Li nuxSanpl er Devel oper's

Internet Draft C. Schoenebeck
Docunent : draft-1inuxsanpl er-protocol -05.txt <Affiliation>
Expires: June 2004 Wednesday, My

19, 2004

Li nuxSanpl er Control Protocol

Status of this Menp

Thi s docunent specifies an application specific protocol for the
Li nuxSanpl er core application and arbitrary third party software
that interacts with the LinuxSanpl er application, and requests

di scussi on and suggestions for inprovenents. Distribution of this
meno is unlimted. THIS DOCUMENT IS ONLY AN I NI TI AL DRAFT NOT A
FI NAL VERSI ON OF THE PROTOCOL!

Abst r act

The Li nuxSanpler Control Protocol (LSCP) is an application-I|evel
protocol primarily intended for |ocal and renote controlling the

Li nuxSanpl er mai n application, which is a sophisticated console
application essentially playing back audi o sanpl es and nani pul ati ng
the sanples in real tine to certain extent.

Conventions used in this docunent

The key words "MJST", "MJST NOI*, "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in
this docunent are to be interpreted as described in RFC 2119 [1].

This protocol is always case-sensitive if not explicitly clained the
opposi te.

In exanples, "C:" and "S:" indicate lines sent by the client
(frontend) and server (LinuxSanpler) respectively. Lines in exanples
must be interpreted as every line being CRLF term nated (carriage
return character followed by line feed character as defined in the
ASCI | standard), thus the foll ow ng exanpl e:

C. “sone Iinef
“anot her |ine”

must actually be interpreted as client sending the foll om ng nessage:

“some | i ne<CR><LF>anot her | i ne<CR><LF>"

Schoenebeck Expires - June 2004 [Page 1]

Li nuxSanpl er Control Protocol May 2004

where <CR> synbolizes the carriage return character and <LF> the
line feed character as defined in the ASCII standard.

Due to technical reasons, nessages can arbitrary be fragnented,
means the follow ng exanple:

S: “abcd”

coul d al so happen to be sent in three nessages like in the follow ng
sequence scenari o:

server sendi ng nessage “a”

foll owed by a delay (pause) with arbitrary duration

foll owed by server sendi ng nesssage “bcd<CR>"

again followed by a delay (pause) with arbitrary duration
foll owed by server sending the nessage “<LF>"

where again <CR> and <LF> synbolize the carriage return and |ine
feed characters respectively.

Schoenebeck Expires - June 2004 [Page 2]

Li nuxSanpl er Control Protocol May 2004

Tabl e of Contents

L. INtroduCti ON. . ..o 3
2. Conmruni cati ON OVEI VI BW. . . . vttt e e e e e 3
2.1 Sinple unidirectional comunication................... .. o..... 4
2.2 Advanced bidirectional conmmunication............. 4
3. Description for control commands. 5
3.1 Configuring audi o driVers. e 5
3.2 Configuring MDI input drivers......... 17
3.3 Configuring sanmpler channels........ 27
4. CommBNd SYNt aX. . .. i i 39
5. Events and special UDP packets............ 42
6. Event SyntaX. 44
Security Considerati ONS. 45
Ref eI BNCES. . . 45
ACKNOW edgmBNt S. 45
AUt hOor' S AdAr @SS eS. . . ot i 45

| nt roducti on

Li nuxSanpler is a so called software sanpl er application capable to
pl ayback audi o sanples froma conputer's Random Acess Menory (RAM
as well as directly streamng it fromdisk. LinuxSanpler is designed
to be nodular. It provides several so called “sanpler engines” where
each engine is specialized for a certain purpose. LinuxSanpler has
virtual channels which will be referred in this docunent as “sanpler
channel s”. The channels are in such way virtual as they can be
connected to an arbitrary M DI input nethod and arbitrary M D
channel (e.g. sanpler channel 17 could be connected to an ALSA
sequencer device 64:0 and listening to M D channel 1 there). Each
sanpler engine will be assigned an own instantance of one of the
avai |l abl e sanpl er engines (e.g. G gEngi ne, DLSEngi ne). The audio

out put of each sanpler channel can be routed to an arbitrary audio
out put nmethod (ALSA / JACK) and an arbitrary audi o output channe

t here.

Communi cati on Overvi ew

There are two distinct nethods of conmuni cati on between a running

I nstance of LinuxSanpler and one or nore control applications, so
called “frontends”:. a sinple TCP unidirectional comrunication nethod
and a TCP / UDP conbination for bidirectional comunication. The

| atter needs nore effort to be inplenented in the frontend
application. The two comruni cation nethods will be described next.

Schoenebeck Expires - June 2004 [Page 3]

Li nuxSanpl er Control Protocol May 2004

71 Sinpl e unidirectional comunication

This sinple communication nethod is primarily based on TCP. The
frontend application establishes a TCP connection to the

Li nuxSanpl er instance on a certain host system Then the frontend
application will send certain ASCII based comrands as defined in
this docunent (every conmand |ine nust be CRLF term nated — see
“Conventions used in this docunent” at the beginning of this
docunent) and the LinuxSanpler application will response after a
certain process tine with an appropriate ASCI|I based answer, also as
defined in this docunent. So this TCP communi cation is sinply based
on query and answer paradigm That way LinuxSanpler is only able to
answer on queries fromfrontends, but not able to automatically send
nmessages to the client if it's not asked to. The fronted shoul d not
reconnect to LinuxSanpler for every single commmand, instead it
shoul d keep the connection established and sinply resend nessage(s)
for subsequent conmands. To keep LinuxSanpler's informations in the
frontend up-to-date the frontend has to periodically send update
commands to get the current informations of the LinuxSanpler
instance. This is often referred as “polling”. The di sadvant age of
this sinple unidirectional comunication approach is obvious: it
means network traffic overhead and introduces | atency regarding the
update of the informations, but is very sinple to inplenent.

] Advanced bidirectional conmunication

Thi s nore sophisticated conmuni cation nethod is actually only an
extension of the sinple unidirectional comunication nethod. The
frontend still uses a TCP connection and sends the sanme commands on
the TCP connection, but the frontend has to provide an open UDP port
for receiving event nessages fromthe LinuxSanpler application. The
frontend has to register it's UDP port to the LinuxSanpler
application by sending the following coommand on it's TCP connecti on:

SUBSCRI BE NOTI FI CATI ON <udp- port >

where <udp-port> will be replaced by the respective UDP port nunber.
If this is accepted by the LinuxSanpler application, the frontend
will receive events fromthat point whenever sonme for the frontend
not eworthy event occurred in the LinuxSanpler instance. These event
UDP packets usually only contain basic informations |ike the event
category and for exanple on which sanpler channel the event
occurred. After receiving the event, the frontend m ght have to
react by issueing a respective update command on it's TCP connecti on
to get the detailed change. This is dependant to the event type and
due to the fact that UDP packets are limted to certain packet size
(usually < 64 kB). So again, sone events provide already an exact

I nformati on about the new state and sone need to be ordered on the

Schoenebeck Expires - June 2004 [Page 4]

Li nuxSanpl er Control Protocol May 2004

primary TCP connection by the frontend.

Exanple: the fill states of disk stream buffers have changed on
sanpl er channel 4 and the LinuxSanpler instance wll react by
sending the foll ow ng UDP packet:

CHANGE CHANNEL BUFFER FILL 4

Li nuxSanpler will not insert the fill states of the buffers into the
UDP packet, instead the frontend is forced to acquire this
I nformati on by sending the foll ow ng update conmmand:

GET CHANNEL BUFFER_FI LL PERCENTACE 4

to get the fill states of all disk stream buffers on sanpler channe
4 and will receive the follow ng answer from Li nuxSanpl er:

“[35] 62% [33] 80% [37] 98%

Whi ch neans there are currently three active streans on sanpler
channel 4, where the streamwith ID *“35” is filled by 62% stream
with ID33 is filled by 80% and streamwith ID 37 is filled by 98%

Besi de normal event packets, LinuxSanpler will also periodically
send PI NG packets to check if a frontend is still alive. The
frontend has to answer with a PONG UDP package (Pl NG and PONG UDP
packages will be defined later in this docunent). If LinuxSanpler
will not receive such a PONG packet it will consider the frontend to
be not available and renove it fromthe notification |ist. Such a
PI NG packet is also sent by LinuxSanpler when the frontend issued a
“SUBSCRI BE NOTI FI CATI ON' conmmand to check if the given UDP port is
really avail able and not constrained by a firewall for exanple, so
the frontend has to open the input UDP port before it tries to

regi ster for notification by sending the nenti oned conmand.

Kl Description for control conmmands
This chapter will describe the available control commands that can
be sent on the TCP connection in detail. Sone certain commands (e.qg.
“GET CHANNEL I NFO' or “GET ENG NE INFO') lead to multiple-Iline
responses. In this case LinuxSanpler signals the end of the response
by a “.” (single dot) I|ine.

EFl Configuring audio drivers
Drivers in LinuxSanpler are called devices. You can use nmultiple
devices simultaniously, e.g. to output the sound of one sanpler

Schoenebeck Expires - June 2004 [Page 5]

Li nuxSanpl er Control Protocol May 2004

channel using the Al sa audio output driver, and on anot her sanpler
channel you m ght want to use the Jack audi o output driver. Usually
these devices will be created automatically by LinuxSanpler when
you sel ect an audi o output type on a sanpler channel and the
respective device was not created yet, but this is not always
possi bl e, because sone drivers mght require explicit paraneters
(e.g. host nane for sone audio over ethernet driver) and even if
not, LinuxSanpler will just use default settings when it has to
automatically create a device. So the foll owi ng coomands are used
to configure LinuxSanpler's audio output drivers and their

par anet ers.

I nstead of defining commands and paraneters for each driver
I ndividual ly, all possible paraneters, their neani ngs and possible
val ues have to be obtained at runtine. This nakes the protocol a
bit abstract, but has the advantage, that frontends can be witten
I ndependently of what drivers are inplenmented and what paraneters
these drivers are actually offering.

Getting all available audio output drivers

Use the followng conmand to |ist all audio output drivers
currently avail able for the LinuxSanpler instance:

GET AVAI LABLE_AUDI O QUTPUT_TYPES
Possi bl e Answers:

Li nuxSanpler will answer by sendi ng comma separated character
strings synbolizing the avail abl e audi o output drivers.

Exanpl e:
C. “GET AVAI LABLE_AUDI O QUTPUT_TYPES’
S: “Alsa, Jack”
SFE Getting informations about a specific audio output driver

Use the follow ng conmand to get detailed informations about a
speci fic audi o output driver:

GET AUDI O QUTPUT_TYPE | NFO <audi o- out put -t ype>

Wher e <audi o-output-type> is the nane of the audi o output driver,
returned by the “GET AVAI LABLE _AUDI O OUTPUT_TYPES’ conmand.

Possi bl e Answers:

Schoenebeck Expires - June 2004 [Page 6]

Li nuxSanpl er Control Protocol May 2004

Li nuxSanpler will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. At the nonent
the follow ng information categories are defined:

DESCRI PTI ON —
character string describing the audi o output driver

VERSI ON -
character string reflecting the driver's version

PARAVMVETERS —
comma separated |list of all paraneters avail able for
the given audi o output driver, at |east paraneters
" CHANNELS' , ' SAMPLERATE' and 'ACTIVE are offered by
all audi o output drivers

The nentioned fields above don't have to be in particular order.
Exanpl e:

“GET AUDI O QUTPUT_TYPE | NFO Al sa”

“DESCRI PTI ON: Advanced Li nux Sound Architecture”

“VERSI ON: 1. 0"

“PARANMETERS: CHANNELS, SAMPLERATE, ACTI VE, FRAGVENTS, FRAGVENTSI ZE, CARD’

24 9)

Sl Getting informations about specific audio output driver paraneter

Use the follow ng conmand to get detailed informations about a
specific audi o output driver paraneter:

GET AUDI O OUTPUT TYPE_PARAMETER | NFO <audi o-t> <prne [<depl i st >]

Where <audio-t> is the nanme of the audi o output driver as returned
by the “GET AVAI LABLE_AUDI O QUTPUT_TYPES’ conmmand, <prne a specific
paraneter nanme for which information shoul d be obtained (as
returned by the “GET AUDI O OQUTPUT_TYPE | NFO' conmand) and

<deplist>1s an optional |ist of parameters on which the sought
par anet er <prnk depends on, <deplist>is a |list of key-value pairs
In formof “keyl=vall key2=val2 ...”, where character string val ues

are encapsul ated into apostrophes ('). Argunents given with
<deplist> which are not dependency paraneters of <prnm> will be
I gnored, neans the frontend application can sinply put al
paraneters into <deplist> with the values selected by the user.

Schoenebeck Expires - June 2004 [Page 7]

Li nuxSanpl er Control Protocol May 2004

Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. There are

i nformati ons which are always returned, independently of the
given driver paraneter and there are optional informations

whi ch are only shown dependently to given driver paraneter. At
the nonent the followi ng informati on categories are defined:

DESCRI PTI ON —
arbitrary text describing the purpose of the paraneter
(al ways returned, no matter which driver paraneter)

MANDATORY -
either true or false, defines if this paranmeter nust be
gi ven when the device is to be created with the
" CREATE AUDI O OQUTPUT_DEVI CE' conmand
(al ways returned, no matter which driver paraneter)

FI X -
either true or false, if false then this paraneter can
be changed at any tinme, once the device is created by
t he ' CREATE AUDI O QUTPUT_DEVI CE' conmmand
(al ways returned, no matter which driver paraneter)

MULTIPLICI TY -
either true or false, defines if this paraneter allows
only one value or a list of values, where true neans
mul tiple values and false only a single val ue all owed
(al ways returned, no matter which driver paraneter)

DEPENDS -
comma separated |ist of paranters this paraneter depends
on, neans the values for fields 'DEFAULT', 'RANGE M N ,
" RANGE_MAX' and 'PCSSIBI LITIES m ght depend on these
| isted paraneters, for exanple assum ng that an audio
driver (like the Alsa driver) offers paraneters ' CARD
and ' SAMPLERATE' then paraneter ' SAMPLERATE woul d
depend on ' CARD because the possible values for
' SAMPLERATE' depends on the sound card which can be
chosen by the ' CARD paraneter
(optionally returned, dependent to driver paraneter)

DEFAULT -
reflects the default value for this paraneter which is
used when the device is created and not explicitly
given with the ' CREATE AUDI O QUTPUT_DEVI CE' command,

Schoenebeck Expires - June 2004 [Page 8]

Li nuxSanpl er Control Protocol May 2004

in case of MIULTIPLCI TY=true, this is a comma separat ed
list, that's why character strings are encapsulated into
apostrophes (')

(optionally returned, dependent to driver paraneter)

RANGE_ M N —
defines lower Iimt of the allowed value range for this
paraneter, can be an integer value as well as a dotted
nunber
(optionally returned, dependent to driver paraneter, but
al ways in conjunction wth RANGE MAX)

RANGE_MAX —
defines upper Ilimt of the allowed value range for this
paranmeter, can be an integer value as well as a dotted
nunber
(optionally returned, dependent to driver paraneter, but
al ways in conjunction with RANGE_ M N)

POSSI Bl LI TES —
comma separated |ist of possible values for this
paraneter, character strings are encapsulated into
apost rophes
(optionally returned, dependent to driver paraneter)

The nentioned fields above don't have to be in particular order.
Exanpl es:

C. “GET AUDI O QUTPUT_TYPE PARAMETER | NFO Al sa CARD’
S. “DESCRI PTION: sound card to be used”

“MANDATORY: fal se”

“FI X2 true”

“MULTI PLICITY: false”

“DEFAULT: '0,0"”

“POssSIBILITES: '0,0','1,0','2,0"”

C. “CGET AUDI O QUTPUT_TYPE_PARAMETER | NFO Al sa SAMPLERATE’
S: “DESCRI PTI ON: output sanple rate in Hz”

“ MANDATORY: fal se”

“FI X fal se”

“MULTIPLICITY: false”

“DEPENDS: CARD’
“DEFAULT: 44100

C. “CGET AUDI O QUTPUT_TYPE_PARAMETER | NFO Al sa SAMPLERATE CARD=' 0, 0"~
S: “DESCRI PTION: output sanple rate in Hz”

Schoenebeck Expires - June 2004 [Page 9]

Li nuxSanpl er Control Protocol May 2004

“MANDATORY: fal se”
“FI X: fal se”

“MULTI PLICITY: false”
“DEPENDS: CARD’
“DEFAULT: 44100”
“RANGE_ M N. 22050”
“RANGE_MAX: 96000~

Loadi ng an audi o output driver

Use the follow ng conmand to create a new audi o out put device for
the desired audi o out put system

CREATE AUDI O OQUTPUT_DEVI CE <audi o- out put-type> [<param|i st >]

Wher e <audi o- out put-type> shoul d be replaced by the desired audio
out put system and <paramlist> by an optional |ist of driver
specific paraneters in formof “keyl=vall key2=val2 ..."”, where
character string values should be encapsul ated i nto apostrophes (').
Note that there m ght be drivers which require paraneter(s) to be
given with this command. Use the previously described conmands in
this chapter to get those informations.

Possi bl e Answer s:

1] O(” -
in case the driver was successfully | oaded

“WRN: <war ni nhgcode>: <war ni ngnessage>"
in case the driver was | oaded successfully, but there are
noteworthy issue(s) related (e.g. sound card doesn't suport
gi ven hardware paraneters and the driver is using fall back
val ues), providing an appropriate warni ng code and war ni ng
nmessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

Exanpl es:
c - TE AUDI O QUTPUT _DEVI CE Al sa CARD='1, 0" SAMPLERATE=96000"
S ¢
C. “CREATE AUDI O QUTPUT DEVI CE Al sa”
S ¢

Schoenebeck Expires - June 2004 [Page 10]

Li nuxSanpl er Control Protocol May 2004

Unl oadi ng an audi o out put driver
Use the following coomand to destroy a created output device:
DESTROY AUDI O OQUTPUT_DEVI CE <audi o- out put -type>

Wher e <audi o- out put-type> shoul d be replaced by the audi o out put
system nanme given by the “GET AVAI LABLE AUDI O QUTPUT_TYPES’ conmmand.

Possi bl e Answer s:

1] O(” -
in case the driver was successfully unl oaded

“WRN: <war ni hgcode>: <war ni ngnessage>"
in case the driver was | oaded successfully, but there are
noteworthy issue(s) related (e.g. an audi o over ethernet
driver was unl oaded but the other host m ght not be
i nformed about this situation), providing an appropriate
war ni ng code and war ni ng nessage

“ERR: <errorcode>: <errornessage>" -
in case it failed, providing an appropriate error code and
error nessage

Exanpl e:
C. “DESTROY AUDI O OQUTPUT_DEVI CE Al sa”
S: 1] O(”
Getting all |oaded audio output drivers

Use the following coomand to list all currently | oaded audi o out put
drivers, neans all created audi o out put devices:

GET AUDI O OUTPUT_DEVI CES

Possi bl e Answers:

Li nuxSanpler will answer by sendi ng comma separat ed nanes of
all created audi o output devices.

Exanpl es:

C. “CGET AUDI O QUTPUT_DEVI CES”
S: “Jack”

C. “GET AUDI O OUTPUT DEVI CES’

Schoenebeck Expires - June 2004 [Page 11]

Li nuxSanpl er Control Protocol May 2004
S: “Alsa, Jack”

Getting current settings of an audio output driver

Use the follow ng conmand to get current settings of a specific,
| oaded audi o out put driver:

GET AUDI O QUTPUT_DEVI CE | NFO <audi o- out put -t ype>

Wher e <audi o-output-type> is the nane of the audi o output driver
given by the “GET AVAI LABLE AUDI O QUTPUT _TYPES’ conmand.

Possi bl e Answer s:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. As sone
paranmeters mght allow nultiple values, character strings are
encapsul ated into apostrophes ('). At the nonent the follow ng
I nformati on categories are defined (independently of driver):

CHANNELS -
amount of audi o out put channels this driver currently
of fers

SAMPLERATE —
pl ayback sanple rate the device uses

ACTI VE -
either true or false, if false then the audio driver is
I nactive and doesn't output any sound, nor do the
sanpl er channels connected to this audi o device render
any audi o

The nentioned fields above don't have to be in particular
order. The fields above are only those fields which are
returned by all audio output drivers. Every audi o output driver
m ght have its own, additional driver specific paraneters (see
“GET AUDI O QUTPUT_TYPE I NFO' command) which are al so returned
by this comrand.

Exanpl e:
C. “GET AUDI O QUTPUT_DEVI CE | NFO Al sa”
S: “CHANNELS: 27

“ SAMPLERATE: 44100”
“ACTI VE: true”

Schoenebeck Expires - June 2004 [Page 12]

Li nuxSanpl er Control Protocol May 2004

“FRAGVENTS: 27
“ FRAGVENTSI ZE: 128~

“CARD: '0,0"”

Changi ng settings of audio output drivers

Use the following coomand to alter a specific setting of a created
audi o out put devi ce:

SET AUDI O OUTPUT DEVI CE_PARAMETER <audi o- t ype> <key> <val ue>
or
SET AUDI O OUTPUT DEVI CE_PARAMETER <audi o- t ype> <key>=<val ue>

Wher e <audi o-type> should be replaced by the name of the audio
devi ce, <key> by the nane of the paraneter and <val ue> by the new
val ue for this paraneter

Possi bl e Answer s:

1] O(” -
I n case setting was successfully changed

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
i n case setting was cahnged successfully, but there are
noteworthy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

Exanpl es:
C. “SET AUDI O OQUTPUT_DEVI CE_PARAMETER Al sa FRAGVENTSI ZE 128
S ¢
C. “SET AUDI O OQUTPUT_DEVI CE_PARAMETER Al sa FRAGVENTSI ZE=128"
S ¢

Getting infornmations about an audi o channel

Use the follow ng conmand to get informations about an audio
channel :

GET AUDI O_QUTPUT_CHANNEL | NFO <audi o- out put -t ype> <audi o- chan>

Schoenebeck Expires - June 2004 [Page 13]

Li nuxSanpl er Control Protocol May 2004

Wher e <audi o-output-type> is the nane of the audi o output driver
and <audi o-chan> the audi o audi o channel nunber.

Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. At the nonent
the follow ng information categories are defined:

NAMVE —
arbitrary character string nam ng the channe
(al ways returned by all audi o channel s)

IS M X CHANNEL -
either true or false, a mxchannel is not a real,
I ndependent audi o channel, but a virtual channel which
is mxed to another real channel, this nmechanismis
needed for sanpl er engi nes which need nore audio
channel s than the used audio system m ght be able to
of fer
(al ways returned by all audi o channel s)

M X_CHANNEL_DESTI NATI ON -
reflects the real audi o channel (of the sane audio
out put device) this m x channel refers to, neans where
the audio signal actually will be routed / added to
(only returned in case the audi o channel is m x channel)

The nentioned fields above don't have to be in particular
order. The fields above are only those fields which are
generally returned for the described cases by all audio
channel s regardl ess of the audio driver. Every audi o channe
m ght have its own, additional driver & channel specific
par anet ers.

Exanpl es:

C. “GET AUDI O OQUTPUT_CHANNEL | NFO Al sa 1~
S: “NAME: studio nonitor left”
“1'S M X CHANNEL: false”

“GET AUDI O QUTPUT_CHANNEL | NFO Al sa 3”
“NAME: studio nonitor left”

“1'S M X CHANNEL: true”

“M X _CHANNEL DESTI NATI ON: 17

24 9)

Schoenebeck Expires - June 2004 [Page 14]

Li nuxSanpl er Control Protocol May 2004

“GET AUDI O OUTPUT_CHANNEL | NFO Jack 1~
“NAMVE: "ardour (left)'”

“I'S_ M X _CHANNEL: fal se”
“JACK_BI NDI NGS: ' ardour:0

24 9)

SFME Getting informations about specific audio channel paraneter

Use the follow ng conmand to get detailed informations about a
speci fic audi o channel paraneter:

GET AUDI O_OUTPUT_CHANNEL PARANMETER | NFO <audi o-t > <chan> <par anp

Where <audio-t> is the nanme of the audi o output device as returned
by the “GET AVAI LABLE_AUDI O QUTPUT _TYPES’ conmand, <chan> the audio
channel nunber and <paran> a specific channel paraneter nane for

whi ch information should be obtained (as returned by the “GET

AUDI O QUTPUT_CHANNEL | NFO' conmmand) .

Possi bl e Answer s:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. There are

i nformati ons which are always returned, independently of the

gi ven channel paraneter and there are optional informations

whi ch are only shown dependently to the given audi o channel. At
the nonent the followi ng informati on categories are defined:

DESCRI PTI ON —
arbitrary text describing the purpose of the paraneter
(al ways returned)

FI X -
either true or false, if true then this paraneter is
read only / cannot be altered
(al ways returned)

MULTIPLICITY -
either true or false, defines if this paraneter allows
only one value or a list of values, where true neans
mul tiple values and false only a single val ue all owed
(al ways returned)

RANGE_ M N —
defines lower Iimt of the allowed value range for this

Schoenebeck Expires - June 2004 [Page 15]

Li nuxSanpl er Control Protocol May 2004

paranmeter, can be an integer value as well as a dotted
nunber

(optionally returned, dependent to driver & channe
paraneter, but always in conjunction wth RANGE MAX)

RANGE_MAX —
defines upper Iimt of the allowed value range for this
paranmeter, can be an integer value as well as a dotted
nunber

(optionally returned, dependent to driver & channe
paraneter, but always in conjunction with RANGE M N

POSSI Bl LI TES —
comma separated |ist of possible values for this
paraneter, character strings are encapsulated into
apost rophes
(optionally returned, dependent to driver & channe
par anet er)

The nentioned fields above don't have to be in particular order.
Exanpl e:
C. “CGET AUDI O QUTPUT_CHANNEL PARAMETER | NFO Jack 0 JACK Bl NDI NGS”
S: “DESCRI PTION: bindings to other Jack clients”
“FIX: fal se”

“MULTI PLICITY: true”
“POSSIBILITES: 'PCMO',"PCM 1',"ardour:0',"ardour:1""”

SNl Changi ng settings of audi o output channels

Use the following cormmand to alter a specific setting of audio
out put channel :

SET AUDI O QUTPUT_CHANNEL PARAMETER <audi o-t> <chn> <key> <val ue>
or

SET AUDI O QUTPUT_CHANNEL PARAMETER <audi o-t> <chn> <key>=<val ue>
Where <audi o-t> should be replaced by the nane of the audio
device, <chn> by the audi o channel nunber, <key> by the nane of the
paraneter and <val ue> by the new value for this paraneter.

Possi bl e Answers:

“ O(” _

Schoenebeck Expires - June 2004 [Page 16]

Li nuxSanpl er Control Protocol May 2004

I n case setting was successfully changed

“WRN: <war ni hgcode>: <war ni ngnessage>"
in case setting was cahnged successfully, but there are
noteworthy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

Exanpl es:

gg :EEI AUDI O_QUTPUT_CHANNEL PARAMETER Jack 0 JACK BINDI NGS 'PCM 0"~
gg :EEI AUDI O_QUTPUT_CHANNEL PARAMETER Jack 0 JACK BI NDI NGS=' PCM 0" ”
gg :EEI AUDI O QUTPUT_CHANNEL PARAMETER Jack O NAME 'nonitor left'”

Configuring MDI input drivers

Drivers in LinuxSanpler are called devices. You can use multiple
devices sinmultaniously, e.g. to use MD over ethernet as MDI

I nput on one sanpler channel and Alsa as M DI input on another
sanpl er channel. Usually these devices will be created
automatically by LinuxSanpl er when you select an M Dl input type on
a sanpl er channel and the respective device was not created yet,

but this is not always possible, because sone drivers m ght need
explicit paranmeters at creation tine.

I nstead of defining commands and paraneters for each driver

I ndividual ly, all possible paraneters, their nmeani ngs and possible
val ues have to be obtained at runtine. This nakes the protocol a
bit abstract, but has the advantage, that frontends can be witten
I ndependently of what drivers are inplenmented and what paraneters
these drivers are actually offering. Comrands for configuring M DI
I nput devices are pretty nuch the sane as the conmands for
configuring audi o output drivers, already described in the |ast
chapter.

Sl CGetting all available MDI input drivers

Use the followng conmand to list all MDI input drivers currently
avai |l abl e for the LinuxSanpler instance:

Schoenebeck Expires - June 2004 [Page 17]

Li nuxSanpl er Control Protocol May 2004

GET AVAI LABLE M DI _I NPUT_TYPES
Possi bl e Answers:

Li nuxSanpler will answer by sendi ng comma separated character
strings synbolizing the available MDI input drivers.

Exanpl e:

C. “CGET AVAI LABLE M DI _| NPUT_TYPES’
S: “Al sa, Jack”

Getting informations about a specific MDI input driver

Use the follow ng conmand to get detailed informations about a
specific MDI input driver:

GET M DI _I NPUT_TYPE | NFO <mi di -i nput -type>
Where <mdi-input-type>is the nane of the MDI input driver
Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. At the nonent
the follow ng information categories are defined:

DESCRI PTI ON —
arbitrary description text about the MDI input driver

VERSI ON -
arbitrary character string regarding the driver's
ver si on

PARAMETERS —
comma separated |ist of all paraneters available for
the given M DI input driver
The nmentioned fields above don't have to be in particular order.
Exanpl e:
C. “GET M D _INPUT_TYPE I NFO Al sa”

S: “DESCRI PTI ON: Advanced Li nux Sound Architecture”
“VERSI ON: 1.0

Schoenebeck Expires - June 2004 [Page 18]

Li nuxSanpl er Control Protocol May 2004

“ PARAMETERS: ALSA SEQ BI NDI NGS”

Sl Getting informations about specific MDI input driver paraneter

Use the follow ng conmand to get detailed informations about a
specific paraneter of a specific MDI input driver

GET M DI _| NPUT_TYPE_PARAMETER | NFO <nmi di -t > <paranp [<depl i st >]

Where <mdi-t> is the nane of the MDI input driver, <paranr a
specific paraneter this driver offers.

Were <mdi-t>is the nane of the MDI input driver as returned by
the “GET AVAI LABLE M DI _I NPUT_TYPES’ command, <paran> a specific
paraneter nanme for which information shoul d be obtained (as
returned by the “GET M DI _I NPUT_TYPE I NFO' conmmand) and <depli st >

is an optional |ist of parameters on which the sought paraneter
<par an> depends on, <deplist> is a key-value pair list in form of
“keyl=val 1 key2=val2 ...”, where character string values are

encapsul ated into apostrophes ('). Argunents given with <deplist>
whi ch are not dependency paraneters of <paran> wll| be ignored,
means the frontend application can sinply put all paranmeters in
<deplist> with the values selected by the user.

Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. There are

I nformati ons which are always returned, independent of the
given driver paraneter and there are optional informations

whi ch are only shown dependent to given driver paraneter. At
the nonent the followi ng informati on categories are defined:

DESCRI PTI ON —
arbitrary text to describe the purpose of the paraneter
(al ways returned, no matter which driver paraneter)

MANDATORY -
either true or false, defines if this paranmeter nust be
gi ven when the device is to be created by the
" CREATE M DI _I NPUT_DEVI CE' comrand
(al ways returned, no matter which driver paraneter)

FI X -
either true or false, defines if this paranmeter can be

Schoenebeck Expires - June 2004 [Page 19]

Li nuxSanpl er Control Protocol May 2004

changed at any tine, once the device is created by the
" CREATE M DI _I NPUT_DEVI CE' comrand
(al ways returned, no matter which driver paraneter)

MULTIPLICI TY -
either true or false, defines if this paraneter allows
only one value or a list of values, where true neans
mul ti ple values and false only a one val ue al |l owed
(al ways returned, no matter which driver paraneter)

DEPENDS -
comma separated |ist of paranters this paraneter depends
on, neans the values for fields 'DEFAULT' , 'RANGE M N ,
" RANGE_MAX' and 'PCSSIBI LITIES m ght depend on these
| isted paraneters
(optionally returned, dependent to driver paraneter)

DEFAULT -
reflects the default value for this paraneter which is
used when the device is created and not explicitly
defined with the ' CREATE M DI _I NPUT_DEVI CE' comrand,
in case of MIULTIPLCITY=true, this is a comma separat ed
list, that's why character strings are encapsul ated into
apostrophes (')
(optional returned, dependent to driver paraneter)

RANGE_ M N —
defines lower Iimt of the allowed value range for this
paranmeter, can be an integer value as well as a dotted
nunber
(optional returned, dependent to driver paraneter, but
al ways in conjunction wth RANGE MAX)

RANGE_MAX —
defines upper Iimt of the allowed value range for this
paranmeter, can be an integer value as well as a dotted
nunber
(optional returned, dependent to driver paraneter, but
al ways in conjunction with RANGE_ M N)

PCSSI Bl LI TES —
comma separated |ist of possible values for this
paraneter, character strings are encapsulated into
(optional returned, dependent to driver paraneter)
The nmentioned fields above don't have to be in particular order.

Exanpl e:

Schoenebeck Expires - June 2004 [Page 20]

Li nuxSanpl er Control Protocol May 2004

“GET M DI _I NPUT_TYPE PARAMETER | NFO Al sa ALSA SEQ BI NDI NGS”
“DESCRI PTI ON: Bi ndings to other Alsa sequencer clients”
“MANDATORY: fal se”

“FI X fal se”

“MULTIPLICITY: true”

“DEFAULT: ' NULL"”

“PCSSI BI LI TES: " NULL','64:0,'68:0','68:1"”

24 9)

Loading an M DI input driver

Use the follow ng conmand to create a new M DI input device for
the desired MDI input system

CREATE M DI _I NPUT_DEVI CE <m di -i nput -type> [<param | i st >]

Where <m di-input-type> should be replaced by the desired M DI input
system and <paramlist> by an optional list of driver specific
paranmeters in formof “keyl=vall key2=val2 ...”, where

character string values should be encapsul ated i nto apostrophes (').
Note that there m ght be drivers which require paraneter(s) to be
given with this command. Use the previously described conmands in
this chapter to get those informations.

Possi bl e Answers:

1] O(” -
in case the driver was successfully | oaded

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
in case the driver was | oaded successfully, but there are
noteworthy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR: <errorcode>: <errornessage>"
in case it failed, providing an appropriate error code and
error nessage

Exanpl e:
C. “CREATE M DI _I NPUT_DEVI CE Al sa”
S: 1] O(”
Unl oading an M DI input driver

Use the following coomand to destroy a created M DI input device:

Schoenebeck Expires - June 2004 [Page 21]

Li nuxSanpl er Control Protocol May 2004

DESTROY M DI _| NPUT_DEVI CE <ni di -i nput - t ype>

Where <m di-input-type> should be replaced by the mdi input
system

Possi bl e Answers:

1] O(” -
in case the driver was successfully unl oaded

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
in case the driver was | oaded successfully, but there are
noteworthy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

Exanpl e:

C. “DESTROY M DI _I NPUT_DEVI CE Al sa”
S YK

Getting all loaded MDI input drivers

Use the followng conmand to list all currently | oaded M DI input
drivers, neans all created M D input devices:

GET M DI _I NPUT_DEVI CES

Possi bl e Answers:

Li nuxSanpler will answer by sendi ng comma separat ed nanes of
all created M D input devices.

Exanpl es:
C. “CGET M DI _| NPUT_DEVI CES’
S: “ALSA"
C. “CGET M DI _| NPUT_DEVI CES’
S: “Al sa, Jack”

Getting current settings of a MDl input driver

Use the follow ng conmand to get current settings of a specific,

Schoenebeck Expires - June 2004 [Page 22]

Li nuxSanpl er Control Protocol May 2004

| oaded M DI input driver:

GET M DI _I NPUT_DEVI CE | NFO <ni di -i nput - t ype>
Where <mdi-input-type>is the nane of the MDI input driver
Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. As sone
paranmeters mght allow nultiple values, character strings are
encapsul ated into apostrophes ('). At the nonent the follow ng
I nformati on categories are defined (independent of driver):

ACTI VE -
either true or false, if false then the MDI driver is
I nactive and doesn't listen to any incomng MDI events
and thus doesn't forward themto connected sanpl er
channel s

The field above is only the one which is returned by all MDI
I nput drivers. Every MDI input driver mght have its own,
addi tional driver specific paraneters which are al so returned
by this comrand.

Exanpl e:

C. “GET M DI _I NPUT_DEVI CE | NFO Al sa”
S: “ACTI VE: true”

Changi ng settings of audio output drivers

Use the following coomand to alter a specific setting of a created
M DI input device:

SET M DI _I NPUT_DEVI CE_PARAMETER <m di -type> <key> <val ue>
or

SET M DI _I NPUT_DEVI CE_PARAMETER <m di -type> <key>=<val ue>
Where <m di -type> shoul d be repl aced by the nanme of the M DI i nput

devi ce, <key> by the nane of the paraneter and <val ue> by the new
val ue for this paraneter

Schoenebeck Expires - June 2004 [Page 23]

Li nuxSanpl er Control Protocol May 2004

Possi bl e Answers:

1] O(” -
I n case setting was successfully changed

“WRN: <war ni hgcode>: <war ni ngnessage>"
i n case setting was cahnged successfully, but there are
noteworthy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

Exanpl es:
C. “SET M D _I NPUT_DEVI CE PARAMETER Al sa ACTI VE f al se”
S ¢
C. “SET M D _I NPUT_DEVI CE PARAMETER Al sa ACTI VE=f al se”
S ¢

Getting informations about a M DI port
Use the following coomand to get informations about a M DI port:
GET M DI _I NPUT_PORT | NFO <m di -i nput-type> <m di - port >

Where <m di-input-type> is the nane of the MD inpupt driver and
<m di -port> the MD input port nunber.

Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. At the nonent
the follow ng informati on categories are defined:

NAMVE —
arbitrary character string nam ng the port

The field above is only the one which is returned by all MDI
ports regardless of the MDI driver & port. Every M DI port
m ght have its own, additional driver & port specific

par anet ers.

Exanpl e:

Schoenebeck Expires - June 2004 [Page 24]

Li nuxSanpl er Control Protocol May 2004

“GET M DI _I NPUT_PORT | NFO Al sa 0”
“NAME: Mast er keyboar d”
“ALSA SEQ BI NDI NGS: '64:0"”

24 9)

Getting infornations about specific MDI port paraneter

Use the follow ng conmand to get detailed informations about a
specific M DI port paraneter:

GET M DI _I NPUT_PORT_PARAMETER | NFO <m di -t > <port> <paranp

Were <mdi-t> is the nane of the M DI input device as returned by
the “CGET AVAI LABLE M DI _I NPUT_TYPES’ conmand, <port> the M D port
nunber and <paran» a specific port paraneter nane for which

i nformati on shoul d be obtained (as returned by the “GET

M DI _| NPUT_PORT | NFO' comand).

Possi bl e Answer s:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. There are

i nformati ons which are always returned, independently of the

gi ven channel paranmeter and there are optional informations

whi ch are only shown dependently to the given MDI port. At the
nonent the follow ng informati on categories are defined:

DESCRI PTI ON —
arbitrary text describing the purpose of the paraneter
(al ways returned)

FI X -
either true or false, if true then this paraneter is
read only / cannot be altered
(al ways returned)

MULTIPLICI TY -
either true or false, defines if this paraneter allows
only one value or a list of values, where true neans
mul tiple values and false only a single val ue all owed
(al ways returned)

RANGE_M N —

defines lower linit of the allowed value range for this
paranmeter, can be an integer value as well as a dotted

Schoenebeck Expires - June 2004 [Page 25]

Li nuxSanpl er Control Protocol May 2004

nunber
(optionally returned, dependent to driver & port
paraneter, but always in conjunction wth RANGE MAX)

RANGE_MAX —
defines upper Iimt of the allowed value range for this

paranmeter, can be an integer value as well as a dotted
nunber

(optionally returned, dependent to driver & port
paraneter, but always in conjunction with RANGE_ M N

PCSSI Bl LI TES —
comma separated |ist of possible values for this
paraneter, character strings are encapsulated into
apost rophes
(optionally returned, dependent to driver & port
par anet er)

The nentioned fields above don't have to be in particular order.
Exanpl e:
C. “GET M D _I NPUT_PORT_PARAMETER | NFO Al sa 0 ALSA SEQ BI NDI NGS”
S: “DESCRI PTI ON: bindings to other Al sa sequencer clients”
“FIX: fal se”

“MULTI PLICITY: true”
“POSSIBILITES: '64:0','68:0',"'68:1"”

Changi ng settings of MDI input ports

Use the follow ng conmand to alter a specific setting of a M DI
I nput port:

SET M DI _| NPUT_PORT PARAMETER <mi di -t > <port> <key> <val ue>
or

SET M DI _I NPUT_PORT PARAMETER <mi di -t > <port> <key>=<val ue>
Where <m di-t> should be replaced by the nane of the M DI device,
<port> by the M D port nunber, <key> by the nane of the paraneter
and <val ue> by the new value for this paraneter.
Possi bl e Answer s:

4 O(” -

I n case setting was successfully changed

Schoenebeck Expires - June 2004 [Page 26]

Li nuxSanpl er Control Protocol May 2004

“WRN: <war ni ngcode>: <war ni ngnessage>" -
in case setting was cahnged successfully, but there are
noteworthy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage
Exanpl es:

“SET M DI _I NPUT_PORT PARAMETER Al sa 0 ALSA SEQ BI NDI NGS ' PCM 0"~
4 mﬂ

C
S
C. “SET M DI _I NPUT_PORT PARAMETER Al sa 0 ALSA SEQ BI NDI NGS=' PCM 0"~
S: 4 mﬂ

C

S

“SET M DI _| NPUT_PORT PARAMETER Al sa 0 NAME=' My Mast er keyboard'”
4 mﬂ

Configuring sanpl er channels
The foll owm ng commands descri be how to add and renove sanpl er

channel s, depl oy sanpler engines, |load instrunents and connect
sanpl er channels to M DI and audi o devi ces.

Loadi ng an i nstrunent

An instrunent file can be | oaded and assigned to a sanpl er channe
by the foll owm ng command:

LOAD | NSTRUMENT <fil enanme> <instr-index> <sanpl er-channel >
Where <filenanme> is the nane of the instrunent file on the
Li nuxSanpl er instance's host system <instr-index> the index of the
instrunment in the instrunent file and <sanpl er-channel > is the
nunber of the sanpler channel the instrunment should be assigned to.
Each sanpl er channel can only have one instrunent.
Possi bl e Answer s:

1] O(” -
in case the instrunent was successfully | oaded

“WRN: <war ni ngcode>: <war ni ngnessage>" -

Schoenebeck Expires - June 2004 [Page 27]

Li nuxSanpl er Control Protocol May 2004

in case the instrunent was | oaded successfully, but there
are noteworthy issue(s) related (e.g. Engine doesn't support
one or nore patch paraneters provided by the | oaded
instrunment file), providing an appropriate warni ng code and
war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

Loadi ng a sanpl er engine

A sanpl e engi ne can be depl oyed and assigned to a specific sanpler
channel by the follow ng conmand:

LOAD ENG NE <engi ne- nane> <sanpl er - channel >

Were <engi ne-nanme> is usually the C++ class nane of the engine

i npl ement ati on and <sanpl er-channel > the sanpl er channel the

depl oyed engi ne shoul d be assigned to. Even if the respective
sanpl er channel has al ready a depl oyed engine with that engine

name, a new engi ne instance will be assigned to the sanpler channel.

Possi bl e Answer s:

1] O(” -
i n case the engi ne was successfully depl oyed

“WRN: <war ni nhgcode>: <war ni ngnessage>"
in case the engine was depl oyed successfully, but there
are noteworthy issue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

Current nunber of sanpler channels
The nunber of sanpler channels can change on runtine. To get the
current anount of sanpler channels, the frontend can send the
foll ow ng command:
GET CHANNELS

Possi bl e Answers:

Schoenebeck Expires - June 2004 [Page 28]

Li nuxSanpl er Control Protocol May 2004

Li nuxSanpl er will answer returning the nunber of channels.
Exanpl e:
C. “CGET CHANNELS’
S “32”
Addi ng a new sanpl er channel

A new sanpl er channel can be added to the end of the sanpler

channel list by sending the follow ng conmand:
ADD CHANNEL
This will increnent the sanpler channel count by one and the new

sanpl er channel will be appended to the end of the sanpler channe
list. The frontend should send the respective, rel ated commands
right after to e.g. load an engine, |load an instrunment and setting

I nput, output nethod and evtl. other commands to initialize the new
channel. The frontend shoul d use the sanpl er channel returned by
the answer of this command to performthe previously recomended
commands, to avoid race conditions e.g. with other frontends that

m ght al so have sent an “ADD CHANNEL” conmand.

Possi bl e Answers:

“OK[<sanpl er - channel >] 7 -
i n case a new sanpl er channel coul d be added, where
<sanpl er-channel > refl ects the channel nunber of the new
created sanpl er channel which should the be used to set up
t he sanpl er channel by sendi ng subsequent intialization
commands

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
in case a new channel was added succesfully, but there are
notewort hy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR: <errorcode>: <errornessage>" -
in case it failed, providing an appropriate error code and
error nessage

Renovi ng a sanpl er channel
A sanpl er channel can be renoved by sending the foll ow ng command:

REMOVE CHANNEL <sanpl er - channel >

Schoenebeck Expires - June 2004 [Page 29]

Li nuxSanpl er Control Protocol May 2004

This will decrenent the sanpler channel count by one and al so
decrenent the channel nunbers of all subsequent sanpler channels by

one.
Possi bl e Answers:

1] O(” -
I n case the given sanpler channel could be renoved
“WRN: <war ni ngcode>: <war ni ngnessage>" -
in case the given channel was renoved, but there are
noteworthy issue(s) related, providing an appropriate
war ni ng code and war ni ng nessage
“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

SARES Getting all avail abl e engi nes

The frontend can ask for all avail abl e engi nes by sending the
foll ow ng command:

GET AVAI LABLE_ENG NES

Possi bl e Answers:

Li nuxSanpler will answer by sending a conma separated character
string of the engines' C++ class nanes.

Exanpl e:
C. “CGET AVAI LABLE _ENGJ NES’
S: “ @ gEngi ne, Akai Engi ne, DLSEngi ne, JoesCust onEngi ne”
Getting infornations about an engine

The frontend can ask for informations about a specific engi ne by
sending the foll ow ng command:

GET ENG NE | NFO <engi ne- nane>

Wiere <engi ne-nane> is usually the C++ class nane of the engine
I npl enent ati on.

Schoenebeck Expires - June 2004 [Page 30]

Li nuxSanpl er Control Protocol May 2004

Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. At the nonent
the follow ng categories are defined:

DESCRI PTI ON —
arbitrary description text about the engine
VERSI ON -
arbitrary character string regarding the engine's
ver si on

The nentioned fields above don't have to be in particular order.
Exanpl e:

C. “GET ENG NE | NFO JoesCust onEngi ne”
S: “DESCRIPTION:. this is Joe's custom sanpl er engi ne”
“VERSI ON: testing-1.0"

Getting sanpl er channel informations

The frontend can ask for the current settings of a sanpler channe
by sending the foll ow ng conmand:

GET CHANNEL | NFO <sanpl er - channel >

Wher e <sanpl er-channel > is the sanpl er channel nunber the frontend
Is interested in.

Possi bl e Answers:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the settings category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that setting category. At the
nonent the follow ng categories are defined:

ENG NE_NAME —
name of the engine that is deployed on the sanpler
channel , “<NONE>" if there's no engi ne depl oyed yet for

thi s sanpl er channel

AUDI O OUTPUT TYPE -

Schoenebeck Expires - June 2004 [Page 31]

Li nuxSanpl er Control Protocol May 2004

out put systemwhich is currently used to output the
audi o signal (at the nonent either “ALSA” or “JACK’)

AUDI O OQUTPUT_CHANNELS -
nunber of output channels the sanpler channel offers
(dependent to used sanpler engine and | oaded i nstrunent)

AUDI O_QUTPUT_RQUTI NG -
comma separated |ist which reflects to which audio
channel of the selected audi o output device each
sanpl er output channel is routed to, e.g. “0,3” would
nmean the engine's output channel 0 is routed to channe
0 of the audi o output device and the engi nes's out put
channel 1 is routed to the channel 3 of the audio
out put devi ce

| NSTRUVENT _FI LE —
the file name of the | oaded instrunent, “<NONE>" if
there's no instrunent yet |oaded for this sanpler
channel

| NSTRUVENT _NR -
the instrunent index nunber of the | oaded i nstrunent

M DI _| NPUT_TYPE -
at the nonment only “ALSA’, but will change in future

M DI _| NPUT_PORT -
port nunber of the M DI input device

M DI _| NPUT _CHANNEL -
the M D input channel nunber this sanpler channe
should l[isten to or ALL to listen on all M D channels

VOLUVE —
optionally dotted nunber for the channel vol une factor
(where a value < 1.0 neans attenuation and a val ue >
1.0 nmeans anplification)

The nentioned fields above don't have to be in particular order.
Exanpl e:

C. “CGET CHANNEL | NFO 34~

S: “ENG NE_NAME: G gEngi ne”
“VOLUME: 1.0
“AUDI O OUTPUT_TYPE: ALSA’
“AUDI O_OUTPUT_CHANNELS: 2”7
“AUDI O_QUTPUT_RQUTI NG O, 1”

Schoenebeck Expires - June 2004 [Page 32]

Li nuxSanpl er Control Protocol May 2004

“I NSTRUMENT _FI LE: / hone/j oe/ Fazi ol i Pi ano. gi g”
“I NSTRUMENT_NR: 0~

“M DI _I NPUT_TYPE: ALSA’

“M DI _I NPUT_PORT: 0

“M DI _I NPUT_CHANNEL: 5”

Current nunber of active voices

The frontend can ask for the current nunber of active voices on a
sanpl er channel by sending the follow ng conmand:

GET CHANNEL VO CE_COUNT <sanpl er - channel >

Wher e <sanpl er-channel > i s the sanpl er channel nunber the frontend
Is interested in.

Possi bl e Answer s:

Li nuxSanpler will answer by returning the nunber of active
voi ces on that channel

SN Current nunber of active disk streans

The frontend can ask for the current nunber of active di sk streans
on a sanpl er channel by sending the foll ow ng command:

GET CHANNEL STREAM COUNT <sanpl er - channel >

Wher e <sanpl er-channel > is the sanpl er channel nunber the frontend
Is interested in.

Possi bl e Answer s:
Li nuxSanpler will answer by returning the nunber of active
di sk streans on that channel in case the engi ne supports disk
streamng, if the engine doesn't support disk streamng it wll
return “NA” for not avail able.
CECENME Current fill state of disk streambuffers

The frontend can ask for the current fill state of all disk streans
on a sanpl er channel by sending the foll ow ng command:

GET CHANNEL BUFFER_FI LL BYTES <sanpl er - channel >

Schoenebeck Expires - June 2004 [Page 33]

Li nuxSanpl er Control Protocol May 2004

to get the fill state in bytes or
GET CHANNEL BUFFER_FI LL PERCENTACGE <sanpl er-channel >

to get the fill state in percent, where <sanpl er-channel > is the
sanpl er channel nunber the frontend is interested in.

Possi bl e Answers:

Li nuxSanpler will either answer by returning a comma separat ed
string wwth the fill state of all disk streambuffers on that
channel or an enpty line if there are no active disk streans or
“NA” for *not available* in case the engine which is depl oyed
doesn't support disk stream ng. Each entry in the answer i st
will begin with the streamis IDin brackets foll owed by the
nunerical representation of the fill size (either in bytes or
percentage). Note: due to efficiency reasons the fill states in
the response are not in particular order, thus the frontend has
to sort themby itself if necessary.

Exanpl e:
C. “GET CHANNEL BUFFER FI LL BYTES 4~
S: “[115] 420500, [116] 510300, [75] 110000, [120] 230700
C. “GET CHANNEL BUFFER _FI LL PERCENTAGE 4~
S “[115]90% [116] 98% [75] 40% [120] 62%
C. “GET CHANNEL BUFFER _FI LL PERCENTAGE 4~
S

CHKENW Setting audi o out put type

The frontend can alter the audio output type on a specific sanpler
channel by sending the foll owm ng command:

SET CHANNEL AUDI O QUTPUT_TYPE <sanpl er - channel > <audi o- out put -t ype>

Wher e <audi o-output-type>is currently either “ALSA’ or *“JACK’ and
<sanpl er-channel > i s the respective sanpl er channel nunber.

Possi bl e Answers:

4 mﬂ -
on success

“WRN: <war ni hgcode>: <war ni ngnessage>"
i f audi o output type was set, but there are noteworthy

Schoenebeck Expires - June 2004 [Page 34]

Li nuxSanpl er Control Protocol May 2004

I ssue(s) related, providing an appropriate warni ng code and
war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

CHCENE] Setting audi o out put channel

The frontend can alter the audi o output channel on a specific
sanpl er channel by sending the follow ng conmand:

SET CHANNEL AUDI O OUTPUT_CHANNEL <sanpl er-chan> <audi oout > <audi oi n>

Where <sanpl er-chan> is the sanpler channel, <audioout> is the
sanpl er channel's audi o out put channel which shoul d be
rerouted and <audi oi n> the audi o channel of the selected audio
out put devi ce where <audi oout> should be routed to.

Possi bl e Answer s:

4 mﬂ -
on success

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
I f audi o out put channel was set, but there are noteworthy
I ssue(s) related, providing an appropriate warning code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

SEEER:! Setting MD input port

The frontend can alter the input MD port on a specific sanpler
channel by sending the foll owm ng command:

SET CHANNEL M DI _|I NPUT_PORT <sanpl er - channel > <m di -i nput - port >
Where <mdi-input-port>is a MDI input port nunber of the
M DI i nput device connected to the sanpler channel given by
<sanpl er - channel >.
Possi bl e Answer s:

“ O(” _

Schoenebeck Expires - June 2004 [Page 35]

Li nuxSanpl er Control Protocol May 2004

on success

“WRN: <war ni hgcode>: <war ni ngnessage>"
if MDI input port was set, but there are noteworthy
I ssue(s) related, providing an appropriate warni ng code and
war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

SEEAE] Setting MDI input channe

The frontend can alter the M D channel a sanpler channel shoul d
listen to by sending the foll owm ng command:

SET CHANNEL M DI _|I NPUT_CHANNEL <sanpl er-channel > <m di - i nput - chan>

Where <m di-input-chan> is the new M D input channel where
<sanpl er-channel > should listen to or ALL to listen on all 16 M D
channel s.

Possi bl e Answer s:

4 mﬂ -
on success

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
if MDI input channel was set, but there are noteworthy
I ssue(s) related, providing an appropriate warning code and
war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

SIS Setting channel vol une

The frontend can alter the volunme of a sanpler channel by sending
the foll owi ng command:

SET CHANNEL VOLUME <sanpl er - channel > <vol une>
Where <volune> is an optionally dotted positive nunber (a val ue
smal l er than 1.0 neans attenutation, whereas a val ue greater than

1.0 neans anplification) and <sanpl er-channel > defi nes the sanpl er
channel where this volune factor should be set.

Schoenebeck Expires - June 2004 [Page 36]

Li nuxSanpl er Control Protocol May 2004

Possi bl e Answers:

4 mﬂ -
on success

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
i f channel volune was set, but there are noteworthy
I ssue(s) related, providing an appropriate warni ng code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>"
in case it failed, providing an appropriate error code and
error nessage

ANl Resetting a sanpler channe

The frontend can reset a particul ar sanpler channel by sending the
foll ow ng command:

RESET CHANNEL <sanpl er-channel >

Wher e <sanpl er-channel > defi nes the sanpler channel to be reset.

This will cause the engine on that sanpler channel, its voices and
eventual |y disk streans and all control and status variables to be
reset.

Possi bl e Answers:

4 mﬂ -
on success

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
I f channel was reset, but there are noteworthy issue(s)
rel ated, providing an appropriate warni ng code and war ni ng
nmessage

“ERR: <errorcode>: <errornessage>"
in case it failed, providing an appropriate error code and
error nessage

CHCEMR:l Regi ster frontend for receiving UDP event nessages

The frontend can register itself to the LinuxSanpler application to
be i nformed about noteworthy events by sending this command:

SUBSCRI BE NOTI FI CATI ON <udp- port >

Schoenebeck Expires - June 2004 [Page 37]

Li nuxSanpl er Control Protocol May 2004

Where <udp-port> is the UDP port nunber on the frontend's host on
which the frontend will listen to. The frontend has to open, listen
and react on that port before it tries to register itself for
NOTI FI CATI ON, because the LinuxSanpler instance will send a PI NG
packet to test if the UDP is actually reachable and the frontend is
listening on that port. The frontend will then imedi ately have to
answer by sending a PONG packet, el se the SUBSCRI BE NOTI FI CATI ON
command will fail (see UDP chapter for PING and PONG packets). The
Li nuxSanpl er instance will periodically send PING packets on which
the frontend has to answer, el se LinuxSanpler assunes the frontend
to be not available and will stop to send notification / event
nmessages.

Possi bl e Answer s:

“OK[<session-id>]"
on success, where <session-id> wll be replaced by a
character string reflecting the I D needed for unsubscription

“WRN: <war ni nhgcode>: <war ni ngnessage>"
If registration succeeded, but there are noteworthy
I ssue(s) related, providing an appropriate warning code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

CHCEMRl Deregister frontend for not receiving UDP event nessages anynore

The frontend can deregister itself if it doesn't want to recei ve UDP
event packets anynore by sending the foll ow ng conmand:

UNSUBSCRI BE NOTI FI CATI ON <sessi on-i d>

Where <session-id> should be replaced by the ID returned fromthe
“SUBSCRI BE NOTI FI CATI ON' conmmand (see 3.17).

Possi bl e Answers:

4 mﬂ -
on success

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
I f deregistration succeeded, but there are noteworthy
I ssue(s) related, providing an appropriate warning code and
war ni ng nessage

Schoenebeck Expires - June 2004 [Page 38]

Li nuxSanpl er Control Protocol May 2004

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage
CEEMIN Cl ose client connection

The client can close its network connection to LinuxSanpl er by
sending the foll ow ng command:

QT

This is probably nore interesting for manual telnet connections to
Li nuxSanpl er than really useful for a frontend inplenentation.

/] Conmand Synt ax
The followi ng are the LSCP (Li nuxSanpler control protocol) comands:

ADD <SP> CHANNEL
GET <SP> <get-instruction>
LOAD <SP> <l oad-instruction>
REMOVE <SP> CHANNEL <SP> <sanpl er - channel >
SET <SP> CHANNEL <SP> <set-chan-instruction>
RESET <SP> CHANNEL <SP> <sanpl er - channel >
SUBSCRI BE <SP> NOTI FI CATI ON <SP> <udp- port >
UNSUBSCRI BE <SP> NOTI FI CATI ON <SP> <sessi on-i d>
QT

The syntax of the above argunent fields is given bel ow usi ng Backus-
Naur Form (BNF as described in RFC-2234 [?]) where applicable.

<get-instruction> ::=
AVAI LABLE_ENG NES |
CHANNELS |
CHANNEL <SP> | NFO <SP> <sanpl er - channel >

Schoenebeck Expires - June 2004 [Page 39]

Li nuxSanpl er Control Protocol May 2004

CHANNEL <SP> BUFFER FI LL <SP> <buffer-size-type> <SP>
<sanpl er - channel > |

CHANNEL <SP> STREAM COUNT <SP> <sanpl er - channel >

CHANNEL <SP> VO CE_COUNT <SP> <sanpl er-channel > |

ENG NE <SP> | NFO <SP> <engi ne- nane>

<l oad-instruction> ::=
| NSTRUVENT <SP> <| oad-instr-args>
ENG NE <SP> <| oad- engi ne- ar gs>

<sanpl er - channel > :: = <nunber >

<set-chan-instruction> ::=

AUDI O QUTPUT_CHANNEL <SP> <sanpl er - channel > <SP>
<audi o- out put - channel >

AUDI O QUTPUT_TYPE <SP> <sanpl er - channel > <Sp>
<audi o- out put -t ype>

M DI _| NPUT_PORT <SP> <sanpl er - channel > <SP>
<m di -i nput - port> |

M DI _| NPUT_CHANNEL <SP> <sanpl er - channel > <Sp>
<m di - i nput - channel > |

M DI _| NPUT_TYPE <SP> <sanpl er - channel > <SP>
<m di -i nput -type>

VOLUME <SP> <sanpl er - channel > <SP> <vol une>

<udp-port> ::= <nunber>

<session-id> ::= <string>
<buffer-size-type> ::= BYTES | PERCENTAGE
<engi ne- nane> :: = <cpp-cl assnane>

<l oad-instr-args> ::=
<fil enane> <SP> <instr-index> <SP> <sanpl er-channel >

<| oad- engi ne-args> ::= <engi ne- nane> <SP> <sanpl er - channel >

<audi o- out put - channel > :: = <nunber>

<audi o-out put-type> ::= ALSA | JACK

<m di -i nput-port> ::= <string>

<m di-input-channel> ::=1| 2| 3| 4| 5| 6| 7| 8] 9| 10 |
11| 12 | 13| 14 | 15| 16

<m di -i nput-type> ::= ALSA

Schoenebeck Expires - June 2004 [Page 40]

Li nuxSanpl er Control Protocol May 2004

<vol une> ::= <dot nune
<cpp-classnane> ::= class nane as defined by the C++ progranm ng
| anguage
<filenane> ::= <string>
<string> ::= <char> | <char> <string>
<char> ::= <c> | "\" <x>
<c> ::= any one of the 128 ASCI| characters, but not any
<speci al > or <SP>
<special> ::="<" | ">" | ";" | " | "& | "{" | "}" | the control
characters (ASCl I codes 0 through 31 inclusive and 127)
<dot nun® ::= <snunme "." <nunber>
<nunber> ::= <d> | <d> <nunber>
<d> ::= any one of the ten digits O through 9
<snun® ::= arbitrary nunber of digits representing a deci nal
I nteger value in the range including O to infinity
<CRLF> ::= <CR> <LF>
<CR> :.:=the carriage return character (ASCI| code 13)
<LF> ::=the line feed character (ASCI| code 10)
<SP> : .= the space character (ASCI| code 32)
<x> ::= any one of the 128 ASCI| characters (no excepti ons)
<epsilon> ::= enpty input

Note that conmmand |ines have to be <CRLF> term nated, thus the total
nessage set / command set is defined as:

<input> ::= <epsilon> | <input> <line>

<line> ::= <CRLF> | <command> <CRLF>

where <command> is one of the command |ines as defined in the

Schoenebeck Expires - June 2004 [Page 41]

Li nuxSanpl er Control Protocol May 2004
begi nning of this section.

W Events and special UDP packets
This chapter will describe all currently defined UDP packets sent
by Li nuxSanpl er.
Wl Nunber of sanpler channels changed
In this case LinuxSanpler will send the foll ow ng packet:
“CHANGE CHANNELS <channel s>”
Were <channel s> wll|l be reaplaced by the new nunber of sanpler
channel s.
W] Nunber of active voices changed
In this case LinuxSanpler will send a packet with foll ow ng shape:
CHANGE CHANNEL VA CE_COUNT <sanpl er - channel > <voi ces>
Wher e <sanpl er-channel > will be replaced by the sanpler channel the
voi ce count change occurred and <voi ces> by the new nunber of
active voices on that channel.
WK Nunber of active disk streans changed
In this case LinuxSanpler will send a packet with foll ow ng shape:
CHANGE CHANNEL STREAM COUNT <sanpl er - channel > <streans>
Wher e <sanpl er-channel > will be replaced by the sanpler channel the
stream count change occurred and <strean® by the new nunber of
active disk streans on that channel.
Di sk stream buffer fill state changed
In this case LinuxSanpler will send a packet with foll ow ng shape:
CHANGE CHANNEL BUFFER FI LL <sanpl er - channel >
Wher e <sanpl er-channel > will be replaced by the sanpler channel the

buffer fill state change occurred. The frontend will have to send

Schoenebeck Expires - June 2004 [Page 42]

Li nuxSanpl er Control Protocol May 2004

the respective conmand to actually get the fill state values. This
I s unavoi dable due to the packet size limt of UDP.

Channel infornmations changed

In this case LinuxSanpler will send a packet with foll ow ng shape:

CHANGE CHANNEL | NFO <sanpl er - channel >

Wher e <sanpl er-channel > will be replaced by the sanpler channel the

channel info change occurred. The frontend will have to send
the respective conmand to actually get the channel info. This is
unavoi dabl e due to the packet size limt of UDP.

Speci al packet PI NG
Sense behind this packet is to check if the frontend is (still)
listening on it's registered UDP port. This special packet has this
shape:
Pl NG <udp- port> <string>
Where <string> is an arbitrary character string that has to be
confirmed by the frontend by sending a PONG UDP packet to the UDP
port given by <udp-port> to LinuxSanpler's host |IP address.
Speci al packet PONG
Thi s packet has to be returned by the frontend in reaction to a
PI NG packet received from Li nuxSanpl er. A PONG packet |ooks |ike
this:
PONG <stri ng>

Where <string> is a character string transmtted wth PING which
shoul d be send in order to confirmthe PING packet.

Exanpl e:
S: “PING 2067 ahj _89zdi Q
C. “PONG ahj _89zdi Q (sent to port 2067 of LinuxSanpler's
host)

Schoenebeck Expires - June 2004 [Page 43]

Li nuxSanpl er Control Protocol May 2004

] Event Syntax

The follow ng are the defined event nessages sent via UDP (only in
case the frontend registered itself to receive UDP event packets):

CHANGE <SP> <event-arg>
Pl NG <SP> <udp- port> <SP> <stri ng>
PONG <SP> <string>

The syntax of the above argunent fields is given bel ow usi ng Backus-
Naur Form (BNF as described in RFC- 2234 [3]) where applicable.

<event-arg> ::=

CHANNELS <SP> <channel s>

CHANNEL <SP> VO CE_COUNT <SP> <sanpl er - channel > <SP>
<voi ce-count > |

CHANNEL <SP> STREAM COUNT <SP> <sanpl er - channel >
<SP> <stream count> |

CHANNEL <SP> BUFFER FI LL <SP> <sanpl er - channel >

CHANNEL <SP> | NFO <SP> <sanpl er - channel >

<udp-port> ::= <nunber>

<sanpl er - channel > :: = <nunber >

<string> ::= <char> | <char> <string>

<channel s> :: = <nunber >

<voi ce-count > ::= <nunber>

<stream count> ::= <nunber>

<char> ::= <c> | "\" <x>

<c> ::= any one of the 128 ASCI| characters, but not any

<speci al > or <SP>
<special> ::="<" | ">" | ";" | ":" | "& | "{" | "}" | the
control characters (ASCI|I codes O through 31
I nclusive and 127)

<nunber> ::= <d> | <d> <nunber>

Schoenebeck Expires - June 2004 [Page 44]

Li nuxSanpl er Control Protocol May 2004

<d> ::= any one of the ten digits O through 9
<x> ::= any one of the 128 ASCI| characters (no exceptions)
<SP> : .= the space character (ASCI| code 32)

Security Considerations
As there is so far no nethod of authentication and authorisation
defined and so not required for a client applications to succeed to
connect, running LinuxSanpler mght be a security risk for the host
system t he LinuxSanpler instance is running on.

Ref er ences

< Your references will be listed here. View "Page Layout" if they
are not currently visible. >

Acknow edgnent s

<Add any acknow edgenent s>

Aut hor' s Addr esses

<Fi r st nane> <Last nanme>
<Affiliation>

<Addr ess>
Phone: <optional >
Emai |l : <Your enmil|l address>

Schoenebeck Expires - June 2004 [Page 45]

1 Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997

2 Crocker, D. and Overell, P.(Editors), "Augnented BNF for
Syntax Specifications: ABNF', RFC 2234, Internet Muil
Consortium and Denon Internet Ltd., Novenber 1997

3 Crocker, D. and Overell, P.(Editors), "Augnmented BNF for
Syntax Specifications: ABNF', RFC 2234, Internet Muil
Consortium and Denon Internet Ltd., Novenber 1997

