/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1627 - (hide annotations) (download)
Sun Jan 6 10:53:53 2008 UTC (16 years, 2 months ago) by persson
File size: 174968 byte(s)
* added partial support for MIDI rules, only the Controller Triggered
  rule is supported so far

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
259     // *
260    
261     static uint32_t* __initCRCTable() {
262     static uint32_t res[256];
263    
264     for (int i = 0 ; i < 256 ; i++) {
265     uint32_t c = i;
266     for (int j = 0 ; j < 8 ; j++) {
267     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
268     }
269     res[i] = c;
270     }
271     return res;
272     }
273    
274     static const uint32_t* __CRCTable = __initCRCTable();
275    
276     /**
277     * Initialize a CRC variable.
278     *
279     * @param crc - variable to be initialized
280     */
281     inline static void __resetCRC(uint32_t& crc) {
282     crc = 0xffffffff;
283     }
284    
285     /**
286     * Used to calculate checksums of the sample data in a gig file. The
287     * checksums are stored in the 3crc chunk of the gig file and
288     * automatically updated when a sample is written with Sample::Write().
289     *
290     * One should call __resetCRC() to initialize the CRC variable to be
291     * used before calling this function the first time.
292     *
293     * After initializing the CRC variable one can call this function
294     * arbitrary times, i.e. to split the overall CRC calculation into
295     * steps.
296     *
297     * Once the whole data was processed by __calculateCRC(), one should
298     * call __encodeCRC() to get the final CRC result.
299     *
300     * @param buf - pointer to data the CRC shall be calculated of
301     * @param bufSize - size of the data to be processed
302     * @param crc - variable the CRC sum shall be stored to
303     */
304     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
305     for (int i = 0 ; i < bufSize ; i++) {
306     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
307     }
308     }
309    
310     /**
311     * Returns the final CRC result.
312     *
313     * @param crc - variable previously passed to __calculateCRC()
314     */
315     inline static uint32_t __encodeCRC(const uint32_t& crc) {
316     return crc ^ 0xffffffff;
317     }
318    
319    
320    
321 schoenebeck 1113 // *************** Other Internal functions ***************
322     // *
323    
324     static split_type_t __resolveSplitType(dimension_t dimension) {
325     return (
326     dimension == dimension_layer ||
327     dimension == dimension_samplechannel ||
328     dimension == dimension_releasetrigger ||
329     dimension == dimension_keyboard ||
330     dimension == dimension_roundrobin ||
331     dimension == dimension_random ||
332     dimension == dimension_smartmidi ||
333     dimension == dimension_roundrobinkeyboard
334     ) ? split_type_bit : split_type_normal;
335     }
336    
337     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
338     return (dimension_definition.split_type == split_type_normal)
339     ? int(128.0 / dimension_definition.zones) : 0;
340     }
341    
342    
343    
344 schoenebeck 2 // *************** Sample ***************
345     // *
346    
347 schoenebeck 384 unsigned int Sample::Instances = 0;
348     buffer_t Sample::InternalDecompressionBuffer;
349 schoenebeck 2
350 schoenebeck 809 /** @brief Constructor.
351     *
352     * Load an existing sample or create a new one. A 'wave' list chunk must
353     * be given to this constructor. In case the given 'wave' list chunk
354     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355     * format and sample data will be loaded from there, otherwise default
356     * values will be used and those chunks will be created when
357     * File::Save() will be called later on.
358     *
359     * @param pFile - pointer to gig::File where this sample is
360     * located (or will be located)
361     * @param waveList - pointer to 'wave' list chunk which is (or
362     * will be) associated with this sample
363     * @param WavePoolOffset - offset of this sample data from wave pool
364     * ('wvpl') list chunk
365     * @param fileNo - number of an extension file where this sample
366     * is located, 0 otherwise
367     */
368 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
369 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
370 persson 1180 { CHUNK_ID_INAM, 64 },
371     { 0, 0 }
372     };
373 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
374 schoenebeck 2 Instances++;
375 persson 666 FileNo = fileNo;
376 schoenebeck 2
377 schoenebeck 1381 __resetCRC(crc);
378    
379 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
380     if (pCk3gix) {
381 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
382 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
383 schoenebeck 809 } else { // '3gix' chunk missing
384 schoenebeck 930 // by default assigned to that mandatory "Default Group"
385     pGroup = pFile->GetGroup(0);
386 schoenebeck 809 }
387 schoenebeck 2
388 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
389     if (pCkSmpl) {
390     Manufacturer = pCkSmpl->ReadInt32();
391     Product = pCkSmpl->ReadInt32();
392     SamplePeriod = pCkSmpl->ReadInt32();
393     MIDIUnityNote = pCkSmpl->ReadInt32();
394     FineTune = pCkSmpl->ReadInt32();
395     pCkSmpl->Read(&SMPTEFormat, 1, 4);
396     SMPTEOffset = pCkSmpl->ReadInt32();
397     Loops = pCkSmpl->ReadInt32();
398     pCkSmpl->ReadInt32(); // manufByt
399     LoopID = pCkSmpl->ReadInt32();
400     pCkSmpl->Read(&LoopType, 1, 4);
401     LoopStart = pCkSmpl->ReadInt32();
402     LoopEnd = pCkSmpl->ReadInt32();
403     LoopFraction = pCkSmpl->ReadInt32();
404     LoopPlayCount = pCkSmpl->ReadInt32();
405     } else { // 'smpl' chunk missing
406     // use default values
407     Manufacturer = 0;
408     Product = 0;
409 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
410 persson 1218 MIDIUnityNote = 60;
411 schoenebeck 809 FineTune = 0;
412 persson 1182 SMPTEFormat = smpte_format_no_offset;
413 schoenebeck 809 SMPTEOffset = 0;
414     Loops = 0;
415     LoopID = 0;
416 persson 1182 LoopType = loop_type_normal;
417 schoenebeck 809 LoopStart = 0;
418     LoopEnd = 0;
419     LoopFraction = 0;
420     LoopPlayCount = 0;
421     }
422 schoenebeck 2
423     FrameTable = NULL;
424     SamplePos = 0;
425     RAMCache.Size = 0;
426     RAMCache.pStart = NULL;
427     RAMCache.NullExtensionSize = 0;
428    
429 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
430    
431 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
432     Compressed = ewav;
433     Dithered = false;
434     TruncatedBits = 0;
435 schoenebeck 2 if (Compressed) {
436 persson 437 uint32_t version = ewav->ReadInt32();
437     if (version == 3 && BitDepth == 24) {
438     Dithered = ewav->ReadInt32();
439     ewav->SetPos(Channels == 2 ? 84 : 64);
440     TruncatedBits = ewav->ReadInt32();
441     }
442 schoenebeck 2 ScanCompressedSample();
443     }
444 schoenebeck 317
445     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
446 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
447     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
448     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
449 schoenebeck 317 }
450 persson 437 FrameOffset = 0; // just for streaming compressed samples
451 schoenebeck 21
452 persson 864 LoopSize = LoopEnd - LoopStart + 1;
453 schoenebeck 2 }
454    
455 schoenebeck 809 /**
456     * Apply sample and its settings to the respective RIFF chunks. You have
457     * to call File::Save() to make changes persistent.
458     *
459     * Usually there is absolutely no need to call this method explicitly.
460     * It will be called automatically when File::Save() was called.
461     *
462 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
463 schoenebeck 809 * was provided yet
464     * @throws gig::Exception if there is any invalid sample setting
465     */
466     void Sample::UpdateChunks() {
467     // first update base class's chunks
468     DLS::Sample::UpdateChunks();
469    
470     // make sure 'smpl' chunk exists
471     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
472 persson 1182 if (!pCkSmpl) {
473     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
474     memset(pCkSmpl->LoadChunkData(), 0, 60);
475     }
476 schoenebeck 809 // update 'smpl' chunk
477     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
478 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
479 persson 1179 store32(&pData[0], Manufacturer);
480     store32(&pData[4], Product);
481     store32(&pData[8], SamplePeriod);
482     store32(&pData[12], MIDIUnityNote);
483     store32(&pData[16], FineTune);
484     store32(&pData[20], SMPTEFormat);
485     store32(&pData[24], SMPTEOffset);
486     store32(&pData[28], Loops);
487 schoenebeck 809
488     // we skip 'manufByt' for now (4 bytes)
489    
490 persson 1179 store32(&pData[36], LoopID);
491     store32(&pData[40], LoopType);
492     store32(&pData[44], LoopStart);
493     store32(&pData[48], LoopEnd);
494     store32(&pData[52], LoopFraction);
495     store32(&pData[56], LoopPlayCount);
496 schoenebeck 809
497     // make sure '3gix' chunk exists
498     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
499     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
500 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
501 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
502 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
503     if (pFile->pGroups) {
504     std::list<Group*>::iterator iter = pFile->pGroups->begin();
505     std::list<Group*>::iterator end = pFile->pGroups->end();
506 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
507 schoenebeck 929 if (*iter == pGroup) {
508     iSampleGroup = i;
509     break; // found
510     }
511     }
512     }
513 schoenebeck 809 // update '3gix' chunk
514     pData = (uint8_t*) pCk3gix->LoadChunkData();
515 persson 1179 store16(&pData[0], iSampleGroup);
516 schoenebeck 809 }
517    
518 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
519     void Sample::ScanCompressedSample() {
520     //TODO: we have to add some more scans here (e.g. determine compression rate)
521     this->SamplesTotal = 0;
522     std::list<unsigned long> frameOffsets;
523    
524 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
525 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
526 persson 365
527 schoenebeck 2 // Scanning
528     pCkData->SetPos(0);
529 persson 365 if (Channels == 2) { // Stereo
530     for (int i = 0 ; ; i++) {
531     // for 24 bit samples every 8:th frame offset is
532     // stored, to save some memory
533     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
534    
535     const int mode_l = pCkData->ReadUint8();
536     const int mode_r = pCkData->ReadUint8();
537     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
538     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
539    
540     if (pCkData->RemainingBytes() <= frameSize) {
541     SamplesInLastFrame =
542     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
543     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
544     SamplesTotal += SamplesInLastFrame;
545 schoenebeck 2 break;
546 persson 365 }
547     SamplesTotal += SamplesPerFrame;
548     pCkData->SetPos(frameSize, RIFF::stream_curpos);
549     }
550     }
551     else { // Mono
552     for (int i = 0 ; ; i++) {
553     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
554    
555     const int mode = pCkData->ReadUint8();
556     if (mode > 5) throw gig::Exception("Unknown compression mode");
557     const unsigned long frameSize = bytesPerFrame[mode];
558    
559     if (pCkData->RemainingBytes() <= frameSize) {
560     SamplesInLastFrame =
561     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
562     SamplesTotal += SamplesInLastFrame;
563 schoenebeck 2 break;
564 persson 365 }
565     SamplesTotal += SamplesPerFrame;
566     pCkData->SetPos(frameSize, RIFF::stream_curpos);
567 schoenebeck 2 }
568     }
569     pCkData->SetPos(0);
570    
571     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
572     if (FrameTable) delete[] FrameTable;
573     FrameTable = new unsigned long[frameOffsets.size()];
574     std::list<unsigned long>::iterator end = frameOffsets.end();
575     std::list<unsigned long>::iterator iter = frameOffsets.begin();
576     for (int i = 0; iter != end; i++, iter++) {
577     FrameTable[i] = *iter;
578     }
579     }
580    
581     /**
582     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
583     * ReleaseSampleData() to free the memory if you don't need the cached
584     * sample data anymore.
585     *
586     * @returns buffer_t structure with start address and size of the buffer
587     * in bytes
588     * @see ReleaseSampleData(), Read(), SetPos()
589     */
590     buffer_t Sample::LoadSampleData() {
591     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
592     }
593    
594     /**
595     * Reads (uncompresses if needed) and caches the first \a SampleCount
596     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
597     * memory space if you don't need the cached samples anymore. There is no
598     * guarantee that exactly \a SampleCount samples will be cached; this is
599     * not an error. The size will be eventually truncated e.g. to the
600     * beginning of a frame of a compressed sample. This is done for
601     * efficiency reasons while streaming the wave by your sampler engine
602     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
603     * that will be returned to determine the actual cached samples, but note
604     * that the size is given in bytes! You get the number of actually cached
605     * samples by dividing it by the frame size of the sample:
606 schoenebeck 384 * @code
607 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
608     * long cachedsamples = buf.Size / pSample->FrameSize;
609 schoenebeck 384 * @endcode
610 schoenebeck 2 *
611     * @param SampleCount - number of sample points to load into RAM
612     * @returns buffer_t structure with start address and size of
613     * the cached sample data in bytes
614     * @see ReleaseSampleData(), Read(), SetPos()
615     */
616     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
617     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
618     }
619    
620     /**
621     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
622     * ReleaseSampleData() to free the memory if you don't need the cached
623     * sample data anymore.
624     * The method will add \a NullSamplesCount silence samples past the
625     * official buffer end (this won't affect the 'Size' member of the
626     * buffer_t structure, that means 'Size' always reflects the size of the
627     * actual sample data, the buffer might be bigger though). Silence
628     * samples past the official buffer are needed for differential
629     * algorithms that always have to take subsequent samples into account
630     * (resampling/interpolation would be an important example) and avoids
631     * memory access faults in such cases.
632     *
633     * @param NullSamplesCount - number of silence samples the buffer should
634     * be extended past it's data end
635     * @returns buffer_t structure with start address and
636     * size of the buffer in bytes
637     * @see ReleaseSampleData(), Read(), SetPos()
638     */
639     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
640     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
641     }
642    
643     /**
644     * Reads (uncompresses if needed) and caches the first \a SampleCount
645     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
646     * memory space if you don't need the cached samples anymore. There is no
647     * guarantee that exactly \a SampleCount samples will be cached; this is
648     * not an error. The size will be eventually truncated e.g. to the
649     * beginning of a frame of a compressed sample. This is done for
650     * efficiency reasons while streaming the wave by your sampler engine
651     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
652     * that will be returned to determine the actual cached samples, but note
653     * that the size is given in bytes! You get the number of actually cached
654     * samples by dividing it by the frame size of the sample:
655 schoenebeck 384 * @code
656 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
657     * long cachedsamples = buf.Size / pSample->FrameSize;
658 schoenebeck 384 * @endcode
659 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
660     * official buffer end (this won't affect the 'Size' member of the
661     * buffer_t structure, that means 'Size' always reflects the size of the
662     * actual sample data, the buffer might be bigger though). Silence
663     * samples past the official buffer are needed for differential
664     * algorithms that always have to take subsequent samples into account
665     * (resampling/interpolation would be an important example) and avoids
666     * memory access faults in such cases.
667     *
668     * @param SampleCount - number of sample points to load into RAM
669     * @param NullSamplesCount - number of silence samples the buffer should
670     * be extended past it's data end
671     * @returns buffer_t structure with start address and
672     * size of the cached sample data in bytes
673     * @see ReleaseSampleData(), Read(), SetPos()
674     */
675     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
676     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
677     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
678     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
679     RAMCache.pStart = new int8_t[allocationsize];
680     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
681     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
682     // fill the remaining buffer space with silence samples
683     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
684     return GetCache();
685     }
686    
687     /**
688     * Returns current cached sample points. A buffer_t structure will be
689     * returned which contains address pointer to the begin of the cache and
690     * the size of the cached sample data in bytes. Use
691     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
692     * RAM.
693     *
694     * @returns buffer_t structure with current cached sample points
695     * @see LoadSampleData();
696     */
697     buffer_t Sample::GetCache() {
698     // return a copy of the buffer_t structure
699     buffer_t result;
700     result.Size = this->RAMCache.Size;
701     result.pStart = this->RAMCache.pStart;
702     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
703     return result;
704     }
705    
706     /**
707     * Frees the cached sample from RAM if loaded with
708     * <i>LoadSampleData()</i> previously.
709     *
710     * @see LoadSampleData();
711     */
712     void Sample::ReleaseSampleData() {
713     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
714     RAMCache.pStart = NULL;
715     RAMCache.Size = 0;
716     }
717    
718 schoenebeck 809 /** @brief Resize sample.
719     *
720     * Resizes the sample's wave form data, that is the actual size of
721     * sample wave data possible to be written for this sample. This call
722     * will return immediately and just schedule the resize operation. You
723     * should call File::Save() to actually perform the resize operation(s)
724     * "physically" to the file. As this can take a while on large files, it
725     * is recommended to call Resize() first on all samples which have to be
726     * resized and finally to call File::Save() to perform all those resize
727     * operations in one rush.
728     *
729     * The actual size (in bytes) is dependant to the current FrameSize
730     * value. You may want to set FrameSize before calling Resize().
731     *
732     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
733     * enlarged samples before calling File::Save() as this might exceed the
734     * current sample's boundary!
735     *
736 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
737     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
738 schoenebeck 809 * other formats will fail!
739     *
740     * @param iNewSize - new sample wave data size in sample points (must be
741     * greater than zero)
742 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
743 schoenebeck 809 * or if \a iNewSize is less than 1
744     * @throws gig::Exception if existing sample is compressed
745     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
746     * DLS::Sample::FormatTag, File::Save()
747     */
748     void Sample::Resize(int iNewSize) {
749     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
750     DLS::Sample::Resize(iNewSize);
751     }
752    
753 schoenebeck 2 /**
754     * Sets the position within the sample (in sample points, not in
755     * bytes). Use this method and <i>Read()</i> if you don't want to load
756     * the sample into RAM, thus for disk streaming.
757     *
758     * Although the original Gigasampler engine doesn't allow positioning
759     * within compressed samples, I decided to implement it. Even though
760     * the Gigasampler format doesn't allow to define loops for compressed
761     * samples at the moment, positioning within compressed samples might be
762     * interesting for some sampler engines though. The only drawback about
763     * my decision is that it takes longer to load compressed gig Files on
764     * startup, because it's neccessary to scan the samples for some
765     * mandatory informations. But I think as it doesn't affect the runtime
766     * efficiency, nobody will have a problem with that.
767     *
768     * @param SampleCount number of sample points to jump
769     * @param Whence optional: to which relation \a SampleCount refers
770     * to, if omited <i>RIFF::stream_start</i> is assumed
771     * @returns the new sample position
772     * @see Read()
773     */
774     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
775     if (Compressed) {
776     switch (Whence) {
777     case RIFF::stream_curpos:
778     this->SamplePos += SampleCount;
779     break;
780     case RIFF::stream_end:
781     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
782     break;
783     case RIFF::stream_backward:
784     this->SamplePos -= SampleCount;
785     break;
786     case RIFF::stream_start: default:
787     this->SamplePos = SampleCount;
788     break;
789     }
790     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
791    
792     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
793     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
794     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
795     return this->SamplePos;
796     }
797     else { // not compressed
798     unsigned long orderedBytes = SampleCount * this->FrameSize;
799     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
800     return (result == orderedBytes) ? SampleCount
801     : result / this->FrameSize;
802     }
803     }
804    
805     /**
806     * Returns the current position in the sample (in sample points).
807     */
808     unsigned long Sample::GetPos() {
809     if (Compressed) return SamplePos;
810     else return pCkData->GetPos() / FrameSize;
811     }
812    
813     /**
814 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
815     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
816     * the position within the sample respectively, this method honors the
817     * looping informations of the sample (if any). The sample wave stream
818     * will be decompressed on the fly if using a compressed sample. Use this
819     * method if you don't want to load the sample into RAM, thus for disk
820     * streaming. All this methods needs to know to proceed with streaming
821     * for the next time you call this method is stored in \a pPlaybackState.
822     * You have to allocate and initialize the playback_state_t structure by
823     * yourself before you use it to stream a sample:
824 schoenebeck 384 * @code
825     * gig::playback_state_t playbackstate;
826     * playbackstate.position = 0;
827     * playbackstate.reverse = false;
828     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
829     * @endcode
830 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
831     * defined or if the current read position is located within a loop area.
832     * The method already handles such cases by itself.
833     *
834 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
835     * have to use an external decompression buffer for <b>EACH</b>
836     * streaming thread to avoid race conditions and crashes!
837     *
838 schoenebeck 24 * @param pBuffer destination buffer
839     * @param SampleCount number of sample points to read
840     * @param pPlaybackState will be used to store and reload the playback
841     * state for the next ReadAndLoop() call
842 persson 864 * @param pDimRgn dimension region with looping information
843 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
844 schoenebeck 24 * @returns number of successfully read sample points
845 schoenebeck 384 * @see CreateDecompressionBuffer()
846 schoenebeck 24 */
847 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
848     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
849 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
850     uint8_t* pDst = (uint8_t*) pBuffer;
851    
852     SetPos(pPlaybackState->position); // recover position from the last time
853    
854 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
855 schoenebeck 24
856 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
857     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
858 schoenebeck 24
859 persson 864 if (GetPos() <= loopEnd) {
860     switch (loop.LoopType) {
861 schoenebeck 24
862 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
863     do {
864     // if not endless loop check if max. number of loop cycles have been passed
865     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
866 schoenebeck 24
867 persson 864 if (!pPlaybackState->reverse) { // forward playback
868     do {
869     samplestoloopend = loopEnd - GetPos();
870     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
871     samplestoread -= readsamples;
872     totalreadsamples += readsamples;
873     if (readsamples == samplestoloopend) {
874     pPlaybackState->reverse = true;
875     break;
876     }
877     } while (samplestoread && readsamples);
878     }
879     else { // backward playback
880 schoenebeck 24
881 persson 864 // as we can only read forward from disk, we have to
882     // determine the end position within the loop first,
883     // read forward from that 'end' and finally after
884     // reading, swap all sample frames so it reflects
885     // backward playback
886 schoenebeck 24
887 persson 864 unsigned long swapareastart = totalreadsamples;
888     unsigned long loopoffset = GetPos() - loop.LoopStart;
889     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
890     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
891 schoenebeck 24
892 persson 864 SetPos(reverseplaybackend);
893 schoenebeck 24
894 persson 864 // read samples for backward playback
895     do {
896     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
897     samplestoreadinloop -= readsamples;
898     samplestoread -= readsamples;
899     totalreadsamples += readsamples;
900     } while (samplestoreadinloop && readsamples);
901 schoenebeck 24
902 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
903    
904     if (reverseplaybackend == loop.LoopStart) {
905     pPlaybackState->loop_cycles_left--;
906     pPlaybackState->reverse = false;
907     }
908    
909     // reverse the sample frames for backward playback
910     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
911 schoenebeck 24 }
912 persson 864 } while (samplestoread && readsamples);
913     break;
914     }
915 schoenebeck 24
916 persson 864 case loop_type_backward: { // TODO: not tested yet!
917     // forward playback (not entered the loop yet)
918     if (!pPlaybackState->reverse) do {
919     samplestoloopend = loopEnd - GetPos();
920     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
921     samplestoread -= readsamples;
922     totalreadsamples += readsamples;
923     if (readsamples == samplestoloopend) {
924     pPlaybackState->reverse = true;
925     break;
926     }
927     } while (samplestoread && readsamples);
928 schoenebeck 24
929 persson 864 if (!samplestoread) break;
930 schoenebeck 24
931 persson 864 // as we can only read forward from disk, we have to
932     // determine the end position within the loop first,
933     // read forward from that 'end' and finally after
934     // reading, swap all sample frames so it reflects
935     // backward playback
936 schoenebeck 24
937 persson 864 unsigned long swapareastart = totalreadsamples;
938     unsigned long loopoffset = GetPos() - loop.LoopStart;
939     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
940     : samplestoread;
941     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
942 schoenebeck 24
943 persson 864 SetPos(reverseplaybackend);
944 schoenebeck 24
945 persson 864 // read samples for backward playback
946     do {
947     // if not endless loop check if max. number of loop cycles have been passed
948     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
949     samplestoloopend = loopEnd - GetPos();
950     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
951     samplestoreadinloop -= readsamples;
952     samplestoread -= readsamples;
953     totalreadsamples += readsamples;
954     if (readsamples == samplestoloopend) {
955     pPlaybackState->loop_cycles_left--;
956     SetPos(loop.LoopStart);
957     }
958     } while (samplestoreadinloop && readsamples);
959 schoenebeck 24
960 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
961 schoenebeck 24
962 persson 864 // reverse the sample frames for backward playback
963     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964     break;
965     }
966 schoenebeck 24
967 persson 864 default: case loop_type_normal: {
968     do {
969     // if not endless loop check if max. number of loop cycles have been passed
970     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
971     samplestoloopend = loopEnd - GetPos();
972     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
973     samplestoread -= readsamples;
974     totalreadsamples += readsamples;
975     if (readsamples == samplestoloopend) {
976     pPlaybackState->loop_cycles_left--;
977     SetPos(loop.LoopStart);
978     }
979     } while (samplestoread && readsamples);
980     break;
981     }
982 schoenebeck 24 }
983     }
984     }
985    
986     // read on without looping
987     if (samplestoread) do {
988 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
989 schoenebeck 24 samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     } while (readsamples && samplestoread);
992    
993     // store current position
994     pPlaybackState->position = GetPos();
995    
996     return totalreadsamples;
997     }
998    
999     /**
1000 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1001     * position into the buffer pointed by \a pBuffer and increments the
1002     * position within the sample. The sample wave stream will be
1003     * decompressed on the fly if using a compressed sample. Use this method
1004     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1005     * thus for disk streaming.
1006     *
1007 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1008     * have to use an external decompression buffer for <b>EACH</b>
1009     * streaming thread to avoid race conditions and crashes!
1010     *
1011 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1012     * (using native endianness). For 24 bit, the buffer will
1013     * contain three bytes per sample, little-endian.
1014     *
1015 schoenebeck 2 * @param pBuffer destination buffer
1016     * @param SampleCount number of sample points to read
1017 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1018 schoenebeck 2 * @returns number of successfully read sample points
1019 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1020 schoenebeck 2 */
1021 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1022 schoenebeck 21 if (SampleCount == 0) return 0;
1023 schoenebeck 317 if (!Compressed) {
1024     if (BitDepth == 24) {
1025 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1026 schoenebeck 317 }
1027 persson 365 else { // 16 bit
1028     // (pCkData->Read does endian correction)
1029     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1030     : pCkData->Read(pBuffer, SampleCount, 2);
1031     }
1032 schoenebeck 317 }
1033 persson 365 else {
1034 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1035 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1036     unsigned long assumedsize = GuessSize(SampleCount),
1037 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1038     remainingsamples = SampleCount,
1039 persson 365 copysamples, skipsamples,
1040     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1041 schoenebeck 2 this->FrameOffset = 0;
1042    
1043 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1044    
1045     // if decompression buffer too small, then reduce amount of samples to read
1046     if (pDecompressionBuffer->Size < assumedsize) {
1047     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1048     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1049     remainingsamples = SampleCount;
1050     assumedsize = GuessSize(SampleCount);
1051 schoenebeck 2 }
1052    
1053 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1054 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1055 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1056 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1057    
1058 persson 365 while (remainingsamples && remainingbytes) {
1059     unsigned long framesamples = SamplesPerFrame;
1060     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1061 schoenebeck 2
1062 persson 365 int mode_l = *pSrc++, mode_r = 0;
1063    
1064     if (Channels == 2) {
1065     mode_r = *pSrc++;
1066     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1067     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1068     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1069     if (remainingbytes < framebytes) { // last frame in sample
1070     framesamples = SamplesInLastFrame;
1071     if (mode_l == 4 && (framesamples & 1)) {
1072     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1073     }
1074     else {
1075     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1076     }
1077 schoenebeck 2 }
1078     }
1079 persson 365 else {
1080     framebytes = bytesPerFrame[mode_l] + 1;
1081     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1082     if (remainingbytes < framebytes) {
1083     framesamples = SamplesInLastFrame;
1084     }
1085     }
1086 schoenebeck 2
1087     // determine how many samples in this frame to skip and read
1088 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1089     if (currentframeoffset <= framesamples) {
1090     copysamples = framesamples - currentframeoffset;
1091     skipsamples = currentframeoffset;
1092     }
1093     else {
1094     copysamples = 0;
1095     skipsamples = framesamples;
1096     }
1097 schoenebeck 2 }
1098     else {
1099 persson 365 // This frame has enough data for pBuffer, but not
1100     // all of the frame is needed. Set file position
1101     // to start of this frame for next call to Read.
1102 schoenebeck 2 copysamples = remainingsamples;
1103 persson 365 skipsamples = currentframeoffset;
1104     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1105     this->FrameOffset = currentframeoffset + copysamples;
1106     }
1107     remainingsamples -= copysamples;
1108    
1109     if (remainingbytes > framebytes) {
1110     remainingbytes -= framebytes;
1111     if (remainingsamples == 0 &&
1112     currentframeoffset + copysamples == framesamples) {
1113     // This frame has enough data for pBuffer, and
1114     // all of the frame is needed. Set file
1115     // position to start of next frame for next
1116     // call to Read. FrameOffset is 0.
1117 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1118     }
1119     }
1120 persson 365 else remainingbytes = 0;
1121 schoenebeck 2
1122 persson 365 currentframeoffset -= skipsamples;
1123 schoenebeck 2
1124 persson 365 if (copysamples == 0) {
1125     // skip this frame
1126     pSrc += framebytes - Channels;
1127     }
1128     else {
1129     const unsigned char* const param_l = pSrc;
1130     if (BitDepth == 24) {
1131     if (mode_l != 2) pSrc += 12;
1132 schoenebeck 2
1133 persson 365 if (Channels == 2) { // Stereo
1134     const unsigned char* const param_r = pSrc;
1135     if (mode_r != 2) pSrc += 12;
1136    
1137 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1138 persson 437 skipsamples, copysamples, TruncatedBits);
1139 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1140 persson 437 skipsamples, copysamples, TruncatedBits);
1141 persson 902 pDst24 += copysamples * 6;
1142 schoenebeck 2 }
1143 persson 365 else { // Mono
1144 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1145 persson 437 skipsamples, copysamples, TruncatedBits);
1146 persson 902 pDst24 += copysamples * 3;
1147 schoenebeck 2 }
1148 persson 365 }
1149     else { // 16 bit
1150     if (mode_l) pSrc += 4;
1151 schoenebeck 2
1152 persson 365 int step;
1153     if (Channels == 2) { // Stereo
1154     const unsigned char* const param_r = pSrc;
1155     if (mode_r) pSrc += 4;
1156    
1157     step = (2 - mode_l) + (2 - mode_r);
1158 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1159     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1160 persson 365 skipsamples, copysamples);
1161     pDst += copysamples << 1;
1162 schoenebeck 2 }
1163 persson 365 else { // Mono
1164     step = 2 - mode_l;
1165 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1166 persson 365 pDst += copysamples;
1167 schoenebeck 2 }
1168 persson 365 }
1169     pSrc += nextFrameOffset;
1170     }
1171 schoenebeck 2
1172 persson 365 // reload from disk to local buffer if needed
1173     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1174     assumedsize = GuessSize(remainingsamples);
1175     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1176     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1177 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1178     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1179 schoenebeck 2 }
1180 persson 365 } // while
1181    
1182 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1183 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1184 schoenebeck 2 return (SampleCount - remainingsamples);
1185     }
1186     }
1187    
1188 schoenebeck 809 /** @brief Write sample wave data.
1189     *
1190     * Writes \a SampleCount number of sample points from the buffer pointed
1191     * by \a pBuffer and increments the position within the sample. Use this
1192     * method to directly write the sample data to disk, i.e. if you don't
1193     * want or cannot load the whole sample data into RAM.
1194     *
1195     * You have to Resize() the sample to the desired size and call
1196     * File::Save() <b>before</b> using Write().
1197     *
1198     * Note: there is currently no support for writing compressed samples.
1199     *
1200 persson 1264 * For 16 bit samples, the data in the source buffer should be
1201     * int16_t (using native endianness). For 24 bit, the buffer
1202     * should contain three bytes per sample, little-endian.
1203     *
1204 schoenebeck 809 * @param pBuffer - source buffer
1205     * @param SampleCount - number of sample points to write
1206     * @throws DLS::Exception if current sample size is too small
1207     * @throws gig::Exception if sample is compressed
1208     * @see DLS::LoadSampleData()
1209     */
1210     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1211     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1212 persson 1207
1213     // if this is the first write in this sample, reset the
1214     // checksum calculator
1215 persson 1199 if (pCkData->GetPos() == 0) {
1216 schoenebeck 1381 __resetCRC(crc);
1217 persson 1199 }
1218 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1219     unsigned long res;
1220     if (BitDepth == 24) {
1221     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1222     } else { // 16 bit
1223     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1224     : pCkData->Write(pBuffer, SampleCount, 2);
1225     }
1226 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1227 persson 1199
1228 persson 1207 // if this is the last write, update the checksum chunk in the
1229     // file
1230 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1231     File* pFile = static_cast<File*>(GetParent());
1232 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1233 persson 1199 }
1234     return res;
1235 schoenebeck 809 }
1236    
1237 schoenebeck 384 /**
1238     * Allocates a decompression buffer for streaming (compressed) samples
1239     * with Sample::Read(). If you are using more than one streaming thread
1240     * in your application you <b>HAVE</b> to create a decompression buffer
1241     * for <b>EACH</b> of your streaming threads and provide it with the
1242     * Sample::Read() call in order to avoid race conditions and crashes.
1243     *
1244     * You should free the memory occupied by the allocated buffer(s) once
1245     * you don't need one of your streaming threads anymore by calling
1246     * DestroyDecompressionBuffer().
1247     *
1248     * @param MaxReadSize - the maximum size (in sample points) you ever
1249     * expect to read with one Read() call
1250     * @returns allocated decompression buffer
1251     * @see DestroyDecompressionBuffer()
1252     */
1253     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1254     buffer_t result;
1255     const double worstCaseHeaderOverhead =
1256     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1257     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1258     result.pStart = new int8_t[result.Size];
1259     result.NullExtensionSize = 0;
1260     return result;
1261     }
1262    
1263     /**
1264     * Free decompression buffer, previously created with
1265     * CreateDecompressionBuffer().
1266     *
1267     * @param DecompressionBuffer - previously allocated decompression
1268     * buffer to free
1269     */
1270     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1271     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1272     delete[] (int8_t*) DecompressionBuffer.pStart;
1273     DecompressionBuffer.pStart = NULL;
1274     DecompressionBuffer.Size = 0;
1275     DecompressionBuffer.NullExtensionSize = 0;
1276     }
1277     }
1278    
1279 schoenebeck 930 /**
1280     * Returns pointer to the Group this Sample belongs to. In the .gig
1281     * format a sample always belongs to one group. If it wasn't explicitly
1282     * assigned to a certain group, it will be automatically assigned to a
1283     * default group.
1284     *
1285     * @returns Sample's Group (never NULL)
1286     */
1287     Group* Sample::GetGroup() const {
1288     return pGroup;
1289     }
1290    
1291 schoenebeck 2 Sample::~Sample() {
1292     Instances--;
1293 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1294     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1295     InternalDecompressionBuffer.pStart = NULL;
1296     InternalDecompressionBuffer.Size = 0;
1297 schoenebeck 355 }
1298 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1299     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1300     }
1301    
1302    
1303    
1304     // *************** DimensionRegion ***************
1305     // *
1306    
1307 schoenebeck 16 uint DimensionRegion::Instances = 0;
1308     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1309    
1310 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1311 schoenebeck 16 Instances++;
1312    
1313 schoenebeck 823 pSample = NULL;
1314 schoenebeck 1316 pRegion = pParent;
1315 schoenebeck 823
1316 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1317     else memset(&Crossfade, 0, 4);
1318    
1319 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1320 schoenebeck 2
1321     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1322 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1323 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1324 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1325     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326     _3ewa->ReadInt16(); // unknown
1327     LFO1InternalDepth = _3ewa->ReadUint16();
1328     _3ewa->ReadInt16(); // unknown
1329     LFO3InternalDepth = _3ewa->ReadInt16();
1330     _3ewa->ReadInt16(); // unknown
1331     LFO1ControlDepth = _3ewa->ReadUint16();
1332     _3ewa->ReadInt16(); // unknown
1333     LFO3ControlDepth = _3ewa->ReadInt16();
1334     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1335     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1336     _3ewa->ReadInt16(); // unknown
1337     EG1Sustain = _3ewa->ReadUint16();
1338     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1340     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1341     EG1ControllerInvert = eg1ctrloptions & 0x01;
1342     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1343     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1344     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1345     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1346     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1347     EG2ControllerInvert = eg2ctrloptions & 0x01;
1348     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1349     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1350     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1351     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1352     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1353     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1354     _3ewa->ReadInt16(); // unknown
1355     EG2Sustain = _3ewa->ReadUint16();
1356     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357     _3ewa->ReadInt16(); // unknown
1358     LFO2ControlDepth = _3ewa->ReadUint16();
1359     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1360     _3ewa->ReadInt16(); // unknown
1361     LFO2InternalDepth = _3ewa->ReadUint16();
1362     int32_t eg1decay2 = _3ewa->ReadInt32();
1363     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1364     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1365     _3ewa->ReadInt16(); // unknown
1366     EG1PreAttack = _3ewa->ReadUint16();
1367     int32_t eg2decay2 = _3ewa->ReadInt32();
1368     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1369     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1370     _3ewa->ReadInt16(); // unknown
1371     EG2PreAttack = _3ewa->ReadUint16();
1372     uint8_t velocityresponse = _3ewa->ReadUint8();
1373     if (velocityresponse < 5) {
1374     VelocityResponseCurve = curve_type_nonlinear;
1375     VelocityResponseDepth = velocityresponse;
1376     } else if (velocityresponse < 10) {
1377     VelocityResponseCurve = curve_type_linear;
1378     VelocityResponseDepth = velocityresponse - 5;
1379     } else if (velocityresponse < 15) {
1380     VelocityResponseCurve = curve_type_special;
1381     VelocityResponseDepth = velocityresponse - 10;
1382     } else {
1383     VelocityResponseCurve = curve_type_unknown;
1384     VelocityResponseDepth = 0;
1385     }
1386     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1387     if (releasevelocityresponse < 5) {
1388     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1389     ReleaseVelocityResponseDepth = releasevelocityresponse;
1390     } else if (releasevelocityresponse < 10) {
1391     ReleaseVelocityResponseCurve = curve_type_linear;
1392     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1393     } else if (releasevelocityresponse < 15) {
1394     ReleaseVelocityResponseCurve = curve_type_special;
1395     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1396     } else {
1397     ReleaseVelocityResponseCurve = curve_type_unknown;
1398     ReleaseVelocityResponseDepth = 0;
1399     }
1400     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1401     AttenuationControllerThreshold = _3ewa->ReadInt8();
1402     _3ewa->ReadInt32(); // unknown
1403     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1404     _3ewa->ReadInt16(); // unknown
1405     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1406     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1407     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1408     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1409     else DimensionBypass = dim_bypass_ctrl_none;
1410     uint8_t pan = _3ewa->ReadUint8();
1411     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1412     SelfMask = _3ewa->ReadInt8() & 0x01;
1413     _3ewa->ReadInt8(); // unknown
1414     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1415     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1416     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1417     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1418     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1420     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1421     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1422     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1423     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1424     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1425     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1426     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1427     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1428     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1429     : vcf_res_ctrl_none;
1430     uint16_t eg3depth = _3ewa->ReadUint16();
1431     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1432     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1433     _3ewa->ReadInt16(); // unknown
1434     ChannelOffset = _3ewa->ReadUint8() / 4;
1435     uint8_t regoptions = _3ewa->ReadUint8();
1436     MSDecode = regoptions & 0x01; // bit 0
1437     SustainDefeat = regoptions & 0x02; // bit 1
1438     _3ewa->ReadInt16(); // unknown
1439     VelocityUpperLimit = _3ewa->ReadInt8();
1440     _3ewa->ReadInt8(); // unknown
1441     _3ewa->ReadInt16(); // unknown
1442     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1443     _3ewa->ReadInt8(); // unknown
1444     _3ewa->ReadInt8(); // unknown
1445     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1446     uint8_t vcfcutoff = _3ewa->ReadUint8();
1447     VCFEnabled = vcfcutoff & 0x80; // bit 7
1448     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1449     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1450     uint8_t vcfvelscale = _3ewa->ReadUint8();
1451     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1452     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1453     _3ewa->ReadInt8(); // unknown
1454     uint8_t vcfresonance = _3ewa->ReadUint8();
1455     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1456     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1457     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1458     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1459     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1460     uint8_t vcfvelocity = _3ewa->ReadUint8();
1461     VCFVelocityDynamicRange = vcfvelocity % 5;
1462     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1463     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1464     if (VCFType == vcf_type_lowpass) {
1465     if (lfo3ctrl & 0x40) // bit 6
1466     VCFType = vcf_type_lowpassturbo;
1467     }
1468 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1469     _3ewa->Read(DimensionUpperLimits, 1, 8);
1470     } else {
1471     memset(DimensionUpperLimits, 0, 8);
1472     }
1473 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1474     // use default values
1475     LFO3Frequency = 1.0;
1476     EG3Attack = 0.0;
1477     LFO1InternalDepth = 0;
1478     LFO3InternalDepth = 0;
1479     LFO1ControlDepth = 0;
1480     LFO3ControlDepth = 0;
1481     EG1Attack = 0.0;
1482 persson 1218 EG1Decay1 = 0.005;
1483     EG1Sustain = 1000;
1484     EG1Release = 0.3;
1485 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1486     EG1Controller.controller_number = 0;
1487     EG1ControllerInvert = false;
1488     EG1ControllerAttackInfluence = 0;
1489     EG1ControllerDecayInfluence = 0;
1490     EG1ControllerReleaseInfluence = 0;
1491     EG2Controller.type = eg2_ctrl_t::type_none;
1492     EG2Controller.controller_number = 0;
1493     EG2ControllerInvert = false;
1494     EG2ControllerAttackInfluence = 0;
1495     EG2ControllerDecayInfluence = 0;
1496     EG2ControllerReleaseInfluence = 0;
1497     LFO1Frequency = 1.0;
1498     EG2Attack = 0.0;
1499 persson 1218 EG2Decay1 = 0.005;
1500     EG2Sustain = 1000;
1501     EG2Release = 0.3;
1502 schoenebeck 809 LFO2ControlDepth = 0;
1503     LFO2Frequency = 1.0;
1504     LFO2InternalDepth = 0;
1505     EG1Decay2 = 0.0;
1506 persson 1218 EG1InfiniteSustain = true;
1507     EG1PreAttack = 0;
1508 schoenebeck 809 EG2Decay2 = 0.0;
1509 persson 1218 EG2InfiniteSustain = true;
1510     EG2PreAttack = 0;
1511 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1512     VelocityResponseDepth = 3;
1513     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1514     ReleaseVelocityResponseDepth = 3;
1515     VelocityResponseCurveScaling = 32;
1516     AttenuationControllerThreshold = 0;
1517     SampleStartOffset = 0;
1518     PitchTrack = true;
1519     DimensionBypass = dim_bypass_ctrl_none;
1520     Pan = 0;
1521     SelfMask = true;
1522     LFO3Controller = lfo3_ctrl_modwheel;
1523     LFO3Sync = false;
1524     InvertAttenuationController = false;
1525     AttenuationController.type = attenuation_ctrl_t::type_none;
1526     AttenuationController.controller_number = 0;
1527     LFO2Controller = lfo2_ctrl_internal;
1528     LFO2FlipPhase = false;
1529     LFO2Sync = false;
1530     LFO1Controller = lfo1_ctrl_internal;
1531     LFO1FlipPhase = false;
1532     LFO1Sync = false;
1533     VCFResonanceController = vcf_res_ctrl_none;
1534     EG3Depth = 0;
1535     ChannelOffset = 0;
1536     MSDecode = false;
1537     SustainDefeat = false;
1538     VelocityUpperLimit = 0;
1539     ReleaseTriggerDecay = 0;
1540     EG1Hold = false;
1541     VCFEnabled = false;
1542     VCFCutoff = 0;
1543     VCFCutoffController = vcf_cutoff_ctrl_none;
1544     VCFCutoffControllerInvert = false;
1545     VCFVelocityScale = 0;
1546     VCFResonance = 0;
1547     VCFResonanceDynamic = false;
1548     VCFKeyboardTracking = false;
1549     VCFKeyboardTrackingBreakpoint = 0;
1550     VCFVelocityDynamicRange = 0x04;
1551     VCFVelocityCurve = curve_type_linear;
1552     VCFType = vcf_type_lowpass;
1553 persson 1247 memset(DimensionUpperLimits, 127, 8);
1554 schoenebeck 2 }
1555 schoenebeck 16
1556 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1557     VelocityResponseDepth,
1558     VelocityResponseCurveScaling);
1559    
1560 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1561     ReleaseVelocityResponseCurve,
1562     ReleaseVelocityResponseDepth
1563     );
1564 persson 613
1565 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1566     VCFVelocityDynamicRange,
1567     VCFVelocityScale,
1568     VCFCutoffController);
1569 persson 613
1570     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1571 persson 858 VelocityTable = 0;
1572 persson 613 }
1573    
1574 persson 1301 /*
1575     * Constructs a DimensionRegion by copying all parameters from
1576     * another DimensionRegion
1577     */
1578     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1579     Instances++;
1580     *this = src; // default memberwise shallow copy of all parameters
1581     pParentList = _3ewl; // restore the chunk pointer
1582    
1583     // deep copy of owned structures
1584     if (src.VelocityTable) {
1585     VelocityTable = new uint8_t[128];
1586     for (int k = 0 ; k < 128 ; k++)
1587     VelocityTable[k] = src.VelocityTable[k];
1588     }
1589     if (src.pSampleLoops) {
1590     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1591     for (int k = 0 ; k < src.SampleLoops ; k++)
1592     pSampleLoops[k] = src.pSampleLoops[k];
1593     }
1594     }
1595    
1596 schoenebeck 809 /**
1597 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1598     * which depends on this value.
1599     */
1600     void DimensionRegion::SetGain(int32_t gain) {
1601     DLS::Sampler::SetGain(gain);
1602     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1603     }
1604    
1605     /**
1606 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1607     * have to call File::Save() to make changes persistent.
1608     *
1609     * Usually there is absolutely no need to call this method explicitly.
1610     * It will be called automatically when File::Save() was called.
1611     */
1612     void DimensionRegion::UpdateChunks() {
1613     // first update base class's chunk
1614     DLS::Sampler::UpdateChunks();
1615    
1616 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1617     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1618     pData[12] = Crossfade.in_start;
1619     pData[13] = Crossfade.in_end;
1620     pData[14] = Crossfade.out_start;
1621     pData[15] = Crossfade.out_end;
1622    
1623 schoenebeck 809 // make sure '3ewa' chunk exists
1624     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1625 persson 1317 if (!_3ewa) {
1626     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1627     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1628     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1629 persson 1264 }
1630 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1631 schoenebeck 809
1632     // update '3ewa' chunk with DimensionRegion's current settings
1633    
1634 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1635 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1636 schoenebeck 809
1637     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1638 persson 1179 store32(&pData[4], lfo3freq);
1639 schoenebeck 809
1640     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1641 persson 1179 store32(&pData[8], eg3attack);
1642 schoenebeck 809
1643     // next 2 bytes unknown
1644    
1645 persson 1179 store16(&pData[14], LFO1InternalDepth);
1646 schoenebeck 809
1647     // next 2 bytes unknown
1648    
1649 persson 1179 store16(&pData[18], LFO3InternalDepth);
1650 schoenebeck 809
1651     // next 2 bytes unknown
1652    
1653 persson 1179 store16(&pData[22], LFO1ControlDepth);
1654 schoenebeck 809
1655     // next 2 bytes unknown
1656    
1657 persson 1179 store16(&pData[26], LFO3ControlDepth);
1658 schoenebeck 809
1659     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1660 persson 1179 store32(&pData[28], eg1attack);
1661 schoenebeck 809
1662     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1663 persson 1179 store32(&pData[32], eg1decay1);
1664 schoenebeck 809
1665     // next 2 bytes unknown
1666    
1667 persson 1179 store16(&pData[38], EG1Sustain);
1668 schoenebeck 809
1669     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1670 persson 1179 store32(&pData[40], eg1release);
1671 schoenebeck 809
1672     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1673 persson 1179 pData[44] = eg1ctl;
1674 schoenebeck 809
1675     const uint8_t eg1ctrloptions =
1676 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1677 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1678     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1679     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1680 persson 1179 pData[45] = eg1ctrloptions;
1681 schoenebeck 809
1682     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1683 persson 1179 pData[46] = eg2ctl;
1684 schoenebeck 809
1685     const uint8_t eg2ctrloptions =
1686 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1687 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1688     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1689     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1690 persson 1179 pData[47] = eg2ctrloptions;
1691 schoenebeck 809
1692     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1693 persson 1179 store32(&pData[48], lfo1freq);
1694 schoenebeck 809
1695     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1696 persson 1179 store32(&pData[52], eg2attack);
1697 schoenebeck 809
1698     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1699 persson 1179 store32(&pData[56], eg2decay1);
1700 schoenebeck 809
1701     // next 2 bytes unknown
1702    
1703 persson 1179 store16(&pData[62], EG2Sustain);
1704 schoenebeck 809
1705     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1706 persson 1179 store32(&pData[64], eg2release);
1707 schoenebeck 809
1708     // next 2 bytes unknown
1709    
1710 persson 1179 store16(&pData[70], LFO2ControlDepth);
1711 schoenebeck 809
1712     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1713 persson 1179 store32(&pData[72], lfo2freq);
1714 schoenebeck 809
1715     // next 2 bytes unknown
1716    
1717 persson 1179 store16(&pData[78], LFO2InternalDepth);
1718 schoenebeck 809
1719     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1720 persson 1179 store32(&pData[80], eg1decay2);
1721 schoenebeck 809
1722     // next 2 bytes unknown
1723    
1724 persson 1179 store16(&pData[86], EG1PreAttack);
1725 schoenebeck 809
1726     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1727 persson 1179 store32(&pData[88], eg2decay2);
1728 schoenebeck 809
1729     // next 2 bytes unknown
1730    
1731 persson 1179 store16(&pData[94], EG2PreAttack);
1732 schoenebeck 809
1733     {
1734     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1735     uint8_t velocityresponse = VelocityResponseDepth;
1736     switch (VelocityResponseCurve) {
1737     case curve_type_nonlinear:
1738     break;
1739     case curve_type_linear:
1740     velocityresponse += 5;
1741     break;
1742     case curve_type_special:
1743     velocityresponse += 10;
1744     break;
1745     case curve_type_unknown:
1746     default:
1747     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1748     }
1749 persson 1179 pData[96] = velocityresponse;
1750 schoenebeck 809 }
1751    
1752     {
1753     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1754     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1755     switch (ReleaseVelocityResponseCurve) {
1756     case curve_type_nonlinear:
1757     break;
1758     case curve_type_linear:
1759     releasevelocityresponse += 5;
1760     break;
1761     case curve_type_special:
1762     releasevelocityresponse += 10;
1763     break;
1764     case curve_type_unknown:
1765     default:
1766     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1767     }
1768 persson 1179 pData[97] = releasevelocityresponse;
1769 schoenebeck 809 }
1770    
1771 persson 1179 pData[98] = VelocityResponseCurveScaling;
1772 schoenebeck 809
1773 persson 1179 pData[99] = AttenuationControllerThreshold;
1774 schoenebeck 809
1775     // next 4 bytes unknown
1776    
1777 persson 1179 store16(&pData[104], SampleStartOffset);
1778 schoenebeck 809
1779     // next 2 bytes unknown
1780    
1781     {
1782     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1783     switch (DimensionBypass) {
1784     case dim_bypass_ctrl_94:
1785     pitchTrackDimensionBypass |= 0x10;
1786     break;
1787     case dim_bypass_ctrl_95:
1788     pitchTrackDimensionBypass |= 0x20;
1789     break;
1790     case dim_bypass_ctrl_none:
1791     //FIXME: should we set anything here?
1792     break;
1793     default:
1794     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1795     }
1796 persson 1179 pData[108] = pitchTrackDimensionBypass;
1797 schoenebeck 809 }
1798    
1799     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1800 persson 1179 pData[109] = pan;
1801 schoenebeck 809
1802     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1803 persson 1179 pData[110] = selfmask;
1804 schoenebeck 809
1805     // next byte unknown
1806    
1807     {
1808     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1809     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1810     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1811     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1812 persson 1179 pData[112] = lfo3ctrl;
1813 schoenebeck 809 }
1814    
1815     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1816 persson 1179 pData[113] = attenctl;
1817 schoenebeck 809
1818     {
1819     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1820     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1821     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1822     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1823 persson 1179 pData[114] = lfo2ctrl;
1824 schoenebeck 809 }
1825    
1826     {
1827     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1828     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1829     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1830     if (VCFResonanceController != vcf_res_ctrl_none)
1831     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1832 persson 1179 pData[115] = lfo1ctrl;
1833 schoenebeck 809 }
1834    
1835     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1836     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1837 persson 1179 pData[116] = eg3depth;
1838 schoenebeck 809
1839     // next 2 bytes unknown
1840    
1841     const uint8_t channeloffset = ChannelOffset * 4;
1842 persson 1179 pData[120] = channeloffset;
1843 schoenebeck 809
1844     {
1845     uint8_t regoptions = 0;
1846     if (MSDecode) regoptions |= 0x01; // bit 0
1847     if (SustainDefeat) regoptions |= 0x02; // bit 1
1848 persson 1179 pData[121] = regoptions;
1849 schoenebeck 809 }
1850    
1851     // next 2 bytes unknown
1852    
1853 persson 1179 pData[124] = VelocityUpperLimit;
1854 schoenebeck 809
1855     // next 3 bytes unknown
1856    
1857 persson 1179 pData[128] = ReleaseTriggerDecay;
1858 schoenebeck 809
1859     // next 2 bytes unknown
1860    
1861     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1862 persson 1179 pData[131] = eg1hold;
1863 schoenebeck 809
1864 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1865 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1866 persson 1179 pData[132] = vcfcutoff;
1867 schoenebeck 809
1868 persson 1179 pData[133] = VCFCutoffController;
1869 schoenebeck 809
1870 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1871 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1872 persson 1179 pData[134] = vcfvelscale;
1873 schoenebeck 809
1874     // next byte unknown
1875    
1876 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1877 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1878 persson 1179 pData[136] = vcfresonance;
1879 schoenebeck 809
1880 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1881 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1882 persson 1179 pData[137] = vcfbreakpoint;
1883 schoenebeck 809
1884     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1885     VCFVelocityCurve * 5;
1886 persson 1179 pData[138] = vcfvelocity;
1887 schoenebeck 809
1888     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1889 persson 1179 pData[139] = vcftype;
1890 persson 1070
1891     if (chunksize >= 148) {
1892     memcpy(&pData[140], DimensionUpperLimits, 8);
1893     }
1894 schoenebeck 809 }
1895    
1896 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1897     curve_type_t curveType = releaseVelocityResponseCurve;
1898     uint8_t depth = releaseVelocityResponseDepth;
1899     // this models a strange behaviour or bug in GSt: two of the
1900     // velocity response curves for release time are not used even
1901     // if specified, instead another curve is chosen.
1902     if ((curveType == curve_type_nonlinear && depth == 0) ||
1903     (curveType == curve_type_special && depth == 4)) {
1904     curveType = curve_type_nonlinear;
1905     depth = 3;
1906     }
1907     return GetVelocityTable(curveType, depth, 0);
1908     }
1909    
1910     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1911     uint8_t vcfVelocityDynamicRange,
1912     uint8_t vcfVelocityScale,
1913     vcf_cutoff_ctrl_t vcfCutoffController)
1914     {
1915     curve_type_t curveType = vcfVelocityCurve;
1916     uint8_t depth = vcfVelocityDynamicRange;
1917     // even stranger GSt: two of the velocity response curves for
1918     // filter cutoff are not used, instead another special curve
1919     // is chosen. This curve is not used anywhere else.
1920     if ((curveType == curve_type_nonlinear && depth == 0) ||
1921     (curveType == curve_type_special && depth == 4)) {
1922     curveType = curve_type_special;
1923     depth = 5;
1924     }
1925     return GetVelocityTable(curveType, depth,
1926     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1927     ? vcfVelocityScale : 0);
1928     }
1929    
1930 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1931     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1932     {
1933     double* table;
1934     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1935 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1936 persson 613 table = (*pVelocityTables)[tableKey];
1937 schoenebeck 16 }
1938     else {
1939 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1940     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1941 schoenebeck 16 }
1942 persson 613 return table;
1943 schoenebeck 2 }
1944 schoenebeck 55
1945 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1946     return pRegion;
1947     }
1948    
1949 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1950     leverage_ctrl_t decodedcontroller;
1951     switch (EncodedController) {
1952     // special controller
1953     case _lev_ctrl_none:
1954     decodedcontroller.type = leverage_ctrl_t::type_none;
1955     decodedcontroller.controller_number = 0;
1956     break;
1957     case _lev_ctrl_velocity:
1958     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1959     decodedcontroller.controller_number = 0;
1960     break;
1961     case _lev_ctrl_channelaftertouch:
1962     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1963     decodedcontroller.controller_number = 0;
1964     break;
1965 schoenebeck 55
1966 schoenebeck 36 // ordinary MIDI control change controller
1967     case _lev_ctrl_modwheel:
1968     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1969     decodedcontroller.controller_number = 1;
1970     break;
1971     case _lev_ctrl_breath:
1972     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973     decodedcontroller.controller_number = 2;
1974     break;
1975     case _lev_ctrl_foot:
1976     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977     decodedcontroller.controller_number = 4;
1978     break;
1979     case _lev_ctrl_effect1:
1980     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981     decodedcontroller.controller_number = 12;
1982     break;
1983     case _lev_ctrl_effect2:
1984     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985     decodedcontroller.controller_number = 13;
1986     break;
1987     case _lev_ctrl_genpurpose1:
1988     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1989     decodedcontroller.controller_number = 16;
1990     break;
1991     case _lev_ctrl_genpurpose2:
1992     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1993     decodedcontroller.controller_number = 17;
1994     break;
1995     case _lev_ctrl_genpurpose3:
1996     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1997     decodedcontroller.controller_number = 18;
1998     break;
1999     case _lev_ctrl_genpurpose4:
2000     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2001     decodedcontroller.controller_number = 19;
2002     break;
2003     case _lev_ctrl_portamentotime:
2004     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2005     decodedcontroller.controller_number = 5;
2006     break;
2007     case _lev_ctrl_sustainpedal:
2008     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009     decodedcontroller.controller_number = 64;
2010     break;
2011     case _lev_ctrl_portamento:
2012     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013     decodedcontroller.controller_number = 65;
2014     break;
2015     case _lev_ctrl_sostenutopedal:
2016     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017     decodedcontroller.controller_number = 66;
2018     break;
2019     case _lev_ctrl_softpedal:
2020     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021     decodedcontroller.controller_number = 67;
2022     break;
2023     case _lev_ctrl_genpurpose5:
2024     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025     decodedcontroller.controller_number = 80;
2026     break;
2027     case _lev_ctrl_genpurpose6:
2028     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029     decodedcontroller.controller_number = 81;
2030     break;
2031     case _lev_ctrl_genpurpose7:
2032     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033     decodedcontroller.controller_number = 82;
2034     break;
2035     case _lev_ctrl_genpurpose8:
2036     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037     decodedcontroller.controller_number = 83;
2038     break;
2039     case _lev_ctrl_effect1depth:
2040     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041     decodedcontroller.controller_number = 91;
2042     break;
2043     case _lev_ctrl_effect2depth:
2044     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045     decodedcontroller.controller_number = 92;
2046     break;
2047     case _lev_ctrl_effect3depth:
2048     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049     decodedcontroller.controller_number = 93;
2050     break;
2051     case _lev_ctrl_effect4depth:
2052     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053     decodedcontroller.controller_number = 94;
2054     break;
2055     case _lev_ctrl_effect5depth:
2056     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057     decodedcontroller.controller_number = 95;
2058     break;
2059 schoenebeck 55
2060 schoenebeck 36 // unknown controller type
2061     default:
2062     throw gig::Exception("Unknown leverage controller type.");
2063     }
2064     return decodedcontroller;
2065     }
2066 schoenebeck 2
2067 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2068     _lev_ctrl_t encodedcontroller;
2069     switch (DecodedController.type) {
2070     // special controller
2071     case leverage_ctrl_t::type_none:
2072     encodedcontroller = _lev_ctrl_none;
2073     break;
2074     case leverage_ctrl_t::type_velocity:
2075     encodedcontroller = _lev_ctrl_velocity;
2076     break;
2077     case leverage_ctrl_t::type_channelaftertouch:
2078     encodedcontroller = _lev_ctrl_channelaftertouch;
2079     break;
2080    
2081     // ordinary MIDI control change controller
2082     case leverage_ctrl_t::type_controlchange:
2083     switch (DecodedController.controller_number) {
2084     case 1:
2085     encodedcontroller = _lev_ctrl_modwheel;
2086     break;
2087     case 2:
2088     encodedcontroller = _lev_ctrl_breath;
2089     break;
2090     case 4:
2091     encodedcontroller = _lev_ctrl_foot;
2092     break;
2093     case 12:
2094     encodedcontroller = _lev_ctrl_effect1;
2095     break;
2096     case 13:
2097     encodedcontroller = _lev_ctrl_effect2;
2098     break;
2099     case 16:
2100     encodedcontroller = _lev_ctrl_genpurpose1;
2101     break;
2102     case 17:
2103     encodedcontroller = _lev_ctrl_genpurpose2;
2104     break;
2105     case 18:
2106     encodedcontroller = _lev_ctrl_genpurpose3;
2107     break;
2108     case 19:
2109     encodedcontroller = _lev_ctrl_genpurpose4;
2110     break;
2111     case 5:
2112     encodedcontroller = _lev_ctrl_portamentotime;
2113     break;
2114     case 64:
2115     encodedcontroller = _lev_ctrl_sustainpedal;
2116     break;
2117     case 65:
2118     encodedcontroller = _lev_ctrl_portamento;
2119     break;
2120     case 66:
2121     encodedcontroller = _lev_ctrl_sostenutopedal;
2122     break;
2123     case 67:
2124     encodedcontroller = _lev_ctrl_softpedal;
2125     break;
2126     case 80:
2127     encodedcontroller = _lev_ctrl_genpurpose5;
2128     break;
2129     case 81:
2130     encodedcontroller = _lev_ctrl_genpurpose6;
2131     break;
2132     case 82:
2133     encodedcontroller = _lev_ctrl_genpurpose7;
2134     break;
2135     case 83:
2136     encodedcontroller = _lev_ctrl_genpurpose8;
2137     break;
2138     case 91:
2139     encodedcontroller = _lev_ctrl_effect1depth;
2140     break;
2141     case 92:
2142     encodedcontroller = _lev_ctrl_effect2depth;
2143     break;
2144     case 93:
2145     encodedcontroller = _lev_ctrl_effect3depth;
2146     break;
2147     case 94:
2148     encodedcontroller = _lev_ctrl_effect4depth;
2149     break;
2150     case 95:
2151     encodedcontroller = _lev_ctrl_effect5depth;
2152     break;
2153     default:
2154     throw gig::Exception("leverage controller number is not supported by the gig format");
2155     }
2156 persson 1182 break;
2157 schoenebeck 809 default:
2158     throw gig::Exception("Unknown leverage controller type.");
2159     }
2160     return encodedcontroller;
2161     }
2162    
2163 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2164     Instances--;
2165     if (!Instances) {
2166     // delete the velocity->volume tables
2167     VelocityTableMap::iterator iter;
2168     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2169     double* pTable = iter->second;
2170     if (pTable) delete[] pTable;
2171     }
2172     pVelocityTables->clear();
2173     delete pVelocityTables;
2174     pVelocityTables = NULL;
2175     }
2176 persson 858 if (VelocityTable) delete[] VelocityTable;
2177 schoenebeck 16 }
2178 schoenebeck 2
2179 schoenebeck 16 /**
2180     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2181     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2182     * and VelocityResponseCurveScaling) involved are taken into account to
2183     * calculate the amplitude factor. Use this method when a key was
2184     * triggered to get the volume with which the sample should be played
2185     * back.
2186     *
2187 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2188     * @returns amplitude factor (between 0.0 and 1.0)
2189 schoenebeck 16 */
2190     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2191     return pVelocityAttenuationTable[MIDIKeyVelocity];
2192     }
2193 schoenebeck 2
2194 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2195     return pVelocityReleaseTable[MIDIKeyVelocity];
2196     }
2197    
2198 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2199     return pVelocityCutoffTable[MIDIKeyVelocity];
2200     }
2201    
2202 schoenebeck 1358 /**
2203     * Updates the respective member variable and the lookup table / cache
2204     * that depends on this value.
2205     */
2206     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2207     pVelocityAttenuationTable =
2208     GetVelocityTable(
2209     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2210     );
2211     VelocityResponseCurve = curve;
2212     }
2213    
2214     /**
2215     * Updates the respective member variable and the lookup table / cache
2216     * that depends on this value.
2217     */
2218     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2219     pVelocityAttenuationTable =
2220     GetVelocityTable(
2221     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2222     );
2223     VelocityResponseDepth = depth;
2224     }
2225    
2226     /**
2227     * Updates the respective member variable and the lookup table / cache
2228     * that depends on this value.
2229     */
2230     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2231     pVelocityAttenuationTable =
2232     GetVelocityTable(
2233     VelocityResponseCurve, VelocityResponseDepth, scaling
2234     );
2235     VelocityResponseCurveScaling = scaling;
2236     }
2237    
2238     /**
2239     * Updates the respective member variable and the lookup table / cache
2240     * that depends on this value.
2241     */
2242     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2243     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2244     ReleaseVelocityResponseCurve = curve;
2245     }
2246    
2247     /**
2248     * Updates the respective member variable and the lookup table / cache
2249     * that depends on this value.
2250     */
2251     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2252     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2253     ReleaseVelocityResponseDepth = depth;
2254     }
2255    
2256     /**
2257     * Updates the respective member variable and the lookup table / cache
2258     * that depends on this value.
2259     */
2260     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2261     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2262     VCFCutoffController = controller;
2263     }
2264    
2265     /**
2266     * Updates the respective member variable and the lookup table / cache
2267     * that depends on this value.
2268     */
2269     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2270     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2271     VCFVelocityCurve = curve;
2272     }
2273    
2274     /**
2275     * Updates the respective member variable and the lookup table / cache
2276     * that depends on this value.
2277     */
2278     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2279     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2280     VCFVelocityDynamicRange = range;
2281     }
2282    
2283     /**
2284     * Updates the respective member variable and the lookup table / cache
2285     * that depends on this value.
2286     */
2287     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2288     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2289     VCFVelocityScale = scaling;
2290     }
2291    
2292 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2293 schoenebeck 317
2294 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2295 schoenebeck 16
2296 schoenebeck 308 // linear
2297     const int lin0[] = { 1, 1, 127, 127 };
2298     const int lin1[] = { 1, 21, 127, 127 };
2299     const int lin2[] = { 1, 45, 127, 127 };
2300     const int lin3[] = { 1, 74, 127, 127 };
2301     const int lin4[] = { 1, 127, 127, 127 };
2302 schoenebeck 16
2303 schoenebeck 308 // non-linear
2304     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2305 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2306 schoenebeck 308 127, 127 };
2307     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2308     127, 127 };
2309     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2310     127, 127 };
2311     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2312 schoenebeck 317
2313 schoenebeck 308 // special
2314 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2315 schoenebeck 308 113, 127, 127, 127 };
2316     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2317     118, 127, 127, 127 };
2318 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2319 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2320 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2321 schoenebeck 308 117, 127, 127, 127 };
2322 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2323 schoenebeck 308 127, 127 };
2324 schoenebeck 317
2325 persson 728 // this is only used by the VCF velocity curve
2326     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2327     91, 127, 127, 127 };
2328    
2329 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2330 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2331 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2332 schoenebeck 317
2333 schoenebeck 308 double* const table = new double[128];
2334    
2335     const int* curve = curves[curveType * 5 + depth];
2336     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2337 schoenebeck 317
2338 schoenebeck 308 table[0] = 0;
2339     for (int x = 1 ; x < 128 ; x++) {
2340    
2341     if (x > curve[2]) curve += 2;
2342 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2343 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2344     y = y / 127;
2345    
2346     // Scale up for s > 20, down for s < 20. When
2347     // down-scaling, the curve still ends at 1.0.
2348     if (s < 20 && y >= 0.5)
2349     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2350     else
2351     y = y * (s / 20.0);
2352     if (y > 1) y = 1;
2353    
2354     table[x] = y;
2355     }
2356     return table;
2357     }
2358    
2359    
2360 schoenebeck 2 // *************** Region ***************
2361     // *
2362    
2363     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2364     // Initialization
2365     Dimensions = 0;
2366 schoenebeck 347 for (int i = 0; i < 256; i++) {
2367 schoenebeck 2 pDimensionRegions[i] = NULL;
2368     }
2369 schoenebeck 282 Layers = 1;
2370 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2371     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2372 schoenebeck 2
2373     // Actual Loading
2374    
2375 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2376    
2377 schoenebeck 2 LoadDimensionRegions(rgnList);
2378    
2379     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2380     if (_3lnk) {
2381     DimensionRegions = _3lnk->ReadUint32();
2382 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2383 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2384     uint8_t bits = _3lnk->ReadUint8();
2385 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2386     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2387 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2388 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2389     pDimensionDefinitions[i].dimension = dimension_none;
2390     pDimensionDefinitions[i].bits = 0;
2391     pDimensionDefinitions[i].zones = 0;
2392     pDimensionDefinitions[i].split_type = split_type_bit;
2393     pDimensionDefinitions[i].zone_size = 0;
2394     }
2395     else { // active dimension
2396     pDimensionDefinitions[i].dimension = dimension;
2397     pDimensionDefinitions[i].bits = bits;
2398 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2399 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2400     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2401 schoenebeck 2 Dimensions++;
2402 schoenebeck 282
2403     // if this is a layer dimension, remember the amount of layers
2404     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2405 schoenebeck 2 }
2406 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2407 schoenebeck 2 }
2408 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2409 schoenebeck 2
2410 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2411     // update the VelocityTables in the dimension regions
2412     UpdateVelocityTable();
2413 schoenebeck 2
2414 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2415     if (file->pVersion && file->pVersion->major == 3)
2416     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2417     else
2418     _3lnk->SetPos(44);
2419    
2420 schoenebeck 1524 // load sample references (if auto loading is enabled)
2421     if (file->GetAutoLoad()) {
2422     for (uint i = 0; i < DimensionRegions; i++) {
2423     uint32_t wavepoolindex = _3lnk->ReadUint32();
2424     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2425     }
2426     GetSample(); // load global region sample reference
2427 schoenebeck 2 }
2428 persson 1102 } else {
2429     DimensionRegions = 0;
2430 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2431     pDimensionDefinitions[i].dimension = dimension_none;
2432     pDimensionDefinitions[i].bits = 0;
2433     pDimensionDefinitions[i].zones = 0;
2434     }
2435 schoenebeck 2 }
2436 schoenebeck 823
2437     // make sure there is at least one dimension region
2438     if (!DimensionRegions) {
2439     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2440     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2441     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2442 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2443 schoenebeck 823 DimensionRegions = 1;
2444     }
2445 schoenebeck 2 }
2446    
2447 schoenebeck 809 /**
2448     * Apply Region settings and all its DimensionRegions to the respective
2449     * RIFF chunks. You have to call File::Save() to make changes persistent.
2450     *
2451     * Usually there is absolutely no need to call this method explicitly.
2452     * It will be called automatically when File::Save() was called.
2453     *
2454     * @throws gig::Exception if samples cannot be dereferenced
2455     */
2456     void Region::UpdateChunks() {
2457 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2458     // but we still have to provide some existing one to not corrupt the
2459     // file, so to avoid the latter we simply always assign the sample of
2460     // the first dimension region of this region
2461     pSample = pDimensionRegions[0]->pSample;
2462    
2463 schoenebeck 809 // first update base class's chunks
2464     DLS::Region::UpdateChunks();
2465    
2466     // update dimension region's chunks
2467 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2468 persson 1317 pDimensionRegions[i]->UpdateChunks();
2469 schoenebeck 823 }
2470 schoenebeck 809
2471 persson 1317 File* pFile = (File*) GetParent()->GetParent();
2472     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2473 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2474     const int iMaxDimensionRegions = version3 ? 256 : 32;
2475 schoenebeck 809
2476     // make sure '3lnk' chunk exists
2477     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2478     if (!_3lnk) {
2479 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2480 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2481 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2482 persson 1192
2483     // move 3prg to last position
2484     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2485 schoenebeck 809 }
2486    
2487     // update dimension definitions in '3lnk' chunk
2488     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2489 persson 1179 store32(&pData[0], DimensionRegions);
2490 persson 1199 int shift = 0;
2491 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2492 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2493     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2494 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2495 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2496 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2497 persson 1199 // next 3 bytes unknown, always zero?
2498    
2499     shift += pDimensionDefinitions[i].bits;
2500 schoenebeck 809 }
2501    
2502     // update wave pool table in '3lnk' chunk
2503 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2504 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2505     int iWaveIndex = -1;
2506     if (i < DimensionRegions) {
2507 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2508     File::SampleList::iterator iter = pFile->pSamples->begin();
2509     File::SampleList::iterator end = pFile->pSamples->end();
2510 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2511 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2512     iWaveIndex = index;
2513     break;
2514     }
2515 schoenebeck 809 }
2516     }
2517 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2518 schoenebeck 809 }
2519     }
2520    
2521 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2522     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2523     if (_3prg) {
2524     int dimensionRegionNr = 0;
2525     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2526     while (_3ewl) {
2527     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2528 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2529 schoenebeck 2 dimensionRegionNr++;
2530     }
2531     _3ewl = _3prg->GetNextSubList();
2532     }
2533     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2534     }
2535     }
2536    
2537 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2538     // update KeyRange struct and make sure regions are in correct order
2539     DLS::Region::SetKeyRange(Low, High);
2540     // update Region key table for fast lookup
2541     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2542     }
2543    
2544 persson 858 void Region::UpdateVelocityTable() {
2545     // get velocity dimension's index
2546     int veldim = -1;
2547     for (int i = 0 ; i < Dimensions ; i++) {
2548     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2549     veldim = i;
2550 schoenebeck 809 break;
2551     }
2552     }
2553 persson 858 if (veldim == -1) return;
2554 schoenebeck 809
2555 persson 858 int step = 1;
2556     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2557     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2558     int end = step * pDimensionDefinitions[veldim].zones;
2559 schoenebeck 809
2560 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2561     int dim[8] = { 0 };
2562     for (int i = 0 ; i < DimensionRegions ; i++) {
2563    
2564 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2565     pDimensionRegions[i]->VelocityUpperLimit) {
2566 persson 858 // create the velocity table
2567     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2568     if (!table) {
2569     table = new uint8_t[128];
2570     pDimensionRegions[i]->VelocityTable = table;
2571     }
2572     int tableidx = 0;
2573     int velocityZone = 0;
2574 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2575     for (int k = i ; k < end ; k += step) {
2576     DimensionRegion *d = pDimensionRegions[k];
2577     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2578     velocityZone++;
2579     }
2580     } else { // gig2
2581     for (int k = i ; k < end ; k += step) {
2582     DimensionRegion *d = pDimensionRegions[k];
2583     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2584     velocityZone++;
2585     }
2586 persson 858 }
2587     } else {
2588     if (pDimensionRegions[i]->VelocityTable) {
2589     delete[] pDimensionRegions[i]->VelocityTable;
2590     pDimensionRegions[i]->VelocityTable = 0;
2591     }
2592 schoenebeck 809 }
2593 persson 858
2594     int j;
2595     int shift = 0;
2596     for (j = 0 ; j < Dimensions ; j++) {
2597     if (j == veldim) i += skipveldim; // skip velocity dimension
2598     else {
2599     dim[j]++;
2600     if (dim[j] < pDimensionDefinitions[j].zones) break;
2601     else {
2602     // skip unused dimension regions
2603     dim[j] = 0;
2604     i += ((1 << pDimensionDefinitions[j].bits) -
2605     pDimensionDefinitions[j].zones) << shift;
2606     }
2607     }
2608     shift += pDimensionDefinitions[j].bits;
2609     }
2610     if (j == Dimensions) break;
2611 schoenebeck 809 }
2612     }
2613    
2614     /** @brief Einstein would have dreamed of it - create a new dimension.
2615     *
2616     * Creates a new dimension with the dimension definition given by
2617     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2618     * There is a hard limit of dimensions and total amount of "bits" all
2619     * dimensions can have. This limit is dependant to what gig file format
2620     * version this file refers to. The gig v2 (and lower) format has a
2621     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2622     * format has a limit of 8.
2623     *
2624     * @param pDimDef - defintion of the new dimension
2625     * @throws gig::Exception if dimension of the same type exists already
2626     * @throws gig::Exception if amount of dimensions or total amount of
2627     * dimension bits limit is violated
2628     */
2629     void Region::AddDimension(dimension_def_t* pDimDef) {
2630     // check if max. amount of dimensions reached
2631     File* file = (File*) GetParent()->GetParent();
2632     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2633     if (Dimensions >= iMaxDimensions)
2634     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2635     // check if max. amount of dimension bits reached
2636     int iCurrentBits = 0;
2637     for (int i = 0; i < Dimensions; i++)
2638     iCurrentBits += pDimensionDefinitions[i].bits;
2639     if (iCurrentBits >= iMaxDimensions)
2640     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2641     const int iNewBits = iCurrentBits + pDimDef->bits;
2642     if (iNewBits > iMaxDimensions)
2643     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2644     // check if there's already a dimensions of the same type
2645     for (int i = 0; i < Dimensions; i++)
2646     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2647     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2648    
2649 persson 1301 // pos is where the new dimension should be placed, normally
2650     // last in list, except for the samplechannel dimension which
2651     // has to be first in list
2652     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2653     int bitpos = 0;
2654     for (int i = 0 ; i < pos ; i++)
2655     bitpos += pDimensionDefinitions[i].bits;
2656    
2657     // make room for the new dimension
2658     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2659     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2660     for (int j = Dimensions ; j > pos ; j--) {
2661     pDimensionRegions[i]->DimensionUpperLimits[j] =
2662     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2663     }
2664     }
2665    
2666 schoenebeck 809 // assign definition of new dimension
2667 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2668 schoenebeck 809
2669 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2670 persson 1301 pDimensionDefinitions[pos].split_type =
2671     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2672     pDimensionDefinitions[pos].zone_size =
2673     __resolveZoneSize(pDimensionDefinitions[pos]);
2674 schoenebeck 1113
2675 persson 1301 // create new dimension region(s) for this new dimension, and make
2676     // sure that the dimension regions are placed correctly in both the
2677     // RIFF list and the pDimensionRegions array
2678     RIFF::Chunk* moveTo = NULL;
2679     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2680     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2681     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2682     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2683     }
2684     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2685     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2686     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2687     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2688     // create a new dimension region and copy all parameter values from
2689     // an existing dimension region
2690     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2691     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2692 persson 1247
2693 persson 1301 DimensionRegions++;
2694     }
2695     }
2696     moveTo = pDimensionRegions[i]->pParentList;
2697 schoenebeck 809 }
2698    
2699 persson 1247 // initialize the upper limits for this dimension
2700 persson 1301 int mask = (1 << bitpos) - 1;
2701     for (int z = 0 ; z < pDimDef->zones ; z++) {
2702 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2703 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2704 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2705     (z << bitpos) |
2706     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2707 persson 1247 }
2708     }
2709    
2710 schoenebeck 809 Dimensions++;
2711    
2712     // if this is a layer dimension, update 'Layers' attribute
2713     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2714    
2715 persson 858 UpdateVelocityTable();
2716 schoenebeck 809 }
2717    
2718     /** @brief Delete an existing dimension.
2719     *
2720     * Deletes the dimension given by \a pDimDef and deletes all respective
2721     * dimension regions, that is all dimension regions where the dimension's
2722     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2723     * for example this would delete all dimension regions for the case(s)
2724     * where the sustain pedal is pressed down.
2725     *
2726     * @param pDimDef - dimension to delete
2727     * @throws gig::Exception if given dimension cannot be found
2728     */
2729     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2730     // get dimension's index
2731     int iDimensionNr = -1;
2732     for (int i = 0; i < Dimensions; i++) {
2733     if (&pDimensionDefinitions[i] == pDimDef) {
2734     iDimensionNr = i;
2735     break;
2736     }
2737     }
2738     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2739    
2740     // get amount of bits below the dimension to delete
2741     int iLowerBits = 0;
2742     for (int i = 0; i < iDimensionNr; i++)
2743     iLowerBits += pDimensionDefinitions[i].bits;
2744    
2745     // get amount ot bits above the dimension to delete
2746     int iUpperBits = 0;
2747     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2748     iUpperBits += pDimensionDefinitions[i].bits;
2749    
2750 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2751    
2752 schoenebeck 809 // delete dimension regions which belong to the given dimension
2753     // (that is where the dimension's bit > 0)
2754     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2755     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2756     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2757     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2758     iObsoleteBit << iLowerBits |
2759     iLowerBit;
2760 persson 1247
2761     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2762 schoenebeck 809 delete pDimensionRegions[iToDelete];
2763     pDimensionRegions[iToDelete] = NULL;
2764     DimensionRegions--;
2765     }
2766     }
2767     }
2768    
2769     // defrag pDimensionRegions array
2770     // (that is remove the NULL spaces within the pDimensionRegions array)
2771     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2772     if (!pDimensionRegions[iTo]) {
2773     if (iFrom <= iTo) iFrom = iTo + 1;
2774     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2775     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2776     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2777     pDimensionRegions[iFrom] = NULL;
2778     }
2779     }
2780     }
2781    
2782 persson 1247 // remove the this dimension from the upper limits arrays
2783     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2784     DimensionRegion* d = pDimensionRegions[j];
2785     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2786     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2787     }
2788     d->DimensionUpperLimits[Dimensions - 1] = 127;
2789     }
2790    
2791 schoenebeck 809 // 'remove' dimension definition
2792     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2793     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2794     }
2795     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2796     pDimensionDefinitions[Dimensions - 1].bits = 0;
2797     pDimensionDefinitions[Dimensions - 1].zones = 0;
2798    
2799     Dimensions--;
2800    
2801     // if this was a layer dimension, update 'Layers' attribute
2802     if (pDimDef->dimension == dimension_layer) Layers = 1;
2803     }
2804    
2805 schoenebeck 2 Region::~Region() {
2806 schoenebeck 350 for (int i = 0; i < 256; i++) {
2807 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2808     }
2809     }
2810    
2811     /**
2812     * Use this method in your audio engine to get the appropriate dimension
2813     * region with it's articulation data for the current situation. Just
2814     * call the method with the current MIDI controller values and you'll get
2815     * the DimensionRegion with the appropriate articulation data for the
2816     * current situation (for this Region of course only). To do that you'll
2817     * first have to look which dimensions with which controllers and in
2818     * which order are defined for this Region when you load the .gig file.
2819     * Special cases are e.g. layer or channel dimensions where you just put
2820     * in the index numbers instead of a MIDI controller value (means 0 for
2821     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2822     * etc.).
2823     *
2824 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2825 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2826     * @see pDimensionDefinitions
2827     * @see Dimensions
2828     */
2829 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2830 persson 858 uint8_t bits;
2831     int veldim = -1;
2832     int velbitpos;
2833     int bitpos = 0;
2834     int dimregidx = 0;
2835 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2836 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2837     // the velocity dimension must be handled after the other dimensions
2838     veldim = i;
2839     velbitpos = bitpos;
2840     } else {
2841     switch (pDimensionDefinitions[i].split_type) {
2842     case split_type_normal:
2843 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2844     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2845     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2846     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2847     }
2848     } else {
2849     // gig2: evenly sized zones
2850     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2851     }
2852 persson 858 break;
2853     case split_type_bit: // the value is already the sought dimension bit number
2854     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2855     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2856     break;
2857     }
2858     dimregidx |= bits << bitpos;
2859 schoenebeck 2 }
2860 persson 858 bitpos += pDimensionDefinitions[i].bits;
2861 schoenebeck 2 }
2862 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2863     if (veldim != -1) {
2864     // (dimreg is now the dimension region for the lowest velocity)
2865 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2866 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2867     else // normal split type
2868     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2869    
2870     dimregidx |= bits << velbitpos;
2871     dimreg = pDimensionRegions[dimregidx];
2872     }
2873     return dimreg;
2874 schoenebeck 2 }
2875    
2876     /**
2877     * Returns the appropriate DimensionRegion for the given dimension bit
2878     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2879     * instead of calling this method directly!
2880     *
2881 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2882 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2883     * bit numbers
2884     * @see GetDimensionRegionByValue()
2885     */
2886 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2887     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2888     << pDimensionDefinitions[5].bits | DimBits[5])
2889     << pDimensionDefinitions[4].bits | DimBits[4])
2890     << pDimensionDefinitions[3].bits | DimBits[3])
2891     << pDimensionDefinitions[2].bits | DimBits[2])
2892     << pDimensionDefinitions[1].bits | DimBits[1])
2893     << pDimensionDefinitions[0].bits | DimBits[0]];
2894 schoenebeck 2 }
2895    
2896     /**
2897     * Returns pointer address to the Sample referenced with this region.
2898     * This is the global Sample for the entire Region (not sure if this is
2899     * actually used by the Gigasampler engine - I would only use the Sample
2900     * referenced by the appropriate DimensionRegion instead of this sample).
2901     *
2902     * @returns address to Sample or NULL if there is no reference to a
2903     * sample saved in the .gig file
2904     */
2905     Sample* Region::GetSample() {
2906     if (pSample) return static_cast<gig::Sample*>(pSample);
2907     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2908     }
2909    
2910 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2911 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2912 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2913 persson 902 if (!file->pWavePoolTable) return NULL;
2914 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2915 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2916 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2917 schoenebeck 2 while (sample) {
2918 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2919 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2920 schoenebeck 2 sample = file->GetNextSample();
2921     }
2922     return NULL;
2923     }
2924    
2925    
2926 persson 1627 // *************** MidiRule ***************
2927     // *
2928 schoenebeck 2
2929 persson 1627 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2930     _3ewg->SetPos(36);
2931     Triggers = _3ewg->ReadUint8();
2932     _3ewg->SetPos(40);
2933     ControllerNumber = _3ewg->ReadUint8();
2934     _3ewg->SetPos(46);
2935     for (int i = 0 ; i < Triggers ; i++) {
2936     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2937     pTriggers[i].Descending = _3ewg->ReadUint8();
2938     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2939     pTriggers[i].Key = _3ewg->ReadUint8();
2940     pTriggers[i].NoteOff = _3ewg->ReadUint8();
2941     pTriggers[i].Velocity = _3ewg->ReadUint8();
2942     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2943     _3ewg->ReadUint8();
2944     }
2945     }
2946    
2947    
2948 schoenebeck 2 // *************** Instrument ***************
2949     // *
2950    
2951 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2952 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
2953 persson 1180 { CHUNK_ID_INAM, 64 },
2954     { CHUNK_ID_ISFT, 12 },
2955     { 0, 0 }
2956     };
2957 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
2958 persson 918
2959 schoenebeck 2 // Initialization
2960     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2961 persson 1182 EffectSend = 0;
2962     Attenuation = 0;
2963     FineTune = 0;
2964     PitchbendRange = 0;
2965     PianoReleaseMode = false;
2966     DimensionKeyRange.low = 0;
2967     DimensionKeyRange.high = 0;
2968 schoenebeck 2
2969     // Loading
2970     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2971     if (lart) {
2972     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2973     if (_3ewg) {
2974     EffectSend = _3ewg->ReadUint16();
2975     Attenuation = _3ewg->ReadInt32();
2976     FineTune = _3ewg->ReadInt16();
2977     PitchbendRange = _3ewg->ReadInt16();
2978     uint8_t dimkeystart = _3ewg->ReadUint8();
2979     PianoReleaseMode = dimkeystart & 0x01;
2980     DimensionKeyRange.low = dimkeystart >> 1;
2981     DimensionKeyRange.high = _3ewg->ReadUint8();
2982 persson 1627
2983     if (_3ewg->GetSize() > 32) {
2984     // read MIDI rules
2985     _3ewg->SetPos(32);
2986     uint8_t id1 = _3ewg->ReadUint8();
2987     uint8_t id2 = _3ewg->ReadUint8();
2988    
2989     if (id1 == 4 && id2 == 16) {
2990     MidiRules.push_back(new MidiRuleCtrlTrigger(_3ewg));
2991     }
2992     //TODO: all the other types of rules
2993     }
2994 schoenebeck 2 }
2995     }
2996    
2997 schoenebeck 1524 if (pFile->GetAutoLoad()) {
2998     if (!pRegions) pRegions = new RegionList;
2999     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3000     if (lrgn) {
3001     RIFF::List* rgn = lrgn->GetFirstSubList();
3002     while (rgn) {
3003     if (rgn->GetListType() == LIST_TYPE_RGN) {
3004     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3005     pRegions->push_back(new Region(this, rgn));
3006     }
3007     rgn = lrgn->GetNextSubList();
3008 schoenebeck 809 }
3009 schoenebeck 1524 // Creating Region Key Table for fast lookup
3010     UpdateRegionKeyTable();
3011 schoenebeck 2 }
3012     }
3013    
3014 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
3015     }
3016    
3017     void Instrument::UpdateRegionKeyTable() {
3018 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3019 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
3020     RegionList::iterator end = pRegions->end();
3021     for (; iter != end; ++iter) {
3022     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3023     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3024     RegionKeyTable[iKey] = pRegion;
3025 schoenebeck 2 }
3026     }
3027     }
3028    
3029     Instrument::~Instrument() {
3030     }
3031    
3032     /**
3033 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
3034     * You have to call File::Save() to make changes persistent.
3035     *
3036     * Usually there is absolutely no need to call this method explicitly.
3037     * It will be called automatically when File::Save() was called.
3038     *
3039     * @throws gig::Exception if samples cannot be dereferenced
3040     */
3041     void Instrument::UpdateChunks() {
3042     // first update base classes' chunks
3043     DLS::Instrument::UpdateChunks();
3044    
3045     // update Regions' chunks
3046 schoenebeck 823 {
3047     RegionList::iterator iter = pRegions->begin();
3048     RegionList::iterator end = pRegions->end();
3049     for (; iter != end; ++iter)
3050     (*iter)->UpdateChunks();
3051     }
3052 schoenebeck 809
3053     // make sure 'lart' RIFF list chunk exists
3054     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3055     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3056     // make sure '3ewg' RIFF chunk exists
3057     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3058 persson 1264 if (!_3ewg) {
3059     File* pFile = (File*) GetParent();
3060    
3061     // 3ewg is bigger in gig3, as it includes the iMIDI rules
3062     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3063     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3064     memset(_3ewg->LoadChunkData(), 0, size);
3065     }
3066 schoenebeck 809 // update '3ewg' RIFF chunk
3067     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3068 persson 1179 store16(&pData[0], EffectSend);
3069     store32(&pData[2], Attenuation);
3070     store16(&pData[6], FineTune);
3071     store16(&pData[8], PitchbendRange);
3072 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3073 schoenebeck 809 DimensionKeyRange.low << 1;
3074 persson 1179 pData[10] = dimkeystart;
3075     pData[11] = DimensionKeyRange.high;
3076 schoenebeck 809 }
3077    
3078     /**
3079 schoenebeck 2 * Returns the appropriate Region for a triggered note.
3080     *
3081     * @param Key MIDI Key number of triggered note / key (0 - 127)
3082     * @returns pointer adress to the appropriate Region or NULL if there
3083     * there is no Region defined for the given \a Key
3084     */
3085     Region* Instrument::GetRegion(unsigned int Key) {
3086 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3087 schoenebeck 2 return RegionKeyTable[Key];
3088 schoenebeck 823
3089 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
3090     if (Key <= pRegions[i]->KeyRange.high &&
3091     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3092     }
3093     return NULL;*/
3094     }
3095    
3096     /**
3097     * Returns the first Region of the instrument. You have to call this
3098     * method once before you use GetNextRegion().
3099     *
3100     * @returns pointer address to first region or NULL if there is none
3101     * @see GetNextRegion()
3102     */
3103     Region* Instrument::GetFirstRegion() {
3104 schoenebeck 823 if (!pRegions) return NULL;
3105     RegionsIterator = pRegions->begin();
3106     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3107 schoenebeck 2 }
3108    
3109     /**
3110     * Returns the next Region of the instrument. You have to call
3111     * GetFirstRegion() once before you can use this method. By calling this
3112     * method multiple times it iterates through the available Regions.
3113     *
3114     * @returns pointer address to the next region or NULL if end reached
3115     * @see GetFirstRegion()
3116     */
3117     Region* Instrument::GetNextRegion() {
3118 schoenebeck 823 if (!pRegions) return NULL;
3119     RegionsIterator++;
3120     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3121 schoenebeck 2 }
3122    
3123 schoenebeck 809 Region* Instrument::AddRegion() {
3124     // create new Region object (and its RIFF chunks)
3125     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3126     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3127     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3128     Region* pNewRegion = new Region(this, rgn);
3129 schoenebeck 823 pRegions->push_back(pNewRegion);
3130     Regions = pRegions->size();
3131 schoenebeck 809 // update Region key table for fast lookup
3132     UpdateRegionKeyTable();
3133     // done
3134     return pNewRegion;
3135     }
3136 schoenebeck 2
3137 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
3138     if (!pRegions) return;
3139 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3140 schoenebeck 809 // update Region key table for fast lookup
3141     UpdateRegionKeyTable();
3142     }
3143 schoenebeck 2
3144 persson 1627 /**
3145     * Returns the first MIDI rule of the instrument. You have to call
3146     * this method once before you use GetNextMidiRule().
3147     *
3148     * The list of MIDI rules, at least in gig v3, always contains at
3149     * most two rules. The second rule can only be the DEF filter
3150     * (which currently isn't supported by libgig).
3151     *
3152     * @returns pointer address to first MIDI rule or NULL if there is none
3153     * @see GetNextMidiRule()
3154     */
3155     MidiRule* Instrument::GetFirstMidiRule() {
3156     MidiRulesIterator = MidiRules.begin();
3157     return MidiRulesIterator != MidiRules.end() ? *MidiRulesIterator : NULL;
3158     }
3159 schoenebeck 809
3160 persson 1627 /**
3161     * Returns the next MIDI rule of the instrument. You have to call
3162     * GetFirstMidiRule() once before you can use this method. By
3163     * calling this method multiple times it iterates through the
3164     * available rules.
3165     *
3166     * @returns pointer address to the next MIDI rule or NULL if end reached
3167     * @see GetFirstMidiRule()
3168     */
3169     MidiRule* Instrument::GetNextMidiRule() {
3170     MidiRulesIterator++;
3171     return MidiRulesIterator != MidiRules.end() ? *MidiRulesIterator : NULL;
3172     }
3173 schoenebeck 809
3174 persson 1627
3175 schoenebeck 929 // *************** Group ***************
3176     // *
3177    
3178     /** @brief Constructor.
3179     *
3180 schoenebeck 930 * @param file - pointer to the gig::File object
3181     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3182     * NULL if this is a new Group
3183 schoenebeck 929 */
3184 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3185 schoenebeck 929 pFile = file;
3186     pNameChunk = ck3gnm;
3187     ::LoadString(pNameChunk, Name);
3188     }
3189    
3190     Group::~Group() {
3191 schoenebeck 1099 // remove the chunk associated with this group (if any)
3192     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3193 schoenebeck 929 }
3194    
3195     /** @brief Update chunks with current group settings.
3196     *
3197 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
3198     * to call File::Save() to make changes persistent.
3199     *
3200     * Usually there is absolutely no need to call this method explicitly.
3201     * It will be called automatically when File::Save() was called.
3202 schoenebeck 929 */
3203     void Group::UpdateChunks() {
3204     // make sure <3gri> and <3gnl> list chunks exist
3205 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3206 persson 1192 if (!_3gri) {
3207     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3208     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3209     }
3210 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3211 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3212 persson 1266
3213     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3214     // v3 has a fixed list of 128 strings, find a free one
3215     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3216     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3217     pNameChunk = ck;
3218     break;
3219     }
3220     }
3221     }
3222    
3223 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3224     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3225     }
3226    
3227 schoenebeck 930 /**
3228     * Returns the first Sample of this Group. You have to call this method
3229     * once before you use GetNextSample().
3230     *
3231     * <b>Notice:</b> this method might block for a long time, in case the
3232     * samples of this .gig file were not scanned yet
3233     *
3234     * @returns pointer address to first Sample or NULL if there is none
3235     * applied to this Group
3236     * @see GetNextSample()
3237     */
3238     Sample* Group::GetFirstSample() {
3239     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3240     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3241     if (pSample->GetGroup() == this) return pSample;
3242     }
3243     return NULL;
3244     }
3245 schoenebeck 929
3246 schoenebeck 930 /**
3247     * Returns the next Sample of the Group. You have to call
3248     * GetFirstSample() once before you can use this method. By calling this
3249     * method multiple times it iterates through the Samples assigned to
3250     * this Group.
3251     *
3252     * @returns pointer address to the next Sample of this Group or NULL if
3253     * end reached
3254     * @see GetFirstSample()
3255     */
3256     Sample* Group::GetNextSample() {
3257     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3258     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3259     if (pSample->GetGroup() == this) return pSample;
3260     }
3261     return NULL;
3262     }
3263 schoenebeck 929
3264 schoenebeck 930 /**
3265     * Move Sample given by \a pSample from another Group to this Group.
3266     */
3267     void Group::AddSample(Sample* pSample) {
3268     pSample->pGroup = this;
3269     }
3270    
3271     /**
3272     * Move all members of this group to another group (preferably the 1st
3273     * one except this). This method is called explicitly by
3274     * File::DeleteGroup() thus when a Group was deleted. This code was
3275     * intentionally not placed in the destructor!
3276     */
3277     void Group::MoveAll() {
3278     // get "that" other group first
3279     Group* pOtherGroup = NULL;
3280     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3281     if (pOtherGroup != this) break;
3282     }
3283     if (!pOtherGroup) throw Exception(
3284     "Could not move samples to another group, since there is no "
3285     "other Group. This is a bug, report it!"
3286     );
3287     // now move all samples of this group to the other group
3288     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3289     pOtherGroup->AddSample(pSample);
3290     }
3291     }
3292    
3293    
3294    
3295 schoenebeck 2 // *************** File ***************
3296     // *
3297    
3298 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3299 persson 1199 const DLS::version_t File::VERSION_2 = {
3300     0, 2, 19980628 & 0xffff, 19980628 >> 16
3301     };
3302    
3303 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3304 persson 1199 const DLS::version_t File::VERSION_3 = {
3305     0, 3, 20030331 & 0xffff, 20030331 >> 16
3306     };
3307    
3308 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3309 persson 1180 { CHUNK_ID_IARL, 256 },
3310     { CHUNK_ID_IART, 128 },
3311     { CHUNK_ID_ICMS, 128 },
3312     { CHUNK_ID_ICMT, 1024 },
3313     { CHUNK_ID_ICOP, 128 },
3314     { CHUNK_ID_ICRD, 128 },
3315     { CHUNK_ID_IENG, 128 },
3316     { CHUNK_ID_IGNR, 128 },
3317     { CHUNK_ID_IKEY, 128 },
3318     { CHUNK_ID_IMED, 128 },
3319     { CHUNK_ID_INAM, 128 },
3320     { CHUNK_ID_IPRD, 128 },
3321     { CHUNK_ID_ISBJ, 128 },
3322     { CHUNK_ID_ISFT, 128 },
3323     { CHUNK_ID_ISRC, 128 },
3324     { CHUNK_ID_ISRF, 128 },
3325     { CHUNK_ID_ITCH, 128 },
3326     { 0, 0 }
3327     };
3328    
3329 schoenebeck 809 File::File() : DLS::File() {
3330 schoenebeck 1524 bAutoLoad = true;
3331 persson 1264 *pVersion = VERSION_3;
3332 schoenebeck 929 pGroups = NULL;
3333 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3334 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3335 persson 1192
3336     // add some mandatory chunks to get the file chunks in right
3337     // order (INFO chunk will be moved to first position later)
3338     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3339     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3340 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3341    
3342     GenerateDLSID();
3343 schoenebeck 809 }
3344    
3345 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3346 schoenebeck 1524 bAutoLoad = true;
3347 schoenebeck 929 pGroups = NULL;
3348 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3349 schoenebeck 2 }
3350    
3351 schoenebeck 929 File::~File() {
3352     if (pGroups) {
3353     std::list<Group*>::iterator iter = pGroups->begin();
3354     std::list<Group*>::iterator end = pGroups->end();
3355     while (iter != end) {
3356     delete *iter;
3357     ++iter;
3358     }
3359     delete pGroups;
3360     }
3361     }
3362    
3363 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3364     if (!pSamples) LoadSamples(pProgress);
3365 schoenebeck 2 if (!pSamples) return NULL;
3366     SamplesIterator = pSamples->begin();
3367     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3368     }
3369    
3370     Sample* File::GetNextSample() {
3371     if (!pSamples) return NULL;
3372     SamplesIterator++;
3373     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3374     }
3375    
3376 schoenebeck 809 /** @brief Add a new sample.
3377     *
3378     * This will create a new Sample object for the gig file. You have to
3379     * call Save() to make this persistent to the file.
3380     *
3381     * @returns pointer to new Sample object
3382     */
3383     Sample* File::AddSample() {
3384     if (!pSamples) LoadSamples();
3385     __ensureMandatoryChunksExist();
3386     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3387     // create new Sample object and its respective 'wave' list chunk
3388     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3389     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3390 persson 1192
3391     // add mandatory chunks to get the chunks in right order
3392     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3393     wave->AddSubList(LIST_TYPE_INFO);
3394    
3395 schoenebeck 809 pSamples->push_back(pSample);
3396     return pSample;
3397     }
3398    
3399     /** @brief Delete a sample.
3400     *
3401 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3402     * references to this sample from Regions and DimensionRegions will be
3403     * removed. You have to call Save() to make this persistent to the file.
3404 schoenebeck 809 *
3405     * @param pSample - sample to delete
3406     * @throws gig::Exception if given sample could not be found
3407     */
3408     void File::DeleteSample(Sample* pSample) {
3409 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3410     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3411 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3412 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3413 schoenebeck 809 pSamples->erase(iter);
3414     delete pSample;
3415 persson 1266
3416     // remove all references to the sample
3417     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3418     instrument = GetNextInstrument()) {
3419     for (Region* region = instrument->GetFirstRegion() ; region ;
3420     region = instrument->GetNextRegion()) {
3421    
3422     if (region->GetSample() == pSample) region->SetSample(NULL);
3423    
3424     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3425     gig::DimensionRegion *d = region->pDimensionRegions[i];
3426     if (d->pSample == pSample) d->pSample = NULL;
3427     }
3428     }
3429     }
3430 schoenebeck 809 }
3431    
3432 schoenebeck 823 void File::LoadSamples() {
3433     LoadSamples(NULL);
3434     }
3435    
3436 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3437 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3438     // to resolve the group they belong to
3439 schoenebeck 1158 if (!pGroups) LoadGroups();
3440 schoenebeck 930
3441 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3442    
3443 persson 666 RIFF::File* file = pRIFF;
3444 schoenebeck 515
3445 persson 666 // just for progress calculation
3446     int iSampleIndex = 0;
3447     int iTotalSamples = WavePoolCount;
3448 schoenebeck 515
3449 persson 666 // check if samples should be loaded from extension files
3450     int lastFileNo = 0;
3451     for (int i = 0 ; i < WavePoolCount ; i++) {
3452     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3453     }
3454 schoenebeck 780 String name(pRIFF->GetFileName());
3455     int nameLen = name.length();
3456 persson 666 char suffix[6];
3457 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3458 schoenebeck 515
3459 persson 666 for (int fileNo = 0 ; ; ) {
3460     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3461     if (wvpl) {
3462     unsigned long wvplFileOffset = wvpl->GetFilePos();
3463     RIFF::List* wave = wvpl->GetFirstSubList();
3464     while (wave) {
3465     if (wave->GetListType() == LIST_TYPE_WAVE) {
3466     // notify current progress
3467     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3468     __notify_progress(pProgress, subprogress);
3469    
3470     unsigned long waveFileOffset = wave->GetFilePos();
3471     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3472    
3473     iSampleIndex++;
3474     }
3475     wave = wvpl->GetNextSubList();
3476 schoenebeck 2 }
3477 persson 666
3478     if (fileNo == lastFileNo) break;
3479    
3480     // open extension file (*.gx01, *.gx02, ...)
3481     fileNo++;
3482     sprintf(suffix, ".gx%02d", fileNo);
3483     name.replace(nameLen, 5, suffix);
3484     file = new RIFF::File(name);
3485     ExtensionFiles.push_back(file);
3486 schoenebeck 823 } else break;
3487 schoenebeck 2 }
3488 persson 666
3489     __notify_progress(pProgress, 1.0); // notify done
3490 schoenebeck 2 }
3491    
3492     Instrument* File::GetFirstInstrument() {
3493     if (!pInstruments) LoadInstruments();
3494     if (!pInstruments) return NULL;
3495     InstrumentsIterator = pInstruments->begin();
3496 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3497 schoenebeck 2 }
3498    
3499     Instrument* File::GetNextInstrument() {
3500     if (!pInstruments) return NULL;
3501     InstrumentsIterator++;
3502 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3503 schoenebeck 2 }
3504    
3505 schoenebeck 21 /**
3506     * Returns the instrument with the given index.
3507     *
3508 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3509     * @param pProgress - optional: callback function for progress notification
3510 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3511     */
3512 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3513     if (!pInstruments) {
3514     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3515    
3516     // sample loading subtask
3517     progress_t subprogress;
3518     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3519     __notify_progress(&subprogress, 0.0f);
3520 schoenebeck 1524 if (GetAutoLoad())
3521     GetFirstSample(&subprogress); // now force all samples to be loaded
3522 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
3523    
3524     // instrument loading subtask
3525     if (pProgress && pProgress->callback) {
3526     subprogress.__range_min = subprogress.__range_max;
3527     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3528     }
3529     __notify_progress(&subprogress, 0.0f);
3530     LoadInstruments(&subprogress);
3531     __notify_progress(&subprogress, 1.0f);
3532     }
3533 schoenebeck 21 if (!pInstruments) return NULL;
3534     InstrumentsIterator = pInstruments->begin();
3535     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3536 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3537 schoenebeck 21 InstrumentsIterator++;
3538     }
3539     return NULL;
3540     }
3541    
3542 schoenebeck 809 /** @brief Add a new instrument definition.
3543     *
3544     * This will create a new Instrument object for the gig file. You have
3545     * to call Save() to make this persistent to the file.
3546     *
3547     * @returns pointer to new Instrument object
3548     */
3549     Instrument* File::AddInstrument() {
3550     if (!pInstruments) LoadInstruments();
3551     __ensureMandatoryChunksExist();
3552     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3553     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3554 persson 1192
3555     // add mandatory chunks to get the chunks in right order
3556     lstInstr->AddSubList(LIST_TYPE_INFO);
3557 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3558 persson 1192
3559 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3560 persson 1209 pInstrument->GenerateDLSID();
3561 persson 1182
3562 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3563    
3564 persson 1182 // this string is needed for the gig to be loadable in GSt:
3565     pInstrument->pInfo->Software = "Endless Wave";
3566    
3567 schoenebeck 809 pInstruments->push_back(pInstrument);
3568     return pInstrument;
3569     }
3570    
3571     /** @brief Delete an instrument.
3572     *
3573     * This will delete the given Instrument object from the gig file. You
3574     * have to call Save() to make this persistent to the file.
3575     *
3576     * @param pInstrument - instrument to delete
3577 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3578 schoenebeck 809 */
3579     void File::DeleteInstrument(Instrument* pInstrument) {
3580     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3581 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3582 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3583     pInstruments->erase(iter);
3584     delete pInstrument;
3585     }
3586    
3587 schoenebeck 823 void File::LoadInstruments() {
3588     LoadInstruments(NULL);
3589     }
3590    
3591 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3592 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3593 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3594     if (lstInstruments) {
3595 schoenebeck 515 int iInstrumentIndex = 0;
3596 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3597     while (lstInstr) {
3598     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3599 schoenebeck 515 // notify current progress
3600     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3601     __notify_progress(pProgress, localProgress);
3602    
3603     // divide local progress into subprogress for loading current Instrument
3604     progress_t subprogress;
3605     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3606    
3607     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3608    
3609     iInstrumentIndex++;
3610 schoenebeck 2 }
3611     lstInstr = lstInstruments->GetNextSubList();
3612     }
3613 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3614 schoenebeck 2 }
3615     }
3616    
3617 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3618     /// update is done directly to disk, as this method is called
3619     /// after File::Save()
3620 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3621     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3622     if (!_3crc) return;
3623 persson 1207
3624     // get the index of the sample
3625 persson 1199 int iWaveIndex = -1;
3626     File::SampleList::iterator iter = pSamples->begin();
3627     File::SampleList::iterator end = pSamples->end();
3628     for (int index = 0; iter != end; ++iter, ++index) {
3629     if (*iter == pSample) {
3630     iWaveIndex = index;
3631     break;
3632     }
3633     }
3634     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3635    
3636 persson 1207 // write the CRC-32 checksum to disk
3637 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3638     uint32_t tmp = 1;
3639     _3crc->WriteUint32(&tmp); // unknown, always 1?
3640     _3crc->WriteUint32(&crc);
3641     }
3642    
3643 schoenebeck 929 Group* File::GetFirstGroup() {
3644     if (!pGroups) LoadGroups();
3645 schoenebeck 930 // there must always be at least one group
3646 schoenebeck 929 GroupsIterator = pGroups->begin();
3647 schoenebeck 930 return *GroupsIterator;
3648 schoenebeck 929 }
3649 schoenebeck 2
3650 schoenebeck 929 Group* File::GetNextGroup() {
3651     if (!pGroups) return NULL;
3652     ++GroupsIterator;
3653     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3654     }
3655 schoenebeck 2
3656 schoenebeck 929 /**
3657     * Returns the group with the given index.
3658     *
3659     * @param index - number of the sought group (0..n)
3660     * @returns sought group or NULL if there's no such group
3661     */
3662     Group* File::GetGroup(uint index) {
3663     if (!pGroups) LoadGroups();
3664     GroupsIterator = pGroups->begin();
3665     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3666     if (i == index) return *GroupsIterator;
3667     ++GroupsIterator;
3668     }
3669     return NULL;
3670     }
3671    
3672     Group* File::AddGroup() {
3673     if (!pGroups) LoadGroups();
3674 schoenebeck 930 // there must always be at least one group
3675 schoenebeck 929 __ensureMandatoryChunksExist();
3676 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3677 schoenebeck 929 pGroups->push_back(pGroup);
3678     return pGroup;
3679     }
3680    
3681 schoenebeck 1081 /** @brief Delete a group and its samples.
3682     *
3683     * This will delete the given Group object and all the samples that
3684     * belong to this group from the gig file. You have to call Save() to
3685     * make this persistent to the file.
3686     *
3687     * @param pGroup - group to delete
3688     * @throws gig::Exception if given group could not be found
3689     */
3690 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3691 schoenebeck 930 if (!pGroups) LoadGroups();
3692 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3693     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3694 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3695 schoenebeck 1081 // delete all members of this group
3696     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3697     DeleteSample(pSample);
3698     }
3699     // now delete this group object
3700     pGroups->erase(iter);
3701     delete pGroup;
3702     }
3703    
3704     /** @brief Delete a group.
3705     *
3706     * This will delete the given Group object from the gig file. All the
3707     * samples that belong to this group will not be deleted, but instead
3708     * be moved to another group. You have to call Save() to make this
3709     * persistent to the file.
3710     *
3711     * @param pGroup - group to delete
3712     * @throws gig::Exception if given group could not be found
3713     */
3714     void File::DeleteGroupOnly(Group* pGroup) {
3715     if (!pGroups) LoadGroups();
3716     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3717     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3718     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3719 schoenebeck 930 // move all members of this group to another group
3720     pGroup->MoveAll();
3721 schoenebeck 929 pGroups->erase(iter);
3722     delete pGroup;
3723     }
3724    
3725     void File::LoadGroups() {
3726     if (!pGroups) pGroups = new std::list<Group*>;
3727 schoenebeck 930 // try to read defined groups from file
3728 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3729 schoenebeck 930 if (lst3gri) {
3730     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3731     if (lst3gnl) {
3732     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3733     while (ck) {
3734     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3735 persson 1266 if (pVersion && pVersion->major == 3 &&
3736     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3737    
3738 schoenebeck 930 pGroups->push_back(new Group(this, ck));
3739     }
3740     ck = lst3gnl->GetNextSubChunk();
3741 schoenebeck 929 }
3742     }
3743     }
3744 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3745     if (!pGroups->size()) {
3746     Group* pGroup = new Group(this, NULL);
3747     pGroup->Name = "Default Group";
3748     pGroups->push_back(pGroup);
3749     }
3750 schoenebeck 929 }
3751    
3752 schoenebeck 1098 /**
3753     * Apply all the gig file's current instruments, samples, groups and settings
3754     * to the respective RIFF chunks. You have to call Save() to make changes
3755     * persistent.
3756     *
3757     * Usually there is absolutely no need to call this method explicitly.
3758     * It will be called automatically when File::Save() was called.
3759     *
3760     * @throws Exception - on errors
3761     */
3762     void File::UpdateChunks() {
3763 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3764 persson 1192
3765 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3766    
3767 schoenebeck 1098 // first update base class's chunks
3768     DLS::File::UpdateChunks();
3769 schoenebeck 929
3770 persson 1199 if (newFile) {
3771 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3772     // is placed first in file
3773 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3774 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3775     if (first != info) {
3776     pRIFF->MoveSubChunk(info, first);
3777     }
3778     }
3779    
3780 schoenebeck 1098 // update group's chunks
3781     if (pGroups) {
3782     std::list<Group*>::iterator iter = pGroups->begin();
3783     std::list<Group*>::iterator end = pGroups->end();
3784     for (; iter != end; ++iter) {
3785     (*iter)->UpdateChunks();
3786     }
3787 persson 1266
3788     // v3: make sure the file has 128 3gnm chunks
3789     if (pVersion && pVersion->major == 3) {
3790     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3791     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3792     for (int i = 0 ; i < 128 ; i++) {
3793     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3794     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3795     }
3796     }
3797 schoenebeck 1098 }
3798 persson 1199
3799     // update einf chunk
3800    
3801     // The einf chunk contains statistics about the gig file, such
3802     // as the number of regions and samples used by each
3803     // instrument. It is divided in equally sized parts, where the
3804     // first part contains information about the whole gig file,
3805     // and the rest of the parts map to each instrument in the
3806     // file.
3807     //
3808     // At the end of each part there is a bit map of each sample
3809     // in the file, where a set bit means that the sample is used
3810     // by the file/instrument.
3811     //
3812     // Note that there are several fields with unknown use. These
3813     // are set to zero.
3814    
3815     int sublen = pSamples->size() / 8 + 49;
3816     int einfSize = (Instruments + 1) * sublen;
3817    
3818     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3819     if (einf) {
3820     if (einf->GetSize() != einfSize) {
3821     einf->Resize(einfSize);
3822     memset(einf->LoadChunkData(), 0, einfSize);
3823     }
3824     } else if (newFile) {
3825     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3826     }
3827     if (einf) {
3828     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3829    
3830     std::map<gig::Sample*,int> sampleMap;
3831     int sampleIdx = 0;
3832     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3833     sampleMap[pSample] = sampleIdx++;
3834     }
3835    
3836     int totnbusedsamples = 0;
3837     int totnbusedchannels = 0;
3838     int totnbregions = 0;
3839     int totnbdimregions = 0;
3840 persson 1264 int totnbloops = 0;
3841 persson 1199 int instrumentIdx = 0;
3842    
3843     memset(&pData[48], 0, sublen - 48);
3844    
3845     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3846     instrument = GetNextInstrument()) {
3847     int nbusedsamples = 0;
3848     int nbusedchannels = 0;
3849     int nbdimregions = 0;
3850 persson 1264 int nbloops = 0;
3851 persson 1199
3852     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3853    
3854     for (Region* region = instrument->GetFirstRegion() ; region ;
3855     region = instrument->GetNextRegion()) {
3856     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3857     gig::DimensionRegion *d = region->pDimensionRegions[i];
3858     if (d->pSample) {
3859     int sampleIdx = sampleMap[d->pSample];
3860     int byte = 48 + sampleIdx / 8;
3861     int bit = 1 << (sampleIdx & 7);
3862     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3863     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3864     nbusedsamples++;
3865     nbusedchannels += d->pSample->Channels;
3866    
3867     if ((pData[byte] & bit) == 0) {
3868     pData[byte] |= bit;
3869     totnbusedsamples++;
3870     totnbusedchannels += d->pSample->Channels;
3871     }
3872     }
3873     }
3874 persson 1264 if (d->SampleLoops) nbloops++;
3875 persson 1199 }
3876     nbdimregions += region->DimensionRegions;
3877     }
3878     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3879     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3880     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3881     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3882     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3883     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3884     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3885 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3886     // next 8 bytes unknown
3887 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3888     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3889     // next 4 bytes unknown
3890    
3891     totnbregions += instrument->Regions;
3892     totnbdimregions += nbdimregions;
3893 persson 1264 totnbloops += nbloops;
3894 persson 1199 instrumentIdx++;
3895     }
3896     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3897     // store32(&pData[0], sublen);
3898     store32(&pData[4], totnbusedchannels);
3899     store32(&pData[8], totnbusedsamples);
3900     store32(&pData[12], Instruments);
3901     store32(&pData[16], totnbregions);
3902     store32(&pData[20], totnbdimregions);
3903 persson 1264 store32(&pData[24], totnbloops);
3904     // next 8 bytes unknown
3905     // next 4 bytes unknown, not always 0
3906 persson 1199 store32(&pData[40], pSamples->size());
3907     // next 4 bytes unknown
3908     }
3909    
3910     // update 3crc chunk
3911    
3912     // The 3crc chunk contains CRC-32 checksums for the
3913     // samples. The actual checksum values will be filled in
3914     // later, by Sample::Write.
3915    
3916     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3917     if (_3crc) {
3918     _3crc->Resize(pSamples->size() * 8);
3919     } else if (newFile) {
3920     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3921     _3crc->LoadChunkData();
3922 persson 1264
3923     // the order of einf and 3crc is not the same in v2 and v3
3924     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3925 persson 1199 }
3926 schoenebeck 1098 }
3927 schoenebeck 929
3928 schoenebeck 1524 /**
3929     * Enable / disable automatic loading. By default this properyt is
3930     * enabled and all informations are loaded automatically. However
3931     * loading all Regions, DimensionRegions and especially samples might
3932     * take a long time for large .gig files, and sometimes one might only
3933     * be interested in retrieving very superficial informations like the
3934     * amount of instruments and their names. In this case one might disable
3935     * automatic loading to avoid very slow response times.
3936     *
3937     * @e CAUTION: by disabling this property many pointers (i.e. sample
3938     * references) and informations will have invalid or even undefined
3939     * data! This feature is currently only intended for retrieving very
3940     * superficial informations in a very fast way. Don't use it to retrieve
3941     * details like synthesis informations or even to modify .gig files!
3942     */
3943     void File::SetAutoLoad(bool b) {
3944     bAutoLoad = b;
3945     }
3946 schoenebeck 1098
3947 schoenebeck 1524 /**
3948     * Returns whether automatic loading is enabled.
3949     * @see SetAutoLoad()
3950     */
3951     bool File::GetAutoLoad() {
3952     return bAutoLoad;
3953     }
3954 schoenebeck 1098
3955 schoenebeck 1524
3956    
3957 schoenebeck 2 // *************** Exception ***************
3958     // *
3959    
3960     Exception::Exception(String Message) : DLS::Exception(Message) {
3961     }
3962    
3963     void Exception::PrintMessage() {
3964     std::cout << "gig::Exception: " << Message << std::endl;
3965     }
3966    
3967 schoenebeck 518
3968     // *************** functions ***************
3969     // *
3970    
3971     /**
3972     * Returns the name of this C++ library. This is usually "libgig" of
3973     * course. This call is equivalent to RIFF::libraryName() and
3974     * DLS::libraryName().
3975     */
3976     String libraryName() {
3977     return PACKAGE;
3978     }
3979    
3980     /**
3981     * Returns version of this C++ library. This call is equivalent to
3982     * RIFF::libraryVersion() and DLS::libraryVersion().
3983     */
3984     String libraryVersion() {
3985     return VERSION;
3986     }
3987    
3988 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC