/[svn]/gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp
ViewVC logotype

Annotation of /gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2550 - (hide annotations) (download)
Wed May 14 01:31:30 2014 UTC (9 years, 11 months ago) by schoenebeck
File size: 34673 byte(s)
* Fixed various bugs regarding new "combine instruments" tool.
* Show a warning if user tries to combine instruments in old
  .gig v2 format.
* Don't auto remove stereo dimension if user drags a mono
  sample reference on DimensionRegion's sample reference.
* Select "Instruments" tab on app start by default.

1 schoenebeck 2548 /*
2     Copyright (c) 2014 Christian Schoenebeck
3    
4     This file is part of "gigedit" and released under the terms of the
5     GNU General Public License version 2.
6     */
7    
8     #include "CombineInstrumentsDialog.h"
9    
10     // enable this for debug messages being printed while combining the instruments
11     #define DEBUG_COMBINE_INSTRUMENTS 0
12    
13     #include "global.h"
14    
15     #include <set>
16     #include <iostream>
17     #include <assert.h>
18    
19     #include <glibmm/ustring.h>
20     #include <gtkmm/stock.h>
21     #include <gtkmm/messagedialog.h>
22    
23     Glib::ustring gig_to_utf8(const gig::String& gig_string);
24    
25     typedef std::map<gig::Instrument*, gig::Region*> RegionGroup;
26     typedef std::map<DLS::range_t,RegionGroup> RegionGroups;
27    
28     typedef std::vector<DLS::range_t> DimensionZones;
29     typedef std::map<gig::dimension_t,DimensionZones> Dimensions;
30    
31     typedef std::map<gig::dimension_t,int> DimensionCase;
32    
33     typedef std::map<gig::dimension_t, int> DimensionRegionUpperLimits;
34    
35     ///////////////////////////////////////////////////////////////////////////
36     // private functions
37    
38     #if DEBUG_COMBINE_INSTRUMENTS
39     static void printRanges(const RegionGroups& regions) {
40     std::cout << "{ ";
41     for (RegionGroups::const_iterator it = regions.begin(); it != regions.end(); ++it) {
42     if (it != regions.begin()) std::cout << ", ";
43     std::cout << (int)it->first.low << ".." << (int)it->first.high;
44     }
45     std::cout << " }" << std::flush;
46     }
47     #endif
48    
49     /**
50     * If the two ranges overlap, then this function returns the smallest point
51     * within that overlapping zone. If the two ranges do not overlap, then this
52     * function will return -1 instead.
53     */
54     inline int smallestOverlapPoint(const DLS::range_t& r1, const DLS::range_t& r2) {
55     if (r1.overlaps(r2.low)) return r2.low;
56     if (r2.overlaps(r1.low)) return r1.low;
57     return -1;
58     }
59    
60     /**
61     * Get the most smallest region point (not necessarily its region start point)
62     * of all regions of the given instruments, start searching at keyboard
63     * position @a iStart.
64     *
65     * @returns very first region point >= iStart, or -1 if no region could be
66     * found with a range member point >= iStart
67     */
68     static int findLowestRegionPoint(std::vector<gig::Instrument*>& instruments, int iStart) {
69     DLS::range_t searchRange = { iStart, 127 };
70     int result = -1;
71     for (uint i = 0; i < instruments.size(); ++i) {
72     gig::Instrument* instr = instruments[i];
73     for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
74     if (rgn->KeyRange.overlaps(searchRange)) {
75     int lowest = smallestOverlapPoint(rgn->KeyRange, searchRange);
76     if (result == -1 || lowest < result) result = lowest;
77     }
78     }
79     }
80     return result;
81     }
82    
83     /**
84     * Get the most smallest region end of all regions of the given instruments,
85     * start searching at keyboard position @a iStart.
86     *
87     * @returns very first region end >= iStart, or -1 if no region could be found
88     * with a range end >= iStart
89     */
90     static int findFirstRegionEnd(std::vector<gig::Instrument*>& instruments, int iStart) {
91     DLS::range_t searchRange = { iStart, 127 };
92     int result = -1;
93     for (uint i = 0; i < instruments.size(); ++i) {
94     gig::Instrument* instr = instruments[i];
95     for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
96     if (rgn->KeyRange.overlaps(searchRange)) {
97     if (result == -1 || rgn->KeyRange.high < result)
98     result = rgn->KeyRange.high;
99     }
100     }
101     }
102     return result;
103     }
104    
105     /**
106     * Returns a list of all regions of the given @a instrument where the respective
107     * region's key range overlaps the given @a range.
108     */
109     static std::vector<gig::Region*> getAllRegionsWhichOverlapRange(gig::Instrument* instrument, DLS::range_t range) {
110     //std::cout << "All regions which overlap { " << (int)range.low << ".." << (int)range.high << " } : " << std::flush;
111     std::vector<gig::Region*> v;
112     for (gig::Region* rgn = instrument->GetFirstRegion(); rgn; rgn = instrument->GetNextRegion()) {
113     if (rgn->KeyRange.overlaps(range)) {
114     v.push_back(rgn);
115     //std::cout << (int)rgn->KeyRange.low << ".." << (int)rgn->KeyRange.high << ", " << std::flush;
116     }
117     }
118     //std::cout << " END." << std::endl;
119     return v;
120     }
121    
122     /**
123     * Returns all regions of the given @a instruments where the respective region's
124     * key range overlaps the given @a range. The regions returned are ordered (in a
125     * map) by their instrument pointer.
126     */
127     static RegionGroup getAllRegionsWhichOverlapRange(std::vector<gig::Instrument*>& instruments, DLS::range_t range) {
128     RegionGroup group;
129     for (uint i = 0; i < instruments.size(); ++i) {
130     gig::Instrument* instr = instruments[i];
131     std::vector<gig::Region*> v = getAllRegionsWhichOverlapRange(instr, range);
132     if (v.empty()) continue;
133     if (v.size() > 1) {
134     std::cerr << "WARNING: More than one region found!" << std::endl;
135     }
136     group[instr] = v[0];
137     }
138     return group;
139     }
140    
141     /** @brief Identify required regions.
142     *
143     * Takes a list of @a instruments as argument (which are planned to be combined
144     * as layers in one single new instrument) and fulfills the following tasks:
145     *
146     * - 1. Identification of total amount of regions required to create a new
147     * instrument to become a layered version of the given instruments.
148     * - 2. Precise key range of each of those identified required regions to be
149     * created in that new instrument.
150     * - 3. Grouping the original source regions of the given original instruments
151     * to the respective target key range (new region) of the instrument to be
152     * created.
153     *
154     * @param instruments - list of instruments that are planned to be combined
155     * @returns structured result of the tasks described above
156     */
157     static RegionGroups groupByRegionIntersections(std::vector<gig::Instrument*>& instruments) {
158     RegionGroups groups;
159    
160     // find all region intersections of all instruments
161     std::vector<DLS::range_t> intersections;
162     for (int iStart = 0; iStart <= 127; ) {
163     iStart = findLowestRegionPoint(instruments, iStart);
164     if (iStart < 0) break;
165     const int iEnd = findFirstRegionEnd(instruments, iStart);
166     DLS::range_t range = { iStart, iEnd };
167     intersections.push_back(range);
168     iStart = iEnd + 1;
169     }
170    
171     // now sort all regions to those found intersections
172     for (uint i = 0; i < intersections.size(); ++i) {
173     const DLS::range_t& range = intersections[i];
174     RegionGroup group = getAllRegionsWhichOverlapRange(instruments, range);
175     if (!group.empty())
176     groups[range] = group;
177     else
178     std::cerr << "WARNING: empty region group!" << std::endl;
179     }
180    
181     return groups;
182     }
183    
184     /** @brief Identify required dimensions.
185     *
186     * Takes a planned new region (@a regionGroup) as argument and identifies which
187     * precise dimensions would have to be created for that new region, along with
188     * the amount of dimension zones and their precise individual zone sizes.
189     *
190     * @param regionGroup - planned new region for a new instrument
191     * @returns set of dimensions that shall be created for the given planned region
192     */
193     static Dimensions getDimensionsForRegionGroup(RegionGroup& regionGroup) {
194     std::map<gig::dimension_t, std::set<int> > dimUpperLimits;
195    
196     // collect all dimension region zones' upper limits
197     for (RegionGroup::iterator it = regionGroup.begin();
198     it != regionGroup.end(); ++it)
199     {
200     gig::Region* rgn = it->second;
201     int previousBits = 0;
202     for (uint d = 0; d < rgn->Dimensions; ++d) {
203     const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
204     for (uint z = 0; z < def.zones; ++z) {
205     int dr = z << previousBits;
206     gig::DimensionRegion* dimRgn = rgn->pDimensionRegions[dr];
207     // Store the individual dimension zone sizes (or actually their
208     // upper limits here) for each dimension.
209     // HACK: Note that the velocity dimension is specially handled
210     // here. Instead of taking over custom velocity split sizes
211     // here, only a bogus number (zone index number) is stored for
212     // each velocity zone, that way only the maxiumum amount of
213     // velocity splits of all regions is stored here, and when their
214     // individual DimensionRegions are finally copied (later), the
215     // individual velocity split size are copied by that.
216     dimUpperLimits[def.dimension].insert(
217     (def.dimension == gig::dimension_velocity) ?
218     z : (def.split_type == gig::split_type_bit) ?
219     ((z+1) * 128/def.zones - 1) : dimRgn->DimensionUpperLimits[dr]
220     );
221     }
222     previousBits += def.bits;
223     }
224     }
225    
226     // convert upper limit set to range vector
227     Dimensions dims;
228     for (std::map<gig::dimension_t, std::set<int> >::const_iterator it = dimUpperLimits.begin();
229     it != dimUpperLimits.end(); ++it)
230     {
231     gig::dimension_t type = it->first;
232     int iLow = 0;
233     for (std::set<int>::const_iterator itNums = it->second.begin();
234     itNums != it->second.end(); ++itNums)
235     {
236     const int iUpperLimit = *itNums;
237     DLS::range_t range = { iLow, iUpperLimit };
238     dims[type].push_back(range);
239     iLow = iUpperLimit + 1;
240     }
241     }
242    
243     return dims;
244     }
245    
246     inline int getDimensionIndex(gig::dimension_t type, gig::Region* rgn) {
247     for (uint i = 0; i < rgn->Dimensions; ++i)
248     if (rgn->pDimensionDefinitions[i].dimension == type)
249     return i;
250     return -1;
251     }
252    
253     static void fillDimValues(uint* values/*[8]*/, DimensionCase dimCase, gig::Region* rgn, bool bShouldHaveAllDimensionsPassed) {
254 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
255     printf("dimvalues = { ");
256     fflush(stdout);
257     #endif
258 schoenebeck 2548 for (DimensionCase::iterator it = dimCase.begin(); it != dimCase.end(); ++it) {
259     gig::dimension_t type = it->first;
260     int iDimIndex = getDimensionIndex(type, rgn);
261     if (bShouldHaveAllDimensionsPassed) assert(iDimIndex >= 0);
262     else if (iDimIndex < 0) continue;
263     values[iDimIndex] = it->second;
264 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
265     printf("%x=%d, ", type, it->second);
266     #endif
267 schoenebeck 2548 }
268 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
269     printf("\n");
270     #endif
271 schoenebeck 2548 }
272    
273     static DimensionRegionUpperLimits getDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn) {
274     DimensionRegionUpperLimits limits;
275     gig::Region* rgn = dimRgn->GetParent();
276 schoenebeck 2549 for (uint d = 0; d < rgn->Dimensions; ++d) {
277 schoenebeck 2548 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
278     limits[def.dimension] = dimRgn->DimensionUpperLimits[d];
279     }
280     return limits;
281     }
282    
283     static void restoreDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn, const DimensionRegionUpperLimits& limits) {
284     gig::Region* rgn = dimRgn->GetParent();
285     for (DimensionRegionUpperLimits::const_iterator it = limits.begin();
286     it != limits.end(); ++it)
287     {
288     int index = getDimensionIndex(it->first, rgn);
289     assert(index >= 0);
290     dimRgn->DimensionUpperLimits[index] = it->second;
291     }
292     }
293    
294     /**
295     * Returns the sum of all bits of all dimensions defined before the given
296     * dimensions (@a type). This allows to access cases of that particular
297     * dimension directly.
298     *
299     * @param type - dimension that shall be used
300     * @param rgn - parent region of that dimension
301     */
302     inline int baseBits(gig::dimension_t type, gig::Region* rgn) {
303     int previousBits = 0;
304 schoenebeck 2549 for (uint i = 0; i < rgn->Dimensions; ++i) {
305 schoenebeck 2548 if (rgn->pDimensionDefinitions[i].dimension == type) break;
306     previousBits += rgn->pDimensionDefinitions[i].bits;
307     }
308     return previousBits;
309     }
310    
311     inline int dimensionRegionIndex(gig::DimensionRegion* dimRgn) {
312     gig::Region* rgn = dimRgn->GetParent();
313     int sz = sizeof(rgn->pDimensionRegions) / sizeof(gig::DimensionRegion*);
314     for (int i = 0; i < sz; ++i)
315     if (rgn->pDimensionRegions[i] == dimRgn)
316     return i;
317     return -1;
318     }
319    
320     /** @brief Get exact zone ranges of given dimension.
321     *
322     * This function is useful for the velocity type dimension. In contrast to other
323     * dimension types, this dimension can have different zone ranges (that is
324     * different individual start and end points of its dimension zones) depending
325     * on which zones of other dimensions (on that gig::Region) are currently
326     * selected.
327     *
328     * @param type - dimension where the zone ranges should be retrieved for
329     * (usually the velocity dimension in this context)
330     * @param dimRgn - reflects the exact cases (zone selections) of all other
331     * dimensions than the given one in question
332     * @returns individual ranges for each zone of the questioned dimension type,
333     * it returns an empty result on errors instead
334     */
335     static DimensionZones preciseDimensionZonesFor(gig::dimension_t type, gig::DimensionRegion* dimRgn) {
336     DimensionZones zones;
337     gig::Region* rgn = dimRgn->GetParent();
338     int iDimension = getDimensionIndex(type, rgn);
339     if (iDimension < 0) return zones;
340     const gig::dimension_def_t& def = rgn->pDimensionDefinitions[iDimension];
341     int iDimRgn = dimensionRegionIndex(dimRgn);
342     int iBaseBits = baseBits(type, rgn);
343     int mask = ~(((1 << def.bits) - 1) << iBaseBits);
344    
345 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
346     printf("velo zones { ");
347     fflush(stdout);
348     #endif
349 schoenebeck 2548 int iLow = 0;
350     for (int z = 0; z < def.zones; ++z) {
351     gig::DimensionRegion* dimRgn2 =
352     rgn->pDimensionRegions[ (iDimRgn & mask) | ( z << iBaseBits) ];
353     int iHigh = dimRgn2->DimensionUpperLimits[iDimension];
354     DLS::range_t range = { iLow, iHigh};
355 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
356     printf("%d..%d, ", iLow, iHigh);
357     fflush(stdout);
358     #endif
359 schoenebeck 2548 zones.push_back(range);
360     iLow = iHigh + 1;
361     }
362 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
363     printf("}\n");
364     #endif
365 schoenebeck 2548 return zones;
366     }
367    
368 schoenebeck 2550 struct CopyAssignSchedEntry {
369     gig::DimensionRegion* src;
370     gig::DimensionRegion* dst;
371     int velocityZone;
372     int totalSrcVelocityZones;
373     };
374     typedef std::vector<CopyAssignSchedEntry> CopyAssignSchedule;
375 schoenebeck 2549
376 schoenebeck 2548 /** @brief Copy all DimensionRegions from source Region to target Region.
377     *
378     * Copies the entire articulation informations (including sample reference of
379     * course) from all individual DimensionRegions of source Region @a inRgn to
380     * target Region @a outRgn. There are no dimension regions created during this
381     * task. It is expected that the required dimensions (thus the required
382     * dimension regions) were already created before calling this function.
383     *
384     * To be precise, it does the task above only for the layer selected by
385     * @a iSrcLayer and @a iDstLayer. All dimensions regions of other layers that
386     * may exist, will not be copied by one single call of this function. So if
387     * there is a layer dimension, this function needs to be called several times.
388     *
389     * @param outRgn - where the dimension regions shall be copied to
390     * @param inRgn - all dimension regions that shall be copied from
391 schoenebeck 2550 * @param dims - precise dimension definitions of target region
392     * @param iDstLayer - layer index of destination region where the dimension
393 schoenebeck 2548 * regions shall be copied to
394 schoenebeck 2550 * @param iSrcLayer - layer index of the source region where the dimension
395 schoenebeck 2548 * regions shall be copied from
396     * @param dimCase - just for internal purpose (function recursion), don't pass
397     * anything here, this function will call itself recursively
398     * will fill this container with concrete dimension values for
399     * selecting the precise dimension regions during its task
400 schoenebeck 2550 * @param schedule - just for internal purpose (function recursion), don't pass
401     anything here: list of all DimensionRegion copy operations
402     * which is filled during the nested loops / recursions of
403     * this function call, they will be peformed after all
404     * function recursions have been completed
405 schoenebeck 2548 */
406 schoenebeck 2550 static void copyDimensionRegions(gig::Region* outRgn, gig::Region* inRgn, Dimensions dims, int iDstLayer, int iSrcLayer, DimensionCase dimCase = DimensionCase(), CopyAssignSchedule* schedule = NULL) {
407     const bool isHighestLevelOfRecursion = !schedule;
408    
409     if (isHighestLevelOfRecursion)
410     schedule = new CopyAssignSchedule;
411    
412     if (dims.empty()) { // reached deepest level of function recursion ...
413     CopyAssignSchedEntry e;
414    
415 schoenebeck 2548 // resolve the respective source & destination DimensionRegion ...
416     uint srcDimValues[8] = {};
417     uint dstDimValues[8] = {};
418     DimensionCase srcDimCase = dimCase;
419     DimensionCase dstDimCase = dimCase;
420     srcDimCase[gig::dimension_layer] = iSrcLayer;
421     dstDimCase[gig::dimension_layer] = iDstLayer;
422    
423 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
424     printf("-------------------------------\n");
425     #endif
426    
427 schoenebeck 2548 // first select source & target dimension region with an arbitrary
428     // velocity split zone, to get access to the precise individual velocity
429     // split zone sizes (if there is actually a velocity dimension at all,
430     // otherwise we already select the desired source & target dimension
431     // region here)
432 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
433     printf("src "); fflush(stdout);
434     #endif
435 schoenebeck 2548 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
436 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
437     printf("dst "); fflush(stdout);
438     #endif
439 schoenebeck 2548 fillDimValues(dstDimValues, dstDimCase, outRgn, true);
440     gig::DimensionRegion* srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
441     gig::DimensionRegion* dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
442 schoenebeck 2549 #if DEBUG_COMBINE_INSTRUMENTS
443 schoenebeck 2550 printf("iDstLayer=%d iSrcLayer=%d\n", iDstLayer, iSrcLayer);
444 schoenebeck 2549 printf("srcDimRgn=%lx dstDimRgn=%lx\n", (uint64_t)srcDimRgn, (uint64_t)dstDimRgn);
445 schoenebeck 2550 printf("srcSample='%s' dstSample='%s'\n",
446     (!srcDimRgn->pSample ? "NULL" : srcDimRgn->pSample->pInfo->Name.c_str()),
447     (!dstDimRgn->pSample ? "NULL" : dstDimRgn->pSample->pInfo->Name.c_str())
448     );
449 schoenebeck 2549 #endif
450 schoenebeck 2548
451 schoenebeck 2550 assert(srcDimRgn->GetParent() == inRgn);
452     assert(dstDimRgn->GetParent() == outRgn);
453    
454 schoenebeck 2548 // now that we have access to the precise velocity split zone upper
455     // limits, we can select the actual source & destination dimension
456     // regions we need to copy (assuming that source or target region has
457     // a velocity dimension)
458     if (outRgn->GetDimensionDefinition(gig::dimension_velocity)) {
459 schoenebeck 2550 // re-select target dimension region (with correct velocity zone)
460     DimensionZones dstZones = preciseDimensionZonesFor(gig::dimension_velocity, dstDimRgn);
461 schoenebeck 2549 assert(dstZones.size() > 1);
462     int iZoneIndex = dstDimCase[gig::dimension_velocity];
463 schoenebeck 2550 e.velocityZone = iZoneIndex;
464 schoenebeck 2549 #if DEBUG_COMBINE_INSTRUMENTS
465 schoenebeck 2550 printf("dst velocity zone: %d/%d\n", iZoneIndex, (int)dstZones.size());
466 schoenebeck 2549 #endif
467 schoenebeck 2550 assert(uint(iZoneIndex) < dstZones.size());
468 schoenebeck 2549 dstDimCase[gig::dimension_velocity] = dstZones[iZoneIndex].low; // arbitrary value between low and high
469     #if DEBUG_COMBINE_INSTRUMENTS
470     printf("dst velocity value = %d\n", dstDimCase[gig::dimension_velocity]);
471 schoenebeck 2550 printf("dst refilled "); fflush(stdout);
472 schoenebeck 2549 #endif
473 schoenebeck 2548 fillDimValues(dstDimValues, dstDimCase, outRgn, true);
474     dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
475 schoenebeck 2549 #if DEBUG_COMBINE_INSTRUMENTS
476     printf("reselected dstDimRgn=%lx\n", (uint64_t)dstDimRgn);
477 schoenebeck 2550 printf("dstSample='%s'\n",
478     (!dstDimRgn->pSample ? "NULL" : dstDimRgn->pSample->pInfo->Name.c_str())
479     );
480 schoenebeck 2549 #endif
481 schoenebeck 2548
482 schoenebeck 2550 // re-select source dimension region with correct velocity zone
483     // (if it has a velocity dimension that is)
484 schoenebeck 2548 if (inRgn->GetDimensionDefinition(gig::dimension_velocity)) {
485 schoenebeck 2549 DimensionZones srcZones = preciseDimensionZonesFor(gig::dimension_velocity, srcDimRgn);
486 schoenebeck 2550 e.totalSrcVelocityZones = srcZones.size();
487 schoenebeck 2549 assert(srcZones.size() > 1);
488 schoenebeck 2550 if (uint(iZoneIndex) >= srcZones.size())
489     iZoneIndex = srcZones.size() - 1;
490 schoenebeck 2549 srcDimCase[gig::dimension_velocity] = srcZones[iZoneIndex].low; // same zone as used above for target dimension region (no matter what the precise zone ranges are)
491 schoenebeck 2550 #if DEBUG_COMBINE_INSTRUMENTS
492     printf("src refilled "); fflush(stdout);
493     #endif
494 schoenebeck 2548 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
495     srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
496 schoenebeck 2549 #if DEBUG_COMBINE_INSTRUMENTS
497     printf("reselected srcDimRgn=%lx\n", (uint64_t)srcDimRgn);
498 schoenebeck 2550 printf("srcSample='%s'\n",
499     (!srcDimRgn->pSample ? "NULL" : srcDimRgn->pSample->pInfo->Name.c_str())
500     );
501 schoenebeck 2549 #endif
502 schoenebeck 2548 }
503     }
504    
505 schoenebeck 2550 // Schedule copy opertion of source -> target DimensionRegion for the
506     // time after all nested loops have been traversed. We have to postpone
507     // the actual copy operations this way, because otherwise it would
508     // overwrite informations inside the destination DimensionRegion object
509     // that we need to read in the code block above.
510     e.src = srcDimRgn;
511     e.dst = dstDimRgn;
512     schedule->push_back(e);
513 schoenebeck 2548
514 schoenebeck 2550 return; // returning from deepest level of function recursion
515 schoenebeck 2548 }
516    
517 schoenebeck 2549 // Copying n dimensions requires n nested loops. That's why this function
518     // is calling itself recursively to provide the required amount of nested
519     // loops. With each call it pops from argument 'dims' and pushes to
520     // argument 'dimCase'.
521    
522 schoenebeck 2548 Dimensions::iterator itDimension = dims.begin();
523     gig::dimension_t type = itDimension->first;
524     DimensionZones zones = itDimension->second;
525     dims.erase(itDimension);
526    
527     int iZone = 0;
528     for (DimensionZones::iterator itZone = zones.begin();
529     itZone != zones.end(); ++itZone, ++iZone)
530     {
531     DLS::range_t zoneRange = *itZone;
532     gig::dimension_def_t* def = outRgn->GetDimensionDefinition(type);
533     dimCase[type] = (def->split_type == gig::split_type_bit) ? iZone : zoneRange.low;
534 schoenebeck 2550
535 schoenebeck 2548 // recurse until 'dims' is exhausted (and dimCase filled up with concrete value)
536 schoenebeck 2550 copyDimensionRegions(outRgn, inRgn, dims, iDstLayer, iSrcLayer, dimCase, schedule);
537 schoenebeck 2548 }
538 schoenebeck 2550
539     // if current function call is the (very first) entry point ...
540     if (isHighestLevelOfRecursion) {
541     // ... then perform all scheduled DimensionRegion copy operations
542     for (uint i = 0; i < schedule->size(); ++i) {
543     CopyAssignSchedEntry& e = (*schedule)[i];
544    
545     // backup the target DimensionRegion's current dimension zones upper
546     // limits (because the target DimensionRegion's upper limits are
547     // already defined correctly since calling AddDimension(), and the
548     // CopyAssign() call next, will overwrite those upper limits
549     // unfortunately
550     DimensionRegionUpperLimits dstUpperLimits = getDimensionRegionUpperLimits(e.dst);
551     DimensionRegionUpperLimits srcUpperLimits = getDimensionRegionUpperLimits(e.src);
552    
553     // now actually copy over the current DimensionRegion
554     const gig::Region* const origRgn = e.dst->GetParent(); // just for sanity check below
555     e.dst->CopyAssign(e.src);
556     assert(origRgn == e.dst->GetParent()); // if gigedit is crashing here, then you must update libgig (to at least SVN r2547, v3.3.0.svn10)
557    
558     // restore all original dimension zone upper limits except of the
559     // velocity dimension, because the velocity dimension zone sizes are
560     // allowed to differ for individual DimensionRegions in gig v3
561     // format
562     if (srcUpperLimits.count(gig::dimension_velocity)) {
563     assert(dstUpperLimits.count(gig::dimension_velocity));
564     dstUpperLimits[gig::dimension_velocity] =
565     (e.velocityZone >= e.totalSrcVelocityZones)
566     ? 127 : srcUpperLimits[gig::dimension_velocity];
567     }
568     restoreDimensionRegionUpperLimits(e.dst, dstUpperLimits);
569     }
570     delete schedule;
571     }
572 schoenebeck 2548 }
573    
574     /** @brief Combine given list of instruments to one instrument.
575     *
576     * Takes a list of @a instruments as argument and combines them to one single
577     * new @a output instrument. For this task, it will create a 'layer' dimension
578     * in the new instrument and copies the source instruments to those layers.
579     *
580     * @param instruments - (input) list of instruments that shall be combined,
581     * they will only be read, so they will be left untouched
582     * @param gig - (input/output) .gig file where the new combined instrument shall
583     * be created
584     * @param output - (output) on success this pointer will be set to the new
585     * instrument being created
586     * @throw RIFF::Exception on any kinds of errors
587     */
588     static void combineInstruments(std::vector<gig::Instrument*>& instruments, gig::File* gig, gig::Instrument*& output) {
589     output = NULL;
590    
591     // divide the individual regions to (probably even smaller) groups of
592     // regions, coping with the fact that the source regions of the instruments
593     // might have quite different range sizes and start and end points
594     RegionGroups groups = groupByRegionIntersections(instruments);
595     #if DEBUG_COMBINE_INSTRUMENTS
596     std::cout << std::endl << "New regions: " << std::flush;
597     printRanges(groups);
598     std::cout << std::endl;
599     #endif
600    
601     if (groups.empty())
602     throw gig::Exception(_("No regions found to create a new instrument with."));
603    
604     // create a new output instrument
605     gig::Instrument* outInstr = gig->AddInstrument();
606 schoenebeck 2549 outInstr->pInfo->Name = _("NEW COMBINATION");
607 schoenebeck 2548
608     // Distinguishing in the following code block between 'horizontal' and
609     // 'vertical' regions. The 'horizontal' ones are meant to be the key ranges
610     // in the output instrument, while the 'vertical' regions are meant to be
611     // the set of source regions that shall be layered to that 'horizontal'
612     // region / key range. It is important to know, that the key ranges defined
613     // in the 'horizontal' and 'vertical' regions might differ.
614    
615     // merge the instruments to the new output instrument
616     for (RegionGroups::iterator itGroup = groups.begin();
617     itGroup != groups.end(); ++itGroup) // iterate over 'horizontal' / target regions ...
618     {
619     gig::Region* outRgn = outInstr->AddRegion();
620     outRgn->SetKeyRange(itGroup->first.low, itGroup->first.high);
621    
622     // detect the total amount of layers required to build up this combi
623     // for current key range
624     int iTotalLayers = 0;
625     for (RegionGroup::iterator itRgn = itGroup->second.begin();
626     itRgn != itGroup->second.end(); ++itRgn)
627     {
628     gig::Region* inRgn = itRgn->second;
629     iTotalLayers += inRgn->Layers;
630     }
631    
632     // create all required dimensions for this output region
633     // (except the layer dimension, which we create as next step)
634     Dimensions dims = getDimensionsForRegionGroup(itGroup->second);
635     for (Dimensions::iterator itDim = dims.begin();
636     itDim != dims.end(); ++itDim)
637     {
638     if (itDim->first == gig::dimension_layer) continue;
639    
640     gig::dimension_def_t def;
641     def.dimension = itDim->first; // dimension type
642     def.zones = itDim->second.size();
643     def.bits = zoneCountToBits(def.zones);
644     #if DEBUG_COMBINE_INSTRUMENTS
645     std::cout << "Adding new regular dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
646     #endif
647     outRgn->AddDimension(&def);
648     #if DEBUG_COMBINE_INSTRUMENTS
649     std::cout << "OK" << std::endl << std::flush;
650     #endif
651     }
652    
653     // create the layer dimension (if necessary for current key range)
654     if (iTotalLayers > 1) {
655     gig::dimension_def_t def;
656     def.dimension = gig::dimension_layer; // dimension type
657     def.zones = iTotalLayers;
658     def.bits = zoneCountToBits(def.zones);
659     #if DEBUG_COMBINE_INSTRUMENTS
660     std::cout << "Adding new (layer) dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
661     #endif
662     outRgn->AddDimension(&def);
663     #if DEBUG_COMBINE_INSTRUMENTS
664     std::cout << "OK" << std::endl << std::flush;
665     #endif
666     }
667    
668     // now copy the source dimension regions to the target dimension regions
669     int iDstLayer = 0;
670     for (RegionGroup::iterator itRgn = itGroup->second.begin();
671     itRgn != itGroup->second.end(); ++itRgn) // iterate over 'vertical' / source regions ...
672     {
673     gig::Region* inRgn = itRgn->second;
674     for (uint iSrcLayer = 0; iSrcLayer < inRgn->Layers; ++iSrcLayer, ++iDstLayer) {
675 schoenebeck 2550 copyDimensionRegions(outRgn, inRgn, dims, iDstLayer, iSrcLayer);
676 schoenebeck 2548 }
677     }
678     }
679    
680     // success
681     output = outInstr;
682     }
683    
684     ///////////////////////////////////////////////////////////////////////////
685     // class 'CombineInstrumentsDialog'
686    
687     CombineInstrumentsDialog::CombineInstrumentsDialog(Gtk::Window& parent, gig::File* gig)
688     : Gtk::Dialog(_("Combine Instruments"), parent, true),
689     m_gig(gig), m_fileWasChanged(false), m_newCombinedInstrument(NULL),
690     m_cancelButton(Gtk::Stock::CANCEL), m_OKButton(Gtk::Stock::OK),
691     m_descriptionLabel()
692     {
693     get_vbox()->pack_start(m_descriptionLabel, Gtk::PACK_SHRINK);
694     get_vbox()->pack_start(m_treeView);
695     get_vbox()->pack_start(m_buttonBox, Gtk::PACK_SHRINK);
696    
697     #if GTKMM_MAJOR_VERSION >= 3
698     description.set_line_wrap();
699     #endif
700     m_descriptionLabel.set_text(_(
701     "Select at least two instruments below that shall be combined "
702     "as layers (using a \"Layer\" dimension) to a new instrument. The "
703     "original instruments remain untouched.")
704     );
705    
706     m_refTreeModel = Gtk::ListStore::create(m_columns);
707     m_treeView.set_model(m_refTreeModel);
708 schoenebeck 2550 m_treeView.set_tooltip_text(_(
709     "Use SHIFT + left click or CTRL + left click to select the instruments "
710     "you want to combine."
711     ));
712 schoenebeck 2548 m_treeView.append_column("Instrument", m_columns.m_col_name);
713     m_treeView.set_headers_visible(false);
714     m_treeView.get_selection()->set_mode(Gtk::SELECTION_MULTIPLE);
715     m_treeView.get_selection()->signal_changed().connect(
716     sigc::mem_fun(*this, &CombineInstrumentsDialog::onSelectionChanged)
717     );
718     m_treeView.show();
719    
720     for (int i = 0; true; ++i) {
721     gig::Instrument* instr = gig->GetInstrument(i);
722     if (!instr) break;
723    
724     #if DEBUG_COMBINE_INSTRUMENTS
725     {
726     std::cout << "Instrument (" << i << ") '" << instr->pInfo->Name << "' Regions: " << std::flush;
727     for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
728     std::cout << rgn->KeyRange.low << ".." << rgn->KeyRange.high << ", " << std::flush;
729     }
730     std::cout << std::endl;
731     }
732     std::cout << std::endl;
733     #endif
734    
735     Glib::ustring name(gig_to_utf8(instr->pInfo->Name));
736     Gtk::TreeModel::iterator iter = m_refTreeModel->append();
737     Gtk::TreeModel::Row row = *iter;
738     row[m_columns.m_col_name] = name;
739     row[m_columns.m_col_instr] = instr;
740     }
741    
742     m_buttonBox.set_layout(Gtk::BUTTONBOX_END);
743     m_buttonBox.set_border_width(5);
744     m_buttonBox.pack_start(m_cancelButton, Gtk::PACK_SHRINK);
745     m_buttonBox.pack_start(m_OKButton, Gtk::PACK_SHRINK);
746     m_buttonBox.show();
747    
748     m_cancelButton.show();
749     m_OKButton.set_sensitive(false);
750     m_OKButton.show();
751    
752     m_cancelButton.signal_clicked().connect(
753     sigc::mem_fun(*this, &CombineInstrumentsDialog::hide)
754     );
755    
756     m_OKButton.signal_clicked().connect(
757     sigc::mem_fun(*this, &CombineInstrumentsDialog::combineSelectedInstruments)
758     );
759    
760     show_all_children();
761 schoenebeck 2550
762     // show a warning to user if he uses a .gig in v2 format
763     if (gig->pVersion->major < 3) {
764     Glib::ustring txt = _(
765     "You are currently using a .gig file in old v2 format. The current "
766     "combine algorithm will most probably fail trying to combine "
767     "instruments in this old format. So better save the file in new v3 "
768     "format before trying to combine your instruments."
769     );
770     Gtk::MessageDialog msg(*this, txt, false, Gtk::MESSAGE_WARNING);
771     msg.run();
772     }
773 schoenebeck 2548 }
774    
775     void CombineInstrumentsDialog::combineSelectedInstruments() {
776     std::vector<gig::Instrument*> instruments;
777     std::vector<Gtk::TreeModel::Path> v = m_treeView.get_selection()->get_selected_rows();
778     for (uint i = 0; i < v.size(); ++i) {
779     Gtk::TreeModel::iterator it = m_refTreeModel->get_iter(v[i]);
780     Gtk::TreeModel::Row row = *it;
781     Glib::ustring name = row[m_columns.m_col_name];
782     gig::Instrument* instrument = row[m_columns.m_col_instr];
783     #if DEBUG_COMBINE_INSTRUMENTS
784     printf("Selection '%s' 0x%lx\n\n", name.c_str(), int64_t((void*)instrument));
785     #endif
786     instruments.push_back(instrument);
787     }
788    
789     try {
790     combineInstruments(instruments, m_gig, m_newCombinedInstrument);
791     } catch (RIFF::Exception e) {;
792     Gtk::MessageDialog msg(*this, e.Message, false, Gtk::MESSAGE_ERROR);
793     msg.run();
794     return;
795     }
796    
797     // no error occurred
798     m_fileWasChanged = true;
799     hide();
800     }
801    
802     void CombineInstrumentsDialog::onSelectionChanged() {
803     std::vector<Gtk::TreeModel::Path> v = m_treeView.get_selection()->get_selected_rows();
804     m_OKButton.set_sensitive(v.size() >= 2);
805     }
806    
807     bool CombineInstrumentsDialog::fileWasChanged() const {
808     return m_fileWasChanged;
809     }
810    
811     gig::Instrument* CombineInstrumentsDialog::newCombinedInstrument() const {
812     return m_newCombinedInstrument;
813     }

  ViewVC Help
Powered by ViewVC