.ctx->polyphonicRealVarCount, decl.elements) :
845 postfixInc(decl.ctx->globalRealVarCount, decl.elements)
846 ),
847 .unitFactorMemPos = (
848 (!decl.ctx) ? 0 :
849 (decl.isPolyphonic) ?
850 postfixInc(decl.ctx->polyphonicUnitFactorCount, decl.elements) :
851 postfixInc(decl.ctx->globalUnitFactorCount, decl.elements)
852 ),
853 .unitType = decl.unitType,
854 .isFinal = decl.isFinal,
855 }),
856 Unit(decl.unitType)
857 {
858 //printf("RealVar parserctx=0x%lx memPOS=%d\n", ctx, memPos);
859 assert(!decl.isPolyphonic || decl.ctx);
860 }
861
862 void RealVariable::assign(Expression* expr) {
863 RealExpr* realExpr = dynamic_cast<RealExpr*>(expr);
864 if (realExpr) {
865 //NOTE: sequence matters! evalReal() must be called before getting unitFactor() !
866 if (isPolyphonic()) {
867 context->execContext->polyphonicRealMemory[memPos] = realExpr->evalReal();
868 context->execContext->polyphonicUnitFactorMemory[unitFactorMemPos] = realExpr->unitFactor();
869 } else {
870 (*context->globalRealMemory)[memPos] = realExpr->evalReal();
871 (*context->globalUnitFactorMemory)[unitFactorMemPos] = realExpr->unitFactor();
872 }
873 }
874 }
875
876 vmfloat RealVariable::evalReal() {
877 //printf("RealVariable::eval pos=%d\n", memPos);
878 if (isPolyphonic()) {
879 //printf("evalReal() poly memPos=%d execCtx=0x%lx\n", memPos, (uint64_t)context->execContext);
880 return context->execContext->polyphonicRealMemory[memPos];
881 }
882 return (*context->globalRealMemory)[memPos];
883 }
884
885 void RealVariable::dump(int level) {
886 printIndents(level);
887 printf("RealVariable\n");
888 //printf("RealVariable memPos=%d\n", memPos);
889 }
890
891 ConstIntVariable::ConstIntVariable(const IntVarDef& def) :
892 IntVariable({
893 .ctx = def.ctx,
894 .isPolyphonic = false,
895 .isConst = true,
896 .elements = 1,
897 .memPos = def.memPos,
898 .unitFactorMemPos = def.unitFactorMemPos,
899 .unitType = def.unitType,
900 .isFinal = def.isFinal,
901 }),
902 Unit(def.unitType),
903 value(def.value), unitPrefixFactor(def.unitFactor)
904 {
905 }
906
907 void ConstIntVariable::assign(Expression* expr) {
908 // ignore assignment
909 /*
910 printf("ConstIntVariable::assign()\n");
911 IntExpr* intExpr = dynamic_cast<IntExpr*>(expr);
912 if (intExpr) {
913 value = intExpr->evalInt();
914 }
915 */
916 }
917
918 vmint ConstIntVariable::evalInt() {
919 return value;
920 }
921
922 void ConstIntVariable::dump(int level) {
923 printIndents(level);
924 printf("ConstIntVariable val=%" PRId64 "\n", (int64_t)value);
925 }
926
927 ConstRealVariable::ConstRealVariable(const RealVarDef& def) :
928 RealVariable({
929 .ctx = def.ctx,
930 .isPolyphonic = false,
931 .isConst = true,
932 .elements = 1,
933 .memPos = def.memPos,
934 .unitFactorMemPos = def.unitFactorMemPos,
935 .unitType = def.unitType,
936 .isFinal = def.isFinal,
937 }),
938 Unit(def.unitType),
939 value(def.value), unitPrefixFactor(def.unitFactor)
940 {
941 }
942
943 void ConstRealVariable::assign(Expression* expr) {
944 // ignore assignment
945 }
946
947 vmfloat ConstRealVariable::evalReal() {
948 return value;
949 }
950
951 void ConstRealVariable::dump(int level) {
952 printIndents(level);
953 printf("ConstRealVariable val=%f\n", value);
954 }
955
956 BuiltInIntVariable::BuiltInIntVariable(const String& name, VMIntPtr* ptr) :
957 IntVariable({
958 .ctx = NULL,
959 .isPolyphonic = false,
960 .isConst = false, // may or may not be modifyable though!
961 .elements = 0,
962 .memPos = 0,
963 .unitFactorMemPos = 0,
964 .unitType = VM_NO_UNIT,
965 .isFinal = false,
966 }),
967 Unit(VM_NO_UNIT),
968 name(name), ptr(ptr)
969 {
970 }
971
972 void BuiltInIntVariable::assign(Expression* expr) {
973 IntExpr* valueExpr = dynamic_cast<IntExpr*>(expr);
974 if (!valueExpr) return;
975 ptr->assign(valueExpr->evalInt());
976 }
977
978 vmint BuiltInIntVariable::evalInt() {
979 return ptr->evalInt();
980 }
981
982 void BuiltInIntVariable::dump(int level) {
983 printIndents(level);
984 printf("Built-in IntVar '%s'\n", name.c_str());
985 }
986
987 PolyphonicIntVariable::PolyphonicIntVariable(const VariableDecl& decl) :
988 IntVariable({
989 .ctx = decl.ctx,
990 .isPolyphonic = true,
991 .isConst = decl.isConst,
992 .elements = 1,
993 .memPos = 0,
994 .unitFactorMemPos = 0,
995 .unitType = decl.unitType,
996 .isFinal = decl.isFinal,
997 }),
998 Unit(decl.unitType)
999 {
1000 }
1001
1002 void PolyphonicIntVariable::dump(int level) {
1003 printIndents(level);
1004 printf("PolyphonicIntVariable\n");
1005 }
1006
1007 PolyphonicRealVariable::PolyphonicRealVariable(const VariableDecl& decl) :
1008 RealVariable({
1009 .ctx = decl.ctx,
1010 .isPolyphonic = true,
1011 .isConst = decl.isConst,
1012 .elements = 1,
1013 .memPos = 0,
1014 .unitFactorMemPos = 0,
1015 .unitType = decl.unitType,
1016 .isFinal = decl.isFinal,
1017 }),
1018 Unit(decl.unitType)
1019 {
1020 }
1021
1022 void PolyphonicRealVariable::dump(int level) {
1023 printIndents(level);
1024 printf("PolyphonicRealVariable\n");
1025 }
1026
1027 IntArrayVariable::IntArrayVariable(ParserContext* ctx, vmint size) :
1028 Variable({
1029 .ctx = ctx,
1030 .isPolyphonic = false,
1031 .isConst = false,
1032 .elements = 0,
1033 .memPos = 0,
1034 .unitFactorMemPos = 0,
1035 .unitType = VM_NO_UNIT,
1036 .isFinal = false,
1037 })
1038 {
1039 values.resize(size);
1040 memset(&values[0], 0, size * sizeof(vmint));
1041
1042 unitFactors.resize(size);
1043 for (size_t i = 0; i < size; ++i)
1044 unitFactors[i] = VM_NO_FACTOR;
1045 }
1046
1047 IntArrayVariable::IntArrayVariable(ParserContext* ctx, vmint size,
1048 ArgsRef values, bool _bConst) :
1049 Variable({
1050 .ctx = ctx,
1051 .isPolyphonic = false,
1052 .isConst = _bConst,
1053 .elements = 0,
1054 .memPos = 0,
1055 .unitFactorMemPos = 0,
1056 .unitType = VM_NO_UNIT,
1057 .isFinal = false,
1058 })
1059 {
1060 this->values.resize(size);
1061 this->unitFactors.resize(size);
1062 for (vmint i = 0; i < values->argsCount(); ++i) {
1063 VMIntExpr* expr = dynamic_cast<VMIntExpr*>(values->arg(i));
1064 if (expr) {
1065 this->values[i] = expr->evalInt();
1066 this->unitFactors[i] = expr->unitFactor();
1067 } else {
1068 this->values[i] = 0;
1069 this->unitFactors[i] = VM_NO_FACTOR;
1070 }
1071 }
1072 for (vmint i = values->argsCount(); i < size; ++i) {
1073 this->values[i] = 0;
1074 this->unitFactors[i] = VM_NO_FACTOR;
1075 }
1076 }
1077
1078 IntArrayVariable::IntArrayVariable(ParserContext* ctx, bool bConst) :
1079 Variable({
1080 .ctx = ctx,
1081 .isPolyphonic = false,
1082 .isConst = bConst,
1083 .elements = 0,
1084 .memPos = 0,
1085 .unitFactorMemPos = 0,
1086 .unitType = VM_NO_UNIT,
1087 .isFinal = false,
1088 })
1089 {
1090 }
1091
1092 vmint IntArrayVariable::evalIntElement(vmuint i) {
1093 if (i >= values.size()) return 0;
1094 return values[i];
1095 }
1096
1097 void IntArrayVariable::assignIntElement(vmuint i, vmint value) {
1098 if (i >= values.size()) return;
1099 values[i] = value;
1100 }
1101
1102 vmfloat IntArrayVariable::unitFactorOfElement(vmuint i) const {
1103 if (i >= unitFactors.size()) return VM_NO_FACTOR;
1104 return unitFactors[i];
1105 }
1106
1107 void IntArrayVariable::assignElementUnitFactor(vmuint i, vmfloat factor) {
1108 if (i >= unitFactors.size()) return;
1109 unitFactors[i] = factor;
1110 }
1111
1112 void IntArrayVariable::dump(int level) {
1113 printIndents(level);
1114 printf("IntArray(");
1115 for (vmint i = 0; i < values.size(); ++i) {
1116 if (i % 12 == 0) {
1117 printf("\n");
1118 printIndents(level+1);
1119 }
1120 printf("%" PRId64 ", ", (int64_t)values[i]);
1121 }
1122 printIndents(level);
1123 printf(")\n");
1124 }
1125
1126 RealArrayVariable::RealArrayVariable(ParserContext* ctx, vmint size) :
1127 Variable({
1128 .ctx = ctx,
1129 .isPolyphonic = false,
1130 .isConst = false,
1131 .elements = 0,
1132 .memPos = 0,
1133 .unitFactorMemPos = 0,
1134 .unitType = VM_NO_UNIT,
1135 .isFinal = false,
1136 })
1137 {
1138 values.resize(size);
1139 memset(&values[0], 0, size * sizeof(vmfloat));
1140
1141 unitFactors.resize(size);
1142 for (size_t i = 0; i < size; ++i)
1143 unitFactors[i] = VM_NO_FACTOR;
1144 }
1145
1146 RealArrayVariable::RealArrayVariable(ParserContext* ctx, vmint size,
1147 ArgsRef values, bool _bConst) :
1148 Variable({
1149 .ctx = ctx,
1150 .isPolyphonic = false,
1151 .isConst = _bConst,
1152 .elements = 0,
1153 .memPos = 0,
1154 .unitFactorMemPos = 0,
1155 .unitType = VM_NO_UNIT,
1156 .isFinal = false,
1157 })
1158 {
1159 this->values.resize(size);
1160 this->unitFactors.resize(size);
1161 for (vmint i = 0; i < values->argsCount(); ++i) {
1162 VMRealExpr* expr = dynamic_cast<VMRealExpr*>(values->arg(i));
1163 if (expr) {
1164 this->values[i] = expr->evalReal();
1165 this->unitFactors[i] = expr->unitFactor();
1166 } else {
1167 this->values[i] = (vmfloat) 0;
1168 this->unitFactors[i] = VM_NO_FACTOR;
1169 }
1170 }
1171 for (vmint i = values->argsCount(); i < size; ++i) {
1172 this->values[i] = (vmfloat) 0;
1173 this->unitFactors[i] = VM_NO_FACTOR;
1174 }
1175 }
1176
1177 RealArrayVariable::RealArrayVariable(ParserContext* ctx, bool bConst) :
1178 Variable({
1179 .ctx = ctx,
1180 .isPolyphonic = false,
1181 .isConst = bConst,
1182 .elements = 0,
1183 .memPos = 0,
1184 .unitFactorMemPos = 0,
1185 .unitType = VM_NO_UNIT,
1186 .isFinal = false,
1187 })
1188 {
1189 }
1190
1191 vmfloat RealArrayVariable::evalRealElement(vmuint i) {
1192 if (i >= values.size()) return 0;
1193 return values[i];
1194 }
1195
1196 void RealArrayVariable::assignRealElement(vmuint i, vmfloat value) {
1197 if (i >= values.size()) return;
1198 values[i] = value;
1199 }
1200
1201 vmfloat RealArrayVariable::unitFactorOfElement(vmuint i) const {
1202 if (i >= unitFactors.size()) return VM_NO_FACTOR;
1203 return unitFactors[i];
1204 }
1205
1206 void RealArrayVariable::assignElementUnitFactor(vmuint i, vmfloat factor) {
1207 if (i >= unitFactors.size()) return;
1208 unitFactors[i] = factor;
1209 }
1210
1211 void RealArrayVariable::dump(int level) {
1212 printIndents(level);
1213 printf("RealArray(");
1214 for (vmint i = 0; i < values.size(); ++i) {
1215 if (i % 12 == 0) {
1216 printf("\n");
1217 printIndents(level+1);
1218 }
1219 printf("%f, ", values[i]);
1220 }
1221 printIndents(level);
1222 printf(")\n");
1223 }
1224
1225 BuiltInIntArrayVariable::BuiltInIntArrayVariable(const String& name,
1226 VMInt8Array* array) :
1227 IntArrayVariable(NULL, false),
1228 name(name), array(array)
1229 {
1230 }
1231
1232 vmint BuiltInIntArrayVariable::evalIntElement(vmuint i) {
1233 return i >= array->size ? 0 : array->data[i];
1234 }
1235
1236 void BuiltInIntArrayVariable::assignIntElement(vmuint i, vmint value) {
1237 if (i >= array->size) return;
1238 array->data[i] = value;
1239 }
1240
1241 void BuiltInIntArrayVariable::dump(int level) {
1242 printIndents(level);
1243 printf("Built-In Int Array Variable '%s'\n", name.c_str());
1244 }
1245
1246 IntArrayElement::IntArrayElement(IntArrayExprRef array, IntExprRef arrayIndex) :
1247 IntVariable({
1248 .ctx = NULL,
1249 .isPolyphonic = (array) ? array->isPolyphonic() : false,
1250 .isConst = (array) ? array->isConstExpr() : false,
1251 .elements = 0,
1252 .memPos = 0,
1253 .unitFactorMemPos = 0,
1254 .unitType = VM_NO_UNIT,
1255 .isFinal = false,
1256 }),
1257 Unit(VM_NO_UNIT),
1258 array(array), index(arrayIndex), currentIndex(-1)
1259 {
1260 }
1261
1262 void IntArrayElement::assign(Expression* expr) {
1263 IntExpr* valueExpr = dynamic_cast<IntExpr*>(expr);
1264 if (!valueExpr) return;
1265 vmint value = valueExpr->evalInt();
1266 vmfloat unitFactor = valueExpr->unitFactor();
1267
1268 if (!index) return;
1269 vmint idx = currentIndex = index->evalInt();
1270 if (idx < 0 || idx >= array->arraySize()) return;
1271
1272 array->assignIntElement(idx, value);
1273 array->assignElementUnitFactor(idx, unitFactor);
1274 }
1275
1276 vmint IntArrayElement::evalInt() {
1277 if (!index) return 0;
1278 vmint idx = currentIndex = index->evalInt();
1279 if (idx < 0 || idx >= array->arraySize()) return 0;
1280
1281 return array->evalIntElement(idx);
1282 }
1283
1284 vmfloat IntArrayElement::unitFactor() const {
1285 if (!index) return VM_NO_FACTOR;
1286 vmint idx = currentIndex;
1287 if (idx < 0 || idx >= array->arraySize()) return 0;
1288
1289 return array->unitFactorOfElement(idx);
1290 }
1291
1292 void IntArrayElement::dump(int level) {
1293 printIndents(level);
1294 printf("IntArrayElement\n");
1295 }
1296
1297 RealArrayElement::RealArrayElement(RealArrayExprRef array, IntExprRef arrayIndex) :
1298 RealVariable({
1299 .ctx = NULL,
1300 .isPolyphonic = (array) ? array->isPolyphonic() : false,
1301 .isConst = (array) ? array->isConstExpr() : false,
1302 .elements = 0,
1303 .memPos = 0,
1304 .unitFactorMemPos = 0,
1305 .unitType = VM_NO_UNIT,
1306 .isFinal = false,
1307 }),
1308 Unit(VM_NO_UNIT),
1309 array(array), index(arrayIndex), currentIndex(-1)
1310 {
1311 }
1312
1313 void RealArrayElement::assign(Expression* expr) {
1314 RealExpr* valueExpr = dynamic_cast<RealExpr*>(expr);
1315 if (!valueExpr) return;
1316 vmfloat value = valueExpr->evalReal();
1317 vmfloat unitFactor = valueExpr->unitFactor();
1318
1319 if (!index) return;
1320 vmint idx = currentIndex = index->evalInt();
1321 if (idx < 0 || idx >= array->arraySize()) return;
1322
1323 array->assignRealElement(idx, value);
1324 array->assignElementUnitFactor(idx, unitFactor);
1325 }
1326
1327 vmfloat RealArrayElement::evalReal() {
1328 if (!index) return 0;
1329 vmint idx = currentIndex = index->evalInt();
1330 if (idx < 0 || idx >= array->arraySize()) return 0;
1331
1332 return array->evalRealElement(idx);
1333 }
1334
1335 vmfloat RealArrayElement::unitFactor() const {
1336 if (!index) return VM_NO_FACTOR;
1337 vmint idx = currentIndex;
1338 if (idx < 0 || idx >= array->arraySize()) return 0;
1339
1340 return array->unitFactorOfElement(idx);
1341 }
1342
1343 void RealArrayElement::dump(int level) {
1344 printIndents(level);
1345 printf("RealArrayElement\n");
1346 }
1347
1348 StringVariable::StringVariable(ParserContext* ctx) :
1349 Variable({
1350 .ctx = ctx,
1351 .elements = 1,
1352 .memPos = ctx->globalStrVarCount++
1353 })
1354 {
1355 }
1356
1357 StringVariable::StringVariable(ParserContext* ctx, bool bConst) :
1358 Variable({
1359 .ctx = ctx,
1360 .isConst = bConst,
1361 .memPos = 0,
1362 })
1363 {
1364 }
1365
1366 void StringVariable::assign(Expression* expr) {
1367 StringExpr* strExpr = dynamic_cast<StringExpr*>(expr);
1368 (*context->globalStrMemory)[memPos] = strExpr->evalStr();
1369 }
1370
1371 String StringVariable::evalStr() {
1372 //printf("StringVariable::eval pos=%d\n", memPos);
1373 return (*context->globalStrMemory)[memPos];
1374 }
1375
1376 void StringVariable::dump(int level) {
1377 printIndents(level);
1378 printf("StringVariable memPos=%" PRId64 "\n", (int64_t)memPos);
1379 }
1380
1381 ConstStringVariable::ConstStringVariable(ParserContext* ctx, String _value)
1382 : StringVariable(ctx,true), value(_value)
1383 {
1384 }
1385
1386 void ConstStringVariable::assign(Expression* expr) {
1387 // ignore assignment
1388 // StringExpr* strExpr = dynamic_cast<StringExpr*>(expr);
1389 // if (strExpr) value = strExpr->evalStr();
1390 }
1391
1392 String ConstStringVariable::evalStr() {
1393 return value;
1394 }
1395
1396 void ConstStringVariable::dump(int level) {
1397 printIndents(level);
1398 printf("ConstStringVariable val='%s'\n", value.c_str());
1399 }
1400
1401 bool NumberBinaryOp::isFinal() const {
1402 NumberExprRef l = (NumberExprRef) lhs;
1403 NumberExprRef r = (NumberExprRef) rhs;
1404 return l->isFinal() || r->isFinal();
1405 }
1406
1407 ExprType_t VaritypeScalarBinaryOp::exprType() const {
1408 return (lhs->exprType() == REAL_EXPR || rhs->exprType() == REAL_EXPR) ? REAL_EXPR : INT_EXPR;
1409 }
1410
1411 String VaritypeScalarBinaryOp::evalCastToStr() {
1412 return (exprType() == REAL_EXPR) ?
1413 RealExpr::evalCastToStr() : IntExpr::evalCastToStr();
1414 }
1415
1416 void If::dump(int level) {
1417 printIndents(level);
1418 if (ifStatements && elseStatements)
1419 printf("if cond stmts1 else stmts2 end if\n");
1420 else if (ifStatements)
1421 printf("if cond statements end if\n");
1422 else
1423 printf("if [INVALID]\n");
1424 }
1425
1426 vmint If::evalBranch() {
1427 if (condition->evalInt()) return 0;
1428 if (elseStatements) return 1;
1429 return -1;
1430 }
1431
1432 Statements* If::branch(vmuint i) const {
1433 if (i == 0) return (Statements*) &*ifStatements;
1434 if (i == 1) return (elseStatements) ? (Statements*) &*elseStatements : NULL;
1435 return NULL;
1436 }
1437
1438 bool If::isPolyphonic() const {
1439 if (condition->isPolyphonic() || ifStatements->isPolyphonic())
1440 return true;
1441 return elseStatements ? elseStatements->isPolyphonic() : false;
1442 }
1443
1444 void SelectCase::dump(int level) {
1445 printIndents(level);
1446 if (select)
1447 if (select->isConstExpr())
1448 printf("Case select %" PRId64 "\n", (int64_t)select->evalInt());
1449 else
1450 printf("Case select [runtime expr]\n");
1451 else
1452 printf("Case select NULL\n");
1453 for (vmint i = 0; i < branches.size(); ++i) {
1454 printIndents(level+1);
1455 CaseBranch& branch = branches[i];
1456 if (branch.from && branch.to)
1457 if (branch.from->isConstExpr() && branch.to->isConstExpr())
1458 printf("case %" PRId64 " to %" PRId64 "\n", (int64_t)branch.from->evalInt(), (int64_t)branch.to->evalInt());
1459 else if (branch.from->isConstExpr() && !branch.to->isConstExpr())
1460 printf("case %" PRId64 " to [runtime expr]\n", (int64_t)branch.from->evalInt());
1461 else if (!branch.from->isConstExpr() && branch.to->isConstExpr())
1462 printf("case [runtime expr] to %" PRId64 "\n", (int64_t)branch.to->evalInt());
1463 else
1464 printf("case [runtime expr] to [runtime expr]\n");
1465 else if (branch.from)
1466 if (branch.from->isConstExpr())
1467 printf("case %" PRId64 "\n", (int64_t)branch.from->evalInt());
1468 else
1469 printf("case [runtime expr]\n");
1470 else
1471 printf("case NULL\n");
1472 }
1473 }
1474
1475 vmint SelectCase::evalBranch() {
1476 vmint value = select->evalInt();
1477 for (vmint i = 0; i < branches.size(); ++i) {
1478 if (branches.at(i).from && branches.at(i).to) { // i.e. "case 4 to 7" ...
1479 if (branches.at(i).from->evalInt() <= value &&
1480 branches.at(i).to->evalInt() >= value) return i;
1481 } else { // i.e. "case 5" ...
1482 if (branches.at(i).from->evalInt() == value) return i;
1483 }
1484 }
1485 return -1;
1486 }
1487
1488 Statements* SelectCase::branch(vmuint i) const {
1489 if (i < branches.size())
1490 return const_cast<Statements*>( &*branches[i].statements );
1491 return NULL;
1492 }
1493
1494 bool SelectCase::isPolyphonic() const {
1495 if (select->isPolyphonic()) return true;
1496 for (vmint i = 0; i < branches.size(); ++i)
1497 if (branches[i].statements->isPolyphonic())
1498 return true;
1499 return false;
1500 }
1501
1502 void While::dump(int level) {
1503 printIndents(level);
1504 if (m_condition)
1505 if (m_condition->isConstExpr())
1506 printf("while (%" PRId64 ") {\n", (int64_t)m_condition->evalInt());
1507 else
1508 printf("while ([runtime expr]) {\n");
1509 else
1510 printf("while ([INVALID]) {\n");
1511 m_statements->dump(level+1);
1512 printIndents(level);
1513 printf("}\n");
1514 }
1515
1516 Statements* While::statements() const {
1517 return (m_statements) ? const_cast<Statements*>( &*m_statements ) : NULL;
1518 }
1519
1520 bool While::evalLoopStartCondition() {
1521 if (!m_condition) return false;
1522 return m_condition->evalInt();
1523 }
1524
1525 void SyncBlock::dump(int level) {
1526 printIndents(level);
1527 printf("sync {\n");
1528 m_statements->dump(level+1);
1529 printIndents(level);
1530 printf("}\n");
1531 }
1532
1533 Statements* SyncBlock::statements() const {
1534 return (m_statements) ? const_cast<Statements*>( &*m_statements ) : NULL;
1535 }
1536
1537 String Neg::evalCastToStr() {
1538 return expr->evalCastToStr();
1539 }
1540
1541 void Neg::dump(int level) {
1542 printIndents(level);
1543 printf("Negative Expr\n");
1544 }
1545
1546 String ConcatString::evalStr() {
1547 // temporaries required here to enforce the associative left (to right) order
1548 // ( required for GCC and Visual Studio, see:
1549 // http://stackoverflow.com/questions/25842902/why-stdstring-concatenation-operator-works-like-right-associative-one
1550 // Personally I am not convinced that this is "not a bug" of the
1551 // compiler/STL implementation and the allegedly underlying "function call"
1552 // nature causing this is IMO no profound reason that the C++ language's
1553 // "+" operator's left associativity is ignored. -- Christian, 2016-07-14 )
1554 String l = lhs->evalCastToStr();
1555 String r = rhs->evalCastToStr();
1556 return l + r;
1557 }
1558
1559 void ConcatString::dump(int level) {
1560 printIndents(level);
1561 printf("ConcatString(\n");
1562 lhs->dump(level+1);
1563 printIndents(level);
1564 printf(",\n");
1565 rhs->dump(level+1);
1566 printIndents(level);
1567 printf(")");
1568 }
1569
1570 bool ConcatString::isConstExpr() const {
1571 return lhs->isConstExpr() && rhs->isConstExpr();
1572 }
1573
1574 Relation::Relation(ExpressionRef lhs, Type type, ExpressionRef rhs) :
1575 Unit(VM_NO_UNIT),
1576 lhs(lhs), rhs(rhs), type(type)
1577 {
1578 }
1579
1580 // Equal / unequal comparison of real numbers in NKSP scripts:
1581 //
1582 // Unlike system level languages like C/C++ we are less conservative about
1583 // comparing floating point numbers for 'equalness' or 'unequalness' in NKSP
1584 // scripts. Due to the musical context of the NKSP language we automatically
1585 // take the (to be) expected floating point tolerances into account when
1586 // comparing two floating point numbers with each other, however only for '='
1587 // and '#' operators. The '<=' and '>=' still use conservative low level
1588 // floating point comparison for not breaking their transitivity feature.
1589
1590 template<typename T_LHS, typename T_RHS>
1591 struct RelComparer {
1592 static inline bool isEqual(T_LHS a, T_RHS b) { // for int comparison ('3 = 3')
1593 return a == b;
1594 }
1595 static inline bool isUnequal(T_LHS a, T_RHS b) { // for int comparison ('3 # 3')
1596 return a != b;
1597 }
1598 };
1599
1600 template<>
1601 struct RelComparer<float,float> {
1602 static inline bool isEqual(float a, float b) { // for real number comparison ('3.1 = 3.1')
1603 return RTMath::fEqual32(a, b);
1604 }
1605 static inline bool isUnequal(float a, float b) { // for real number comparison ('3.1 # 3.1')
1606 return !RTMath::fEqual32(a, b);
1607 }
1608 };
1609
1610 template<>
1611 struct RelComparer<double,double> {
1612 static inline bool isEqual(double a, double b) { // for future purpose
1613 return RTMath::fEqual64(a, b);
1614 }
1615 static inline bool isUnqqual(double a, double b) { // for future purpose
1616 return !RTMath::fEqual64(a, b);
1617 }
1618 };
1619
1620 template<class T_LHS, class T_RHS>
1621 inline vmint _evalRelation(Relation::Type type, T_LHS lhs, T_RHS rhs) {
1622 switch (type) {
1623 case Relation::LESS_THAN:
1624 return lhs < rhs;
1625 case Relation::GREATER_THAN:
1626 return lhs > rhs;
1627 case Relation::LESS_OR_EQUAL:
1628 return lhs <= rhs;
1629 case Relation::GREATER_OR_EQUAL:
1630 return lhs >= rhs;
1631 case Relation::EQUAL:
1632 return RelComparer<typeof(lhs),typeof(rhs)>::isEqual(lhs, rhs);
1633 case Relation::NOT_EQUAL:
1634 return RelComparer<typeof(lhs),typeof(rhs)>::isUnequal(lhs, rhs);
1635 }
1636 return 0;
1637 }
1638
1639 template<class T_LVALUE, class T_RVALUE, class T_LEXPR, class T_REXPR>
1640 inline vmint _evalRealRelation(Relation::Type type,
1641 T_LVALUE lvalue, T_RVALUE rvalue,
1642 T_LEXPR* pLHS, T_REXPR* pRHS)
1643 {
1644 if (pLHS->unitFactor() == pRHS->unitFactor())
1645 return _evalRelation(type, lvalue, rvalue);
1646 if (pLHS->unitFactor() < pRHS->unitFactor())
1647 return _evalRelation(type, lvalue, Unit::convRealToUnitFactor(rvalue, pRHS, pLHS));
1648 else
1649 return _evalRelation(type, Unit::convRealToUnitFactor(lvalue, pLHS, pRHS), rvalue);
1650 }
1651
1652 template<class T_LEXPR, class T_REXPR>
1653 inline vmint _evalIntRelation(Relation::Type type,
1654 vmint lvalue, vmint rvalue,
1655 T_LEXPR* pLHS, T_REXPR* pRHS)
1656 {
1657 if (pLHS->unitFactor() == pRHS->unitFactor())
1658 return _evalRelation(type, lvalue, rvalue);
1659 if (pLHS->unitFactor() < pRHS->unitFactor())
1660 return _evalRelation(type, lvalue, Unit::convIntToUnitFactor(rvalue, pRHS, pLHS));
1661 else
1662 return _evalRelation(type, Unit::convIntToUnitFactor(lvalue, pLHS, pRHS), rvalue);
1663 }
1664
1665 vmint Relation::evalInt() {
1666 const ExprType_t lType = lhs->exprType();
1667 const ExprType_t rType = rhs->exprType();
1668 if (lType == STRING_EXPR || rType == STRING_EXPR) {
1669 switch (type) {
1670 case EQUAL:
1671 return lhs->evalCastToStr() == rhs->evalCastToStr();
1672 case NOT_EQUAL:
1673 return lhs->evalCastToStr() != rhs->evalCastToStr();
1674 default:
1675 return 0;
1676 }
1677 } else if (lType == REAL_EXPR && rType == REAL_EXPR) {
1678 vmfloat lvalue = lhs->asReal()->evalReal();
1679 vmfloat rvalue = rhs->asReal()->evalReal();
1680 return _evalRealRelation(
1681 type, lvalue, rvalue, lhs->asReal(), rhs->asReal()
1682 );
1683 } else if (lType == REAL_EXPR && rType == INT_EXPR) {
1684 vmfloat lvalue = lhs->asReal()->evalReal();
1685 vmint rvalue = rhs->asInt()->evalInt();
1686 return _evalRealRelation(
1687 type, lvalue, rvalue, lhs->asReal(), rhs->asInt()
1688 );
1689 } else if (lType == INT_EXPR && rType == REAL_EXPR) {
1690 vmint lvalue = lhs->asInt()->evalInt();
1691 vmfloat rvalue = rhs->asReal()->evalReal();
1692 return _evalRealRelation(
1693 type, lvalue, rvalue, lhs->asInt(), rhs->asReal()
1694 );
1695 } else {
1696 vmint lvalue = lhs->asInt()->evalInt();
1697 vmint rvalue = rhs->asInt()->evalInt();
1698 return _evalIntRelation(
1699 type, lvalue, rvalue, lhs->asInt(), rhs->asInt()
1700 );
1701 }
1702 }
1703
1704 void Relation::dump(int level) {
1705 printIndents(level);
1706 printf("Relation(\n");
1707 lhs->dump(level+1);
1708 printIndents(level);
1709 switch (type) {
1710 case LESS_THAN:
1711 printf("LESS_THAN\n");
1712 break;
1713 case GREATER_THAN:
1714 printf("GREATER_THAN\n");
1715 break;
1716 case LESS_OR_EQUAL:
1717 printf("LESS_OR_EQUAL\n");
1718 break;
1719 case GREATER_OR_EQUAL:
1720 printf("GREATER_OR_EQUAL\n");
1721 break;
1722 case EQUAL:
1723 printf("EQUAL\n");
1724 break;
1725 case NOT_EQUAL:
1726 printf("NOT_EQUAL\n");
1727 break;
1728 }
1729 rhs->dump(level+1);
1730 printIndents(level);
1731 printf(")\n");
1732 }
1733
1734 bool Relation::isConstExpr() const {
1735 return lhs->isConstExpr() && rhs->isConstExpr();
1736 }
1737
1738 vmint Or::evalInt() {
1739 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
1740 if (pLHS->evalInt()) return 1;
1741 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
1742 return (pRHS->evalInt()) ? 1 : 0;
1743 }
1744
1745 void Or::dump(int level) {
1746 printIndents(level);
1747 printf("Or(\n");
1748 lhs->dump(level+1);
1749 printIndents(level);
1750 printf(",\n");
1751 rhs->dump(level+1);
1752 printIndents(level);
1753 printf(")\n");
1754 }
1755
1756 vmint BitwiseOr::evalInt() {
1757 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
1758 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
1759 return pLHS->evalInt() | pRHS->evalInt();
1760 }
1761
1762 void BitwiseOr::dump(int level) {
1763 printIndents(level);
1764 printf("BitwiseOr(\n");
1765 lhs->dump(level+1);
1766 printIndents(level);
1767 printf(",\n");
1768 rhs->dump(level+1);
1769 printIndents(level);
1770 printf(")\n");
1771 }
1772
1773 vmint And::evalInt() {
1774 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
1775 if (!pLHS->evalInt()) return 0;
1776 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
1777 return (pRHS->evalInt()) ? 1 : 0;
1778 }
1779
1780 void And::dump(int level) {
1781 printIndents(level);
1782 printf("And(\n");
1783 lhs->dump(level+1);
1784 printIndents(level);
1785 printf(",\n");
1786 rhs->dump(level+1);
1787 printIndents(level);
1788 printf(")\n");
1789 }
1790
1791 vmint BitwiseAnd::evalInt() {
1792 IntExpr* pLHS = dynamic_cast<IntExpr*>(&*lhs);
1793 IntExpr* pRHS = dynamic_cast<IntExpr*>(&*rhs);
1794 return pLHS->evalInt() & pRHS->evalInt();
1795 }
1796
1797 void BitwiseAnd::dump(int level) {
1798 printIndents(level);
1799 printf("BitwiseAnd(\n");
1800 lhs->dump(level+1);
1801 printIndents(level);
1802 printf(",\n");
1803 rhs->dump(level+1);
1804 printIndents(level);
1805 printf(")\n");
1806 }
1807
1808 void Not::dump(int level) {
1809 printIndents(level);
1810 printf("Not(\n");
1811 expr->dump(level+1);
1812 printIndents(level);
1813 printf(")\n");
1814 }
1815
1816 void BitwiseNot::dump(int level) {
1817 printIndents(level);
1818 printf("BitwiseNot(\n");
1819 expr->dump(level+1);
1820 printIndents(level);
1821 printf(")\n");
1822 }
1823
1824 String Final::evalCastToStr() {
1825 if (exprType() == REAL_EXPR)
1826 return ToString(evalReal());
1827 else
1828 return ToString(evalInt());
1829 }
1830
1831 void Final::dump(int level) {
1832 printIndents(level);
1833 printf("Final(\n");
1834 expr->dump(level+1);
1835 printIndents(level);
1836 printf(")\n");
1837 }
1838
1839 UserFunctionRef ParserContext::userFunctionByName(const String& name) {
1840 if (!userFnTable.count(name)) {
1841 return UserFunctionRef();
1842 }
1843 return userFnTable.find(name)->second;
1844 }
1845
1846 VariableRef ParserContext::variableByName(const String& name) {
1847 if (!vartable.count(name)) {
1848 return VariableRef();
1849 }
1850 return vartable.find(name)->second;
1851 }
1852
1853 VariableRef ParserContext::globalVar(const String& name) {
1854 if (!vartable.count(name)) {
1855 //printf("No global var '%s'\n", name.c_str());
1856 //for (std::map<String,VariableRef>::const_iterator it = vartable.begin(); it != vartable.end(); ++it)
1857 // printf("-> var '%s'\n", it->first.c_str());
1858 return VariableRef();
1859 }
1860 return vartable.find(name)->second;
1861 }
1862
1863 IntVariableRef ParserContext::globalIntVar(const String& name) {
1864 return globalVar(name);
1865 }
1866
1867 RealVariableRef ParserContext::globalRealVar(const String& name) {
1868 return globalVar(name);
1869 }
1870
1871 StringVariableRef ParserContext::globalStrVar(const String& name) {
1872 return globalVar(name);
1873 }
1874
1875 ParserContext::~ParserContext() {
1876 destroyScanner();
1877 if (globalIntMemory) {
1878 delete globalIntMemory;
1879 globalIntMemory = NULL;
1880 }
1881 if (globalRealMemory) {
1882 delete globalRealMemory;
1883 globalRealMemory = NULL;
1884 }
1885 }
1886
1887 void ParserContext::addErr(int firstLine, int lastLine, int firstColumn,
1888 int lastColumn, int firstByte, int lengthBytes,
1889 const char* txt)
1890 {
1891 ParserIssue e;
1892 e.type = PARSER_ERROR;
1893 e.txt = txt;
1894 e.firstLine = firstLine;
1895 e.lastLine = lastLine;
1896 e.firstColumn = firstColumn;
1897 e.lastColumn = lastColumn;
1898 e.firstByte = firstByte;
1899 e.lengthBytes = lengthBytes;
1900 vErrors.push_back(e);
1901 vIssues.push_back(e);
1902 }
1903
1904 void ParserContext::addWrn(int firstLine, int lastLine, int firstColumn,
1905 int lastColumn, int firstByte, int lengthBytes,
1906 const char* txt)
1907 {
1908 ParserIssue w;
1909 w.type = PARSER_WARNING;
1910 w.txt = txt;
1911 w.firstLine = firstLine;
1912 w.lastLine = lastLine;
1913 w.firstColumn = firstColumn;
1914 w.lastColumn = lastColumn;
1915 w.firstByte = firstByte;
1916 w.lengthBytes = lengthBytes;
1917 vWarnings.push_back(w);
1918 vIssues.push_back(w);
1919 }
1920
1921 void ParserContext::addPreprocessorComment(int firstLine, int lastLine,
1922 int firstColumn, int lastColumn,
1923 int firstByte, int lengthBytes)
1924 {
1925 CodeBlock block;
1926 block.firstLine = firstLine;
1927 block.lastLine = lastLine;
1928 block.firstColumn = firstColumn;
1929 block.lastColumn = lastColumn;
1930 block.firstByte = firstByte;
1931 block.lengthBytes = lengthBytes;
1932 vPreprocessorComments.push_back(block);
1933 }
1934
1935 bool ParserContext::setPreprocessorCondition(const char* name) {
1936 if (builtinPreprocessorConditions.count(name)) return false;
1937 if (userPreprocessorConditions.count(name)) return false;
1938 userPreprocessorConditions.insert(name);
1939 return true;
1940 }
1941
1942 bool ParserContext::resetPreprocessorCondition(const char* name) {
1943 if (builtinPreprocessorConditions.count(name)) return false;
1944 if (!userPreprocessorConditions.count(name)) return false;
1945 userPreprocessorConditions.erase(name);
1946 return true;
1947 }
1948
1949 bool ParserContext::isPreprocessorConditionSet(const char* name) {
1950 if (builtinPreprocessorConditions.count(name)) return true;
1951 return userPreprocessorConditions.count(name);
1952 }
1953
1954 std::vector<ParserIssue> ParserContext::issues() const {
1955 return vIssues;
1956 }
1957
1958 std::vector<ParserIssue> ParserContext::errors() const {
1959 return vErrors;
1960 }
1961
1962 std::vector<ParserIssue> ParserContext::warnings() const {
1963 return vWarnings;
1964 }
1965
1966 std::vector<CodeBlock> ParserContext::preprocessorComments() const {
1967 return vPreprocessorComments;
1968 }
1969
1970 VMEventHandler* ParserContext::eventHandler(uint index) {
1971 if (!handlers) return NULL;
1972 return handlers->eventHandler(index);
1973 }
1974
1975 VMEventHandler* ParserContext::eventHandlerByName(const String& name) {
1976 if (!handlers) return NULL;
1977 return handlers->eventHandlerByName(name);
1978 }
1979
1980 void ParserContext::registerBuiltInConstIntVariables(const std::map<String,vmint>& vars) {
1981 for (std::map<String,vmint>::const_iterator it = vars.begin();
1982 it != vars.end(); ++it)
1983 {
1984 ConstIntVariableRef ref = new ConstIntVariable({
1985 .value = it->second
1986 });
1987 vartable[it->first] = ref;
1988 }
1989 }
1990
1991 void ParserContext::registerBuiltInConstRealVariables(const std::map<String,vmfloat>& vars) {
1992 for (std::map<String,vmfloat>::const_iterator it = vars.begin();
1993 it != vars.end(); ++it)
1994 {
1995 ConstRealVariableRef ref = new ConstRealVariable({
1996 .value = it->second
1997 });
1998 vartable[it->first] = ref;
1999 }
2000 }
2001
2002 void ParserContext::registerBuiltInIntVariables(const std::map<String,VMIntPtr*>& vars) {
2003 for (std::map<String,VMIntPtr*>::const_iterator it = vars.begin();
2004 it != vars.end(); ++it)
2005 {
2006 BuiltInIntVariableRef ref = new BuiltInIntVariable(it->first, it->second);
2007 vartable[it->first] = ref;
2008 }
2009 }
2010
2011 void ParserContext::registerBuiltInIntArrayVariables(const std::map<String,VMInt8Array*>& vars) {
2012 for (std::map<String,VMInt8Array*>::const_iterator it = vars.begin();
2013 it != vars.end(); ++it)
2014 {
2015 BuiltInIntArrayVariableRef ref = new BuiltInIntArrayVariable(it->first, it->second);
2016 vartable[it->first] = ref;
2017 }
2018 }
2019
2020 void ParserContext::registerBuiltInDynVariables(const std::map<String,VMDynVar*>& vars) {
2021 for (std::map<String,VMDynVar*>::const_iterator it = vars.begin();
2022 it != vars.end(); ++it)
2023 {
2024 DynamicVariableCallRef ref = new DynamicVariableCall(it->first, this, it->second);
2025 vartable[it->first] = ref;
2026 }
2027 }
2028
2029 ExecContext::ExecContext() :
2030 status(VM_EXEC_NOT_RUNNING), flags(STMT_SUCCESS), stackFrame(-1),
2031 suspendMicroseconds(0), instructionsCount(0)
2032 {
2033 exitRes.value = NULL;
2034 }
2035
2036 void ExecContext::forkTo(VMExecContext* ectx) const {
2037 ExecContext* child = dynamic_cast<ExecContext*>(ectx);
2038
2039 child->polyphonicIntMemory.copyFlatFrom(polyphonicIntMemory);
2040 child->polyphonicRealMemory.copyFlatFrom(polyphonicRealMemory);
2041 child->status = VM_EXEC_SUSPENDED;
2042 child->flags = STMT_SUCCESS;
2043 child->stack.copyFlatFrom(stack);
2044 child->stackFrame = stackFrame;
2045 child->suspendMicroseconds = 0;
2046 child->instructionsCount = 0;
2047 }
2048
2049 } // namespace LinuxSampler

  ViewVC Help
Powered by ViewVC