/[svn]/gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp
ViewVC logotype

Contents of /gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2548 - (show annotations) (download)
Tue May 13 12:17:43 2014 UTC (9 years, 10 months ago) by schoenebeck
File size: 28908 byte(s)
* Combine instruments: a new feature that allows to merge a selection of
  instruments to one new single instrument. It uses the 'layer' dimension
  to stack up the instruments. This feature is available from the main menu
  under 'Tools' -> 'Combine Instruments'.

1 /*
2 Copyright (c) 2014 Christian Schoenebeck
3
4 This file is part of "gigedit" and released under the terms of the
5 GNU General Public License version 2.
6 */
7
8 #include "CombineInstrumentsDialog.h"
9
10 // enable this for debug messages being printed while combining the instruments
11 #define DEBUG_COMBINE_INSTRUMENTS 0
12
13 #include "global.h"
14
15 #include <set>
16 #include <iostream>
17 #include <assert.h>
18
19 #include <glibmm/ustring.h>
20 #include <gtkmm/stock.h>
21 #include <gtkmm/messagedialog.h>
22
23 Glib::ustring gig_to_utf8(const gig::String& gig_string);
24
25 typedef std::map<gig::Instrument*, gig::Region*> RegionGroup;
26 typedef std::map<DLS::range_t,RegionGroup> RegionGroups;
27
28 typedef std::vector<DLS::range_t> DimensionZones;
29 typedef std::map<gig::dimension_t,DimensionZones> Dimensions;
30
31 typedef std::map<gig::dimension_t,int> DimensionCase;
32
33 typedef std::map<gig::dimension_t, int> DimensionRegionUpperLimits;
34
35 ///////////////////////////////////////////////////////////////////////////
36 // private functions
37
38 #if DEBUG_COMBINE_INSTRUMENTS
39 static void printRanges(const RegionGroups& regions) {
40 std::cout << "{ ";
41 for (RegionGroups::const_iterator it = regions.begin(); it != regions.end(); ++it) {
42 if (it != regions.begin()) std::cout << ", ";
43 std::cout << (int)it->first.low << ".." << (int)it->first.high;
44 }
45 std::cout << " }" << std::flush;
46 }
47 #endif
48
49 /**
50 * If the two ranges overlap, then this function returns the smallest point
51 * within that overlapping zone. If the two ranges do not overlap, then this
52 * function will return -1 instead.
53 */
54 inline int smallestOverlapPoint(const DLS::range_t& r1, const DLS::range_t& r2) {
55 if (r1.overlaps(r2.low)) return r2.low;
56 if (r2.overlaps(r1.low)) return r1.low;
57 return -1;
58 }
59
60 /**
61 * Get the most smallest region point (not necessarily its region start point)
62 * of all regions of the given instruments, start searching at keyboard
63 * position @a iStart.
64 *
65 * @returns very first region point >= iStart, or -1 if no region could be
66 * found with a range member point >= iStart
67 */
68 static int findLowestRegionPoint(std::vector<gig::Instrument*>& instruments, int iStart) {
69 DLS::range_t searchRange = { iStart, 127 };
70 int result = -1;
71 for (uint i = 0; i < instruments.size(); ++i) {
72 gig::Instrument* instr = instruments[i];
73 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
74 if (rgn->KeyRange.overlaps(searchRange)) {
75 int lowest = smallestOverlapPoint(rgn->KeyRange, searchRange);
76 if (result == -1 || lowest < result) result = lowest;
77 }
78 }
79 }
80 return result;
81 }
82
83 /**
84 * Get the most smallest region end of all regions of the given instruments,
85 * start searching at keyboard position @a iStart.
86 *
87 * @returns very first region end >= iStart, or -1 if no region could be found
88 * with a range end >= iStart
89 */
90 static int findFirstRegionEnd(std::vector<gig::Instrument*>& instruments, int iStart) {
91 DLS::range_t searchRange = { iStart, 127 };
92 int result = -1;
93 for (uint i = 0; i < instruments.size(); ++i) {
94 gig::Instrument* instr = instruments[i];
95 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
96 if (rgn->KeyRange.overlaps(searchRange)) {
97 if (result == -1 || rgn->KeyRange.high < result)
98 result = rgn->KeyRange.high;
99 }
100 }
101 }
102 return result;
103 }
104
105 /**
106 * Returns a list of all regions of the given @a instrument where the respective
107 * region's key range overlaps the given @a range.
108 */
109 static std::vector<gig::Region*> getAllRegionsWhichOverlapRange(gig::Instrument* instrument, DLS::range_t range) {
110 //std::cout << "All regions which overlap { " << (int)range.low << ".." << (int)range.high << " } : " << std::flush;
111 std::vector<gig::Region*> v;
112 for (gig::Region* rgn = instrument->GetFirstRegion(); rgn; rgn = instrument->GetNextRegion()) {
113 if (rgn->KeyRange.overlaps(range)) {
114 v.push_back(rgn);
115 //std::cout << (int)rgn->KeyRange.low << ".." << (int)rgn->KeyRange.high << ", " << std::flush;
116 }
117 }
118 //std::cout << " END." << std::endl;
119 return v;
120 }
121
122 /**
123 * Returns all regions of the given @a instruments where the respective region's
124 * key range overlaps the given @a range. The regions returned are ordered (in a
125 * map) by their instrument pointer.
126 */
127 static RegionGroup getAllRegionsWhichOverlapRange(std::vector<gig::Instrument*>& instruments, DLS::range_t range) {
128 RegionGroup group;
129 for (uint i = 0; i < instruments.size(); ++i) {
130 gig::Instrument* instr = instruments[i];
131 std::vector<gig::Region*> v = getAllRegionsWhichOverlapRange(instr, range);
132 if (v.empty()) continue;
133 if (v.size() > 1) {
134 std::cerr << "WARNING: More than one region found!" << std::endl;
135 }
136 group[instr] = v[0];
137 }
138 return group;
139 }
140
141 /** @brief Identify required regions.
142 *
143 * Takes a list of @a instruments as argument (which are planned to be combined
144 * as layers in one single new instrument) and fulfills the following tasks:
145 *
146 * - 1. Identification of total amount of regions required to create a new
147 * instrument to become a layered version of the given instruments.
148 * - 2. Precise key range of each of those identified required regions to be
149 * created in that new instrument.
150 * - 3. Grouping the original source regions of the given original instruments
151 * to the respective target key range (new region) of the instrument to be
152 * created.
153 *
154 * @param instruments - list of instruments that are planned to be combined
155 * @returns structured result of the tasks described above
156 */
157 static RegionGroups groupByRegionIntersections(std::vector<gig::Instrument*>& instruments) {
158 RegionGroups groups;
159
160 // find all region intersections of all instruments
161 std::vector<DLS::range_t> intersections;
162 for (int iStart = 0; iStart <= 127; ) {
163 iStart = findLowestRegionPoint(instruments, iStart);
164 if (iStart < 0) break;
165 const int iEnd = findFirstRegionEnd(instruments, iStart);
166 DLS::range_t range = { iStart, iEnd };
167 intersections.push_back(range);
168 iStart = iEnd + 1;
169 }
170
171 // now sort all regions to those found intersections
172 for (uint i = 0; i < intersections.size(); ++i) {
173 const DLS::range_t& range = intersections[i];
174 RegionGroup group = getAllRegionsWhichOverlapRange(instruments, range);
175 if (!group.empty())
176 groups[range] = group;
177 else
178 std::cerr << "WARNING: empty region group!" << std::endl;
179 }
180
181 return groups;
182 }
183
184 /** @brief Identify required dimensions.
185 *
186 * Takes a planned new region (@a regionGroup) as argument and identifies which
187 * precise dimensions would have to be created for that new region, along with
188 * the amount of dimension zones and their precise individual zone sizes.
189 *
190 * @param regionGroup - planned new region for a new instrument
191 * @returns set of dimensions that shall be created for the given planned region
192 */
193 static Dimensions getDimensionsForRegionGroup(RegionGroup& regionGroup) {
194 std::map<gig::dimension_t, std::set<int> > dimUpperLimits;
195
196 // collect all dimension region zones' upper limits
197 for (RegionGroup::iterator it = regionGroup.begin();
198 it != regionGroup.end(); ++it)
199 {
200 gig::Region* rgn = it->second;
201 int previousBits = 0;
202 for (uint d = 0; d < rgn->Dimensions; ++d) {
203 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
204 for (uint z = 0; z < def.zones; ++z) {
205 int dr = z << previousBits;
206 gig::DimensionRegion* dimRgn = rgn->pDimensionRegions[dr];
207 // Store the individual dimension zone sizes (or actually their
208 // upper limits here) for each dimension.
209 // HACK: Note that the velocity dimension is specially handled
210 // here. Instead of taking over custom velocity split sizes
211 // here, only a bogus number (zone index number) is stored for
212 // each velocity zone, that way only the maxiumum amount of
213 // velocity splits of all regions is stored here, and when their
214 // individual DimensionRegions are finally copied (later), the
215 // individual velocity split size are copied by that.
216 dimUpperLimits[def.dimension].insert(
217 (def.dimension == gig::dimension_velocity) ?
218 z : (def.split_type == gig::split_type_bit) ?
219 ((z+1) * 128/def.zones - 1) : dimRgn->DimensionUpperLimits[dr]
220 );
221 }
222 previousBits += def.bits;
223 }
224 }
225
226 // convert upper limit set to range vector
227 Dimensions dims;
228 for (std::map<gig::dimension_t, std::set<int> >::const_iterator it = dimUpperLimits.begin();
229 it != dimUpperLimits.end(); ++it)
230 {
231 gig::dimension_t type = it->first;
232 int iLow = 0;
233 for (std::set<int>::const_iterator itNums = it->second.begin();
234 itNums != it->second.end(); ++itNums)
235 {
236 const int iUpperLimit = *itNums;
237 DLS::range_t range = { iLow, iUpperLimit };
238 dims[type].push_back(range);
239 iLow = iUpperLimit + 1;
240 }
241 }
242
243 return dims;
244 }
245
246 inline int getDimensionIndex(gig::dimension_t type, gig::Region* rgn) {
247 for (uint i = 0; i < rgn->Dimensions; ++i)
248 if (rgn->pDimensionDefinitions[i].dimension == type)
249 return i;
250 return -1;
251 }
252
253 static void fillDimValues(uint* values/*[8]*/, DimensionCase dimCase, gig::Region* rgn, bool bShouldHaveAllDimensionsPassed) {
254 for (DimensionCase::iterator it = dimCase.begin(); it != dimCase.end(); ++it) {
255 gig::dimension_t type = it->first;
256 int iDimIndex = getDimensionIndex(type, rgn);
257 if (bShouldHaveAllDimensionsPassed) assert(iDimIndex >= 0);
258 else if (iDimIndex < 0) continue;
259 values[iDimIndex] = it->second;
260 }
261 }
262
263 static DimensionRegionUpperLimits getDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn) {
264 DimensionRegionUpperLimits limits;
265 gig::Region* rgn = dimRgn->GetParent();
266 for (int d = 0; d < rgn->Dimensions; ++d) {
267 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
268 limits[def.dimension] = dimRgn->DimensionUpperLimits[d];
269 }
270 return limits;
271 }
272
273 static void restoreDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn, const DimensionRegionUpperLimits& limits) {
274 gig::Region* rgn = dimRgn->GetParent();
275 for (DimensionRegionUpperLimits::const_iterator it = limits.begin();
276 it != limits.end(); ++it)
277 {
278 int index = getDimensionIndex(it->first, rgn);
279 assert(index >= 0);
280 dimRgn->DimensionUpperLimits[index] = it->second;
281 }
282 }
283
284 /**
285 * Returns the sum of all bits of all dimensions defined before the given
286 * dimensions (@a type). This allows to access cases of that particular
287 * dimension directly.
288 *
289 * @param type - dimension that shall be used
290 * @param rgn - parent region of that dimension
291 */
292 inline int baseBits(gig::dimension_t type, gig::Region* rgn) {
293 int previousBits = 0;
294 for (int i = 0; i < rgn->Dimensions; ++i) {
295 if (rgn->pDimensionDefinitions[i].dimension == type) break;
296 previousBits += rgn->pDimensionDefinitions[i].bits;
297 }
298 return previousBits;
299 }
300
301 inline int dimensionRegionIndex(gig::DimensionRegion* dimRgn) {
302 gig::Region* rgn = dimRgn->GetParent();
303 int sz = sizeof(rgn->pDimensionRegions) / sizeof(gig::DimensionRegion*);
304 for (int i = 0; i < sz; ++i)
305 if (rgn->pDimensionRegions[i] == dimRgn)
306 return i;
307 return -1;
308 }
309
310 /** @brief Get exact zone ranges of given dimension.
311 *
312 * This function is useful for the velocity type dimension. In contrast to other
313 * dimension types, this dimension can have different zone ranges (that is
314 * different individual start and end points of its dimension zones) depending
315 * on which zones of other dimensions (on that gig::Region) are currently
316 * selected.
317 *
318 * @param type - dimension where the zone ranges should be retrieved for
319 * (usually the velocity dimension in this context)
320 * @param dimRgn - reflects the exact cases (zone selections) of all other
321 * dimensions than the given one in question
322 * @returns individual ranges for each zone of the questioned dimension type,
323 * it returns an empty result on errors instead
324 */
325 static DimensionZones preciseDimensionZonesFor(gig::dimension_t type, gig::DimensionRegion* dimRgn) {
326 DimensionZones zones;
327 gig::Region* rgn = dimRgn->GetParent();
328 int iDimension = getDimensionIndex(type, rgn);
329 if (iDimension < 0) return zones;
330 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[iDimension];
331 int iDimRgn = dimensionRegionIndex(dimRgn);
332 int iBaseBits = baseBits(type, rgn);
333 int mask = ~(((1 << def.bits) - 1) << iBaseBits);
334
335 int iLow = 0;
336 for (int z = 0; z < def.zones; ++z) {
337 gig::DimensionRegion* dimRgn2 =
338 rgn->pDimensionRegions[ (iDimRgn & mask) | ( z << iBaseBits) ];
339 int iHigh = dimRgn2->DimensionUpperLimits[iDimension];
340 DLS::range_t range = { iLow, iHigh};
341 zones.push_back(range);
342 iLow = iHigh + 1;
343 }
344 return zones;
345 }
346
347 /** @brief Copy all DimensionRegions from source Region to target Region.
348 *
349 * Copies the entire articulation informations (including sample reference of
350 * course) from all individual DimensionRegions of source Region @a inRgn to
351 * target Region @a outRgn. There are no dimension regions created during this
352 * task. It is expected that the required dimensions (thus the required
353 * dimension regions) were already created before calling this function.
354 *
355 * To be precise, it does the task above only for the layer selected by
356 * @a iSrcLayer and @a iDstLayer. All dimensions regions of other layers that
357 * may exist, will not be copied by one single call of this function. So if
358 * there is a layer dimension, this function needs to be called several times.
359 *
360 * @param outRgn - where the dimension regions shall be copied to
361 * @param inRgn - all dimension regions that shall be copied from
362 * @param dims - dimension definitions of target region
363 * @param iDstLayer - layer number of destination region where the dimension
364 * regions shall be copied to
365 * @param iSrcLayer - layer number of the source region where the dimension
366 * regions shall be copied from
367 * @param dimCase - just for internal purpose (function recursion), don't pass
368 * anything here, this function will call itself recursively
369 * will fill this container with concrete dimension values for
370 * selecting the precise dimension regions during its task
371 */
372 static void copyDimensionRegions(gig::Region* outRgn, gig::Region* inRgn, Dimensions dims, int iDstLayer, int iSrcLayer, DimensionCase dimCase = DimensionCase()) {
373 if (dims.empty()) {
374 // resolve the respective source & destination DimensionRegion ...
375 uint srcDimValues[8] = {};
376 uint dstDimValues[8] = {};
377 DimensionCase srcDimCase = dimCase;
378 DimensionCase dstDimCase = dimCase;
379 srcDimCase[gig::dimension_layer] = iSrcLayer;
380 dstDimCase[gig::dimension_layer] = iDstLayer;
381
382 // first select source & target dimension region with an arbitrary
383 // velocity split zone, to get access to the precise individual velocity
384 // split zone sizes (if there is actually a velocity dimension at all,
385 // otherwise we already select the desired source & target dimension
386 // region here)
387 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
388 fillDimValues(dstDimValues, dstDimCase, outRgn, true);
389 gig::DimensionRegion* srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
390 gig::DimensionRegion* dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
391
392 // now that we have access to the precise velocity split zone upper
393 // limits, we can select the actual source & destination dimension
394 // regions we need to copy (assuming that source or target region has
395 // a velocity dimension)
396 if (outRgn->GetDimensionDefinition(gig::dimension_velocity)) {
397 // re-select target dimension region
398 DimensionZones zones = preciseDimensionZonesFor(gig::dimension_velocity, dstDimRgn);
399 assert(zones.size() > 1);
400 const int iZoneIndex = dstDimCase[gig::dimension_velocity];
401 assert(iZoneIndex <= zones.size());
402 dstDimCase[gig::dimension_velocity] = zones[iZoneIndex].low; // arbitrary value between low and high
403 fillDimValues(dstDimValues, dstDimCase, outRgn, true);
404 dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
405
406 // re-select source dimension region
407 // (if it has a velocity dimension)
408 if (inRgn->GetDimensionDefinition(gig::dimension_velocity)) {
409 srcDimCase[gig::dimension_velocity] = zones[iZoneIndex].low; // same value as used above for target dimension region
410 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
411 srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
412 }
413 }
414
415 // backup the target DimensionRegion's current dimension zones upper
416 // limits (because the target DimensionRegion's upper limits are already
417 // defined correctly since calling AddDimension(), and the CopyAssign()
418 // call next, will overwrite those upper limits unfortunately
419 DimensionRegionUpperLimits dstUpperLimits = getDimensionRegionUpperLimits(dstDimRgn);
420 DimensionRegionUpperLimits srcUpperLimits = getDimensionRegionUpperLimits(srcDimRgn);
421
422 // copy over the selected DimensionRegion
423 const gig::Region* const origRgn = dstDimRgn->GetParent(); // just for sanity check below
424 dstDimRgn->CopyAssign(srcDimRgn);
425 assert(origRgn == dstDimRgn->GetParent());
426
427 // restore all original dimension zone upper limits except of the
428 // velocity dimension, because the velocity dimension zone sizes are
429 // allowed to differ for individual DimensionRegions in gig v3 format
430 if (srcUpperLimits.count(gig::dimension_velocity)) {
431 assert(dstUpperLimits.count(gig::dimension_velocity));
432 dstUpperLimits[gig::dimension_velocity] = srcUpperLimits[gig::dimension_velocity];
433 }
434 restoreDimensionRegionUpperLimits(dstDimRgn, dstUpperLimits);
435
436 return; // end of recursion
437 }
438
439 Dimensions::iterator itDimension = dims.begin();
440
441 gig::dimension_t type = itDimension->first;
442 DimensionZones zones = itDimension->second;
443
444 dims.erase(itDimension);
445
446 int iZone = 0;
447 for (DimensionZones::iterator itZone = zones.begin();
448 itZone != zones.end(); ++itZone, ++iZone)
449 {
450 DLS::range_t zoneRange = *itZone;
451 gig::dimension_def_t* def = outRgn->GetDimensionDefinition(type);
452 dimCase[type] = (def->split_type == gig::split_type_bit) ? iZone : zoneRange.low;
453 // recurse until 'dims' is exhausted (and dimCase filled up with concrete value)
454 copyDimensionRegions(outRgn, inRgn, dims, iDstLayer, iSrcLayer, dimCase);
455 }
456 }
457
458 /** @brief Combine given list of instruments to one instrument.
459 *
460 * Takes a list of @a instruments as argument and combines them to one single
461 * new @a output instrument. For this task, it will create a 'layer' dimension
462 * in the new instrument and copies the source instruments to those layers.
463 *
464 * @param instruments - (input) list of instruments that shall be combined,
465 * they will only be read, so they will be left untouched
466 * @param gig - (input/output) .gig file where the new combined instrument shall
467 * be created
468 * @param output - (output) on success this pointer will be set to the new
469 * instrument being created
470 * @throw RIFF::Exception on any kinds of errors
471 */
472 static void combineInstruments(std::vector<gig::Instrument*>& instruments, gig::File* gig, gig::Instrument*& output) {
473 output = NULL;
474
475 // divide the individual regions to (probably even smaller) groups of
476 // regions, coping with the fact that the source regions of the instruments
477 // might have quite different range sizes and start and end points
478 RegionGroups groups = groupByRegionIntersections(instruments);
479 #if DEBUG_COMBINE_INSTRUMENTS
480 std::cout << std::endl << "New regions: " << std::flush;
481 printRanges(groups);
482 std::cout << std::endl;
483 #endif
484
485 if (groups.empty())
486 throw gig::Exception(_("No regions found to create a new instrument with."));
487
488 // create a new output instrument
489 gig::Instrument* outInstr = gig->AddInstrument();
490 outInstr->pInfo->Name = "NEW COMBINATION";
491
492 // Distinguishing in the following code block between 'horizontal' and
493 // 'vertical' regions. The 'horizontal' ones are meant to be the key ranges
494 // in the output instrument, while the 'vertical' regions are meant to be
495 // the set of source regions that shall be layered to that 'horizontal'
496 // region / key range. It is important to know, that the key ranges defined
497 // in the 'horizontal' and 'vertical' regions might differ.
498
499 // merge the instruments to the new output instrument
500 for (RegionGroups::iterator itGroup = groups.begin();
501 itGroup != groups.end(); ++itGroup) // iterate over 'horizontal' / target regions ...
502 {
503 gig::Region* outRgn = outInstr->AddRegion();
504 outRgn->SetKeyRange(itGroup->first.low, itGroup->first.high);
505
506 // detect the total amount of layers required to build up this combi
507 // for current key range
508 int iTotalLayers = 0;
509 for (RegionGroup::iterator itRgn = itGroup->second.begin();
510 itRgn != itGroup->second.end(); ++itRgn)
511 {
512 gig::Region* inRgn = itRgn->second;
513 iTotalLayers += inRgn->Layers;
514 }
515
516 // create all required dimensions for this output region
517 // (except the layer dimension, which we create as next step)
518 Dimensions dims = getDimensionsForRegionGroup(itGroup->second);
519 for (Dimensions::iterator itDim = dims.begin();
520 itDim != dims.end(); ++itDim)
521 {
522 if (itDim->first == gig::dimension_layer) continue;
523
524 gig::dimension_def_t def;
525 def.dimension = itDim->first; // dimension type
526 def.zones = itDim->second.size();
527 def.bits = zoneCountToBits(def.zones);
528 #if DEBUG_COMBINE_INSTRUMENTS
529 std::cout << "Adding new regular dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
530 #endif
531 outRgn->AddDimension(&def);
532 #if DEBUG_COMBINE_INSTRUMENTS
533 std::cout << "OK" << std::endl << std::flush;
534 #endif
535 }
536
537 // create the layer dimension (if necessary for current key range)
538 if (iTotalLayers > 1) {
539 gig::dimension_def_t def;
540 def.dimension = gig::dimension_layer; // dimension type
541 def.zones = iTotalLayers;
542 def.bits = zoneCountToBits(def.zones);
543 #if DEBUG_COMBINE_INSTRUMENTS
544 std::cout << "Adding new (layer) dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
545 #endif
546 outRgn->AddDimension(&def);
547 #if DEBUG_COMBINE_INSTRUMENTS
548 std::cout << "OK" << std::endl << std::flush;
549 #endif
550 }
551
552 // now copy the source dimension regions to the target dimension regions
553 int iDstLayer = 0;
554 for (RegionGroup::iterator itRgn = itGroup->second.begin();
555 itRgn != itGroup->second.end(); ++itRgn) // iterate over 'vertical' / source regions ...
556 {
557 gig::Region* inRgn = itRgn->second;
558 for (uint iSrcLayer = 0; iSrcLayer < inRgn->Layers; ++iSrcLayer, ++iDstLayer) {
559 copyDimensionRegions(outRgn, inRgn, dims, iDstLayer, iSrcLayer);
560 }
561 }
562 }
563
564 // success
565 output = outInstr;
566 }
567
568 ///////////////////////////////////////////////////////////////////////////
569 // class 'CombineInstrumentsDialog'
570
571 CombineInstrumentsDialog::CombineInstrumentsDialog(Gtk::Window& parent, gig::File* gig)
572 : Gtk::Dialog(_("Combine Instruments"), parent, true),
573 m_gig(gig), m_fileWasChanged(false), m_newCombinedInstrument(NULL),
574 m_cancelButton(Gtk::Stock::CANCEL), m_OKButton(Gtk::Stock::OK),
575 m_descriptionLabel()
576 {
577 get_vbox()->pack_start(m_descriptionLabel, Gtk::PACK_SHRINK);
578 get_vbox()->pack_start(m_treeView);
579 get_vbox()->pack_start(m_buttonBox, Gtk::PACK_SHRINK);
580
581 #if GTKMM_MAJOR_VERSION >= 3
582 description.set_line_wrap();
583 #endif
584 m_descriptionLabel.set_text(_(
585 "Select at least two instruments below that shall be combined "
586 "as layers (using a \"Layer\" dimension) to a new instrument. The "
587 "original instruments remain untouched.")
588 );
589
590 m_refTreeModel = Gtk::ListStore::create(m_columns);
591 m_treeView.set_model(m_refTreeModel);
592 //m_treeView.set_tooltip_text(_("asdf"));
593 m_treeView.append_column("Instrument", m_columns.m_col_name);
594 m_treeView.set_headers_visible(false);
595 m_treeView.get_selection()->set_mode(Gtk::SELECTION_MULTIPLE);
596 m_treeView.get_selection()->signal_changed().connect(
597 sigc::mem_fun(*this, &CombineInstrumentsDialog::onSelectionChanged)
598 );
599 m_treeView.show();
600
601 for (int i = 0; true; ++i) {
602 gig::Instrument* instr = gig->GetInstrument(i);
603 if (!instr) break;
604
605 #if DEBUG_COMBINE_INSTRUMENTS
606 {
607 std::cout << "Instrument (" << i << ") '" << instr->pInfo->Name << "' Regions: " << std::flush;
608 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
609 std::cout << rgn->KeyRange.low << ".." << rgn->KeyRange.high << ", " << std::flush;
610 }
611 std::cout << std::endl;
612 }
613 std::cout << std::endl;
614 #endif
615
616 Glib::ustring name(gig_to_utf8(instr->pInfo->Name));
617 Gtk::TreeModel::iterator iter = m_refTreeModel->append();
618 Gtk::TreeModel::Row row = *iter;
619 row[m_columns.m_col_name] = name;
620 row[m_columns.m_col_instr] = instr;
621 }
622
623 m_buttonBox.set_layout(Gtk::BUTTONBOX_END);
624 m_buttonBox.set_border_width(5);
625 m_buttonBox.pack_start(m_cancelButton, Gtk::PACK_SHRINK);
626 m_buttonBox.pack_start(m_OKButton, Gtk::PACK_SHRINK);
627 m_buttonBox.show();
628
629 m_cancelButton.show();
630 m_OKButton.set_sensitive(false);
631 m_OKButton.show();
632
633 m_cancelButton.signal_clicked().connect(
634 sigc::mem_fun(*this, &CombineInstrumentsDialog::hide)
635 );
636
637 m_OKButton.signal_clicked().connect(
638 sigc::mem_fun(*this, &CombineInstrumentsDialog::combineSelectedInstruments)
639 );
640
641 show_all_children();
642 }
643
644 void CombineInstrumentsDialog::combineSelectedInstruments() {
645 std::vector<gig::Instrument*> instruments;
646 std::vector<Gtk::TreeModel::Path> v = m_treeView.get_selection()->get_selected_rows();
647 for (uint i = 0; i < v.size(); ++i) {
648 Gtk::TreeModel::iterator it = m_refTreeModel->get_iter(v[i]);
649 Gtk::TreeModel::Row row = *it;
650 Glib::ustring name = row[m_columns.m_col_name];
651 gig::Instrument* instrument = row[m_columns.m_col_instr];
652 #if DEBUG_COMBINE_INSTRUMENTS
653 printf("Selection '%s' 0x%lx\n\n", name.c_str(), int64_t((void*)instrument));
654 #endif
655 instruments.push_back(instrument);
656 }
657
658 try {
659 combineInstruments(instruments, m_gig, m_newCombinedInstrument);
660 } catch (RIFF::Exception e) {;
661 Gtk::MessageDialog msg(*this, e.Message, false, Gtk::MESSAGE_ERROR);
662 msg.run();
663 return;
664 }
665
666 // no error occurred
667 m_fileWasChanged = true;
668 hide();
669 }
670
671 void CombineInstrumentsDialog::onSelectionChanged() {
672 std::vector<Gtk::TreeModel::Path> v = m_treeView.get_selection()->get_selected_rows();
673 m_OKButton.set_sensitive(v.size() >= 2);
674 }
675
676 bool CombineInstrumentsDialog::fileWasChanged() const {
677 return m_fileWasChanged;
678 }
679
680 gig::Instrument* CombineInstrumentsDialog::newCombinedInstrument() const {
681 return m_newCombinedInstrument;
682 }

  ViewVC Help
Powered by ViewVC