/[svn]/libgig/trunk/src/RIFF.cpp
ViewVC logotype

Contents of /libgig/trunk/src/RIFF.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3916 - (show annotations) (download)
Mon Jun 7 19:42:17 2021 UTC (2 years, 10 months ago) by schoenebeck
File size: 110737 byte(s)
* RIFF: Fix deadlock in File::SetMode().

* Bumped version (4.3.0.svn8).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2021 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include <algorithm>
25 #include <set>
26 #include <string.h>
27
28 #include "RIFF.h"
29
30 #include "helper.h"
31
32 #if POSIX
33 # include <errno.h>
34 #endif
35
36 namespace RIFF {
37
38 // *************** Internal functions **************
39 // *
40
41 /// Returns a human readable path of the given chunk.
42 static String __resolveChunkPath(Chunk* pCk) {
43 String sPath;
44 for (Chunk* pChunk = pCk; pChunk; pChunk = pChunk->GetParent()) {
45 if (pChunk->GetChunkID() == CHUNK_ID_LIST) {
46 List* pList = (List*) pChunk;
47 sPath = "->'" + pList->GetListTypeString() + "'" + sPath;
48 } else {
49 sPath = "->'" + pChunk->GetChunkIDString() + "'" + sPath;
50 }
51 }
52 return sPath;
53 }
54
55 inline static bool _isValidHandle(File::Handle handle) {
56 #if defined(WIN32)
57 return handle != INVALID_HANDLE_VALUE;
58 #else
59 return handle;
60 #endif
61 }
62
63 inline static void _close(File::Handle handle) {
64 if (!_isValidHandle(handle)) return;
65 #if POSIX
66 close(handle);
67 #elif defined(WIN32)
68 CloseHandle(handle);
69 #else
70 fclose(handle);
71 #endif
72 }
73
74
75
76 // *************** progress_t ***************
77 // *
78
79 progress_t::progress_t() {
80 callback = NULL;
81 custom = NULL;
82 __range_min = 0.0f;
83 __range_max = 1.0f;
84 }
85
86 /**
87 * Divides this progress task into the requested amount of equal weighted
88 * sub-progress tasks and returns a vector with those subprogress tasks.
89 *
90 * @param iSubtasks - total amount sub tasks this task should be subdivided
91 * @returns subtasks
92 */
93 std::vector<progress_t> progress_t::subdivide(int iSubtasks) {
94 std::vector<progress_t> v;
95 for (int i = 0; i < iSubtasks; ++i) {
96 progress_t p;
97 __divide_progress(this, &p, iSubtasks, i);
98 v.push_back(p);
99 }
100 return v;
101 }
102
103 /**
104 * Divides this progress task into the requested amount of sub-progress
105 * tasks, where each one of those new sub-progress tasks is created with its
106 * requested individual weight / portion, and finally returns a vector
107 * with those new subprogress tasks.
108 *
109 * The amount of subprogresses to be created is determined by this method
110 * by calling @c vSubTaskPortions.size() .
111 *
112 * Example: consider you wanted to create 3 subprogresses where the 1st
113 * subtask should be assigned 10% of the new 3 subprogresses' overall
114 * progress, the 2nd subtask should be assigned 50% of the new 3
115 * subprogresses' overall progress, and the 3rd subtask should be assigned
116 * 40%, then you might call this method like this:
117 * @code
118 * std::vector<progress_t> subprogresses = progress.subdivide({0.1, 0.5, 0.4});
119 * @endcode
120 *
121 * @param vSubTaskPortions - amount and individual weight of subtasks to be
122 * created
123 * @returns subtasks
124 */
125 std::vector<progress_t> progress_t::subdivide(std::vector<float> vSubTaskPortions) {
126 float fTotal = 0.f; // usually 1.0, but we sum the portions up below to be sure
127 for (int i = 0; i < vSubTaskPortions.size(); ++i)
128 fTotal += vSubTaskPortions[i];
129
130 float fLow = 0.f, fHigh = 0.f;
131 std::vector<progress_t> v;
132 for (int i = 0; i < vSubTaskPortions.size(); ++i) {
133 fLow = fHigh;
134 fHigh = vSubTaskPortions[i];
135 progress_t p;
136 __divide_progress(this, &p, fTotal, fLow, fHigh);
137 v.push_back(p);
138 }
139 return v;
140 }
141
142
143
144 // *************** Chunk **************
145 // *
146
147 Chunk::Chunk(File* pFile) {
148 #if DEBUG_RIFF
149 std::cout << "Chunk::Chunk(File* pFile)" << std::endl;
150 #endif // DEBUG_RIFF
151 chunkPos.ullPos = 0;
152 pParent = NULL;
153 pChunkData = NULL;
154 ullCurrentChunkSize = 0;
155 ullNewChunkSize = 0;
156 ullChunkDataSize = 0;
157 ChunkID = CHUNK_ID_RIFF;
158 this->pFile = pFile;
159 }
160
161 Chunk::Chunk(File* pFile, file_offset_t StartPos, List* Parent) {
162 #if DEBUG_RIFF
163 std::cout << "Chunk::Chunk(File*,file_offset_t,List*),StartPos=" << StartPos << std::endl;
164 #endif // DEBUG_RIFF
165 this->pFile = pFile;
166 ullStartPos = StartPos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize);
167 pParent = Parent;
168 chunkPos.ullPos = 0;
169 pChunkData = NULL;
170 ullCurrentChunkSize = 0;
171 ullNewChunkSize = 0;
172 ullChunkDataSize = 0;
173 ReadHeader(StartPos);
174 }
175
176 Chunk::Chunk(File* pFile, List* pParent, uint32_t uiChunkID, file_offset_t ullBodySize) {
177 this->pFile = pFile;
178 ullStartPos = 0; // arbitrary usually, since it will be updated when we write the chunk
179 this->pParent = pParent;
180 chunkPos.ullPos = 0;
181 pChunkData = NULL;
182 ChunkID = uiChunkID;
183 ullChunkDataSize = 0;
184 ullCurrentChunkSize = 0;
185 ullNewChunkSize = ullBodySize;
186 }
187
188 Chunk::~Chunk() {
189 if (pChunkData) delete[] pChunkData;
190 }
191
192 void Chunk::ReadHeader(file_offset_t filePos) {
193 #if DEBUG_RIFF
194 std::cout << "Chunk::Readheader(" << filePos << ") ";
195 #endif // DEBUG_RIFF
196 ChunkID = 0;
197 ullNewChunkSize = ullCurrentChunkSize = 0;
198
199 const File::Handle hRead = pFile->FileHandle();
200
201 #if POSIX
202 if (lseek(hRead, filePos, SEEK_SET) != -1) {
203 read(hRead, &ChunkID, 4);
204 read(hRead, &ullCurrentChunkSize, pFile->FileOffsetSize);
205 #elif defined(WIN32)
206 LARGE_INTEGER liFilePos;
207 liFilePos.QuadPart = filePos;
208 if (SetFilePointerEx(hRead, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN)) {
209 DWORD dwBytesRead;
210 ReadFile(hRead, &ChunkID, 4, &dwBytesRead, NULL);
211 ReadFile(hRead, &ullCurrentChunkSize, pFile->FileOffsetSize, &dwBytesRead, NULL);
212 #else
213 if (!fseeko(hRead, filePos, SEEK_SET)) {
214 fread(&ChunkID, 4, 1, hRead);
215 fread(&ullCurrentChunkSize, pFile->FileOffsetSize, 1, hRead);
216 #endif // POSIX
217 #if WORDS_BIGENDIAN
218 if (ChunkID == CHUNK_ID_RIFF) {
219 pFile->bEndianNative = false;
220 }
221 #else // little endian
222 if (ChunkID == CHUNK_ID_RIFX) {
223 pFile->bEndianNative = false;
224 ChunkID = CHUNK_ID_RIFF;
225 }
226 #endif // WORDS_BIGENDIAN
227 if (!pFile->bEndianNative) {
228 //swapBytes_32(&ChunkID);
229 if (pFile->FileOffsetSize == 4)
230 swapBytes_32(&ullCurrentChunkSize);
231 else
232 swapBytes_64(&ullCurrentChunkSize);
233 }
234 #if DEBUG_RIFF
235 std::cout << "ckID=" << convertToString(ChunkID) << " ";
236 std::cout << "ckSize=" << ullCurrentChunkSize << " ";
237 std::cout << "bEndianNative=" << pFile->bEndianNative << std::endl;
238 #endif // DEBUG_RIFF
239 ullNewChunkSize = ullCurrentChunkSize;
240 }
241 }
242
243 void Chunk::WriteHeader(file_offset_t filePos) {
244 uint32_t uiNewChunkID = ChunkID;
245 if (ChunkID == CHUNK_ID_RIFF) {
246 #if WORDS_BIGENDIAN
247 if (pFile->bEndianNative) uiNewChunkID = CHUNK_ID_RIFX;
248 #else // little endian
249 if (!pFile->bEndianNative) uiNewChunkID = CHUNK_ID_RIFX;
250 #endif // WORDS_BIGENDIAN
251 }
252
253 uint64_t ullNewChunkSize = this->ullNewChunkSize;
254 if (!pFile->bEndianNative) {
255 if (pFile->FileOffsetSize == 4)
256 swapBytes_32(&ullNewChunkSize);
257 else
258 swapBytes_64(&ullNewChunkSize);
259 }
260
261 const File::Handle hWrite = pFile->FileWriteHandle();
262
263 #if POSIX
264 if (lseek(hWrite, filePos, SEEK_SET) != -1) {
265 write(hWrite, &uiNewChunkID, 4);
266 write(hWrite, &ullNewChunkSize, pFile->FileOffsetSize);
267 }
268 #elif defined(WIN32)
269 LARGE_INTEGER liFilePos;
270 liFilePos.QuadPart = filePos;
271 if (SetFilePointerEx(hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN)) {
272 DWORD dwBytesWritten;
273 WriteFile(hWrite, &uiNewChunkID, 4, &dwBytesWritten, NULL);
274 WriteFile(hWrite, &ullNewChunkSize, pFile->FileOffsetSize, &dwBytesWritten, NULL);
275 }
276 #else
277 if (!fseeko(hWrite, filePos, SEEK_SET)) {
278 fwrite(&uiNewChunkID, 4, 1, hWrite);
279 fwrite(&ullNewChunkSize, pFile->FileOffsetSize, 1, hWrite);
280 }
281 #endif // POSIX
282 }
283
284 /**
285 * Returns the String representation of the chunk's ID (e.g. "RIFF",
286 * "LIST").
287 */
288 String Chunk::GetChunkIDString() const {
289 return convertToString(ChunkID);
290 }
291
292 /**
293 * This is an internal-only method which must not be used by any application
294 * and might change at any time.
295 *
296 * Returns a reference (memory location) of the chunk's current file
297 * (read/write) position variable which depends on the current value of
298 * File::IsIOPerThread().
299 */
300 file_offset_t& Chunk::GetPosUnsafeRef() {
301 if (!pFile->IsIOPerThread()) return chunkPos.ullPos;
302 const std::thread::id tid = std::this_thread::get_id();
303 return chunkPos.byThread[tid];
304 }
305
306 /**
307 * Current read/write position within the chunk data body (starting with 0).
308 *
309 * @see File::IsIOPerThread() for multi-threaded streaming
310 */
311 file_offset_t Chunk::GetPos() const {
312 if (!pFile->IsIOPerThread()) return chunkPos.ullPos;
313 const std::thread::id tid = std::this_thread::get_id();
314 std::lock_guard<std::mutex> lock(chunkPos.mutex);
315 return chunkPos.byThread[tid];
316 }
317
318 /**
319 * Current, actual offset in file of current chunk data body read/write
320 * position.
321 *
322 * @see File::IsIOPerThread() for multi-threaded streaming
323 */
324 file_offset_t Chunk::GetFilePos() const {
325 return ullStartPos + GetPos();
326 }
327
328 /**
329 * Sets the position within the chunk body, thus within the data portion
330 * of the chunk (in bytes).
331 *
332 * <b>Caution:</b> the position will be reset to zero whenever
333 * File::Save() was called.
334 *
335 * @param Where - position offset (in bytes)
336 * @param Whence - optional: defines to what <i>\a Where</i> relates to,
337 * if omitted \a Where relates to beginning of the chunk
338 * data
339 * @see File::IsIOPerThread() for multi-threaded streaming
340 */
341 file_offset_t Chunk::SetPos(file_offset_t Where, stream_whence_t Whence) {
342 #if DEBUG_RIFF
343 std::cout << "Chunk::SetPos(file_offset_t,stream_whence_t)" << std::endl;
344 #endif // DEBUG_RIFF
345 std::lock_guard<std::mutex> lock(chunkPos.mutex);
346 file_offset_t& pos = GetPosUnsafeRef();
347 switch (Whence) {
348 case stream_curpos:
349 pos += Where;
350 break;
351 case stream_end:
352 pos = ullCurrentChunkSize - 1 - Where;
353 break;
354 case stream_backward:
355 pos -= Where;
356 break;
357 case stream_start: default:
358 pos = Where;
359 break;
360 }
361 if (pos > ullCurrentChunkSize) pos = ullCurrentChunkSize;
362 return pos;
363 }
364
365 /**
366 * Returns the number of bytes left to read in the chunk body.
367 * When reading data from the chunk using the Read*() Methods, the
368 * position within the chunk data (that is the chunk body) will be
369 * incremented by the number of read bytes and RemainingBytes() returns
370 * how much data is left to read from the current position to the end
371 * of the chunk data.
372 *
373 * @returns number of bytes left to read
374 * @see File::IsIOPerThread() for multi-threaded streaming
375 */
376 file_offset_t Chunk::RemainingBytes() const {
377 #if DEBUG_RIFF
378 std::cout << "Chunk::Remainingbytes()=" << ullCurrentChunkSize - ullPos << std::endl;
379 #endif // DEBUG_RIFF
380 const file_offset_t pos = GetPos();
381 return (ullCurrentChunkSize > pos) ? ullCurrentChunkSize - pos : 0;
382 }
383
384 /**
385 * Returns the actual total size in bytes (including header) of this Chunk
386 * if being stored to a file.
387 *
388 * @param fileOffsetSize - RIFF file offset size (in bytes) assumed when
389 * being saved to a file
390 */
391 file_offset_t Chunk::RequiredPhysicalSize(int fileOffsetSize) {
392 return CHUNK_HEADER_SIZE(fileOffsetSize) + // RIFF chunk header
393 ullNewChunkSize + // chunks's actual data body
394 ullNewChunkSize % 2; // optional pad byte
395 }
396
397 /**
398 * Returns the current state of the chunk object.
399 * Following values are possible:
400 * - RIFF::stream_ready :
401 * chunk data can be read (this is the usual case)
402 * - RIFF::stream_closed :
403 * the data stream was closed somehow, no more reading possible
404 * - RIFF::stream_end_reached :
405 * already reached the end of the chunk data, no more reading
406 * possible without SetPos()
407 *
408 * @see File::IsIOPerThread() for multi-threaded streaming
409 */
410 stream_state_t Chunk::GetState() const {
411 #if DEBUG_RIFF
412 std::cout << "Chunk::GetState()" << std::endl;
413 #endif // DEBUG_RIFF
414
415 const File::Handle hRead = pFile->FileHandle();
416
417 if (!_isValidHandle(hRead))
418 return stream_closed;
419
420 const file_offset_t pos = GetPos();
421 if (pos < ullCurrentChunkSize) return stream_ready;
422 else return stream_end_reached;
423 }
424
425 /**
426 * Reads \a WordCount number of data words with given \a WordSize and
427 * copies it into a buffer pointed by \a pData. The buffer has to be
428 * allocated and be sure to provide the correct \a WordSize, as this
429 * will be important and taken into account for eventual endian
430 * correction (swapping of bytes due to different native byte order of
431 * a system). The position within the chunk will automatically be
432 * incremented.
433 *
434 * @param pData destination buffer
435 * @param WordCount number of data words to read
436 * @param WordSize size of each data word to read
437 * @returns number of successfully read data words or 0 if end
438 * of file reached or error occurred
439 * @see File::IsIOPerThread() for multi-threaded streaming
440 */
441 file_offset_t Chunk::Read(void* pData, file_offset_t WordCount, file_offset_t WordSize) {
442 #if DEBUG_RIFF
443 std::cout << "Chunk::Read(void*,file_offset_t,file_offset_t)" << std::endl;
444 #endif // DEBUG_RIFF
445 //if (ulStartPos == 0) return 0; // is only 0 if this is a new chunk, so nothing to read (yet)
446 const file_offset_t pos = GetPos();
447 if (pos >= ullCurrentChunkSize) return 0;
448 if (pos + WordCount * WordSize >= ullCurrentChunkSize)
449 WordCount = (ullCurrentChunkSize - pos) / WordSize;
450
451 const File::Handle hRead = pFile->FileHandle();
452
453 #if POSIX
454 if (lseek(hRead, ullStartPos + pos, SEEK_SET) < 0) return 0;
455 ssize_t readWords = read(hRead, pData, WordCount * WordSize);
456 if (readWords < 1) {
457 #if DEBUG_RIFF
458 std::cerr << "POSIX read() failed: " << strerror(errno) << std::endl << std::flush;
459 #endif // DEBUG_RIFF
460 return 0;
461 }
462 readWords /= WordSize;
463 #elif defined(WIN32)
464 LARGE_INTEGER liFilePos;
465 liFilePos.QuadPart = ullStartPos + pos;
466 if (!SetFilePointerEx(hRead, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN))
467 return 0;
468 DWORD readWords;
469 ReadFile(hRead, pData, WordCount * WordSize, &readWords, NULL); //FIXME: does not work for reading buffers larger than 2GB (even though this should rarely be the case in practice)
470 if (readWords < 1) return 0;
471 readWords /= WordSize;
472 #else // standard C functions
473 if (fseeko(hRead, ullStartPos + pos, SEEK_SET)) return 0;
474 file_offset_t readWords = fread(pData, WordSize, WordCount, hRead);
475 #endif // POSIX
476 if (!pFile->bEndianNative && WordSize != 1) {
477 switch (WordSize) {
478 case 2:
479 for (file_offset_t iWord = 0; iWord < readWords; iWord++)
480 swapBytes_16((uint16_t*) pData + iWord);
481 break;
482 case 4:
483 for (file_offset_t iWord = 0; iWord < readWords; iWord++)
484 swapBytes_32((uint32_t*) pData + iWord);
485 break;
486 case 8:
487 for (file_offset_t iWord = 0; iWord < readWords; iWord++)
488 swapBytes_64((uint64_t*) pData + iWord);
489 break;
490 default:
491 for (file_offset_t iWord = 0; iWord < readWords; iWord++)
492 swapBytes((uint8_t*) pData + iWord * WordSize, WordSize);
493 break;
494 }
495 }
496 SetPos(readWords * WordSize, stream_curpos);
497 return readWords;
498 }
499
500 /**
501 * Writes \a WordCount number of data words with given \a WordSize from
502 * the buffer pointed by \a pData. Be sure to provide the correct
503 * \a WordSize, as this will be important and taken into account for
504 * eventual endian correction (swapping of bytes due to different
505 * native byte order of a system). The position within the chunk will
506 * automatically be incremented.
507 *
508 * @param pData source buffer (containing the data)
509 * @param WordCount number of data words to write
510 * @param WordSize size of each data word to write
511 * @returns number of successfully written data words
512 * @throws RIFF::Exception if write operation would exceed current
513 * chunk size or any IO error occurred
514 * @see Resize()
515 * @see File::IsIOPerThread() for multi-threaded streaming
516 */
517 file_offset_t Chunk::Write(void* pData, file_offset_t WordCount, file_offset_t WordSize) {
518 const File::HandlePair io = pFile->FileHandlePair();
519 if (io.Mode != stream_mode_read_write)
520 throw Exception("Cannot write data to chunk, file has to be opened in read+write mode first");
521 const file_offset_t pos = GetPos();
522 if (pos >= ullCurrentChunkSize || pos + WordCount * WordSize > ullCurrentChunkSize)
523 throw Exception("End of chunk reached while trying to write data");
524 if (!pFile->bEndianNative && WordSize != 1) {
525 switch (WordSize) {
526 case 2:
527 for (file_offset_t iWord = 0; iWord < WordCount; iWord++)
528 swapBytes_16((uint16_t*) pData + iWord);
529 break;
530 case 4:
531 for (file_offset_t iWord = 0; iWord < WordCount; iWord++)
532 swapBytes_32((uint32_t*) pData + iWord);
533 break;
534 case 8:
535 for (file_offset_t iWord = 0; iWord < WordCount; iWord++)
536 swapBytes_64((uint64_t*) pData + iWord);
537 break;
538 default:
539 for (file_offset_t iWord = 0; iWord < WordCount; iWord++)
540 swapBytes((uint8_t*) pData + iWord * WordSize, WordSize);
541 break;
542 }
543 }
544 #if POSIX
545 if (lseek(io.hWrite, ullStartPos + pos, SEEK_SET) < 0) {
546 throw Exception("Could not seek to position " + ToString(pos) +
547 " in chunk (" + ToString(ullStartPos + pos) + " in file)");
548 }
549 ssize_t writtenWords = write(io.hWrite, pData, WordCount * WordSize);
550 if (writtenWords < 1) throw Exception("POSIX IO Error while trying to write chunk data");
551 writtenWords /= WordSize;
552 #elif defined(WIN32)
553 LARGE_INTEGER liFilePos;
554 liFilePos.QuadPart = ullStartPos + pos;
555 if (!SetFilePointerEx(io.hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN)) {
556 throw Exception("Could not seek to position " + ToString(pos) +
557 " in chunk (" + ToString(ullStartPos + pos) + " in file)");
558 }
559 DWORD writtenWords;
560 WriteFile(io.hWrite, pData, WordCount * WordSize, &writtenWords, NULL); //FIXME: does not work for writing buffers larger than 2GB (even though this should rarely be the case in practice)
561 if (writtenWords < 1) throw Exception("Windows IO Error while trying to write chunk data");
562 writtenWords /= WordSize;
563 #else // standard C functions
564 if (fseeko(io.hWrite, ullStartPos + pos, SEEK_SET)) {
565 throw Exception("Could not seek to position " + ToString(pos) +
566 " in chunk (" + ToString(ullStartPos + pos) + " in file)");
567 }
568 file_offset_t writtenWords = fwrite(pData, WordSize, WordCount, io.hWrite);
569 #endif // POSIX
570 SetPos(writtenWords * WordSize, stream_curpos);
571 return writtenWords;
572 }
573
574 /** Just an internal wrapper for the main <i>Read()</i> method with additional Exception throwing on errors. */
575 file_offset_t Chunk::ReadSceptical(void* pData, file_offset_t WordCount, file_offset_t WordSize) {
576 file_offset_t readWords = Read(pData, WordCount, WordSize);
577 if (readWords != WordCount) throw RIFF::Exception("End of chunk data reached.");
578 return readWords;
579 }
580
581 /**
582 * Reads \a WordCount number of 8 Bit signed integer words and copies it
583 * into the buffer pointed by \a pData. The buffer has to be allocated.
584 * The position within the chunk will automatically be incremented.
585 *
586 * @param pData destination buffer
587 * @param WordCount number of 8 Bit signed integers to read
588 * @returns number of read integers
589 * @throws RIFF::Exception if an error occurred or less than
590 * \a WordCount integers could be read!
591 * @see File::IsIOPerThread() for multi-threaded streaming
592 */
593 file_offset_t Chunk::ReadInt8(int8_t* pData, file_offset_t WordCount) {
594 #if DEBUG_RIFF
595 std::cout << "Chunk::ReadInt8(int8_t*,file_offset_t)" << std::endl;
596 #endif // DEBUG_RIFF
597 return ReadSceptical(pData, WordCount, 1);
598 }
599
600 /**
601 * Writes \a WordCount number of 8 Bit signed integer words from the
602 * buffer pointed by \a pData to the chunk's body, directly to the
603 * actual "physical" file. The position within the chunk will
604 * automatically be incremented. Note: you cannot write beyond the
605 * boundaries of the chunk, to append data to the chunk call Resize()
606 * before.
607 *
608 * @param pData source buffer (containing the data)
609 * @param WordCount number of 8 Bit signed integers to write
610 * @returns number of written integers
611 * @throws RIFF::Exception if an IO error occurred
612 * @see Resize()
613 * @see File::IsIOPerThread() for multi-threaded streaming
614 */
615 file_offset_t Chunk::WriteInt8(int8_t* pData, file_offset_t WordCount) {
616 return Write(pData, WordCount, 1);
617 }
618
619 /**
620 * Reads \a WordCount number of 8 Bit unsigned integer words and copies
621 * it into the buffer pointed by \a pData. The buffer has to be
622 * allocated. The position within the chunk will automatically be
623 * incremented.
624 *
625 * @param pData destination buffer
626 * @param WordCount number of 8 Bit unsigned integers to read
627 * @returns number of read integers
628 * @throws RIFF::Exception if an error occurred or less than
629 * \a WordCount integers could be read!
630 * @see File::IsIOPerThread() for multi-threaded streaming
631 */
632 file_offset_t Chunk::ReadUint8(uint8_t* pData, file_offset_t WordCount) {
633 #if DEBUG_RIFF
634 std::cout << "Chunk::ReadUint8(uint8_t*,file_offset_t)" << std::endl;
635 #endif // DEBUG_RIFF
636 return ReadSceptical(pData, WordCount, 1);
637 }
638
639 /**
640 * Writes \a WordCount number of 8 Bit unsigned integer words from the
641 * buffer pointed by \a pData to the chunk's body, directly to the
642 * actual "physical" file. The position within the chunk will
643 * automatically be incremented. Note: you cannot write beyond the
644 * boundaries of the chunk, to append data to the chunk call Resize()
645 * before.
646 *
647 * @param pData source buffer (containing the data)
648 * @param WordCount number of 8 Bit unsigned integers to write
649 * @returns number of written integers
650 * @throws RIFF::Exception if an IO error occurred
651 * @see Resize()
652 * @see File::IsIOPerThread() for multi-threaded streaming
653 */
654 file_offset_t Chunk::WriteUint8(uint8_t* pData, file_offset_t WordCount) {
655 return Write(pData, WordCount, 1);
656 }
657
658 /**
659 * Reads \a WordCount number of 16 Bit signed integer words and copies
660 * it into the buffer pointed by \a pData. The buffer has to be
661 * allocated. Endian correction will automatically be done if needed.
662 * The position within the chunk will automatically be incremented.
663 *
664 * @param pData destination buffer
665 * @param WordCount number of 16 Bit signed integers to read
666 * @returns number of read integers
667 * @throws RIFF::Exception if an error occurred or less than
668 * \a WordCount integers could be read!
669 * @see File::IsIOPerThread() for multi-threaded streaming
670 */
671 file_offset_t Chunk::ReadInt16(int16_t* pData, file_offset_t WordCount) {
672 #if DEBUG_RIFF
673 std::cout << "Chunk::ReadInt16(int16_t*,file_offset_t)" << std::endl;
674 #endif // DEBUG_RIFF
675 return ReadSceptical(pData, WordCount, 2);
676 }
677
678 /**
679 * Writes \a WordCount number of 16 Bit signed integer words from the
680 * buffer pointed by \a pData to the chunk's body, directly to the
681 * actual "physical" file. The position within the chunk will
682 * automatically be incremented. Note: you cannot write beyond the
683 * boundaries of the chunk, to append data to the chunk call Resize()
684 * before.
685 *
686 * @param pData source buffer (containing the data)
687 * @param WordCount number of 16 Bit signed integers to write
688 * @returns number of written integers
689 * @throws RIFF::Exception if an IO error occurred
690 * @see Resize()
691 * @see File::IsIOPerThread() for multi-threaded streaming
692 */
693 file_offset_t Chunk::WriteInt16(int16_t* pData, file_offset_t WordCount) {
694 return Write(pData, WordCount, 2);
695 }
696
697 /**
698 * Reads \a WordCount number of 16 Bit unsigned integer words and copies
699 * it into the buffer pointed by \a pData. The buffer has to be
700 * allocated. Endian correction will automatically be done if needed.
701 * The position within the chunk will automatically be incremented.
702 *
703 * @param pData destination buffer
704 * @param WordCount number of 8 Bit unsigned integers to read
705 * @returns number of read integers
706 * @throws RIFF::Exception if an error occurred or less than
707 * \a WordCount integers could be read!
708 * @see File::IsIOPerThread() for multi-threaded streaming
709 */
710 file_offset_t Chunk::ReadUint16(uint16_t* pData, file_offset_t WordCount) {
711 #if DEBUG_RIFF
712 std::cout << "Chunk::ReadUint16(uint16_t*,file_offset_t)" << std::endl;
713 #endif // DEBUG_RIFF
714 return ReadSceptical(pData, WordCount, 2);
715 }
716
717 /**
718 * Writes \a WordCount number of 16 Bit unsigned integer words from the
719 * buffer pointed by \a pData to the chunk's body, directly to the
720 * actual "physical" file. The position within the chunk will
721 * automatically be incremented. Note: you cannot write beyond the
722 * boundaries of the chunk, to append data to the chunk call Resize()
723 * before.
724 *
725 * @param pData source buffer (containing the data)
726 * @param WordCount number of 16 Bit unsigned integers to write
727 * @returns number of written integers
728 * @throws RIFF::Exception if an IO error occurred
729 * @see Resize()
730 * @see File::IsIOPerThread() for multi-threaded streaming
731 */
732 file_offset_t Chunk::WriteUint16(uint16_t* pData, file_offset_t WordCount) {
733 return Write(pData, WordCount, 2);
734 }
735
736 /**
737 * Reads \a WordCount number of 32 Bit signed integer words and copies
738 * it into the buffer pointed by \a pData. The buffer has to be
739 * allocated. Endian correction will automatically be done if needed.
740 * The position within the chunk will automatically be incremented.
741 *
742 * @param pData destination buffer
743 * @param WordCount number of 32 Bit signed integers to read
744 * @returns number of read integers
745 * @throws RIFF::Exception if an error occurred or less than
746 * \a WordCount integers could be read!
747 * @see File::IsIOPerThread() for multi-threaded streaming
748 */
749 file_offset_t Chunk::ReadInt32(int32_t* pData, file_offset_t WordCount) {
750 #if DEBUG_RIFF
751 std::cout << "Chunk::ReadInt32(int32_t*,file_offset_t)" << std::endl;
752 #endif // DEBUG_RIFF
753 return ReadSceptical(pData, WordCount, 4);
754 }
755
756 /**
757 * Writes \a WordCount number of 32 Bit signed integer words from the
758 * buffer pointed by \a pData to the chunk's body, directly to the
759 * actual "physical" file. The position within the chunk will
760 * automatically be incremented. Note: you cannot write beyond the
761 * boundaries of the chunk, to append data to the chunk call Resize()
762 * before.
763 *
764 * @param pData source buffer (containing the data)
765 * @param WordCount number of 32 Bit signed integers to write
766 * @returns number of written integers
767 * @throws RIFF::Exception if an IO error occurred
768 * @see Resize()
769 * @see File::IsIOPerThread() for multi-threaded streaming
770 */
771 file_offset_t Chunk::WriteInt32(int32_t* pData, file_offset_t WordCount) {
772 return Write(pData, WordCount, 4);
773 }
774
775 /**
776 * Reads \a WordCount number of 32 Bit unsigned integer words and copies
777 * it into the buffer pointed by \a pData. The buffer has to be
778 * allocated. Endian correction will automatically be done if needed.
779 * The position within the chunk will automatically be incremented.
780 *
781 * @param pData destination buffer
782 * @param WordCount number of 32 Bit unsigned integers to read
783 * @returns number of read integers
784 * @throws RIFF::Exception if an error occurred or less than
785 * \a WordCount integers could be read!
786 * @see File::IsIOPerThread() for multi-threaded streaming
787 */
788 file_offset_t Chunk::ReadUint32(uint32_t* pData, file_offset_t WordCount) {
789 #if DEBUG_RIFF
790 std::cout << "Chunk::ReadUint32(uint32_t*,file_offset_t)" << std::endl;
791 #endif // DEBUG_RIFF
792 return ReadSceptical(pData, WordCount, 4);
793 }
794
795 /**
796 * Reads a null-padded string of size characters and copies it
797 * into the string \a s. The position within the chunk will
798 * automatically be incremented.
799 *
800 * @param s destination string
801 * @param size number of characters to read
802 * @throws RIFF::Exception if an error occurred or less than
803 * \a size characters could be read!
804 * @see File::IsIOPerThread() for multi-threaded streaming
805 */
806 void Chunk::ReadString(String& s, int size) {
807 char* buf = new char[size];
808 ReadSceptical(buf, 1, size);
809 s.assign(buf, std::find(buf, buf + size, '\0'));
810 delete[] buf;
811 }
812
813 /**
814 * Writes \a WordCount number of 32 Bit unsigned integer words from the
815 * buffer pointed by \a pData to the chunk's body, directly to the
816 * actual "physical" file. The position within the chunk will
817 * automatically be incremented. Note: you cannot write beyond the
818 * boundaries of the chunk, to append data to the chunk call Resize()
819 * before.
820 *
821 * @param pData source buffer (containing the data)
822 * @param WordCount number of 32 Bit unsigned integers to write
823 * @returns number of written integers
824 * @throws RIFF::Exception if an IO error occurred
825 * @see Resize()
826 * @see File::IsIOPerThread() for multi-threaded streaming
827 */
828 file_offset_t Chunk::WriteUint32(uint32_t* pData, file_offset_t WordCount) {
829 return Write(pData, WordCount, 4);
830 }
831
832 /**
833 * Reads one 8 Bit signed integer word and increments the position within
834 * the chunk.
835 *
836 * @returns read integer word
837 * @throws RIFF::Exception if an error occurred
838 * @see File::IsIOPerThread() for multi-threaded streaming
839 */
840 int8_t Chunk::ReadInt8() {
841 #if DEBUG_RIFF
842 std::cout << "Chunk::ReadInt8()" << std::endl;
843 #endif // DEBUG_RIFF
844 int8_t word;
845 ReadSceptical(&word,1,1);
846 return word;
847 }
848
849 /**
850 * Reads one 8 Bit unsigned integer word and increments the position
851 * within the chunk.
852 *
853 * @returns read integer word
854 * @throws RIFF::Exception if an error occurred
855 * @see File::IsIOPerThread() for multi-threaded streaming
856 */
857 uint8_t Chunk::ReadUint8() {
858 #if DEBUG_RIFF
859 std::cout << "Chunk::ReadUint8()" << std::endl;
860 #endif // DEBUG_RIFF
861 uint8_t word;
862 ReadSceptical(&word,1,1);
863 return word;
864 }
865
866 /**
867 * Reads one 16 Bit signed integer word and increments the position
868 * within the chunk. Endian correction will automatically be done if
869 * needed.
870 *
871 * @returns read integer word
872 * @throws RIFF::Exception if an error occurred
873 * @see File::IsIOPerThread() for multi-threaded streaming
874 */
875 int16_t Chunk::ReadInt16() {
876 #if DEBUG_RIFF
877 std::cout << "Chunk::ReadInt16()" << std::endl;
878 #endif // DEBUG_RIFF
879 int16_t word;
880 ReadSceptical(&word,1,2);
881 return word;
882 }
883
884 /**
885 * Reads one 16 Bit unsigned integer word and increments the position
886 * within the chunk. Endian correction will automatically be done if
887 * needed.
888 *
889 * @returns read integer word
890 * @throws RIFF::Exception if an error occurred
891 * @see File::IsIOPerThread() for multi-threaded streaming
892 */
893 uint16_t Chunk::ReadUint16() {
894 #if DEBUG_RIFF
895 std::cout << "Chunk::ReadUint16()" << std::endl;
896 #endif // DEBUG_RIFF
897 uint16_t word;
898 ReadSceptical(&word,1,2);
899 return word;
900 }
901
902 /**
903 * Reads one 32 Bit signed integer word and increments the position
904 * within the chunk. Endian correction will automatically be done if
905 * needed.
906 *
907 * @returns read integer word
908 * @throws RIFF::Exception if an error occurred
909 * @see File::IsIOPerThread() for multi-threaded streaming
910 */
911 int32_t Chunk::ReadInt32() {
912 #if DEBUG_RIFF
913 std::cout << "Chunk::ReadInt32()" << std::endl;
914 #endif // DEBUG_RIFF
915 int32_t word;
916 ReadSceptical(&word,1,4);
917 return word;
918 }
919
920 /**
921 * Reads one 32 Bit unsigned integer word and increments the position
922 * within the chunk. Endian correction will automatically be done if
923 * needed.
924 *
925 * @returns read integer word
926 * @throws RIFF::Exception if an error occurred
927 * @see File::IsIOPerThread() for multi-threaded streamings
928 */
929 uint32_t Chunk::ReadUint32() {
930 #if DEBUG_RIFF
931 std::cout << "Chunk::ReadUint32()" << std::endl;
932 #endif // DEBUG_RIFF
933 uint32_t word;
934 ReadSceptical(&word,1,4);
935 return word;
936 }
937
938 /** @brief Load chunk body into RAM.
939 *
940 * Loads the whole chunk body into memory. You can modify the data in
941 * RAM and save the data by calling File::Save() afterwards.
942 *
943 * <b>Caution:</b> the buffer pointer will be invalidated once
944 * File::Save() was called. You have to call LoadChunkData() again to
945 * get a new, valid pointer whenever File::Save() was called.
946 *
947 * You can call LoadChunkData() again if you previously scheduled to
948 * enlarge this chunk with a Resize() call. In that case the buffer will
949 * be enlarged to the new, scheduled chunk size and you can already
950 * place the new chunk data to the buffer and finally call File::Save()
951 * to enlarge the chunk physically and write the new data in one rush.
952 * This approach is definitely recommended if you have to enlarge and
953 * write new data to a lot of chunks.
954 *
955 * @returns a pointer to the data in RAM on success, NULL otherwise
956 * @throws Exception if data buffer could not be enlarged
957 * @see ReleaseChunkData()
958 * @see File::IsIOPerThread() for multi-threaded streaming
959 */
960 void* Chunk::LoadChunkData() {
961 if (!pChunkData && pFile->Filename != "" /*&& ulStartPos != 0*/) {
962 File::Handle hRead = pFile->FileHandle();
963 #if POSIX
964 if (lseek(hRead, ullStartPos, SEEK_SET) == -1) return NULL;
965 #elif defined(WIN32)
966 LARGE_INTEGER liFilePos;
967 liFilePos.QuadPart = ullStartPos;
968 if (!SetFilePointerEx(hRead, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN)) return NULL;
969 #else
970 if (fseeko(hRead, ullStartPos, SEEK_SET)) return NULL;
971 #endif // POSIX
972 file_offset_t ullBufferSize = (ullCurrentChunkSize > ullNewChunkSize) ? ullCurrentChunkSize : ullNewChunkSize;
973 pChunkData = new uint8_t[ullBufferSize];
974 if (!pChunkData) return NULL;
975 memset(pChunkData, 0, ullBufferSize);
976 #if POSIX
977 file_offset_t readWords = read(hRead, pChunkData, GetSize());
978 #elif defined(WIN32)
979 DWORD readWords;
980 ReadFile(hRead, pChunkData, GetSize(), &readWords, NULL); //FIXME: won't load chunks larger than 2GB !
981 #else
982 file_offset_t readWords = fread(pChunkData, 1, GetSize(), hRead);
983 #endif // POSIX
984 if (readWords != GetSize()) {
985 delete[] pChunkData;
986 return (pChunkData = NULL);
987 }
988 ullChunkDataSize = ullBufferSize;
989 } else if (ullNewChunkSize > ullChunkDataSize) {
990 uint8_t* pNewBuffer = new uint8_t[ullNewChunkSize];
991 if (!pNewBuffer) throw Exception("Could not enlarge chunk data buffer to " + ToString(ullNewChunkSize) + " bytes");
992 memset(pNewBuffer, 0 , ullNewChunkSize);
993 if (pChunkData) {
994 memcpy(pNewBuffer, pChunkData, ullChunkDataSize);
995 delete[] pChunkData;
996 }
997 pChunkData = pNewBuffer;
998 ullChunkDataSize = ullNewChunkSize;
999 }
1000 return pChunkData;
1001 }
1002
1003 /** @brief Free loaded chunk body from RAM.
1004 *
1005 * Frees loaded chunk body data from memory (RAM). You should call
1006 * File::Save() before calling this method if you modified the data to
1007 * make the changes persistent.
1008 */
1009 void Chunk::ReleaseChunkData() {
1010 if (pChunkData) {
1011 delete[] pChunkData;
1012 pChunkData = NULL;
1013 }
1014 }
1015
1016 /** @brief Resize chunk.
1017 *
1018 * Resizes this chunk's body, that is the actual size of data possible
1019 * to be written to this chunk. This call will return immediately and
1020 * just schedule the resize operation. You should call File::Save() to
1021 * actually perform the resize operation(s) "physically" to the file.
1022 * As this can take a while on large files, it is recommended to call
1023 * Resize() first on all chunks which have to be resized and finally to
1024 * call File::Save() to perform all those resize operations in one rush.
1025 *
1026 * <b>Caution:</b> You cannot directly write to enlarged chunks before
1027 * calling File::Save() as this might exceed the current chunk's body
1028 * boundary!
1029 *
1030 * @param NewSize - new chunk body size in bytes (must be greater than zero)
1031 * @throws RIFF::Exception if \a NewSize is less than 1 or unrealistic large
1032 * @see File::Save()
1033 */
1034 void Chunk::Resize(file_offset_t NewSize) {
1035 if (NewSize == 0)
1036 throw Exception("There is at least one empty chunk (zero size): " + __resolveChunkPath(this));
1037 if ((NewSize >> 48) != 0)
1038 throw Exception("Unrealistic high chunk size detected: " + __resolveChunkPath(this));
1039 if (ullNewChunkSize == NewSize) return;
1040 ullNewChunkSize = NewSize;
1041 }
1042
1043 /** @brief Write chunk persistently e.g. to disk.
1044 *
1045 * Stores the chunk persistently to its actual "physical" file.
1046 *
1047 * @param ullWritePos - position within the "physical" file where this
1048 * chunk should be written to
1049 * @param ullCurrentDataOffset - offset of current (old) data within
1050 * the file
1051 * @param pProgress - optional: callback function for progress notification
1052 * @returns new write position in the "physical" file, that is
1053 * \a ullWritePos incremented by this chunk's new size
1054 * (including its header size of course)
1055 * @see File::IsIOPerThread() for multi-threaded streaming
1056 */
1057 file_offset_t Chunk::WriteChunk(file_offset_t ullWritePos, file_offset_t ullCurrentDataOffset, progress_t* pProgress) {
1058 const file_offset_t ullOriginalPos = ullWritePos;
1059 ullWritePos += CHUNK_HEADER_SIZE(pFile->FileOffsetSize);
1060
1061 const File::HandlePair io = pFile->FileHandlePair();
1062
1063 if (io.Mode != stream_mode_read_write)
1064 throw Exception("Cannot write list chunk, file has to be opened in read+write mode");
1065
1066 // if the whole chunk body was loaded into RAM
1067 if (pChunkData) {
1068 // make sure chunk data buffer in RAM is at least as large as the new chunk size
1069 LoadChunkData();
1070 // write chunk data from RAM persistently to the file
1071 #if POSIX
1072 lseek(io.hWrite, ullWritePos, SEEK_SET);
1073 if (write(io.hWrite, pChunkData, ullNewChunkSize) != ullNewChunkSize) {
1074 throw Exception("Writing Chunk data (from RAM) failed");
1075 }
1076 #elif defined(WIN32)
1077 LARGE_INTEGER liFilePos;
1078 liFilePos.QuadPart = ullWritePos;
1079 SetFilePointerEx(io.hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
1080 DWORD dwBytesWritten;
1081 WriteFile(io.hWrite, pChunkData, ullNewChunkSize, &dwBytesWritten, NULL); //FIXME: won't save chunks larger than 2GB !
1082 if (dwBytesWritten != ullNewChunkSize) {
1083 throw Exception("Writing Chunk data (from RAM) failed");
1084 }
1085 #else
1086 fseeko(io.hWrite, ullWritePos, SEEK_SET);
1087 if (fwrite(pChunkData, 1, ullNewChunkSize, io.hWrite) != ullNewChunkSize) {
1088 throw Exception("Writing Chunk data (from RAM) failed");
1089 }
1090 #endif // POSIX
1091 } else {
1092 // move chunk data from the end of the file to the appropriate position
1093 int8_t* pCopyBuffer = new int8_t[4096];
1094 file_offset_t ullToMove = (ullNewChunkSize < ullCurrentChunkSize) ? ullNewChunkSize : ullCurrentChunkSize;
1095 #if defined(WIN32)
1096 DWORD iBytesMoved = 1; // we have to pass it via pointer to the Windows API, thus the correct size must be ensured
1097 #else
1098 int iBytesMoved = 1;
1099 #endif
1100 for (file_offset_t ullOffset = 0; ullToMove > 0 && iBytesMoved > 0; ullOffset += iBytesMoved, ullToMove -= iBytesMoved) {
1101 iBytesMoved = (ullToMove < 4096) ? int(ullToMove) : 4096;
1102 #if POSIX
1103 lseek(io.hRead, ullStartPos + ullCurrentDataOffset + ullOffset, SEEK_SET);
1104 iBytesMoved = (int) read(io.hRead, pCopyBuffer, (size_t) iBytesMoved);
1105 lseek(io.hWrite, ullWritePos + ullOffset, SEEK_SET);
1106 iBytesMoved = (int) write(io.hWrite, pCopyBuffer, (size_t) iBytesMoved);
1107 #elif defined(WIN32)
1108 LARGE_INTEGER liFilePos;
1109 liFilePos.QuadPart = ullStartPos + ullCurrentDataOffset + ullOffset;
1110 SetFilePointerEx(io.hRead, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
1111 ReadFile(io.hRead, pCopyBuffer, iBytesMoved, &iBytesMoved, NULL);
1112 liFilePos.QuadPart = ullWritePos + ullOffset;
1113 SetFilePointerEx(io.hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
1114 WriteFile(io.hWrite, pCopyBuffer, iBytesMoved, &iBytesMoved, NULL);
1115 #else
1116 fseeko(io.hRead, ullStartPos + ullCurrentDataOffset + ullOffset, SEEK_SET);
1117 iBytesMoved = fread(pCopyBuffer, 1, iBytesMoved, io.hRead);
1118 fseeko(io.hWrite, ullWritePos + ullOffset, SEEK_SET);
1119 iBytesMoved = fwrite(pCopyBuffer, 1, iBytesMoved, io.hWrite);
1120 #endif
1121 }
1122 delete[] pCopyBuffer;
1123 if (iBytesMoved < 0) throw Exception("Writing Chunk data (from file) failed");
1124 }
1125
1126 // update this chunk's header
1127 ullCurrentChunkSize = ullNewChunkSize;
1128 WriteHeader(ullOriginalPos);
1129
1130 if (pProgress)
1131 __notify_progress(pProgress, 1.0); // notify done
1132
1133 // update chunk's position pointers
1134 ullStartPos = ullOriginalPos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize);
1135 Chunk::__resetPos();
1136
1137 // add pad byte if needed
1138 if ((ullStartPos + ullNewChunkSize) % 2 != 0) {
1139 const char cPadByte = 0;
1140 #if POSIX
1141 lseek(io.hWrite, ullStartPos + ullNewChunkSize, SEEK_SET);
1142 write(io.hWrite, &cPadByte, 1);
1143 #elif defined(WIN32)
1144 LARGE_INTEGER liFilePos;
1145 liFilePos.QuadPart = ullStartPos + ullNewChunkSize;
1146 SetFilePointerEx(io.hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
1147 DWORD dwBytesWritten;
1148 WriteFile(io.hWrite, &cPadByte, 1, &dwBytesWritten, NULL);
1149 #else
1150 fseeko(io.hWrite, ullStartPos + ullNewChunkSize, SEEK_SET);
1151 fwrite(&cPadByte, 1, 1, io.hWrite);
1152 #endif
1153 return ullStartPos + ullNewChunkSize + 1;
1154 }
1155
1156 return ullStartPos + ullNewChunkSize;
1157 }
1158
1159 void Chunk::__resetPos() {
1160 std::lock_guard<std::mutex> lock(chunkPos.mutex);
1161 chunkPos.ullPos = 0;
1162 chunkPos.byThread.clear();
1163 }
1164
1165
1166
1167 // *************** List ***************
1168 // *
1169
1170 List::List(File* pFile) : Chunk(pFile) {
1171 #if DEBUG_RIFF
1172 std::cout << "List::List(File* pFile)" << std::endl;
1173 #endif // DEBUG_RIFF
1174 pSubChunks = NULL;
1175 pSubChunksMap = NULL;
1176 }
1177
1178 List::List(File* pFile, file_offset_t StartPos, List* Parent)
1179 : Chunk(pFile, StartPos, Parent) {
1180 #if DEBUG_RIFF
1181 std::cout << "List::List(File*,file_offset_t,List*)" << std::endl;
1182 #endif // DEBUG_RIFF
1183 pSubChunks = NULL;
1184 pSubChunksMap = NULL;
1185 ReadHeader(StartPos);
1186 ullStartPos = StartPos + LIST_HEADER_SIZE(pFile->FileOffsetSize);
1187 }
1188
1189 List::List(File* pFile, List* pParent, uint32_t uiListID)
1190 : Chunk(pFile, pParent, CHUNK_ID_LIST, 0) {
1191 pSubChunks = NULL;
1192 pSubChunksMap = NULL;
1193 ListType = uiListID;
1194 }
1195
1196 List::~List() {
1197 #if DEBUG_RIFF
1198 std::cout << "List::~List()" << std::endl;
1199 #endif // DEBUG_RIFF
1200 DeleteChunkList();
1201 }
1202
1203 void List::DeleteChunkList() {
1204 if (pSubChunks) {
1205 ChunkList::iterator iter = pSubChunks->begin();
1206 ChunkList::iterator end = pSubChunks->end();
1207 while (iter != end) {
1208 delete *iter;
1209 iter++;
1210 }
1211 delete pSubChunks;
1212 pSubChunks = NULL;
1213 }
1214 if (pSubChunksMap) {
1215 delete pSubChunksMap;
1216 pSubChunksMap = NULL;
1217 }
1218 }
1219
1220 /**
1221 * Returns subchunk with chunk ID <i>\a ChunkID</i> within this chunk
1222 * list. Use this method if you expect only one subchunk of that type in
1223 * the list. It there are more than one, it's undetermined which one of
1224 * them will be returned! If there are no subchunks with that desired
1225 * chunk ID, NULL will be returned.
1226 *
1227 * @param ChunkID - chunk ID of the sought subchunk
1228 * @returns pointer to the subchunk or NULL if there is none of
1229 * that ID
1230 */
1231 Chunk* List::GetSubChunk(uint32_t ChunkID) {
1232 #if DEBUG_RIFF
1233 std::cout << "List::GetSubChunk(uint32_t)" << std::endl;
1234 #endif // DEBUG_RIFF
1235 if (!pSubChunksMap) LoadSubChunks();
1236 return (*pSubChunksMap)[ChunkID];
1237 }
1238
1239 /**
1240 * Returns sublist chunk with list type <i>\a ListType</i> within this
1241 * chunk list. Use this method if you expect only one sublist chunk of
1242 * that type in the list. If there are more than one, it's undetermined
1243 * which one of them will be returned! If there are no sublists with
1244 * that desired list type, NULL will be returned.
1245 *
1246 * @param ListType - list type of the sought sublist
1247 * @returns pointer to the sublist or NULL if there is none of
1248 * that type
1249 */
1250 List* List::GetSubList(uint32_t ListType) {
1251 #if DEBUG_RIFF
1252 std::cout << "List::GetSubList(uint32_t)" << std::endl;
1253 #endif // DEBUG_RIFF
1254 if (!pSubChunks) LoadSubChunks();
1255 ChunkList::iterator iter = pSubChunks->begin();
1256 ChunkList::iterator end = pSubChunks->end();
1257 while (iter != end) {
1258 if ((*iter)->GetChunkID() == CHUNK_ID_LIST) {
1259 List* l = (List*) *iter;
1260 if (l->GetListType() == ListType) return l;
1261 }
1262 iter++;
1263 }
1264 return NULL;
1265 }
1266
1267 /**
1268 * Returns the first subchunk within the list (which may be an ordinary
1269 * chunk as well as a list chunk). You have to call this
1270 * method before you can call GetNextSubChunk(). Recall it when you want
1271 * to start from the beginning of the list again.
1272 *
1273 * @returns pointer to the first subchunk within the list, NULL
1274 * otherwise
1275 */
1276 Chunk* List::GetFirstSubChunk() {
1277 #if DEBUG_RIFF
1278 std::cout << "List::GetFirstSubChunk()" << std::endl;
1279 #endif // DEBUG_RIFF
1280 if (!pSubChunks) LoadSubChunks();
1281 ChunksIterator = pSubChunks->begin();
1282 return (ChunksIterator != pSubChunks->end()) ? *ChunksIterator : NULL;
1283 }
1284
1285 /**
1286 * Returns the next subchunk within the list (which may be an ordinary
1287 * chunk as well as a list chunk). You have to call
1288 * GetFirstSubChunk() before you can use this method!
1289 *
1290 * @returns pointer to the next subchunk within the list or NULL if
1291 * end of list is reached
1292 */
1293 Chunk* List::GetNextSubChunk() {
1294 #if DEBUG_RIFF
1295 std::cout << "List::GetNextSubChunk()" << std::endl;
1296 #endif // DEBUG_RIFF
1297 if (!pSubChunks) return NULL;
1298 ChunksIterator++;
1299 return (ChunksIterator != pSubChunks->end()) ? *ChunksIterator : NULL;
1300 }
1301
1302 /**
1303 * Returns the first sublist within the list (that is a subchunk with
1304 * chunk ID "LIST"). You have to call this method before you can call
1305 * GetNextSubList(). Recall it when you want to start from the beginning
1306 * of the list again.
1307 *
1308 * @returns pointer to the first sublist within the list, NULL
1309 * otherwise
1310 */
1311 List* List::GetFirstSubList() {
1312 #if DEBUG_RIFF
1313 std::cout << "List::GetFirstSubList()" << std::endl;
1314 #endif // DEBUG_RIFF
1315 if (!pSubChunks) LoadSubChunks();
1316 ListIterator = pSubChunks->begin();
1317 ChunkList::iterator end = pSubChunks->end();
1318 while (ListIterator != end) {
1319 if ((*ListIterator)->GetChunkID() == CHUNK_ID_LIST) return (List*) *ListIterator;
1320 ListIterator++;
1321 }
1322 return NULL;
1323 }
1324
1325 /**
1326 * Returns the next sublist (that is a subchunk with chunk ID "LIST")
1327 * within the list. You have to call GetFirstSubList() before you can
1328 * use this method!
1329 *
1330 * @returns pointer to the next sublist within the list, NULL if
1331 * end of list is reached
1332 */
1333 List* List::GetNextSubList() {
1334 #if DEBUG_RIFF
1335 std::cout << "List::GetNextSubList()" << std::endl;
1336 #endif // DEBUG_RIFF
1337 if (!pSubChunks) return NULL;
1338 if (ListIterator == pSubChunks->end()) return NULL;
1339 ListIterator++;
1340 ChunkList::iterator end = pSubChunks->end();
1341 while (ListIterator != end) {
1342 if ((*ListIterator)->GetChunkID() == CHUNK_ID_LIST) return (List*) *ListIterator;
1343 ListIterator++;
1344 }
1345 return NULL;
1346 }
1347
1348 /**
1349 * Returns number of subchunks within the list (including list chunks).
1350 */
1351 size_t List::CountSubChunks() {
1352 if (!pSubChunks) LoadSubChunks();
1353 return pSubChunks->size();
1354 }
1355
1356 /**
1357 * Returns number of subchunks within the list with chunk ID
1358 * <i>\a ChunkId</i>.
1359 */
1360 size_t List::CountSubChunks(uint32_t ChunkID) {
1361 size_t result = 0;
1362 if (!pSubChunks) LoadSubChunks();
1363 ChunkList::iterator iter = pSubChunks->begin();
1364 ChunkList::iterator end = pSubChunks->end();
1365 while (iter != end) {
1366 if ((*iter)->GetChunkID() == ChunkID) {
1367 result++;
1368 }
1369 iter++;
1370 }
1371 return result;
1372 }
1373
1374 /**
1375 * Returns number of sublists within the list.
1376 */
1377 size_t List::CountSubLists() {
1378 return CountSubChunks(CHUNK_ID_LIST);
1379 }
1380
1381 /**
1382 * Returns number of sublists within the list with list type
1383 * <i>\a ListType</i>
1384 */
1385 size_t List::CountSubLists(uint32_t ListType) {
1386 size_t result = 0;
1387 if (!pSubChunks) LoadSubChunks();
1388 ChunkList::iterator iter = pSubChunks->begin();
1389 ChunkList::iterator end = pSubChunks->end();
1390 while (iter != end) {
1391 if ((*iter)->GetChunkID() == CHUNK_ID_LIST) {
1392 List* l = (List*) *iter;
1393 if (l->GetListType() == ListType) result++;
1394 }
1395 iter++;
1396 }
1397 return result;
1398 }
1399
1400 /** @brief Creates a new sub chunk.
1401 *
1402 * Creates and adds a new sub chunk to this list chunk. Note that the
1403 * chunk's body size given by \a ullBodySize must be greater than zero.
1404 * You have to call File::Save() to make this change persistent to the
1405 * actual file and <b>before</b> performing any data write operations
1406 * on the new chunk!
1407 *
1408 * @param uiChunkID - chunk ID of the new chunk
1409 * @param ullBodySize - size of the new chunk's body, that is its actual
1410 * data size (without header)
1411 * @throws RIFF::Exception if \a ullBodySize equals zero
1412 */
1413 Chunk* List::AddSubChunk(uint32_t uiChunkID, file_offset_t ullBodySize) {
1414 if (ullBodySize == 0) throw Exception("Chunk body size must be at least 1 byte");
1415 if (!pSubChunks) LoadSubChunks();
1416 Chunk* pNewChunk = new Chunk(pFile, this, uiChunkID, 0);
1417 pSubChunks->push_back(pNewChunk);
1418 (*pSubChunksMap)[uiChunkID] = pNewChunk;
1419 pNewChunk->Resize(ullBodySize);
1420 ullNewChunkSize += CHUNK_HEADER_SIZE(pFile->FileOffsetSize);
1421 return pNewChunk;
1422 }
1423
1424 /** @brief Moves a sub chunk witin this list.
1425 *
1426 * Moves a sub chunk from one position in this list to another
1427 * position in the same list. The pSrc chunk is placed before the
1428 * pDst chunk.
1429 *
1430 * @param pSrc - sub chunk to be moved
1431 * @param pDst - the position to move to. pSrc will be placed
1432 * before pDst. If pDst is 0, pSrc will be placed
1433 * last in list.
1434 */
1435 void List::MoveSubChunk(Chunk* pSrc, Chunk* pDst) {
1436 if (!pSubChunks) LoadSubChunks();
1437 pSubChunks->remove(pSrc);
1438 ChunkList::iterator iter = find(pSubChunks->begin(), pSubChunks->end(), pDst);
1439 pSubChunks->insert(iter, pSrc);
1440 }
1441
1442 /** @brief Moves a sub chunk from this list to another list.
1443 *
1444 * Moves a sub chunk from this list list to the end of another
1445 * list.
1446 *
1447 * @param pSrc - sub chunk to be moved
1448 * @param pDst - destination list where the chunk shall be moved to
1449 */
1450 void List::MoveSubChunk(Chunk* pSrc, List* pNewParent) {
1451 if (pNewParent == this || !pNewParent) return;
1452 if (!pSubChunks) LoadSubChunks();
1453 if (!pNewParent->pSubChunks) pNewParent->LoadSubChunks();
1454 pSubChunks->remove(pSrc);
1455 pNewParent->pSubChunks->push_back(pSrc);
1456 // update chunk id map of this List
1457 if ((*pSubChunksMap)[pSrc->GetChunkID()] == pSrc) {
1458 pSubChunksMap->erase(pSrc->GetChunkID());
1459 // try to find another chunk of the same chunk ID
1460 ChunkList::iterator iter = pSubChunks->begin();
1461 ChunkList::iterator end = pSubChunks->end();
1462 for (; iter != end; ++iter) {
1463 if ((*iter)->GetChunkID() == pSrc->GetChunkID()) {
1464 (*pSubChunksMap)[pSrc->GetChunkID()] = *iter;
1465 break; // we're done, stop search
1466 }
1467 }
1468 }
1469 // update chunk id map of other list
1470 if (!(*pNewParent->pSubChunksMap)[pSrc->GetChunkID()])
1471 (*pNewParent->pSubChunksMap)[pSrc->GetChunkID()] = pSrc;
1472 }
1473
1474 /** @brief Creates a new list sub chunk.
1475 *
1476 * Creates and adds a new list sub chunk to this list chunk. Note that
1477 * you have to add sub chunks / sub list chunks to the new created chunk
1478 * <b>before</b> trying to make this change persisten to the actual
1479 * file with File::Save()!
1480 *
1481 * @param uiListType - list ID of the new list chunk
1482 */
1483 List* List::AddSubList(uint32_t uiListType) {
1484 if (!pSubChunks) LoadSubChunks();
1485 List* pNewListChunk = new List(pFile, this, uiListType);
1486 pSubChunks->push_back(pNewListChunk);
1487 (*pSubChunksMap)[CHUNK_ID_LIST] = pNewListChunk;
1488 ullNewChunkSize += LIST_HEADER_SIZE(pFile->FileOffsetSize);
1489 return pNewListChunk;
1490 }
1491
1492 /** @brief Removes a sub chunk.
1493 *
1494 * Removes the sub chunk given by \a pSubChunk from this list and frees
1495 * it completely from RAM. The given chunk can either be a normal sub
1496 * chunk or a list sub chunk. In case the given chunk is a list chunk,
1497 * all its subchunks (if any) will be removed recursively as well. You
1498 * should call File::Save() to make this change persistent at any time.
1499 *
1500 * @param pSubChunk - sub chunk or sub list chunk to be removed
1501 */
1502 void List::DeleteSubChunk(Chunk* pSubChunk) {
1503 if (!pSubChunks) LoadSubChunks();
1504 pSubChunks->remove(pSubChunk);
1505 if ((*pSubChunksMap)[pSubChunk->GetChunkID()] == pSubChunk) {
1506 pSubChunksMap->erase(pSubChunk->GetChunkID());
1507 // try to find another chunk of the same chunk ID
1508 ChunkList::iterator iter = pSubChunks->begin();
1509 ChunkList::iterator end = pSubChunks->end();
1510 for (; iter != end; ++iter) {
1511 if ((*iter)->GetChunkID() == pSubChunk->GetChunkID()) {
1512 (*pSubChunksMap)[pSubChunk->GetChunkID()] = *iter;
1513 break; // we're done, stop search
1514 }
1515 }
1516 }
1517 delete pSubChunk;
1518 }
1519
1520 /**
1521 * Returns the actual total size in bytes (including List chunk header and
1522 * all subchunks) of this List Chunk if being stored to a file.
1523 *
1524 * @param fileOffsetSize - RIFF file offset size (in bytes) assumed when
1525 * being saved to a file
1526 */
1527 file_offset_t List::RequiredPhysicalSize(int fileOffsetSize) {
1528 if (!pSubChunks) LoadSubChunks();
1529 file_offset_t size = LIST_HEADER_SIZE(fileOffsetSize);
1530 ChunkList::iterator iter = pSubChunks->begin();
1531 ChunkList::iterator end = pSubChunks->end();
1532 for (; iter != end; ++iter)
1533 size += (*iter)->RequiredPhysicalSize(fileOffsetSize);
1534 return size;
1535 }
1536
1537 void List::ReadHeader(file_offset_t filePos) {
1538 #if DEBUG_RIFF
1539 std::cout << "List::Readheader(file_offset_t) ";
1540 #endif // DEBUG_RIFF
1541 Chunk::ReadHeader(filePos);
1542 if (ullCurrentChunkSize < 4) return;
1543 ullNewChunkSize = ullCurrentChunkSize -= 4;
1544
1545 const File::Handle hRead = pFile->FileHandle();
1546
1547 #if POSIX
1548 lseek(hRead, filePos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize), SEEK_SET);
1549 read(hRead, &ListType, 4);
1550 #elif defined(WIN32)
1551 LARGE_INTEGER liFilePos;
1552 liFilePos.QuadPart = filePos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize);
1553 SetFilePointerEx(hRead, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
1554 DWORD dwBytesRead;
1555 ReadFile(hRead, &ListType, 4, &dwBytesRead, NULL);
1556 #else
1557 fseeko(hRead, filePos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize), SEEK_SET);
1558 fread(&ListType, 4, 1, hRead);
1559 #endif // POSIX
1560 #if DEBUG_RIFF
1561 std::cout << "listType=" << convertToString(ListType) << std::endl;
1562 #endif // DEBUG_RIFF
1563 if (!pFile->bEndianNative) {
1564 //swapBytes_32(&ListType);
1565 }
1566 }
1567
1568 void List::WriteHeader(file_offset_t filePos) {
1569 // the four list type bytes officially belong the chunk's body in the RIFF format
1570 ullNewChunkSize += 4;
1571 Chunk::WriteHeader(filePos);
1572 ullNewChunkSize -= 4; // just revert the +4 incrementation
1573
1574 const File::Handle hWrite = pFile->FileWriteHandle();
1575
1576 #if POSIX
1577 lseek(hWrite, filePos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize), SEEK_SET);
1578 write(hWrite, &ListType, 4);
1579 #elif defined(WIN32)
1580 LARGE_INTEGER liFilePos;
1581 liFilePos.QuadPart = filePos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize);
1582 SetFilePointerEx(hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
1583 DWORD dwBytesWritten;
1584 WriteFile(hWrite, &ListType, 4, &dwBytesWritten, NULL);
1585 #else
1586 fseeko(hWrite, filePos + CHUNK_HEADER_SIZE(pFile->FileOffsetSize), SEEK_SET);
1587 fwrite(&ListType, 4, 1, hWrite);
1588 #endif // POSIX
1589 }
1590
1591 void List::LoadSubChunks(progress_t* pProgress) {
1592 #if DEBUG_RIFF
1593 std::cout << "List::LoadSubChunks()";
1594 #endif // DEBUG_RIFF
1595 if (!pSubChunks) {
1596 pSubChunks = new ChunkList();
1597 pSubChunksMap = new ChunkMap();
1598
1599 const File::Handle hRead = pFile->FileHandle();
1600 if (!_isValidHandle(hRead)) return;
1601
1602 const file_offset_t ullOriginalPos = GetPos();
1603 SetPos(0); // jump to beginning of list chunk body
1604 while (RemainingBytes() >= CHUNK_HEADER_SIZE(pFile->FileOffsetSize)) {
1605 Chunk* ck;
1606 uint32_t ckid;
1607 // return value check is required here to prevent a potential
1608 // garbage data use of 'ckid' below in case Read() failed
1609 if (Read(&ckid, 4, 1) != 4)
1610 throw Exception("LoadSubChunks(): Failed reading RIFF chunk ID");
1611 #if DEBUG_RIFF
1612 std::cout << " ckid=" << convertToString(ckid) << std::endl;
1613 #endif // DEBUG_RIFF
1614 const file_offset_t pos = GetPos();
1615 if (ckid == CHUNK_ID_LIST) {
1616 ck = new RIFF::List(pFile, ullStartPos + pos - 4, this);
1617 SetPos(ck->GetSize() + LIST_HEADER_SIZE(pFile->FileOffsetSize) - 4, RIFF::stream_curpos);
1618 }
1619 else { // simple chunk
1620 ck = new RIFF::Chunk(pFile, ullStartPos + pos - 4, this);
1621 SetPos(ck->GetSize() + CHUNK_HEADER_SIZE(pFile->FileOffsetSize) - 4, RIFF::stream_curpos);
1622 }
1623 pSubChunks->push_back(ck);
1624 (*pSubChunksMap)[ckid] = ck;
1625 if (GetPos() % 2 != 0) SetPos(1, RIFF::stream_curpos); // jump over pad byte
1626 }
1627 SetPos(ullOriginalPos); // restore position before this call
1628 }
1629 if (pProgress)
1630 __notify_progress(pProgress, 1.0); // notify done
1631 }
1632
1633 void List::LoadSubChunksRecursively(progress_t* pProgress) {
1634 const int n = (int) CountSubLists();
1635 int i = 0;
1636 for (List* pList = GetFirstSubList(); pList; pList = GetNextSubList(), ++i) {
1637 if (pProgress) {
1638 // divide local progress into subprogress
1639 progress_t subprogress;
1640 __divide_progress(pProgress, &subprogress, n, i);
1641 // do the actual work
1642 pList->LoadSubChunksRecursively(&subprogress);
1643 } else
1644 pList->LoadSubChunksRecursively(NULL);
1645 }
1646 if (pProgress)
1647 __notify_progress(pProgress, 1.0); // notify done
1648 }
1649
1650 /** @brief Write list chunk persistently e.g. to disk.
1651 *
1652 * Stores the list chunk persistently to its actual "physical" file. All
1653 * subchunks (including sub list chunks) will be stored recursively as
1654 * well.
1655 *
1656 * @param ullWritePos - position within the "physical" file where this
1657 * list chunk should be written to
1658 * @param ullCurrentDataOffset - offset of current (old) data within
1659 * the file
1660 * @param pProgress - optional: callback function for progress notification
1661 * @returns new write position in the "physical" file, that is
1662 * \a ullWritePos incremented by this list chunk's new size
1663 * (including its header size of course)
1664 */
1665 file_offset_t List::WriteChunk(file_offset_t ullWritePos, file_offset_t ullCurrentDataOffset, progress_t* pProgress) {
1666 const file_offset_t ullOriginalPos = ullWritePos;
1667 ullWritePos += LIST_HEADER_SIZE(pFile->FileOffsetSize);
1668
1669 if (pFile->GetMode() != stream_mode_read_write)
1670 throw Exception("Cannot write list chunk, file has to be opened in read+write mode");
1671
1672 // write all subchunks (including sub list chunks) recursively
1673 if (pSubChunks) {
1674 size_t i = 0;
1675 const size_t n = pSubChunks->size();
1676 for (ChunkList::iterator iter = pSubChunks->begin(), end = pSubChunks->end(); iter != end; ++iter, ++i) {
1677 if (pProgress) {
1678 // divide local progress into subprogress for loading current Instrument
1679 progress_t subprogress;
1680 __divide_progress(pProgress, &subprogress, n, i);
1681 // do the actual work
1682 ullWritePos = (*iter)->WriteChunk(ullWritePos, ullCurrentDataOffset, &subprogress);
1683 } else
1684 ullWritePos = (*iter)->WriteChunk(ullWritePos, ullCurrentDataOffset, NULL);
1685 }
1686 }
1687
1688 // update this list chunk's header
1689 ullCurrentChunkSize = ullNewChunkSize = ullWritePos - ullOriginalPos - LIST_HEADER_SIZE(pFile->FileOffsetSize);
1690 WriteHeader(ullOriginalPos);
1691
1692 // offset of this list chunk in new written file may have changed
1693 ullStartPos = ullOriginalPos + LIST_HEADER_SIZE(pFile->FileOffsetSize);
1694
1695 if (pProgress)
1696 __notify_progress(pProgress, 1.0); // notify done
1697
1698 return ullWritePos;
1699 }
1700
1701 void List::__resetPos() {
1702 Chunk::__resetPos();
1703 if (pSubChunks) {
1704 for (ChunkList::iterator iter = pSubChunks->begin(), end = pSubChunks->end(); iter != end; ++iter) {
1705 (*iter)->__resetPos();
1706 }
1707 }
1708 }
1709
1710 /**
1711 * Returns string representation of the lists's id
1712 */
1713 String List::GetListTypeString() const {
1714 return convertToString(ListType);
1715 }
1716
1717
1718
1719 // *************** File ***************
1720 // *
1721
1722 /** @brief Create new RIFF file.
1723 *
1724 * Use this constructor if you want to create a new RIFF file completely
1725 * "from scratch". Note: there must be no empty chunks or empty list
1726 * chunks when trying to make the new RIFF file persistent with Save()!
1727 *
1728 * Note: by default, the RIFF file will be saved in native endian
1729 * format; that is, as a RIFF file on little-endian machines and
1730 * as a RIFX file on big-endian. To change this behaviour, call
1731 * SetByteOrder() before calling Save().
1732 *
1733 * @param FileType - four-byte identifier of the RIFF file type
1734 * @see AddSubChunk(), AddSubList(), SetByteOrder()
1735 */
1736 File::File(uint32_t FileType)
1737 : List(this), bIsNewFile(true), Layout(layout_standard),
1738 FileOffsetPreference(offset_size_auto)
1739 {
1740 io.isPerThread = false;
1741 #if defined(WIN32)
1742 io.hRead = io.hWrite = INVALID_HANDLE_VALUE;
1743 #else
1744 io.hRead = io.hWrite = 0;
1745 #endif
1746 io.Mode = stream_mode_closed;
1747 bEndianNative = true;
1748 ListType = FileType;
1749 FileOffsetSize = 4;
1750 ullStartPos = RIFF_HEADER_SIZE(FileOffsetSize);
1751 }
1752
1753 /** @brief Load existing RIFF file.
1754 *
1755 * Loads an existing RIFF file with all its chunks.
1756 *
1757 * @param path - path and file name of the RIFF file to open
1758 * @throws RIFF::Exception if error occurred while trying to load the
1759 * given RIFF file
1760 */
1761 File::File(const String& path)
1762 : List(this), Filename(path), bIsNewFile(false), Layout(layout_standard),
1763 FileOffsetPreference(offset_size_auto)
1764 {
1765 #if DEBUG_RIFF
1766 std::cout << "File::File("<<path<<")" << std::endl;
1767 #endif // DEBUG_RIFF
1768 bEndianNative = true;
1769 FileOffsetSize = 4;
1770 try {
1771 __openExistingFile(path);
1772 if (ChunkID != CHUNK_ID_RIFF && ChunkID != CHUNK_ID_RIFX) {
1773 throw RIFF::Exception("Not a RIFF file");
1774 }
1775 }
1776 catch (...) {
1777 Cleanup();
1778 throw;
1779 }
1780 }
1781
1782 /** @brief Load existing RIFF-like file.
1783 *
1784 * Loads an existing file, which is not a "real" RIFF file, but similar to
1785 * an ordinary RIFF file.
1786 *
1787 * A "real" RIFF file contains at top level a List chunk either with chunk
1788 * ID "RIFF" or "RIFX". The simple constructor above expects this to be
1789 * case, and if it finds the toplevel List chunk to have another chunk ID
1790 * than one of those two expected ones, it would throw an Exception and
1791 * would refuse to load the file accordingly.
1792 *
1793 * Since there are however a lot of file formats which use the same simple
1794 * principles of the RIFF format, with another toplevel List chunk ID
1795 * though, you can use this alternative constructor here to be able to load
1796 * and handle those files in the same way as you would do with "real" RIFF
1797 * files.
1798 *
1799 * @param path - path and file name of the RIFF-alike file to be opened
1800 * @param FileType - expected toplevel List chunk ID (this is the very
1801 * first chunk found in the file)
1802 * @param Endian - whether the file uses little endian or big endian layout
1803 * @param layout - general file structure type
1804 * @param fileOffsetSize - (optional) preference how to deal with large files
1805 * @throws RIFF::Exception if error occurred while trying to load the
1806 * given RIFF-alike file
1807 */
1808 File::File(const String& path, uint32_t FileType, endian_t Endian, layout_t layout, offset_size_t fileOffsetSize)
1809 : List(this), Filename(path), bIsNewFile(false), Layout(layout),
1810 FileOffsetPreference(fileOffsetSize)
1811 {
1812 SetByteOrder(Endian);
1813 if (fileOffsetSize < offset_size_auto || fileOffsetSize > offset_size_64bit)
1814 throw Exception("Invalid RIFF::offset_size_t");
1815 FileOffsetSize = 4;
1816 try {
1817 __openExistingFile(path, &FileType);
1818 }
1819 catch (...) {
1820 Cleanup();
1821 throw;
1822 }
1823 }
1824
1825 /**
1826 * Opens an already existing RIFF file or RIFF-alike file. This method
1827 * shall only be called once (in a File class constructor).
1828 *
1829 * @param path - path and file name of the RIFF file or RIFF-alike file to
1830 * be opened
1831 * @param FileType - (optional) expected chunk ID of first chunk in file
1832 * @throws RIFF::Exception if error occurred while trying to load the
1833 * given RIFF file or RIFF-alike file
1834 */
1835 void File::__openExistingFile(const String& path, uint32_t* FileType) {
1836 io.isPerThread = false;
1837 #if POSIX
1838 io.hRead = io.hWrite = open(path.c_str(), O_RDONLY | O_NONBLOCK);
1839 if (io.hRead == -1) {
1840 io.hRead = io.hWrite = 0;
1841 String sError = strerror(errno);
1842 throw RIFF::Exception("Can't open \"" + path + "\": " + sError);
1843 }
1844 #elif defined(WIN32)
1845 io.hRead = io.hWrite = CreateFile(
1846 path.c_str(), GENERIC_READ,
1847 FILE_SHARE_READ | FILE_SHARE_WRITE,
1848 NULL, OPEN_EXISTING,
1849 FILE_ATTRIBUTE_NORMAL |
1850 FILE_FLAG_RANDOM_ACCESS, NULL
1851 );
1852 if (io.hRead == INVALID_HANDLE_VALUE) {
1853 io.hRead = io.hWrite = INVALID_HANDLE_VALUE;
1854 throw RIFF::Exception("Can't open \"" + path + "\"");
1855 }
1856 #else
1857 io.hRead = io.hWrite = fopen(path.c_str(), "rb");
1858 if (!io.hRead) throw RIFF::Exception("Can't open \"" + path + "\"");
1859 #endif // POSIX
1860 io.Mode = stream_mode_read;
1861
1862 // determine RIFF file offset size to be used (in RIFF chunk headers)
1863 // according to the current file offset preference
1864 FileOffsetSize = FileOffsetSizeFor(GetCurrentFileSize());
1865
1866 switch (Layout) {
1867 case layout_standard: // this is a normal RIFF file
1868 ullStartPos = RIFF_HEADER_SIZE(FileOffsetSize);
1869 ReadHeader(0);
1870 if (FileType && ChunkID != *FileType)
1871 throw RIFF::Exception("Invalid file container ID");
1872 break;
1873 case layout_flat: // non-standard RIFF-alike file
1874 ullStartPos = 0;
1875 ullNewChunkSize = ullCurrentChunkSize = GetCurrentFileSize();
1876 if (FileType) {
1877 uint32_t ckid;
1878 if (Read(&ckid, 4, 1) != 4) {
1879 throw RIFF::Exception("Invalid file header ID (premature end of header)");
1880 } else if (ckid != *FileType) {
1881 String s = " (expected '" + convertToString(*FileType) + "' but got '" + convertToString(ckid) + "')";
1882 throw RIFF::Exception("Invalid file header ID" + s);
1883 }
1884 SetPos(0); // reset to first byte of file
1885 }
1886 LoadSubChunks();
1887 break;
1888 }
1889 }
1890
1891 String File::GetFileName() const {
1892 return Filename;
1893 }
1894
1895 void File::SetFileName(const String& path) {
1896 Filename = path;
1897 }
1898
1899 /**
1900 * This is an internal-only method which must not be used by any application
1901 * and might change at any time.
1902 *
1903 * Resolves and returns a reference (memory location) of the RIFF file's
1904 * internal and OS dependent file I/O handles which are intended to be used
1905 * by the calling thread.
1906 */
1907 File::HandlePair& File::FileHandlePairUnsafeRef() {
1908 if (io.byThread.empty()) return io;
1909 const std::thread::id tid = std::this_thread::get_id();
1910 const auto it = io.byThread.find(tid);
1911 return (it != io.byThread.end()) ?
1912 it->second :
1913 io.byThread[tid] = {
1914 #if defined(WIN32)
1915 .hRead = INVALID_HANDLE_VALUE,
1916 .hWrite = INVALID_HANDLE_VALUE,
1917 #else
1918 .hRead = 0,
1919 .hWrite = 0,
1920 #endif
1921 .Mode = stream_mode_closed
1922 };
1923 }
1924
1925 /**
1926 * Returns the OS dependent file I/O read and write handles intended to be
1927 * used by the calling thread.
1928 *
1929 * @see File::IsIOPerThread() for multi-threaded streaming
1930 */
1931 File::HandlePair File::FileHandlePair() const {
1932 std::lock_guard<std::mutex> lock(io.mutex);
1933 if (io.byThread.empty()) return io;
1934 const std::thread::id tid = std::this_thread::get_id();
1935 const auto it = io.byThread.find(tid);
1936 return (it != io.byThread.end()) ?
1937 it->second :
1938 io.byThread[tid] = {
1939 #if defined(WIN32)
1940 .hRead = INVALID_HANDLE_VALUE,
1941 .hWrite = INVALID_HANDLE_VALUE,
1942 #else
1943 .hRead = 0,
1944 .hWrite = 0,
1945 #endif
1946 .Mode = stream_mode_closed
1947 };
1948 }
1949
1950 /**
1951 * Returns the OS dependent file I/O read handle intended to be used by the
1952 * calling thread.
1953 *
1954 * @see File::IsIOPerThread() for multi-threaded streaming
1955 */
1956 File::Handle File::FileHandle() const {
1957 return FileHandlePair().hRead;
1958 }
1959
1960 /**
1961 * Returns the OS dependent file I/O write handle intended to be used by the
1962 * calling thread.
1963 *
1964 * @see File::IsIOPerThread() for multi-threaded streaming
1965 */
1966 File::Handle File::FileWriteHandle() const {
1967 return FileHandlePair().hWrite;
1968 }
1969
1970 /**
1971 * Returns the file I/O mode currently being available for the calling
1972 * thread for this RIFF file (either ro, rw or closed).
1973 *
1974 * @see File::IsIOPerThread() for multi-threaded streaming
1975 */
1976 stream_mode_t File::GetMode() const {
1977 return FileHandlePair().Mode;
1978 }
1979
1980 layout_t File::GetLayout() const {
1981 return Layout;
1982 }
1983
1984 /** @brief Change file access mode.
1985 *
1986 * Changes files access mode either to read-only mode or to read/write
1987 * mode.
1988 *
1989 * @param NewMode - new file access mode
1990 * @returns true if mode was changed, false if current mode already
1991 * equals new mode
1992 * @throws RIFF::Exception if file could not be opened in requested file
1993 * access mode or if passed access mode is unknown
1994 * @see File::IsIOPerThread() for multi-threaded streaming
1995 */
1996 bool File::SetMode(stream_mode_t NewMode) {
1997 bool bResetPos = false;
1998 bool res = SetModeInternal(NewMode, &bResetPos);
1999 // resetting position must be handled outside above's call to avoid any
2000 // potential dead lock, as SetModeInternal() acquires a lock and
2001 // __resetPos() acquires a lock by itself (not a theoretical issue!)
2002 if (bResetPos)
2003 __resetPos(); // reset read/write position of ALL 'Chunk' objects
2004 return res;
2005 }
2006
2007 bool File::SetModeInternal(stream_mode_t NewMode, bool* pResetPos) {
2008 std::lock_guard<std::mutex> lock(io.mutex);
2009 HandlePair& io = FileHandlePairUnsafeRef();
2010 if (NewMode != io.Mode) {
2011 switch (NewMode) {
2012 case stream_mode_read:
2013 if (_isValidHandle(io.hRead)) _close(io.hRead);
2014 #if POSIX
2015 io.hRead = io.hWrite = open(Filename.c_str(), O_RDONLY | O_NONBLOCK);
2016 if (io.hRead == -1) {
2017 io.hRead = io.hWrite = 0;
2018 String sError = strerror(errno);
2019 throw Exception("Could not (re)open file \"" + Filename + "\" in read mode: " + sError);
2020 }
2021 #elif defined(WIN32)
2022 io.hRead = io.hWrite = CreateFile(
2023 Filename.c_str(), GENERIC_READ,
2024 FILE_SHARE_READ | FILE_SHARE_WRITE,
2025 NULL, OPEN_EXISTING,
2026 FILE_ATTRIBUTE_NORMAL |
2027 FILE_FLAG_RANDOM_ACCESS,
2028 NULL
2029 );
2030 if (io.hRead == INVALID_HANDLE_VALUE) {
2031 io.hRead = io.hWrite = INVALID_HANDLE_VALUE;
2032 throw Exception("Could not (re)open file \"" + Filename + "\" in read mode");
2033 }
2034 #else
2035 io.hRead = io.hWrite = fopen(Filename.c_str(), "rb");
2036 if (!io.hRead) throw Exception("Could not (re)open file \"" + Filename + "\" in read mode");
2037 #endif
2038 *pResetPos = true;
2039 break;
2040 case stream_mode_read_write:
2041 if (_isValidHandle(io.hRead)) _close(io.hRead);
2042 #if POSIX
2043 io.hRead = io.hWrite = open(Filename.c_str(), O_RDWR | O_NONBLOCK);
2044 if (io.hRead == -1) {
2045 io.hRead = io.hWrite = open(Filename.c_str(), O_RDONLY | O_NONBLOCK);
2046 String sError = strerror(errno);
2047 throw Exception("Could not open file \"" + Filename + "\" in read+write mode: " + sError);
2048 }
2049 #elif defined(WIN32)
2050 io.hRead = io.hWrite = CreateFile(
2051 Filename.c_str(),
2052 GENERIC_READ | GENERIC_WRITE,
2053 FILE_SHARE_READ,
2054 NULL, OPEN_ALWAYS,
2055 FILE_ATTRIBUTE_NORMAL |
2056 FILE_FLAG_RANDOM_ACCESS,
2057 NULL
2058 );
2059 if (io.hRead == INVALID_HANDLE_VALUE) {
2060 io.hRead = io.hWrite = CreateFile(
2061 Filename.c_str(), GENERIC_READ,
2062 FILE_SHARE_READ | FILE_SHARE_WRITE,
2063 NULL, OPEN_EXISTING,
2064 FILE_ATTRIBUTE_NORMAL |
2065 FILE_FLAG_RANDOM_ACCESS,
2066 NULL
2067 );
2068 throw Exception("Could not (re)open file \"" + Filename + "\" in read+write mode");
2069 }
2070 #else
2071 io.hRead = io.hWrite = fopen(Filename.c_str(), "r+b");
2072 if (!io.hRead) {
2073 io.hRead = io.hWrite = fopen(Filename.c_str(), "rb");
2074 throw Exception("Could not open file \"" + Filename + "\" in read+write mode");
2075 }
2076 #endif
2077 *pResetPos = true;
2078 break;
2079 case stream_mode_closed:
2080 if (_isValidHandle(io.hRead)) _close(io.hRead);
2081 if (_isValidHandle(io.hWrite)) _close(io.hWrite);
2082 #if POSIX
2083 io.hRead = io.hWrite = 0;
2084 #elif defined(WIN32)
2085 io.hRead = io.hWrite = INVALID_HANDLE_VALUE;
2086 #else
2087 io.hRead = io.hWrite = NULL;
2088 #endif
2089 break;
2090 default:
2091 throw Exception("Unknown file access mode");
2092 }
2093 io.Mode = NewMode;
2094 return true;
2095 }
2096 return false;
2097 }
2098
2099 /** @brief Set the byte order to be used when saving.
2100 *
2101 * Set the byte order to be used in the file. A value of
2102 * endian_little will create a RIFF file, endian_big a RIFX file
2103 * and endian_native will create a RIFF file on little-endian
2104 * machines and RIFX on big-endian machines.
2105 *
2106 * @param Endian - endianess to use when file is saved.
2107 */
2108 void File::SetByteOrder(endian_t Endian) {
2109 #if WORDS_BIGENDIAN
2110 bEndianNative = Endian != endian_little;
2111 #else
2112 bEndianNative = Endian != endian_big;
2113 #endif
2114 }
2115
2116 /** @brief Save changes to same file.
2117 *
2118 * Make all changes of all chunks persistent by writing them to the
2119 * actual (same) file.
2120 *
2121 * @param pProgress - optional: callback function for progress notification
2122 * @throws RIFF::Exception if there is an empty chunk or empty list
2123 * chunk or any kind of IO error occurred
2124 * @see File::IsIOPerThread() for multi-threaded streaming
2125 */
2126 void File::Save(progress_t* pProgress) {
2127 //TODO: implementation for the case where first chunk is not a global container (List chunk) is not implemented yet (i.e. Korg files)
2128 if (Layout == layout_flat)
2129 throw Exception("Saving a RIFF file with layout_flat is not implemented yet");
2130
2131 // make sure the RIFF tree is built (from the original file)
2132 if (pProgress) {
2133 // divide progress into subprogress
2134 progress_t subprogress;
2135 __divide_progress(pProgress, &subprogress, 3.f, 0.f); // arbitrarily subdivided into 1/3 of total progress
2136 // do the actual work
2137 LoadSubChunksRecursively(&subprogress);
2138 // notify subprogress done
2139 __notify_progress(&subprogress, 1.f);
2140 } else
2141 LoadSubChunksRecursively(NULL);
2142
2143 // reopen file in write mode
2144 SetMode(stream_mode_read_write);
2145
2146 // get the current file size as it is now still physically stored on disk
2147 const file_offset_t workingFileSize = GetCurrentFileSize();
2148
2149 // get the overall file size required to save this file
2150 const file_offset_t newFileSize = GetRequiredFileSize(FileOffsetPreference);
2151
2152 // determine whether this file will yield in a large file (>=4GB) and
2153 // the RIFF file offset size to be used accordingly for all chunks
2154 FileOffsetSize = FileOffsetSizeFor(newFileSize);
2155
2156 const HandlePair io = FileHandlePair();
2157 const Handle hRead = io.hRead;
2158 const Handle hWrite = io.hWrite;
2159
2160 // to be able to save the whole file without loading everything into
2161 // RAM and without having to store the data in a temporary file, we
2162 // enlarge the file with the overall positive file size change,
2163 // then move current data towards the end of the file by the calculated
2164 // positive file size difference and finally update / rewrite the file
2165 // by copying the old data back to the right position at the beginning
2166 // of the file
2167
2168 // if there are positive size changes...
2169 file_offset_t positiveSizeDiff = 0;
2170 if (newFileSize > workingFileSize) {
2171 positiveSizeDiff = newFileSize - workingFileSize;
2172
2173 // divide progress into subprogress
2174 progress_t subprogress;
2175 if (pProgress)
2176 __divide_progress(pProgress, &subprogress, 3.f, 1.f); // arbitrarily subdivided into 1/3 of total progress
2177
2178 // ... we enlarge this file first ...
2179 ResizeFile(newFileSize);
2180
2181 // ... and move current data by the same amount towards end of file.
2182 int8_t* pCopyBuffer = new int8_t[4096];
2183 #if defined(WIN32)
2184 DWORD iBytesMoved = 1; // we have to pass it via pointer to the Windows API, thus the correct size must be ensured
2185 #else
2186 ssize_t iBytesMoved = 1;
2187 #endif
2188 for (file_offset_t ullPos = workingFileSize, iNotif = 0; iBytesMoved > 0; ++iNotif) {
2189 iBytesMoved = (ullPos < 4096) ? ullPos : 4096;
2190 ullPos -= iBytesMoved;
2191 #if POSIX
2192 lseek(hRead, ullPos, SEEK_SET);
2193 iBytesMoved = read(hRead, pCopyBuffer, iBytesMoved);
2194 lseek(hWrite, ullPos + positiveSizeDiff, SEEK_SET);
2195 iBytesMoved = write(hWrite, pCopyBuffer, iBytesMoved);
2196 #elif defined(WIN32)
2197 LARGE_INTEGER liFilePos;
2198 liFilePos.QuadPart = ullPos;
2199 SetFilePointerEx(hRead, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
2200 ReadFile(hRead, pCopyBuffer, iBytesMoved, &iBytesMoved, NULL);
2201 liFilePos.QuadPart = ullPos + positiveSizeDiff;
2202 SetFilePointerEx(hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN);
2203 WriteFile(hWrite, pCopyBuffer, iBytesMoved, &iBytesMoved, NULL);
2204 #else
2205 fseeko(hRead, ullPos, SEEK_SET);
2206 iBytesMoved = fread(pCopyBuffer, 1, iBytesMoved, hRead);
2207 fseeko(hWrite, ullPos + positiveSizeDiff, SEEK_SET);
2208 iBytesMoved = fwrite(pCopyBuffer, 1, iBytesMoved, hWrite);
2209 #endif
2210 if (pProgress && !(iNotif % 8) && iBytesMoved > 0)
2211 __notify_progress(&subprogress, float(workingFileSize - ullPos) / float(workingFileSize));
2212 }
2213 delete[] pCopyBuffer;
2214 if (iBytesMoved < 0) throw Exception("Could not modify file while trying to enlarge it");
2215
2216 if (pProgress)
2217 __notify_progress(&subprogress, 1.f); // notify subprogress done
2218 }
2219
2220 // rebuild / rewrite complete RIFF tree ...
2221
2222 // divide progress into subprogress
2223 progress_t subprogress;
2224 if (pProgress)
2225 __divide_progress(pProgress, &subprogress, 3.f, 2.f); // arbitrarily subdivided into 1/3 of total progress
2226 // do the actual work
2227 const file_offset_t finalSize = WriteChunk(0, positiveSizeDiff, pProgress ? &subprogress : NULL);
2228 const file_offset_t finalActualSize = __GetFileSize(hWrite);
2229 // notify subprogress done
2230 if (pProgress)
2231 __notify_progress(&subprogress, 1.f);
2232
2233 // resize file to the final size
2234 if (finalSize < finalActualSize) ResizeFile(finalSize);
2235
2236 if (pProgress)
2237 __notify_progress(pProgress, 1.0); // notify done
2238 }
2239
2240 /** @brief Save changes to another file.
2241 *
2242 * Make all changes of all chunks persistent by writing them to another
2243 * file. <b>Caution:</b> this method is optimized for writing to
2244 * <b>another</b> file, do not use it to save the changes to the same
2245 * file! Use File::Save() in that case instead! Ignoring this might
2246 * result in a corrupted file, especially in case chunks were resized!
2247 *
2248 * After calling this method, this File object will be associated with
2249 * the new file (given by \a path) afterwards.
2250 *
2251 * @param path - path and file name where everything should be written to
2252 * @param pProgress - optional: callback function for progress notification
2253 * @see File::IsIOPerThread() for multi-threaded streaming
2254 */
2255 void File::Save(const String& path, progress_t* pProgress) {
2256 //TODO: we should make a check here if somebody tries to write to the same file and automatically call the other Save() method in that case
2257
2258 //TODO: implementation for the case where first chunk is not a global container (List chunk) is not implemented yet (i.e. Korg files)
2259 if (Layout == layout_flat)
2260 throw Exception("Saving a RIFF file with layout_flat is not implemented yet");
2261
2262 // make sure the RIFF tree is built (from the original file)
2263 if (pProgress) {
2264 // divide progress into subprogress
2265 progress_t subprogress;
2266 __divide_progress(pProgress, &subprogress, 2.f, 0.f); // arbitrarily subdivided into 1/2 of total progress
2267 // do the actual work
2268 LoadSubChunksRecursively(&subprogress);
2269 // notify subprogress done
2270 __notify_progress(&subprogress, 1.f);
2271 } else
2272 LoadSubChunksRecursively(NULL);
2273
2274 if (!bIsNewFile) SetMode(stream_mode_read);
2275
2276 {
2277 std::lock_guard<std::mutex> lock(io.mutex);
2278 HandlePair& io = FileHandlePairUnsafeRef();
2279
2280 // open the other (new) file for writing and truncate it to zero size
2281 #if POSIX
2282 io.hWrite = open(path.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR | S_IRGRP);
2283 if (io.hWrite == -1) {
2284 io.hWrite = io.hRead;
2285 String sError = strerror(errno);
2286 throw Exception("Could not open file \"" + path + "\" for writing: " + sError);
2287 }
2288 #elif defined(WIN32)
2289 io.hWrite = CreateFile(
2290 path.c_str(), GENERIC_WRITE, FILE_SHARE_READ,
2291 NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL |
2292 FILE_FLAG_RANDOM_ACCESS, NULL
2293 );
2294 if (io.hWrite == INVALID_HANDLE_VALUE) {
2295 io.hWrite = io.hRead;
2296 throw Exception("Could not open file \"" + path + "\" for writing");
2297 }
2298 #else
2299 io.hWrite = fopen(path.c_str(), "w+b");
2300 if (!io.hWrite) {
2301 io.hWrite = io.hRead;
2302 throw Exception("Could not open file \"" + path + "\" for writing");
2303 }
2304 #endif // POSIX
2305 io.Mode = stream_mode_read_write;
2306 }
2307
2308 // get the overall file size required to save this file
2309 const file_offset_t newFileSize = GetRequiredFileSize(FileOffsetPreference);
2310
2311 // determine whether this file will yield in a large file (>=4GB) and
2312 // the RIFF file offset size to be used accordingly for all chunks
2313 FileOffsetSize = FileOffsetSizeFor(newFileSize);
2314
2315 // write complete RIFF tree to the other (new) file
2316 file_offset_t ullTotalSize;
2317 if (pProgress) {
2318 // divide progress into subprogress
2319 progress_t subprogress;
2320 __divide_progress(pProgress, &subprogress, 2.f, 1.f); // arbitrarily subdivided into 1/2 of total progress
2321 // do the actual work
2322 ullTotalSize = WriteChunk(0, 0, &subprogress);
2323 // notify subprogress done
2324 __notify_progress(&subprogress, 1.f);
2325 } else
2326 ullTotalSize = WriteChunk(0, 0, NULL);
2327
2328 const file_offset_t ullActualSize = __GetFileSize(FileWriteHandle());
2329
2330 // resize file to the final size (if the file was originally larger)
2331 if (ullActualSize > ullTotalSize) ResizeFile(ullTotalSize);
2332
2333 {
2334 std::lock_guard<std::mutex> lock(io.mutex);
2335 HandlePair& io = FileHandlePairUnsafeRef();
2336
2337 if (_isValidHandle(io.hWrite)) _close(io.hWrite);
2338 io.hWrite = io.hRead;
2339
2340 // associate new file with this File object from now on
2341 Filename = path;
2342 bIsNewFile = false;
2343 io.Mode = (stream_mode_t) -1; // Just set it to an undefined mode ...
2344 }
2345 SetMode(stream_mode_read_write); // ... so SetMode() has to reopen the file handles.
2346
2347 if (pProgress)
2348 __notify_progress(pProgress, 1.0); // notify done
2349 }
2350
2351 void File::ResizeFile(file_offset_t ullNewSize) {
2352 const Handle hWrite = FileWriteHandle();
2353 #if POSIX
2354 if (ftruncate(hWrite, ullNewSize) < 0)
2355 throw Exception("Could not resize file \"" + Filename + "\"");
2356 #elif defined(WIN32)
2357 LARGE_INTEGER liFilePos;
2358 liFilePos.QuadPart = ullNewSize;
2359 if (
2360 !SetFilePointerEx(hWrite, liFilePos, NULL/*new pos pointer*/, FILE_BEGIN) ||
2361 !SetEndOfFile(hWrite)
2362 ) throw Exception("Could not resize file \"" + Filename + "\"");
2363 #else
2364 # error Sorry, this version of libgig only supports POSIX and Windows systems yet.
2365 # error Reason: portable implementation of RIFF::File::ResizeFile() is missing (yet)!
2366 #endif
2367 }
2368
2369 File::~File() {
2370 #if DEBUG_RIFF
2371 std::cout << "File::~File()" << std::endl;
2372 #endif // DEBUG_RIFF
2373 Cleanup();
2374 }
2375
2376 /**
2377 * Returns @c true if this file has been created new from scratch and
2378 * has not been stored to disk yet.
2379 */
2380 bool File::IsNew() const {
2381 return bIsNewFile;
2382 }
2383
2384 void File::Cleanup() {
2385 const Handle hRead = FileHandle();
2386 if (_isValidHandle(hRead)) _close(hRead);
2387 DeleteChunkList();
2388 pFile = NULL;
2389 }
2390
2391 /**
2392 * Returns the current size of this file (in bytes) as it is currently
2393 * yet stored on disk. If this file does not yet exist on disk (i.e. when
2394 * this RIFF File has just been created from scratch and Save() has not
2395 * been called yet) then this method returns 0.
2396 */
2397 file_offset_t File::GetCurrentFileSize() const {
2398 file_offset_t size = 0;
2399 const Handle hRead = FileHandle();
2400 try {
2401 size = __GetFileSize(hRead);
2402 } catch (...) {
2403 size = 0;
2404 }
2405 return size;
2406 }
2407
2408 /**
2409 * Returns the required size (in bytes) for this RIFF File to be saved to
2410 * disk. The precise size of the final file on disk depends on the RIFF
2411 * file offset size actually used internally in all headers of the RIFF
2412 * chunks. By default libgig handles the required file offset size
2413 * automatically for you; that means it is using 32 bit offsets for files
2414 * smaller than 4 GB and 64 bit offsets for files equal or larger than
2415 * 4 GB. You may however also override this default behavior by passing the
2416 * respective option to the RIFF File constructor to force one particular
2417 * offset size. In the latter case this method will return the file size
2418 * for the requested forced file offset size that will be used when calling
2419 * Save() later on.
2420 *
2421 * You may also use the overridden method below to get the file size for
2422 * an arbitrary other file offset size instead.
2423 *
2424 * @see offset_size_t
2425 * @see GetFileOffsetSize()
2426 */
2427 file_offset_t File::GetRequiredFileSize() {
2428 return GetRequiredFileSize(FileOffsetPreference);
2429 }
2430
2431 /**
2432 * Returns the rquired size (in bytes) for this RIFF file to be saved to
2433 * disk, assuming the passed @a fileOffsestSize would be used for the
2434 * Save() operation.
2435 *
2436 * This overridden method essentialy behaves like the above method, with
2437 * the difference that you must provide a specific RIFF @a fileOffsetSize
2438 * for calculating the theoretical final file size.
2439 *
2440 * @see GetFileOffsetSize()
2441 */
2442 file_offset_t File::GetRequiredFileSize(offset_size_t fileOffsetSize) {
2443 switch (fileOffsetSize) {
2444 case offset_size_auto: {
2445 file_offset_t fileSize = GetRequiredFileSize(offset_size_32bit);
2446 if (fileSize >> 32)
2447 return GetRequiredFileSize(offset_size_64bit);
2448 else
2449 return fileSize;
2450 }
2451 case offset_size_32bit: break;
2452 case offset_size_64bit: break;
2453 default: throw Exception("Internal error: Invalid RIFF::offset_size_t");
2454 }
2455 return RequiredPhysicalSize(FileOffsetSize);
2456 }
2457
2458 int File::FileOffsetSizeFor(file_offset_t fileSize) const {
2459 switch (FileOffsetPreference) {
2460 case offset_size_auto:
2461 return (fileSize >> 32) ? 8 : 4;
2462 case offset_size_32bit:
2463 return 4;
2464 case offset_size_64bit:
2465 return 8;
2466 default:
2467 throw Exception("Internal error: Invalid RIFF::offset_size_t");
2468 }
2469 }
2470
2471 /**
2472 * Returns the current size (in bytes) of file offsets stored in the
2473 * headers of all chunks of this file.
2474 *
2475 * Most RIFF files are using 32 bit file offsets internally, which limits
2476 * them to a maximum file size of less than 4 GB though. In contrast to the
2477 * common standard, this RIFF File class implementation supports handling of
2478 * RIFF files equal or larger than 4 GB. In such cases 64 bit file offsets
2479 * have to be used in all headers of all RIFF Chunks when being stored to a
2480 * physical file. libgig by default automatically selects the correct file
2481 * offset size for you. You may however also force one particular file
2482 * offset size by supplying the respective option to the RIFF::File
2483 * constructor.
2484 *
2485 * This method can be used to check which RIFF file offset size is currently
2486 * being used for this RIFF File.
2487 *
2488 * @returns current RIFF file offset size used (in bytes)
2489 * @see offset_size_t
2490 */
2491 int File::GetFileOffsetSize() const {
2492 return FileOffsetSize;
2493 }
2494
2495 /**
2496 * Returns the required size (in bytes) of file offsets stored in the
2497 * headers of all chunks of this file if the current RIFF tree would be
2498 * saved to disk by calling Save().
2499 *
2500 * See GetFileOffsetSize() for mor details about RIFF file offsets.
2501 *
2502 * @returns RIFF file offset size required (in bytes) if being saved
2503 * @see offset_size_t
2504 */
2505 int File::GetRequiredFileOffsetSize() {
2506 return FileOffsetSizeFor(GetCurrentFileSize());
2507 }
2508
2509 /** @brief Whether file streams are independent for each thread.
2510 *
2511 * All file I/O operations like reading from a RIFF chunk body (e.g. by
2512 * calling Chunk::Read(), Chunk::ReadInt8()), writing to a RIFF chunk body
2513 * (e.g. by calling Chunk::Write(), Chunk::WriteInt8()) or saving the
2514 * current RIFF tree structure to some file (e.g. by calling Save())
2515 * operate on a file I/O stream state, i.e. there is a "current" file
2516 * read/write position and reading/writing by a certain amount of bytes
2517 * automatically advances that "current" file position.
2518 *
2519 * By default there is only one stream state for a RIFF::File object, which
2520 * is not an issue as long as only one thread is using the RIFF::File
2521 * object at a time (which might also be the case in a collaborative /
2522 * coroutine multi-threaded scenario).
2523 *
2524 * If however a RIFF::File object is read/written @b simultaniously by
2525 * multiple threads this can lead to undefined behaviour as the individual
2526 * threads would concurrently alter the file stream position. For such a
2527 * concurrent multithreaded file I/O scenario @c SetIOPerThread(true) might
2528 * be enabled which causes each thread to automatically use its own file
2529 * stream state.
2530 *
2531 * @returns true if each thread has its own file stream state
2532 * (default: false)
2533 * @see SetIOPerThread()
2534 */
2535 bool File::IsIOPerThread() const {
2536 //NOTE: Not caring about atomicity here at all, for three reasons:
2537 // 1. SetIOPerThread() is assumed to be called only once for the entire
2538 // life time of a RIFF::File, usually very early at its lifetime, and
2539 // hence a change to isPerThread should already safely be propagated
2540 // before any other thread would actually read this boolean flag.
2541 // 2. This method is called very frequently, and therefore any
2542 // synchronization techique would hurt runtime efficiency.
2543 // 3. Using even a mutex lock here might easily cause a deadlock due to
2544 // other locks been taken in this .cpp file, i.e. at a higher call
2545 // stack level (and this is the main reason why I removed it here).
2546 return io.isPerThread;
2547 }
2548
2549 /** @brief Enable/disable file streams being independent for each thread.
2550 *
2551 * By enabling this feature (default off) each thread will automatically use
2552 * its own file I/O stream state for allowing simultanious multi-threaded
2553 * file read/write operations.
2554 *
2555 * @b NOTE: After having enabled this feature, the individual threads must
2556 * at least once check GetState() and if their file I/O stream is yet closed
2557 * they must call SetMode() (i.e. once) respectively to open their own file
2558 * handles before being able to use any of the Read() or Write() methods.
2559 *
2560 * @param enable - @c true: one independent stream state per thread,
2561 * @c false: only one stream in total shared by @b all threads
2562 * @see IsIOPerThread() for more details about this feature
2563 */
2564 void File::SetIOPerThread(bool enable) {
2565 std::lock_guard<std::mutex> lock(io.mutex);
2566 if (!io.byThread.empty() == enable) return;
2567 io.isPerThread = enable;
2568 if (enable) {
2569 const std::thread::id tid = std::this_thread::get_id();
2570 io.byThread[tid] = io;
2571 } else {
2572 // retain an arbitrary handle pair, close all other handle pairs
2573 for (auto it = io.byThread.begin(); it != io.byThread.end(); ++it) {
2574 if (it == io.byThread.begin()) {
2575 io.hRead = it->second.hRead;
2576 io.hWrite = it->second.hWrite;
2577 } else {
2578 _close(it->second.hRead);
2579 _close(it->second.hWrite);
2580 }
2581 }
2582 io.byThread.clear();
2583 }
2584 }
2585
2586 #if POSIX
2587 file_offset_t File::__GetFileSize(int hFile) const {
2588 struct stat filestat;
2589 if (fstat(hFile, &filestat) == -1)
2590 throw Exception("POSIX FS error: could not determine file size");
2591 return filestat.st_size;
2592 }
2593 #elif defined(WIN32)
2594 file_offset_t File::__GetFileSize(HANDLE hFile) const {
2595 LARGE_INTEGER size;
2596 if (!GetFileSizeEx(hFile, &size))
2597 throw Exception("Windows FS error: could not determine file size");
2598 return size.QuadPart;
2599 }
2600 #else // standard C functions
2601 file_offset_t File::__GetFileSize(FILE* hFile) const {
2602 off_t curpos = ftello(hFile);
2603 if (fseeko(hFile, 0, SEEK_END) == -1)
2604 throw Exception("FS error: could not determine file size");
2605 off_t size = ftello(hFile);
2606 fseeko(hFile, curpos, SEEK_SET);
2607 return size;
2608 }
2609 #endif
2610
2611
2612 // *************** Exception ***************
2613 // *
2614
2615 Exception::Exception() {
2616 }
2617
2618 Exception::Exception(String format, ...) {
2619 va_list arg;
2620 va_start(arg, format);
2621 Message = assemble(format, arg);
2622 va_end(arg);
2623 }
2624
2625 Exception::Exception(String format, va_list arg) {
2626 Message = assemble(format, arg);
2627 }
2628
2629 void Exception::PrintMessage() {
2630 std::cout << "RIFF::Exception: " << Message << std::endl;
2631 }
2632
2633 String Exception::assemble(String format, va_list arg) {
2634 char* buf = NULL;
2635 vasprintf(&buf, format.c_str(), arg);
2636 String s = buf;
2637 free(buf);
2638 return s;
2639 }
2640
2641
2642 // *************** functions ***************
2643 // *
2644
2645 /**
2646 * Returns the name of this C++ library. This is usually "libgig" of
2647 * course. This call is equivalent to DLS::libraryName() and
2648 * gig::libraryName().
2649 */
2650 String libraryName() {
2651 return PACKAGE;
2652 }
2653
2654 /**
2655 * Returns version of this C++ library. This call is equivalent to
2656 * DLS::libraryVersion() and gig::libraryVersion().
2657 */
2658 String libraryVersion() {
2659 return VERSION;
2660 }
2661
2662 } // namespace RIFF

  ViewVC Help
Powered by ViewVC