/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1247 - (hide annotations) (download)
Fri Jun 22 09:59:57 2007 UTC (16 years, 9 months ago) by persson
File size: 159145 byte(s)
* more write support fixes: crossfade parameters were not saved, v3
  dimension limits were not correctly initialized and saved when
  dimensions were added or deleted, v3 wave pool offsets were not
  saved correctly

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258     // *************** Other Internal functions ***************
259     // *
260    
261     static split_type_t __resolveSplitType(dimension_t dimension) {
262     return (
263     dimension == dimension_layer ||
264     dimension == dimension_samplechannel ||
265     dimension == dimension_releasetrigger ||
266     dimension == dimension_keyboard ||
267     dimension == dimension_roundrobin ||
268     dimension == dimension_random ||
269     dimension == dimension_smartmidi ||
270     dimension == dimension_roundrobinkeyboard
271     ) ? split_type_bit : split_type_normal;
272     }
273    
274     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275     return (dimension_definition.split_type == split_type_normal)
276     ? int(128.0 / dimension_definition.zones) : 0;
277     }
278    
279    
280    
281 persson 1199 // *************** CRC ***************
282     // *
283    
284     const uint32_t* CRC::table(initTable());
285    
286     uint32_t* CRC::initTable() {
287     uint32_t* res = new uint32_t[256];
288    
289     for (int i = 0 ; i < 256 ; i++) {
290     uint32_t c = i;
291     for (int j = 0 ; j < 8 ; j++) {
292     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293     }
294     res[i] = c;
295     }
296     return res;
297     }
298    
299    
300    
301 schoenebeck 2 // *************** Sample ***************
302     // *
303    
304 schoenebeck 384 unsigned int Sample::Instances = 0;
305     buffer_t Sample::InternalDecompressionBuffer;
306 schoenebeck 2
307 schoenebeck 809 /** @brief Constructor.
308     *
309     * Load an existing sample or create a new one. A 'wave' list chunk must
310     * be given to this constructor. In case the given 'wave' list chunk
311     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312     * format and sample data will be loaded from there, otherwise default
313     * values will be used and those chunks will be created when
314     * File::Save() will be called later on.
315     *
316     * @param pFile - pointer to gig::File where this sample is
317     * located (or will be located)
318     * @param waveList - pointer to 'wave' list chunk which is (or
319     * will be) associated with this sample
320     * @param WavePoolOffset - offset of this sample data from wave pool
321     * ('wvpl') list chunk
322     * @param fileNo - number of an extension file where this sample
323     * is located, 0 otherwise
324     */
325 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327     { CHUNK_ID_INAM, 64 },
328     { 0, 0 }
329     };
330     pInfo->FixedStringLengths = fixedStringLengths;
331 schoenebeck 2 Instances++;
332 persson 666 FileNo = fileNo;
333 schoenebeck 2
334 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335     if (pCk3gix) {
336 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
338 schoenebeck 809 } else { // '3gix' chunk missing
339 schoenebeck 930 // by default assigned to that mandatory "Default Group"
340     pGroup = pFile->GetGroup(0);
341 schoenebeck 809 }
342 schoenebeck 2
343 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344     if (pCkSmpl) {
345     Manufacturer = pCkSmpl->ReadInt32();
346     Product = pCkSmpl->ReadInt32();
347     SamplePeriod = pCkSmpl->ReadInt32();
348     MIDIUnityNote = pCkSmpl->ReadInt32();
349     FineTune = pCkSmpl->ReadInt32();
350     pCkSmpl->Read(&SMPTEFormat, 1, 4);
351     SMPTEOffset = pCkSmpl->ReadInt32();
352     Loops = pCkSmpl->ReadInt32();
353     pCkSmpl->ReadInt32(); // manufByt
354     LoopID = pCkSmpl->ReadInt32();
355     pCkSmpl->Read(&LoopType, 1, 4);
356     LoopStart = pCkSmpl->ReadInt32();
357     LoopEnd = pCkSmpl->ReadInt32();
358     LoopFraction = pCkSmpl->ReadInt32();
359     LoopPlayCount = pCkSmpl->ReadInt32();
360     } else { // 'smpl' chunk missing
361     // use default values
362     Manufacturer = 0;
363     Product = 0;
364 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 persson 1218 MIDIUnityNote = 60;
366 schoenebeck 809 FineTune = 0;
367 persson 1182 SMPTEFormat = smpte_format_no_offset;
368 schoenebeck 809 SMPTEOffset = 0;
369     Loops = 0;
370     LoopID = 0;
371 persson 1182 LoopType = loop_type_normal;
372 schoenebeck 809 LoopStart = 0;
373     LoopEnd = 0;
374     LoopFraction = 0;
375     LoopPlayCount = 0;
376     }
377 schoenebeck 2
378     FrameTable = NULL;
379     SamplePos = 0;
380     RAMCache.Size = 0;
381     RAMCache.pStart = NULL;
382     RAMCache.NullExtensionSize = 0;
383    
384 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387     Compressed = ewav;
388     Dithered = false;
389     TruncatedBits = 0;
390 schoenebeck 2 if (Compressed) {
391 persson 437 uint32_t version = ewav->ReadInt32();
392     if (version == 3 && BitDepth == 24) {
393     Dithered = ewav->ReadInt32();
394     ewav->SetPos(Channels == 2 ? 84 : 64);
395     TruncatedBits = ewav->ReadInt32();
396     }
397 schoenebeck 2 ScanCompressedSample();
398     }
399 schoenebeck 317
400     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 schoenebeck 317 }
405 persson 437 FrameOffset = 0; // just for streaming compressed samples
406 schoenebeck 21
407 persson 864 LoopSize = LoopEnd - LoopStart + 1;
408 schoenebeck 2 }
409    
410 schoenebeck 809 /**
411     * Apply sample and its settings to the respective RIFF chunks. You have
412     * to call File::Save() to make changes persistent.
413     *
414     * Usually there is absolutely no need to call this method explicitly.
415     * It will be called automatically when File::Save() was called.
416     *
417 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 schoenebeck 809 * was provided yet
419     * @throws gig::Exception if there is any invalid sample setting
420     */
421     void Sample::UpdateChunks() {
422     // first update base class's chunks
423     DLS::Sample::UpdateChunks();
424    
425     // make sure 'smpl' chunk exists
426     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 persson 1182 if (!pCkSmpl) {
428     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429     memset(pCkSmpl->LoadChunkData(), 0, 60);
430     }
431 schoenebeck 809 // update 'smpl' chunk
432     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 persson 1179 store32(&pData[0], Manufacturer);
435     store32(&pData[4], Product);
436     store32(&pData[8], SamplePeriod);
437     store32(&pData[12], MIDIUnityNote);
438     store32(&pData[16], FineTune);
439     store32(&pData[20], SMPTEFormat);
440     store32(&pData[24], SMPTEOffset);
441     store32(&pData[28], Loops);
442 schoenebeck 809
443     // we skip 'manufByt' for now (4 bytes)
444    
445 persson 1179 store32(&pData[36], LoopID);
446     store32(&pData[40], LoopType);
447     store32(&pData[44], LoopStart);
448     store32(&pData[48], LoopEnd);
449     store32(&pData[52], LoopFraction);
450     store32(&pData[56], LoopPlayCount);
451 schoenebeck 809
452     // make sure '3gix' chunk exists
453     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
456 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
458     if (pFile->pGroups) {
459     std::list<Group*>::iterator iter = pFile->pGroups->begin();
460     std::list<Group*>::iterator end = pFile->pGroups->end();
461 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
462 schoenebeck 929 if (*iter == pGroup) {
463     iSampleGroup = i;
464     break; // found
465     }
466     }
467     }
468 schoenebeck 809 // update '3gix' chunk
469     pData = (uint8_t*) pCk3gix->LoadChunkData();
470 persson 1179 store16(&pData[0], iSampleGroup);
471 schoenebeck 809 }
472    
473 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474     void Sample::ScanCompressedSample() {
475     //TODO: we have to add some more scans here (e.g. determine compression rate)
476     this->SamplesTotal = 0;
477     std::list<unsigned long> frameOffsets;
478    
479 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481 persson 365
482 schoenebeck 2 // Scanning
483     pCkData->SetPos(0);
484 persson 365 if (Channels == 2) { // Stereo
485     for (int i = 0 ; ; i++) {
486     // for 24 bit samples every 8:th frame offset is
487     // stored, to save some memory
488     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489    
490     const int mode_l = pCkData->ReadUint8();
491     const int mode_r = pCkData->ReadUint8();
492     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495     if (pCkData->RemainingBytes() <= frameSize) {
496     SamplesInLastFrame =
497     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499     SamplesTotal += SamplesInLastFrame;
500 schoenebeck 2 break;
501 persson 365 }
502     SamplesTotal += SamplesPerFrame;
503     pCkData->SetPos(frameSize, RIFF::stream_curpos);
504     }
505     }
506     else { // Mono
507     for (int i = 0 ; ; i++) {
508     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510     const int mode = pCkData->ReadUint8();
511     if (mode > 5) throw gig::Exception("Unknown compression mode");
512     const unsigned long frameSize = bytesPerFrame[mode];
513    
514     if (pCkData->RemainingBytes() <= frameSize) {
515     SamplesInLastFrame =
516     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517     SamplesTotal += SamplesInLastFrame;
518 schoenebeck 2 break;
519 persson 365 }
520     SamplesTotal += SamplesPerFrame;
521     pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 schoenebeck 2 }
523     }
524     pCkData->SetPos(0);
525    
526     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527     if (FrameTable) delete[] FrameTable;
528     FrameTable = new unsigned long[frameOffsets.size()];
529     std::list<unsigned long>::iterator end = frameOffsets.end();
530     std::list<unsigned long>::iterator iter = frameOffsets.begin();
531     for (int i = 0; iter != end; i++, iter++) {
532     FrameTable[i] = *iter;
533     }
534     }
535    
536     /**
537     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538     * ReleaseSampleData() to free the memory if you don't need the cached
539     * sample data anymore.
540     *
541     * @returns buffer_t structure with start address and size of the buffer
542     * in bytes
543     * @see ReleaseSampleData(), Read(), SetPos()
544     */
545     buffer_t Sample::LoadSampleData() {
546     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547     }
548    
549     /**
550     * Reads (uncompresses if needed) and caches the first \a SampleCount
551     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552     * memory space if you don't need the cached samples anymore. There is no
553     * guarantee that exactly \a SampleCount samples will be cached; this is
554     * not an error. The size will be eventually truncated e.g. to the
555     * beginning of a frame of a compressed sample. This is done for
556     * efficiency reasons while streaming the wave by your sampler engine
557     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558     * that will be returned to determine the actual cached samples, but note
559     * that the size is given in bytes! You get the number of actually cached
560     * samples by dividing it by the frame size of the sample:
561 schoenebeck 384 * @code
562 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563     * long cachedsamples = buf.Size / pSample->FrameSize;
564 schoenebeck 384 * @endcode
565 schoenebeck 2 *
566     * @param SampleCount - number of sample points to load into RAM
567     * @returns buffer_t structure with start address and size of
568     * the cached sample data in bytes
569     * @see ReleaseSampleData(), Read(), SetPos()
570     */
571     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573     }
574    
575     /**
576     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577     * ReleaseSampleData() to free the memory if you don't need the cached
578     * sample data anymore.
579     * The method will add \a NullSamplesCount silence samples past the
580     * official buffer end (this won't affect the 'Size' member of the
581     * buffer_t structure, that means 'Size' always reflects the size of the
582     * actual sample data, the buffer might be bigger though). Silence
583     * samples past the official buffer are needed for differential
584     * algorithms that always have to take subsequent samples into account
585     * (resampling/interpolation would be an important example) and avoids
586     * memory access faults in such cases.
587     *
588     * @param NullSamplesCount - number of silence samples the buffer should
589     * be extended past it's data end
590     * @returns buffer_t structure with start address and
591     * size of the buffer in bytes
592     * @see ReleaseSampleData(), Read(), SetPos()
593     */
594     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596     }
597    
598     /**
599     * Reads (uncompresses if needed) and caches the first \a SampleCount
600     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601     * memory space if you don't need the cached samples anymore. There is no
602     * guarantee that exactly \a SampleCount samples will be cached; this is
603     * not an error. The size will be eventually truncated e.g. to the
604     * beginning of a frame of a compressed sample. This is done for
605     * efficiency reasons while streaming the wave by your sampler engine
606     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607     * that will be returned to determine the actual cached samples, but note
608     * that the size is given in bytes! You get the number of actually cached
609     * samples by dividing it by the frame size of the sample:
610 schoenebeck 384 * @code
611 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612     * long cachedsamples = buf.Size / pSample->FrameSize;
613 schoenebeck 384 * @endcode
614 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
615     * official buffer end (this won't affect the 'Size' member of the
616     * buffer_t structure, that means 'Size' always reflects the size of the
617     * actual sample data, the buffer might be bigger though). Silence
618     * samples past the official buffer are needed for differential
619     * algorithms that always have to take subsequent samples into account
620     * (resampling/interpolation would be an important example) and avoids
621     * memory access faults in such cases.
622     *
623     * @param SampleCount - number of sample points to load into RAM
624     * @param NullSamplesCount - number of silence samples the buffer should
625     * be extended past it's data end
626     * @returns buffer_t structure with start address and
627     * size of the cached sample data in bytes
628     * @see ReleaseSampleData(), Read(), SetPos()
629     */
630     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634     RAMCache.pStart = new int8_t[allocationsize];
635     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637     // fill the remaining buffer space with silence samples
638     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639     return GetCache();
640     }
641    
642     /**
643     * Returns current cached sample points. A buffer_t structure will be
644     * returned which contains address pointer to the begin of the cache and
645     * the size of the cached sample data in bytes. Use
646     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647     * RAM.
648     *
649     * @returns buffer_t structure with current cached sample points
650     * @see LoadSampleData();
651     */
652     buffer_t Sample::GetCache() {
653     // return a copy of the buffer_t structure
654     buffer_t result;
655     result.Size = this->RAMCache.Size;
656     result.pStart = this->RAMCache.pStart;
657     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658     return result;
659     }
660    
661     /**
662     * Frees the cached sample from RAM if loaded with
663     * <i>LoadSampleData()</i> previously.
664     *
665     * @see LoadSampleData();
666     */
667     void Sample::ReleaseSampleData() {
668     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669     RAMCache.pStart = NULL;
670     RAMCache.Size = 0;
671     }
672    
673 schoenebeck 809 /** @brief Resize sample.
674     *
675     * Resizes the sample's wave form data, that is the actual size of
676     * sample wave data possible to be written for this sample. This call
677     * will return immediately and just schedule the resize operation. You
678     * should call File::Save() to actually perform the resize operation(s)
679     * "physically" to the file. As this can take a while on large files, it
680     * is recommended to call Resize() first on all samples which have to be
681     * resized and finally to call File::Save() to perform all those resize
682     * operations in one rush.
683     *
684     * The actual size (in bytes) is dependant to the current FrameSize
685     * value. You may want to set FrameSize before calling Resize().
686     *
687     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688     * enlarged samples before calling File::Save() as this might exceed the
689     * current sample's boundary!
690     *
691 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 schoenebeck 809 * other formats will fail!
694     *
695     * @param iNewSize - new sample wave data size in sample points (must be
696     * greater than zero)
697 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 schoenebeck 809 * or if \a iNewSize is less than 1
699     * @throws gig::Exception if existing sample is compressed
700     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701     * DLS::Sample::FormatTag, File::Save()
702     */
703     void Sample::Resize(int iNewSize) {
704     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705     DLS::Sample::Resize(iNewSize);
706     }
707    
708 schoenebeck 2 /**
709     * Sets the position within the sample (in sample points, not in
710     * bytes). Use this method and <i>Read()</i> if you don't want to load
711     * the sample into RAM, thus for disk streaming.
712     *
713     * Although the original Gigasampler engine doesn't allow positioning
714     * within compressed samples, I decided to implement it. Even though
715     * the Gigasampler format doesn't allow to define loops for compressed
716     * samples at the moment, positioning within compressed samples might be
717     * interesting for some sampler engines though. The only drawback about
718     * my decision is that it takes longer to load compressed gig Files on
719     * startup, because it's neccessary to scan the samples for some
720     * mandatory informations. But I think as it doesn't affect the runtime
721     * efficiency, nobody will have a problem with that.
722     *
723     * @param SampleCount number of sample points to jump
724     * @param Whence optional: to which relation \a SampleCount refers
725     * to, if omited <i>RIFF::stream_start</i> is assumed
726     * @returns the new sample position
727     * @see Read()
728     */
729     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730     if (Compressed) {
731     switch (Whence) {
732     case RIFF::stream_curpos:
733     this->SamplePos += SampleCount;
734     break;
735     case RIFF::stream_end:
736     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737     break;
738     case RIFF::stream_backward:
739     this->SamplePos -= SampleCount;
740     break;
741     case RIFF::stream_start: default:
742     this->SamplePos = SampleCount;
743     break;
744     }
745     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746    
747     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750     return this->SamplePos;
751     }
752     else { // not compressed
753     unsigned long orderedBytes = SampleCount * this->FrameSize;
754     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755     return (result == orderedBytes) ? SampleCount
756     : result / this->FrameSize;
757     }
758     }
759    
760     /**
761     * Returns the current position in the sample (in sample points).
762     */
763     unsigned long Sample::GetPos() {
764     if (Compressed) return SamplePos;
765     else return pCkData->GetPos() / FrameSize;
766     }
767    
768     /**
769 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
770     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771     * the position within the sample respectively, this method honors the
772     * looping informations of the sample (if any). The sample wave stream
773     * will be decompressed on the fly if using a compressed sample. Use this
774     * method if you don't want to load the sample into RAM, thus for disk
775     * streaming. All this methods needs to know to proceed with streaming
776     * for the next time you call this method is stored in \a pPlaybackState.
777     * You have to allocate and initialize the playback_state_t structure by
778     * yourself before you use it to stream a sample:
779 schoenebeck 384 * @code
780     * gig::playback_state_t playbackstate;
781     * playbackstate.position = 0;
782     * playbackstate.reverse = false;
783     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784     * @endcode
785 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
786     * defined or if the current read position is located within a loop area.
787     * The method already handles such cases by itself.
788     *
789 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
790     * have to use an external decompression buffer for <b>EACH</b>
791     * streaming thread to avoid race conditions and crashes!
792     *
793 schoenebeck 24 * @param pBuffer destination buffer
794     * @param SampleCount number of sample points to read
795     * @param pPlaybackState will be used to store and reload the playback
796     * state for the next ReadAndLoop() call
797 persson 864 * @param pDimRgn dimension region with looping information
798 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 schoenebeck 24 * @returns number of successfully read sample points
800 schoenebeck 384 * @see CreateDecompressionBuffer()
801 schoenebeck 24 */
802 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805     uint8_t* pDst = (uint8_t*) pBuffer;
806    
807     SetPos(pPlaybackState->position); // recover position from the last time
808    
809 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810 schoenebeck 24
811 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813 schoenebeck 24
814 persson 864 if (GetPos() <= loopEnd) {
815     switch (loop.LoopType) {
816 schoenebeck 24
817 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
818     do {
819     // if not endless loop check if max. number of loop cycles have been passed
820     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821 schoenebeck 24
822 persson 864 if (!pPlaybackState->reverse) { // forward playback
823     do {
824     samplestoloopend = loopEnd - GetPos();
825     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826     samplestoread -= readsamples;
827     totalreadsamples += readsamples;
828     if (readsamples == samplestoloopend) {
829     pPlaybackState->reverse = true;
830     break;
831     }
832     } while (samplestoread && readsamples);
833     }
834     else { // backward playback
835 schoenebeck 24
836 persson 864 // as we can only read forward from disk, we have to
837     // determine the end position within the loop first,
838     // read forward from that 'end' and finally after
839     // reading, swap all sample frames so it reflects
840     // backward playback
841 schoenebeck 24
842 persson 864 unsigned long swapareastart = totalreadsamples;
843     unsigned long loopoffset = GetPos() - loop.LoopStart;
844     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846 schoenebeck 24
847 persson 864 SetPos(reverseplaybackend);
848 schoenebeck 24
849 persson 864 // read samples for backward playback
850     do {
851     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852     samplestoreadinloop -= readsamples;
853     samplestoread -= readsamples;
854     totalreadsamples += readsamples;
855     } while (samplestoreadinloop && readsamples);
856 schoenebeck 24
857 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
858    
859     if (reverseplaybackend == loop.LoopStart) {
860     pPlaybackState->loop_cycles_left--;
861     pPlaybackState->reverse = false;
862     }
863    
864     // reverse the sample frames for backward playback
865     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 schoenebeck 24 }
867 persson 864 } while (samplestoread && readsamples);
868     break;
869     }
870 schoenebeck 24
871 persson 864 case loop_type_backward: { // TODO: not tested yet!
872     // forward playback (not entered the loop yet)
873     if (!pPlaybackState->reverse) do {
874     samplestoloopend = loopEnd - GetPos();
875     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876     samplestoread -= readsamples;
877     totalreadsamples += readsamples;
878     if (readsamples == samplestoloopend) {
879     pPlaybackState->reverse = true;
880     break;
881     }
882     } while (samplestoread && readsamples);
883 schoenebeck 24
884 persson 864 if (!samplestoread) break;
885 schoenebeck 24
886 persson 864 // as we can only read forward from disk, we have to
887     // determine the end position within the loop first,
888     // read forward from that 'end' and finally after
889     // reading, swap all sample frames so it reflects
890     // backward playback
891 schoenebeck 24
892 persson 864 unsigned long swapareastart = totalreadsamples;
893     unsigned long loopoffset = GetPos() - loop.LoopStart;
894     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895     : samplestoread;
896     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897 schoenebeck 24
898 persson 864 SetPos(reverseplaybackend);
899 schoenebeck 24
900 persson 864 // read samples for backward playback
901     do {
902     // if not endless loop check if max. number of loop cycles have been passed
903     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904     samplestoloopend = loopEnd - GetPos();
905     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906     samplestoreadinloop -= readsamples;
907     samplestoread -= readsamples;
908     totalreadsamples += readsamples;
909     if (readsamples == samplestoloopend) {
910     pPlaybackState->loop_cycles_left--;
911     SetPos(loop.LoopStart);
912     }
913     } while (samplestoreadinloop && readsamples);
914 schoenebeck 24
915 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
916 schoenebeck 24
917 persson 864 // reverse the sample frames for backward playback
918     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919     break;
920     }
921 schoenebeck 24
922 persson 864 default: case loop_type_normal: {
923     do {
924     // if not endless loop check if max. number of loop cycles have been passed
925     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926     samplestoloopend = loopEnd - GetPos();
927     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928     samplestoread -= readsamples;
929     totalreadsamples += readsamples;
930     if (readsamples == samplestoloopend) {
931     pPlaybackState->loop_cycles_left--;
932     SetPos(loop.LoopStart);
933     }
934     } while (samplestoread && readsamples);
935     break;
936     }
937 schoenebeck 24 }
938     }
939     }
940    
941     // read on without looping
942     if (samplestoread) do {
943 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 schoenebeck 24 samplestoread -= readsamples;
945     totalreadsamples += readsamples;
946     } while (readsamples && samplestoread);
947    
948     // store current position
949     pPlaybackState->position = GetPos();
950    
951     return totalreadsamples;
952     }
953    
954     /**
955 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
956     * position into the buffer pointed by \a pBuffer and increments the
957     * position within the sample. The sample wave stream will be
958     * decompressed on the fly if using a compressed sample. Use this method
959     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960     * thus for disk streaming.
961     *
962 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
963     * have to use an external decompression buffer for <b>EACH</b>
964     * streaming thread to avoid race conditions and crashes!
965     *
966 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
967     * (using native endianness). For 24 bit, the buffer will
968     * contain three bytes per sample, little-endian.
969     *
970 schoenebeck 2 * @param pBuffer destination buffer
971     * @param SampleCount number of sample points to read
972 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 schoenebeck 2 * @returns number of successfully read sample points
974 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
975 schoenebeck 2 */
976 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 schoenebeck 21 if (SampleCount == 0) return 0;
978 schoenebeck 317 if (!Compressed) {
979     if (BitDepth == 24) {
980 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 schoenebeck 317 }
982 persson 365 else { // 16 bit
983     // (pCkData->Read does endian correction)
984     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985     : pCkData->Read(pBuffer, SampleCount, 2);
986     }
987 schoenebeck 317 }
988 persson 365 else {
989 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
990 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
991     unsigned long assumedsize = GuessSize(SampleCount),
992 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
993     remainingsamples = SampleCount,
994 persson 365 copysamples, skipsamples,
995     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 schoenebeck 2 this->FrameOffset = 0;
997    
998 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999    
1000     // if decompression buffer too small, then reduce amount of samples to read
1001     if (pDecompressionBuffer->Size < assumedsize) {
1002     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004     remainingsamples = SampleCount;
1005     assumedsize = GuessSize(SampleCount);
1006 schoenebeck 2 }
1007    
1008 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013 persson 365 while (remainingsamples && remainingbytes) {
1014     unsigned long framesamples = SamplesPerFrame;
1015     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016 schoenebeck 2
1017 persson 365 int mode_l = *pSrc++, mode_r = 0;
1018    
1019     if (Channels == 2) {
1020     mode_r = *pSrc++;
1021     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024     if (remainingbytes < framebytes) { // last frame in sample
1025     framesamples = SamplesInLastFrame;
1026     if (mode_l == 4 && (framesamples & 1)) {
1027     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028     }
1029     else {
1030     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031     }
1032 schoenebeck 2 }
1033     }
1034 persson 365 else {
1035     framebytes = bytesPerFrame[mode_l] + 1;
1036     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037     if (remainingbytes < framebytes) {
1038     framesamples = SamplesInLastFrame;
1039     }
1040     }
1041 schoenebeck 2
1042     // determine how many samples in this frame to skip and read
1043 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1044     if (currentframeoffset <= framesamples) {
1045     copysamples = framesamples - currentframeoffset;
1046     skipsamples = currentframeoffset;
1047     }
1048     else {
1049     copysamples = 0;
1050     skipsamples = framesamples;
1051     }
1052 schoenebeck 2 }
1053     else {
1054 persson 365 // This frame has enough data for pBuffer, but not
1055     // all of the frame is needed. Set file position
1056     // to start of this frame for next call to Read.
1057 schoenebeck 2 copysamples = remainingsamples;
1058 persson 365 skipsamples = currentframeoffset;
1059     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060     this->FrameOffset = currentframeoffset + copysamples;
1061     }
1062     remainingsamples -= copysamples;
1063    
1064     if (remainingbytes > framebytes) {
1065     remainingbytes -= framebytes;
1066     if (remainingsamples == 0 &&
1067     currentframeoffset + copysamples == framesamples) {
1068     // This frame has enough data for pBuffer, and
1069     // all of the frame is needed. Set file
1070     // position to start of next frame for next
1071     // call to Read. FrameOffset is 0.
1072 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073     }
1074     }
1075 persson 365 else remainingbytes = 0;
1076 schoenebeck 2
1077 persson 365 currentframeoffset -= skipsamples;
1078 schoenebeck 2
1079 persson 365 if (copysamples == 0) {
1080     // skip this frame
1081     pSrc += framebytes - Channels;
1082     }
1083     else {
1084     const unsigned char* const param_l = pSrc;
1085     if (BitDepth == 24) {
1086     if (mode_l != 2) pSrc += 12;
1087 schoenebeck 2
1088 persson 365 if (Channels == 2) { // Stereo
1089     const unsigned char* const param_r = pSrc;
1090     if (mode_r != 2) pSrc += 12;
1091    
1092 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 persson 437 skipsamples, copysamples, TruncatedBits);
1094 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 persson 437 skipsamples, copysamples, TruncatedBits);
1096 persson 902 pDst24 += copysamples * 6;
1097 schoenebeck 2 }
1098 persson 365 else { // Mono
1099 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 persson 437 skipsamples, copysamples, TruncatedBits);
1101 persson 902 pDst24 += copysamples * 3;
1102 schoenebeck 2 }
1103 persson 365 }
1104     else { // 16 bit
1105     if (mode_l) pSrc += 4;
1106 schoenebeck 2
1107 persson 365 int step;
1108     if (Channels == 2) { // Stereo
1109     const unsigned char* const param_r = pSrc;
1110     if (mode_r) pSrc += 4;
1111    
1112     step = (2 - mode_l) + (2 - mode_r);
1113 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 persson 365 skipsamples, copysamples);
1116     pDst += copysamples << 1;
1117 schoenebeck 2 }
1118 persson 365 else { // Mono
1119     step = 2 - mode_l;
1120 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 persson 365 pDst += copysamples;
1122 schoenebeck 2 }
1123 persson 365 }
1124     pSrc += nextFrameOffset;
1125     }
1126 schoenebeck 2
1127 persson 365 // reload from disk to local buffer if needed
1128     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129     assumedsize = GuessSize(remainingsamples);
1130     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 schoenebeck 2 }
1135 persson 365 } // while
1136    
1137 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1138 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 schoenebeck 2 return (SampleCount - remainingsamples);
1140     }
1141     }
1142    
1143 schoenebeck 809 /** @brief Write sample wave data.
1144     *
1145     * Writes \a SampleCount number of sample points from the buffer pointed
1146     * by \a pBuffer and increments the position within the sample. Use this
1147     * method to directly write the sample data to disk, i.e. if you don't
1148     * want or cannot load the whole sample data into RAM.
1149     *
1150     * You have to Resize() the sample to the desired size and call
1151     * File::Save() <b>before</b> using Write().
1152     *
1153     * Note: there is currently no support for writing compressed samples.
1154     *
1155     * @param pBuffer - source buffer
1156     * @param SampleCount - number of sample points to write
1157     * @throws DLS::Exception if current sample size is too small
1158     * @throws gig::Exception if sample is compressed
1159     * @see DLS::LoadSampleData()
1160     */
1161     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163 persson 1207
1164     // if this is the first write in this sample, reset the
1165     // checksum calculator
1166 persson 1199 if (pCkData->GetPos() == 0) {
1167     crc.reset();
1168     }
1169     unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1170     crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1171    
1172 persson 1207 // if this is the last write, update the checksum chunk in the
1173     // file
1174 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1175     File* pFile = static_cast<File*>(GetParent());
1176     pFile->SetSampleChecksum(this, crc.getValue());
1177     }
1178     return res;
1179 schoenebeck 809 }
1180    
1181 schoenebeck 384 /**
1182     * Allocates a decompression buffer for streaming (compressed) samples
1183     * with Sample::Read(). If you are using more than one streaming thread
1184     * in your application you <b>HAVE</b> to create a decompression buffer
1185     * for <b>EACH</b> of your streaming threads and provide it with the
1186     * Sample::Read() call in order to avoid race conditions and crashes.
1187     *
1188     * You should free the memory occupied by the allocated buffer(s) once
1189     * you don't need one of your streaming threads anymore by calling
1190     * DestroyDecompressionBuffer().
1191     *
1192     * @param MaxReadSize - the maximum size (in sample points) you ever
1193     * expect to read with one Read() call
1194     * @returns allocated decompression buffer
1195     * @see DestroyDecompressionBuffer()
1196     */
1197     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1198     buffer_t result;
1199     const double worstCaseHeaderOverhead =
1200     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1201     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1202     result.pStart = new int8_t[result.Size];
1203     result.NullExtensionSize = 0;
1204     return result;
1205     }
1206    
1207     /**
1208     * Free decompression buffer, previously created with
1209     * CreateDecompressionBuffer().
1210     *
1211     * @param DecompressionBuffer - previously allocated decompression
1212     * buffer to free
1213     */
1214     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1215     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1216     delete[] (int8_t*) DecompressionBuffer.pStart;
1217     DecompressionBuffer.pStart = NULL;
1218     DecompressionBuffer.Size = 0;
1219     DecompressionBuffer.NullExtensionSize = 0;
1220     }
1221     }
1222    
1223 schoenebeck 930 /**
1224     * Returns pointer to the Group this Sample belongs to. In the .gig
1225     * format a sample always belongs to one group. If it wasn't explicitly
1226     * assigned to a certain group, it will be automatically assigned to a
1227     * default group.
1228     *
1229     * @returns Sample's Group (never NULL)
1230     */
1231     Group* Sample::GetGroup() const {
1232     return pGroup;
1233     }
1234    
1235 schoenebeck 2 Sample::~Sample() {
1236     Instances--;
1237 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1238     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1239     InternalDecompressionBuffer.pStart = NULL;
1240     InternalDecompressionBuffer.Size = 0;
1241 schoenebeck 355 }
1242 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1243     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1244     }
1245    
1246    
1247    
1248     // *************** DimensionRegion ***************
1249     // *
1250    
1251 schoenebeck 16 uint DimensionRegion::Instances = 0;
1252     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1253    
1254 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1255 schoenebeck 16 Instances++;
1256    
1257 schoenebeck 823 pSample = NULL;
1258    
1259 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1260     else memset(&Crossfade, 0, 4);
1261    
1262 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1263 schoenebeck 2
1264     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1265 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1266 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1267 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1268     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1269     _3ewa->ReadInt16(); // unknown
1270     LFO1InternalDepth = _3ewa->ReadUint16();
1271     _3ewa->ReadInt16(); // unknown
1272     LFO3InternalDepth = _3ewa->ReadInt16();
1273     _3ewa->ReadInt16(); // unknown
1274     LFO1ControlDepth = _3ewa->ReadUint16();
1275     _3ewa->ReadInt16(); // unknown
1276     LFO3ControlDepth = _3ewa->ReadInt16();
1277     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1278     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1279     _3ewa->ReadInt16(); // unknown
1280     EG1Sustain = _3ewa->ReadUint16();
1281     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1282     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1283     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1284     EG1ControllerInvert = eg1ctrloptions & 0x01;
1285     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1286     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1287     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1288     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1289     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1290     EG2ControllerInvert = eg2ctrloptions & 0x01;
1291     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1292     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1293     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1294     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1295     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1296     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1297     _3ewa->ReadInt16(); // unknown
1298     EG2Sustain = _3ewa->ReadUint16();
1299     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1300     _3ewa->ReadInt16(); // unknown
1301     LFO2ControlDepth = _3ewa->ReadUint16();
1302     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1303     _3ewa->ReadInt16(); // unknown
1304     LFO2InternalDepth = _3ewa->ReadUint16();
1305     int32_t eg1decay2 = _3ewa->ReadInt32();
1306     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1307     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1308     _3ewa->ReadInt16(); // unknown
1309     EG1PreAttack = _3ewa->ReadUint16();
1310     int32_t eg2decay2 = _3ewa->ReadInt32();
1311     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1312     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1313     _3ewa->ReadInt16(); // unknown
1314     EG2PreAttack = _3ewa->ReadUint16();
1315     uint8_t velocityresponse = _3ewa->ReadUint8();
1316     if (velocityresponse < 5) {
1317     VelocityResponseCurve = curve_type_nonlinear;
1318     VelocityResponseDepth = velocityresponse;
1319     } else if (velocityresponse < 10) {
1320     VelocityResponseCurve = curve_type_linear;
1321     VelocityResponseDepth = velocityresponse - 5;
1322     } else if (velocityresponse < 15) {
1323     VelocityResponseCurve = curve_type_special;
1324     VelocityResponseDepth = velocityresponse - 10;
1325     } else {
1326     VelocityResponseCurve = curve_type_unknown;
1327     VelocityResponseDepth = 0;
1328     }
1329     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1330     if (releasevelocityresponse < 5) {
1331     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1332     ReleaseVelocityResponseDepth = releasevelocityresponse;
1333     } else if (releasevelocityresponse < 10) {
1334     ReleaseVelocityResponseCurve = curve_type_linear;
1335     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1336     } else if (releasevelocityresponse < 15) {
1337     ReleaseVelocityResponseCurve = curve_type_special;
1338     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1339     } else {
1340     ReleaseVelocityResponseCurve = curve_type_unknown;
1341     ReleaseVelocityResponseDepth = 0;
1342     }
1343     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1344     AttenuationControllerThreshold = _3ewa->ReadInt8();
1345     _3ewa->ReadInt32(); // unknown
1346     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1347     _3ewa->ReadInt16(); // unknown
1348     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1349     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1350     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1351     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1352     else DimensionBypass = dim_bypass_ctrl_none;
1353     uint8_t pan = _3ewa->ReadUint8();
1354     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1355     SelfMask = _3ewa->ReadInt8() & 0x01;
1356     _3ewa->ReadInt8(); // unknown
1357     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1358     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1359     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1360     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1361     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1362     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1363     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1364     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1365     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1366     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1367     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1368     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1369     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1370     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1371     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1372     : vcf_res_ctrl_none;
1373     uint16_t eg3depth = _3ewa->ReadUint16();
1374     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1375     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1376     _3ewa->ReadInt16(); // unknown
1377     ChannelOffset = _3ewa->ReadUint8() / 4;
1378     uint8_t regoptions = _3ewa->ReadUint8();
1379     MSDecode = regoptions & 0x01; // bit 0
1380     SustainDefeat = regoptions & 0x02; // bit 1
1381     _3ewa->ReadInt16(); // unknown
1382     VelocityUpperLimit = _3ewa->ReadInt8();
1383     _3ewa->ReadInt8(); // unknown
1384     _3ewa->ReadInt16(); // unknown
1385     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1386     _3ewa->ReadInt8(); // unknown
1387     _3ewa->ReadInt8(); // unknown
1388     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1389     uint8_t vcfcutoff = _3ewa->ReadUint8();
1390     VCFEnabled = vcfcutoff & 0x80; // bit 7
1391     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1392     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1393     uint8_t vcfvelscale = _3ewa->ReadUint8();
1394     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1395     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1396     _3ewa->ReadInt8(); // unknown
1397     uint8_t vcfresonance = _3ewa->ReadUint8();
1398     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1399     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1400     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1401     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1402     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1403     uint8_t vcfvelocity = _3ewa->ReadUint8();
1404     VCFVelocityDynamicRange = vcfvelocity % 5;
1405     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1406     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1407     if (VCFType == vcf_type_lowpass) {
1408     if (lfo3ctrl & 0x40) // bit 6
1409     VCFType = vcf_type_lowpassturbo;
1410     }
1411 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1412     _3ewa->Read(DimensionUpperLimits, 1, 8);
1413     } else {
1414     memset(DimensionUpperLimits, 0, 8);
1415     }
1416 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1417     // use default values
1418     LFO3Frequency = 1.0;
1419     EG3Attack = 0.0;
1420     LFO1InternalDepth = 0;
1421     LFO3InternalDepth = 0;
1422     LFO1ControlDepth = 0;
1423     LFO3ControlDepth = 0;
1424     EG1Attack = 0.0;
1425 persson 1218 EG1Decay1 = 0.005;
1426     EG1Sustain = 1000;
1427     EG1Release = 0.3;
1428 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1429     EG1Controller.controller_number = 0;
1430     EG1ControllerInvert = false;
1431     EG1ControllerAttackInfluence = 0;
1432     EG1ControllerDecayInfluence = 0;
1433     EG1ControllerReleaseInfluence = 0;
1434     EG2Controller.type = eg2_ctrl_t::type_none;
1435     EG2Controller.controller_number = 0;
1436     EG2ControllerInvert = false;
1437     EG2ControllerAttackInfluence = 0;
1438     EG2ControllerDecayInfluence = 0;
1439     EG2ControllerReleaseInfluence = 0;
1440     LFO1Frequency = 1.0;
1441     EG2Attack = 0.0;
1442 persson 1218 EG2Decay1 = 0.005;
1443     EG2Sustain = 1000;
1444     EG2Release = 0.3;
1445 schoenebeck 809 LFO2ControlDepth = 0;
1446     LFO2Frequency = 1.0;
1447     LFO2InternalDepth = 0;
1448     EG1Decay2 = 0.0;
1449 persson 1218 EG1InfiniteSustain = true;
1450     EG1PreAttack = 0;
1451 schoenebeck 809 EG2Decay2 = 0.0;
1452 persson 1218 EG2InfiniteSustain = true;
1453     EG2PreAttack = 0;
1454 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1455     VelocityResponseDepth = 3;
1456     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1457     ReleaseVelocityResponseDepth = 3;
1458     VelocityResponseCurveScaling = 32;
1459     AttenuationControllerThreshold = 0;
1460     SampleStartOffset = 0;
1461     PitchTrack = true;
1462     DimensionBypass = dim_bypass_ctrl_none;
1463     Pan = 0;
1464     SelfMask = true;
1465     LFO3Controller = lfo3_ctrl_modwheel;
1466     LFO3Sync = false;
1467     InvertAttenuationController = false;
1468     AttenuationController.type = attenuation_ctrl_t::type_none;
1469     AttenuationController.controller_number = 0;
1470     LFO2Controller = lfo2_ctrl_internal;
1471     LFO2FlipPhase = false;
1472     LFO2Sync = false;
1473     LFO1Controller = lfo1_ctrl_internal;
1474     LFO1FlipPhase = false;
1475     LFO1Sync = false;
1476     VCFResonanceController = vcf_res_ctrl_none;
1477     EG3Depth = 0;
1478     ChannelOffset = 0;
1479     MSDecode = false;
1480     SustainDefeat = false;
1481     VelocityUpperLimit = 0;
1482     ReleaseTriggerDecay = 0;
1483     EG1Hold = false;
1484     VCFEnabled = false;
1485     VCFCutoff = 0;
1486     VCFCutoffController = vcf_cutoff_ctrl_none;
1487     VCFCutoffControllerInvert = false;
1488     VCFVelocityScale = 0;
1489     VCFResonance = 0;
1490     VCFResonanceDynamic = false;
1491     VCFKeyboardTracking = false;
1492     VCFKeyboardTrackingBreakpoint = 0;
1493     VCFVelocityDynamicRange = 0x04;
1494     VCFVelocityCurve = curve_type_linear;
1495     VCFType = vcf_type_lowpass;
1496 persson 1247 memset(DimensionUpperLimits, 127, 8);
1497 schoenebeck 2 }
1498 schoenebeck 16
1499 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1500     VelocityResponseDepth,
1501     VelocityResponseCurveScaling);
1502    
1503     curve_type_t curveType = ReleaseVelocityResponseCurve;
1504     uint8_t depth = ReleaseVelocityResponseDepth;
1505    
1506     // this models a strange behaviour or bug in GSt: two of the
1507     // velocity response curves for release time are not used even
1508     // if specified, instead another curve is chosen.
1509     if ((curveType == curve_type_nonlinear && depth == 0) ||
1510     (curveType == curve_type_special && depth == 4)) {
1511     curveType = curve_type_nonlinear;
1512     depth = 3;
1513     }
1514     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1515    
1516 persson 728 curveType = VCFVelocityCurve;
1517     depth = VCFVelocityDynamicRange;
1518    
1519     // even stranger GSt: two of the velocity response curves for
1520     // filter cutoff are not used, instead another special curve
1521     // is chosen. This curve is not used anywhere else.
1522     if ((curveType == curve_type_nonlinear && depth == 0) ||
1523     (curveType == curve_type_special && depth == 4)) {
1524     curveType = curve_type_special;
1525     depth = 5;
1526     }
1527     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1528 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1529 persson 728
1530 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1531 persson 858 VelocityTable = 0;
1532 persson 613 }
1533    
1534 schoenebeck 809 /**
1535     * Apply dimension region settings to the respective RIFF chunks. You
1536     * have to call File::Save() to make changes persistent.
1537     *
1538     * Usually there is absolutely no need to call this method explicitly.
1539     * It will be called automatically when File::Save() was called.
1540     */
1541     void DimensionRegion::UpdateChunks() {
1542     // first update base class's chunk
1543     DLS::Sampler::UpdateChunks();
1544    
1545 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1546     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1547     pData[12] = Crossfade.in_start;
1548     pData[13] = Crossfade.in_end;
1549     pData[14] = Crossfade.out_start;
1550     pData[15] = Crossfade.out_end;
1551    
1552 schoenebeck 809 // make sure '3ewa' chunk exists
1553     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1554     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1555 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1556 schoenebeck 809
1557     // update '3ewa' chunk with DimensionRegion's current settings
1558    
1559 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1560 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1561 schoenebeck 809
1562     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1563 persson 1179 store32(&pData[4], lfo3freq);
1564 schoenebeck 809
1565     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1566 persson 1179 store32(&pData[8], eg3attack);
1567 schoenebeck 809
1568     // next 2 bytes unknown
1569    
1570 persson 1179 store16(&pData[14], LFO1InternalDepth);
1571 schoenebeck 809
1572     // next 2 bytes unknown
1573    
1574 persson 1179 store16(&pData[18], LFO3InternalDepth);
1575 schoenebeck 809
1576     // next 2 bytes unknown
1577    
1578 persson 1179 store16(&pData[22], LFO1ControlDepth);
1579 schoenebeck 809
1580     // next 2 bytes unknown
1581    
1582 persson 1179 store16(&pData[26], LFO3ControlDepth);
1583 schoenebeck 809
1584     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1585 persson 1179 store32(&pData[28], eg1attack);
1586 schoenebeck 809
1587     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1588 persson 1179 store32(&pData[32], eg1decay1);
1589 schoenebeck 809
1590     // next 2 bytes unknown
1591    
1592 persson 1179 store16(&pData[38], EG1Sustain);
1593 schoenebeck 809
1594     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1595 persson 1179 store32(&pData[40], eg1release);
1596 schoenebeck 809
1597     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1598 persson 1179 pData[44] = eg1ctl;
1599 schoenebeck 809
1600     const uint8_t eg1ctrloptions =
1601     (EG1ControllerInvert) ? 0x01 : 0x00 |
1602     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1603     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1604     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1605 persson 1179 pData[45] = eg1ctrloptions;
1606 schoenebeck 809
1607     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1608 persson 1179 pData[46] = eg2ctl;
1609 schoenebeck 809
1610     const uint8_t eg2ctrloptions =
1611     (EG2ControllerInvert) ? 0x01 : 0x00 |
1612     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1613     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1614     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1615 persson 1179 pData[47] = eg2ctrloptions;
1616 schoenebeck 809
1617     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1618 persson 1179 store32(&pData[48], lfo1freq);
1619 schoenebeck 809
1620     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1621 persson 1179 store32(&pData[52], eg2attack);
1622 schoenebeck 809
1623     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1624 persson 1179 store32(&pData[56], eg2decay1);
1625 schoenebeck 809
1626     // next 2 bytes unknown
1627    
1628 persson 1179 store16(&pData[62], EG2Sustain);
1629 schoenebeck 809
1630     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1631 persson 1179 store32(&pData[64], eg2release);
1632 schoenebeck 809
1633     // next 2 bytes unknown
1634    
1635 persson 1179 store16(&pData[70], LFO2ControlDepth);
1636 schoenebeck 809
1637     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1638 persson 1179 store32(&pData[72], lfo2freq);
1639 schoenebeck 809
1640     // next 2 bytes unknown
1641    
1642 persson 1179 store16(&pData[78], LFO2InternalDepth);
1643 schoenebeck 809
1644     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1645 persson 1179 store32(&pData[80], eg1decay2);
1646 schoenebeck 809
1647     // next 2 bytes unknown
1648    
1649 persson 1179 store16(&pData[86], EG1PreAttack);
1650 schoenebeck 809
1651     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1652 persson 1179 store32(&pData[88], eg2decay2);
1653 schoenebeck 809
1654     // next 2 bytes unknown
1655    
1656 persson 1179 store16(&pData[94], EG2PreAttack);
1657 schoenebeck 809
1658     {
1659     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1660     uint8_t velocityresponse = VelocityResponseDepth;
1661     switch (VelocityResponseCurve) {
1662     case curve_type_nonlinear:
1663     break;
1664     case curve_type_linear:
1665     velocityresponse += 5;
1666     break;
1667     case curve_type_special:
1668     velocityresponse += 10;
1669     break;
1670     case curve_type_unknown:
1671     default:
1672     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1673     }
1674 persson 1179 pData[96] = velocityresponse;
1675 schoenebeck 809 }
1676    
1677     {
1678     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1679     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1680     switch (ReleaseVelocityResponseCurve) {
1681     case curve_type_nonlinear:
1682     break;
1683     case curve_type_linear:
1684     releasevelocityresponse += 5;
1685     break;
1686     case curve_type_special:
1687     releasevelocityresponse += 10;
1688     break;
1689     case curve_type_unknown:
1690     default:
1691     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1692     }
1693 persson 1179 pData[97] = releasevelocityresponse;
1694 schoenebeck 809 }
1695    
1696 persson 1179 pData[98] = VelocityResponseCurveScaling;
1697 schoenebeck 809
1698 persson 1179 pData[99] = AttenuationControllerThreshold;
1699 schoenebeck 809
1700     // next 4 bytes unknown
1701    
1702 persson 1179 store16(&pData[104], SampleStartOffset);
1703 schoenebeck 809
1704     // next 2 bytes unknown
1705    
1706     {
1707     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1708     switch (DimensionBypass) {
1709     case dim_bypass_ctrl_94:
1710     pitchTrackDimensionBypass |= 0x10;
1711     break;
1712     case dim_bypass_ctrl_95:
1713     pitchTrackDimensionBypass |= 0x20;
1714     break;
1715     case dim_bypass_ctrl_none:
1716     //FIXME: should we set anything here?
1717     break;
1718     default:
1719     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1720     }
1721 persson 1179 pData[108] = pitchTrackDimensionBypass;
1722 schoenebeck 809 }
1723    
1724     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1725 persson 1179 pData[109] = pan;
1726 schoenebeck 809
1727     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1728 persson 1179 pData[110] = selfmask;
1729 schoenebeck 809
1730     // next byte unknown
1731    
1732     {
1733     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1734     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1735     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1736     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1737 persson 1179 pData[112] = lfo3ctrl;
1738 schoenebeck 809 }
1739    
1740     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1741 persson 1179 pData[113] = attenctl;
1742 schoenebeck 809
1743     {
1744     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1745     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1746     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1747     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1748 persson 1179 pData[114] = lfo2ctrl;
1749 schoenebeck 809 }
1750    
1751     {
1752     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1753     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1754     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1755     if (VCFResonanceController != vcf_res_ctrl_none)
1756     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1757 persson 1179 pData[115] = lfo1ctrl;
1758 schoenebeck 809 }
1759    
1760     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1761     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1762 persson 1179 pData[116] = eg3depth;
1763 schoenebeck 809
1764     // next 2 bytes unknown
1765    
1766     const uint8_t channeloffset = ChannelOffset * 4;
1767 persson 1179 pData[120] = channeloffset;
1768 schoenebeck 809
1769     {
1770     uint8_t regoptions = 0;
1771     if (MSDecode) regoptions |= 0x01; // bit 0
1772     if (SustainDefeat) regoptions |= 0x02; // bit 1
1773 persson 1179 pData[121] = regoptions;
1774 schoenebeck 809 }
1775    
1776     // next 2 bytes unknown
1777    
1778 persson 1179 pData[124] = VelocityUpperLimit;
1779 schoenebeck 809
1780     // next 3 bytes unknown
1781    
1782 persson 1179 pData[128] = ReleaseTriggerDecay;
1783 schoenebeck 809
1784     // next 2 bytes unknown
1785    
1786     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1787 persson 1179 pData[131] = eg1hold;
1788 schoenebeck 809
1789     const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1790 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1791 persson 1179 pData[132] = vcfcutoff;
1792 schoenebeck 809
1793 persson 1179 pData[133] = VCFCutoffController;
1794 schoenebeck 809
1795     const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1796 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1797 persson 1179 pData[134] = vcfvelscale;
1798 schoenebeck 809
1799     // next byte unknown
1800    
1801     const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1802 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1803 persson 1179 pData[136] = vcfresonance;
1804 schoenebeck 809
1805     const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1806 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1807 persson 1179 pData[137] = vcfbreakpoint;
1808 schoenebeck 809
1809     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1810     VCFVelocityCurve * 5;
1811 persson 1179 pData[138] = vcfvelocity;
1812 schoenebeck 809
1813     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1814 persson 1179 pData[139] = vcftype;
1815 persson 1070
1816     if (chunksize >= 148) {
1817     memcpy(&pData[140], DimensionUpperLimits, 8);
1818     }
1819 schoenebeck 809 }
1820    
1821 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1822     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1823     {
1824     double* table;
1825     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1826 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1827 persson 613 table = (*pVelocityTables)[tableKey];
1828 schoenebeck 16 }
1829     else {
1830 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1831     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1832 schoenebeck 16 }
1833 persson 613 return table;
1834 schoenebeck 2 }
1835 schoenebeck 55
1836 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1837     leverage_ctrl_t decodedcontroller;
1838     switch (EncodedController) {
1839     // special controller
1840     case _lev_ctrl_none:
1841     decodedcontroller.type = leverage_ctrl_t::type_none;
1842     decodedcontroller.controller_number = 0;
1843     break;
1844     case _lev_ctrl_velocity:
1845     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1846     decodedcontroller.controller_number = 0;
1847     break;
1848     case _lev_ctrl_channelaftertouch:
1849     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1850     decodedcontroller.controller_number = 0;
1851     break;
1852 schoenebeck 55
1853 schoenebeck 36 // ordinary MIDI control change controller
1854     case _lev_ctrl_modwheel:
1855     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1856     decodedcontroller.controller_number = 1;
1857     break;
1858     case _lev_ctrl_breath:
1859     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1860     decodedcontroller.controller_number = 2;
1861     break;
1862     case _lev_ctrl_foot:
1863     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1864     decodedcontroller.controller_number = 4;
1865     break;
1866     case _lev_ctrl_effect1:
1867     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1868     decodedcontroller.controller_number = 12;
1869     break;
1870     case _lev_ctrl_effect2:
1871     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1872     decodedcontroller.controller_number = 13;
1873     break;
1874     case _lev_ctrl_genpurpose1:
1875     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1876     decodedcontroller.controller_number = 16;
1877     break;
1878     case _lev_ctrl_genpurpose2:
1879     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1880     decodedcontroller.controller_number = 17;
1881     break;
1882     case _lev_ctrl_genpurpose3:
1883     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1884     decodedcontroller.controller_number = 18;
1885     break;
1886     case _lev_ctrl_genpurpose4:
1887     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1888     decodedcontroller.controller_number = 19;
1889     break;
1890     case _lev_ctrl_portamentotime:
1891     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1892     decodedcontroller.controller_number = 5;
1893     break;
1894     case _lev_ctrl_sustainpedal:
1895     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1896     decodedcontroller.controller_number = 64;
1897     break;
1898     case _lev_ctrl_portamento:
1899     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1900     decodedcontroller.controller_number = 65;
1901     break;
1902     case _lev_ctrl_sostenutopedal:
1903     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1904     decodedcontroller.controller_number = 66;
1905     break;
1906     case _lev_ctrl_softpedal:
1907     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1908     decodedcontroller.controller_number = 67;
1909     break;
1910     case _lev_ctrl_genpurpose5:
1911     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1912     decodedcontroller.controller_number = 80;
1913     break;
1914     case _lev_ctrl_genpurpose6:
1915     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1916     decodedcontroller.controller_number = 81;
1917     break;
1918     case _lev_ctrl_genpurpose7:
1919     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1920     decodedcontroller.controller_number = 82;
1921     break;
1922     case _lev_ctrl_genpurpose8:
1923     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1924     decodedcontroller.controller_number = 83;
1925     break;
1926     case _lev_ctrl_effect1depth:
1927     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1928     decodedcontroller.controller_number = 91;
1929     break;
1930     case _lev_ctrl_effect2depth:
1931     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1932     decodedcontroller.controller_number = 92;
1933     break;
1934     case _lev_ctrl_effect3depth:
1935     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1936     decodedcontroller.controller_number = 93;
1937     break;
1938     case _lev_ctrl_effect4depth:
1939     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1940     decodedcontroller.controller_number = 94;
1941     break;
1942     case _lev_ctrl_effect5depth:
1943     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1944     decodedcontroller.controller_number = 95;
1945     break;
1946 schoenebeck 55
1947 schoenebeck 36 // unknown controller type
1948     default:
1949     throw gig::Exception("Unknown leverage controller type.");
1950     }
1951     return decodedcontroller;
1952     }
1953 schoenebeck 2
1954 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1955     _lev_ctrl_t encodedcontroller;
1956     switch (DecodedController.type) {
1957     // special controller
1958     case leverage_ctrl_t::type_none:
1959     encodedcontroller = _lev_ctrl_none;
1960     break;
1961     case leverage_ctrl_t::type_velocity:
1962     encodedcontroller = _lev_ctrl_velocity;
1963     break;
1964     case leverage_ctrl_t::type_channelaftertouch:
1965     encodedcontroller = _lev_ctrl_channelaftertouch;
1966     break;
1967    
1968     // ordinary MIDI control change controller
1969     case leverage_ctrl_t::type_controlchange:
1970     switch (DecodedController.controller_number) {
1971     case 1:
1972     encodedcontroller = _lev_ctrl_modwheel;
1973     break;
1974     case 2:
1975     encodedcontroller = _lev_ctrl_breath;
1976     break;
1977     case 4:
1978     encodedcontroller = _lev_ctrl_foot;
1979     break;
1980     case 12:
1981     encodedcontroller = _lev_ctrl_effect1;
1982     break;
1983     case 13:
1984     encodedcontroller = _lev_ctrl_effect2;
1985     break;
1986     case 16:
1987     encodedcontroller = _lev_ctrl_genpurpose1;
1988     break;
1989     case 17:
1990     encodedcontroller = _lev_ctrl_genpurpose2;
1991     break;
1992     case 18:
1993     encodedcontroller = _lev_ctrl_genpurpose3;
1994     break;
1995     case 19:
1996     encodedcontroller = _lev_ctrl_genpurpose4;
1997     break;
1998     case 5:
1999     encodedcontroller = _lev_ctrl_portamentotime;
2000     break;
2001     case 64:
2002     encodedcontroller = _lev_ctrl_sustainpedal;
2003     break;
2004     case 65:
2005     encodedcontroller = _lev_ctrl_portamento;
2006     break;
2007     case 66:
2008     encodedcontroller = _lev_ctrl_sostenutopedal;
2009     break;
2010     case 67:
2011     encodedcontroller = _lev_ctrl_softpedal;
2012     break;
2013     case 80:
2014     encodedcontroller = _lev_ctrl_genpurpose5;
2015     break;
2016     case 81:
2017     encodedcontroller = _lev_ctrl_genpurpose6;
2018     break;
2019     case 82:
2020     encodedcontroller = _lev_ctrl_genpurpose7;
2021     break;
2022     case 83:
2023     encodedcontroller = _lev_ctrl_genpurpose8;
2024     break;
2025     case 91:
2026     encodedcontroller = _lev_ctrl_effect1depth;
2027     break;
2028     case 92:
2029     encodedcontroller = _lev_ctrl_effect2depth;
2030     break;
2031     case 93:
2032     encodedcontroller = _lev_ctrl_effect3depth;
2033     break;
2034     case 94:
2035     encodedcontroller = _lev_ctrl_effect4depth;
2036     break;
2037     case 95:
2038     encodedcontroller = _lev_ctrl_effect5depth;
2039     break;
2040     default:
2041     throw gig::Exception("leverage controller number is not supported by the gig format");
2042     }
2043 persson 1182 break;
2044 schoenebeck 809 default:
2045     throw gig::Exception("Unknown leverage controller type.");
2046     }
2047     return encodedcontroller;
2048     }
2049    
2050 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2051     Instances--;
2052     if (!Instances) {
2053     // delete the velocity->volume tables
2054     VelocityTableMap::iterator iter;
2055     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2056     double* pTable = iter->second;
2057     if (pTable) delete[] pTable;
2058     }
2059     pVelocityTables->clear();
2060     delete pVelocityTables;
2061     pVelocityTables = NULL;
2062     }
2063 persson 858 if (VelocityTable) delete[] VelocityTable;
2064 schoenebeck 16 }
2065 schoenebeck 2
2066 schoenebeck 16 /**
2067     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2068     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2069     * and VelocityResponseCurveScaling) involved are taken into account to
2070     * calculate the amplitude factor. Use this method when a key was
2071     * triggered to get the volume with which the sample should be played
2072     * back.
2073     *
2074 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2075     * @returns amplitude factor (between 0.0 and 1.0)
2076 schoenebeck 16 */
2077     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2078     return pVelocityAttenuationTable[MIDIKeyVelocity];
2079     }
2080 schoenebeck 2
2081 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2082     return pVelocityReleaseTable[MIDIKeyVelocity];
2083     }
2084    
2085 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2086     return pVelocityCutoffTable[MIDIKeyVelocity];
2087     }
2088    
2089 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2090 schoenebeck 317
2091 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2092 schoenebeck 16
2093 schoenebeck 308 // linear
2094     const int lin0[] = { 1, 1, 127, 127 };
2095     const int lin1[] = { 1, 21, 127, 127 };
2096     const int lin2[] = { 1, 45, 127, 127 };
2097     const int lin3[] = { 1, 74, 127, 127 };
2098     const int lin4[] = { 1, 127, 127, 127 };
2099 schoenebeck 16
2100 schoenebeck 308 // non-linear
2101     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2102 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2103 schoenebeck 308 127, 127 };
2104     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2105     127, 127 };
2106     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2107     127, 127 };
2108     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2109 schoenebeck 317
2110 schoenebeck 308 // special
2111 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2112 schoenebeck 308 113, 127, 127, 127 };
2113     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2114     118, 127, 127, 127 };
2115 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2116 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2117 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2118 schoenebeck 308 117, 127, 127, 127 };
2119 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2120 schoenebeck 308 127, 127 };
2121 schoenebeck 317
2122 persson 728 // this is only used by the VCF velocity curve
2123     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2124     91, 127, 127, 127 };
2125    
2126 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2127 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2128 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2129 schoenebeck 317
2130 schoenebeck 308 double* const table = new double[128];
2131    
2132     const int* curve = curves[curveType * 5 + depth];
2133     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2134 schoenebeck 317
2135 schoenebeck 308 table[0] = 0;
2136     for (int x = 1 ; x < 128 ; x++) {
2137    
2138     if (x > curve[2]) curve += 2;
2139 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2140 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2141     y = y / 127;
2142    
2143     // Scale up for s > 20, down for s < 20. When
2144     // down-scaling, the curve still ends at 1.0.
2145     if (s < 20 && y >= 0.5)
2146     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2147     else
2148     y = y * (s / 20.0);
2149     if (y > 1) y = 1;
2150    
2151     table[x] = y;
2152     }
2153     return table;
2154     }
2155    
2156    
2157 schoenebeck 2 // *************** Region ***************
2158     // *
2159    
2160     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2161     // Initialization
2162     Dimensions = 0;
2163 schoenebeck 347 for (int i = 0; i < 256; i++) {
2164 schoenebeck 2 pDimensionRegions[i] = NULL;
2165     }
2166 schoenebeck 282 Layers = 1;
2167 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2168     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2169 schoenebeck 2
2170     // Actual Loading
2171    
2172     LoadDimensionRegions(rgnList);
2173    
2174     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2175     if (_3lnk) {
2176     DimensionRegions = _3lnk->ReadUint32();
2177 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2178 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2179     uint8_t bits = _3lnk->ReadUint8();
2180 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2181     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2182 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2183 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2184     pDimensionDefinitions[i].dimension = dimension_none;
2185     pDimensionDefinitions[i].bits = 0;
2186     pDimensionDefinitions[i].zones = 0;
2187     pDimensionDefinitions[i].split_type = split_type_bit;
2188     pDimensionDefinitions[i].zone_size = 0;
2189     }
2190     else { // active dimension
2191     pDimensionDefinitions[i].dimension = dimension;
2192     pDimensionDefinitions[i].bits = bits;
2193 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2194 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2195     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2196 schoenebeck 2 Dimensions++;
2197 schoenebeck 282
2198     // if this is a layer dimension, remember the amount of layers
2199     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2200 schoenebeck 2 }
2201 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2202 schoenebeck 2 }
2203 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2204 schoenebeck 2
2205 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2206     // update the VelocityTables in the dimension regions
2207     UpdateVelocityTable();
2208 schoenebeck 2
2209 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2210     if (file->pVersion && file->pVersion->major == 3)
2211     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2212     else
2213     _3lnk->SetPos(44);
2214    
2215 schoenebeck 2 // load sample references
2216     for (uint i = 0; i < DimensionRegions; i++) {
2217     uint32_t wavepoolindex = _3lnk->ReadUint32();
2218 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2219 schoenebeck 2 }
2220 persson 918 GetSample(); // load global region sample reference
2221 persson 1102 } else {
2222     DimensionRegions = 0;
2223 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2224     pDimensionDefinitions[i].dimension = dimension_none;
2225     pDimensionDefinitions[i].bits = 0;
2226     pDimensionDefinitions[i].zones = 0;
2227     }
2228 schoenebeck 2 }
2229 schoenebeck 823
2230     // make sure there is at least one dimension region
2231     if (!DimensionRegions) {
2232     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2233     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2234     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2235     pDimensionRegions[0] = new DimensionRegion(_3ewl);
2236     DimensionRegions = 1;
2237     }
2238 schoenebeck 2 }
2239    
2240 schoenebeck 809 /**
2241     * Apply Region settings and all its DimensionRegions to the respective
2242     * RIFF chunks. You have to call File::Save() to make changes persistent.
2243     *
2244     * Usually there is absolutely no need to call this method explicitly.
2245     * It will be called automatically when File::Save() was called.
2246     *
2247     * @throws gig::Exception if samples cannot be dereferenced
2248     */
2249     void Region::UpdateChunks() {
2250 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2251     // but we still have to provide some existing one to not corrupt the
2252     // file, so to avoid the latter we simply always assign the sample of
2253     // the first dimension region of this region
2254     pSample = pDimensionRegions[0]->pSample;
2255    
2256 schoenebeck 809 // first update base class's chunks
2257     DLS::Region::UpdateChunks();
2258    
2259 persson 1247 File* pFile = (File*) GetParent()->GetParent();
2260     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2261    
2262 schoenebeck 809 // update dimension region's chunks
2263 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2264 persson 1247 DimensionRegion* d = pDimensionRegions[i];
2265    
2266     // make sure '3ewa' chunk exists (we need to this before
2267     // calling DimensionRegion::UpdateChunks, as
2268     // DimensionRegion doesn't know which file version it is)
2269     RIFF::Chunk* _3ewa = d->pParentList->GetSubChunk(CHUNK_ID_3EWA);
2270     if (!_3ewa) d->pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
2271    
2272     d->UpdateChunks();
2273 schoenebeck 823 }
2274 schoenebeck 809
2275 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2276     const int iMaxDimensionRegions = version3 ? 256 : 32;
2277 schoenebeck 809
2278     // make sure '3lnk' chunk exists
2279     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2280     if (!_3lnk) {
2281 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2282 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2283 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2284 persson 1192
2285     // move 3prg to last position
2286     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2287 schoenebeck 809 }
2288    
2289     // update dimension definitions in '3lnk' chunk
2290     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2291 persson 1179 store32(&pData[0], DimensionRegions);
2292 persson 1199 int shift = 0;
2293 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2294 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2295     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2296 persson 1199 pData[6 + i * 8] = shift;
2297     pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2298 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2299 persson 1199 // next 3 bytes unknown, always zero?
2300    
2301     shift += pDimensionDefinitions[i].bits;
2302 schoenebeck 809 }
2303    
2304     // update wave pool table in '3lnk' chunk
2305 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2306 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2307     int iWaveIndex = -1;
2308     if (i < DimensionRegions) {
2309 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2310     File::SampleList::iterator iter = pFile->pSamples->begin();
2311     File::SampleList::iterator end = pFile->pSamples->end();
2312 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2313 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2314     iWaveIndex = index;
2315     break;
2316     }
2317 schoenebeck 809 }
2318     if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2319     }
2320 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2321 schoenebeck 809 }
2322     }
2323    
2324 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2325     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2326     if (_3prg) {
2327     int dimensionRegionNr = 0;
2328     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2329     while (_3ewl) {
2330     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2331     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2332     dimensionRegionNr++;
2333     }
2334     _3ewl = _3prg->GetNextSubList();
2335     }
2336     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2337     }
2338     }
2339    
2340 persson 858 void Region::UpdateVelocityTable() {
2341     // get velocity dimension's index
2342     int veldim = -1;
2343     for (int i = 0 ; i < Dimensions ; i++) {
2344     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2345     veldim = i;
2346 schoenebeck 809 break;
2347     }
2348     }
2349 persson 858 if (veldim == -1) return;
2350 schoenebeck 809
2351 persson 858 int step = 1;
2352     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2353     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2354     int end = step * pDimensionDefinitions[veldim].zones;
2355 schoenebeck 809
2356 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2357     int dim[8] = { 0 };
2358     for (int i = 0 ; i < DimensionRegions ; i++) {
2359    
2360 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2361     pDimensionRegions[i]->VelocityUpperLimit) {
2362 persson 858 // create the velocity table
2363     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2364     if (!table) {
2365     table = new uint8_t[128];
2366     pDimensionRegions[i]->VelocityTable = table;
2367     }
2368     int tableidx = 0;
2369     int velocityZone = 0;
2370 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2371     for (int k = i ; k < end ; k += step) {
2372     DimensionRegion *d = pDimensionRegions[k];
2373     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2374     velocityZone++;
2375     }
2376     } else { // gig2
2377     for (int k = i ; k < end ; k += step) {
2378     DimensionRegion *d = pDimensionRegions[k];
2379     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2380     velocityZone++;
2381     }
2382 persson 858 }
2383     } else {
2384     if (pDimensionRegions[i]->VelocityTable) {
2385     delete[] pDimensionRegions[i]->VelocityTable;
2386     pDimensionRegions[i]->VelocityTable = 0;
2387     }
2388 schoenebeck 809 }
2389 persson 858
2390     int j;
2391     int shift = 0;
2392     for (j = 0 ; j < Dimensions ; j++) {
2393     if (j == veldim) i += skipveldim; // skip velocity dimension
2394     else {
2395     dim[j]++;
2396     if (dim[j] < pDimensionDefinitions[j].zones) break;
2397     else {
2398     // skip unused dimension regions
2399     dim[j] = 0;
2400     i += ((1 << pDimensionDefinitions[j].bits) -
2401     pDimensionDefinitions[j].zones) << shift;
2402     }
2403     }
2404     shift += pDimensionDefinitions[j].bits;
2405     }
2406     if (j == Dimensions) break;
2407 schoenebeck 809 }
2408     }
2409    
2410     /** @brief Einstein would have dreamed of it - create a new dimension.
2411     *
2412     * Creates a new dimension with the dimension definition given by
2413     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2414     * There is a hard limit of dimensions and total amount of "bits" all
2415     * dimensions can have. This limit is dependant to what gig file format
2416     * version this file refers to. The gig v2 (and lower) format has a
2417     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2418     * format has a limit of 8.
2419     *
2420     * @param pDimDef - defintion of the new dimension
2421     * @throws gig::Exception if dimension of the same type exists already
2422     * @throws gig::Exception if amount of dimensions or total amount of
2423     * dimension bits limit is violated
2424     */
2425     void Region::AddDimension(dimension_def_t* pDimDef) {
2426     // check if max. amount of dimensions reached
2427     File* file = (File*) GetParent()->GetParent();
2428     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2429     if (Dimensions >= iMaxDimensions)
2430     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2431     // check if max. amount of dimension bits reached
2432     int iCurrentBits = 0;
2433     for (int i = 0; i < Dimensions; i++)
2434     iCurrentBits += pDimensionDefinitions[i].bits;
2435     if (iCurrentBits >= iMaxDimensions)
2436     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2437     const int iNewBits = iCurrentBits + pDimDef->bits;
2438     if (iNewBits > iMaxDimensions)
2439     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2440     // check if there's already a dimensions of the same type
2441     for (int i = 0; i < Dimensions; i++)
2442     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2443     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2444    
2445     // assign definition of new dimension
2446     pDimensionDefinitions[Dimensions] = *pDimDef;
2447    
2448 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2449     pDimensionDefinitions[Dimensions].split_type =
2450     __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2451     pDimensionDefinitions[Dimensions].zone_size =
2452     __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2453    
2454 schoenebeck 809 // create new dimension region(s) for this new dimension
2455     for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2456     //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2457 persson 1195 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2458     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2459 schoenebeck 809 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2460 persson 1247
2461     // copy the upper limits for the other dimensions
2462     memcpy(pDimensionRegions[i]->DimensionUpperLimits,
2463     pDimensionRegions[i & ((1 << iCurrentBits) - 1)]->DimensionUpperLimits, 8);
2464    
2465 schoenebeck 809 DimensionRegions++;
2466     }
2467    
2468 persson 1247 // initialize the upper limits for this dimension
2469     for (int z = 0, j = 0 ; z < pDimDef->zones ; z++, j += 1 << iCurrentBits) {
2470     uint8_t upperLimit = (z + 1) * 128.0 / pDimDef->zones - 1;
2471     for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2472     pDimensionRegions[j + i]->DimensionUpperLimits[Dimensions] = upperLimit;
2473     }
2474     }
2475    
2476 schoenebeck 809 Dimensions++;
2477    
2478     // if this is a layer dimension, update 'Layers' attribute
2479     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2480    
2481 persson 858 UpdateVelocityTable();
2482 schoenebeck 809 }
2483    
2484     /** @brief Delete an existing dimension.
2485     *
2486     * Deletes the dimension given by \a pDimDef and deletes all respective
2487     * dimension regions, that is all dimension regions where the dimension's
2488     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2489     * for example this would delete all dimension regions for the case(s)
2490     * where the sustain pedal is pressed down.
2491     *
2492     * @param pDimDef - dimension to delete
2493     * @throws gig::Exception if given dimension cannot be found
2494     */
2495     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2496     // get dimension's index
2497     int iDimensionNr = -1;
2498     for (int i = 0; i < Dimensions; i++) {
2499     if (&pDimensionDefinitions[i] == pDimDef) {
2500     iDimensionNr = i;
2501     break;
2502     }
2503     }
2504     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2505    
2506     // get amount of bits below the dimension to delete
2507     int iLowerBits = 0;
2508     for (int i = 0; i < iDimensionNr; i++)
2509     iLowerBits += pDimensionDefinitions[i].bits;
2510    
2511     // get amount ot bits above the dimension to delete
2512     int iUpperBits = 0;
2513     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2514     iUpperBits += pDimensionDefinitions[i].bits;
2515    
2516 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2517    
2518 schoenebeck 809 // delete dimension regions which belong to the given dimension
2519     // (that is where the dimension's bit > 0)
2520     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2521     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2522     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2523     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2524     iObsoleteBit << iLowerBits |
2525     iLowerBit;
2526 persson 1247
2527     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2528 schoenebeck 809 delete pDimensionRegions[iToDelete];
2529     pDimensionRegions[iToDelete] = NULL;
2530     DimensionRegions--;
2531     }
2532     }
2533     }
2534    
2535     // defrag pDimensionRegions array
2536     // (that is remove the NULL spaces within the pDimensionRegions array)
2537     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2538     if (!pDimensionRegions[iTo]) {
2539     if (iFrom <= iTo) iFrom = iTo + 1;
2540     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2541     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2542     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2543     pDimensionRegions[iFrom] = NULL;
2544     }
2545     }
2546     }
2547    
2548 persson 1247 // remove the this dimension from the upper limits arrays
2549     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2550     DimensionRegion* d = pDimensionRegions[j];
2551     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2552     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2553     }
2554     d->DimensionUpperLimits[Dimensions - 1] = 127;
2555     }
2556    
2557 schoenebeck 809 // 'remove' dimension definition
2558     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2559     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2560     }
2561     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2562     pDimensionDefinitions[Dimensions - 1].bits = 0;
2563     pDimensionDefinitions[Dimensions - 1].zones = 0;
2564    
2565     Dimensions--;
2566    
2567     // if this was a layer dimension, update 'Layers' attribute
2568     if (pDimDef->dimension == dimension_layer) Layers = 1;
2569     }
2570    
2571 schoenebeck 2 Region::~Region() {
2572 schoenebeck 350 for (int i = 0; i < 256; i++) {
2573 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2574     }
2575     }
2576    
2577     /**
2578     * Use this method in your audio engine to get the appropriate dimension
2579     * region with it's articulation data for the current situation. Just
2580     * call the method with the current MIDI controller values and you'll get
2581     * the DimensionRegion with the appropriate articulation data for the
2582     * current situation (for this Region of course only). To do that you'll
2583     * first have to look which dimensions with which controllers and in
2584     * which order are defined for this Region when you load the .gig file.
2585     * Special cases are e.g. layer or channel dimensions where you just put
2586     * in the index numbers instead of a MIDI controller value (means 0 for
2587     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2588     * etc.).
2589     *
2590 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2591 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2592     * @see pDimensionDefinitions
2593     * @see Dimensions
2594     */
2595 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2596 persson 858 uint8_t bits;
2597     int veldim = -1;
2598     int velbitpos;
2599     int bitpos = 0;
2600     int dimregidx = 0;
2601 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2602 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2603     // the velocity dimension must be handled after the other dimensions
2604     veldim = i;
2605     velbitpos = bitpos;
2606     } else {
2607     switch (pDimensionDefinitions[i].split_type) {
2608     case split_type_normal:
2609 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2610     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2611     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2612     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2613     }
2614     } else {
2615     // gig2: evenly sized zones
2616     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2617     }
2618 persson 858 break;
2619     case split_type_bit: // the value is already the sought dimension bit number
2620     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2621     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2622     break;
2623     }
2624     dimregidx |= bits << bitpos;
2625 schoenebeck 2 }
2626 persson 858 bitpos += pDimensionDefinitions[i].bits;
2627 schoenebeck 2 }
2628 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2629     if (veldim != -1) {
2630     // (dimreg is now the dimension region for the lowest velocity)
2631 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2632 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2633     else // normal split type
2634     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2635    
2636     dimregidx |= bits << velbitpos;
2637     dimreg = pDimensionRegions[dimregidx];
2638     }
2639     return dimreg;
2640 schoenebeck 2 }
2641    
2642     /**
2643     * Returns the appropriate DimensionRegion for the given dimension bit
2644     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2645     * instead of calling this method directly!
2646     *
2647 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2648 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2649     * bit numbers
2650     * @see GetDimensionRegionByValue()
2651     */
2652 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2653     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2654     << pDimensionDefinitions[5].bits | DimBits[5])
2655     << pDimensionDefinitions[4].bits | DimBits[4])
2656     << pDimensionDefinitions[3].bits | DimBits[3])
2657     << pDimensionDefinitions[2].bits | DimBits[2])
2658     << pDimensionDefinitions[1].bits | DimBits[1])
2659     << pDimensionDefinitions[0].bits | DimBits[0]];
2660 schoenebeck 2 }
2661    
2662     /**
2663     * Returns pointer address to the Sample referenced with this region.
2664     * This is the global Sample for the entire Region (not sure if this is
2665     * actually used by the Gigasampler engine - I would only use the Sample
2666     * referenced by the appropriate DimensionRegion instead of this sample).
2667     *
2668     * @returns address to Sample or NULL if there is no reference to a
2669     * sample saved in the .gig file
2670     */
2671     Sample* Region::GetSample() {
2672     if (pSample) return static_cast<gig::Sample*>(pSample);
2673     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2674     }
2675    
2676 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2677 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2678 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2679 persson 902 if (!file->pWavePoolTable) return NULL;
2680 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2681 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2682 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2683 schoenebeck 2 while (sample) {
2684 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2685 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2686 schoenebeck 2 sample = file->GetNextSample();
2687     }
2688     return NULL;
2689     }
2690    
2691    
2692    
2693     // *************** Instrument ***************
2694     // *
2695    
2696 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2697 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2698     { CHUNK_ID_INAM, 64 },
2699     { CHUNK_ID_ISFT, 12 },
2700     { 0, 0 }
2701     };
2702     pInfo->FixedStringLengths = fixedStringLengths;
2703 persson 918
2704 schoenebeck 2 // Initialization
2705     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2706 persson 1182 EffectSend = 0;
2707     Attenuation = 0;
2708     FineTune = 0;
2709     PitchbendRange = 0;
2710     PianoReleaseMode = false;
2711     DimensionKeyRange.low = 0;
2712     DimensionKeyRange.high = 0;
2713 schoenebeck 2
2714     // Loading
2715     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2716     if (lart) {
2717     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2718     if (_3ewg) {
2719     EffectSend = _3ewg->ReadUint16();
2720     Attenuation = _3ewg->ReadInt32();
2721     FineTune = _3ewg->ReadInt16();
2722     PitchbendRange = _3ewg->ReadInt16();
2723     uint8_t dimkeystart = _3ewg->ReadUint8();
2724     PianoReleaseMode = dimkeystart & 0x01;
2725     DimensionKeyRange.low = dimkeystart >> 1;
2726     DimensionKeyRange.high = _3ewg->ReadUint8();
2727     }
2728     }
2729    
2730 schoenebeck 823 if (!pRegions) pRegions = new RegionList;
2731 schoenebeck 2 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2732 schoenebeck 809 if (lrgn) {
2733     RIFF::List* rgn = lrgn->GetFirstSubList();
2734     while (rgn) {
2735     if (rgn->GetListType() == LIST_TYPE_RGN) {
2736 schoenebeck 823 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2737     pRegions->push_back(new Region(this, rgn));
2738 schoenebeck 809 }
2739     rgn = lrgn->GetNextSubList();
2740 schoenebeck 2 }
2741 schoenebeck 809 // Creating Region Key Table for fast lookup
2742     UpdateRegionKeyTable();
2743 schoenebeck 2 }
2744    
2745 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
2746     }
2747    
2748     void Instrument::UpdateRegionKeyTable() {
2749 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
2750     RegionList::iterator end = pRegions->end();
2751     for (; iter != end; ++iter) {
2752     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2753     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2754     RegionKeyTable[iKey] = pRegion;
2755 schoenebeck 2 }
2756     }
2757     }
2758    
2759     Instrument::~Instrument() {
2760     }
2761    
2762     /**
2763 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
2764     * You have to call File::Save() to make changes persistent.
2765     *
2766     * Usually there is absolutely no need to call this method explicitly.
2767     * It will be called automatically when File::Save() was called.
2768     *
2769     * @throws gig::Exception if samples cannot be dereferenced
2770     */
2771     void Instrument::UpdateChunks() {
2772     // first update base classes' chunks
2773     DLS::Instrument::UpdateChunks();
2774    
2775     // update Regions' chunks
2776 schoenebeck 823 {
2777     RegionList::iterator iter = pRegions->begin();
2778     RegionList::iterator end = pRegions->end();
2779     for (; iter != end; ++iter)
2780     (*iter)->UpdateChunks();
2781     }
2782 schoenebeck 809
2783     // make sure 'lart' RIFF list chunk exists
2784     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2785     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2786     // make sure '3ewg' RIFF chunk exists
2787     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2788     if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2789     // update '3ewg' RIFF chunk
2790     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2791 persson 1179 store16(&pData[0], EffectSend);
2792     store32(&pData[2], Attenuation);
2793     store16(&pData[6], FineTune);
2794     store16(&pData[8], PitchbendRange);
2795 schoenebeck 809 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2796     DimensionKeyRange.low << 1;
2797 persson 1179 pData[10] = dimkeystart;
2798     pData[11] = DimensionKeyRange.high;
2799 schoenebeck 809 }
2800    
2801     /**
2802 schoenebeck 2 * Returns the appropriate Region for a triggered note.
2803     *
2804     * @param Key MIDI Key number of triggered note / key (0 - 127)
2805     * @returns pointer adress to the appropriate Region or NULL if there
2806     * there is no Region defined for the given \a Key
2807     */
2808     Region* Instrument::GetRegion(unsigned int Key) {
2809 schoenebeck 823 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2810 schoenebeck 2 return RegionKeyTable[Key];
2811 schoenebeck 823
2812 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
2813     if (Key <= pRegions[i]->KeyRange.high &&
2814     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2815     }
2816     return NULL;*/
2817     }
2818    
2819     /**
2820     * Returns the first Region of the instrument. You have to call this
2821     * method once before you use GetNextRegion().
2822     *
2823     * @returns pointer address to first region or NULL if there is none
2824     * @see GetNextRegion()
2825     */
2826     Region* Instrument::GetFirstRegion() {
2827 schoenebeck 823 if (!pRegions) return NULL;
2828     RegionsIterator = pRegions->begin();
2829     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2830 schoenebeck 2 }
2831    
2832     /**
2833     * Returns the next Region of the instrument. You have to call
2834     * GetFirstRegion() once before you can use this method. By calling this
2835     * method multiple times it iterates through the available Regions.
2836     *
2837     * @returns pointer address to the next region or NULL if end reached
2838     * @see GetFirstRegion()
2839     */
2840     Region* Instrument::GetNextRegion() {
2841 schoenebeck 823 if (!pRegions) return NULL;
2842     RegionsIterator++;
2843     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2844 schoenebeck 2 }
2845    
2846 schoenebeck 809 Region* Instrument::AddRegion() {
2847     // create new Region object (and its RIFF chunks)
2848     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2849     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2850     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2851     Region* pNewRegion = new Region(this, rgn);
2852 schoenebeck 823 pRegions->push_back(pNewRegion);
2853     Regions = pRegions->size();
2854 schoenebeck 809 // update Region key table for fast lookup
2855     UpdateRegionKeyTable();
2856     // done
2857     return pNewRegion;
2858     }
2859 schoenebeck 2
2860 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
2861     if (!pRegions) return;
2862 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2863 schoenebeck 809 // update Region key table for fast lookup
2864     UpdateRegionKeyTable();
2865     }
2866 schoenebeck 2
2867 schoenebeck 809
2868    
2869 schoenebeck 929 // *************** Group ***************
2870     // *
2871    
2872     /** @brief Constructor.
2873     *
2874 schoenebeck 930 * @param file - pointer to the gig::File object
2875     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2876     * NULL if this is a new Group
2877 schoenebeck 929 */
2878 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2879 schoenebeck 929 pFile = file;
2880     pNameChunk = ck3gnm;
2881     ::LoadString(pNameChunk, Name);
2882     }
2883    
2884     Group::~Group() {
2885 schoenebeck 1099 // remove the chunk associated with this group (if any)
2886     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2887 schoenebeck 929 }
2888    
2889     /** @brief Update chunks with current group settings.
2890     *
2891 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
2892     * to call File::Save() to make changes persistent.
2893     *
2894     * Usually there is absolutely no need to call this method explicitly.
2895     * It will be called automatically when File::Save() was called.
2896 schoenebeck 929 */
2897     void Group::UpdateChunks() {
2898     // make sure <3gri> and <3gnl> list chunks exist
2899 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2900 persson 1192 if (!_3gri) {
2901     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2902     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2903     }
2904 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2905 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2906 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2907     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2908     }
2909    
2910 schoenebeck 930 /**
2911     * Returns the first Sample of this Group. You have to call this method
2912     * once before you use GetNextSample().
2913     *
2914     * <b>Notice:</b> this method might block for a long time, in case the
2915     * samples of this .gig file were not scanned yet
2916     *
2917     * @returns pointer address to first Sample or NULL if there is none
2918     * applied to this Group
2919     * @see GetNextSample()
2920     */
2921     Sample* Group::GetFirstSample() {
2922     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2923     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2924     if (pSample->GetGroup() == this) return pSample;
2925     }
2926     return NULL;
2927     }
2928 schoenebeck 929
2929 schoenebeck 930 /**
2930     * Returns the next Sample of the Group. You have to call
2931     * GetFirstSample() once before you can use this method. By calling this
2932     * method multiple times it iterates through the Samples assigned to
2933     * this Group.
2934     *
2935     * @returns pointer address to the next Sample of this Group or NULL if
2936     * end reached
2937     * @see GetFirstSample()
2938     */
2939     Sample* Group::GetNextSample() {
2940     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2941     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2942     if (pSample->GetGroup() == this) return pSample;
2943     }
2944     return NULL;
2945     }
2946 schoenebeck 929
2947 schoenebeck 930 /**
2948     * Move Sample given by \a pSample from another Group to this Group.
2949     */
2950     void Group::AddSample(Sample* pSample) {
2951     pSample->pGroup = this;
2952     }
2953    
2954     /**
2955     * Move all members of this group to another group (preferably the 1st
2956     * one except this). This method is called explicitly by
2957     * File::DeleteGroup() thus when a Group was deleted. This code was
2958     * intentionally not placed in the destructor!
2959     */
2960     void Group::MoveAll() {
2961     // get "that" other group first
2962     Group* pOtherGroup = NULL;
2963     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2964     if (pOtherGroup != this) break;
2965     }
2966     if (!pOtherGroup) throw Exception(
2967     "Could not move samples to another group, since there is no "
2968     "other Group. This is a bug, report it!"
2969     );
2970     // now move all samples of this group to the other group
2971     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2972     pOtherGroup->AddSample(pSample);
2973     }
2974     }
2975    
2976    
2977    
2978 schoenebeck 2 // *************** File ***************
2979     // *
2980    
2981 persson 1199 // File version 2.0, 1998-06-28
2982     const DLS::version_t File::VERSION_2 = {
2983     0, 2, 19980628 & 0xffff, 19980628 >> 16
2984     };
2985    
2986     // File version 3.0, 2003-03-31
2987     const DLS::version_t File::VERSION_3 = {
2988     0, 3, 20030331 & 0xffff, 20030331 >> 16
2989     };
2990    
2991 persson 1180 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2992     { CHUNK_ID_IARL, 256 },
2993     { CHUNK_ID_IART, 128 },
2994     { CHUNK_ID_ICMS, 128 },
2995     { CHUNK_ID_ICMT, 1024 },
2996     { CHUNK_ID_ICOP, 128 },
2997     { CHUNK_ID_ICRD, 128 },
2998     { CHUNK_ID_IENG, 128 },
2999     { CHUNK_ID_IGNR, 128 },
3000     { CHUNK_ID_IKEY, 128 },
3001     { CHUNK_ID_IMED, 128 },
3002     { CHUNK_ID_INAM, 128 },
3003     { CHUNK_ID_IPRD, 128 },
3004     { CHUNK_ID_ISBJ, 128 },
3005     { CHUNK_ID_ISFT, 128 },
3006     { CHUNK_ID_ISRC, 128 },
3007     { CHUNK_ID_ISRF, 128 },
3008     { CHUNK_ID_ITCH, 128 },
3009     { 0, 0 }
3010     };
3011    
3012 schoenebeck 809 File::File() : DLS::File() {
3013 schoenebeck 929 pGroups = NULL;
3014 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3015 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3016 persson 1192
3017     // add some mandatory chunks to get the file chunks in right
3018     // order (INFO chunk will be moved to first position later)
3019     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3020     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3021 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3022    
3023     GenerateDLSID();
3024 schoenebeck 809 }
3025    
3026 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3027 schoenebeck 929 pGroups = NULL;
3028 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3029 schoenebeck 2 }
3030    
3031 schoenebeck 929 File::~File() {
3032     if (pGroups) {
3033     std::list<Group*>::iterator iter = pGroups->begin();
3034     std::list<Group*>::iterator end = pGroups->end();
3035     while (iter != end) {
3036     delete *iter;
3037     ++iter;
3038     }
3039     delete pGroups;
3040     }
3041     }
3042    
3043 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3044     if (!pSamples) LoadSamples(pProgress);
3045 schoenebeck 2 if (!pSamples) return NULL;
3046     SamplesIterator = pSamples->begin();
3047     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3048     }
3049    
3050     Sample* File::GetNextSample() {
3051     if (!pSamples) return NULL;
3052     SamplesIterator++;
3053     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3054     }
3055    
3056 schoenebeck 809 /** @brief Add a new sample.
3057     *
3058     * This will create a new Sample object for the gig file. You have to
3059     * call Save() to make this persistent to the file.
3060     *
3061     * @returns pointer to new Sample object
3062     */
3063     Sample* File::AddSample() {
3064     if (!pSamples) LoadSamples();
3065     __ensureMandatoryChunksExist();
3066     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3067     // create new Sample object and its respective 'wave' list chunk
3068     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3069     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3070 persson 1192
3071     // add mandatory chunks to get the chunks in right order
3072     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3073     wave->AddSubList(LIST_TYPE_INFO);
3074    
3075 schoenebeck 809 pSamples->push_back(pSample);
3076     return pSample;
3077     }
3078    
3079     /** @brief Delete a sample.
3080     *
3081     * This will delete the given Sample object from the gig file. You have
3082     * to call Save() to make this persistent to the file.
3083     *
3084     * @param pSample - sample to delete
3085     * @throws gig::Exception if given sample could not be found
3086     */
3087     void File::DeleteSample(Sample* pSample) {
3088 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3089     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3090 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3091 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3092 schoenebeck 809 pSamples->erase(iter);
3093     delete pSample;
3094     }
3095    
3096 schoenebeck 823 void File::LoadSamples() {
3097     LoadSamples(NULL);
3098     }
3099    
3100 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3101 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3102     // to resolve the group they belong to
3103 schoenebeck 1158 if (!pGroups) LoadGroups();
3104 schoenebeck 930
3105 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3106    
3107 persson 666 RIFF::File* file = pRIFF;
3108 schoenebeck 515
3109 persson 666 // just for progress calculation
3110     int iSampleIndex = 0;
3111     int iTotalSamples = WavePoolCount;
3112 schoenebeck 515
3113 persson 666 // check if samples should be loaded from extension files
3114     int lastFileNo = 0;
3115     for (int i = 0 ; i < WavePoolCount ; i++) {
3116     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3117     }
3118 schoenebeck 780 String name(pRIFF->GetFileName());
3119     int nameLen = name.length();
3120 persson 666 char suffix[6];
3121 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3122 schoenebeck 515
3123 persson 666 for (int fileNo = 0 ; ; ) {
3124     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3125     if (wvpl) {
3126     unsigned long wvplFileOffset = wvpl->GetFilePos();
3127     RIFF::List* wave = wvpl->GetFirstSubList();
3128     while (wave) {
3129     if (wave->GetListType() == LIST_TYPE_WAVE) {
3130     // notify current progress
3131     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3132     __notify_progress(pProgress, subprogress);
3133    
3134     unsigned long waveFileOffset = wave->GetFilePos();
3135     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3136    
3137     iSampleIndex++;
3138     }
3139     wave = wvpl->GetNextSubList();
3140 schoenebeck 2 }
3141 persson 666
3142     if (fileNo == lastFileNo) break;
3143    
3144     // open extension file (*.gx01, *.gx02, ...)
3145     fileNo++;
3146     sprintf(suffix, ".gx%02d", fileNo);
3147     name.replace(nameLen, 5, suffix);
3148     file = new RIFF::File(name);
3149     ExtensionFiles.push_back(file);
3150 schoenebeck 823 } else break;
3151 schoenebeck 2 }
3152 persson 666
3153     __notify_progress(pProgress, 1.0); // notify done
3154 schoenebeck 2 }
3155    
3156     Instrument* File::GetFirstInstrument() {
3157     if (!pInstruments) LoadInstruments();
3158     if (!pInstruments) return NULL;
3159     InstrumentsIterator = pInstruments->begin();
3160 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3161 schoenebeck 2 }
3162    
3163     Instrument* File::GetNextInstrument() {
3164     if (!pInstruments) return NULL;
3165     InstrumentsIterator++;
3166 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3167 schoenebeck 2 }
3168    
3169 schoenebeck 21 /**
3170     * Returns the instrument with the given index.
3171     *
3172 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3173     * @param pProgress - optional: callback function for progress notification
3174 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3175     */
3176 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3177     if (!pInstruments) {
3178     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3179    
3180     // sample loading subtask
3181     progress_t subprogress;
3182     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3183     __notify_progress(&subprogress, 0.0f);
3184     GetFirstSample(&subprogress); // now force all samples to be loaded
3185     __notify_progress(&subprogress, 1.0f);
3186    
3187     // instrument loading subtask
3188     if (pProgress && pProgress->callback) {
3189     subprogress.__range_min = subprogress.__range_max;
3190     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3191     }
3192     __notify_progress(&subprogress, 0.0f);
3193     LoadInstruments(&subprogress);
3194     __notify_progress(&subprogress, 1.0f);
3195     }
3196 schoenebeck 21 if (!pInstruments) return NULL;
3197     InstrumentsIterator = pInstruments->begin();
3198     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3199 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3200 schoenebeck 21 InstrumentsIterator++;
3201     }
3202     return NULL;
3203     }
3204    
3205 schoenebeck 809 /** @brief Add a new instrument definition.
3206     *
3207     * This will create a new Instrument object for the gig file. You have
3208     * to call Save() to make this persistent to the file.
3209     *
3210     * @returns pointer to new Instrument object
3211     */
3212     Instrument* File::AddInstrument() {
3213     if (!pInstruments) LoadInstruments();
3214     __ensureMandatoryChunksExist();
3215     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3216     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3217 persson 1192
3218     // add mandatory chunks to get the chunks in right order
3219     lstInstr->AddSubList(LIST_TYPE_INFO);
3220 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3221 persson 1192
3222 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3223 persson 1209 pInstrument->GenerateDLSID();
3224 persson 1182
3225 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3226    
3227 persson 1182 // this string is needed for the gig to be loadable in GSt:
3228     pInstrument->pInfo->Software = "Endless Wave";
3229    
3230 schoenebeck 809 pInstruments->push_back(pInstrument);
3231     return pInstrument;
3232     }
3233    
3234     /** @brief Delete an instrument.
3235     *
3236     * This will delete the given Instrument object from the gig file. You
3237     * have to call Save() to make this persistent to the file.
3238     *
3239     * @param pInstrument - instrument to delete
3240 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3241 schoenebeck 809 */
3242     void File::DeleteInstrument(Instrument* pInstrument) {
3243     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3244 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3245 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3246     pInstruments->erase(iter);
3247     delete pInstrument;
3248     }
3249    
3250 schoenebeck 823 void File::LoadInstruments() {
3251     LoadInstruments(NULL);
3252     }
3253    
3254 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3255 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3256 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3257     if (lstInstruments) {
3258 schoenebeck 515 int iInstrumentIndex = 0;
3259 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3260     while (lstInstr) {
3261     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3262 schoenebeck 515 // notify current progress
3263     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3264     __notify_progress(pProgress, localProgress);
3265    
3266     // divide local progress into subprogress for loading current Instrument
3267     progress_t subprogress;
3268     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3269    
3270     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3271    
3272     iInstrumentIndex++;
3273 schoenebeck 2 }
3274     lstInstr = lstInstruments->GetNextSubList();
3275     }
3276 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3277 schoenebeck 2 }
3278     }
3279    
3280 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3281     /// update is done directly to disk, as this method is called
3282     /// after File::Save()
3283 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3284     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3285     if (!_3crc) return;
3286 persson 1207
3287     // get the index of the sample
3288 persson 1199 int iWaveIndex = -1;
3289     File::SampleList::iterator iter = pSamples->begin();
3290     File::SampleList::iterator end = pSamples->end();
3291     for (int index = 0; iter != end; ++iter, ++index) {
3292     if (*iter == pSample) {
3293     iWaveIndex = index;
3294     break;
3295     }
3296     }
3297     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3298    
3299 persson 1207 // write the CRC-32 checksum to disk
3300 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3301     uint32_t tmp = 1;
3302     _3crc->WriteUint32(&tmp); // unknown, always 1?
3303     _3crc->WriteUint32(&crc);
3304     }
3305    
3306 schoenebeck 929 Group* File::GetFirstGroup() {
3307     if (!pGroups) LoadGroups();
3308 schoenebeck 930 // there must always be at least one group
3309 schoenebeck 929 GroupsIterator = pGroups->begin();
3310 schoenebeck 930 return *GroupsIterator;
3311 schoenebeck 929 }
3312 schoenebeck 2
3313 schoenebeck 929 Group* File::GetNextGroup() {
3314     if (!pGroups) return NULL;
3315     ++GroupsIterator;
3316     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3317     }
3318 schoenebeck 2
3319 schoenebeck 929 /**
3320     * Returns the group with the given index.
3321     *
3322     * @param index - number of the sought group (0..n)
3323     * @returns sought group or NULL if there's no such group
3324     */
3325     Group* File::GetGroup(uint index) {
3326     if (!pGroups) LoadGroups();
3327     GroupsIterator = pGroups->begin();
3328     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3329     if (i == index) return *GroupsIterator;
3330     ++GroupsIterator;
3331     }
3332     return NULL;
3333     }
3334    
3335     Group* File::AddGroup() {
3336     if (!pGroups) LoadGroups();
3337 schoenebeck 930 // there must always be at least one group
3338 schoenebeck 929 __ensureMandatoryChunksExist();
3339 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3340 schoenebeck 929 pGroups->push_back(pGroup);
3341     return pGroup;
3342     }
3343    
3344 schoenebeck 1081 /** @brief Delete a group and its samples.
3345     *
3346     * This will delete the given Group object and all the samples that
3347     * belong to this group from the gig file. You have to call Save() to
3348     * make this persistent to the file.
3349     *
3350     * @param pGroup - group to delete
3351     * @throws gig::Exception if given group could not be found
3352     */
3353 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3354 schoenebeck 930 if (!pGroups) LoadGroups();
3355 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3356     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3357 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3358 schoenebeck 1081 // delete all members of this group
3359     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3360     DeleteSample(pSample);
3361     }
3362     // now delete this group object
3363     pGroups->erase(iter);
3364     delete pGroup;
3365     }
3366    
3367     /** @brief Delete a group.
3368     *
3369     * This will delete the given Group object from the gig file. All the
3370     * samples that belong to this group will not be deleted, but instead
3371     * be moved to another group. You have to call Save() to make this
3372     * persistent to the file.
3373     *
3374     * @param pGroup - group to delete
3375     * @throws gig::Exception if given group could not be found
3376     */
3377     void File::DeleteGroupOnly(Group* pGroup) {
3378     if (!pGroups) LoadGroups();
3379     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3380     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3381     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3382 schoenebeck 930 // move all members of this group to another group
3383     pGroup->MoveAll();
3384 schoenebeck 929 pGroups->erase(iter);
3385     delete pGroup;
3386     }
3387    
3388     void File::LoadGroups() {
3389     if (!pGroups) pGroups = new std::list<Group*>;
3390 schoenebeck 930 // try to read defined groups from file
3391 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3392 schoenebeck 930 if (lst3gri) {
3393     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3394     if (lst3gnl) {
3395     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3396     while (ck) {
3397     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3398     pGroups->push_back(new Group(this, ck));
3399     }
3400     ck = lst3gnl->GetNextSubChunk();
3401 schoenebeck 929 }
3402     }
3403     }
3404 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3405     if (!pGroups->size()) {
3406     Group* pGroup = new Group(this, NULL);
3407     pGroup->Name = "Default Group";
3408     pGroups->push_back(pGroup);
3409     }
3410 schoenebeck 929 }
3411    
3412 schoenebeck 1098 /**
3413     * Apply all the gig file's current instruments, samples, groups and settings
3414     * to the respective RIFF chunks. You have to call Save() to make changes
3415     * persistent.
3416     *
3417     * Usually there is absolutely no need to call this method explicitly.
3418     * It will be called automatically when File::Save() was called.
3419     *
3420     * @throws Exception - on errors
3421     */
3422     void File::UpdateChunks() {
3423 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3424 persson 1192
3425 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3426    
3427 schoenebeck 1098 // first update base class's chunks
3428     DLS::File::UpdateChunks();
3429 schoenebeck 929
3430 persson 1199 if (newFile) {
3431 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3432     // is placed first in file
3433 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3434 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3435     if (first != info) {
3436     pRIFF->MoveSubChunk(info, first);
3437     }
3438     }
3439    
3440 schoenebeck 1098 // update group's chunks
3441     if (pGroups) {
3442     std::list<Group*>::iterator iter = pGroups->begin();
3443     std::list<Group*>::iterator end = pGroups->end();
3444     for (; iter != end; ++iter) {
3445     (*iter)->UpdateChunks();
3446     }
3447     }
3448 persson 1199
3449     // update einf chunk
3450    
3451     // The einf chunk contains statistics about the gig file, such
3452     // as the number of regions and samples used by each
3453     // instrument. It is divided in equally sized parts, where the
3454     // first part contains information about the whole gig file,
3455     // and the rest of the parts map to each instrument in the
3456     // file.
3457     //
3458     // At the end of each part there is a bit map of each sample
3459     // in the file, where a set bit means that the sample is used
3460     // by the file/instrument.
3461     //
3462     // Note that there are several fields with unknown use. These
3463     // are set to zero.
3464    
3465     int sublen = pSamples->size() / 8 + 49;
3466     int einfSize = (Instruments + 1) * sublen;
3467    
3468     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3469     if (einf) {
3470     if (einf->GetSize() != einfSize) {
3471     einf->Resize(einfSize);
3472     memset(einf->LoadChunkData(), 0, einfSize);
3473     }
3474     } else if (newFile) {
3475     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3476     }
3477     if (einf) {
3478     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3479    
3480     std::map<gig::Sample*,int> sampleMap;
3481     int sampleIdx = 0;
3482     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3483     sampleMap[pSample] = sampleIdx++;
3484     }
3485    
3486     int totnbusedsamples = 0;
3487     int totnbusedchannels = 0;
3488     int totnbregions = 0;
3489     int totnbdimregions = 0;
3490     int instrumentIdx = 0;
3491    
3492     memset(&pData[48], 0, sublen - 48);
3493    
3494     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3495     instrument = GetNextInstrument()) {
3496     int nbusedsamples = 0;
3497     int nbusedchannels = 0;
3498     int nbdimregions = 0;
3499    
3500     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3501    
3502     for (Region* region = instrument->GetFirstRegion() ; region ;
3503     region = instrument->GetNextRegion()) {
3504     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3505     gig::DimensionRegion *d = region->pDimensionRegions[i];
3506     if (d->pSample) {
3507     int sampleIdx = sampleMap[d->pSample];
3508     int byte = 48 + sampleIdx / 8;
3509     int bit = 1 << (sampleIdx & 7);
3510     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3511     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3512     nbusedsamples++;
3513     nbusedchannels += d->pSample->Channels;
3514    
3515     if ((pData[byte] & bit) == 0) {
3516     pData[byte] |= bit;
3517     totnbusedsamples++;
3518     totnbusedchannels += d->pSample->Channels;
3519     }
3520     }
3521     }
3522     }
3523     nbdimregions += region->DimensionRegions;
3524     }
3525     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3526     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3527     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3528     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3529     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3530     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3531     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3532     // next 12 bytes unknown
3533     store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3534     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3535     // next 4 bytes unknown
3536    
3537     totnbregions += instrument->Regions;
3538     totnbdimregions += nbdimregions;
3539     instrumentIdx++;
3540     }
3541     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3542     // store32(&pData[0], sublen);
3543     store32(&pData[4], totnbusedchannels);
3544     store32(&pData[8], totnbusedsamples);
3545     store32(&pData[12], Instruments);
3546     store32(&pData[16], totnbregions);
3547     store32(&pData[20], totnbdimregions);
3548     // next 12 bytes unknown
3549     // next 4 bytes unknown, always 0?
3550     store32(&pData[40], pSamples->size());
3551     // next 4 bytes unknown
3552     }
3553    
3554     // update 3crc chunk
3555    
3556     // The 3crc chunk contains CRC-32 checksums for the
3557     // samples. The actual checksum values will be filled in
3558     // later, by Sample::Write.
3559    
3560     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3561     if (_3crc) {
3562     _3crc->Resize(pSamples->size() * 8);
3563     } else if (newFile) {
3564     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3565     _3crc->LoadChunkData();
3566     }
3567 schoenebeck 1098 }
3568 schoenebeck 929
3569 schoenebeck 1098
3570    
3571 schoenebeck 2 // *************** Exception ***************
3572     // *
3573    
3574     Exception::Exception(String Message) : DLS::Exception(Message) {
3575     }
3576    
3577     void Exception::PrintMessage() {
3578     std::cout << "gig::Exception: " << Message << std::endl;
3579     }
3580    
3581 schoenebeck 518
3582     // *************** functions ***************
3583     // *
3584    
3585     /**
3586     * Returns the name of this C++ library. This is usually "libgig" of
3587     * course. This call is equivalent to RIFF::libraryName() and
3588     * DLS::libraryName().
3589     */
3590     String libraryName() {
3591     return PACKAGE;
3592     }
3593    
3594     /**
3595     * Returns version of this C++ library. This call is equivalent to
3596     * RIFF::libraryVersion() and DLS::libraryVersion().
3597     */
3598     String libraryVersion() {
3599     return VERSION;
3600     }
3601    
3602 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC