/[svn]/libgig/trunk/src/Serialization.h
ViewVC logotype

Contents of /libgig/trunk/src/Serialization.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3168 - (show annotations) (download) (as text)
Tue May 9 19:12:32 2017 UTC (6 years, 9 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 29345 byte(s)
- More ancient compiler backward compatibility fixes.

1 /***************************************************************************
2 * *
3 * Copyright (C) 2017 Christian Schoenebeck *
4 * <cuse@users.sourceforge.net> *
5 * *
6 * This library is part of libgig. *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef LIBGIG_SERIALIZATION_H
25 #define LIBGIG_SERIALIZATION_H
26
27 #ifdef HAVE_CONFIG_H
28 # include <config.h>
29 #endif
30
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <typeinfo>
34 #include <string>
35 #include <vector>
36 #include <map>
37 #include <time.h>
38 #if __cplusplus < 201103L
39 # include <tr1/type_traits>
40 # define LIBGIG_IS_CLASS(type) std::tr1::__is_union_or_class<type>::value //NOTE: without compiler support we cannot distinguish union from class
41 #else
42 # define LIBGIG_IS_CLASS(type) __is_class(type)
43 #endif
44
45 /** @brief Serialization / deserialization framework.
46 *
47 * See class Archive as starting point for how to implement serialization and
48 * deserialization with your application.
49 *
50 * The classes in this namespace allow to serialize and deserialize native
51 * C++ objects in a portable, easy and flexible way. Serialization is a
52 * technique that allows to transform the current state and data of native
53 * (in this case C++) objects into a data stream (including all other objects
54 * the "serialized" objects relate to); the data stream may then be sent over
55 * "wire" (for example via network connection to another computer, which might
56 * also have a different OS, CPU architecture, native memory word size and
57 * endian type); and finally the data stream would be "deserialized" on that
58 * receiver side, that is transformed again to modify all objects and data
59 * structures on receiver side to resemble the objects' state and data as it
60 * was originally on sender side.
61 *
62 * In contrast to many other already existing serialization frameworks, this
63 * implementation has a strong focus on robustness regarding long-term changes
64 * to the serialized C++ classes of the serialized objects. So even if sender
65 * and receiver are using different versions of their serialized/deserialized
66 * C++ classes, structures and data types (thus having different data structure
67 * layout to a certain extent), this framework aims trying to automatically
68 * adapt its serialization and deserialization process in that case so that
69 * the deserialized objects on receiver side would still reflect the overall
70 * expected states and overall data as intended by the sender. For being able to
71 * do so, this framework stores all kind of additional information about each
72 * serialized object and each data structure member (for example name of each
73 * data structure member, but also the offset of each member within its
74 * containing data structure, precise data types, and more).
75 *
76 * Like most other serialization frameworks, this frameworks does not require a
77 * tree-structured layout of the serialized data structures. So it automatically
78 * handles also cyclic dependencies between serialized data structures
79 * correctly, without i.e. causing endless recursion or redundancy.
80 *
81 * Additionally this framework also allows partial deserialization. Which means
82 * the receiver side may for example decide that it wants to restrict
83 * deserialization so that it would only modify certain objects or certain
84 * members by the deserialization process, leaving all other ones untouched.
85 * So this partial deserialization technique for example allows to implement
86 * flexible preset features for applications in a powerful and easy way.
87 */
88 namespace Serialization {
89
90 // just symbol prototyping
91 class DataType;
92 class Object;
93 class Member;
94 class Archive;
95 class ObjectPool;
96 class Exception;
97
98 typedef std::string String;
99
100 typedef std::vector<uint8_t> RawData;
101
102 typedef void* ID;
103
104 typedef uint32_t Version;
105
106 enum operation_t {
107 OPERATION_NONE,
108 OPERATION_SERIALIZE,
109 OPERATION_DESERIALIZE
110 };
111
112 enum time_base_t {
113 LOCAL_TIME,
114 UTC_TIME
115 };
116
117 template<typename T>
118 bool IsEnum(const T& data) {
119 #if __cplusplus < 201103L
120 return std::tr1::is_enum<T>::value;
121 #else
122 return __is_enum(T);
123 #endif
124 }
125
126 template<typename T>
127 bool IsUnion(const T& data) {
128 #if __cplusplus < 201103L
129 return false; // without compiler support we cannot distinguish union from class
130 #else
131 return __is_union(T);
132 #endif
133 }
134
135 template<typename T>
136 bool IsClass(const T& data) {
137 #if __cplusplus < 201103L
138 return std::tr1::__is_union_or_class<T>::value; // without compiler support we cannot distinguish union from class
139 #else
140 return __is_class(T);
141 #endif
142 }
143
144 /*template<typename T>
145 bool IsTrivial(T data) {
146 return __is_trivial(T);
147 }*/
148
149 /*template<typename T>
150 bool IsPOD(T data) {
151 return __is_pod(T);
152 }*/
153
154 /** @brief Unique identifier for one specific C++ object, member or fundamental variable.
155 *
156 * Reflects a unique identifier for one specific serialized C++ class
157 * instance, struct instance, member, primitive pointer, or fundamental
158 * variables.
159 */
160 class UID {
161 public:
162 ID id;
163 size_t size;
164
165 bool isValid() const;
166 operator bool() const { return isValid(); }
167 //bool operator()() const { return isValid(); }
168 bool operator==(const UID& other) const { return id == other.id && size == other.size; }
169 bool operator!=(const UID& other) const { return id != other.id || size != other.size; }
170 bool operator<(const UID& other) const { return id < other.id || (id == other.id && size < other.size); }
171 bool operator>(const UID& other) const { return id > other.id || (id == other.id && size > other.size); }
172
173 template<typename T>
174 static UID from(const T& obj) {
175 return Resolver<T>::resolve(obj);
176 }
177
178 protected:
179 // UID resolver for non-pointer types
180 template<typename T>
181 struct Resolver {
182 static UID resolve(const T& obj) {
183 const UID uid = { (ID) &obj, sizeof(obj) };
184 return uid;
185 }
186 };
187
188 // UID resolver for pointer types (of 1st degree)
189 template<typename T>
190 struct Resolver<T*> {
191 static UID resolve(const T* const & obj) {
192 const UID uid = { (ID) obj, sizeof(*obj) };
193 return uid;
194 }
195 };
196 };
197
198 /**
199 * Reflects an invalid UID and behaves similar to NULL as invalid value for
200 * pointer types.
201 */
202 extern const UID NO_UID;
203
204 typedef std::vector<UID> UIDChain;
205
206 // prototyping of private internal friend functions
207 static String _encodePrimitiveValue(const Object& obj);
208 static DataType _popDataTypeBlob(const char*& p, const char* end);
209 static Member _popMemberBlob(const char*& p, const char* end);
210 static Object _popObjectBlob(const char*& p, const char* end);
211 static void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
212 static String _primitiveObjectValueToString(const Object& obj);
213
214 /** @brief Abstract reflection of a native C++ data type.
215 *
216 * Provides detailed information about a C++ data type, whether it is a
217 * fundamental C/C++ data type (like int, float, char, etc.) or custom
218 * defined data type like a C++ class, struct, enum, as well as other
219 * features of the data type like its native memory size and more.
220 */
221 class DataType {
222 public:
223 DataType();
224 size_t size() const { return m_size; }
225 bool isValid() const;
226 bool isPointer() const;
227 bool isClass() const;
228 bool isPrimitive() const;
229 bool isInteger() const;
230 bool isReal() const;
231 bool isBool() const;
232 bool isEnum() const;
233 bool isSigned() const;
234 operator bool() const { return isValid(); }
235 //bool operator()() const { return isValid(); }
236 bool operator==(const DataType& other) const;
237 bool operator!=(const DataType& other) const;
238 bool operator<(const DataType& other) const;
239 bool operator>(const DataType& other) const;
240 String asLongDescr() const;
241 String baseTypeName() const { return m_baseTypeName; }
242 String customTypeName() const { return m_customTypeName; }
243
244 template<typename T>
245 static DataType dataTypeOf(const T& data) {
246 return Resolver<T>::resolve(data);
247 }
248
249 protected:
250 DataType(bool isPointer, int size, String baseType, String customType = "");
251
252 template<typename T, bool T_isPointer>
253 struct ResolverBase {
254 static DataType resolve(const T& data) {
255 const std::type_info& type = typeid(data);
256 const int sz = sizeof(data);
257
258 // for primitive types we are using our own type names instead of
259 // using std:::type_info::name(), because the precise output of the
260 // latter may vary between compilers
261 if (type == typeid(int8_t)) return DataType(T_isPointer, sz, "int8");
262 if (type == typeid(uint8_t)) return DataType(T_isPointer, sz, "uint8");
263 if (type == typeid(int16_t)) return DataType(T_isPointer, sz, "int16");
264 if (type == typeid(uint16_t)) return DataType(T_isPointer, sz, "uint16");
265 if (type == typeid(int32_t)) return DataType(T_isPointer, sz, "int32");
266 if (type == typeid(uint32_t)) return DataType(T_isPointer, sz, "uint32");
267 if (type == typeid(int64_t)) return DataType(T_isPointer, sz, "int64");
268 if (type == typeid(uint64_t)) return DataType(T_isPointer, sz, "uint64");
269 if (type == typeid(bool)) return DataType(T_isPointer, sz, "bool");
270 if (type == typeid(float)) return DataType(T_isPointer, sz, "real32");
271 if (type == typeid(double)) return DataType(T_isPointer, sz, "real64");
272
273 if (IsEnum(data)) return DataType(T_isPointer, sz, "enum", rawCppTypeNameOf(data));
274 if (IsUnion(data)) return DataType(T_isPointer, sz, "union", rawCppTypeNameOf(data));
275 if (IsClass(data)) return DataType(T_isPointer, sz, "class", rawCppTypeNameOf(data));
276
277 return DataType();
278 }
279 };
280
281 // DataType resolver for non-pointer types
282 template<typename T>
283 struct Resolver : ResolverBase<T,false> {
284 static DataType resolve(const T& data) {
285 return ResolverBase<T,false>::resolve(data);
286 }
287 };
288
289 // DataType resolver for pointer types (of 1st degree)
290 template<typename T>
291 struct Resolver<T*> : ResolverBase<T,true> {
292 static DataType resolve(const T*& data) {
293 return ResolverBase<T,true>::resolve(*data);
294 }
295 };
296
297 template<typename T>
298 static String rawCppTypeNameOf(const T& data) {
299 #if defined _MSC_VER // Microsoft compiler ...
300 # warning type_info::raw_name() demangling has not been tested yet with Microsoft compiler! Feedback appreciated!
301 String name = typeid(data).raw_name(); //NOTE: I haven't checked yet what MSC actually outputs here exactly
302 #else // i.e. especially GCC and clang ...
303 String name = typeid(data).name();
304 #endif
305 //while (!name.empty() && name[0] >= 0 && name[0] <= 9)
306 // name = name.substr(1);
307 return name;
308 }
309
310 private:
311 String m_baseTypeName;
312 String m_customTypeName;
313 int m_size;
314 bool m_isPointer;
315
316 friend DataType _popDataTypeBlob(const char*& p, const char* end);
317 friend class Archive;
318 };
319
320 /** @brief Abstract reflection of a native C++ class/struct's member variable.
321 *
322 * Provides detailed information about a specific C++ member variable of
323 * serialized C++ object, like its C++ data type, offset of this member
324 * within its containing data structure/class, its C++ member variable name
325 * and more.
326 */
327 class Member {
328 public:
329 Member();
330 UID uid() const { return m_uid; }
331 String name() const { return m_name; }
332 size_t offset() const { return m_offset; }
333 const DataType& type() const { return m_type; }
334 bool isValid() const;
335 operator bool() const { return isValid(); }
336 //bool operator()() const { return isValid(); }
337 bool operator==(const Member& other) const;
338 bool operator!=(const Member& other) const;
339 bool operator<(const Member& other) const;
340 bool operator>(const Member& other) const;
341
342 protected:
343 Member(String name, UID uid, size_t offset, DataType type);
344 friend class Archive;
345
346 private:
347 UID m_uid;
348 size_t m_offset;
349 String m_name;
350 DataType m_type;
351
352 friend Member _popMemberBlob(const char*& p, const char* end);
353 };
354
355 /** @brief Abstract reflection of a native C++ class/struct instance.
356 *
357 * Provides detailed information about a specific serialized C++ object,
358 * like its C++ member variables, its C++ class/struct name, its native
359 * memory size and more.
360 */
361 class Object {
362 public:
363 Object();
364 Object(UIDChain uidChain, DataType type);
365
366 UID uid(int index = 0) const {
367 return (index < m_uid.size()) ? m_uid[index] : NO_UID;
368 }
369
370 const UIDChain& uidChain() const { return m_uid; }
371 const DataType& type() const { return m_type; }
372 const RawData& rawData() const { return m_data; }
373
374 Version version() const { return m_version; }
375
376 void setVersion(Version v) {
377 m_version = v;
378 }
379
380 Version minVersion() const { return m_minVersion; }
381
382 void setMinVersion(Version v) {
383 m_minVersion = v;
384 }
385
386 bool isVersionCompatibleTo(const Object& other) const;
387
388 std::vector<Member>& members() { return m_members; }
389 const std::vector<Member>& members() const { return m_members; }
390 Member memberNamed(String name) const;
391 Member memberByUID(const UID& uid) const;
392 std::vector<Member> membersOfType(const DataType& type) const;
393 int sequenceIndexOf(const Member& member) const;
394 bool isValid() const;
395 operator bool() const { return isValid(); }
396 //bool operator()() const { return isValid(); }
397 bool operator==(const Object& other) const;
398 bool operator!=(const Object& other) const;
399 bool operator<(const Object& other) const;
400 bool operator>(const Object& other) const;
401
402 protected:
403 void remove(const Member& member);
404
405 private:
406 DataType m_type;
407 UIDChain m_uid;
408 Version m_version;
409 Version m_minVersion;
410 RawData m_data;
411 std::vector<Member> m_members;
412
413 friend String _encodePrimitiveValue(const Object& obj);
414 friend Object _popObjectBlob(const char*& p, const char* end);
415 friend void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
416 friend String _primitiveObjectValueToString(const Object& obj);
417 friend class Archive;
418 };
419
420 /** @brief Destination container for serialization, and source container for deserialization.
421 *
422 * This is the main class for implementing serialization and deserialization
423 * with your C++ application. This framework does not require a a tree
424 * structured layout of your C++ objects being serialized/deserialized, it
425 * uses a concept of a "root" object though. So to start serialization
426 * construct an empty Archive object and then instruct it to serialize your
427 * C++ objects by pointing it to your "root" object:
428 * @code
429 * Archive a;
430 * a.serialize(&myRootObject);
431 * @endcode
432 * Or if you prefer the look of operator based code:
433 * @code
434 * Archive a;
435 * a << myRootObject;
436 * @endcode
437 * The Archive object will then serialize all members of the passed C++
438 * object, and will recursively serialize all other C++ objects which it
439 * contains or points to. So the root object is the starting point for the
440 * overall serialization. After the serialize() method returned, you can
441 * then access the serialized data stream by calling rawData() and send that
442 * data stream over "wire", or store it on disk or whatever you may intend
443 * to do with it.
444 *
445 * Then on receiver side likewise, you create a new Archive object, pass the
446 * received data stream i.e. via constructor to the Archive object and call
447 * deserialize() by pointing it to the root object on receiver side:
448 * @code
449 * Archive a(rawDataStream);
450 * a.deserialize(&myRootObject);
451 * @endcode
452 * Or with operator instead:
453 * @code
454 * Archive a(rawDataStream);
455 * a >> myRootObject;
456 * @endcode
457 * Now this framework automatically handles serialization and
458 * deserialization of fundamental data types automatically for you (like
459 * i.e. char, int, long int, float, double, etc.). However for your own
460 * custom C++ classes and structs you must implement one method which
461 * defines which members of your class should actually be serialized and
462 * deserialized. That method to be added must have the following signature:
463 * @code
464 * void serialize(Serialization::Archive* archive);
465 * @endcode
466 * So let's say you have the following simple data structures:
467 * @code
468 * struct Foo {
469 * int a;
470 * bool b;
471 * double c;
472 * };
473 *
474 * struct Bar {
475 * char one;
476 * float two;
477 * Foo foo1;
478 * Foo* pFoo2;
479 * Foo* pFoo3DontTouchMe; // shall not be serialized/deserialized
480 * };
481 * @endcode
482 * So in order to be able to serialize and deserialize objects of those two
483 * structures you would first add the mentioned method to each struct
484 * definition (i.e. in your header file):
485 * @code
486 * struct Foo {
487 * int a;
488 * bool b;
489 * double c;
490 *
491 * void serialize(Serialization::Archive* archive);
492 * };
493 *
494 * struct Bar {
495 * char one;
496 * float two;
497 * Foo foo1;
498 * Foo* pFoo2;
499 * Foo* pFoo3DontTouchMe; // shall not be serialized/deserialized
500 *
501 * void serialize(Serialization::Archive* archive);
502 * };
503 * @endcode
504 * And then you would implement those two new methods like this (i.e. in
505 * your .cpp file):
506 * @code
507 * #define SRLZ(member) \
508 * archive->serializeMember(*this, member, #member);
509 *
510 * void Foo::serialize(Serialization::Archive* archive) {
511 * SRLZ(a);
512 * SRLZ(b);
513 * SRLZ(c);
514 * }
515 *
516 * void Bar::serialize(Serialization::Archive* archive) {
517 * SRLZ(one);
518 * SRLZ(two);
519 * SRLZ(foo1);
520 * SRLZ(pFoo2);
521 * // leaving out pFoo3DontTouchMe here
522 * }
523 * @endcode
524 * Now when you serialize such a Bar object, this framework will also
525 * automatically serialize the respective Foo object(s) accordingly, also
526 * for the pFoo2 pointer for instance (as long as it is not a NULL pointer
527 * that is).
528 *
529 * Note that there is only one method that you need to implement. So the
530 * respective serialize() method implementation of your classes/structs are
531 * both called for serialization, as well as for deserialization!
532 */
533 class Archive {
534 public:
535 Archive();
536 Archive(const RawData& data);
537 Archive(const uint8_t* data, size_t size);
538 virtual ~Archive();
539
540 template<typename T>
541 void serialize(const T* obj) {
542 m_operation = OPERATION_SERIALIZE;
543 m_allObjects.clear();
544 m_rawData.clear();
545 m_root = UID::from(obj);
546 const_cast<T*>(obj)->serialize(this);
547 encode();
548 m_operation = OPERATION_NONE;
549 }
550
551 template<typename T>
552 void deserialize(T* obj) {
553 Archive a;
554 m_operation = OPERATION_DESERIALIZE;
555 obj->serialize(&a);
556 a.m_root = UID::from(obj);
557 Syncer s(a, *this);
558 m_operation = OPERATION_NONE;
559 }
560
561 template<typename T>
562 void operator<<(const T& obj) {
563 serialize(&obj);
564 }
565
566 template<typename T>
567 void operator>>(T& obj) {
568 deserialize(&obj);
569 }
570
571 const RawData& rawData();
572 virtual String rawDataFormat() const;
573
574 template<typename T_classType, typename T_memberType>
575 void serializeMember(const T_classType& nativeObject, const T_memberType& nativeMember, const char* memberName) {
576 const size_t offset =
577 ((const uint8_t*)(const void*)&nativeMember) -
578 ((const uint8_t*)(const void*)&nativeObject);
579 const UIDChain uids = UIDChainResolver<T_memberType>(nativeMember);
580 const DataType type = DataType::dataTypeOf(nativeMember);
581 const Member member(memberName, uids[0], offset, type);
582 const UID parentUID = UID::from(nativeObject);
583 Object& parent = m_allObjects[parentUID];
584 if (!parent) {
585 const UIDChain uids = UIDChainResolver<T_classType>(nativeObject);
586 const DataType type = DataType::dataTypeOf(nativeObject);
587 parent = Object(uids, type);
588 }
589 parent.members().push_back(member);
590 const Object obj(uids, type);
591 const bool bExistsAlready = m_allObjects.count(uids[0]);
592 const bool isValidObject = obj;
593 const bool bExistingObjectIsInvalid = !m_allObjects[uids[0]];
594 if (!bExistsAlready || (bExistingObjectIsInvalid && isValidObject)) {
595 m_allObjects[uids[0]] = obj;
596 // recurse serialization for all members of this member
597 // (only for struct/class types, noop for primitive types)
598 SerializationRecursion<T_memberType>::serializeObject(this, nativeMember);
599 }
600 }
601
602 virtual void decode(const RawData& data);
603 virtual void decode(const uint8_t* data, size_t size);
604 void clear();
605 bool isModified() const;
606 void removeMember(Object& parent, const Member& member);
607 void remove(const Object& obj);
608 Object& rootObject();
609 Object& objectByUID(const UID& uid);
610 void setAutoValue(Object& object, String value);
611 void setIntValue(Object& object, int64_t value);
612 void setRealValue(Object& object, double value);
613 void setBoolValue(Object& object, bool value);
614 void setEnumValue(Object& object, uint64_t value);
615 String valueAsString(const Object& object);
616 String name() const;
617 void setName(String name);
618 String comment() const;
619 void setComment(String comment);
620 time_t timeStampCreated() const;
621 time_t timeStampModified() const;
622 tm dateTimeCreated(time_base_t base = LOCAL_TIME) const;
623 tm dateTimeModified(time_base_t base = LOCAL_TIME) const;
624
625 protected:
626 // UID resolver for non-pointer types
627 template<typename T>
628 class UIDChainResolver {
629 public:
630 UIDChainResolver(const T& data) {
631 m_uid.push_back(UID::from(data));
632 }
633
634 operator UIDChain() const { return m_uid; }
635 UIDChain operator()() const { return m_uid; }
636 private:
637 UIDChain m_uid;
638 };
639
640 // UID resolver for pointer types (of 1st degree)
641 template<typename T>
642 class UIDChainResolver<T*> {
643 public:
644 UIDChainResolver(const T*& data) {
645 const UID uids[2] = {
646 { &data, sizeof(data) },
647 { data, sizeof(*data) }
648 };
649 m_uid.push_back(uids[0]);
650 m_uid.push_back(uids[1]);
651 }
652
653 operator UIDChain() const { return m_uid; }
654 UIDChain operator()() const { return m_uid; }
655 private:
656 UIDChain m_uid;
657 };
658
659 // SerializationRecursion for non-pointer class/struct types.
660 template<typename T, bool T_isRecursive>
661 struct SerializationRecursionImpl {
662 static void serializeObject(Archive* archive, const T& obj) {
663 const_cast<T&>(obj).serialize(archive);
664 }
665 };
666
667 // SerializationRecursion for pointers (of 1st degree) to class/structs.
668 template<typename T, bool T_isRecursive>
669 struct SerializationRecursionImpl<T*,T_isRecursive> {
670 static void serializeObject(Archive* archive, const T*& obj) {
671 if (!obj) return;
672 const_cast<T*&>(obj)->serialize(archive);
673 }
674 };
675
676 // NOOP SerializationRecursion for primitive types.
677 template<typename T>
678 struct SerializationRecursionImpl<T,false> {
679 static void serializeObject(Archive* archive, const T& obj) {}
680 };
681
682 // NOOP SerializationRecursion for pointers (of 1st degree) to primitive types.
683 template<typename T>
684 struct SerializationRecursionImpl<T*,false> {
685 static void serializeObject(Archive* archive, const T*& obj) {}
686 };
687
688 // Automatically handles recursion for class/struct types, while ignoring all primitive types.
689 template<typename T>
690 struct SerializationRecursion : SerializationRecursionImpl<T, LIBGIG_IS_CLASS(T)> {
691 };
692
693 class ObjectPool : public std::map<UID,Object> {
694 public:
695 // prevent passing obvious invalid UID values from creating a new pair entry
696 Object& operator[](const UID& k) {
697 static Object invalid;
698 if (!k.isValid()) {
699 invalid = Object();
700 return invalid;
701 }
702 return std::map<UID,Object>::operator[](k);
703 }
704 };
705
706 friend String _encode(const ObjectPool& objects);
707
708 private:
709 String _encodeRootBlob();
710 void _popRootBlob(const char*& p, const char* end);
711 void _popObjectsBlob(const char*& p, const char* end);
712
713 protected:
714 class Syncer {
715 public:
716 Syncer(Archive& dst, Archive& src);
717 protected:
718 void syncObject(const Object& dst, const Object& src);
719 void syncPrimitive(const Object& dst, const Object& src);
720 void syncPointer(const Object& dst, const Object& src);
721 void syncMember(const Member& dstMember, const Member& srcMember);
722 static Member dstMemberMatching(const Object& dstObj, const Object& srcObj, const Member& srcMember);
723 private:
724 Archive& m_dst;
725 Archive& m_src;
726 };
727
728 virtual void encode();
729
730 ObjectPool m_allObjects;
731 operation_t m_operation;
732 UID m_root;
733 RawData m_rawData;
734 bool m_isModified;
735 String m_name;
736 String m_comment;
737 time_t m_timeCreated;
738 time_t m_timeModified;
739 };
740
741 /**
742 * Will be thrown whenever an error occurs during an serialization or
743 * deserialization process.
744 */
745 class Exception {
746 public:
747 String Message;
748
749 Exception(String Message) { Exception::Message = Message; }
750 void PrintMessage();
751 virtual ~Exception() {}
752 };
753
754 } // namespace Serialization
755
756 #endif // LIBGIG_SERIALIZATION_H

  ViewVC Help
Powered by ViewVC