/[svn]/gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp
ViewVC logotype

Contents of /gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3202 - (show annotations) (download)
Mon May 22 18:58:46 2017 UTC (6 years, 10 months ago) by persson
File size: 43025 byte(s)
* fixed building with G_DISABLE_DEPRECATED

1 /*
2 Copyright (c) 2014-2017 Christian Schoenebeck
3
4 This file is part of "gigedit" and released under the terms of the
5 GNU General Public License version 2.
6 */
7
8 #include "global.h"
9 #include "CombineInstrumentsDialog.h"
10
11 // enable this for debug messages being printed while combining the instruments
12 #define DEBUG_COMBINE_INSTRUMENTS 0
13
14 #include "compat.h"
15
16 #include <set>
17 #include <iostream>
18 #include <assert.h>
19 #include <stdarg.h>
20 #include <string.h>
21
22 #include <glibmm/ustring.h>
23 #include <gtkmm/stock.h>
24 #include <gtkmm/messagedialog.h>
25 #include <gtkmm/label.h>
26
27 Glib::ustring dimTypeAsString(gig::dimension_t d);
28
29 typedef std::vector< std::pair<gig::Instrument*, gig::Region*> > OrderedRegionGroup;
30 typedef std::map<gig::Instrument*, gig::Region*> RegionGroup;
31 typedef std::map<DLS::range_t,RegionGroup> RegionGroups;
32
33 typedef std::vector<DLS::range_t> DimensionZones;
34 typedef std::map<gig::dimension_t,DimensionZones> Dimensions;
35
36 typedef std::map<gig::dimension_t, int> DimensionRegionUpperLimits;
37
38 typedef std::set<Glib::ustring> Warnings;
39
40 ///////////////////////////////////////////////////////////////////////////
41 // private static data
42
43 static Warnings g_warnings;
44
45 ///////////////////////////////////////////////////////////////////////////
46 // private functions
47
48 #if DEBUG_COMBINE_INSTRUMENTS
49 static void printRanges(const RegionGroups& regions) {
50 std::cout << "{ ";
51 for (RegionGroups::const_iterator it = regions.begin(); it != regions.end(); ++it) {
52 if (it != regions.begin()) std::cout << ", ";
53 std::cout << (int)it->first.low << ".." << (int)it->first.high;
54 }
55 std::cout << " }" << std::flush;
56 }
57 #endif
58
59 /**
60 * Store a warning message that shall be stored and displayed to the user as a
61 * list of warnings after the overall operation has finished. Duplicate warning
62 * messages are automatically eliminated.
63 */
64 inline void addWarning(const char* fmt, ...) {
65 va_list arg;
66 va_start(arg, fmt);
67 const int SZ = 255 + strlen(fmt);
68 char* buf = new char[SZ];
69 vsnprintf(buf, SZ, fmt, arg);
70 Glib::ustring s = buf;
71 delete [] buf;
72 va_end(arg);
73 std::cerr << _("WARNING:") << " " << s << std::endl << std::flush;
74 g_warnings.insert(s);
75 }
76
77 /**
78 * If the two ranges overlap, then this function returns the smallest point
79 * within that overlapping zone. If the two ranges do not overlap, then this
80 * function will return -1 instead.
81 */
82 inline int smallestOverlapPoint(const DLS::range_t& r1, const DLS::range_t& r2) {
83 if (r1.overlaps(r2.low)) return r2.low;
84 if (r2.overlaps(r1.low)) return r1.low;
85 return -1;
86 }
87
88 /**
89 * Get the most smallest region point (not necessarily its region start point)
90 * of all regions of the given instruments, start searching at keyboard
91 * position @a iStart.
92 *
93 * @returns very first region point >= iStart, or -1 if no region could be
94 * found with a range member point >= iStart
95 */
96 static int findLowestRegionPoint(std::vector<gig::Instrument*>& instruments, int iStart) {
97 DLS::range_t searchRange = { uint16_t(iStart), 127 };
98 int result = -1;
99 for (uint i = 0; i < instruments.size(); ++i) {
100 gig::Instrument* instr = instruments[i];
101 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
102 if (rgn->KeyRange.overlaps(searchRange)) {
103 int lowest = smallestOverlapPoint(rgn->KeyRange, searchRange);
104 if (result == -1 || lowest < result) result = lowest;
105 }
106 }
107 }
108 return result;
109 }
110
111 /**
112 * Get the most smallest region end of all regions of the given instruments,
113 * start searching at keyboard position @a iStart.
114 *
115 * @returns very first region end >= iStart, or -1 if no region could be found
116 * with a range end >= iStart
117 */
118 static int findFirstRegionEnd(std::vector<gig::Instrument*>& instruments, int iStart) {
119 DLS::range_t searchRange = { uint16_t(iStart), 127 };
120 int result = -1;
121 for (uint i = 0; i < instruments.size(); ++i) {
122 gig::Instrument* instr = instruments[i];
123 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
124 if (rgn->KeyRange.overlaps(searchRange)) {
125 if (result == -1 || rgn->KeyRange.high < result)
126 result = rgn->KeyRange.high;
127 }
128 }
129 }
130 return result;
131 }
132
133 /**
134 * Returns a list of all regions of the given @a instrument where the respective
135 * region's key range overlaps the given @a range.
136 */
137 static std::vector<gig::Region*> getAllRegionsWhichOverlapRange(gig::Instrument* instrument, DLS::range_t range) {
138 //std::cout << "All regions which overlap { " << (int)range.low << ".." << (int)range.high << " } : " << std::flush;
139 std::vector<gig::Region*> v;
140 for (gig::Region* rgn = instrument->GetFirstRegion(); rgn; rgn = instrument->GetNextRegion()) {
141 if (rgn->KeyRange.overlaps(range)) {
142 v.push_back(rgn);
143 //std::cout << (int)rgn->KeyRange.low << ".." << (int)rgn->KeyRange.high << ", " << std::flush;
144 }
145 }
146 //std::cout << " END." << std::endl;
147 return v;
148 }
149
150 /**
151 * Returns all regions of the given @a instruments where the respective region's
152 * key range overlaps the given @a range. The regions returned are ordered (in a
153 * map) by their instrument pointer.
154 */
155 static RegionGroup getAllRegionsWhichOverlapRange(std::vector<gig::Instrument*>& instruments, DLS::range_t range) {
156 RegionGroup group;
157 for (uint i = 0; i < instruments.size(); ++i) {
158 gig::Instrument* instr = instruments[i];
159 std::vector<gig::Region*> v = getAllRegionsWhichOverlapRange(instr, range);
160 if (v.empty()) continue;
161 if (v.size() > 1) {
162 addWarning("More than one region found!");
163 }
164 group[instr] = v[0];
165 }
166 return group;
167 }
168
169 /** @brief Identify required regions.
170 *
171 * Takes a list of @a instruments as argument (which are planned to be combined
172 * as separate dimension zones of a certain dimension into one single new
173 * instrument) and fulfills the following tasks:
174 *
175 * - 1. Identification of total amount of regions required to create a new
176 * instrument to become a combined version of the given instruments.
177 * - 2. Precise key range of each of those identified required regions to be
178 * created in that new instrument.
179 * - 3. Grouping the original source regions of the given original instruments
180 * to the respective target key range (new region) of the instrument to be
181 * created.
182 *
183 * @param instruments - list of instruments that are planned to be combined
184 * @returns structured result of the tasks described above
185 */
186 static RegionGroups groupByRegionIntersections(std::vector<gig::Instrument*>& instruments) {
187 RegionGroups groups;
188
189 // find all region intersections of all instruments
190 std::vector<DLS::range_t> intersections;
191 for (int iStart = 0; iStart <= 127; ) {
192 iStart = findLowestRegionPoint(instruments, iStart);
193 if (iStart < 0) break;
194 const int iEnd = findFirstRegionEnd(instruments, iStart);
195 DLS::range_t range = { uint16_t(iStart), uint16_t(iEnd) };
196 intersections.push_back(range);
197 iStart = iEnd + 1;
198 }
199
200 // now sort all regions to those found intersections
201 for (uint i = 0; i < intersections.size(); ++i) {
202 const DLS::range_t& range = intersections[i];
203 RegionGroup group = getAllRegionsWhichOverlapRange(instruments, range);
204 if (!group.empty())
205 groups[range] = group;
206 else
207 addWarning("Empty region group!");
208 }
209
210 return groups;
211 }
212
213 /** @brief Identify required dimensions.
214 *
215 * Takes a planned new region (@a regionGroup) as argument and identifies which
216 * precise dimensions would have to be created for that new region, along with
217 * the amount of dimension zones and their precise individual zone sizes.
218 *
219 * @param regionGroup - planned new region for a new instrument
220 * @returns set of dimensions that shall be created for the given planned region
221 */
222 static Dimensions getDimensionsForRegionGroup(RegionGroup& regionGroup) {
223 std::map<gig::dimension_t, std::set<int> > dimUpperLimits;
224
225 // collect all dimension region zones' upper limits
226 for (RegionGroup::iterator it = regionGroup.begin();
227 it != regionGroup.end(); ++it)
228 {
229 gig::Region* rgn = it->second;
230 int previousBits = 0;
231 for (uint d = 0; d < rgn->Dimensions; ++d) {
232 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
233 for (uint z = 0; z < def.zones; ++z) {
234 int dr = z << previousBits;
235 gig::DimensionRegion* dimRgn = rgn->pDimensionRegions[dr];
236 // Store the individual dimension zone sizes (or actually their
237 // upper limits here) for each dimension.
238 // HACK: Note that the velocity dimension is specially handled
239 // here. Instead of taking over custom velocity split sizes
240 // here, only a bogus number (zone index number) is stored for
241 // each velocity zone, that way only the maxiumum amount of
242 // velocity splits of all regions is stored here, and when their
243 // individual DimensionRegions are finally copied (later), the
244 // individual velocity split size are copied by that.
245 dimUpperLimits[def.dimension].insert(
246 (def.dimension == gig::dimension_velocity) ?
247 z : (def.split_type == gig::split_type_bit) ?
248 ((z+1) * 128/def.zones - 1) : dimRgn->DimensionUpperLimits[dr]
249 );
250 }
251 previousBits += def.bits;
252 }
253 }
254
255 // convert upper limit set to range vector
256 Dimensions dims;
257 for (std::map<gig::dimension_t, std::set<int> >::const_iterator it = dimUpperLimits.begin();
258 it != dimUpperLimits.end(); ++it)
259 {
260 gig::dimension_t type = it->first;
261 int iLow = 0;
262 for (std::set<int>::const_iterator itNums = it->second.begin();
263 itNums != it->second.end(); ++itNums)
264 {
265 const int iUpperLimit = *itNums;
266 DLS::range_t range = { uint16_t(iLow), uint16_t(iUpperLimit) };
267 dims[type].push_back(range);
268 iLow = iUpperLimit + 1;
269 }
270 }
271
272 return dims;
273 }
274
275 static void fillDimValues(uint* values/*[8]*/, DimensionCase dimCase, gig::Region* rgn, bool bShouldHaveAllDimensionsPassed) {
276 #if DEBUG_COMBINE_INSTRUMENTS
277 printf("dimvalues = { ");
278 fflush(stdout);
279 #endif
280 for (DimensionCase::iterator it = dimCase.begin(); it != dimCase.end(); ++it) {
281 gig::dimension_t type = it->first;
282 int iDimIndex = getDimensionIndex(type, rgn);
283 if (bShouldHaveAllDimensionsPassed) assert(iDimIndex >= 0);
284 else if (iDimIndex < 0) continue;
285 values[iDimIndex] = it->second;
286 #if DEBUG_COMBINE_INSTRUMENTS
287 printf("%x=%d, ", type, it->second);
288 #endif
289 }
290 #if DEBUG_COMBINE_INSTRUMENTS
291 printf("}\n");
292 #endif
293 }
294
295 static DimensionRegionUpperLimits getDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn) {
296 DimensionRegionUpperLimits limits;
297 gig::Region* rgn = dimRgn->GetParent();
298 for (uint d = 0; d < rgn->Dimensions; ++d) {
299 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
300 limits[def.dimension] = dimRgn->DimensionUpperLimits[d];
301 }
302 return limits;
303 }
304
305 static void restoreDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn, const DimensionRegionUpperLimits& limits) {
306 gig::Region* rgn = dimRgn->GetParent();
307 for (DimensionRegionUpperLimits::const_iterator it = limits.begin();
308 it != limits.end(); ++it)
309 {
310 int index = getDimensionIndex(it->first, rgn);
311 assert(index >= 0);
312 dimRgn->DimensionUpperLimits[index] = it->second;
313 }
314 }
315
316 inline int dimensionRegionIndex(gig::DimensionRegion* dimRgn) {
317 gig::Region* rgn = dimRgn->GetParent();
318 int sz = sizeof(rgn->pDimensionRegions) / sizeof(gig::DimensionRegion*);
319 for (int i = 0; i < sz; ++i)
320 if (rgn->pDimensionRegions[i] == dimRgn)
321 return i;
322 return -1;
323 }
324
325 /** @brief Get exact zone ranges of given dimension.
326 *
327 * This function is useful for the velocity type dimension. In contrast to other
328 * dimension types, this dimension can have different zone ranges (that is
329 * different individual start and end points of its dimension zones) depending
330 * on which zones of other dimensions (on that gig::Region) are currently
331 * selected.
332 *
333 * @param type - dimension where the zone ranges should be retrieved for
334 * (usually the velocity dimension in this context)
335 * @param dimRgn - reflects the exact cases (zone selections) of all other
336 * dimensions than the given one in question
337 * @returns individual ranges for each zone of the questioned dimension type,
338 * it returns an empty result on errors instead
339 */
340 static DimensionZones preciseDimensionZonesFor(gig::dimension_t type, gig::DimensionRegion* dimRgn) {
341 DimensionZones zones;
342 gig::Region* rgn = dimRgn->GetParent();
343 int iDimension = getDimensionIndex(type, rgn);
344 if (iDimension < 0) return zones;
345 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[iDimension];
346 int iDimRgn = dimensionRegionIndex(dimRgn);
347 int iBaseBits = baseBits(type, rgn);
348 assert(iBaseBits >= 0);
349 int mask = ~(((1 << def.bits) - 1) << iBaseBits);
350
351 #if DEBUG_COMBINE_INSTRUMENTS
352 printf("velo zones { ");
353 fflush(stdout);
354 #endif
355 int iLow = 0;
356 for (int z = 0; z < def.zones; ++z) {
357 gig::DimensionRegion* dimRgn2 =
358 rgn->pDimensionRegions[ (iDimRgn & mask) | ( z << iBaseBits) ];
359 int iHigh = dimRgn2->DimensionUpperLimits[iDimension];
360 DLS::range_t range = { uint16_t(iLow), uint16_t(iHigh) };
361 #if DEBUG_COMBINE_INSTRUMENTS
362 printf("%d..%d, ", iLow, iHigh);
363 fflush(stdout);
364 #endif
365 zones.push_back(range);
366 iLow = iHigh + 1;
367 }
368 #if DEBUG_COMBINE_INSTRUMENTS
369 printf("}\n");
370 #endif
371 return zones;
372 }
373
374 struct CopyAssignSchedEntry {
375 gig::DimensionRegion* src;
376 gig::DimensionRegion* dst;
377 int velocityZone;
378 int totalSrcVelocityZones;
379 };
380 typedef std::vector<CopyAssignSchedEntry> CopyAssignSchedule;
381
382 /** @brief Schedule copying DimensionRegions from source Region to target Region.
383 *
384 * Schedules copying the entire articulation informations (including sample
385 * reference) from all individual DimensionRegions of source Region @a inRgn to
386 * target Region @a outRgn. It is expected that the required dimensions (thus
387 * the required dimension regions) were already created before calling this
388 * function.
389 *
390 * To be precise, it does the task above only for the dimension zones defined by
391 * the three arguments @a mainDim, @a iSrcMainBit, @a iDstMainBit, which reflect
392 * a selection which dimension zones shall be copied. All other dimension zones
393 * will not be scheduled to be copied by a single call of this function. So this
394 * function needs to be called several time in case all dimension regions shall
395 * be copied of the entire region (@a inRgn, @a outRgn).
396 *
397 * @param outRgn - where the dimension regions shall be copied to
398 * @param inRgn - all dimension regions that shall be copied from
399 * @param dims - precise dimension definitions of target region
400 * @param mainDim - this dimension type, in combination with @a iSrcMainBit and
401 * @a iDstMainBit defines a selection which dimension region
402 * zones shall be copied by this call of this function
403 * @param iDstMainBit - destination bit of @a mainDim
404 * @param iSrcMainBit - source bit of @a mainDim
405 * @param schedule - list of all DimensionRegion copy operations which is filled
406 * during the nested loops / recursions of this function call
407 * @param dimCase - just for internal purpose (function recursion), don't pass
408 * anything here, this function will call itself recursively
409 * will fill this container with concrete dimension values for
410 * selecting the precise dimension regions during its task
411 */
412 static void scheduleCopyDimensionRegions(gig::Region* outRgn, gig::Region* inRgn,
413 Dimensions dims, gig::dimension_t mainDim,
414 int iDstMainBit, int iSrcMainBit,
415 CopyAssignSchedule* schedule,
416 DimensionCase dimCase = DimensionCase())
417 {
418 if (dims.empty()) { // reached deepest level of function recursion ...
419 CopyAssignSchedEntry e;
420
421 // resolve the respective source & destination DimensionRegion ...
422 uint srcDimValues[8] = {};
423 uint dstDimValues[8] = {};
424 DimensionCase srcDimCase = dimCase;
425 DimensionCase dstDimCase = dimCase;
426 srcDimCase[mainDim] = iSrcMainBit;
427 dstDimCase[mainDim] = iDstMainBit;
428
429 #if DEBUG_COMBINE_INSTRUMENTS
430 printf("-------------------------------\n");
431 printf("iDstMainBit=%d iSrcMainBit=%d\n", iDstMainBit, iSrcMainBit);
432 #endif
433
434 // first select source & target dimension region with an arbitrary
435 // velocity split zone, to get access to the precise individual velocity
436 // split zone sizes (if there is actually a velocity dimension at all,
437 // otherwise we already select the desired source & target dimension
438 // region here)
439 #if DEBUG_COMBINE_INSTRUMENTS
440 printf("src "); fflush(stdout);
441 #endif
442 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
443 #if DEBUG_COMBINE_INSTRUMENTS
444 printf("dst "); fflush(stdout);
445 #endif
446 fillDimValues(dstDimValues, dstDimCase, outRgn, false);
447 gig::DimensionRegion* srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
448 gig::DimensionRegion* dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
449 #if DEBUG_COMBINE_INSTRUMENTS
450 printf("iDstMainBit=%d iSrcMainBit=%d\n", iDstMainBit, iSrcMainBit);
451 printf("srcDimRgn=%lx dstDimRgn=%lx\n", (uint64_t)srcDimRgn, (uint64_t)dstDimRgn);
452 printf("srcSample='%s' dstSample='%s'\n",
453 (!srcDimRgn->pSample ? "NULL" : srcDimRgn->pSample->pInfo->Name.c_str()),
454 (!dstDimRgn->pSample ? "NULL" : dstDimRgn->pSample->pInfo->Name.c_str())
455 );
456 #endif
457
458 assert(srcDimRgn->GetParent() == inRgn);
459 assert(dstDimRgn->GetParent() == outRgn);
460
461 // now that we have access to the precise velocity split zone upper
462 // limits, we can select the actual source & destination dimension
463 // regions we need to copy (assuming that source or target region has
464 // a velocity dimension)
465 if (outRgn->GetDimensionDefinition(gig::dimension_velocity)) {
466 // re-select target dimension region (with correct velocity zone)
467 DimensionZones dstZones = preciseDimensionZonesFor(gig::dimension_velocity, dstDimRgn);
468 assert(dstZones.size() > 1);
469 const int iDstZoneIndex =
470 (mainDim == gig::dimension_velocity)
471 ? iDstMainBit : dstDimCase[gig::dimension_velocity]; // (mainDim == gig::dimension_velocity) exception case probably unnecessary here
472 e.velocityZone = iDstZoneIndex;
473 #if DEBUG_COMBINE_INSTRUMENTS
474 printf("dst velocity zone: %d/%d\n", iDstZoneIndex, (int)dstZones.size());
475 #endif
476 assert(uint(iDstZoneIndex) < dstZones.size());
477 dstDimCase[gig::dimension_velocity] = dstZones[iDstZoneIndex].low; // arbitrary value between low and high
478 #if DEBUG_COMBINE_INSTRUMENTS
479 printf("dst velocity value = %d\n", dstDimCase[gig::dimension_velocity]);
480 printf("dst refilled "); fflush(stdout);
481 #endif
482 fillDimValues(dstDimValues, dstDimCase, outRgn, false);
483 dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
484 #if DEBUG_COMBINE_INSTRUMENTS
485 printf("reselected dstDimRgn=%lx\n", (uint64_t)dstDimRgn);
486 printf("dstSample='%s'%s\n",
487 (!dstDimRgn->pSample ? "NULL" : dstDimRgn->pSample->pInfo->Name.c_str()),
488 (dstDimRgn->pSample ? " <--- ERROR ERROR ERROR !!!!!!!!! " : "")
489 );
490 #endif
491
492 // re-select source dimension region with correct velocity zone
493 // (if it has a velocity dimension that is)
494 if (inRgn->GetDimensionDefinition(gig::dimension_velocity)) {
495 DimensionZones srcZones = preciseDimensionZonesFor(gig::dimension_velocity, srcDimRgn);
496 e.totalSrcVelocityZones = srcZones.size();
497 assert(srcZones.size() > 0);
498 if (srcZones.size() <= 1) {
499 addWarning("Input region has a velocity dimension with only ONE zone!");
500 }
501 int iSrcZoneIndex =
502 (mainDim == gig::dimension_velocity)
503 ? iSrcMainBit : iDstZoneIndex;
504 if (uint(iSrcZoneIndex) >= srcZones.size())
505 iSrcZoneIndex = srcZones.size() - 1;
506 srcDimCase[gig::dimension_velocity] = srcZones[iSrcZoneIndex].low; // same zone as used above for target dimension region (no matter what the precise zone ranges are)
507 #if DEBUG_COMBINE_INSTRUMENTS
508 printf("src refilled "); fflush(stdout);
509 #endif
510 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
511 srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
512 #if DEBUG_COMBINE_INSTRUMENTS
513 printf("reselected srcDimRgn=%lx\n", (uint64_t)srcDimRgn);
514 printf("srcSample='%s'\n",
515 (!srcDimRgn->pSample ? "NULL" : srcDimRgn->pSample->pInfo->Name.c_str())
516 );
517 #endif
518 }
519 }
520
521 // Schedule copy operation of source -> target DimensionRegion for the
522 // time after all nested loops have been traversed. We have to postpone
523 // the actual copy operations this way, because otherwise it would
524 // overwrite informations inside the destination DimensionRegion object
525 // that we need to read in the code block above.
526 e.src = srcDimRgn;
527 e.dst = dstDimRgn;
528 schedule->push_back(e);
529
530 return; // returning from deepest level of function recursion
531 }
532
533 // Copying n dimensions requires n nested loops. That's why this function
534 // is calling itself recursively to provide the required amount of nested
535 // loops. With each call it pops from argument 'dims' and pushes to
536 // argument 'dimCase'.
537
538 Dimensions::iterator itDimension = dims.begin();
539 gig::dimension_t type = itDimension->first;
540 DimensionZones zones = itDimension->second;
541 dims.erase(itDimension);
542
543 int iZone = 0;
544 for (DimensionZones::iterator itZone = zones.begin();
545 itZone != zones.end(); ++itZone, ++iZone)
546 {
547 DLS::range_t zoneRange = *itZone;
548 gig::dimension_def_t* def = outRgn->GetDimensionDefinition(type);
549 dimCase[type] = (def->split_type == gig::split_type_bit) ? iZone : zoneRange.low;
550
551 // recurse until 'dims' is exhausted (and dimCase filled up with concrete value)
552 scheduleCopyDimensionRegions(outRgn, inRgn, dims, mainDim, iDstMainBit, iSrcMainBit, schedule, dimCase);
553 }
554 }
555
556 static OrderedRegionGroup sortRegionGroup(const RegionGroup& group, const std::vector<gig::Instrument*>& instruments) {
557 OrderedRegionGroup result;
558 for (std::vector<gig::Instrument*>::const_iterator it = instruments.begin();
559 it != instruments.end(); ++it)
560 {
561 RegionGroup::const_iterator itRgn = group.find(*it);
562 if (itRgn == group.end()) continue;
563 result.push_back(
564 std::pair<gig::Instrument*, gig::Region*>(
565 itRgn->first, itRgn->second
566 )
567 );
568 }
569 return result;
570 }
571
572 /** @brief Combine given list of instruments to one instrument.
573 *
574 * Takes a list of @a instruments as argument and combines them to one single
575 * new @a output instrument. For this task, it will create a dimension of type
576 * given by @a mainDimension in the new instrument and copies the source
577 * instruments to those dimension zones.
578 *
579 * @param instruments - (input) list of instruments that shall be combined,
580 * they will only be read, so they will be left untouched
581 * @param gig - (input/output) .gig file where the new combined instrument shall
582 * be created
583 * @param output - (output) on success this pointer will be set to the new
584 * instrument being created
585 * @param mainDimension - the dimension that shall be used to combine the
586 * instruments
587 * @throw RIFF::Exception on any kinds of errors
588 */
589 static void combineInstruments(std::vector<gig::Instrument*>& instruments, gig::File* gig, gig::Instrument*& output, gig::dimension_t mainDimension) {
590 output = NULL;
591
592 // divide the individual regions to (probably even smaller) groups of
593 // regions, coping with the fact that the source regions of the instruments
594 // might have quite different range sizes and start and end points
595 RegionGroups groups = groupByRegionIntersections(instruments);
596 #if DEBUG_COMBINE_INSTRUMENTS
597 std::cout << std::endl << "New regions: " << std::flush;
598 printRanges(groups);
599 std::cout << std::endl;
600 #endif
601
602 if (groups.empty())
603 throw gig::Exception(_("No regions found to create a new instrument with."));
604
605 // create a new output instrument
606 gig::Instrument* outInstr = gig->AddInstrument();
607 outInstr->pInfo->Name = _("NEW COMBINATION");
608
609 // Distinguishing in the following code block between 'horizontal' and
610 // 'vertical' regions. The 'horizontal' ones are meant to be the key ranges
611 // in the output instrument, while the 'vertical' regions are meant to be
612 // the set of source regions that shall be layered to that 'horizontal'
613 // region / key range. It is important to know, that the key ranges defined
614 // in the 'horizontal' and 'vertical' regions might differ.
615
616 // merge the instruments to the new output instrument
617 for (RegionGroups::iterator itGroup = groups.begin();
618 itGroup != groups.end(); ++itGroup) // iterate over 'horizontal' / target regions ...
619 {
620 gig::Region* outRgn = outInstr->AddRegion();
621 outRgn->SetKeyRange(itGroup->first.low, itGroup->first.high);
622 #if DEBUG_COMBINE_INSTRUMENTS
623 printf("---> Start target region %d..%d\n", itGroup->first.low, itGroup->first.high);
624 #endif
625
626 // detect the total amount of zones required for the given main
627 // dimension to build up this combi for current key range
628 int iTotalZones = 0;
629 for (RegionGroup::iterator itRgn = itGroup->second.begin();
630 itRgn != itGroup->second.end(); ++itRgn)
631 {
632 gig::Region* inRgn = itRgn->second;
633 gig::dimension_def_t* def = inRgn->GetDimensionDefinition(mainDimension);
634 iTotalZones += (def) ? def->zones : 1;
635 }
636 #if DEBUG_COMBINE_INSTRUMENTS
637 printf("Required total zones: %d, vertical regions: %d\n", iTotalZones, itGroup->second.size());
638 #endif
639
640 // create all required dimensions for this output region
641 // (except the main dimension used for separating the individual
642 // instruments, we create that particular dimension as next step)
643 Dimensions dims = getDimensionsForRegionGroup(itGroup->second);
644 // the given main dimension which is used to combine the instruments is
645 // created separately after the next code block, and the main dimension
646 // should not be part of dims here, because it also used for iterating
647 // all dimensions zones, which would lead to this dimensions being
648 // iterated twice
649 dims.erase(mainDimension);
650 {
651 std::vector<gig::dimension_t> skipTheseDimensions; // used to prevent a misbehavior (i.e. crash) of the combine algorithm in case one of the source instruments has a dimension with only one zone, which is not standard conform
652
653 for (Dimensions::iterator itDim = dims.begin();
654 itDim != dims.end(); ++itDim)
655 {
656 gig::dimension_def_t def;
657 def.dimension = itDim->first; // dimension type
658 def.zones = itDim->second.size();
659 def.bits = zoneCountToBits(def.zones);
660 if (def.zones < 2) {
661 addWarning(
662 "Attempt to create dimension with type=0x%x with only "
663 "ONE zone (because at least one of the source "
664 "instruments seems to have such a velocity dimension "
665 "with only ONE zone, which is odd)! Skipping this "
666 "dimension for now.",
667 (int)itDim->first
668 );
669 skipTheseDimensions.push_back(itDim->first);
670 continue;
671 }
672 #if DEBUG_COMBINE_INSTRUMENTS
673 std::cout << "Adding new regular dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
674 #endif
675 outRgn->AddDimension(&def);
676 #if DEBUG_COMBINE_INSTRUMENTS
677 std::cout << "OK" << std::endl << std::flush;
678 #endif
679 }
680 // prevent the following dimensions to be processed further below
681 // (since the respective dimension was not created above)
682 for (int i = 0; i < skipTheseDimensions.size(); ++i)
683 dims.erase(skipTheseDimensions[i]);
684 }
685
686 // create the main dimension (if necessary for current key range)
687 if (iTotalZones > 1) {
688 gig::dimension_def_t def;
689 def.dimension = mainDimension; // dimension type
690 def.zones = iTotalZones;
691 def.bits = zoneCountToBits(def.zones);
692 #if DEBUG_COMBINE_INSTRUMENTS
693 std::cout << "Adding new main combi dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
694 #endif
695 outRgn->AddDimension(&def);
696 #if DEBUG_COMBINE_INSTRUMENTS
697 std::cout << "OK" << std::endl << std::flush;
698 #endif
699 } else {
700 dims.erase(mainDimension);
701 }
702
703 // for the next task we need to have the current RegionGroup to be
704 // sorted by instrument in the same sequence as the 'instruments' vector
705 // argument passed to this function (because the std::map behind the
706 // 'RegionGroup' type sorts by memory address instead, and that would
707 // sometimes lead to the source instruments' region to be sorted into
708 // the wrong target layer)
709 OrderedRegionGroup currentGroup = sortRegionGroup(itGroup->second, instruments);
710
711 // schedule copying the source dimension regions to the target dimension
712 // regions
713 CopyAssignSchedule schedule;
714 int iDstMainBit = 0;
715 for (OrderedRegionGroup::iterator itRgn = currentGroup.begin();
716 itRgn != currentGroup.end(); ++itRgn) // iterate over 'vertical' / source regions ...
717 {
718 gig::Region* inRgn = itRgn->second;
719 #if DEBUG_COMBINE_INSTRUMENTS
720 printf("[source region of '%s']\n", inRgn->GetParent()->pInfo->Name.c_str());
721 #endif
722
723 // determine how many main dimension zones this input region requires
724 gig::dimension_def_t* def = inRgn->GetDimensionDefinition(mainDimension);
725 const int inRgnMainZones = (def) ? def->zones : 1;
726
727 for (uint iSrcMainBit = 0; iSrcMainBit < inRgnMainZones; ++iSrcMainBit, ++iDstMainBit) {
728 scheduleCopyDimensionRegions(
729 outRgn, inRgn, dims, mainDimension,
730 iDstMainBit, iSrcMainBit, &schedule
731 );
732 }
733 }
734
735 // finally copy the scheduled source -> target dimension regions
736 for (uint i = 0; i < schedule.size(); ++i) {
737 CopyAssignSchedEntry& e = schedule[i];
738
739 // backup the target DimensionRegion's current dimension zones upper
740 // limits (because the target DimensionRegion's upper limits are
741 // already defined correctly since calling AddDimension(), and the
742 // CopyAssign() call next, will overwrite those upper limits
743 // unfortunately
744 DimensionRegionUpperLimits dstUpperLimits = getDimensionRegionUpperLimits(e.dst);
745 DimensionRegionUpperLimits srcUpperLimits = getDimensionRegionUpperLimits(e.src);
746
747 // now actually copy over the current DimensionRegion
748 const gig::Region* const origRgn = e.dst->GetParent(); // just for sanity check below
749 e.dst->CopyAssign(e.src);
750 assert(origRgn == e.dst->GetParent()); // if gigedit is crashing here, then you must update libgig (to at least SVN r2547, v3.3.0.svn10)
751
752 // restore all original dimension zone upper limits except of the
753 // velocity dimension, because the velocity dimension zone sizes are
754 // allowed to differ for individual DimensionRegions in gig v3
755 // format
756 //
757 // if the main dinension is the 'velocity' dimension, then skip
758 // restoring the source's original velocity zone limits, because
759 // dealing with merging that is not implemented yet
760 // TODO: merge custom velocity splits if main dimension is the velocity dimension (for now equal sized velocity zones are used if mainDim is 'velocity')
761 if (srcUpperLimits.count(gig::dimension_velocity) && mainDimension != gig::dimension_velocity) {
762 if (!dstUpperLimits.count(gig::dimension_velocity)) {
763 addWarning("Source instrument seems to have a velocity dimension whereas new target instrument doesn't!");
764 } else {
765 dstUpperLimits[gig::dimension_velocity] =
766 (e.velocityZone >= e.totalSrcVelocityZones)
767 ? 127 : srcUpperLimits[gig::dimension_velocity];
768 }
769 }
770 restoreDimensionRegionUpperLimits(e.dst, dstUpperLimits);
771 }
772 }
773
774 // success
775 output = outInstr;
776 }
777
778 ///////////////////////////////////////////////////////////////////////////
779 // class 'CombineInstrumentsDialog'
780
781 CombineInstrumentsDialog::CombineInstrumentsDialog(Gtk::Window& parent, gig::File* gig)
782 : ManagedDialog(_("Combine Instruments"), parent, true),
783 m_gig(gig), m_fileWasChanged(false), m_newCombinedInstrument(NULL),
784 m_cancelButton(Gtk::Stock::CANCEL), m_OKButton(Gtk::Stock::OK),
785 m_descriptionLabel(), m_tableDimCombo(2, 2), m_comboDimType(),
786 m_labelDimType(Glib::ustring(_("Combine by Dimension:")) + " ", Gtk::ALIGN_END)
787 {
788 m_scrolledWindow.add(m_treeView);
789 m_scrolledWindow.set_policy(Gtk::POLICY_AUTOMATIC, Gtk::POLICY_AUTOMATIC);
790
791 get_vbox()->pack_start(m_descriptionLabel, Gtk::PACK_SHRINK);
792 get_vbox()->pack_start(m_tableDimCombo, Gtk::PACK_SHRINK);
793 get_vbox()->pack_start(m_scrolledWindow);
794 get_vbox()->pack_start(m_buttonBox, Gtk::PACK_SHRINK);
795
796 #if GTKMM_MAJOR_VERSION >= 3
797 m_descriptionLabel.set_line_wrap();
798 #endif
799 m_descriptionLabel.set_text(_(
800 "Select at least two instruments below that shall be combined (as "
801 "separate dimension zones of the selected dimension type) as a new "
802 "instrument. The original instruments remain untouched.\n\n"
803 "You may use this tool for example to combine solo instruments into "
804 "a combi sound arrangement by selecting the 'layer' dimension, or you "
805 "might combine similar sounding solo sounds into separate velocity "
806 "split layers by using the 'velocity' dimension, and so on."
807 ));
808
809 // add dimension type combo box
810 {
811 int iLayerDimIndex = -1;
812 Glib::RefPtr<Gtk::ListStore> refComboModel = Gtk::ListStore::create(m_comboDimsModel);
813 for (int i = 0x01, iRow = 0; i < 0xff; i++) {
814 Glib::ustring sType =
815 dimTypeAsString(static_cast<gig::dimension_t>(i));
816 if (sType.find("Unknown") != 0) {
817 Gtk::TreeModel::Row row = *(refComboModel->append());
818 row[m_comboDimsModel.m_type_id] = i;
819 row[m_comboDimsModel.m_type_name] = sType;
820 if (i == gig::dimension_layer) iLayerDimIndex = iRow;
821 iRow++;
822 }
823 }
824 m_comboDimType.set_model(refComboModel);
825 m_comboDimType.pack_start(m_comboDimsModel.m_type_id);
826 m_comboDimType.pack_start(m_comboDimsModel.m_type_name);
827 m_tableDimCombo.attach(m_labelDimType, 0, 1, 0, 1);
828 m_tableDimCombo.attach(m_comboDimType, 1, 2, 0, 1);
829 m_comboDimType.set_active(iLayerDimIndex); // preselect "layer" dimension
830 }
831
832 m_refTreeModel = Gtk::ListStore::create(m_columns);
833 m_treeView.set_model(m_refTreeModel);
834 m_treeView.set_tooltip_text(_(
835 "Use SHIFT + left click or CTRL + left click to select the instruments "
836 "you want to combine."
837 ));
838 m_treeView.append_column("Instrument", m_columns.m_col_name);
839 m_treeView.set_headers_visible(false);
840 m_treeView.get_selection()->set_mode(Gtk::SELECTION_MULTIPLE);
841 m_treeView.get_selection()->signal_changed().connect(
842 sigc::mem_fun(*this, &CombineInstrumentsDialog::onSelectionChanged)
843 );
844 m_treeView.show();
845
846 for (int i = 0; true; ++i) {
847 gig::Instrument* instr = gig->GetInstrument(i);
848 if (!instr) break;
849
850 #if DEBUG_COMBINE_INSTRUMENTS
851 {
852 std::cout << "Instrument (" << i << ") '" << instr->pInfo->Name << "' Regions: " << std::flush;
853 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
854 std::cout << rgn->KeyRange.low << ".." << rgn->KeyRange.high << ", " << std::flush;
855 }
856 std::cout << std::endl;
857 }
858 std::cout << std::endl;
859 #endif
860
861 Glib::ustring name(gig_to_utf8(instr->pInfo->Name));
862 Gtk::TreeModel::iterator iter = m_refTreeModel->append();
863 Gtk::TreeModel::Row row = *iter;
864 row[m_columns.m_col_name] = name;
865 row[m_columns.m_col_instr] = instr;
866 }
867
868 m_buttonBox.set_layout(Gtk::BUTTONBOX_END);
869 m_buttonBox.set_border_width(5);
870 m_buttonBox.pack_start(m_cancelButton, Gtk::PACK_SHRINK);
871 m_buttonBox.pack_start(m_OKButton, Gtk::PACK_SHRINK);
872 m_buttonBox.show();
873
874 m_cancelButton.show();
875 m_OKButton.set_sensitive(false);
876 m_OKButton.show();
877
878 m_cancelButton.signal_clicked().connect(
879 sigc::mem_fun(*this, &CombineInstrumentsDialog::hide)
880 );
881
882 m_OKButton.signal_clicked().connect(
883 sigc::mem_fun(*this, &CombineInstrumentsDialog::combineSelectedInstruments)
884 );
885
886 show_all_children();
887
888 // show a warning to user if he uses a .gig in v2 format
889 if (gig->pVersion->major < 3) {
890 Glib::ustring txt = _(
891 "You are currently using a .gig file in old v2 format. The current "
892 "combine algorithm will most probably fail trying to combine "
893 "instruments in this old format. So better save the file in new v3 "
894 "format before trying to combine your instruments."
895 );
896 Gtk::MessageDialog msg(*this, txt, false, Gtk::MESSAGE_WARNING);
897 msg.run();
898 }
899 }
900
901 void CombineInstrumentsDialog::combineSelectedInstruments() {
902 std::vector<gig::Instrument*> instruments;
903 std::vector<Gtk::TreeModel::Path> v = m_treeView.get_selection()->get_selected_rows();
904 for (uint i = 0; i < v.size(); ++i) {
905 Gtk::TreeModel::iterator it = m_refTreeModel->get_iter(v[i]);
906 Gtk::TreeModel::Row row = *it;
907 Glib::ustring name = row[m_columns.m_col_name];
908 gig::Instrument* instrument = row[m_columns.m_col_instr];
909 #if DEBUG_COMBINE_INSTRUMENTS
910 printf("Selection '%s' 0x%lx\n\n", name.c_str(), int64_t((void*)instrument));
911 #endif
912 instruments.push_back(instrument);
913 }
914
915 g_warnings.clear();
916
917 try {
918 // which main dimension was selected in the combo box?
919 gig::dimension_t mainDimension;
920 {
921 Gtk::TreeModel::iterator iterType = m_comboDimType.get_active();
922 if (!iterType) throw gig::Exception("No dimension selected");
923 Gtk::TreeModel::Row rowType = *iterType;
924 if (!rowType) throw gig::Exception("Something is wrong regarding dimension selection");
925 int iTypeID = rowType[m_comboDimsModel.m_type_id];
926 mainDimension = static_cast<gig::dimension_t>(iTypeID);
927 }
928
929 // now start the actual cobination task ...
930 combineInstruments(instruments, m_gig, m_newCombinedInstrument, mainDimension);
931 } catch (RIFF::Exception e) {;
932 Gtk::MessageDialog msg(*this, e.Message, false, Gtk::MESSAGE_ERROR);
933 msg.run();
934 return;
935 } catch (...) {
936 Glib::ustring txt = _("An unknown exception occurred!");
937 Gtk::MessageDialog msg(*this, txt, false, Gtk::MESSAGE_ERROR);
938 msg.run();
939 return;
940 }
941
942 if (!g_warnings.empty()) {
943 Glib::ustring txt = _(
944 "Combined instrument was created successfully, but there were warnings:"
945 );
946 txt += "\n\n";
947 for (Warnings::const_iterator itWarn = g_warnings.begin();
948 itWarn != g_warnings.end(); ++itWarn)
949 {
950 txt += "-> " + *itWarn + "\n";
951 }
952 txt += "\n";
953 txt += _(
954 "You might also want to check the console for further warnings and "
955 "error messages."
956 );
957 Gtk::MessageDialog msg(*this, txt, false, Gtk::MESSAGE_WARNING);
958 msg.run();
959 }
960
961 // no error occurred
962 m_fileWasChanged = true;
963 hide();
964 }
965
966 void CombineInstrumentsDialog::onSelectionChanged() {
967 std::vector<Gtk::TreeModel::Path> v = m_treeView.get_selection()->get_selected_rows();
968 m_OKButton.set_sensitive(v.size() >= 2);
969 }
970
971 bool CombineInstrumentsDialog::fileWasChanged() const {
972 return m_fileWasChanged;
973 }
974
975 gig::Instrument* CombineInstrumentsDialog::newCombinedInstrument() const {
976 return m_newCombinedInstrument;
977 }

  ViewVC Help
Powered by ViewVC