/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1358 - (hide annotations) (download)
Sun Sep 30 18:13:33 2007 UTC (16 years, 6 months ago) by schoenebeck
File size: 169507 byte(s)
* added various setter methods to which take care of updating
  lookup tables / caches

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258     // *************** Other Internal functions ***************
259     // *
260    
261     static split_type_t __resolveSplitType(dimension_t dimension) {
262     return (
263     dimension == dimension_layer ||
264     dimension == dimension_samplechannel ||
265     dimension == dimension_releasetrigger ||
266     dimension == dimension_keyboard ||
267     dimension == dimension_roundrobin ||
268     dimension == dimension_random ||
269     dimension == dimension_smartmidi ||
270     dimension == dimension_roundrobinkeyboard
271     ) ? split_type_bit : split_type_normal;
272     }
273    
274     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275     return (dimension_definition.split_type == split_type_normal)
276     ? int(128.0 / dimension_definition.zones) : 0;
277     }
278    
279    
280    
281 persson 1199 // *************** CRC ***************
282     // *
283    
284     const uint32_t* CRC::table(initTable());
285    
286     uint32_t* CRC::initTable() {
287     uint32_t* res = new uint32_t[256];
288    
289     for (int i = 0 ; i < 256 ; i++) {
290     uint32_t c = i;
291     for (int j = 0 ; j < 8 ; j++) {
292     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293     }
294     res[i] = c;
295     }
296     return res;
297     }
298    
299    
300    
301 schoenebeck 2 // *************** Sample ***************
302     // *
303    
304 schoenebeck 384 unsigned int Sample::Instances = 0;
305     buffer_t Sample::InternalDecompressionBuffer;
306 schoenebeck 2
307 schoenebeck 809 /** @brief Constructor.
308     *
309     * Load an existing sample or create a new one. A 'wave' list chunk must
310     * be given to this constructor. In case the given 'wave' list chunk
311     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312     * format and sample data will be loaded from there, otherwise default
313     * values will be used and those chunks will be created when
314     * File::Save() will be called later on.
315     *
316     * @param pFile - pointer to gig::File where this sample is
317     * located (or will be located)
318     * @param waveList - pointer to 'wave' list chunk which is (or
319     * will be) associated with this sample
320     * @param WavePoolOffset - offset of this sample data from wave pool
321     * ('wvpl') list chunk
322     * @param fileNo - number of an extension file where this sample
323     * is located, 0 otherwise
324     */
325 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327     { CHUNK_ID_INAM, 64 },
328     { 0, 0 }
329     };
330     pInfo->FixedStringLengths = fixedStringLengths;
331 schoenebeck 2 Instances++;
332 persson 666 FileNo = fileNo;
333 schoenebeck 2
334 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335     if (pCk3gix) {
336 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
338 schoenebeck 809 } else { // '3gix' chunk missing
339 schoenebeck 930 // by default assigned to that mandatory "Default Group"
340     pGroup = pFile->GetGroup(0);
341 schoenebeck 809 }
342 schoenebeck 2
343 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344     if (pCkSmpl) {
345     Manufacturer = pCkSmpl->ReadInt32();
346     Product = pCkSmpl->ReadInt32();
347     SamplePeriod = pCkSmpl->ReadInt32();
348     MIDIUnityNote = pCkSmpl->ReadInt32();
349     FineTune = pCkSmpl->ReadInt32();
350     pCkSmpl->Read(&SMPTEFormat, 1, 4);
351     SMPTEOffset = pCkSmpl->ReadInt32();
352     Loops = pCkSmpl->ReadInt32();
353     pCkSmpl->ReadInt32(); // manufByt
354     LoopID = pCkSmpl->ReadInt32();
355     pCkSmpl->Read(&LoopType, 1, 4);
356     LoopStart = pCkSmpl->ReadInt32();
357     LoopEnd = pCkSmpl->ReadInt32();
358     LoopFraction = pCkSmpl->ReadInt32();
359     LoopPlayCount = pCkSmpl->ReadInt32();
360     } else { // 'smpl' chunk missing
361     // use default values
362     Manufacturer = 0;
363     Product = 0;
364 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 persson 1218 MIDIUnityNote = 60;
366 schoenebeck 809 FineTune = 0;
367 persson 1182 SMPTEFormat = smpte_format_no_offset;
368 schoenebeck 809 SMPTEOffset = 0;
369     Loops = 0;
370     LoopID = 0;
371 persson 1182 LoopType = loop_type_normal;
372 schoenebeck 809 LoopStart = 0;
373     LoopEnd = 0;
374     LoopFraction = 0;
375     LoopPlayCount = 0;
376     }
377 schoenebeck 2
378     FrameTable = NULL;
379     SamplePos = 0;
380     RAMCache.Size = 0;
381     RAMCache.pStart = NULL;
382     RAMCache.NullExtensionSize = 0;
383    
384 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387     Compressed = ewav;
388     Dithered = false;
389     TruncatedBits = 0;
390 schoenebeck 2 if (Compressed) {
391 persson 437 uint32_t version = ewav->ReadInt32();
392     if (version == 3 && BitDepth == 24) {
393     Dithered = ewav->ReadInt32();
394     ewav->SetPos(Channels == 2 ? 84 : 64);
395     TruncatedBits = ewav->ReadInt32();
396     }
397 schoenebeck 2 ScanCompressedSample();
398     }
399 schoenebeck 317
400     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 schoenebeck 317 }
405 persson 437 FrameOffset = 0; // just for streaming compressed samples
406 schoenebeck 21
407 persson 864 LoopSize = LoopEnd - LoopStart + 1;
408 schoenebeck 2 }
409    
410 schoenebeck 809 /**
411     * Apply sample and its settings to the respective RIFF chunks. You have
412     * to call File::Save() to make changes persistent.
413     *
414     * Usually there is absolutely no need to call this method explicitly.
415     * It will be called automatically when File::Save() was called.
416     *
417 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 schoenebeck 809 * was provided yet
419     * @throws gig::Exception if there is any invalid sample setting
420     */
421     void Sample::UpdateChunks() {
422     // first update base class's chunks
423     DLS::Sample::UpdateChunks();
424    
425     // make sure 'smpl' chunk exists
426     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 persson 1182 if (!pCkSmpl) {
428     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429     memset(pCkSmpl->LoadChunkData(), 0, 60);
430     }
431 schoenebeck 809 // update 'smpl' chunk
432     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 persson 1179 store32(&pData[0], Manufacturer);
435     store32(&pData[4], Product);
436     store32(&pData[8], SamplePeriod);
437     store32(&pData[12], MIDIUnityNote);
438     store32(&pData[16], FineTune);
439     store32(&pData[20], SMPTEFormat);
440     store32(&pData[24], SMPTEOffset);
441     store32(&pData[28], Loops);
442 schoenebeck 809
443     // we skip 'manufByt' for now (4 bytes)
444    
445 persson 1179 store32(&pData[36], LoopID);
446     store32(&pData[40], LoopType);
447     store32(&pData[44], LoopStart);
448     store32(&pData[48], LoopEnd);
449     store32(&pData[52], LoopFraction);
450     store32(&pData[56], LoopPlayCount);
451 schoenebeck 809
452     // make sure '3gix' chunk exists
453     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
456 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
458     if (pFile->pGroups) {
459     std::list<Group*>::iterator iter = pFile->pGroups->begin();
460     std::list<Group*>::iterator end = pFile->pGroups->end();
461 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
462 schoenebeck 929 if (*iter == pGroup) {
463     iSampleGroup = i;
464     break; // found
465     }
466     }
467     }
468 schoenebeck 809 // update '3gix' chunk
469     pData = (uint8_t*) pCk3gix->LoadChunkData();
470 persson 1179 store16(&pData[0], iSampleGroup);
471 schoenebeck 809 }
472    
473 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474     void Sample::ScanCompressedSample() {
475     //TODO: we have to add some more scans here (e.g. determine compression rate)
476     this->SamplesTotal = 0;
477     std::list<unsigned long> frameOffsets;
478    
479 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481 persson 365
482 schoenebeck 2 // Scanning
483     pCkData->SetPos(0);
484 persson 365 if (Channels == 2) { // Stereo
485     for (int i = 0 ; ; i++) {
486     // for 24 bit samples every 8:th frame offset is
487     // stored, to save some memory
488     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489    
490     const int mode_l = pCkData->ReadUint8();
491     const int mode_r = pCkData->ReadUint8();
492     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495     if (pCkData->RemainingBytes() <= frameSize) {
496     SamplesInLastFrame =
497     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499     SamplesTotal += SamplesInLastFrame;
500 schoenebeck 2 break;
501 persson 365 }
502     SamplesTotal += SamplesPerFrame;
503     pCkData->SetPos(frameSize, RIFF::stream_curpos);
504     }
505     }
506     else { // Mono
507     for (int i = 0 ; ; i++) {
508     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510     const int mode = pCkData->ReadUint8();
511     if (mode > 5) throw gig::Exception("Unknown compression mode");
512     const unsigned long frameSize = bytesPerFrame[mode];
513    
514     if (pCkData->RemainingBytes() <= frameSize) {
515     SamplesInLastFrame =
516     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517     SamplesTotal += SamplesInLastFrame;
518 schoenebeck 2 break;
519 persson 365 }
520     SamplesTotal += SamplesPerFrame;
521     pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 schoenebeck 2 }
523     }
524     pCkData->SetPos(0);
525    
526     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527     if (FrameTable) delete[] FrameTable;
528     FrameTable = new unsigned long[frameOffsets.size()];
529     std::list<unsigned long>::iterator end = frameOffsets.end();
530     std::list<unsigned long>::iterator iter = frameOffsets.begin();
531     for (int i = 0; iter != end; i++, iter++) {
532     FrameTable[i] = *iter;
533     }
534     }
535    
536     /**
537     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538     * ReleaseSampleData() to free the memory if you don't need the cached
539     * sample data anymore.
540     *
541     * @returns buffer_t structure with start address and size of the buffer
542     * in bytes
543     * @see ReleaseSampleData(), Read(), SetPos()
544     */
545     buffer_t Sample::LoadSampleData() {
546     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547     }
548    
549     /**
550     * Reads (uncompresses if needed) and caches the first \a SampleCount
551     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552     * memory space if you don't need the cached samples anymore. There is no
553     * guarantee that exactly \a SampleCount samples will be cached; this is
554     * not an error. The size will be eventually truncated e.g. to the
555     * beginning of a frame of a compressed sample. This is done for
556     * efficiency reasons while streaming the wave by your sampler engine
557     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558     * that will be returned to determine the actual cached samples, but note
559     * that the size is given in bytes! You get the number of actually cached
560     * samples by dividing it by the frame size of the sample:
561 schoenebeck 384 * @code
562 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563     * long cachedsamples = buf.Size / pSample->FrameSize;
564 schoenebeck 384 * @endcode
565 schoenebeck 2 *
566     * @param SampleCount - number of sample points to load into RAM
567     * @returns buffer_t structure with start address and size of
568     * the cached sample data in bytes
569     * @see ReleaseSampleData(), Read(), SetPos()
570     */
571     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573     }
574    
575     /**
576     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577     * ReleaseSampleData() to free the memory if you don't need the cached
578     * sample data anymore.
579     * The method will add \a NullSamplesCount silence samples past the
580     * official buffer end (this won't affect the 'Size' member of the
581     * buffer_t structure, that means 'Size' always reflects the size of the
582     * actual sample data, the buffer might be bigger though). Silence
583     * samples past the official buffer are needed for differential
584     * algorithms that always have to take subsequent samples into account
585     * (resampling/interpolation would be an important example) and avoids
586     * memory access faults in such cases.
587     *
588     * @param NullSamplesCount - number of silence samples the buffer should
589     * be extended past it's data end
590     * @returns buffer_t structure with start address and
591     * size of the buffer in bytes
592     * @see ReleaseSampleData(), Read(), SetPos()
593     */
594     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596     }
597    
598     /**
599     * Reads (uncompresses if needed) and caches the first \a SampleCount
600     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601     * memory space if you don't need the cached samples anymore. There is no
602     * guarantee that exactly \a SampleCount samples will be cached; this is
603     * not an error. The size will be eventually truncated e.g. to the
604     * beginning of a frame of a compressed sample. This is done for
605     * efficiency reasons while streaming the wave by your sampler engine
606     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607     * that will be returned to determine the actual cached samples, but note
608     * that the size is given in bytes! You get the number of actually cached
609     * samples by dividing it by the frame size of the sample:
610 schoenebeck 384 * @code
611 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612     * long cachedsamples = buf.Size / pSample->FrameSize;
613 schoenebeck 384 * @endcode
614 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
615     * official buffer end (this won't affect the 'Size' member of the
616     * buffer_t structure, that means 'Size' always reflects the size of the
617     * actual sample data, the buffer might be bigger though). Silence
618     * samples past the official buffer are needed for differential
619     * algorithms that always have to take subsequent samples into account
620     * (resampling/interpolation would be an important example) and avoids
621     * memory access faults in such cases.
622     *
623     * @param SampleCount - number of sample points to load into RAM
624     * @param NullSamplesCount - number of silence samples the buffer should
625     * be extended past it's data end
626     * @returns buffer_t structure with start address and
627     * size of the cached sample data in bytes
628     * @see ReleaseSampleData(), Read(), SetPos()
629     */
630     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634     RAMCache.pStart = new int8_t[allocationsize];
635     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637     // fill the remaining buffer space with silence samples
638     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639     return GetCache();
640     }
641    
642     /**
643     * Returns current cached sample points. A buffer_t structure will be
644     * returned which contains address pointer to the begin of the cache and
645     * the size of the cached sample data in bytes. Use
646     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647     * RAM.
648     *
649     * @returns buffer_t structure with current cached sample points
650     * @see LoadSampleData();
651     */
652     buffer_t Sample::GetCache() {
653     // return a copy of the buffer_t structure
654     buffer_t result;
655     result.Size = this->RAMCache.Size;
656     result.pStart = this->RAMCache.pStart;
657     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658     return result;
659     }
660    
661     /**
662     * Frees the cached sample from RAM if loaded with
663     * <i>LoadSampleData()</i> previously.
664     *
665     * @see LoadSampleData();
666     */
667     void Sample::ReleaseSampleData() {
668     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669     RAMCache.pStart = NULL;
670     RAMCache.Size = 0;
671     }
672    
673 schoenebeck 809 /** @brief Resize sample.
674     *
675     * Resizes the sample's wave form data, that is the actual size of
676     * sample wave data possible to be written for this sample. This call
677     * will return immediately and just schedule the resize operation. You
678     * should call File::Save() to actually perform the resize operation(s)
679     * "physically" to the file. As this can take a while on large files, it
680     * is recommended to call Resize() first on all samples which have to be
681     * resized and finally to call File::Save() to perform all those resize
682     * operations in one rush.
683     *
684     * The actual size (in bytes) is dependant to the current FrameSize
685     * value. You may want to set FrameSize before calling Resize().
686     *
687     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688     * enlarged samples before calling File::Save() as this might exceed the
689     * current sample's boundary!
690     *
691 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 schoenebeck 809 * other formats will fail!
694     *
695     * @param iNewSize - new sample wave data size in sample points (must be
696     * greater than zero)
697 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 schoenebeck 809 * or if \a iNewSize is less than 1
699     * @throws gig::Exception if existing sample is compressed
700     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701     * DLS::Sample::FormatTag, File::Save()
702     */
703     void Sample::Resize(int iNewSize) {
704     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705     DLS::Sample::Resize(iNewSize);
706     }
707    
708 schoenebeck 2 /**
709     * Sets the position within the sample (in sample points, not in
710     * bytes). Use this method and <i>Read()</i> if you don't want to load
711     * the sample into RAM, thus for disk streaming.
712     *
713     * Although the original Gigasampler engine doesn't allow positioning
714     * within compressed samples, I decided to implement it. Even though
715     * the Gigasampler format doesn't allow to define loops for compressed
716     * samples at the moment, positioning within compressed samples might be
717     * interesting for some sampler engines though. The only drawback about
718     * my decision is that it takes longer to load compressed gig Files on
719     * startup, because it's neccessary to scan the samples for some
720     * mandatory informations. But I think as it doesn't affect the runtime
721     * efficiency, nobody will have a problem with that.
722     *
723     * @param SampleCount number of sample points to jump
724     * @param Whence optional: to which relation \a SampleCount refers
725     * to, if omited <i>RIFF::stream_start</i> is assumed
726     * @returns the new sample position
727     * @see Read()
728     */
729     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730     if (Compressed) {
731     switch (Whence) {
732     case RIFF::stream_curpos:
733     this->SamplePos += SampleCount;
734     break;
735     case RIFF::stream_end:
736     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737     break;
738     case RIFF::stream_backward:
739     this->SamplePos -= SampleCount;
740     break;
741     case RIFF::stream_start: default:
742     this->SamplePos = SampleCount;
743     break;
744     }
745     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746    
747     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750     return this->SamplePos;
751     }
752     else { // not compressed
753     unsigned long orderedBytes = SampleCount * this->FrameSize;
754     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755     return (result == orderedBytes) ? SampleCount
756     : result / this->FrameSize;
757     }
758     }
759    
760     /**
761     * Returns the current position in the sample (in sample points).
762     */
763     unsigned long Sample::GetPos() {
764     if (Compressed) return SamplePos;
765     else return pCkData->GetPos() / FrameSize;
766     }
767    
768     /**
769 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
770     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771     * the position within the sample respectively, this method honors the
772     * looping informations of the sample (if any). The sample wave stream
773     * will be decompressed on the fly if using a compressed sample. Use this
774     * method if you don't want to load the sample into RAM, thus for disk
775     * streaming. All this methods needs to know to proceed with streaming
776     * for the next time you call this method is stored in \a pPlaybackState.
777     * You have to allocate and initialize the playback_state_t structure by
778     * yourself before you use it to stream a sample:
779 schoenebeck 384 * @code
780     * gig::playback_state_t playbackstate;
781     * playbackstate.position = 0;
782     * playbackstate.reverse = false;
783     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784     * @endcode
785 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
786     * defined or if the current read position is located within a loop area.
787     * The method already handles such cases by itself.
788     *
789 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
790     * have to use an external decompression buffer for <b>EACH</b>
791     * streaming thread to avoid race conditions and crashes!
792     *
793 schoenebeck 24 * @param pBuffer destination buffer
794     * @param SampleCount number of sample points to read
795     * @param pPlaybackState will be used to store and reload the playback
796     * state for the next ReadAndLoop() call
797 persson 864 * @param pDimRgn dimension region with looping information
798 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 schoenebeck 24 * @returns number of successfully read sample points
800 schoenebeck 384 * @see CreateDecompressionBuffer()
801 schoenebeck 24 */
802 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805     uint8_t* pDst = (uint8_t*) pBuffer;
806    
807     SetPos(pPlaybackState->position); // recover position from the last time
808    
809 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810 schoenebeck 24
811 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813 schoenebeck 24
814 persson 864 if (GetPos() <= loopEnd) {
815     switch (loop.LoopType) {
816 schoenebeck 24
817 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
818     do {
819     // if not endless loop check if max. number of loop cycles have been passed
820     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821 schoenebeck 24
822 persson 864 if (!pPlaybackState->reverse) { // forward playback
823     do {
824     samplestoloopend = loopEnd - GetPos();
825     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826     samplestoread -= readsamples;
827     totalreadsamples += readsamples;
828     if (readsamples == samplestoloopend) {
829     pPlaybackState->reverse = true;
830     break;
831     }
832     } while (samplestoread && readsamples);
833     }
834     else { // backward playback
835 schoenebeck 24
836 persson 864 // as we can only read forward from disk, we have to
837     // determine the end position within the loop first,
838     // read forward from that 'end' and finally after
839     // reading, swap all sample frames so it reflects
840     // backward playback
841 schoenebeck 24
842 persson 864 unsigned long swapareastart = totalreadsamples;
843     unsigned long loopoffset = GetPos() - loop.LoopStart;
844     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846 schoenebeck 24
847 persson 864 SetPos(reverseplaybackend);
848 schoenebeck 24
849 persson 864 // read samples for backward playback
850     do {
851     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852     samplestoreadinloop -= readsamples;
853     samplestoread -= readsamples;
854     totalreadsamples += readsamples;
855     } while (samplestoreadinloop && readsamples);
856 schoenebeck 24
857 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
858    
859     if (reverseplaybackend == loop.LoopStart) {
860     pPlaybackState->loop_cycles_left--;
861     pPlaybackState->reverse = false;
862     }
863    
864     // reverse the sample frames for backward playback
865     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 schoenebeck 24 }
867 persson 864 } while (samplestoread && readsamples);
868     break;
869     }
870 schoenebeck 24
871 persson 864 case loop_type_backward: { // TODO: not tested yet!
872     // forward playback (not entered the loop yet)
873     if (!pPlaybackState->reverse) do {
874     samplestoloopend = loopEnd - GetPos();
875     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876     samplestoread -= readsamples;
877     totalreadsamples += readsamples;
878     if (readsamples == samplestoloopend) {
879     pPlaybackState->reverse = true;
880     break;
881     }
882     } while (samplestoread && readsamples);
883 schoenebeck 24
884 persson 864 if (!samplestoread) break;
885 schoenebeck 24
886 persson 864 // as we can only read forward from disk, we have to
887     // determine the end position within the loop first,
888     // read forward from that 'end' and finally after
889     // reading, swap all sample frames so it reflects
890     // backward playback
891 schoenebeck 24
892 persson 864 unsigned long swapareastart = totalreadsamples;
893     unsigned long loopoffset = GetPos() - loop.LoopStart;
894     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895     : samplestoread;
896     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897 schoenebeck 24
898 persson 864 SetPos(reverseplaybackend);
899 schoenebeck 24
900 persson 864 // read samples for backward playback
901     do {
902     // if not endless loop check if max. number of loop cycles have been passed
903     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904     samplestoloopend = loopEnd - GetPos();
905     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906     samplestoreadinloop -= readsamples;
907     samplestoread -= readsamples;
908     totalreadsamples += readsamples;
909     if (readsamples == samplestoloopend) {
910     pPlaybackState->loop_cycles_left--;
911     SetPos(loop.LoopStart);
912     }
913     } while (samplestoreadinloop && readsamples);
914 schoenebeck 24
915 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
916 schoenebeck 24
917 persson 864 // reverse the sample frames for backward playback
918     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919     break;
920     }
921 schoenebeck 24
922 persson 864 default: case loop_type_normal: {
923     do {
924     // if not endless loop check if max. number of loop cycles have been passed
925     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926     samplestoloopend = loopEnd - GetPos();
927     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928     samplestoread -= readsamples;
929     totalreadsamples += readsamples;
930     if (readsamples == samplestoloopend) {
931     pPlaybackState->loop_cycles_left--;
932     SetPos(loop.LoopStart);
933     }
934     } while (samplestoread && readsamples);
935     break;
936     }
937 schoenebeck 24 }
938     }
939     }
940    
941     // read on without looping
942     if (samplestoread) do {
943 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 schoenebeck 24 samplestoread -= readsamples;
945     totalreadsamples += readsamples;
946     } while (readsamples && samplestoread);
947    
948     // store current position
949     pPlaybackState->position = GetPos();
950    
951     return totalreadsamples;
952     }
953    
954     /**
955 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
956     * position into the buffer pointed by \a pBuffer and increments the
957     * position within the sample. The sample wave stream will be
958     * decompressed on the fly if using a compressed sample. Use this method
959     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960     * thus for disk streaming.
961     *
962 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
963     * have to use an external decompression buffer for <b>EACH</b>
964     * streaming thread to avoid race conditions and crashes!
965     *
966 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
967     * (using native endianness). For 24 bit, the buffer will
968     * contain three bytes per sample, little-endian.
969     *
970 schoenebeck 2 * @param pBuffer destination buffer
971     * @param SampleCount number of sample points to read
972 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 schoenebeck 2 * @returns number of successfully read sample points
974 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
975 schoenebeck 2 */
976 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 schoenebeck 21 if (SampleCount == 0) return 0;
978 schoenebeck 317 if (!Compressed) {
979     if (BitDepth == 24) {
980 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 schoenebeck 317 }
982 persson 365 else { // 16 bit
983     // (pCkData->Read does endian correction)
984     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985     : pCkData->Read(pBuffer, SampleCount, 2);
986     }
987 schoenebeck 317 }
988 persson 365 else {
989 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
990 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
991     unsigned long assumedsize = GuessSize(SampleCount),
992 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
993     remainingsamples = SampleCount,
994 persson 365 copysamples, skipsamples,
995     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 schoenebeck 2 this->FrameOffset = 0;
997    
998 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999    
1000     // if decompression buffer too small, then reduce amount of samples to read
1001     if (pDecompressionBuffer->Size < assumedsize) {
1002     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004     remainingsamples = SampleCount;
1005     assumedsize = GuessSize(SampleCount);
1006 schoenebeck 2 }
1007    
1008 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013 persson 365 while (remainingsamples && remainingbytes) {
1014     unsigned long framesamples = SamplesPerFrame;
1015     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016 schoenebeck 2
1017 persson 365 int mode_l = *pSrc++, mode_r = 0;
1018    
1019     if (Channels == 2) {
1020     mode_r = *pSrc++;
1021     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024     if (remainingbytes < framebytes) { // last frame in sample
1025     framesamples = SamplesInLastFrame;
1026     if (mode_l == 4 && (framesamples & 1)) {
1027     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028     }
1029     else {
1030     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031     }
1032 schoenebeck 2 }
1033     }
1034 persson 365 else {
1035     framebytes = bytesPerFrame[mode_l] + 1;
1036     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037     if (remainingbytes < framebytes) {
1038     framesamples = SamplesInLastFrame;
1039     }
1040     }
1041 schoenebeck 2
1042     // determine how many samples in this frame to skip and read
1043 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1044     if (currentframeoffset <= framesamples) {
1045     copysamples = framesamples - currentframeoffset;
1046     skipsamples = currentframeoffset;
1047     }
1048     else {
1049     copysamples = 0;
1050     skipsamples = framesamples;
1051     }
1052 schoenebeck 2 }
1053     else {
1054 persson 365 // This frame has enough data for pBuffer, but not
1055     // all of the frame is needed. Set file position
1056     // to start of this frame for next call to Read.
1057 schoenebeck 2 copysamples = remainingsamples;
1058 persson 365 skipsamples = currentframeoffset;
1059     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060     this->FrameOffset = currentframeoffset + copysamples;
1061     }
1062     remainingsamples -= copysamples;
1063    
1064     if (remainingbytes > framebytes) {
1065     remainingbytes -= framebytes;
1066     if (remainingsamples == 0 &&
1067     currentframeoffset + copysamples == framesamples) {
1068     // This frame has enough data for pBuffer, and
1069     // all of the frame is needed. Set file
1070     // position to start of next frame for next
1071     // call to Read. FrameOffset is 0.
1072 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073     }
1074     }
1075 persson 365 else remainingbytes = 0;
1076 schoenebeck 2
1077 persson 365 currentframeoffset -= skipsamples;
1078 schoenebeck 2
1079 persson 365 if (copysamples == 0) {
1080     // skip this frame
1081     pSrc += framebytes - Channels;
1082     }
1083     else {
1084     const unsigned char* const param_l = pSrc;
1085     if (BitDepth == 24) {
1086     if (mode_l != 2) pSrc += 12;
1087 schoenebeck 2
1088 persson 365 if (Channels == 2) { // Stereo
1089     const unsigned char* const param_r = pSrc;
1090     if (mode_r != 2) pSrc += 12;
1091    
1092 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 persson 437 skipsamples, copysamples, TruncatedBits);
1094 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 persson 437 skipsamples, copysamples, TruncatedBits);
1096 persson 902 pDst24 += copysamples * 6;
1097 schoenebeck 2 }
1098 persson 365 else { // Mono
1099 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 persson 437 skipsamples, copysamples, TruncatedBits);
1101 persson 902 pDst24 += copysamples * 3;
1102 schoenebeck 2 }
1103 persson 365 }
1104     else { // 16 bit
1105     if (mode_l) pSrc += 4;
1106 schoenebeck 2
1107 persson 365 int step;
1108     if (Channels == 2) { // Stereo
1109     const unsigned char* const param_r = pSrc;
1110     if (mode_r) pSrc += 4;
1111    
1112     step = (2 - mode_l) + (2 - mode_r);
1113 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 persson 365 skipsamples, copysamples);
1116     pDst += copysamples << 1;
1117 schoenebeck 2 }
1118 persson 365 else { // Mono
1119     step = 2 - mode_l;
1120 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 persson 365 pDst += copysamples;
1122 schoenebeck 2 }
1123 persson 365 }
1124     pSrc += nextFrameOffset;
1125     }
1126 schoenebeck 2
1127 persson 365 // reload from disk to local buffer if needed
1128     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129     assumedsize = GuessSize(remainingsamples);
1130     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 schoenebeck 2 }
1135 persson 365 } // while
1136    
1137 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1138 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 schoenebeck 2 return (SampleCount - remainingsamples);
1140     }
1141     }
1142    
1143 schoenebeck 809 /** @brief Write sample wave data.
1144     *
1145     * Writes \a SampleCount number of sample points from the buffer pointed
1146     * by \a pBuffer and increments the position within the sample. Use this
1147     * method to directly write the sample data to disk, i.e. if you don't
1148     * want or cannot load the whole sample data into RAM.
1149     *
1150     * You have to Resize() the sample to the desired size and call
1151     * File::Save() <b>before</b> using Write().
1152     *
1153     * Note: there is currently no support for writing compressed samples.
1154     *
1155 persson 1264 * For 16 bit samples, the data in the source buffer should be
1156     * int16_t (using native endianness). For 24 bit, the buffer
1157     * should contain three bytes per sample, little-endian.
1158     *
1159 schoenebeck 809 * @param pBuffer - source buffer
1160     * @param SampleCount - number of sample points to write
1161     * @throws DLS::Exception if current sample size is too small
1162     * @throws gig::Exception if sample is compressed
1163     * @see DLS::LoadSampleData()
1164     */
1165     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167 persson 1207
1168     // if this is the first write in this sample, reset the
1169     // checksum calculator
1170 persson 1199 if (pCkData->GetPos() == 0) {
1171     crc.reset();
1172     }
1173 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174     unsigned long res;
1175     if (BitDepth == 24) {
1176     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177     } else { // 16 bit
1178     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179     : pCkData->Write(pBuffer, SampleCount, 2);
1180     }
1181 persson 1199 crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182    
1183 persson 1207 // if this is the last write, update the checksum chunk in the
1184     // file
1185 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1186     File* pFile = static_cast<File*>(GetParent());
1187     pFile->SetSampleChecksum(this, crc.getValue());
1188     }
1189     return res;
1190 schoenebeck 809 }
1191    
1192 schoenebeck 384 /**
1193     * Allocates a decompression buffer for streaming (compressed) samples
1194     * with Sample::Read(). If you are using more than one streaming thread
1195     * in your application you <b>HAVE</b> to create a decompression buffer
1196     * for <b>EACH</b> of your streaming threads and provide it with the
1197     * Sample::Read() call in order to avoid race conditions and crashes.
1198     *
1199     * You should free the memory occupied by the allocated buffer(s) once
1200     * you don't need one of your streaming threads anymore by calling
1201     * DestroyDecompressionBuffer().
1202     *
1203     * @param MaxReadSize - the maximum size (in sample points) you ever
1204     * expect to read with one Read() call
1205     * @returns allocated decompression buffer
1206     * @see DestroyDecompressionBuffer()
1207     */
1208     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1209     buffer_t result;
1210     const double worstCaseHeaderOverhead =
1211     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1212     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1213     result.pStart = new int8_t[result.Size];
1214     result.NullExtensionSize = 0;
1215     return result;
1216     }
1217    
1218     /**
1219     * Free decompression buffer, previously created with
1220     * CreateDecompressionBuffer().
1221     *
1222     * @param DecompressionBuffer - previously allocated decompression
1223     * buffer to free
1224     */
1225     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1226     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1227     delete[] (int8_t*) DecompressionBuffer.pStart;
1228     DecompressionBuffer.pStart = NULL;
1229     DecompressionBuffer.Size = 0;
1230     DecompressionBuffer.NullExtensionSize = 0;
1231     }
1232     }
1233    
1234 schoenebeck 930 /**
1235     * Returns pointer to the Group this Sample belongs to. In the .gig
1236     * format a sample always belongs to one group. If it wasn't explicitly
1237     * assigned to a certain group, it will be automatically assigned to a
1238     * default group.
1239     *
1240     * @returns Sample's Group (never NULL)
1241     */
1242     Group* Sample::GetGroup() const {
1243     return pGroup;
1244     }
1245    
1246 schoenebeck 2 Sample::~Sample() {
1247     Instances--;
1248 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1249     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1250     InternalDecompressionBuffer.pStart = NULL;
1251     InternalDecompressionBuffer.Size = 0;
1252 schoenebeck 355 }
1253 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1254     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1255     }
1256    
1257    
1258    
1259     // *************** DimensionRegion ***************
1260     // *
1261    
1262 schoenebeck 16 uint DimensionRegion::Instances = 0;
1263     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1264    
1265 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1266 schoenebeck 16 Instances++;
1267    
1268 schoenebeck 823 pSample = NULL;
1269 schoenebeck 1316 pRegion = pParent;
1270 schoenebeck 823
1271 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1272     else memset(&Crossfade, 0, 4);
1273    
1274 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1275 schoenebeck 2
1276     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1277 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1278 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1279 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1281     _3ewa->ReadInt16(); // unknown
1282     LFO1InternalDepth = _3ewa->ReadUint16();
1283     _3ewa->ReadInt16(); // unknown
1284     LFO3InternalDepth = _3ewa->ReadInt16();
1285     _3ewa->ReadInt16(); // unknown
1286     LFO1ControlDepth = _3ewa->ReadUint16();
1287     _3ewa->ReadInt16(); // unknown
1288     LFO3ControlDepth = _3ewa->ReadInt16();
1289     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1290     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1291     _3ewa->ReadInt16(); // unknown
1292     EG1Sustain = _3ewa->ReadUint16();
1293     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1294     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1295     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1296     EG1ControllerInvert = eg1ctrloptions & 0x01;
1297     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1298     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1299     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1300     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1301     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1302     EG2ControllerInvert = eg2ctrloptions & 0x01;
1303     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1304     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1305     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1306     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1307     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1308     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1309     _3ewa->ReadInt16(); // unknown
1310     EG2Sustain = _3ewa->ReadUint16();
1311     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1312     _3ewa->ReadInt16(); // unknown
1313     LFO2ControlDepth = _3ewa->ReadUint16();
1314     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1315     _3ewa->ReadInt16(); // unknown
1316     LFO2InternalDepth = _3ewa->ReadUint16();
1317     int32_t eg1decay2 = _3ewa->ReadInt32();
1318     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1319     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1320     _3ewa->ReadInt16(); // unknown
1321     EG1PreAttack = _3ewa->ReadUint16();
1322     int32_t eg2decay2 = _3ewa->ReadInt32();
1323     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1324     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1325     _3ewa->ReadInt16(); // unknown
1326     EG2PreAttack = _3ewa->ReadUint16();
1327     uint8_t velocityresponse = _3ewa->ReadUint8();
1328     if (velocityresponse < 5) {
1329     VelocityResponseCurve = curve_type_nonlinear;
1330     VelocityResponseDepth = velocityresponse;
1331     } else if (velocityresponse < 10) {
1332     VelocityResponseCurve = curve_type_linear;
1333     VelocityResponseDepth = velocityresponse - 5;
1334     } else if (velocityresponse < 15) {
1335     VelocityResponseCurve = curve_type_special;
1336     VelocityResponseDepth = velocityresponse - 10;
1337     } else {
1338     VelocityResponseCurve = curve_type_unknown;
1339     VelocityResponseDepth = 0;
1340     }
1341     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1342     if (releasevelocityresponse < 5) {
1343     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1344     ReleaseVelocityResponseDepth = releasevelocityresponse;
1345     } else if (releasevelocityresponse < 10) {
1346     ReleaseVelocityResponseCurve = curve_type_linear;
1347     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1348     } else if (releasevelocityresponse < 15) {
1349     ReleaseVelocityResponseCurve = curve_type_special;
1350     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1351     } else {
1352     ReleaseVelocityResponseCurve = curve_type_unknown;
1353     ReleaseVelocityResponseDepth = 0;
1354     }
1355     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1356     AttenuationControllerThreshold = _3ewa->ReadInt8();
1357     _3ewa->ReadInt32(); // unknown
1358     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1359     _3ewa->ReadInt16(); // unknown
1360     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1361     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1362     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1363     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1364     else DimensionBypass = dim_bypass_ctrl_none;
1365     uint8_t pan = _3ewa->ReadUint8();
1366     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1367     SelfMask = _3ewa->ReadInt8() & 0x01;
1368     _3ewa->ReadInt8(); // unknown
1369     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1370     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1371     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1372     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1373     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1374     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1375     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1376     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1377     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1378     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1379     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1380     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1381     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1382     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1383     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1384     : vcf_res_ctrl_none;
1385     uint16_t eg3depth = _3ewa->ReadUint16();
1386     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1387     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1388     _3ewa->ReadInt16(); // unknown
1389     ChannelOffset = _3ewa->ReadUint8() / 4;
1390     uint8_t regoptions = _3ewa->ReadUint8();
1391     MSDecode = regoptions & 0x01; // bit 0
1392     SustainDefeat = regoptions & 0x02; // bit 1
1393     _3ewa->ReadInt16(); // unknown
1394     VelocityUpperLimit = _3ewa->ReadInt8();
1395     _3ewa->ReadInt8(); // unknown
1396     _3ewa->ReadInt16(); // unknown
1397     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1398     _3ewa->ReadInt8(); // unknown
1399     _3ewa->ReadInt8(); // unknown
1400     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1401     uint8_t vcfcutoff = _3ewa->ReadUint8();
1402     VCFEnabled = vcfcutoff & 0x80; // bit 7
1403     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1404     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1405     uint8_t vcfvelscale = _3ewa->ReadUint8();
1406     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1407     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1408     _3ewa->ReadInt8(); // unknown
1409     uint8_t vcfresonance = _3ewa->ReadUint8();
1410     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1411     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1412     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1413     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1414     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1415     uint8_t vcfvelocity = _3ewa->ReadUint8();
1416     VCFVelocityDynamicRange = vcfvelocity % 5;
1417     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1418     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1419     if (VCFType == vcf_type_lowpass) {
1420     if (lfo3ctrl & 0x40) // bit 6
1421     VCFType = vcf_type_lowpassturbo;
1422     }
1423 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1424     _3ewa->Read(DimensionUpperLimits, 1, 8);
1425     } else {
1426     memset(DimensionUpperLimits, 0, 8);
1427     }
1428 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1429     // use default values
1430     LFO3Frequency = 1.0;
1431     EG3Attack = 0.0;
1432     LFO1InternalDepth = 0;
1433     LFO3InternalDepth = 0;
1434     LFO1ControlDepth = 0;
1435     LFO3ControlDepth = 0;
1436     EG1Attack = 0.0;
1437 persson 1218 EG1Decay1 = 0.005;
1438     EG1Sustain = 1000;
1439     EG1Release = 0.3;
1440 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1441     EG1Controller.controller_number = 0;
1442     EG1ControllerInvert = false;
1443     EG1ControllerAttackInfluence = 0;
1444     EG1ControllerDecayInfluence = 0;
1445     EG1ControllerReleaseInfluence = 0;
1446     EG2Controller.type = eg2_ctrl_t::type_none;
1447     EG2Controller.controller_number = 0;
1448     EG2ControllerInvert = false;
1449     EG2ControllerAttackInfluence = 0;
1450     EG2ControllerDecayInfluence = 0;
1451     EG2ControllerReleaseInfluence = 0;
1452     LFO1Frequency = 1.0;
1453     EG2Attack = 0.0;
1454 persson 1218 EG2Decay1 = 0.005;
1455     EG2Sustain = 1000;
1456     EG2Release = 0.3;
1457 schoenebeck 809 LFO2ControlDepth = 0;
1458     LFO2Frequency = 1.0;
1459     LFO2InternalDepth = 0;
1460     EG1Decay2 = 0.0;
1461 persson 1218 EG1InfiniteSustain = true;
1462     EG1PreAttack = 0;
1463 schoenebeck 809 EG2Decay2 = 0.0;
1464 persson 1218 EG2InfiniteSustain = true;
1465     EG2PreAttack = 0;
1466 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1467     VelocityResponseDepth = 3;
1468     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1469     ReleaseVelocityResponseDepth = 3;
1470     VelocityResponseCurveScaling = 32;
1471     AttenuationControllerThreshold = 0;
1472     SampleStartOffset = 0;
1473     PitchTrack = true;
1474     DimensionBypass = dim_bypass_ctrl_none;
1475     Pan = 0;
1476     SelfMask = true;
1477     LFO3Controller = lfo3_ctrl_modwheel;
1478     LFO3Sync = false;
1479     InvertAttenuationController = false;
1480     AttenuationController.type = attenuation_ctrl_t::type_none;
1481     AttenuationController.controller_number = 0;
1482     LFO2Controller = lfo2_ctrl_internal;
1483     LFO2FlipPhase = false;
1484     LFO2Sync = false;
1485     LFO1Controller = lfo1_ctrl_internal;
1486     LFO1FlipPhase = false;
1487     LFO1Sync = false;
1488     VCFResonanceController = vcf_res_ctrl_none;
1489     EG3Depth = 0;
1490     ChannelOffset = 0;
1491     MSDecode = false;
1492     SustainDefeat = false;
1493     VelocityUpperLimit = 0;
1494     ReleaseTriggerDecay = 0;
1495     EG1Hold = false;
1496     VCFEnabled = false;
1497     VCFCutoff = 0;
1498     VCFCutoffController = vcf_cutoff_ctrl_none;
1499     VCFCutoffControllerInvert = false;
1500     VCFVelocityScale = 0;
1501     VCFResonance = 0;
1502     VCFResonanceDynamic = false;
1503     VCFKeyboardTracking = false;
1504     VCFKeyboardTrackingBreakpoint = 0;
1505     VCFVelocityDynamicRange = 0x04;
1506     VCFVelocityCurve = curve_type_linear;
1507     VCFType = vcf_type_lowpass;
1508 persson 1247 memset(DimensionUpperLimits, 127, 8);
1509 schoenebeck 2 }
1510 schoenebeck 16
1511 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1512     VelocityResponseDepth,
1513     VelocityResponseCurveScaling);
1514    
1515 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1516     ReleaseVelocityResponseCurve,
1517     ReleaseVelocityResponseDepth
1518     );
1519 persson 613
1520 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1521     VCFVelocityDynamicRange,
1522     VCFVelocityScale,
1523     VCFCutoffController);
1524 persson 613
1525     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1526 persson 858 VelocityTable = 0;
1527 persson 613 }
1528    
1529 persson 1301 /*
1530     * Constructs a DimensionRegion by copying all parameters from
1531     * another DimensionRegion
1532     */
1533     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1534     Instances++;
1535     *this = src; // default memberwise shallow copy of all parameters
1536     pParentList = _3ewl; // restore the chunk pointer
1537    
1538     // deep copy of owned structures
1539     if (src.VelocityTable) {
1540     VelocityTable = new uint8_t[128];
1541     for (int k = 0 ; k < 128 ; k++)
1542     VelocityTable[k] = src.VelocityTable[k];
1543     }
1544     if (src.pSampleLoops) {
1545     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1546     for (int k = 0 ; k < src.SampleLoops ; k++)
1547     pSampleLoops[k] = src.pSampleLoops[k];
1548     }
1549     }
1550    
1551 schoenebeck 809 /**
1552 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1553     * which depends on this value.
1554     */
1555     void DimensionRegion::SetGain(int32_t gain) {
1556     DLS::Sampler::SetGain(gain);
1557     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1558     }
1559    
1560     /**
1561 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1562     * have to call File::Save() to make changes persistent.
1563     *
1564     * Usually there is absolutely no need to call this method explicitly.
1565     * It will be called automatically when File::Save() was called.
1566     */
1567     void DimensionRegion::UpdateChunks() {
1568     // first update base class's chunk
1569     DLS::Sampler::UpdateChunks();
1570    
1571 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1572     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1573     pData[12] = Crossfade.in_start;
1574     pData[13] = Crossfade.in_end;
1575     pData[14] = Crossfade.out_start;
1576     pData[15] = Crossfade.out_end;
1577    
1578 schoenebeck 809 // make sure '3ewa' chunk exists
1579     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1580 persson 1317 if (!_3ewa) {
1581     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1582     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1583     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1584 persson 1264 }
1585 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1586 schoenebeck 809
1587     // update '3ewa' chunk with DimensionRegion's current settings
1588    
1589 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1590 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1591 schoenebeck 809
1592     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1593 persson 1179 store32(&pData[4], lfo3freq);
1594 schoenebeck 809
1595     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1596 persson 1179 store32(&pData[8], eg3attack);
1597 schoenebeck 809
1598     // next 2 bytes unknown
1599    
1600 persson 1179 store16(&pData[14], LFO1InternalDepth);
1601 schoenebeck 809
1602     // next 2 bytes unknown
1603    
1604 persson 1179 store16(&pData[18], LFO3InternalDepth);
1605 schoenebeck 809
1606     // next 2 bytes unknown
1607    
1608 persson 1179 store16(&pData[22], LFO1ControlDepth);
1609 schoenebeck 809
1610     // next 2 bytes unknown
1611    
1612 persson 1179 store16(&pData[26], LFO3ControlDepth);
1613 schoenebeck 809
1614     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1615 persson 1179 store32(&pData[28], eg1attack);
1616 schoenebeck 809
1617     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1618 persson 1179 store32(&pData[32], eg1decay1);
1619 schoenebeck 809
1620     // next 2 bytes unknown
1621    
1622 persson 1179 store16(&pData[38], EG1Sustain);
1623 schoenebeck 809
1624     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1625 persson 1179 store32(&pData[40], eg1release);
1626 schoenebeck 809
1627     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1628 persson 1179 pData[44] = eg1ctl;
1629 schoenebeck 809
1630     const uint8_t eg1ctrloptions =
1631 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1632 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1633     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1634     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1635 persson 1179 pData[45] = eg1ctrloptions;
1636 schoenebeck 809
1637     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1638 persson 1179 pData[46] = eg2ctl;
1639 schoenebeck 809
1640     const uint8_t eg2ctrloptions =
1641 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1642 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1643     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1644     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1645 persson 1179 pData[47] = eg2ctrloptions;
1646 schoenebeck 809
1647     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1648 persson 1179 store32(&pData[48], lfo1freq);
1649 schoenebeck 809
1650     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1651 persson 1179 store32(&pData[52], eg2attack);
1652 schoenebeck 809
1653     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1654 persson 1179 store32(&pData[56], eg2decay1);
1655 schoenebeck 809
1656     // next 2 bytes unknown
1657    
1658 persson 1179 store16(&pData[62], EG2Sustain);
1659 schoenebeck 809
1660     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1661 persson 1179 store32(&pData[64], eg2release);
1662 schoenebeck 809
1663     // next 2 bytes unknown
1664    
1665 persson 1179 store16(&pData[70], LFO2ControlDepth);
1666 schoenebeck 809
1667     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1668 persson 1179 store32(&pData[72], lfo2freq);
1669 schoenebeck 809
1670     // next 2 bytes unknown
1671    
1672 persson 1179 store16(&pData[78], LFO2InternalDepth);
1673 schoenebeck 809
1674     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1675 persson 1179 store32(&pData[80], eg1decay2);
1676 schoenebeck 809
1677     // next 2 bytes unknown
1678    
1679 persson 1179 store16(&pData[86], EG1PreAttack);
1680 schoenebeck 809
1681     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1682 persson 1179 store32(&pData[88], eg2decay2);
1683 schoenebeck 809
1684     // next 2 bytes unknown
1685    
1686 persson 1179 store16(&pData[94], EG2PreAttack);
1687 schoenebeck 809
1688     {
1689     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1690     uint8_t velocityresponse = VelocityResponseDepth;
1691     switch (VelocityResponseCurve) {
1692     case curve_type_nonlinear:
1693     break;
1694     case curve_type_linear:
1695     velocityresponse += 5;
1696     break;
1697     case curve_type_special:
1698     velocityresponse += 10;
1699     break;
1700     case curve_type_unknown:
1701     default:
1702     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1703     }
1704 persson 1179 pData[96] = velocityresponse;
1705 schoenebeck 809 }
1706    
1707     {
1708     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1709     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1710     switch (ReleaseVelocityResponseCurve) {
1711     case curve_type_nonlinear:
1712     break;
1713     case curve_type_linear:
1714     releasevelocityresponse += 5;
1715     break;
1716     case curve_type_special:
1717     releasevelocityresponse += 10;
1718     break;
1719     case curve_type_unknown:
1720     default:
1721     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1722     }
1723 persson 1179 pData[97] = releasevelocityresponse;
1724 schoenebeck 809 }
1725    
1726 persson 1179 pData[98] = VelocityResponseCurveScaling;
1727 schoenebeck 809
1728 persson 1179 pData[99] = AttenuationControllerThreshold;
1729 schoenebeck 809
1730     // next 4 bytes unknown
1731    
1732 persson 1179 store16(&pData[104], SampleStartOffset);
1733 schoenebeck 809
1734     // next 2 bytes unknown
1735    
1736     {
1737     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1738     switch (DimensionBypass) {
1739     case dim_bypass_ctrl_94:
1740     pitchTrackDimensionBypass |= 0x10;
1741     break;
1742     case dim_bypass_ctrl_95:
1743     pitchTrackDimensionBypass |= 0x20;
1744     break;
1745     case dim_bypass_ctrl_none:
1746     //FIXME: should we set anything here?
1747     break;
1748     default:
1749     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1750     }
1751 persson 1179 pData[108] = pitchTrackDimensionBypass;
1752 schoenebeck 809 }
1753    
1754     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1755 persson 1179 pData[109] = pan;
1756 schoenebeck 809
1757     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1758 persson 1179 pData[110] = selfmask;
1759 schoenebeck 809
1760     // next byte unknown
1761    
1762     {
1763     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1764     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1765     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1766     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1767 persson 1179 pData[112] = lfo3ctrl;
1768 schoenebeck 809 }
1769    
1770     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1771 persson 1179 pData[113] = attenctl;
1772 schoenebeck 809
1773     {
1774     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1775     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1776     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1777     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1778 persson 1179 pData[114] = lfo2ctrl;
1779 schoenebeck 809 }
1780    
1781     {
1782     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1783     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1784     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1785     if (VCFResonanceController != vcf_res_ctrl_none)
1786     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1787 persson 1179 pData[115] = lfo1ctrl;
1788 schoenebeck 809 }
1789    
1790     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1791     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1792 persson 1179 pData[116] = eg3depth;
1793 schoenebeck 809
1794     // next 2 bytes unknown
1795    
1796     const uint8_t channeloffset = ChannelOffset * 4;
1797 persson 1179 pData[120] = channeloffset;
1798 schoenebeck 809
1799     {
1800     uint8_t regoptions = 0;
1801     if (MSDecode) regoptions |= 0x01; // bit 0
1802     if (SustainDefeat) regoptions |= 0x02; // bit 1
1803 persson 1179 pData[121] = regoptions;
1804 schoenebeck 809 }
1805    
1806     // next 2 bytes unknown
1807    
1808 persson 1179 pData[124] = VelocityUpperLimit;
1809 schoenebeck 809
1810     // next 3 bytes unknown
1811    
1812 persson 1179 pData[128] = ReleaseTriggerDecay;
1813 schoenebeck 809
1814     // next 2 bytes unknown
1815    
1816     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1817 persson 1179 pData[131] = eg1hold;
1818 schoenebeck 809
1819 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1820 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1821 persson 1179 pData[132] = vcfcutoff;
1822 schoenebeck 809
1823 persson 1179 pData[133] = VCFCutoffController;
1824 schoenebeck 809
1825 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1826 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1827 persson 1179 pData[134] = vcfvelscale;
1828 schoenebeck 809
1829     // next byte unknown
1830    
1831 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1832 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1833 persson 1179 pData[136] = vcfresonance;
1834 schoenebeck 809
1835 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1836 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1837 persson 1179 pData[137] = vcfbreakpoint;
1838 schoenebeck 809
1839     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1840     VCFVelocityCurve * 5;
1841 persson 1179 pData[138] = vcfvelocity;
1842 schoenebeck 809
1843     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1844 persson 1179 pData[139] = vcftype;
1845 persson 1070
1846     if (chunksize >= 148) {
1847     memcpy(&pData[140], DimensionUpperLimits, 8);
1848     }
1849 schoenebeck 809 }
1850    
1851 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1852     curve_type_t curveType = releaseVelocityResponseCurve;
1853     uint8_t depth = releaseVelocityResponseDepth;
1854     // this models a strange behaviour or bug in GSt: two of the
1855     // velocity response curves for release time are not used even
1856     // if specified, instead another curve is chosen.
1857     if ((curveType == curve_type_nonlinear && depth == 0) ||
1858     (curveType == curve_type_special && depth == 4)) {
1859     curveType = curve_type_nonlinear;
1860     depth = 3;
1861     }
1862     return GetVelocityTable(curveType, depth, 0);
1863     }
1864    
1865     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1866     uint8_t vcfVelocityDynamicRange,
1867     uint8_t vcfVelocityScale,
1868     vcf_cutoff_ctrl_t vcfCutoffController)
1869     {
1870     curve_type_t curveType = vcfVelocityCurve;
1871     uint8_t depth = vcfVelocityDynamicRange;
1872     // even stranger GSt: two of the velocity response curves for
1873     // filter cutoff are not used, instead another special curve
1874     // is chosen. This curve is not used anywhere else.
1875     if ((curveType == curve_type_nonlinear && depth == 0) ||
1876     (curveType == curve_type_special && depth == 4)) {
1877     curveType = curve_type_special;
1878     depth = 5;
1879     }
1880     return GetVelocityTable(curveType, depth,
1881     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1882     ? vcfVelocityScale : 0);
1883     }
1884    
1885 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1886     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1887     {
1888     double* table;
1889     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1890 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1891 persson 613 table = (*pVelocityTables)[tableKey];
1892 schoenebeck 16 }
1893     else {
1894 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1895     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1896 schoenebeck 16 }
1897 persson 613 return table;
1898 schoenebeck 2 }
1899 schoenebeck 55
1900 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1901     return pRegion;
1902     }
1903    
1904 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1905     leverage_ctrl_t decodedcontroller;
1906     switch (EncodedController) {
1907     // special controller
1908     case _lev_ctrl_none:
1909     decodedcontroller.type = leverage_ctrl_t::type_none;
1910     decodedcontroller.controller_number = 0;
1911     break;
1912     case _lev_ctrl_velocity:
1913     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1914     decodedcontroller.controller_number = 0;
1915     break;
1916     case _lev_ctrl_channelaftertouch:
1917     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1918     decodedcontroller.controller_number = 0;
1919     break;
1920 schoenebeck 55
1921 schoenebeck 36 // ordinary MIDI control change controller
1922     case _lev_ctrl_modwheel:
1923     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1924     decodedcontroller.controller_number = 1;
1925     break;
1926     case _lev_ctrl_breath:
1927     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1928     decodedcontroller.controller_number = 2;
1929     break;
1930     case _lev_ctrl_foot:
1931     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1932     decodedcontroller.controller_number = 4;
1933     break;
1934     case _lev_ctrl_effect1:
1935     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1936     decodedcontroller.controller_number = 12;
1937     break;
1938     case _lev_ctrl_effect2:
1939     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1940     decodedcontroller.controller_number = 13;
1941     break;
1942     case _lev_ctrl_genpurpose1:
1943     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1944     decodedcontroller.controller_number = 16;
1945     break;
1946     case _lev_ctrl_genpurpose2:
1947     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1948     decodedcontroller.controller_number = 17;
1949     break;
1950     case _lev_ctrl_genpurpose3:
1951     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1952     decodedcontroller.controller_number = 18;
1953     break;
1954     case _lev_ctrl_genpurpose4:
1955     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1956     decodedcontroller.controller_number = 19;
1957     break;
1958     case _lev_ctrl_portamentotime:
1959     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1960     decodedcontroller.controller_number = 5;
1961     break;
1962     case _lev_ctrl_sustainpedal:
1963     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1964     decodedcontroller.controller_number = 64;
1965     break;
1966     case _lev_ctrl_portamento:
1967     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1968     decodedcontroller.controller_number = 65;
1969     break;
1970     case _lev_ctrl_sostenutopedal:
1971     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1972     decodedcontroller.controller_number = 66;
1973     break;
1974     case _lev_ctrl_softpedal:
1975     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1976     decodedcontroller.controller_number = 67;
1977     break;
1978     case _lev_ctrl_genpurpose5:
1979     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1980     decodedcontroller.controller_number = 80;
1981     break;
1982     case _lev_ctrl_genpurpose6:
1983     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1984     decodedcontroller.controller_number = 81;
1985     break;
1986     case _lev_ctrl_genpurpose7:
1987     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1988     decodedcontroller.controller_number = 82;
1989     break;
1990     case _lev_ctrl_genpurpose8:
1991     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1992     decodedcontroller.controller_number = 83;
1993     break;
1994     case _lev_ctrl_effect1depth:
1995     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1996     decodedcontroller.controller_number = 91;
1997     break;
1998     case _lev_ctrl_effect2depth:
1999     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2000     decodedcontroller.controller_number = 92;
2001     break;
2002     case _lev_ctrl_effect3depth:
2003     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2004     decodedcontroller.controller_number = 93;
2005     break;
2006     case _lev_ctrl_effect4depth:
2007     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2008     decodedcontroller.controller_number = 94;
2009     break;
2010     case _lev_ctrl_effect5depth:
2011     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2012     decodedcontroller.controller_number = 95;
2013     break;
2014 schoenebeck 55
2015 schoenebeck 36 // unknown controller type
2016     default:
2017     throw gig::Exception("Unknown leverage controller type.");
2018     }
2019     return decodedcontroller;
2020     }
2021 schoenebeck 2
2022 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2023     _lev_ctrl_t encodedcontroller;
2024     switch (DecodedController.type) {
2025     // special controller
2026     case leverage_ctrl_t::type_none:
2027     encodedcontroller = _lev_ctrl_none;
2028     break;
2029     case leverage_ctrl_t::type_velocity:
2030     encodedcontroller = _lev_ctrl_velocity;
2031     break;
2032     case leverage_ctrl_t::type_channelaftertouch:
2033     encodedcontroller = _lev_ctrl_channelaftertouch;
2034     break;
2035    
2036     // ordinary MIDI control change controller
2037     case leverage_ctrl_t::type_controlchange:
2038     switch (DecodedController.controller_number) {
2039     case 1:
2040     encodedcontroller = _lev_ctrl_modwheel;
2041     break;
2042     case 2:
2043     encodedcontroller = _lev_ctrl_breath;
2044     break;
2045     case 4:
2046     encodedcontroller = _lev_ctrl_foot;
2047     break;
2048     case 12:
2049     encodedcontroller = _lev_ctrl_effect1;
2050     break;
2051     case 13:
2052     encodedcontroller = _lev_ctrl_effect2;
2053     break;
2054     case 16:
2055     encodedcontroller = _lev_ctrl_genpurpose1;
2056     break;
2057     case 17:
2058     encodedcontroller = _lev_ctrl_genpurpose2;
2059     break;
2060     case 18:
2061     encodedcontroller = _lev_ctrl_genpurpose3;
2062     break;
2063     case 19:
2064     encodedcontroller = _lev_ctrl_genpurpose4;
2065     break;
2066     case 5:
2067     encodedcontroller = _lev_ctrl_portamentotime;
2068     break;
2069     case 64:
2070     encodedcontroller = _lev_ctrl_sustainpedal;
2071     break;
2072     case 65:
2073     encodedcontroller = _lev_ctrl_portamento;
2074     break;
2075     case 66:
2076     encodedcontroller = _lev_ctrl_sostenutopedal;
2077     break;
2078     case 67:
2079     encodedcontroller = _lev_ctrl_softpedal;
2080     break;
2081     case 80:
2082     encodedcontroller = _lev_ctrl_genpurpose5;
2083     break;
2084     case 81:
2085     encodedcontroller = _lev_ctrl_genpurpose6;
2086     break;
2087     case 82:
2088     encodedcontroller = _lev_ctrl_genpurpose7;
2089     break;
2090     case 83:
2091     encodedcontroller = _lev_ctrl_genpurpose8;
2092     break;
2093     case 91:
2094     encodedcontroller = _lev_ctrl_effect1depth;
2095     break;
2096     case 92:
2097     encodedcontroller = _lev_ctrl_effect2depth;
2098     break;
2099     case 93:
2100     encodedcontroller = _lev_ctrl_effect3depth;
2101     break;
2102     case 94:
2103     encodedcontroller = _lev_ctrl_effect4depth;
2104     break;
2105     case 95:
2106     encodedcontroller = _lev_ctrl_effect5depth;
2107     break;
2108     default:
2109     throw gig::Exception("leverage controller number is not supported by the gig format");
2110     }
2111 persson 1182 break;
2112 schoenebeck 809 default:
2113     throw gig::Exception("Unknown leverage controller type.");
2114     }
2115     return encodedcontroller;
2116     }
2117    
2118 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2119     Instances--;
2120     if (!Instances) {
2121     // delete the velocity->volume tables
2122     VelocityTableMap::iterator iter;
2123     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2124     double* pTable = iter->second;
2125     if (pTable) delete[] pTable;
2126     }
2127     pVelocityTables->clear();
2128     delete pVelocityTables;
2129     pVelocityTables = NULL;
2130     }
2131 persson 858 if (VelocityTable) delete[] VelocityTable;
2132 schoenebeck 16 }
2133 schoenebeck 2
2134 schoenebeck 16 /**
2135     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2136     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2137     * and VelocityResponseCurveScaling) involved are taken into account to
2138     * calculate the amplitude factor. Use this method when a key was
2139     * triggered to get the volume with which the sample should be played
2140     * back.
2141     *
2142 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2143     * @returns amplitude factor (between 0.0 and 1.0)
2144 schoenebeck 16 */
2145     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2146     return pVelocityAttenuationTable[MIDIKeyVelocity];
2147     }
2148 schoenebeck 2
2149 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2150     return pVelocityReleaseTable[MIDIKeyVelocity];
2151     }
2152    
2153 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2154     return pVelocityCutoffTable[MIDIKeyVelocity];
2155     }
2156    
2157 schoenebeck 1358 /**
2158     * Updates the respective member variable and the lookup table / cache
2159     * that depends on this value.
2160     */
2161     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2162     pVelocityAttenuationTable =
2163     GetVelocityTable(
2164     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2165     );
2166     VelocityResponseCurve = curve;
2167     }
2168    
2169     /**
2170     * Updates the respective member variable and the lookup table / cache
2171     * that depends on this value.
2172     */
2173     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2174     pVelocityAttenuationTable =
2175     GetVelocityTable(
2176     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2177     );
2178     VelocityResponseDepth = depth;
2179     }
2180    
2181     /**
2182     * Updates the respective member variable and the lookup table / cache
2183     * that depends on this value.
2184     */
2185     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2186     pVelocityAttenuationTable =
2187     GetVelocityTable(
2188     VelocityResponseCurve, VelocityResponseDepth, scaling
2189     );
2190     VelocityResponseCurveScaling = scaling;
2191     }
2192    
2193     /**
2194     * Updates the respective member variable and the lookup table / cache
2195     * that depends on this value.
2196     */
2197     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2198     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2199     ReleaseVelocityResponseCurve = curve;
2200     }
2201    
2202     /**
2203     * Updates the respective member variable and the lookup table / cache
2204     * that depends on this value.
2205     */
2206     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2207     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2208     ReleaseVelocityResponseDepth = depth;
2209     }
2210    
2211     /**
2212     * Updates the respective member variable and the lookup table / cache
2213     * that depends on this value.
2214     */
2215     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2216     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2217     VCFCutoffController = controller;
2218     }
2219    
2220     /**
2221     * Updates the respective member variable and the lookup table / cache
2222     * that depends on this value.
2223     */
2224     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2225     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2226     VCFVelocityCurve = curve;
2227     }
2228    
2229     /**
2230     * Updates the respective member variable and the lookup table / cache
2231     * that depends on this value.
2232     */
2233     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2234     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2235     VCFVelocityDynamicRange = range;
2236     }
2237    
2238     /**
2239     * Updates the respective member variable and the lookup table / cache
2240     * that depends on this value.
2241     */
2242     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2243     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2244     VCFVelocityScale = scaling;
2245     }
2246    
2247 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2248 schoenebeck 317
2249 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2250 schoenebeck 16
2251 schoenebeck 308 // linear
2252     const int lin0[] = { 1, 1, 127, 127 };
2253     const int lin1[] = { 1, 21, 127, 127 };
2254     const int lin2[] = { 1, 45, 127, 127 };
2255     const int lin3[] = { 1, 74, 127, 127 };
2256     const int lin4[] = { 1, 127, 127, 127 };
2257 schoenebeck 16
2258 schoenebeck 308 // non-linear
2259     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2260 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2261 schoenebeck 308 127, 127 };
2262     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2263     127, 127 };
2264     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2265     127, 127 };
2266     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2267 schoenebeck 317
2268 schoenebeck 308 // special
2269 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2270 schoenebeck 308 113, 127, 127, 127 };
2271     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2272     118, 127, 127, 127 };
2273 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2274 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2275 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2276 schoenebeck 308 117, 127, 127, 127 };
2277 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2278 schoenebeck 308 127, 127 };
2279 schoenebeck 317
2280 persson 728 // this is only used by the VCF velocity curve
2281     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2282     91, 127, 127, 127 };
2283    
2284 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2285 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2286 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2287 schoenebeck 317
2288 schoenebeck 308 double* const table = new double[128];
2289    
2290     const int* curve = curves[curveType * 5 + depth];
2291     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2292 schoenebeck 317
2293 schoenebeck 308 table[0] = 0;
2294     for (int x = 1 ; x < 128 ; x++) {
2295    
2296     if (x > curve[2]) curve += 2;
2297 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2298 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2299     y = y / 127;
2300    
2301     // Scale up for s > 20, down for s < 20. When
2302     // down-scaling, the curve still ends at 1.0.
2303     if (s < 20 && y >= 0.5)
2304     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2305     else
2306     y = y * (s / 20.0);
2307     if (y > 1) y = 1;
2308    
2309     table[x] = y;
2310     }
2311     return table;
2312     }
2313    
2314    
2315 schoenebeck 2 // *************** Region ***************
2316     // *
2317    
2318     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2319     // Initialization
2320     Dimensions = 0;
2321 schoenebeck 347 for (int i = 0; i < 256; i++) {
2322 schoenebeck 2 pDimensionRegions[i] = NULL;
2323     }
2324 schoenebeck 282 Layers = 1;
2325 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2326     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2327 schoenebeck 2
2328     // Actual Loading
2329    
2330     LoadDimensionRegions(rgnList);
2331    
2332     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2333     if (_3lnk) {
2334     DimensionRegions = _3lnk->ReadUint32();
2335 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2336 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2337     uint8_t bits = _3lnk->ReadUint8();
2338 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2339     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2340 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2341 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2342     pDimensionDefinitions[i].dimension = dimension_none;
2343     pDimensionDefinitions[i].bits = 0;
2344     pDimensionDefinitions[i].zones = 0;
2345     pDimensionDefinitions[i].split_type = split_type_bit;
2346     pDimensionDefinitions[i].zone_size = 0;
2347     }
2348     else { // active dimension
2349     pDimensionDefinitions[i].dimension = dimension;
2350     pDimensionDefinitions[i].bits = bits;
2351 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2352 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2353     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2354 schoenebeck 2 Dimensions++;
2355 schoenebeck 282
2356     // if this is a layer dimension, remember the amount of layers
2357     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2358 schoenebeck 2 }
2359 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2360 schoenebeck 2 }
2361 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2362 schoenebeck 2
2363 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2364     // update the VelocityTables in the dimension regions
2365     UpdateVelocityTable();
2366 schoenebeck 2
2367 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2368     if (file->pVersion && file->pVersion->major == 3)
2369     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2370     else
2371     _3lnk->SetPos(44);
2372    
2373 schoenebeck 2 // load sample references
2374     for (uint i = 0; i < DimensionRegions; i++) {
2375     uint32_t wavepoolindex = _3lnk->ReadUint32();
2376 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2377 schoenebeck 2 }
2378 persson 918 GetSample(); // load global region sample reference
2379 persson 1102 } else {
2380     DimensionRegions = 0;
2381 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2382     pDimensionDefinitions[i].dimension = dimension_none;
2383     pDimensionDefinitions[i].bits = 0;
2384     pDimensionDefinitions[i].zones = 0;
2385     }
2386 schoenebeck 2 }
2387 schoenebeck 823
2388     // make sure there is at least one dimension region
2389     if (!DimensionRegions) {
2390     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2391     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2392     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2393 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2394 schoenebeck 823 DimensionRegions = 1;
2395     }
2396 schoenebeck 2 }
2397    
2398 schoenebeck 809 /**
2399     * Apply Region settings and all its DimensionRegions to the respective
2400     * RIFF chunks. You have to call File::Save() to make changes persistent.
2401     *
2402     * Usually there is absolutely no need to call this method explicitly.
2403     * It will be called automatically when File::Save() was called.
2404     *
2405     * @throws gig::Exception if samples cannot be dereferenced
2406     */
2407     void Region::UpdateChunks() {
2408 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2409     // but we still have to provide some existing one to not corrupt the
2410     // file, so to avoid the latter we simply always assign the sample of
2411     // the first dimension region of this region
2412     pSample = pDimensionRegions[0]->pSample;
2413    
2414 schoenebeck 809 // first update base class's chunks
2415     DLS::Region::UpdateChunks();
2416    
2417     // update dimension region's chunks
2418 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2419 persson 1317 pDimensionRegions[i]->UpdateChunks();
2420 schoenebeck 823 }
2421 schoenebeck 809
2422 persson 1317 File* pFile = (File*) GetParent()->GetParent();
2423     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2424 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2425     const int iMaxDimensionRegions = version3 ? 256 : 32;
2426 schoenebeck 809
2427     // make sure '3lnk' chunk exists
2428     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2429     if (!_3lnk) {
2430 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2431 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2432 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2433 persson 1192
2434     // move 3prg to last position
2435     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2436 schoenebeck 809 }
2437    
2438     // update dimension definitions in '3lnk' chunk
2439     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2440 persson 1179 store32(&pData[0], DimensionRegions);
2441 persson 1199 int shift = 0;
2442 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2443 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2444     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2445 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2446 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2447 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2448 persson 1199 // next 3 bytes unknown, always zero?
2449    
2450     shift += pDimensionDefinitions[i].bits;
2451 schoenebeck 809 }
2452    
2453     // update wave pool table in '3lnk' chunk
2454 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2455 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2456     int iWaveIndex = -1;
2457     if (i < DimensionRegions) {
2458 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2459     File::SampleList::iterator iter = pFile->pSamples->begin();
2460     File::SampleList::iterator end = pFile->pSamples->end();
2461 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2462 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2463     iWaveIndex = index;
2464     break;
2465     }
2466 schoenebeck 809 }
2467     }
2468 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2469 schoenebeck 809 }
2470     }
2471    
2472 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2473     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2474     if (_3prg) {
2475     int dimensionRegionNr = 0;
2476     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2477     while (_3ewl) {
2478     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2479 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2480 schoenebeck 2 dimensionRegionNr++;
2481     }
2482     _3ewl = _3prg->GetNextSubList();
2483     }
2484     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2485     }
2486     }
2487    
2488 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2489     // update KeyRange struct and make sure regions are in correct order
2490     DLS::Region::SetKeyRange(Low, High);
2491     // update Region key table for fast lookup
2492     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2493     }
2494    
2495 persson 858 void Region::UpdateVelocityTable() {
2496     // get velocity dimension's index
2497     int veldim = -1;
2498     for (int i = 0 ; i < Dimensions ; i++) {
2499     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2500     veldim = i;
2501 schoenebeck 809 break;
2502     }
2503     }
2504 persson 858 if (veldim == -1) return;
2505 schoenebeck 809
2506 persson 858 int step = 1;
2507     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2508     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2509     int end = step * pDimensionDefinitions[veldim].zones;
2510 schoenebeck 809
2511 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2512     int dim[8] = { 0 };
2513     for (int i = 0 ; i < DimensionRegions ; i++) {
2514    
2515 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2516     pDimensionRegions[i]->VelocityUpperLimit) {
2517 persson 858 // create the velocity table
2518     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2519     if (!table) {
2520     table = new uint8_t[128];
2521     pDimensionRegions[i]->VelocityTable = table;
2522     }
2523     int tableidx = 0;
2524     int velocityZone = 0;
2525 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2526     for (int k = i ; k < end ; k += step) {
2527     DimensionRegion *d = pDimensionRegions[k];
2528     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2529     velocityZone++;
2530     }
2531     } else { // gig2
2532     for (int k = i ; k < end ; k += step) {
2533     DimensionRegion *d = pDimensionRegions[k];
2534     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2535     velocityZone++;
2536     }
2537 persson 858 }
2538     } else {
2539     if (pDimensionRegions[i]->VelocityTable) {
2540     delete[] pDimensionRegions[i]->VelocityTable;
2541     pDimensionRegions[i]->VelocityTable = 0;
2542     }
2543 schoenebeck 809 }
2544 persson 858
2545     int j;
2546     int shift = 0;
2547     for (j = 0 ; j < Dimensions ; j++) {
2548     if (j == veldim) i += skipveldim; // skip velocity dimension
2549     else {
2550     dim[j]++;
2551     if (dim[j] < pDimensionDefinitions[j].zones) break;
2552     else {
2553     // skip unused dimension regions
2554     dim[j] = 0;
2555     i += ((1 << pDimensionDefinitions[j].bits) -
2556     pDimensionDefinitions[j].zones) << shift;
2557     }
2558     }
2559     shift += pDimensionDefinitions[j].bits;
2560     }
2561     if (j == Dimensions) break;
2562 schoenebeck 809 }
2563     }
2564    
2565     /** @brief Einstein would have dreamed of it - create a new dimension.
2566     *
2567     * Creates a new dimension with the dimension definition given by
2568     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2569     * There is a hard limit of dimensions and total amount of "bits" all
2570     * dimensions can have. This limit is dependant to what gig file format
2571     * version this file refers to. The gig v2 (and lower) format has a
2572     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2573     * format has a limit of 8.
2574     *
2575     * @param pDimDef - defintion of the new dimension
2576     * @throws gig::Exception if dimension of the same type exists already
2577     * @throws gig::Exception if amount of dimensions or total amount of
2578     * dimension bits limit is violated
2579     */
2580     void Region::AddDimension(dimension_def_t* pDimDef) {
2581     // check if max. amount of dimensions reached
2582     File* file = (File*) GetParent()->GetParent();
2583     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2584     if (Dimensions >= iMaxDimensions)
2585     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2586     // check if max. amount of dimension bits reached
2587     int iCurrentBits = 0;
2588     for (int i = 0; i < Dimensions; i++)
2589     iCurrentBits += pDimensionDefinitions[i].bits;
2590     if (iCurrentBits >= iMaxDimensions)
2591     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2592     const int iNewBits = iCurrentBits + pDimDef->bits;
2593     if (iNewBits > iMaxDimensions)
2594     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2595     // check if there's already a dimensions of the same type
2596     for (int i = 0; i < Dimensions; i++)
2597     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2598     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2599    
2600 persson 1301 // pos is where the new dimension should be placed, normally
2601     // last in list, except for the samplechannel dimension which
2602     // has to be first in list
2603     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2604     int bitpos = 0;
2605     for (int i = 0 ; i < pos ; i++)
2606     bitpos += pDimensionDefinitions[i].bits;
2607    
2608     // make room for the new dimension
2609     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2610     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2611     for (int j = Dimensions ; j > pos ; j--) {
2612     pDimensionRegions[i]->DimensionUpperLimits[j] =
2613     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2614     }
2615     }
2616    
2617 schoenebeck 809 // assign definition of new dimension
2618 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2619 schoenebeck 809
2620 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2621 persson 1301 pDimensionDefinitions[pos].split_type =
2622     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2623     pDimensionDefinitions[pos].zone_size =
2624     __resolveZoneSize(pDimensionDefinitions[pos]);
2625 schoenebeck 1113
2626 persson 1301 // create new dimension region(s) for this new dimension, and make
2627     // sure that the dimension regions are placed correctly in both the
2628     // RIFF list and the pDimensionRegions array
2629     RIFF::Chunk* moveTo = NULL;
2630     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2631     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2632     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2633     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2634     }
2635     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2636     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2637     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2638     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2639     // create a new dimension region and copy all parameter values from
2640     // an existing dimension region
2641     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2642     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2643 persson 1247
2644 persson 1301 DimensionRegions++;
2645     }
2646     }
2647     moveTo = pDimensionRegions[i]->pParentList;
2648 schoenebeck 809 }
2649    
2650 persson 1247 // initialize the upper limits for this dimension
2651 persson 1301 int mask = (1 << bitpos) - 1;
2652     for (int z = 0 ; z < pDimDef->zones ; z++) {
2653 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2654 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2655 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2656     (z << bitpos) |
2657     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2658 persson 1247 }
2659     }
2660    
2661 schoenebeck 809 Dimensions++;
2662    
2663     // if this is a layer dimension, update 'Layers' attribute
2664     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2665    
2666 persson 858 UpdateVelocityTable();
2667 schoenebeck 809 }
2668    
2669     /** @brief Delete an existing dimension.
2670     *
2671     * Deletes the dimension given by \a pDimDef and deletes all respective
2672     * dimension regions, that is all dimension regions where the dimension's
2673     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2674     * for example this would delete all dimension regions for the case(s)
2675     * where the sustain pedal is pressed down.
2676     *
2677     * @param pDimDef - dimension to delete
2678     * @throws gig::Exception if given dimension cannot be found
2679     */
2680     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2681     // get dimension's index
2682     int iDimensionNr = -1;
2683     for (int i = 0; i < Dimensions; i++) {
2684     if (&pDimensionDefinitions[i] == pDimDef) {
2685     iDimensionNr = i;
2686     break;
2687     }
2688     }
2689     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2690    
2691     // get amount of bits below the dimension to delete
2692     int iLowerBits = 0;
2693     for (int i = 0; i < iDimensionNr; i++)
2694     iLowerBits += pDimensionDefinitions[i].bits;
2695    
2696     // get amount ot bits above the dimension to delete
2697     int iUpperBits = 0;
2698     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2699     iUpperBits += pDimensionDefinitions[i].bits;
2700    
2701 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2702    
2703 schoenebeck 809 // delete dimension regions which belong to the given dimension
2704     // (that is where the dimension's bit > 0)
2705     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2706     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2707     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2708     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2709     iObsoleteBit << iLowerBits |
2710     iLowerBit;
2711 persson 1247
2712     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2713 schoenebeck 809 delete pDimensionRegions[iToDelete];
2714     pDimensionRegions[iToDelete] = NULL;
2715     DimensionRegions--;
2716     }
2717     }
2718     }
2719    
2720     // defrag pDimensionRegions array
2721     // (that is remove the NULL spaces within the pDimensionRegions array)
2722     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2723     if (!pDimensionRegions[iTo]) {
2724     if (iFrom <= iTo) iFrom = iTo + 1;
2725     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2726     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2727     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2728     pDimensionRegions[iFrom] = NULL;
2729     }
2730     }
2731     }
2732    
2733 persson 1247 // remove the this dimension from the upper limits arrays
2734     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2735     DimensionRegion* d = pDimensionRegions[j];
2736     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2737     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2738     }
2739     d->DimensionUpperLimits[Dimensions - 1] = 127;
2740     }
2741    
2742 schoenebeck 809 // 'remove' dimension definition
2743     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2744     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2745     }
2746     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2747     pDimensionDefinitions[Dimensions - 1].bits = 0;
2748     pDimensionDefinitions[Dimensions - 1].zones = 0;
2749    
2750     Dimensions--;
2751    
2752     // if this was a layer dimension, update 'Layers' attribute
2753     if (pDimDef->dimension == dimension_layer) Layers = 1;
2754     }
2755    
2756 schoenebeck 2 Region::~Region() {
2757 schoenebeck 350 for (int i = 0; i < 256; i++) {
2758 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2759     }
2760     }
2761    
2762     /**
2763     * Use this method in your audio engine to get the appropriate dimension
2764     * region with it's articulation data for the current situation. Just
2765     * call the method with the current MIDI controller values and you'll get
2766     * the DimensionRegion with the appropriate articulation data for the
2767     * current situation (for this Region of course only). To do that you'll
2768     * first have to look which dimensions with which controllers and in
2769     * which order are defined for this Region when you load the .gig file.
2770     * Special cases are e.g. layer or channel dimensions where you just put
2771     * in the index numbers instead of a MIDI controller value (means 0 for
2772     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2773     * etc.).
2774     *
2775 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2776 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2777     * @see pDimensionDefinitions
2778     * @see Dimensions
2779     */
2780 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2781 persson 858 uint8_t bits;
2782     int veldim = -1;
2783     int velbitpos;
2784     int bitpos = 0;
2785     int dimregidx = 0;
2786 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2787 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2788     // the velocity dimension must be handled after the other dimensions
2789     veldim = i;
2790     velbitpos = bitpos;
2791     } else {
2792     switch (pDimensionDefinitions[i].split_type) {
2793     case split_type_normal:
2794 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2795     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2796     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2797     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2798     }
2799     } else {
2800     // gig2: evenly sized zones
2801     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2802     }
2803 persson 858 break;
2804     case split_type_bit: // the value is already the sought dimension bit number
2805     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2806     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2807     break;
2808     }
2809     dimregidx |= bits << bitpos;
2810 schoenebeck 2 }
2811 persson 858 bitpos += pDimensionDefinitions[i].bits;
2812 schoenebeck 2 }
2813 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2814     if (veldim != -1) {
2815     // (dimreg is now the dimension region for the lowest velocity)
2816 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2817 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2818     else // normal split type
2819     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2820    
2821     dimregidx |= bits << velbitpos;
2822     dimreg = pDimensionRegions[dimregidx];
2823     }
2824     return dimreg;
2825 schoenebeck 2 }
2826    
2827     /**
2828     * Returns the appropriate DimensionRegion for the given dimension bit
2829     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2830     * instead of calling this method directly!
2831     *
2832 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2833 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2834     * bit numbers
2835     * @see GetDimensionRegionByValue()
2836     */
2837 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2838     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2839     << pDimensionDefinitions[5].bits | DimBits[5])
2840     << pDimensionDefinitions[4].bits | DimBits[4])
2841     << pDimensionDefinitions[3].bits | DimBits[3])
2842     << pDimensionDefinitions[2].bits | DimBits[2])
2843     << pDimensionDefinitions[1].bits | DimBits[1])
2844     << pDimensionDefinitions[0].bits | DimBits[0]];
2845 schoenebeck 2 }
2846    
2847     /**
2848     * Returns pointer address to the Sample referenced with this region.
2849     * This is the global Sample for the entire Region (not sure if this is
2850     * actually used by the Gigasampler engine - I would only use the Sample
2851     * referenced by the appropriate DimensionRegion instead of this sample).
2852     *
2853     * @returns address to Sample or NULL if there is no reference to a
2854     * sample saved in the .gig file
2855     */
2856     Sample* Region::GetSample() {
2857     if (pSample) return static_cast<gig::Sample*>(pSample);
2858     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2859     }
2860    
2861 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2862 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2863 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2864 persson 902 if (!file->pWavePoolTable) return NULL;
2865 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2866 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2867 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2868 schoenebeck 2 while (sample) {
2869 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2870 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2871 schoenebeck 2 sample = file->GetNextSample();
2872     }
2873     return NULL;
2874     }
2875    
2876    
2877    
2878     // *************** Instrument ***************
2879     // *
2880    
2881 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2882 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2883     { CHUNK_ID_INAM, 64 },
2884     { CHUNK_ID_ISFT, 12 },
2885     { 0, 0 }
2886     };
2887     pInfo->FixedStringLengths = fixedStringLengths;
2888 persson 918
2889 schoenebeck 2 // Initialization
2890     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2891 persson 1182 EffectSend = 0;
2892     Attenuation = 0;
2893     FineTune = 0;
2894     PitchbendRange = 0;
2895     PianoReleaseMode = false;
2896     DimensionKeyRange.low = 0;
2897     DimensionKeyRange.high = 0;
2898 schoenebeck 2
2899     // Loading
2900     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2901     if (lart) {
2902     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2903     if (_3ewg) {
2904     EffectSend = _3ewg->ReadUint16();
2905     Attenuation = _3ewg->ReadInt32();
2906     FineTune = _3ewg->ReadInt16();
2907     PitchbendRange = _3ewg->ReadInt16();
2908     uint8_t dimkeystart = _3ewg->ReadUint8();
2909     PianoReleaseMode = dimkeystart & 0x01;
2910     DimensionKeyRange.low = dimkeystart >> 1;
2911     DimensionKeyRange.high = _3ewg->ReadUint8();
2912     }
2913     }
2914    
2915 schoenebeck 823 if (!pRegions) pRegions = new RegionList;
2916 schoenebeck 2 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2917 schoenebeck 809 if (lrgn) {
2918     RIFF::List* rgn = lrgn->GetFirstSubList();
2919     while (rgn) {
2920     if (rgn->GetListType() == LIST_TYPE_RGN) {
2921 schoenebeck 823 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2922     pRegions->push_back(new Region(this, rgn));
2923 schoenebeck 809 }
2924     rgn = lrgn->GetNextSubList();
2925 schoenebeck 2 }
2926 schoenebeck 809 // Creating Region Key Table for fast lookup
2927     UpdateRegionKeyTable();
2928 schoenebeck 2 }
2929    
2930 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
2931     }
2932    
2933     void Instrument::UpdateRegionKeyTable() {
2934 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2935 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
2936     RegionList::iterator end = pRegions->end();
2937     for (; iter != end; ++iter) {
2938     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2939     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2940     RegionKeyTable[iKey] = pRegion;
2941 schoenebeck 2 }
2942     }
2943     }
2944    
2945     Instrument::~Instrument() {
2946     }
2947    
2948     /**
2949 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
2950     * You have to call File::Save() to make changes persistent.
2951     *
2952     * Usually there is absolutely no need to call this method explicitly.
2953     * It will be called automatically when File::Save() was called.
2954     *
2955     * @throws gig::Exception if samples cannot be dereferenced
2956     */
2957     void Instrument::UpdateChunks() {
2958     // first update base classes' chunks
2959     DLS::Instrument::UpdateChunks();
2960    
2961     // update Regions' chunks
2962 schoenebeck 823 {
2963     RegionList::iterator iter = pRegions->begin();
2964     RegionList::iterator end = pRegions->end();
2965     for (; iter != end; ++iter)
2966     (*iter)->UpdateChunks();
2967     }
2968 schoenebeck 809
2969     // make sure 'lart' RIFF list chunk exists
2970     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2971     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2972     // make sure '3ewg' RIFF chunk exists
2973     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2974 persson 1264 if (!_3ewg) {
2975     File* pFile = (File*) GetParent();
2976    
2977     // 3ewg is bigger in gig3, as it includes the iMIDI rules
2978     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2979     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2980     memset(_3ewg->LoadChunkData(), 0, size);
2981     }
2982 schoenebeck 809 // update '3ewg' RIFF chunk
2983     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2984 persson 1179 store16(&pData[0], EffectSend);
2985     store32(&pData[2], Attenuation);
2986     store16(&pData[6], FineTune);
2987     store16(&pData[8], PitchbendRange);
2988 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
2989 schoenebeck 809 DimensionKeyRange.low << 1;
2990 persson 1179 pData[10] = dimkeystart;
2991     pData[11] = DimensionKeyRange.high;
2992 schoenebeck 809 }
2993    
2994     /**
2995 schoenebeck 2 * Returns the appropriate Region for a triggered note.
2996     *
2997     * @param Key MIDI Key number of triggered note / key (0 - 127)
2998     * @returns pointer adress to the appropriate Region or NULL if there
2999     * there is no Region defined for the given \a Key
3000     */
3001     Region* Instrument::GetRegion(unsigned int Key) {
3002 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3003 schoenebeck 2 return RegionKeyTable[Key];
3004 schoenebeck 823
3005 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
3006     if (Key <= pRegions[i]->KeyRange.high &&
3007     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3008     }
3009     return NULL;*/
3010     }
3011    
3012     /**
3013     * Returns the first Region of the instrument. You have to call this
3014     * method once before you use GetNextRegion().
3015     *
3016     * @returns pointer address to first region or NULL if there is none
3017     * @see GetNextRegion()
3018     */
3019     Region* Instrument::GetFirstRegion() {
3020 schoenebeck 823 if (!pRegions) return NULL;
3021     RegionsIterator = pRegions->begin();
3022     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3023 schoenebeck 2 }
3024    
3025     /**
3026     * Returns the next Region of the instrument. You have to call
3027     * GetFirstRegion() once before you can use this method. By calling this
3028     * method multiple times it iterates through the available Regions.
3029     *
3030     * @returns pointer address to the next region or NULL if end reached
3031     * @see GetFirstRegion()
3032     */
3033     Region* Instrument::GetNextRegion() {
3034 schoenebeck 823 if (!pRegions) return NULL;
3035     RegionsIterator++;
3036     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3037 schoenebeck 2 }
3038    
3039 schoenebeck 809 Region* Instrument::AddRegion() {
3040     // create new Region object (and its RIFF chunks)
3041     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3042     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3043     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3044     Region* pNewRegion = new Region(this, rgn);
3045 schoenebeck 823 pRegions->push_back(pNewRegion);
3046     Regions = pRegions->size();
3047 schoenebeck 809 // update Region key table for fast lookup
3048     UpdateRegionKeyTable();
3049     // done
3050     return pNewRegion;
3051     }
3052 schoenebeck 2
3053 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
3054     if (!pRegions) return;
3055 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3056 schoenebeck 809 // update Region key table for fast lookup
3057     UpdateRegionKeyTable();
3058     }
3059 schoenebeck 2
3060 schoenebeck 809
3061    
3062 schoenebeck 929 // *************** Group ***************
3063     // *
3064    
3065     /** @brief Constructor.
3066     *
3067 schoenebeck 930 * @param file - pointer to the gig::File object
3068     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3069     * NULL if this is a new Group
3070 schoenebeck 929 */
3071 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3072 schoenebeck 929 pFile = file;
3073     pNameChunk = ck3gnm;
3074     ::LoadString(pNameChunk, Name);
3075     }
3076    
3077     Group::~Group() {
3078 schoenebeck 1099 // remove the chunk associated with this group (if any)
3079     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3080 schoenebeck 929 }
3081    
3082     /** @brief Update chunks with current group settings.
3083     *
3084 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
3085     * to call File::Save() to make changes persistent.
3086     *
3087     * Usually there is absolutely no need to call this method explicitly.
3088     * It will be called automatically when File::Save() was called.
3089 schoenebeck 929 */
3090     void Group::UpdateChunks() {
3091     // make sure <3gri> and <3gnl> list chunks exist
3092 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3093 persson 1192 if (!_3gri) {
3094     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3095     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3096     }
3097 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3098 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3099 persson 1266
3100     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3101     // v3 has a fixed list of 128 strings, find a free one
3102     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3103     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3104     pNameChunk = ck;
3105     break;
3106     }
3107     }
3108     }
3109    
3110 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3111     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3112     }
3113    
3114 schoenebeck 930 /**
3115     * Returns the first Sample of this Group. You have to call this method
3116     * once before you use GetNextSample().
3117     *
3118     * <b>Notice:</b> this method might block for a long time, in case the
3119     * samples of this .gig file were not scanned yet
3120     *
3121     * @returns pointer address to first Sample or NULL if there is none
3122     * applied to this Group
3123     * @see GetNextSample()
3124     */
3125     Sample* Group::GetFirstSample() {
3126     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3127     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3128     if (pSample->GetGroup() == this) return pSample;
3129     }
3130     return NULL;
3131     }
3132 schoenebeck 929
3133 schoenebeck 930 /**
3134     * Returns the next Sample of the Group. You have to call
3135     * GetFirstSample() once before you can use this method. By calling this
3136     * method multiple times it iterates through the Samples assigned to
3137     * this Group.
3138     *
3139     * @returns pointer address to the next Sample of this Group or NULL if
3140     * end reached
3141     * @see GetFirstSample()
3142     */
3143     Sample* Group::GetNextSample() {
3144     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3145     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3146     if (pSample->GetGroup() == this) return pSample;
3147     }
3148     return NULL;
3149     }
3150 schoenebeck 929
3151 schoenebeck 930 /**
3152     * Move Sample given by \a pSample from another Group to this Group.
3153     */
3154     void Group::AddSample(Sample* pSample) {
3155     pSample->pGroup = this;
3156     }
3157    
3158     /**
3159     * Move all members of this group to another group (preferably the 1st
3160     * one except this). This method is called explicitly by
3161     * File::DeleteGroup() thus when a Group was deleted. This code was
3162     * intentionally not placed in the destructor!
3163     */
3164     void Group::MoveAll() {
3165     // get "that" other group first
3166     Group* pOtherGroup = NULL;
3167     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3168     if (pOtherGroup != this) break;
3169     }
3170     if (!pOtherGroup) throw Exception(
3171     "Could not move samples to another group, since there is no "
3172     "other Group. This is a bug, report it!"
3173     );
3174     // now move all samples of this group to the other group
3175     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3176     pOtherGroup->AddSample(pSample);
3177     }
3178     }
3179    
3180    
3181    
3182 schoenebeck 2 // *************** File ***************
3183     // *
3184    
3185 persson 1199 // File version 2.0, 1998-06-28
3186     const DLS::version_t File::VERSION_2 = {
3187     0, 2, 19980628 & 0xffff, 19980628 >> 16
3188     };
3189    
3190     // File version 3.0, 2003-03-31
3191     const DLS::version_t File::VERSION_3 = {
3192     0, 3, 20030331 & 0xffff, 20030331 >> 16
3193     };
3194    
3195 persson 1180 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3196     { CHUNK_ID_IARL, 256 },
3197     { CHUNK_ID_IART, 128 },
3198     { CHUNK_ID_ICMS, 128 },
3199     { CHUNK_ID_ICMT, 1024 },
3200     { CHUNK_ID_ICOP, 128 },
3201     { CHUNK_ID_ICRD, 128 },
3202     { CHUNK_ID_IENG, 128 },
3203     { CHUNK_ID_IGNR, 128 },
3204     { CHUNK_ID_IKEY, 128 },
3205     { CHUNK_ID_IMED, 128 },
3206     { CHUNK_ID_INAM, 128 },
3207     { CHUNK_ID_IPRD, 128 },
3208     { CHUNK_ID_ISBJ, 128 },
3209     { CHUNK_ID_ISFT, 128 },
3210     { CHUNK_ID_ISRC, 128 },
3211     { CHUNK_ID_ISRF, 128 },
3212     { CHUNK_ID_ITCH, 128 },
3213     { 0, 0 }
3214     };
3215    
3216 schoenebeck 809 File::File() : DLS::File() {
3217 persson 1264 *pVersion = VERSION_3;
3218 schoenebeck 929 pGroups = NULL;
3219 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3220 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3221 persson 1192
3222     // add some mandatory chunks to get the file chunks in right
3223     // order (INFO chunk will be moved to first position later)
3224     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3225     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3226 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3227    
3228     GenerateDLSID();
3229 schoenebeck 809 }
3230    
3231 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3232 schoenebeck 929 pGroups = NULL;
3233 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3234 schoenebeck 2 }
3235    
3236 schoenebeck 929 File::~File() {
3237     if (pGroups) {
3238     std::list<Group*>::iterator iter = pGroups->begin();
3239     std::list<Group*>::iterator end = pGroups->end();
3240     while (iter != end) {
3241     delete *iter;
3242     ++iter;
3243     }
3244     delete pGroups;
3245     }
3246     }
3247    
3248 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3249     if (!pSamples) LoadSamples(pProgress);
3250 schoenebeck 2 if (!pSamples) return NULL;
3251     SamplesIterator = pSamples->begin();
3252     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3253     }
3254    
3255     Sample* File::GetNextSample() {
3256     if (!pSamples) return NULL;
3257     SamplesIterator++;
3258     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3259     }
3260    
3261 schoenebeck 809 /** @brief Add a new sample.
3262     *
3263     * This will create a new Sample object for the gig file. You have to
3264     * call Save() to make this persistent to the file.
3265     *
3266     * @returns pointer to new Sample object
3267     */
3268     Sample* File::AddSample() {
3269     if (!pSamples) LoadSamples();
3270     __ensureMandatoryChunksExist();
3271     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3272     // create new Sample object and its respective 'wave' list chunk
3273     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3274     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3275 persson 1192
3276     // add mandatory chunks to get the chunks in right order
3277     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3278     wave->AddSubList(LIST_TYPE_INFO);
3279    
3280 schoenebeck 809 pSamples->push_back(pSample);
3281     return pSample;
3282     }
3283    
3284     /** @brief Delete a sample.
3285     *
3286 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3287     * references to this sample from Regions and DimensionRegions will be
3288     * removed. You have to call Save() to make this persistent to the file.
3289 schoenebeck 809 *
3290     * @param pSample - sample to delete
3291     * @throws gig::Exception if given sample could not be found
3292     */
3293     void File::DeleteSample(Sample* pSample) {
3294 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3295     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3296 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3297 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3298 schoenebeck 809 pSamples->erase(iter);
3299     delete pSample;
3300 persson 1266
3301     // remove all references to the sample
3302     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3303     instrument = GetNextInstrument()) {
3304     for (Region* region = instrument->GetFirstRegion() ; region ;
3305     region = instrument->GetNextRegion()) {
3306    
3307     if (region->GetSample() == pSample) region->SetSample(NULL);
3308    
3309     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3310     gig::DimensionRegion *d = region->pDimensionRegions[i];
3311     if (d->pSample == pSample) d->pSample = NULL;
3312     }
3313     }
3314     }
3315 schoenebeck 809 }
3316    
3317 schoenebeck 823 void File::LoadSamples() {
3318     LoadSamples(NULL);
3319     }
3320    
3321 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3322 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3323     // to resolve the group they belong to
3324 schoenebeck 1158 if (!pGroups) LoadGroups();
3325 schoenebeck 930
3326 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3327    
3328 persson 666 RIFF::File* file = pRIFF;
3329 schoenebeck 515
3330 persson 666 // just for progress calculation
3331     int iSampleIndex = 0;
3332     int iTotalSamples = WavePoolCount;
3333 schoenebeck 515
3334 persson 666 // check if samples should be loaded from extension files
3335     int lastFileNo = 0;
3336     for (int i = 0 ; i < WavePoolCount ; i++) {
3337     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3338     }
3339 schoenebeck 780 String name(pRIFF->GetFileName());
3340     int nameLen = name.length();
3341 persson 666 char suffix[6];
3342 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3343 schoenebeck 515
3344 persson 666 for (int fileNo = 0 ; ; ) {
3345     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3346     if (wvpl) {
3347     unsigned long wvplFileOffset = wvpl->GetFilePos();
3348     RIFF::List* wave = wvpl->GetFirstSubList();
3349     while (wave) {
3350     if (wave->GetListType() == LIST_TYPE_WAVE) {
3351     // notify current progress
3352     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3353     __notify_progress(pProgress, subprogress);
3354    
3355     unsigned long waveFileOffset = wave->GetFilePos();
3356     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3357    
3358     iSampleIndex++;
3359     }
3360     wave = wvpl->GetNextSubList();
3361 schoenebeck 2 }
3362 persson 666
3363     if (fileNo == lastFileNo) break;
3364    
3365     // open extension file (*.gx01, *.gx02, ...)
3366     fileNo++;
3367     sprintf(suffix, ".gx%02d", fileNo);
3368     name.replace(nameLen, 5, suffix);
3369     file = new RIFF::File(name);
3370     ExtensionFiles.push_back(file);
3371 schoenebeck 823 } else break;
3372 schoenebeck 2 }
3373 persson 666
3374     __notify_progress(pProgress, 1.0); // notify done
3375 schoenebeck 2 }
3376    
3377     Instrument* File::GetFirstInstrument() {
3378     if (!pInstruments) LoadInstruments();
3379     if (!pInstruments) return NULL;
3380     InstrumentsIterator = pInstruments->begin();
3381 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3382 schoenebeck 2 }
3383    
3384     Instrument* File::GetNextInstrument() {
3385     if (!pInstruments) return NULL;
3386     InstrumentsIterator++;
3387 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3388 schoenebeck 2 }
3389    
3390 schoenebeck 21 /**
3391     * Returns the instrument with the given index.
3392     *
3393 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3394     * @param pProgress - optional: callback function for progress notification
3395 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3396     */
3397 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3398     if (!pInstruments) {
3399     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3400    
3401     // sample loading subtask
3402     progress_t subprogress;
3403     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3404     __notify_progress(&subprogress, 0.0f);
3405     GetFirstSample(&subprogress); // now force all samples to be loaded
3406     __notify_progress(&subprogress, 1.0f);
3407    
3408     // instrument loading subtask
3409     if (pProgress && pProgress->callback) {
3410     subprogress.__range_min = subprogress.__range_max;
3411     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3412     }
3413     __notify_progress(&subprogress, 0.0f);
3414     LoadInstruments(&subprogress);
3415     __notify_progress(&subprogress, 1.0f);
3416     }
3417 schoenebeck 21 if (!pInstruments) return NULL;
3418     InstrumentsIterator = pInstruments->begin();
3419     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3420 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3421 schoenebeck 21 InstrumentsIterator++;
3422     }
3423     return NULL;
3424     }
3425    
3426 schoenebeck 809 /** @brief Add a new instrument definition.
3427     *
3428     * This will create a new Instrument object for the gig file. You have
3429     * to call Save() to make this persistent to the file.
3430     *
3431     * @returns pointer to new Instrument object
3432     */
3433     Instrument* File::AddInstrument() {
3434     if (!pInstruments) LoadInstruments();
3435     __ensureMandatoryChunksExist();
3436     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3437     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3438 persson 1192
3439     // add mandatory chunks to get the chunks in right order
3440     lstInstr->AddSubList(LIST_TYPE_INFO);
3441 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3442 persson 1192
3443 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3444 persson 1209 pInstrument->GenerateDLSID();
3445 persson 1182
3446 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3447    
3448 persson 1182 // this string is needed for the gig to be loadable in GSt:
3449     pInstrument->pInfo->Software = "Endless Wave";
3450    
3451 schoenebeck 809 pInstruments->push_back(pInstrument);
3452     return pInstrument;
3453     }
3454    
3455     /** @brief Delete an instrument.
3456     *
3457     * This will delete the given Instrument object from the gig file. You
3458     * have to call Save() to make this persistent to the file.
3459     *
3460     * @param pInstrument - instrument to delete
3461 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3462 schoenebeck 809 */
3463     void File::DeleteInstrument(Instrument* pInstrument) {
3464     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3465 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3466 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3467     pInstruments->erase(iter);
3468     delete pInstrument;
3469     }
3470    
3471 schoenebeck 823 void File::LoadInstruments() {
3472     LoadInstruments(NULL);
3473     }
3474    
3475 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3476 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3477 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3478     if (lstInstruments) {
3479 schoenebeck 515 int iInstrumentIndex = 0;
3480 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3481     while (lstInstr) {
3482     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3483 schoenebeck 515 // notify current progress
3484     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3485     __notify_progress(pProgress, localProgress);
3486    
3487     // divide local progress into subprogress for loading current Instrument
3488     progress_t subprogress;
3489     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3490    
3491     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3492    
3493     iInstrumentIndex++;
3494 schoenebeck 2 }
3495     lstInstr = lstInstruments->GetNextSubList();
3496     }
3497 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3498 schoenebeck 2 }
3499     }
3500    
3501 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3502     /// update is done directly to disk, as this method is called
3503     /// after File::Save()
3504 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3505     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3506     if (!_3crc) return;
3507 persson 1207
3508     // get the index of the sample
3509 persson 1199 int iWaveIndex = -1;
3510     File::SampleList::iterator iter = pSamples->begin();
3511     File::SampleList::iterator end = pSamples->end();
3512     for (int index = 0; iter != end; ++iter, ++index) {
3513     if (*iter == pSample) {
3514     iWaveIndex = index;
3515     break;
3516     }
3517     }
3518     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3519    
3520 persson 1207 // write the CRC-32 checksum to disk
3521 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3522     uint32_t tmp = 1;
3523     _3crc->WriteUint32(&tmp); // unknown, always 1?
3524     _3crc->WriteUint32(&crc);
3525     }
3526    
3527 schoenebeck 929 Group* File::GetFirstGroup() {
3528     if (!pGroups) LoadGroups();
3529 schoenebeck 930 // there must always be at least one group
3530 schoenebeck 929 GroupsIterator = pGroups->begin();
3531 schoenebeck 930 return *GroupsIterator;
3532 schoenebeck 929 }
3533 schoenebeck 2
3534 schoenebeck 929 Group* File::GetNextGroup() {
3535     if (!pGroups) return NULL;
3536     ++GroupsIterator;
3537     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3538     }
3539 schoenebeck 2
3540 schoenebeck 929 /**
3541     * Returns the group with the given index.
3542     *
3543     * @param index - number of the sought group (0..n)
3544     * @returns sought group or NULL if there's no such group
3545     */
3546     Group* File::GetGroup(uint index) {
3547     if (!pGroups) LoadGroups();
3548     GroupsIterator = pGroups->begin();
3549     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3550     if (i == index) return *GroupsIterator;
3551     ++GroupsIterator;
3552     }
3553     return NULL;
3554     }
3555    
3556     Group* File::AddGroup() {
3557     if (!pGroups) LoadGroups();
3558 schoenebeck 930 // there must always be at least one group
3559 schoenebeck 929 __ensureMandatoryChunksExist();
3560 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3561 schoenebeck 929 pGroups->push_back(pGroup);
3562     return pGroup;
3563     }
3564    
3565 schoenebeck 1081 /** @brief Delete a group and its samples.
3566     *
3567     * This will delete the given Group object and all the samples that
3568     * belong to this group from the gig file. You have to call Save() to
3569     * make this persistent to the file.
3570     *
3571     * @param pGroup - group to delete
3572     * @throws gig::Exception if given group could not be found
3573     */
3574 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3575 schoenebeck 930 if (!pGroups) LoadGroups();
3576 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3577     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3578 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3579 schoenebeck 1081 // delete all members of this group
3580     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3581     DeleteSample(pSample);
3582     }
3583     // now delete this group object
3584     pGroups->erase(iter);
3585     delete pGroup;
3586     }
3587    
3588     /** @brief Delete a group.
3589     *
3590     * This will delete the given Group object from the gig file. All the
3591     * samples that belong to this group will not be deleted, but instead
3592     * be moved to another group. You have to call Save() to make this
3593     * persistent to the file.
3594     *
3595     * @param pGroup - group to delete
3596     * @throws gig::Exception if given group could not be found
3597     */
3598     void File::DeleteGroupOnly(Group* pGroup) {
3599     if (!pGroups) LoadGroups();
3600     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3601     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3602     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3603 schoenebeck 930 // move all members of this group to another group
3604     pGroup->MoveAll();
3605 schoenebeck 929 pGroups->erase(iter);
3606     delete pGroup;
3607     }
3608    
3609     void File::LoadGroups() {
3610     if (!pGroups) pGroups = new std::list<Group*>;
3611 schoenebeck 930 // try to read defined groups from file
3612 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3613 schoenebeck 930 if (lst3gri) {
3614     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3615     if (lst3gnl) {
3616     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3617     while (ck) {
3618     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3619 persson 1266 if (pVersion && pVersion->major == 3 &&
3620     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3621    
3622 schoenebeck 930 pGroups->push_back(new Group(this, ck));
3623     }
3624     ck = lst3gnl->GetNextSubChunk();
3625 schoenebeck 929 }
3626     }
3627     }
3628 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3629     if (!pGroups->size()) {
3630     Group* pGroup = new Group(this, NULL);
3631     pGroup->Name = "Default Group";
3632     pGroups->push_back(pGroup);
3633     }
3634 schoenebeck 929 }
3635    
3636 schoenebeck 1098 /**
3637     * Apply all the gig file's current instruments, samples, groups and settings
3638     * to the respective RIFF chunks. You have to call Save() to make changes
3639     * persistent.
3640     *
3641     * Usually there is absolutely no need to call this method explicitly.
3642     * It will be called automatically when File::Save() was called.
3643     *
3644     * @throws Exception - on errors
3645     */
3646     void File::UpdateChunks() {
3647 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3648 persson 1192
3649 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3650    
3651 schoenebeck 1098 // first update base class's chunks
3652     DLS::File::UpdateChunks();
3653 schoenebeck 929
3654 persson 1199 if (newFile) {
3655 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3656     // is placed first in file
3657 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3658 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3659     if (first != info) {
3660     pRIFF->MoveSubChunk(info, first);
3661     }
3662     }
3663    
3664 schoenebeck 1098 // update group's chunks
3665     if (pGroups) {
3666     std::list<Group*>::iterator iter = pGroups->begin();
3667     std::list<Group*>::iterator end = pGroups->end();
3668     for (; iter != end; ++iter) {
3669     (*iter)->UpdateChunks();
3670     }
3671 persson 1266
3672     // v3: make sure the file has 128 3gnm chunks
3673     if (pVersion && pVersion->major == 3) {
3674     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3675     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3676     for (int i = 0 ; i < 128 ; i++) {
3677     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3678     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3679     }
3680     }
3681 schoenebeck 1098 }
3682 persson 1199
3683     // update einf chunk
3684    
3685     // The einf chunk contains statistics about the gig file, such
3686     // as the number of regions and samples used by each
3687     // instrument. It is divided in equally sized parts, where the
3688     // first part contains information about the whole gig file,
3689     // and the rest of the parts map to each instrument in the
3690     // file.
3691     //
3692     // At the end of each part there is a bit map of each sample
3693     // in the file, where a set bit means that the sample is used
3694     // by the file/instrument.
3695     //
3696     // Note that there are several fields with unknown use. These
3697     // are set to zero.
3698    
3699     int sublen = pSamples->size() / 8 + 49;
3700     int einfSize = (Instruments + 1) * sublen;
3701    
3702     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3703     if (einf) {
3704     if (einf->GetSize() != einfSize) {
3705     einf->Resize(einfSize);
3706     memset(einf->LoadChunkData(), 0, einfSize);
3707     }
3708     } else if (newFile) {
3709     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3710     }
3711     if (einf) {
3712     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3713    
3714     std::map<gig::Sample*,int> sampleMap;
3715     int sampleIdx = 0;
3716     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3717     sampleMap[pSample] = sampleIdx++;
3718     }
3719    
3720     int totnbusedsamples = 0;
3721     int totnbusedchannels = 0;
3722     int totnbregions = 0;
3723     int totnbdimregions = 0;
3724 persson 1264 int totnbloops = 0;
3725 persson 1199 int instrumentIdx = 0;
3726    
3727     memset(&pData[48], 0, sublen - 48);
3728    
3729     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3730     instrument = GetNextInstrument()) {
3731     int nbusedsamples = 0;
3732     int nbusedchannels = 0;
3733     int nbdimregions = 0;
3734 persson 1264 int nbloops = 0;
3735 persson 1199
3736     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3737    
3738     for (Region* region = instrument->GetFirstRegion() ; region ;
3739     region = instrument->GetNextRegion()) {
3740     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3741     gig::DimensionRegion *d = region->pDimensionRegions[i];
3742     if (d->pSample) {
3743     int sampleIdx = sampleMap[d->pSample];
3744     int byte = 48 + sampleIdx / 8;
3745     int bit = 1 << (sampleIdx & 7);
3746     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3747     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3748     nbusedsamples++;
3749     nbusedchannels += d->pSample->Channels;
3750    
3751     if ((pData[byte] & bit) == 0) {
3752     pData[byte] |= bit;
3753     totnbusedsamples++;
3754     totnbusedchannels += d->pSample->Channels;
3755     }
3756     }
3757     }
3758 persson 1264 if (d->SampleLoops) nbloops++;
3759 persson 1199 }
3760     nbdimregions += region->DimensionRegions;
3761     }
3762     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3763     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3764     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3765     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3766     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3767     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3768     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3769 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3770     // next 8 bytes unknown
3771 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3772     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3773     // next 4 bytes unknown
3774    
3775     totnbregions += instrument->Regions;
3776     totnbdimregions += nbdimregions;
3777 persson 1264 totnbloops += nbloops;
3778 persson 1199 instrumentIdx++;
3779     }
3780     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3781     // store32(&pData[0], sublen);
3782     store32(&pData[4], totnbusedchannels);
3783     store32(&pData[8], totnbusedsamples);
3784     store32(&pData[12], Instruments);
3785     store32(&pData[16], totnbregions);
3786     store32(&pData[20], totnbdimregions);
3787 persson 1264 store32(&pData[24], totnbloops);
3788     // next 8 bytes unknown
3789     // next 4 bytes unknown, not always 0
3790 persson 1199 store32(&pData[40], pSamples->size());
3791     // next 4 bytes unknown
3792     }
3793    
3794     // update 3crc chunk
3795    
3796     // The 3crc chunk contains CRC-32 checksums for the
3797     // samples. The actual checksum values will be filled in
3798     // later, by Sample::Write.
3799    
3800     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3801     if (_3crc) {
3802     _3crc->Resize(pSamples->size() * 8);
3803     } else if (newFile) {
3804     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3805     _3crc->LoadChunkData();
3806 persson 1264
3807     // the order of einf and 3crc is not the same in v2 and v3
3808     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3809 persson 1199 }
3810 schoenebeck 1098 }
3811 schoenebeck 929
3812 schoenebeck 1098
3813    
3814 schoenebeck 2 // *************** Exception ***************
3815     // *
3816    
3817     Exception::Exception(String Message) : DLS::Exception(Message) {
3818     }
3819    
3820     void Exception::PrintMessage() {
3821     std::cout << "gig::Exception: " << Message << std::endl;
3822     }
3823    
3824 schoenebeck 518
3825     // *************** functions ***************
3826     // *
3827    
3828     /**
3829     * Returns the name of this C++ library. This is usually "libgig" of
3830     * course. This call is equivalent to RIFF::libraryName() and
3831     * DLS::libraryName().
3832     */
3833     String libraryName() {
3834     return PACKAGE;
3835     }
3836    
3837     /**
3838     * Returns version of this C++ library. This call is equivalent to
3839     * RIFF::libraryVersion() and DLS::libraryVersion().
3840     */
3841     String libraryVersion() {
3842     return VERSION;
3843     }
3844    
3845 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC