/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1875 - (hide annotations) (download)
Thu Mar 26 13:32:59 2009 UTC (15 years ago) by schoenebeck
File size: 174907 byte(s)
* fixed crash which occured when streaming a gig sample with
  bi-directional (a.k.a. 'pingpong') loop type (fixes #102)

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1851 * Copyright (C) 2003-2009 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31    
32 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
33     /// compressed sample wave streams - this value should always be bigger than
34     /// the biggest sample piece expected to be read by the sampler engine,
35     /// otherwise the buffer size will be raised at runtime and thus the buffer
36     /// reallocated which is time consuming and unefficient.
37     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38    
39     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52    
53 schoenebeck 515 namespace gig {
54 schoenebeck 2
55 schoenebeck 515 // *************** progress_t ***************
56     // *
57    
58     progress_t::progress_t() {
59     callback = NULL;
60 schoenebeck 516 custom = NULL;
61 schoenebeck 515 __range_min = 0.0f;
62     __range_max = 1.0f;
63     }
64    
65     // private helper function to convert progress of a subprocess into the global progress
66     static void __notify_progress(progress_t* pProgress, float subprogress) {
67     if (pProgress && pProgress->callback) {
68     const float totalrange = pProgress->__range_max - pProgress->__range_min;
69     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 schoenebeck 516 pProgress->factor = totalprogress;
71     pProgress->callback(pProgress); // now actually notify about the progress
72 schoenebeck 515 }
73     }
74    
75     // private helper function to divide a progress into subprogresses
76     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77     if (pParentProgress && pParentProgress->callback) {
78     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79     pSubProgress->callback = pParentProgress->callback;
80 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
81 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83     }
84     }
85    
86    
87 schoenebeck 809 // *************** Internal functions for sample decompression ***************
88 persson 365 // *
89    
90 schoenebeck 515 namespace {
91    
92 persson 365 inline int get12lo(const unsigned char* pSrc)
93     {
94     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95     return x & 0x800 ? x - 0x1000 : x;
96     }
97    
98     inline int get12hi(const unsigned char* pSrc)
99     {
100     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101     return x & 0x800 ? x - 0x1000 : x;
102     }
103    
104     inline int16_t get16(const unsigned char* pSrc)
105     {
106     return int16_t(pSrc[0] | pSrc[1] << 8);
107     }
108    
109     inline int get24(const unsigned char* pSrc)
110     {
111     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112     return x & 0x800000 ? x - 0x1000000 : x;
113     }
114    
115 persson 902 inline void store24(unsigned char* pDst, int x)
116     {
117     pDst[0] = x;
118     pDst[1] = x >> 8;
119     pDst[2] = x >> 16;
120     }
121    
122 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
123 persson 372 int srcStep, int dstStep,
124     const unsigned char* pSrc, int16_t* pDst,
125 persson 365 unsigned long currentframeoffset,
126     unsigned long copysamples)
127     {
128     switch (compressionmode) {
129     case 0: // 16 bit uncompressed
130     pSrc += currentframeoffset * srcStep;
131     while (copysamples) {
132     *pDst = get16(pSrc);
133 persson 372 pDst += dstStep;
134 persson 365 pSrc += srcStep;
135     copysamples--;
136     }
137     break;
138    
139     case 1: // 16 bit compressed to 8 bit
140     int y = get16(params);
141     int dy = get16(params + 2);
142     while (currentframeoffset) {
143     dy -= int8_t(*pSrc);
144     y -= dy;
145     pSrc += srcStep;
146     currentframeoffset--;
147     }
148     while (copysamples) {
149     dy -= int8_t(*pSrc);
150     y -= dy;
151     *pDst = y;
152 persson 372 pDst += dstStep;
153 persson 365 pSrc += srcStep;
154     copysamples--;
155     }
156     break;
157     }
158     }
159    
160     void Decompress24(int compressionmode, const unsigned char* params,
161 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 persson 365 unsigned long currentframeoffset,
163 persson 437 unsigned long copysamples, int truncatedBits)
164 persson 365 {
165 persson 695 int y, dy, ddy, dddy;
166 persson 437
167 persson 695 #define GET_PARAMS(params) \
168     y = get24(params); \
169     dy = y - get24((params) + 3); \
170     ddy = get24((params) + 6); \
171     dddy = get24((params) + 9)
172 persson 365
173     #define SKIP_ONE(x) \
174 persson 695 dddy -= (x); \
175     ddy -= dddy; \
176     dy = -dy - ddy; \
177     y += dy
178 persson 365
179     #define COPY_ONE(x) \
180     SKIP_ONE(x); \
181 persson 902 store24(pDst, y << truncatedBits); \
182 persson 372 pDst += dstStep
183 persson 365
184     switch (compressionmode) {
185     case 2: // 24 bit uncompressed
186     pSrc += currentframeoffset * 3;
187     while (copysamples) {
188 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
189 persson 372 pDst += dstStep;
190 persson 365 pSrc += 3;
191     copysamples--;
192     }
193     break;
194    
195     case 3: // 24 bit compressed to 16 bit
196     GET_PARAMS(params);
197     while (currentframeoffset) {
198     SKIP_ONE(get16(pSrc));
199     pSrc += 2;
200     currentframeoffset--;
201     }
202     while (copysamples) {
203     COPY_ONE(get16(pSrc));
204     pSrc += 2;
205     copysamples--;
206     }
207     break;
208    
209     case 4: // 24 bit compressed to 12 bit
210     GET_PARAMS(params);
211     while (currentframeoffset > 1) {
212     SKIP_ONE(get12lo(pSrc));
213     SKIP_ONE(get12hi(pSrc));
214     pSrc += 3;
215     currentframeoffset -= 2;
216     }
217     if (currentframeoffset) {
218     SKIP_ONE(get12lo(pSrc));
219     currentframeoffset--;
220     if (copysamples) {
221     COPY_ONE(get12hi(pSrc));
222     pSrc += 3;
223     copysamples--;
224     }
225     }
226     while (copysamples > 1) {
227     COPY_ONE(get12lo(pSrc));
228     COPY_ONE(get12hi(pSrc));
229     pSrc += 3;
230     copysamples -= 2;
231     }
232     if (copysamples) {
233     COPY_ONE(get12lo(pSrc));
234     }
235     break;
236    
237     case 5: // 24 bit compressed to 8 bit
238     GET_PARAMS(params);
239     while (currentframeoffset) {
240     SKIP_ONE(int8_t(*pSrc++));
241     currentframeoffset--;
242     }
243     while (copysamples) {
244     COPY_ONE(int8_t(*pSrc++));
245     copysamples--;
246     }
247     break;
248     }
249     }
250    
251     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255     }
256    
257    
258 schoenebeck 1113
259 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260     // *
261    
262     static uint32_t* __initCRCTable() {
263     static uint32_t res[256];
264    
265     for (int i = 0 ; i < 256 ; i++) {
266     uint32_t c = i;
267     for (int j = 0 ; j < 8 ; j++) {
268     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269     }
270     res[i] = c;
271     }
272     return res;
273     }
274    
275     static const uint32_t* __CRCTable = __initCRCTable();
276    
277     /**
278     * Initialize a CRC variable.
279     *
280     * @param crc - variable to be initialized
281     */
282     inline static void __resetCRC(uint32_t& crc) {
283     crc = 0xffffffff;
284     }
285    
286     /**
287     * Used to calculate checksums of the sample data in a gig file. The
288     * checksums are stored in the 3crc chunk of the gig file and
289     * automatically updated when a sample is written with Sample::Write().
290     *
291     * One should call __resetCRC() to initialize the CRC variable to be
292     * used before calling this function the first time.
293     *
294     * After initializing the CRC variable one can call this function
295     * arbitrary times, i.e. to split the overall CRC calculation into
296     * steps.
297     *
298     * Once the whole data was processed by __calculateCRC(), one should
299     * call __encodeCRC() to get the final CRC result.
300     *
301     * @param buf - pointer to data the CRC shall be calculated of
302     * @param bufSize - size of the data to be processed
303     * @param crc - variable the CRC sum shall be stored to
304     */
305     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306     for (int i = 0 ; i < bufSize ; i++) {
307     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308     }
309     }
310    
311     /**
312     * Returns the final CRC result.
313     *
314     * @param crc - variable previously passed to __calculateCRC()
315     */
316     inline static uint32_t __encodeCRC(const uint32_t& crc) {
317     return crc ^ 0xffffffff;
318     }
319    
320    
321    
322 schoenebeck 1113 // *************** Other Internal functions ***************
323     // *
324    
325     static split_type_t __resolveSplitType(dimension_t dimension) {
326     return (
327     dimension == dimension_layer ||
328     dimension == dimension_samplechannel ||
329     dimension == dimension_releasetrigger ||
330     dimension == dimension_keyboard ||
331     dimension == dimension_roundrobin ||
332     dimension == dimension_random ||
333     dimension == dimension_smartmidi ||
334     dimension == dimension_roundrobinkeyboard
335     ) ? split_type_bit : split_type_normal;
336     }
337    
338     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339     return (dimension_definition.split_type == split_type_normal)
340     ? int(128.0 / dimension_definition.zones) : 0;
341     }
342    
343    
344    
345 schoenebeck 2 // *************** Sample ***************
346     // *
347    
348 schoenebeck 384 unsigned int Sample::Instances = 0;
349     buffer_t Sample::InternalDecompressionBuffer;
350 schoenebeck 2
351 schoenebeck 809 /** @brief Constructor.
352     *
353     * Load an existing sample or create a new one. A 'wave' list chunk must
354     * be given to this constructor. In case the given 'wave' list chunk
355     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356     * format and sample data will be loaded from there, otherwise default
357     * values will be used and those chunks will be created when
358     * File::Save() will be called later on.
359     *
360     * @param pFile - pointer to gig::File where this sample is
361     * located (or will be located)
362     * @param waveList - pointer to 'wave' list chunk which is (or
363     * will be) associated with this sample
364     * @param WavePoolOffset - offset of this sample data from wave pool
365     * ('wvpl') list chunk
366     * @param fileNo - number of an extension file where this sample
367     * is located, 0 otherwise
368     */
369 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 persson 1180 { CHUNK_ID_INAM, 64 },
372     { 0, 0 }
373     };
374 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
375 schoenebeck 2 Instances++;
376 persson 666 FileNo = fileNo;
377 schoenebeck 2
378 schoenebeck 1381 __resetCRC(crc);
379    
380 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381     if (pCk3gix) {
382 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
384 schoenebeck 809 } else { // '3gix' chunk missing
385 schoenebeck 930 // by default assigned to that mandatory "Default Group"
386     pGroup = pFile->GetGroup(0);
387 schoenebeck 809 }
388 schoenebeck 2
389 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390     if (pCkSmpl) {
391     Manufacturer = pCkSmpl->ReadInt32();
392     Product = pCkSmpl->ReadInt32();
393     SamplePeriod = pCkSmpl->ReadInt32();
394     MIDIUnityNote = pCkSmpl->ReadInt32();
395     FineTune = pCkSmpl->ReadInt32();
396     pCkSmpl->Read(&SMPTEFormat, 1, 4);
397     SMPTEOffset = pCkSmpl->ReadInt32();
398     Loops = pCkSmpl->ReadInt32();
399     pCkSmpl->ReadInt32(); // manufByt
400     LoopID = pCkSmpl->ReadInt32();
401     pCkSmpl->Read(&LoopType, 1, 4);
402     LoopStart = pCkSmpl->ReadInt32();
403     LoopEnd = pCkSmpl->ReadInt32();
404     LoopFraction = pCkSmpl->ReadInt32();
405     LoopPlayCount = pCkSmpl->ReadInt32();
406     } else { // 'smpl' chunk missing
407     // use default values
408     Manufacturer = 0;
409     Product = 0;
410 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 persson 1218 MIDIUnityNote = 60;
412 schoenebeck 809 FineTune = 0;
413 persson 1182 SMPTEFormat = smpte_format_no_offset;
414 schoenebeck 809 SMPTEOffset = 0;
415     Loops = 0;
416     LoopID = 0;
417 persson 1182 LoopType = loop_type_normal;
418 schoenebeck 809 LoopStart = 0;
419     LoopEnd = 0;
420     LoopFraction = 0;
421     LoopPlayCount = 0;
422     }
423 schoenebeck 2
424     FrameTable = NULL;
425     SamplePos = 0;
426     RAMCache.Size = 0;
427     RAMCache.pStart = NULL;
428     RAMCache.NullExtensionSize = 0;
429    
430 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433     Compressed = ewav;
434     Dithered = false;
435     TruncatedBits = 0;
436 schoenebeck 2 if (Compressed) {
437 persson 437 uint32_t version = ewav->ReadInt32();
438     if (version == 3 && BitDepth == 24) {
439     Dithered = ewav->ReadInt32();
440     ewav->SetPos(Channels == 2 ? 84 : 64);
441     TruncatedBits = ewav->ReadInt32();
442     }
443 schoenebeck 2 ScanCompressedSample();
444     }
445 schoenebeck 317
446     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 schoenebeck 317 }
451 persson 437 FrameOffset = 0; // just for streaming compressed samples
452 schoenebeck 21
453 persson 864 LoopSize = LoopEnd - LoopStart + 1;
454 schoenebeck 2 }
455    
456 schoenebeck 809 /**
457     * Apply sample and its settings to the respective RIFF chunks. You have
458     * to call File::Save() to make changes persistent.
459     *
460     * Usually there is absolutely no need to call this method explicitly.
461     * It will be called automatically when File::Save() was called.
462     *
463 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 schoenebeck 809 * was provided yet
465     * @throws gig::Exception if there is any invalid sample setting
466     */
467     void Sample::UpdateChunks() {
468     // first update base class's chunks
469     DLS::Sample::UpdateChunks();
470    
471     // make sure 'smpl' chunk exists
472     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 persson 1182 if (!pCkSmpl) {
474     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475     memset(pCkSmpl->LoadChunkData(), 0, 60);
476     }
477 schoenebeck 809 // update 'smpl' chunk
478     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 persson 1179 store32(&pData[0], Manufacturer);
481     store32(&pData[4], Product);
482     store32(&pData[8], SamplePeriod);
483     store32(&pData[12], MIDIUnityNote);
484     store32(&pData[16], FineTune);
485     store32(&pData[20], SMPTEFormat);
486     store32(&pData[24], SMPTEOffset);
487     store32(&pData[28], Loops);
488 schoenebeck 809
489     // we skip 'manufByt' for now (4 bytes)
490    
491 persson 1179 store32(&pData[36], LoopID);
492     store32(&pData[40], LoopType);
493     store32(&pData[44], LoopStart);
494     store32(&pData[48], LoopEnd);
495     store32(&pData[52], LoopFraction);
496     store32(&pData[56], LoopPlayCount);
497 schoenebeck 809
498     // make sure '3gix' chunk exists
499     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
502 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
504     if (pFile->pGroups) {
505     std::list<Group*>::iterator iter = pFile->pGroups->begin();
506     std::list<Group*>::iterator end = pFile->pGroups->end();
507 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
508 schoenebeck 929 if (*iter == pGroup) {
509     iSampleGroup = i;
510     break; // found
511     }
512     }
513     }
514 schoenebeck 809 // update '3gix' chunk
515     pData = (uint8_t*) pCk3gix->LoadChunkData();
516 persson 1179 store16(&pData[0], iSampleGroup);
517 schoenebeck 809 }
518    
519 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520     void Sample::ScanCompressedSample() {
521     //TODO: we have to add some more scans here (e.g. determine compression rate)
522     this->SamplesTotal = 0;
523     std::list<unsigned long> frameOffsets;
524    
525 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527 persson 365
528 schoenebeck 2 // Scanning
529     pCkData->SetPos(0);
530 persson 365 if (Channels == 2) { // Stereo
531     for (int i = 0 ; ; i++) {
532     // for 24 bit samples every 8:th frame offset is
533     // stored, to save some memory
534     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535    
536     const int mode_l = pCkData->ReadUint8();
537     const int mode_r = pCkData->ReadUint8();
538     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540    
541     if (pCkData->RemainingBytes() <= frameSize) {
542     SamplesInLastFrame =
543     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545     SamplesTotal += SamplesInLastFrame;
546 schoenebeck 2 break;
547 persson 365 }
548     SamplesTotal += SamplesPerFrame;
549     pCkData->SetPos(frameSize, RIFF::stream_curpos);
550     }
551     }
552     else { // Mono
553     for (int i = 0 ; ; i++) {
554     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555    
556     const int mode = pCkData->ReadUint8();
557     if (mode > 5) throw gig::Exception("Unknown compression mode");
558     const unsigned long frameSize = bytesPerFrame[mode];
559    
560     if (pCkData->RemainingBytes() <= frameSize) {
561     SamplesInLastFrame =
562     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563     SamplesTotal += SamplesInLastFrame;
564 schoenebeck 2 break;
565 persson 365 }
566     SamplesTotal += SamplesPerFrame;
567     pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 schoenebeck 2 }
569     }
570     pCkData->SetPos(0);
571    
572     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573     if (FrameTable) delete[] FrameTable;
574     FrameTable = new unsigned long[frameOffsets.size()];
575     std::list<unsigned long>::iterator end = frameOffsets.end();
576     std::list<unsigned long>::iterator iter = frameOffsets.begin();
577     for (int i = 0; iter != end; i++, iter++) {
578     FrameTable[i] = *iter;
579     }
580     }
581    
582     /**
583     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584     * ReleaseSampleData() to free the memory if you don't need the cached
585     * sample data anymore.
586     *
587     * @returns buffer_t structure with start address and size of the buffer
588     * in bytes
589     * @see ReleaseSampleData(), Read(), SetPos()
590     */
591     buffer_t Sample::LoadSampleData() {
592     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593     }
594    
595     /**
596     * Reads (uncompresses if needed) and caches the first \a SampleCount
597     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598     * memory space if you don't need the cached samples anymore. There is no
599     * guarantee that exactly \a SampleCount samples will be cached; this is
600     * not an error. The size will be eventually truncated e.g. to the
601     * beginning of a frame of a compressed sample. This is done for
602     * efficiency reasons while streaming the wave by your sampler engine
603     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604     * that will be returned to determine the actual cached samples, but note
605     * that the size is given in bytes! You get the number of actually cached
606     * samples by dividing it by the frame size of the sample:
607 schoenebeck 384 * @code
608 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609     * long cachedsamples = buf.Size / pSample->FrameSize;
610 schoenebeck 384 * @endcode
611 schoenebeck 2 *
612     * @param SampleCount - number of sample points to load into RAM
613     * @returns buffer_t structure with start address and size of
614     * the cached sample data in bytes
615     * @see ReleaseSampleData(), Read(), SetPos()
616     */
617     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619     }
620    
621     /**
622     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623     * ReleaseSampleData() to free the memory if you don't need the cached
624     * sample data anymore.
625     * The method will add \a NullSamplesCount silence samples past the
626     * official buffer end (this won't affect the 'Size' member of the
627     * buffer_t structure, that means 'Size' always reflects the size of the
628     * actual sample data, the buffer might be bigger though). Silence
629     * samples past the official buffer are needed for differential
630     * algorithms that always have to take subsequent samples into account
631     * (resampling/interpolation would be an important example) and avoids
632     * memory access faults in such cases.
633     *
634     * @param NullSamplesCount - number of silence samples the buffer should
635     * be extended past it's data end
636     * @returns buffer_t structure with start address and
637     * size of the buffer in bytes
638     * @see ReleaseSampleData(), Read(), SetPos()
639     */
640     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642     }
643    
644     /**
645     * Reads (uncompresses if needed) and caches the first \a SampleCount
646     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647     * memory space if you don't need the cached samples anymore. There is no
648     * guarantee that exactly \a SampleCount samples will be cached; this is
649     * not an error. The size will be eventually truncated e.g. to the
650     * beginning of a frame of a compressed sample. This is done for
651     * efficiency reasons while streaming the wave by your sampler engine
652     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653     * that will be returned to determine the actual cached samples, but note
654     * that the size is given in bytes! You get the number of actually cached
655     * samples by dividing it by the frame size of the sample:
656 schoenebeck 384 * @code
657 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658     * long cachedsamples = buf.Size / pSample->FrameSize;
659 schoenebeck 384 * @endcode
660 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
661     * official buffer end (this won't affect the 'Size' member of the
662     * buffer_t structure, that means 'Size' always reflects the size of the
663     * actual sample data, the buffer might be bigger though). Silence
664     * samples past the official buffer are needed for differential
665     * algorithms that always have to take subsequent samples into account
666     * (resampling/interpolation would be an important example) and avoids
667     * memory access faults in such cases.
668     *
669     * @param SampleCount - number of sample points to load into RAM
670     * @param NullSamplesCount - number of silence samples the buffer should
671     * be extended past it's data end
672     * @returns buffer_t structure with start address and
673     * size of the cached sample data in bytes
674     * @see ReleaseSampleData(), Read(), SetPos()
675     */
676     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
681 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
682     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684     // fill the remaining buffer space with silence samples
685     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686     return GetCache();
687     }
688    
689     /**
690     * Returns current cached sample points. A buffer_t structure will be
691     * returned which contains address pointer to the begin of the cache and
692     * the size of the cached sample data in bytes. Use
693     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
694     * RAM.
695     *
696     * @returns buffer_t structure with current cached sample points
697     * @see LoadSampleData();
698     */
699     buffer_t Sample::GetCache() {
700     // return a copy of the buffer_t structure
701     buffer_t result;
702     result.Size = this->RAMCache.Size;
703     result.pStart = this->RAMCache.pStart;
704     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
705     return result;
706     }
707    
708     /**
709     * Frees the cached sample from RAM if loaded with
710     * <i>LoadSampleData()</i> previously.
711     *
712     * @see LoadSampleData();
713     */
714     void Sample::ReleaseSampleData() {
715     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716     RAMCache.pStart = NULL;
717     RAMCache.Size = 0;
718 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
719 schoenebeck 2 }
720    
721 schoenebeck 809 /** @brief Resize sample.
722     *
723     * Resizes the sample's wave form data, that is the actual size of
724     * sample wave data possible to be written for this sample. This call
725     * will return immediately and just schedule the resize operation. You
726     * should call File::Save() to actually perform the resize operation(s)
727     * "physically" to the file. As this can take a while on large files, it
728     * is recommended to call Resize() first on all samples which have to be
729     * resized and finally to call File::Save() to perform all those resize
730     * operations in one rush.
731     *
732     * The actual size (in bytes) is dependant to the current FrameSize
733     * value. You may want to set FrameSize before calling Resize().
734     *
735     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
736     * enlarged samples before calling File::Save() as this might exceed the
737     * current sample's boundary!
738     *
739 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
740     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
741 schoenebeck 809 * other formats will fail!
742     *
743     * @param iNewSize - new sample wave data size in sample points (must be
744     * greater than zero)
745 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
746 schoenebeck 809 * or if \a iNewSize is less than 1
747     * @throws gig::Exception if existing sample is compressed
748     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
749     * DLS::Sample::FormatTag, File::Save()
750     */
751     void Sample::Resize(int iNewSize) {
752     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753     DLS::Sample::Resize(iNewSize);
754     }
755    
756 schoenebeck 2 /**
757     * Sets the position within the sample (in sample points, not in
758     * bytes). Use this method and <i>Read()</i> if you don't want to load
759     * the sample into RAM, thus for disk streaming.
760     *
761     * Although the original Gigasampler engine doesn't allow positioning
762     * within compressed samples, I decided to implement it. Even though
763     * the Gigasampler format doesn't allow to define loops for compressed
764     * samples at the moment, positioning within compressed samples might be
765     * interesting for some sampler engines though. The only drawback about
766     * my decision is that it takes longer to load compressed gig Files on
767     * startup, because it's neccessary to scan the samples for some
768     * mandatory informations. But I think as it doesn't affect the runtime
769     * efficiency, nobody will have a problem with that.
770     *
771     * @param SampleCount number of sample points to jump
772     * @param Whence optional: to which relation \a SampleCount refers
773     * to, if omited <i>RIFF::stream_start</i> is assumed
774     * @returns the new sample position
775     * @see Read()
776     */
777     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778     if (Compressed) {
779     switch (Whence) {
780     case RIFF::stream_curpos:
781     this->SamplePos += SampleCount;
782     break;
783     case RIFF::stream_end:
784     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785     break;
786     case RIFF::stream_backward:
787     this->SamplePos -= SampleCount;
788     break;
789     case RIFF::stream_start: default:
790     this->SamplePos = SampleCount;
791     break;
792     }
793     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794    
795     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798     return this->SamplePos;
799     }
800     else { // not compressed
801     unsigned long orderedBytes = SampleCount * this->FrameSize;
802     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803     return (result == orderedBytes) ? SampleCount
804     : result / this->FrameSize;
805     }
806     }
807    
808     /**
809     * Returns the current position in the sample (in sample points).
810     */
811     unsigned long Sample::GetPos() {
812     if (Compressed) return SamplePos;
813     else return pCkData->GetPos() / FrameSize;
814     }
815    
816     /**
817 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
818     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
819     * the position within the sample respectively, this method honors the
820     * looping informations of the sample (if any). The sample wave stream
821     * will be decompressed on the fly if using a compressed sample. Use this
822     * method if you don't want to load the sample into RAM, thus for disk
823     * streaming. All this methods needs to know to proceed with streaming
824     * for the next time you call this method is stored in \a pPlaybackState.
825     * You have to allocate and initialize the playback_state_t structure by
826     * yourself before you use it to stream a sample:
827 schoenebeck 384 * @code
828     * gig::playback_state_t playbackstate;
829     * playbackstate.position = 0;
830     * playbackstate.reverse = false;
831     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
832     * @endcode
833 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
834     * defined or if the current read position is located within a loop area.
835     * The method already handles such cases by itself.
836     *
837 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
838     * have to use an external decompression buffer for <b>EACH</b>
839     * streaming thread to avoid race conditions and crashes!
840     *
841 schoenebeck 24 * @param pBuffer destination buffer
842     * @param SampleCount number of sample points to read
843     * @param pPlaybackState will be used to store and reload the playback
844     * state for the next ReadAndLoop() call
845 persson 864 * @param pDimRgn dimension region with looping information
846 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
847 schoenebeck 24 * @returns number of successfully read sample points
848 schoenebeck 384 * @see CreateDecompressionBuffer()
849 schoenebeck 24 */
850 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853     uint8_t* pDst = (uint8_t*) pBuffer;
854    
855     SetPos(pPlaybackState->position); // recover position from the last time
856    
857 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858 schoenebeck 24
859 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861 schoenebeck 24
862 persson 864 if (GetPos() <= loopEnd) {
863     switch (loop.LoopType) {
864 schoenebeck 24
865 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
866     do {
867     // if not endless loop check if max. number of loop cycles have been passed
868     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869 schoenebeck 24
870 persson 864 if (!pPlaybackState->reverse) { // forward playback
871     do {
872     samplestoloopend = loopEnd - GetPos();
873     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874     samplestoread -= readsamples;
875     totalreadsamples += readsamples;
876     if (readsamples == samplestoloopend) {
877     pPlaybackState->reverse = true;
878     break;
879     }
880     } while (samplestoread && readsamples);
881     }
882     else { // backward playback
883 schoenebeck 24
884 persson 864 // as we can only read forward from disk, we have to
885     // determine the end position within the loop first,
886     // read forward from that 'end' and finally after
887     // reading, swap all sample frames so it reflects
888     // backward playback
889 schoenebeck 24
890 persson 864 unsigned long swapareastart = totalreadsamples;
891     unsigned long loopoffset = GetPos() - loop.LoopStart;
892     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894 schoenebeck 24
895 persson 864 SetPos(reverseplaybackend);
896 schoenebeck 24
897 persson 864 // read samples for backward playback
898     do {
899     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900     samplestoreadinloop -= readsamples;
901     samplestoread -= readsamples;
902     totalreadsamples += readsamples;
903     } while (samplestoreadinloop && readsamples);
904 schoenebeck 24
905 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
906    
907     if (reverseplaybackend == loop.LoopStart) {
908     pPlaybackState->loop_cycles_left--;
909     pPlaybackState->reverse = false;
910     }
911    
912     // reverse the sample frames for backward playback
913 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915 schoenebeck 24 }
916 persson 864 } while (samplestoread && readsamples);
917     break;
918     }
919 schoenebeck 24
920 persson 864 case loop_type_backward: { // TODO: not tested yet!
921     // forward playback (not entered the loop yet)
922     if (!pPlaybackState->reverse) do {
923     samplestoloopend = loopEnd - GetPos();
924     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
925     samplestoread -= readsamples;
926     totalreadsamples += readsamples;
927     if (readsamples == samplestoloopend) {
928     pPlaybackState->reverse = true;
929     break;
930     }
931     } while (samplestoread && readsamples);
932 schoenebeck 24
933 persson 864 if (!samplestoread) break;
934 schoenebeck 24
935 persson 864 // as we can only read forward from disk, we have to
936     // determine the end position within the loop first,
937     // read forward from that 'end' and finally after
938     // reading, swap all sample frames so it reflects
939     // backward playback
940 schoenebeck 24
941 persson 864 unsigned long swapareastart = totalreadsamples;
942     unsigned long loopoffset = GetPos() - loop.LoopStart;
943     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
944     : samplestoread;
945     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
946 schoenebeck 24
947 persson 864 SetPos(reverseplaybackend);
948 schoenebeck 24
949 persson 864 // read samples for backward playback
950     do {
951     // if not endless loop check if max. number of loop cycles have been passed
952     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
953     samplestoloopend = loopEnd - GetPos();
954     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
955     samplestoreadinloop -= readsamples;
956     samplestoread -= readsamples;
957     totalreadsamples += readsamples;
958     if (readsamples == samplestoloopend) {
959     pPlaybackState->loop_cycles_left--;
960     SetPos(loop.LoopStart);
961     }
962     } while (samplestoreadinloop && readsamples);
963 schoenebeck 24
964 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
965 schoenebeck 24
966 persson 864 // reverse the sample frames for backward playback
967     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
968     break;
969     }
970 schoenebeck 24
971 persson 864 default: case loop_type_normal: {
972     do {
973     // if not endless loop check if max. number of loop cycles have been passed
974     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
975     samplestoloopend = loopEnd - GetPos();
976     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
977     samplestoread -= readsamples;
978     totalreadsamples += readsamples;
979     if (readsamples == samplestoloopend) {
980     pPlaybackState->loop_cycles_left--;
981     SetPos(loop.LoopStart);
982     }
983     } while (samplestoread && readsamples);
984     break;
985     }
986 schoenebeck 24 }
987     }
988     }
989    
990     // read on without looping
991     if (samplestoread) do {
992 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
993 schoenebeck 24 samplestoread -= readsamples;
994     totalreadsamples += readsamples;
995     } while (readsamples && samplestoread);
996    
997     // store current position
998     pPlaybackState->position = GetPos();
999    
1000     return totalreadsamples;
1001     }
1002    
1003     /**
1004 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1005     * position into the buffer pointed by \a pBuffer and increments the
1006     * position within the sample. The sample wave stream will be
1007     * decompressed on the fly if using a compressed sample. Use this method
1008     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1009     * thus for disk streaming.
1010     *
1011 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1012     * have to use an external decompression buffer for <b>EACH</b>
1013     * streaming thread to avoid race conditions and crashes!
1014     *
1015 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1016     * (using native endianness). For 24 bit, the buffer will
1017     * contain three bytes per sample, little-endian.
1018     *
1019 schoenebeck 2 * @param pBuffer destination buffer
1020     * @param SampleCount number of sample points to read
1021 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1022 schoenebeck 2 * @returns number of successfully read sample points
1023 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1024 schoenebeck 2 */
1025 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1026 schoenebeck 21 if (SampleCount == 0) return 0;
1027 schoenebeck 317 if (!Compressed) {
1028     if (BitDepth == 24) {
1029 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1030 schoenebeck 317 }
1031 persson 365 else { // 16 bit
1032     // (pCkData->Read does endian correction)
1033     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1034     : pCkData->Read(pBuffer, SampleCount, 2);
1035     }
1036 schoenebeck 317 }
1037 persson 365 else {
1038 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1039 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1040     unsigned long assumedsize = GuessSize(SampleCount),
1041 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1042     remainingsamples = SampleCount,
1043 persson 365 copysamples, skipsamples,
1044     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1045 schoenebeck 2 this->FrameOffset = 0;
1046    
1047 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1048    
1049     // if decompression buffer too small, then reduce amount of samples to read
1050     if (pDecompressionBuffer->Size < assumedsize) {
1051     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1052     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1053     remainingsamples = SampleCount;
1054     assumedsize = GuessSize(SampleCount);
1055 schoenebeck 2 }
1056    
1057 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1058 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1059 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1060 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1061    
1062 persson 365 while (remainingsamples && remainingbytes) {
1063     unsigned long framesamples = SamplesPerFrame;
1064     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1065 schoenebeck 2
1066 persson 365 int mode_l = *pSrc++, mode_r = 0;
1067    
1068     if (Channels == 2) {
1069     mode_r = *pSrc++;
1070     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1071     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1072     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1073     if (remainingbytes < framebytes) { // last frame in sample
1074     framesamples = SamplesInLastFrame;
1075     if (mode_l == 4 && (framesamples & 1)) {
1076     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1077     }
1078     else {
1079     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1080     }
1081 schoenebeck 2 }
1082     }
1083 persson 365 else {
1084     framebytes = bytesPerFrame[mode_l] + 1;
1085     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1086     if (remainingbytes < framebytes) {
1087     framesamples = SamplesInLastFrame;
1088     }
1089     }
1090 schoenebeck 2
1091     // determine how many samples in this frame to skip and read
1092 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1093     if (currentframeoffset <= framesamples) {
1094     copysamples = framesamples - currentframeoffset;
1095     skipsamples = currentframeoffset;
1096     }
1097     else {
1098     copysamples = 0;
1099     skipsamples = framesamples;
1100     }
1101 schoenebeck 2 }
1102     else {
1103 persson 365 // This frame has enough data for pBuffer, but not
1104     // all of the frame is needed. Set file position
1105     // to start of this frame for next call to Read.
1106 schoenebeck 2 copysamples = remainingsamples;
1107 persson 365 skipsamples = currentframeoffset;
1108     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1109     this->FrameOffset = currentframeoffset + copysamples;
1110     }
1111     remainingsamples -= copysamples;
1112    
1113     if (remainingbytes > framebytes) {
1114     remainingbytes -= framebytes;
1115     if (remainingsamples == 0 &&
1116     currentframeoffset + copysamples == framesamples) {
1117     // This frame has enough data for pBuffer, and
1118     // all of the frame is needed. Set file
1119     // position to start of next frame for next
1120     // call to Read. FrameOffset is 0.
1121 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1122     }
1123     }
1124 persson 365 else remainingbytes = 0;
1125 schoenebeck 2
1126 persson 365 currentframeoffset -= skipsamples;
1127 schoenebeck 2
1128 persson 365 if (copysamples == 0) {
1129     // skip this frame
1130     pSrc += framebytes - Channels;
1131     }
1132     else {
1133     const unsigned char* const param_l = pSrc;
1134     if (BitDepth == 24) {
1135     if (mode_l != 2) pSrc += 12;
1136 schoenebeck 2
1137 persson 365 if (Channels == 2) { // Stereo
1138     const unsigned char* const param_r = pSrc;
1139     if (mode_r != 2) pSrc += 12;
1140    
1141 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1142 persson 437 skipsamples, copysamples, TruncatedBits);
1143 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1144 persson 437 skipsamples, copysamples, TruncatedBits);
1145 persson 902 pDst24 += copysamples * 6;
1146 schoenebeck 2 }
1147 persson 365 else { // Mono
1148 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1149 persson 437 skipsamples, copysamples, TruncatedBits);
1150 persson 902 pDst24 += copysamples * 3;
1151 schoenebeck 2 }
1152 persson 365 }
1153     else { // 16 bit
1154     if (mode_l) pSrc += 4;
1155 schoenebeck 2
1156 persson 365 int step;
1157     if (Channels == 2) { // Stereo
1158     const unsigned char* const param_r = pSrc;
1159     if (mode_r) pSrc += 4;
1160    
1161     step = (2 - mode_l) + (2 - mode_r);
1162 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1163     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1164 persson 365 skipsamples, copysamples);
1165     pDst += copysamples << 1;
1166 schoenebeck 2 }
1167 persson 365 else { // Mono
1168     step = 2 - mode_l;
1169 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1170 persson 365 pDst += copysamples;
1171 schoenebeck 2 }
1172 persson 365 }
1173     pSrc += nextFrameOffset;
1174     }
1175 schoenebeck 2
1176 persson 365 // reload from disk to local buffer if needed
1177     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1178     assumedsize = GuessSize(remainingsamples);
1179     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1180     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1181 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1182     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1183 schoenebeck 2 }
1184 persson 365 } // while
1185    
1186 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1187 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1188 schoenebeck 2 return (SampleCount - remainingsamples);
1189     }
1190     }
1191    
1192 schoenebeck 809 /** @brief Write sample wave data.
1193     *
1194     * Writes \a SampleCount number of sample points from the buffer pointed
1195     * by \a pBuffer and increments the position within the sample. Use this
1196     * method to directly write the sample data to disk, i.e. if you don't
1197     * want or cannot load the whole sample data into RAM.
1198     *
1199     * You have to Resize() the sample to the desired size and call
1200     * File::Save() <b>before</b> using Write().
1201     *
1202     * Note: there is currently no support for writing compressed samples.
1203     *
1204 persson 1264 * For 16 bit samples, the data in the source buffer should be
1205     * int16_t (using native endianness). For 24 bit, the buffer
1206     * should contain three bytes per sample, little-endian.
1207     *
1208 schoenebeck 809 * @param pBuffer - source buffer
1209     * @param SampleCount - number of sample points to write
1210     * @throws DLS::Exception if current sample size is too small
1211     * @throws gig::Exception if sample is compressed
1212     * @see DLS::LoadSampleData()
1213     */
1214     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216 persson 1207
1217     // if this is the first write in this sample, reset the
1218     // checksum calculator
1219 persson 1199 if (pCkData->GetPos() == 0) {
1220 schoenebeck 1381 __resetCRC(crc);
1221 persson 1199 }
1222 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223     unsigned long res;
1224     if (BitDepth == 24) {
1225     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226     } else { // 16 bit
1227     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228     : pCkData->Write(pBuffer, SampleCount, 2);
1229     }
1230 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231 persson 1199
1232 persson 1207 // if this is the last write, update the checksum chunk in the
1233     // file
1234 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1235     File* pFile = static_cast<File*>(GetParent());
1236 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237 persson 1199 }
1238     return res;
1239 schoenebeck 809 }
1240    
1241 schoenebeck 384 /**
1242     * Allocates a decompression buffer for streaming (compressed) samples
1243     * with Sample::Read(). If you are using more than one streaming thread
1244     * in your application you <b>HAVE</b> to create a decompression buffer
1245     * for <b>EACH</b> of your streaming threads and provide it with the
1246     * Sample::Read() call in order to avoid race conditions and crashes.
1247     *
1248     * You should free the memory occupied by the allocated buffer(s) once
1249     * you don't need one of your streaming threads anymore by calling
1250     * DestroyDecompressionBuffer().
1251     *
1252     * @param MaxReadSize - the maximum size (in sample points) you ever
1253     * expect to read with one Read() call
1254     * @returns allocated decompression buffer
1255     * @see DestroyDecompressionBuffer()
1256     */
1257     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1258     buffer_t result;
1259     const double worstCaseHeaderOverhead =
1260     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1261     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1262     result.pStart = new int8_t[result.Size];
1263     result.NullExtensionSize = 0;
1264     return result;
1265     }
1266    
1267     /**
1268     * Free decompression buffer, previously created with
1269     * CreateDecompressionBuffer().
1270     *
1271     * @param DecompressionBuffer - previously allocated decompression
1272     * buffer to free
1273     */
1274     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1275     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1276     delete[] (int8_t*) DecompressionBuffer.pStart;
1277     DecompressionBuffer.pStart = NULL;
1278     DecompressionBuffer.Size = 0;
1279     DecompressionBuffer.NullExtensionSize = 0;
1280     }
1281     }
1282    
1283 schoenebeck 930 /**
1284     * Returns pointer to the Group this Sample belongs to. In the .gig
1285     * format a sample always belongs to one group. If it wasn't explicitly
1286     * assigned to a certain group, it will be automatically assigned to a
1287     * default group.
1288     *
1289     * @returns Sample's Group (never NULL)
1290     */
1291     Group* Sample::GetGroup() const {
1292     return pGroup;
1293     }
1294    
1295 schoenebeck 2 Sample::~Sample() {
1296     Instances--;
1297 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1298     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1299     InternalDecompressionBuffer.pStart = NULL;
1300     InternalDecompressionBuffer.Size = 0;
1301 schoenebeck 355 }
1302 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1303     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1304     }
1305    
1306    
1307    
1308     // *************** DimensionRegion ***************
1309     // *
1310    
1311 schoenebeck 16 uint DimensionRegion::Instances = 0;
1312     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313    
1314 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315 schoenebeck 16 Instances++;
1316    
1317 schoenebeck 823 pSample = NULL;
1318 schoenebeck 1316 pRegion = pParent;
1319 schoenebeck 823
1320 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321     else memset(&Crossfade, 0, 4);
1322    
1323 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324 schoenebeck 2
1325     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1326 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1327 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1328 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1330     _3ewa->ReadInt16(); // unknown
1331     LFO1InternalDepth = _3ewa->ReadUint16();
1332     _3ewa->ReadInt16(); // unknown
1333     LFO3InternalDepth = _3ewa->ReadInt16();
1334     _3ewa->ReadInt16(); // unknown
1335     LFO1ControlDepth = _3ewa->ReadUint16();
1336     _3ewa->ReadInt16(); // unknown
1337     LFO3ControlDepth = _3ewa->ReadInt16();
1338     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340     _3ewa->ReadInt16(); // unknown
1341     EG1Sustain = _3ewa->ReadUint16();
1342     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1343     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1344     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1345     EG1ControllerInvert = eg1ctrloptions & 0x01;
1346     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1347     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1348     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1349     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1350     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1351     EG2ControllerInvert = eg2ctrloptions & 0x01;
1352     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1353     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1354     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1355     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358     _3ewa->ReadInt16(); // unknown
1359     EG2Sustain = _3ewa->ReadUint16();
1360     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361     _3ewa->ReadInt16(); // unknown
1362     LFO2ControlDepth = _3ewa->ReadUint16();
1363     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1364     _3ewa->ReadInt16(); // unknown
1365     LFO2InternalDepth = _3ewa->ReadUint16();
1366     int32_t eg1decay2 = _3ewa->ReadInt32();
1367     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1368     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1369     _3ewa->ReadInt16(); // unknown
1370     EG1PreAttack = _3ewa->ReadUint16();
1371     int32_t eg2decay2 = _3ewa->ReadInt32();
1372     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1373     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1374     _3ewa->ReadInt16(); // unknown
1375     EG2PreAttack = _3ewa->ReadUint16();
1376     uint8_t velocityresponse = _3ewa->ReadUint8();
1377     if (velocityresponse < 5) {
1378     VelocityResponseCurve = curve_type_nonlinear;
1379     VelocityResponseDepth = velocityresponse;
1380     } else if (velocityresponse < 10) {
1381     VelocityResponseCurve = curve_type_linear;
1382     VelocityResponseDepth = velocityresponse - 5;
1383     } else if (velocityresponse < 15) {
1384     VelocityResponseCurve = curve_type_special;
1385     VelocityResponseDepth = velocityresponse - 10;
1386     } else {
1387     VelocityResponseCurve = curve_type_unknown;
1388     VelocityResponseDepth = 0;
1389     }
1390     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1391     if (releasevelocityresponse < 5) {
1392     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1393     ReleaseVelocityResponseDepth = releasevelocityresponse;
1394     } else if (releasevelocityresponse < 10) {
1395     ReleaseVelocityResponseCurve = curve_type_linear;
1396     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1397     } else if (releasevelocityresponse < 15) {
1398     ReleaseVelocityResponseCurve = curve_type_special;
1399     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1400     } else {
1401     ReleaseVelocityResponseCurve = curve_type_unknown;
1402     ReleaseVelocityResponseDepth = 0;
1403     }
1404     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1405     AttenuationControllerThreshold = _3ewa->ReadInt8();
1406     _3ewa->ReadInt32(); // unknown
1407     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1408     _3ewa->ReadInt16(); // unknown
1409     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1410     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1411     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1412     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1413     else DimensionBypass = dim_bypass_ctrl_none;
1414     uint8_t pan = _3ewa->ReadUint8();
1415     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1416     SelfMask = _3ewa->ReadInt8() & 0x01;
1417     _3ewa->ReadInt8(); // unknown
1418     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1419     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1420     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1421     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1422     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1423     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1424     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1425     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1426     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1427     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1428     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1429     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1430     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1431     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1432     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1433     : vcf_res_ctrl_none;
1434     uint16_t eg3depth = _3ewa->ReadUint16();
1435     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1436     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1437     _3ewa->ReadInt16(); // unknown
1438     ChannelOffset = _3ewa->ReadUint8() / 4;
1439     uint8_t regoptions = _3ewa->ReadUint8();
1440     MSDecode = regoptions & 0x01; // bit 0
1441     SustainDefeat = regoptions & 0x02; // bit 1
1442     _3ewa->ReadInt16(); // unknown
1443     VelocityUpperLimit = _3ewa->ReadInt8();
1444     _3ewa->ReadInt8(); // unknown
1445     _3ewa->ReadInt16(); // unknown
1446     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1447     _3ewa->ReadInt8(); // unknown
1448     _3ewa->ReadInt8(); // unknown
1449     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1450     uint8_t vcfcutoff = _3ewa->ReadUint8();
1451     VCFEnabled = vcfcutoff & 0x80; // bit 7
1452     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1453     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1454     uint8_t vcfvelscale = _3ewa->ReadUint8();
1455     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1456     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1457     _3ewa->ReadInt8(); // unknown
1458     uint8_t vcfresonance = _3ewa->ReadUint8();
1459     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1460     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1461     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1462     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1463     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1464     uint8_t vcfvelocity = _3ewa->ReadUint8();
1465     VCFVelocityDynamicRange = vcfvelocity % 5;
1466     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1467     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1468     if (VCFType == vcf_type_lowpass) {
1469     if (lfo3ctrl & 0x40) // bit 6
1470     VCFType = vcf_type_lowpassturbo;
1471     }
1472 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1473     _3ewa->Read(DimensionUpperLimits, 1, 8);
1474     } else {
1475     memset(DimensionUpperLimits, 0, 8);
1476     }
1477 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1478     // use default values
1479     LFO3Frequency = 1.0;
1480     EG3Attack = 0.0;
1481     LFO1InternalDepth = 0;
1482     LFO3InternalDepth = 0;
1483     LFO1ControlDepth = 0;
1484     LFO3ControlDepth = 0;
1485     EG1Attack = 0.0;
1486 persson 1218 EG1Decay1 = 0.005;
1487     EG1Sustain = 1000;
1488     EG1Release = 0.3;
1489 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1490     EG1Controller.controller_number = 0;
1491     EG1ControllerInvert = false;
1492     EG1ControllerAttackInfluence = 0;
1493     EG1ControllerDecayInfluence = 0;
1494     EG1ControllerReleaseInfluence = 0;
1495     EG2Controller.type = eg2_ctrl_t::type_none;
1496     EG2Controller.controller_number = 0;
1497     EG2ControllerInvert = false;
1498     EG2ControllerAttackInfluence = 0;
1499     EG2ControllerDecayInfluence = 0;
1500     EG2ControllerReleaseInfluence = 0;
1501     LFO1Frequency = 1.0;
1502     EG2Attack = 0.0;
1503 persson 1218 EG2Decay1 = 0.005;
1504     EG2Sustain = 1000;
1505     EG2Release = 0.3;
1506 schoenebeck 809 LFO2ControlDepth = 0;
1507     LFO2Frequency = 1.0;
1508     LFO2InternalDepth = 0;
1509     EG1Decay2 = 0.0;
1510 persson 1218 EG1InfiniteSustain = true;
1511     EG1PreAttack = 0;
1512 schoenebeck 809 EG2Decay2 = 0.0;
1513 persson 1218 EG2InfiniteSustain = true;
1514     EG2PreAttack = 0;
1515 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1516     VelocityResponseDepth = 3;
1517     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1518     ReleaseVelocityResponseDepth = 3;
1519     VelocityResponseCurveScaling = 32;
1520     AttenuationControllerThreshold = 0;
1521     SampleStartOffset = 0;
1522     PitchTrack = true;
1523     DimensionBypass = dim_bypass_ctrl_none;
1524     Pan = 0;
1525     SelfMask = true;
1526     LFO3Controller = lfo3_ctrl_modwheel;
1527     LFO3Sync = false;
1528     InvertAttenuationController = false;
1529     AttenuationController.type = attenuation_ctrl_t::type_none;
1530     AttenuationController.controller_number = 0;
1531     LFO2Controller = lfo2_ctrl_internal;
1532     LFO2FlipPhase = false;
1533     LFO2Sync = false;
1534     LFO1Controller = lfo1_ctrl_internal;
1535     LFO1FlipPhase = false;
1536     LFO1Sync = false;
1537     VCFResonanceController = vcf_res_ctrl_none;
1538     EG3Depth = 0;
1539     ChannelOffset = 0;
1540     MSDecode = false;
1541     SustainDefeat = false;
1542     VelocityUpperLimit = 0;
1543     ReleaseTriggerDecay = 0;
1544     EG1Hold = false;
1545     VCFEnabled = false;
1546     VCFCutoff = 0;
1547     VCFCutoffController = vcf_cutoff_ctrl_none;
1548     VCFCutoffControllerInvert = false;
1549     VCFVelocityScale = 0;
1550     VCFResonance = 0;
1551     VCFResonanceDynamic = false;
1552     VCFKeyboardTracking = false;
1553     VCFKeyboardTrackingBreakpoint = 0;
1554     VCFVelocityDynamicRange = 0x04;
1555     VCFVelocityCurve = curve_type_linear;
1556     VCFType = vcf_type_lowpass;
1557 persson 1247 memset(DimensionUpperLimits, 127, 8);
1558 schoenebeck 2 }
1559 schoenebeck 16
1560 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1561     VelocityResponseDepth,
1562     VelocityResponseCurveScaling);
1563    
1564 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1565     ReleaseVelocityResponseCurve,
1566     ReleaseVelocityResponseDepth
1567     );
1568 persson 613
1569 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1570     VCFVelocityDynamicRange,
1571     VCFVelocityScale,
1572     VCFCutoffController);
1573 persson 613
1574     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575 persson 858 VelocityTable = 0;
1576 persson 613 }
1577    
1578 persson 1301 /*
1579     * Constructs a DimensionRegion by copying all parameters from
1580     * another DimensionRegion
1581     */
1582     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583     Instances++;
1584     *this = src; // default memberwise shallow copy of all parameters
1585     pParentList = _3ewl; // restore the chunk pointer
1586    
1587     // deep copy of owned structures
1588     if (src.VelocityTable) {
1589     VelocityTable = new uint8_t[128];
1590     for (int k = 0 ; k < 128 ; k++)
1591     VelocityTable[k] = src.VelocityTable[k];
1592     }
1593     if (src.pSampleLoops) {
1594     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1595     for (int k = 0 ; k < src.SampleLoops ; k++)
1596     pSampleLoops[k] = src.pSampleLoops[k];
1597     }
1598     }
1599    
1600 schoenebeck 809 /**
1601 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1602     * which depends on this value.
1603     */
1604     void DimensionRegion::SetGain(int32_t gain) {
1605     DLS::Sampler::SetGain(gain);
1606     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1607     }
1608    
1609     /**
1610 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1611     * have to call File::Save() to make changes persistent.
1612     *
1613     * Usually there is absolutely no need to call this method explicitly.
1614     * It will be called automatically when File::Save() was called.
1615     */
1616     void DimensionRegion::UpdateChunks() {
1617     // first update base class's chunk
1618     DLS::Sampler::UpdateChunks();
1619    
1620 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1621     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1622     pData[12] = Crossfade.in_start;
1623     pData[13] = Crossfade.in_end;
1624     pData[14] = Crossfade.out_start;
1625     pData[15] = Crossfade.out_end;
1626    
1627 schoenebeck 809 // make sure '3ewa' chunk exists
1628     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1629 persson 1317 if (!_3ewa) {
1630     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1631     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1632     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1633 persson 1264 }
1634 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1635 schoenebeck 809
1636     // update '3ewa' chunk with DimensionRegion's current settings
1637    
1638 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1639 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1640 schoenebeck 809
1641     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1642 persson 1179 store32(&pData[4], lfo3freq);
1643 schoenebeck 809
1644     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1645 persson 1179 store32(&pData[8], eg3attack);
1646 schoenebeck 809
1647     // next 2 bytes unknown
1648    
1649 persson 1179 store16(&pData[14], LFO1InternalDepth);
1650 schoenebeck 809
1651     // next 2 bytes unknown
1652    
1653 persson 1179 store16(&pData[18], LFO3InternalDepth);
1654 schoenebeck 809
1655     // next 2 bytes unknown
1656    
1657 persson 1179 store16(&pData[22], LFO1ControlDepth);
1658 schoenebeck 809
1659     // next 2 bytes unknown
1660    
1661 persson 1179 store16(&pData[26], LFO3ControlDepth);
1662 schoenebeck 809
1663     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1664 persson 1179 store32(&pData[28], eg1attack);
1665 schoenebeck 809
1666     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1667 persson 1179 store32(&pData[32], eg1decay1);
1668 schoenebeck 809
1669     // next 2 bytes unknown
1670    
1671 persson 1179 store16(&pData[38], EG1Sustain);
1672 schoenebeck 809
1673     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1674 persson 1179 store32(&pData[40], eg1release);
1675 schoenebeck 809
1676     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1677 persson 1179 pData[44] = eg1ctl;
1678 schoenebeck 809
1679     const uint8_t eg1ctrloptions =
1680 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1681 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1682     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1683     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1684 persson 1179 pData[45] = eg1ctrloptions;
1685 schoenebeck 809
1686     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1687 persson 1179 pData[46] = eg2ctl;
1688 schoenebeck 809
1689     const uint8_t eg2ctrloptions =
1690 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1691 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1692     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1693     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1694 persson 1179 pData[47] = eg2ctrloptions;
1695 schoenebeck 809
1696     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1697 persson 1179 store32(&pData[48], lfo1freq);
1698 schoenebeck 809
1699     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1700 persson 1179 store32(&pData[52], eg2attack);
1701 schoenebeck 809
1702     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1703 persson 1179 store32(&pData[56], eg2decay1);
1704 schoenebeck 809
1705     // next 2 bytes unknown
1706    
1707 persson 1179 store16(&pData[62], EG2Sustain);
1708 schoenebeck 809
1709     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1710 persson 1179 store32(&pData[64], eg2release);
1711 schoenebeck 809
1712     // next 2 bytes unknown
1713    
1714 persson 1179 store16(&pData[70], LFO2ControlDepth);
1715 schoenebeck 809
1716     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1717 persson 1179 store32(&pData[72], lfo2freq);
1718 schoenebeck 809
1719     // next 2 bytes unknown
1720    
1721 persson 1179 store16(&pData[78], LFO2InternalDepth);
1722 schoenebeck 809
1723     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1724 persson 1179 store32(&pData[80], eg1decay2);
1725 schoenebeck 809
1726     // next 2 bytes unknown
1727    
1728 persson 1179 store16(&pData[86], EG1PreAttack);
1729 schoenebeck 809
1730     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1731 persson 1179 store32(&pData[88], eg2decay2);
1732 schoenebeck 809
1733     // next 2 bytes unknown
1734    
1735 persson 1179 store16(&pData[94], EG2PreAttack);
1736 schoenebeck 809
1737     {
1738     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1739     uint8_t velocityresponse = VelocityResponseDepth;
1740     switch (VelocityResponseCurve) {
1741     case curve_type_nonlinear:
1742     break;
1743     case curve_type_linear:
1744     velocityresponse += 5;
1745     break;
1746     case curve_type_special:
1747     velocityresponse += 10;
1748     break;
1749     case curve_type_unknown:
1750     default:
1751     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1752     }
1753 persson 1179 pData[96] = velocityresponse;
1754 schoenebeck 809 }
1755    
1756     {
1757     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1758     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1759     switch (ReleaseVelocityResponseCurve) {
1760     case curve_type_nonlinear:
1761     break;
1762     case curve_type_linear:
1763     releasevelocityresponse += 5;
1764     break;
1765     case curve_type_special:
1766     releasevelocityresponse += 10;
1767     break;
1768     case curve_type_unknown:
1769     default:
1770     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1771     }
1772 persson 1179 pData[97] = releasevelocityresponse;
1773 schoenebeck 809 }
1774    
1775 persson 1179 pData[98] = VelocityResponseCurveScaling;
1776 schoenebeck 809
1777 persson 1179 pData[99] = AttenuationControllerThreshold;
1778 schoenebeck 809
1779     // next 4 bytes unknown
1780    
1781 persson 1179 store16(&pData[104], SampleStartOffset);
1782 schoenebeck 809
1783     // next 2 bytes unknown
1784    
1785     {
1786     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1787     switch (DimensionBypass) {
1788     case dim_bypass_ctrl_94:
1789     pitchTrackDimensionBypass |= 0x10;
1790     break;
1791     case dim_bypass_ctrl_95:
1792     pitchTrackDimensionBypass |= 0x20;
1793     break;
1794     case dim_bypass_ctrl_none:
1795     //FIXME: should we set anything here?
1796     break;
1797     default:
1798     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1799     }
1800 persson 1179 pData[108] = pitchTrackDimensionBypass;
1801 schoenebeck 809 }
1802    
1803     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1804 persson 1179 pData[109] = pan;
1805 schoenebeck 809
1806     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1807 persson 1179 pData[110] = selfmask;
1808 schoenebeck 809
1809     // next byte unknown
1810    
1811     {
1812     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1813     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1814     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1815     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1816 persson 1179 pData[112] = lfo3ctrl;
1817 schoenebeck 809 }
1818    
1819     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1820 persson 1179 pData[113] = attenctl;
1821 schoenebeck 809
1822     {
1823     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1824     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1825     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1826     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1827 persson 1179 pData[114] = lfo2ctrl;
1828 schoenebeck 809 }
1829    
1830     {
1831     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1832     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1833     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1834     if (VCFResonanceController != vcf_res_ctrl_none)
1835     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1836 persson 1179 pData[115] = lfo1ctrl;
1837 schoenebeck 809 }
1838    
1839     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1840     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1841 persson 1869 store16(&pData[116], eg3depth);
1842 schoenebeck 809
1843     // next 2 bytes unknown
1844    
1845     const uint8_t channeloffset = ChannelOffset * 4;
1846 persson 1179 pData[120] = channeloffset;
1847 schoenebeck 809
1848     {
1849     uint8_t regoptions = 0;
1850     if (MSDecode) regoptions |= 0x01; // bit 0
1851     if (SustainDefeat) regoptions |= 0x02; // bit 1
1852 persson 1179 pData[121] = regoptions;
1853 schoenebeck 809 }
1854    
1855     // next 2 bytes unknown
1856    
1857 persson 1179 pData[124] = VelocityUpperLimit;
1858 schoenebeck 809
1859     // next 3 bytes unknown
1860    
1861 persson 1179 pData[128] = ReleaseTriggerDecay;
1862 schoenebeck 809
1863     // next 2 bytes unknown
1864    
1865     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1866 persson 1179 pData[131] = eg1hold;
1867 schoenebeck 809
1868 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1869 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1870 persson 1179 pData[132] = vcfcutoff;
1871 schoenebeck 809
1872 persson 1179 pData[133] = VCFCutoffController;
1873 schoenebeck 809
1874 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1875 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1876 persson 1179 pData[134] = vcfvelscale;
1877 schoenebeck 809
1878     // next byte unknown
1879    
1880 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1881 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1882 persson 1179 pData[136] = vcfresonance;
1883 schoenebeck 809
1884 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1885 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1886 persson 1179 pData[137] = vcfbreakpoint;
1887 schoenebeck 809
1888     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1889     VCFVelocityCurve * 5;
1890 persson 1179 pData[138] = vcfvelocity;
1891 schoenebeck 809
1892     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1893 persson 1179 pData[139] = vcftype;
1894 persson 1070
1895     if (chunksize >= 148) {
1896     memcpy(&pData[140], DimensionUpperLimits, 8);
1897     }
1898 schoenebeck 809 }
1899    
1900 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1901     curve_type_t curveType = releaseVelocityResponseCurve;
1902     uint8_t depth = releaseVelocityResponseDepth;
1903     // this models a strange behaviour or bug in GSt: two of the
1904     // velocity response curves for release time are not used even
1905     // if specified, instead another curve is chosen.
1906     if ((curveType == curve_type_nonlinear && depth == 0) ||
1907     (curveType == curve_type_special && depth == 4)) {
1908     curveType = curve_type_nonlinear;
1909     depth = 3;
1910     }
1911     return GetVelocityTable(curveType, depth, 0);
1912     }
1913    
1914     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1915     uint8_t vcfVelocityDynamicRange,
1916     uint8_t vcfVelocityScale,
1917     vcf_cutoff_ctrl_t vcfCutoffController)
1918     {
1919     curve_type_t curveType = vcfVelocityCurve;
1920     uint8_t depth = vcfVelocityDynamicRange;
1921     // even stranger GSt: two of the velocity response curves for
1922     // filter cutoff are not used, instead another special curve
1923     // is chosen. This curve is not used anywhere else.
1924     if ((curveType == curve_type_nonlinear && depth == 0) ||
1925     (curveType == curve_type_special && depth == 4)) {
1926     curveType = curve_type_special;
1927     depth = 5;
1928     }
1929     return GetVelocityTable(curveType, depth,
1930     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1931     ? vcfVelocityScale : 0);
1932     }
1933    
1934 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1935     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1936     {
1937     double* table;
1938     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1939 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1940 persson 613 table = (*pVelocityTables)[tableKey];
1941 schoenebeck 16 }
1942     else {
1943 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1944     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1945 schoenebeck 16 }
1946 persson 613 return table;
1947 schoenebeck 2 }
1948 schoenebeck 55
1949 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1950     return pRegion;
1951     }
1952    
1953 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1954     leverage_ctrl_t decodedcontroller;
1955     switch (EncodedController) {
1956     // special controller
1957     case _lev_ctrl_none:
1958     decodedcontroller.type = leverage_ctrl_t::type_none;
1959     decodedcontroller.controller_number = 0;
1960     break;
1961     case _lev_ctrl_velocity:
1962     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1963     decodedcontroller.controller_number = 0;
1964     break;
1965     case _lev_ctrl_channelaftertouch:
1966     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1967     decodedcontroller.controller_number = 0;
1968     break;
1969 schoenebeck 55
1970 schoenebeck 36 // ordinary MIDI control change controller
1971     case _lev_ctrl_modwheel:
1972     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973     decodedcontroller.controller_number = 1;
1974     break;
1975     case _lev_ctrl_breath:
1976     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977     decodedcontroller.controller_number = 2;
1978     break;
1979     case _lev_ctrl_foot:
1980     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981     decodedcontroller.controller_number = 4;
1982     break;
1983     case _lev_ctrl_effect1:
1984     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985     decodedcontroller.controller_number = 12;
1986     break;
1987     case _lev_ctrl_effect2:
1988     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1989     decodedcontroller.controller_number = 13;
1990     break;
1991     case _lev_ctrl_genpurpose1:
1992     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1993     decodedcontroller.controller_number = 16;
1994     break;
1995     case _lev_ctrl_genpurpose2:
1996     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1997     decodedcontroller.controller_number = 17;
1998     break;
1999     case _lev_ctrl_genpurpose3:
2000     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2001     decodedcontroller.controller_number = 18;
2002     break;
2003     case _lev_ctrl_genpurpose4:
2004     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2005     decodedcontroller.controller_number = 19;
2006     break;
2007     case _lev_ctrl_portamentotime:
2008     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009     decodedcontroller.controller_number = 5;
2010     break;
2011     case _lev_ctrl_sustainpedal:
2012     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013     decodedcontroller.controller_number = 64;
2014     break;
2015     case _lev_ctrl_portamento:
2016     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017     decodedcontroller.controller_number = 65;
2018     break;
2019     case _lev_ctrl_sostenutopedal:
2020     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021     decodedcontroller.controller_number = 66;
2022     break;
2023     case _lev_ctrl_softpedal:
2024     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025     decodedcontroller.controller_number = 67;
2026     break;
2027     case _lev_ctrl_genpurpose5:
2028     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029     decodedcontroller.controller_number = 80;
2030     break;
2031     case _lev_ctrl_genpurpose6:
2032     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033     decodedcontroller.controller_number = 81;
2034     break;
2035     case _lev_ctrl_genpurpose7:
2036     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037     decodedcontroller.controller_number = 82;
2038     break;
2039     case _lev_ctrl_genpurpose8:
2040     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041     decodedcontroller.controller_number = 83;
2042     break;
2043     case _lev_ctrl_effect1depth:
2044     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045     decodedcontroller.controller_number = 91;
2046     break;
2047     case _lev_ctrl_effect2depth:
2048     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049     decodedcontroller.controller_number = 92;
2050     break;
2051     case _lev_ctrl_effect3depth:
2052     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053     decodedcontroller.controller_number = 93;
2054     break;
2055     case _lev_ctrl_effect4depth:
2056     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057     decodedcontroller.controller_number = 94;
2058     break;
2059     case _lev_ctrl_effect5depth:
2060     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2061     decodedcontroller.controller_number = 95;
2062     break;
2063 schoenebeck 55
2064 schoenebeck 36 // unknown controller type
2065     default:
2066     throw gig::Exception("Unknown leverage controller type.");
2067     }
2068     return decodedcontroller;
2069     }
2070 schoenebeck 2
2071 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2072     _lev_ctrl_t encodedcontroller;
2073     switch (DecodedController.type) {
2074     // special controller
2075     case leverage_ctrl_t::type_none:
2076     encodedcontroller = _lev_ctrl_none;
2077     break;
2078     case leverage_ctrl_t::type_velocity:
2079     encodedcontroller = _lev_ctrl_velocity;
2080     break;
2081     case leverage_ctrl_t::type_channelaftertouch:
2082     encodedcontroller = _lev_ctrl_channelaftertouch;
2083     break;
2084    
2085     // ordinary MIDI control change controller
2086     case leverage_ctrl_t::type_controlchange:
2087     switch (DecodedController.controller_number) {
2088     case 1:
2089     encodedcontroller = _lev_ctrl_modwheel;
2090     break;
2091     case 2:
2092     encodedcontroller = _lev_ctrl_breath;
2093     break;
2094     case 4:
2095     encodedcontroller = _lev_ctrl_foot;
2096     break;
2097     case 12:
2098     encodedcontroller = _lev_ctrl_effect1;
2099     break;
2100     case 13:
2101     encodedcontroller = _lev_ctrl_effect2;
2102     break;
2103     case 16:
2104     encodedcontroller = _lev_ctrl_genpurpose1;
2105     break;
2106     case 17:
2107     encodedcontroller = _lev_ctrl_genpurpose2;
2108     break;
2109     case 18:
2110     encodedcontroller = _lev_ctrl_genpurpose3;
2111     break;
2112     case 19:
2113     encodedcontroller = _lev_ctrl_genpurpose4;
2114     break;
2115     case 5:
2116     encodedcontroller = _lev_ctrl_portamentotime;
2117     break;
2118     case 64:
2119     encodedcontroller = _lev_ctrl_sustainpedal;
2120     break;
2121     case 65:
2122     encodedcontroller = _lev_ctrl_portamento;
2123     break;
2124     case 66:
2125     encodedcontroller = _lev_ctrl_sostenutopedal;
2126     break;
2127     case 67:
2128     encodedcontroller = _lev_ctrl_softpedal;
2129     break;
2130     case 80:
2131     encodedcontroller = _lev_ctrl_genpurpose5;
2132     break;
2133     case 81:
2134     encodedcontroller = _lev_ctrl_genpurpose6;
2135     break;
2136     case 82:
2137     encodedcontroller = _lev_ctrl_genpurpose7;
2138     break;
2139     case 83:
2140     encodedcontroller = _lev_ctrl_genpurpose8;
2141     break;
2142     case 91:
2143     encodedcontroller = _lev_ctrl_effect1depth;
2144     break;
2145     case 92:
2146     encodedcontroller = _lev_ctrl_effect2depth;
2147     break;
2148     case 93:
2149     encodedcontroller = _lev_ctrl_effect3depth;
2150     break;
2151     case 94:
2152     encodedcontroller = _lev_ctrl_effect4depth;
2153     break;
2154     case 95:
2155     encodedcontroller = _lev_ctrl_effect5depth;
2156     break;
2157     default:
2158     throw gig::Exception("leverage controller number is not supported by the gig format");
2159     }
2160 persson 1182 break;
2161 schoenebeck 809 default:
2162     throw gig::Exception("Unknown leverage controller type.");
2163     }
2164     return encodedcontroller;
2165     }
2166    
2167 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2168     Instances--;
2169     if (!Instances) {
2170     // delete the velocity->volume tables
2171     VelocityTableMap::iterator iter;
2172     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2173     double* pTable = iter->second;
2174     if (pTable) delete[] pTable;
2175     }
2176     pVelocityTables->clear();
2177     delete pVelocityTables;
2178     pVelocityTables = NULL;
2179     }
2180 persson 858 if (VelocityTable) delete[] VelocityTable;
2181 schoenebeck 16 }
2182 schoenebeck 2
2183 schoenebeck 16 /**
2184     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2185     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2186     * and VelocityResponseCurveScaling) involved are taken into account to
2187     * calculate the amplitude factor. Use this method when a key was
2188     * triggered to get the volume with which the sample should be played
2189     * back.
2190     *
2191 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2192     * @returns amplitude factor (between 0.0 and 1.0)
2193 schoenebeck 16 */
2194     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2195     return pVelocityAttenuationTable[MIDIKeyVelocity];
2196     }
2197 schoenebeck 2
2198 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2199     return pVelocityReleaseTable[MIDIKeyVelocity];
2200     }
2201    
2202 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2203     return pVelocityCutoffTable[MIDIKeyVelocity];
2204     }
2205    
2206 schoenebeck 1358 /**
2207     * Updates the respective member variable and the lookup table / cache
2208     * that depends on this value.
2209     */
2210     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2211     pVelocityAttenuationTable =
2212     GetVelocityTable(
2213     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2214     );
2215     VelocityResponseCurve = curve;
2216     }
2217    
2218     /**
2219     * Updates the respective member variable and the lookup table / cache
2220     * that depends on this value.
2221     */
2222     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2223     pVelocityAttenuationTable =
2224     GetVelocityTable(
2225     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2226     );
2227     VelocityResponseDepth = depth;
2228     }
2229    
2230     /**
2231     * Updates the respective member variable and the lookup table / cache
2232     * that depends on this value.
2233     */
2234     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2235     pVelocityAttenuationTable =
2236     GetVelocityTable(
2237     VelocityResponseCurve, VelocityResponseDepth, scaling
2238     );
2239     VelocityResponseCurveScaling = scaling;
2240     }
2241    
2242     /**
2243     * Updates the respective member variable and the lookup table / cache
2244     * that depends on this value.
2245     */
2246     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2247     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2248     ReleaseVelocityResponseCurve = curve;
2249     }
2250    
2251     /**
2252     * Updates the respective member variable and the lookup table / cache
2253     * that depends on this value.
2254     */
2255     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2256     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2257     ReleaseVelocityResponseDepth = depth;
2258     }
2259    
2260     /**
2261     * Updates the respective member variable and the lookup table / cache
2262     * that depends on this value.
2263     */
2264     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2265     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2266     VCFCutoffController = controller;
2267     }
2268    
2269     /**
2270     * Updates the respective member variable and the lookup table / cache
2271     * that depends on this value.
2272     */
2273     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2274     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2275     VCFVelocityCurve = curve;
2276     }
2277    
2278     /**
2279     * Updates the respective member variable and the lookup table / cache
2280     * that depends on this value.
2281     */
2282     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2283     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2284     VCFVelocityDynamicRange = range;
2285     }
2286    
2287     /**
2288     * Updates the respective member variable and the lookup table / cache
2289     * that depends on this value.
2290     */
2291     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2292     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2293     VCFVelocityScale = scaling;
2294     }
2295    
2296 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2297 schoenebeck 317
2298 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2299 schoenebeck 16
2300 schoenebeck 308 // linear
2301     const int lin0[] = { 1, 1, 127, 127 };
2302     const int lin1[] = { 1, 21, 127, 127 };
2303     const int lin2[] = { 1, 45, 127, 127 };
2304     const int lin3[] = { 1, 74, 127, 127 };
2305     const int lin4[] = { 1, 127, 127, 127 };
2306 schoenebeck 16
2307 schoenebeck 308 // non-linear
2308     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2309 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2310 schoenebeck 308 127, 127 };
2311     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2312     127, 127 };
2313     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2314     127, 127 };
2315     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2316 schoenebeck 317
2317 schoenebeck 308 // special
2318 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2319 schoenebeck 308 113, 127, 127, 127 };
2320     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2321     118, 127, 127, 127 };
2322 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2323 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2324 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2325 schoenebeck 308 117, 127, 127, 127 };
2326 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2327 schoenebeck 308 127, 127 };
2328 schoenebeck 317
2329 persson 728 // this is only used by the VCF velocity curve
2330     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2331     91, 127, 127, 127 };
2332    
2333 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2334 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2335 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2336 schoenebeck 317
2337 schoenebeck 308 double* const table = new double[128];
2338    
2339     const int* curve = curves[curveType * 5 + depth];
2340     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2341 schoenebeck 317
2342 schoenebeck 308 table[0] = 0;
2343     for (int x = 1 ; x < 128 ; x++) {
2344    
2345     if (x > curve[2]) curve += 2;
2346 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2347 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2348     y = y / 127;
2349    
2350     // Scale up for s > 20, down for s < 20. When
2351     // down-scaling, the curve still ends at 1.0.
2352     if (s < 20 && y >= 0.5)
2353     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2354     else
2355     y = y * (s / 20.0);
2356     if (y > 1) y = 1;
2357    
2358     table[x] = y;
2359     }
2360     return table;
2361     }
2362    
2363    
2364 schoenebeck 2 // *************** Region ***************
2365     // *
2366    
2367     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2368     // Initialization
2369     Dimensions = 0;
2370 schoenebeck 347 for (int i = 0; i < 256; i++) {
2371 schoenebeck 2 pDimensionRegions[i] = NULL;
2372     }
2373 schoenebeck 282 Layers = 1;
2374 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2375     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2376 schoenebeck 2
2377     // Actual Loading
2378    
2379 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2380    
2381 schoenebeck 2 LoadDimensionRegions(rgnList);
2382    
2383     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2384     if (_3lnk) {
2385     DimensionRegions = _3lnk->ReadUint32();
2386 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2387 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2388     uint8_t bits = _3lnk->ReadUint8();
2389 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2390     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2391 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2392 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2393     pDimensionDefinitions[i].dimension = dimension_none;
2394     pDimensionDefinitions[i].bits = 0;
2395     pDimensionDefinitions[i].zones = 0;
2396     pDimensionDefinitions[i].split_type = split_type_bit;
2397     pDimensionDefinitions[i].zone_size = 0;
2398     }
2399     else { // active dimension
2400     pDimensionDefinitions[i].dimension = dimension;
2401     pDimensionDefinitions[i].bits = bits;
2402 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2403 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2404     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2405 schoenebeck 2 Dimensions++;
2406 schoenebeck 282
2407     // if this is a layer dimension, remember the amount of layers
2408     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2409 schoenebeck 2 }
2410 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2411 schoenebeck 2 }
2412 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2413 schoenebeck 2
2414 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2415     // update the VelocityTables in the dimension regions
2416     UpdateVelocityTable();
2417 schoenebeck 2
2418 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2419     if (file->pVersion && file->pVersion->major == 3)
2420     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2421     else
2422     _3lnk->SetPos(44);
2423    
2424 schoenebeck 1524 // load sample references (if auto loading is enabled)
2425     if (file->GetAutoLoad()) {
2426     for (uint i = 0; i < DimensionRegions; i++) {
2427     uint32_t wavepoolindex = _3lnk->ReadUint32();
2428     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2429     }
2430     GetSample(); // load global region sample reference
2431 schoenebeck 2 }
2432 persson 1102 } else {
2433     DimensionRegions = 0;
2434 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2435     pDimensionDefinitions[i].dimension = dimension_none;
2436     pDimensionDefinitions[i].bits = 0;
2437     pDimensionDefinitions[i].zones = 0;
2438     }
2439 schoenebeck 2 }
2440 schoenebeck 823
2441     // make sure there is at least one dimension region
2442     if (!DimensionRegions) {
2443     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2444     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2445     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2446 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2447 schoenebeck 823 DimensionRegions = 1;
2448     }
2449 schoenebeck 2 }
2450    
2451 schoenebeck 809 /**
2452     * Apply Region settings and all its DimensionRegions to the respective
2453     * RIFF chunks. You have to call File::Save() to make changes persistent.
2454     *
2455     * Usually there is absolutely no need to call this method explicitly.
2456     * It will be called automatically when File::Save() was called.
2457     *
2458     * @throws gig::Exception if samples cannot be dereferenced
2459     */
2460     void Region::UpdateChunks() {
2461 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2462     // but we still have to provide some existing one to not corrupt the
2463     // file, so to avoid the latter we simply always assign the sample of
2464     // the first dimension region of this region
2465     pSample = pDimensionRegions[0]->pSample;
2466    
2467 schoenebeck 809 // first update base class's chunks
2468     DLS::Region::UpdateChunks();
2469    
2470     // update dimension region's chunks
2471 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2472 persson 1317 pDimensionRegions[i]->UpdateChunks();
2473 schoenebeck 823 }
2474 schoenebeck 809
2475 persson 1317 File* pFile = (File*) GetParent()->GetParent();
2476     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2477 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2478     const int iMaxDimensionRegions = version3 ? 256 : 32;
2479 schoenebeck 809
2480     // make sure '3lnk' chunk exists
2481     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2482     if (!_3lnk) {
2483 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2484 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2485 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2486 persson 1192
2487     // move 3prg to last position
2488     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2489 schoenebeck 809 }
2490    
2491     // update dimension definitions in '3lnk' chunk
2492     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2493 persson 1179 store32(&pData[0], DimensionRegions);
2494 persson 1199 int shift = 0;
2495 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2496 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2497     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2498 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2499 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2500 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2501 persson 1199 // next 3 bytes unknown, always zero?
2502    
2503     shift += pDimensionDefinitions[i].bits;
2504 schoenebeck 809 }
2505    
2506     // update wave pool table in '3lnk' chunk
2507 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2508 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2509     int iWaveIndex = -1;
2510     if (i < DimensionRegions) {
2511 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2512     File::SampleList::iterator iter = pFile->pSamples->begin();
2513     File::SampleList::iterator end = pFile->pSamples->end();
2514 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2515 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2516     iWaveIndex = index;
2517     break;
2518     }
2519 schoenebeck 809 }
2520     }
2521 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2522 schoenebeck 809 }
2523     }
2524    
2525 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2526     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2527     if (_3prg) {
2528     int dimensionRegionNr = 0;
2529     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2530     while (_3ewl) {
2531     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2532 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2533 schoenebeck 2 dimensionRegionNr++;
2534     }
2535     _3ewl = _3prg->GetNextSubList();
2536     }
2537     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2538     }
2539     }
2540    
2541 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2542     // update KeyRange struct and make sure regions are in correct order
2543     DLS::Region::SetKeyRange(Low, High);
2544     // update Region key table for fast lookup
2545     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2546     }
2547    
2548 persson 858 void Region::UpdateVelocityTable() {
2549     // get velocity dimension's index
2550     int veldim = -1;
2551     for (int i = 0 ; i < Dimensions ; i++) {
2552     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2553     veldim = i;
2554 schoenebeck 809 break;
2555     }
2556     }
2557 persson 858 if (veldim == -1) return;
2558 schoenebeck 809
2559 persson 858 int step = 1;
2560     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2561     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2562     int end = step * pDimensionDefinitions[veldim].zones;
2563 schoenebeck 809
2564 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2565     int dim[8] = { 0 };
2566     for (int i = 0 ; i < DimensionRegions ; i++) {
2567    
2568 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2569     pDimensionRegions[i]->VelocityUpperLimit) {
2570 persson 858 // create the velocity table
2571     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2572     if (!table) {
2573     table = new uint8_t[128];
2574     pDimensionRegions[i]->VelocityTable = table;
2575     }
2576     int tableidx = 0;
2577     int velocityZone = 0;
2578 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2579     for (int k = i ; k < end ; k += step) {
2580     DimensionRegion *d = pDimensionRegions[k];
2581     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2582     velocityZone++;
2583     }
2584     } else { // gig2
2585     for (int k = i ; k < end ; k += step) {
2586     DimensionRegion *d = pDimensionRegions[k];
2587     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2588     velocityZone++;
2589     }
2590 persson 858 }
2591     } else {
2592     if (pDimensionRegions[i]->VelocityTable) {
2593     delete[] pDimensionRegions[i]->VelocityTable;
2594     pDimensionRegions[i]->VelocityTable = 0;
2595     }
2596 schoenebeck 809 }
2597 persson 858
2598     int j;
2599     int shift = 0;
2600     for (j = 0 ; j < Dimensions ; j++) {
2601     if (j == veldim) i += skipveldim; // skip velocity dimension
2602     else {
2603     dim[j]++;
2604     if (dim[j] < pDimensionDefinitions[j].zones) break;
2605     else {
2606     // skip unused dimension regions
2607     dim[j] = 0;
2608     i += ((1 << pDimensionDefinitions[j].bits) -
2609     pDimensionDefinitions[j].zones) << shift;
2610     }
2611     }
2612     shift += pDimensionDefinitions[j].bits;
2613     }
2614     if (j == Dimensions) break;
2615 schoenebeck 809 }
2616     }
2617    
2618     /** @brief Einstein would have dreamed of it - create a new dimension.
2619     *
2620     * Creates a new dimension with the dimension definition given by
2621     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2622     * There is a hard limit of dimensions and total amount of "bits" all
2623     * dimensions can have. This limit is dependant to what gig file format
2624     * version this file refers to. The gig v2 (and lower) format has a
2625     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2626     * format has a limit of 8.
2627     *
2628     * @param pDimDef - defintion of the new dimension
2629     * @throws gig::Exception if dimension of the same type exists already
2630     * @throws gig::Exception if amount of dimensions or total amount of
2631     * dimension bits limit is violated
2632     */
2633     void Region::AddDimension(dimension_def_t* pDimDef) {
2634     // check if max. amount of dimensions reached
2635     File* file = (File*) GetParent()->GetParent();
2636     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2637     if (Dimensions >= iMaxDimensions)
2638     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2639     // check if max. amount of dimension bits reached
2640     int iCurrentBits = 0;
2641     for (int i = 0; i < Dimensions; i++)
2642     iCurrentBits += pDimensionDefinitions[i].bits;
2643     if (iCurrentBits >= iMaxDimensions)
2644     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2645     const int iNewBits = iCurrentBits + pDimDef->bits;
2646     if (iNewBits > iMaxDimensions)
2647     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2648     // check if there's already a dimensions of the same type
2649     for (int i = 0; i < Dimensions; i++)
2650     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2651     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2652    
2653 persson 1301 // pos is where the new dimension should be placed, normally
2654     // last in list, except for the samplechannel dimension which
2655     // has to be first in list
2656     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2657     int bitpos = 0;
2658     for (int i = 0 ; i < pos ; i++)
2659     bitpos += pDimensionDefinitions[i].bits;
2660    
2661     // make room for the new dimension
2662     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2663     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2664     for (int j = Dimensions ; j > pos ; j--) {
2665     pDimensionRegions[i]->DimensionUpperLimits[j] =
2666     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2667     }
2668     }
2669    
2670 schoenebeck 809 // assign definition of new dimension
2671 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2672 schoenebeck 809
2673 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2674 persson 1301 pDimensionDefinitions[pos].split_type =
2675     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2676     pDimensionDefinitions[pos].zone_size =
2677     __resolveZoneSize(pDimensionDefinitions[pos]);
2678 schoenebeck 1113
2679 persson 1301 // create new dimension region(s) for this new dimension, and make
2680     // sure that the dimension regions are placed correctly in both the
2681     // RIFF list and the pDimensionRegions array
2682     RIFF::Chunk* moveTo = NULL;
2683     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2684     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2685     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2686     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2687     }
2688     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2689     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2690     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2691     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2692     // create a new dimension region and copy all parameter values from
2693     // an existing dimension region
2694     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2695     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2696 persson 1247
2697 persson 1301 DimensionRegions++;
2698     }
2699     }
2700     moveTo = pDimensionRegions[i]->pParentList;
2701 schoenebeck 809 }
2702    
2703 persson 1247 // initialize the upper limits for this dimension
2704 persson 1301 int mask = (1 << bitpos) - 1;
2705     for (int z = 0 ; z < pDimDef->zones ; z++) {
2706 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2707 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2708 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2709     (z << bitpos) |
2710     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2711 persson 1247 }
2712     }
2713    
2714 schoenebeck 809 Dimensions++;
2715    
2716     // if this is a layer dimension, update 'Layers' attribute
2717     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2718    
2719 persson 858 UpdateVelocityTable();
2720 schoenebeck 809 }
2721    
2722     /** @brief Delete an existing dimension.
2723     *
2724     * Deletes the dimension given by \a pDimDef and deletes all respective
2725     * dimension regions, that is all dimension regions where the dimension's
2726     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2727     * for example this would delete all dimension regions for the case(s)
2728     * where the sustain pedal is pressed down.
2729     *
2730     * @param pDimDef - dimension to delete
2731     * @throws gig::Exception if given dimension cannot be found
2732     */
2733     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2734     // get dimension's index
2735     int iDimensionNr = -1;
2736     for (int i = 0; i < Dimensions; i++) {
2737     if (&pDimensionDefinitions[i] == pDimDef) {
2738     iDimensionNr = i;
2739     break;
2740     }
2741     }
2742     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2743    
2744     // get amount of bits below the dimension to delete
2745     int iLowerBits = 0;
2746     for (int i = 0; i < iDimensionNr; i++)
2747     iLowerBits += pDimensionDefinitions[i].bits;
2748    
2749     // get amount ot bits above the dimension to delete
2750     int iUpperBits = 0;
2751     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2752     iUpperBits += pDimensionDefinitions[i].bits;
2753    
2754 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2755    
2756 schoenebeck 809 // delete dimension regions which belong to the given dimension
2757     // (that is where the dimension's bit > 0)
2758     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2759     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2760     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2761     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2762     iObsoleteBit << iLowerBits |
2763     iLowerBit;
2764 persson 1247
2765     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2766 schoenebeck 809 delete pDimensionRegions[iToDelete];
2767     pDimensionRegions[iToDelete] = NULL;
2768     DimensionRegions--;
2769     }
2770     }
2771     }
2772    
2773     // defrag pDimensionRegions array
2774     // (that is remove the NULL spaces within the pDimensionRegions array)
2775     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2776     if (!pDimensionRegions[iTo]) {
2777     if (iFrom <= iTo) iFrom = iTo + 1;
2778     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2779     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2780     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2781     pDimensionRegions[iFrom] = NULL;
2782     }
2783     }
2784     }
2785    
2786 persson 1247 // remove the this dimension from the upper limits arrays
2787     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2788     DimensionRegion* d = pDimensionRegions[j];
2789     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2790     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2791     }
2792     d->DimensionUpperLimits[Dimensions - 1] = 127;
2793     }
2794    
2795 schoenebeck 809 // 'remove' dimension definition
2796     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2797     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2798     }
2799     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2800     pDimensionDefinitions[Dimensions - 1].bits = 0;
2801     pDimensionDefinitions[Dimensions - 1].zones = 0;
2802    
2803     Dimensions--;
2804    
2805     // if this was a layer dimension, update 'Layers' attribute
2806     if (pDimDef->dimension == dimension_layer) Layers = 1;
2807     }
2808    
2809 schoenebeck 2 Region::~Region() {
2810 schoenebeck 350 for (int i = 0; i < 256; i++) {
2811 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2812     }
2813     }
2814    
2815     /**
2816     * Use this method in your audio engine to get the appropriate dimension
2817     * region with it's articulation data for the current situation. Just
2818     * call the method with the current MIDI controller values and you'll get
2819     * the DimensionRegion with the appropriate articulation data for the
2820     * current situation (for this Region of course only). To do that you'll
2821     * first have to look which dimensions with which controllers and in
2822     * which order are defined for this Region when you load the .gig file.
2823     * Special cases are e.g. layer or channel dimensions where you just put
2824     * in the index numbers instead of a MIDI controller value (means 0 for
2825     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2826     * etc.).
2827     *
2828 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2829 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2830     * @see pDimensionDefinitions
2831     * @see Dimensions
2832     */
2833 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2834 persson 858 uint8_t bits;
2835     int veldim = -1;
2836     int velbitpos;
2837     int bitpos = 0;
2838     int dimregidx = 0;
2839 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2840 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2841     // the velocity dimension must be handled after the other dimensions
2842     veldim = i;
2843     velbitpos = bitpos;
2844     } else {
2845     switch (pDimensionDefinitions[i].split_type) {
2846     case split_type_normal:
2847 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2848     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2849     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2850     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2851     }
2852     } else {
2853     // gig2: evenly sized zones
2854     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2855     }
2856 persson 858 break;
2857     case split_type_bit: // the value is already the sought dimension bit number
2858     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2859     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2860     break;
2861     }
2862     dimregidx |= bits << bitpos;
2863 schoenebeck 2 }
2864 persson 858 bitpos += pDimensionDefinitions[i].bits;
2865 schoenebeck 2 }
2866 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2867     if (veldim != -1) {
2868     // (dimreg is now the dimension region for the lowest velocity)
2869 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2870 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2871     else // normal split type
2872     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2873    
2874     dimregidx |= bits << velbitpos;
2875     dimreg = pDimensionRegions[dimregidx];
2876     }
2877     return dimreg;
2878 schoenebeck 2 }
2879    
2880     /**
2881     * Returns the appropriate DimensionRegion for the given dimension bit
2882     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2883     * instead of calling this method directly!
2884     *
2885 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2886 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2887     * bit numbers
2888     * @see GetDimensionRegionByValue()
2889     */
2890 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2891     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2892     << pDimensionDefinitions[5].bits | DimBits[5])
2893     << pDimensionDefinitions[4].bits | DimBits[4])
2894     << pDimensionDefinitions[3].bits | DimBits[3])
2895     << pDimensionDefinitions[2].bits | DimBits[2])
2896     << pDimensionDefinitions[1].bits | DimBits[1])
2897     << pDimensionDefinitions[0].bits | DimBits[0]];
2898 schoenebeck 2 }
2899    
2900     /**
2901     * Returns pointer address to the Sample referenced with this region.
2902     * This is the global Sample for the entire Region (not sure if this is
2903     * actually used by the Gigasampler engine - I would only use the Sample
2904     * referenced by the appropriate DimensionRegion instead of this sample).
2905     *
2906     * @returns address to Sample or NULL if there is no reference to a
2907     * sample saved in the .gig file
2908     */
2909     Sample* Region::GetSample() {
2910     if (pSample) return static_cast<gig::Sample*>(pSample);
2911     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2912     }
2913    
2914 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2915 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2916 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2917 persson 902 if (!file->pWavePoolTable) return NULL;
2918 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2919 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2920 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2921 schoenebeck 2 while (sample) {
2922 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2923 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2924 schoenebeck 2 sample = file->GetNextSample();
2925     }
2926     return NULL;
2927     }
2928    
2929    
2930 persson 1627 // *************** MidiRule ***************
2931     // *
2932 schoenebeck 2
2933 persson 1627 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2934     _3ewg->SetPos(36);
2935     Triggers = _3ewg->ReadUint8();
2936     _3ewg->SetPos(40);
2937     ControllerNumber = _3ewg->ReadUint8();
2938     _3ewg->SetPos(46);
2939     for (int i = 0 ; i < Triggers ; i++) {
2940     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2941     pTriggers[i].Descending = _3ewg->ReadUint8();
2942     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2943     pTriggers[i].Key = _3ewg->ReadUint8();
2944     pTriggers[i].NoteOff = _3ewg->ReadUint8();
2945     pTriggers[i].Velocity = _3ewg->ReadUint8();
2946     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2947     _3ewg->ReadUint8();
2948     }
2949     }
2950    
2951    
2952 schoenebeck 2 // *************** Instrument ***************
2953     // *
2954    
2955 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2956 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
2957 persson 1180 { CHUNK_ID_INAM, 64 },
2958     { CHUNK_ID_ISFT, 12 },
2959     { 0, 0 }
2960     };
2961 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
2962 persson 918
2963 schoenebeck 2 // Initialization
2964     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2965 persson 1182 EffectSend = 0;
2966     Attenuation = 0;
2967     FineTune = 0;
2968     PitchbendRange = 0;
2969     PianoReleaseMode = false;
2970     DimensionKeyRange.low = 0;
2971     DimensionKeyRange.high = 0;
2972 persson 1678 pMidiRules = new MidiRule*[3];
2973     pMidiRules[0] = NULL;
2974 schoenebeck 2
2975     // Loading
2976     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2977     if (lart) {
2978     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2979     if (_3ewg) {
2980     EffectSend = _3ewg->ReadUint16();
2981     Attenuation = _3ewg->ReadInt32();
2982     FineTune = _3ewg->ReadInt16();
2983     PitchbendRange = _3ewg->ReadInt16();
2984     uint8_t dimkeystart = _3ewg->ReadUint8();
2985     PianoReleaseMode = dimkeystart & 0x01;
2986     DimensionKeyRange.low = dimkeystart >> 1;
2987     DimensionKeyRange.high = _3ewg->ReadUint8();
2988 persson 1627
2989     if (_3ewg->GetSize() > 32) {
2990     // read MIDI rules
2991 persson 1678 int i = 0;
2992 persson 1627 _3ewg->SetPos(32);
2993     uint8_t id1 = _3ewg->ReadUint8();
2994     uint8_t id2 = _3ewg->ReadUint8();
2995    
2996     if (id1 == 4 && id2 == 16) {
2997 persson 1678 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2998 persson 1627 }
2999     //TODO: all the other types of rules
3000 persson 1678
3001     pMidiRules[i] = NULL;
3002 persson 1627 }
3003 schoenebeck 2 }
3004     }
3005    
3006 schoenebeck 1524 if (pFile->GetAutoLoad()) {
3007     if (!pRegions) pRegions = new RegionList;
3008     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3009     if (lrgn) {
3010     RIFF::List* rgn = lrgn->GetFirstSubList();
3011     while (rgn) {
3012     if (rgn->GetListType() == LIST_TYPE_RGN) {
3013     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3014     pRegions->push_back(new Region(this, rgn));
3015     }
3016     rgn = lrgn->GetNextSubList();
3017 schoenebeck 809 }
3018 schoenebeck 1524 // Creating Region Key Table for fast lookup
3019     UpdateRegionKeyTable();
3020 schoenebeck 2 }
3021     }
3022    
3023 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
3024     }
3025    
3026     void Instrument::UpdateRegionKeyTable() {
3027 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3028 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
3029     RegionList::iterator end = pRegions->end();
3030     for (; iter != end; ++iter) {
3031     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3032     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3033     RegionKeyTable[iKey] = pRegion;
3034 schoenebeck 2 }
3035     }
3036     }
3037    
3038     Instrument::~Instrument() {
3039 persson 1678 delete[] pMidiRules;
3040 schoenebeck 2 }
3041    
3042     /**
3043 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
3044     * You have to call File::Save() to make changes persistent.
3045     *
3046     * Usually there is absolutely no need to call this method explicitly.
3047     * It will be called automatically when File::Save() was called.
3048     *
3049     * @throws gig::Exception if samples cannot be dereferenced
3050     */
3051     void Instrument::UpdateChunks() {
3052     // first update base classes' chunks
3053     DLS::Instrument::UpdateChunks();
3054    
3055     // update Regions' chunks
3056 schoenebeck 823 {
3057     RegionList::iterator iter = pRegions->begin();
3058     RegionList::iterator end = pRegions->end();
3059     for (; iter != end; ++iter)
3060     (*iter)->UpdateChunks();
3061     }
3062 schoenebeck 809
3063     // make sure 'lart' RIFF list chunk exists
3064     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3065     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3066     // make sure '3ewg' RIFF chunk exists
3067     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3068 persson 1264 if (!_3ewg) {
3069     File* pFile = (File*) GetParent();
3070    
3071     // 3ewg is bigger in gig3, as it includes the iMIDI rules
3072     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3073     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3074     memset(_3ewg->LoadChunkData(), 0, size);
3075     }
3076 schoenebeck 809 // update '3ewg' RIFF chunk
3077     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3078 persson 1179 store16(&pData[0], EffectSend);
3079     store32(&pData[2], Attenuation);
3080     store16(&pData[6], FineTune);
3081     store16(&pData[8], PitchbendRange);
3082 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3083 schoenebeck 809 DimensionKeyRange.low << 1;
3084 persson 1179 pData[10] = dimkeystart;
3085     pData[11] = DimensionKeyRange.high;
3086 schoenebeck 809 }
3087    
3088     /**
3089 schoenebeck 2 * Returns the appropriate Region for a triggered note.
3090     *
3091     * @param Key MIDI Key number of triggered note / key (0 - 127)
3092     * @returns pointer adress to the appropriate Region or NULL if there
3093     * there is no Region defined for the given \a Key
3094     */
3095     Region* Instrument::GetRegion(unsigned int Key) {
3096 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3097 schoenebeck 2 return RegionKeyTable[Key];
3098 schoenebeck 823
3099 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
3100     if (Key <= pRegions[i]->KeyRange.high &&
3101     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3102     }
3103     return NULL;*/
3104     }
3105    
3106     /**
3107     * Returns the first Region of the instrument. You have to call this
3108     * method once before you use GetNextRegion().
3109     *
3110     * @returns pointer address to first region or NULL if there is none
3111     * @see GetNextRegion()
3112     */
3113     Region* Instrument::GetFirstRegion() {
3114 schoenebeck 823 if (!pRegions) return NULL;
3115     RegionsIterator = pRegions->begin();
3116     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3117 schoenebeck 2 }
3118    
3119     /**
3120     * Returns the next Region of the instrument. You have to call
3121     * GetFirstRegion() once before you can use this method. By calling this
3122     * method multiple times it iterates through the available Regions.
3123     *
3124     * @returns pointer address to the next region or NULL if end reached
3125     * @see GetFirstRegion()
3126     */
3127     Region* Instrument::GetNextRegion() {
3128 schoenebeck 823 if (!pRegions) return NULL;
3129     RegionsIterator++;
3130     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3131 schoenebeck 2 }
3132    
3133 schoenebeck 809 Region* Instrument::AddRegion() {
3134     // create new Region object (and its RIFF chunks)
3135     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3136     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3137     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3138     Region* pNewRegion = new Region(this, rgn);
3139 schoenebeck 823 pRegions->push_back(pNewRegion);
3140     Regions = pRegions->size();
3141 schoenebeck 809 // update Region key table for fast lookup
3142     UpdateRegionKeyTable();
3143     // done
3144     return pNewRegion;
3145     }
3146 schoenebeck 2
3147 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
3148     if (!pRegions) return;
3149 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3150 schoenebeck 809 // update Region key table for fast lookup
3151     UpdateRegionKeyTable();
3152     }
3153 schoenebeck 2
3154 persson 1627 /**
3155 persson 1678 * Returns a MIDI rule of the instrument.
3156 persson 1627 *
3157     * The list of MIDI rules, at least in gig v3, always contains at
3158     * most two rules. The second rule can only be the DEF filter
3159     * (which currently isn't supported by libgig).
3160     *
3161 persson 1678 * @param i - MIDI rule number
3162     * @returns pointer address to MIDI rule number i or NULL if there is none
3163 persson 1627 */
3164 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
3165     return pMidiRules[i];
3166 persson 1627 }
3167 schoenebeck 809
3168    
3169 schoenebeck 929 // *************** Group ***************
3170     // *
3171    
3172     /** @brief Constructor.
3173     *
3174 schoenebeck 930 * @param file - pointer to the gig::File object
3175     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3176     * NULL if this is a new Group
3177 schoenebeck 929 */
3178 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3179 schoenebeck 929 pFile = file;
3180     pNameChunk = ck3gnm;
3181     ::LoadString(pNameChunk, Name);
3182     }
3183    
3184     Group::~Group() {
3185 schoenebeck 1099 // remove the chunk associated with this group (if any)
3186     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3187 schoenebeck 929 }
3188    
3189     /** @brief Update chunks with current group settings.
3190     *
3191 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
3192     * to call File::Save() to make changes persistent.
3193     *
3194     * Usually there is absolutely no need to call this method explicitly.
3195     * It will be called automatically when File::Save() was called.
3196 schoenebeck 929 */
3197     void Group::UpdateChunks() {
3198     // make sure <3gri> and <3gnl> list chunks exist
3199 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3200 persson 1192 if (!_3gri) {
3201     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3202     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3203     }
3204 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3205 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3206 persson 1266
3207     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3208     // v3 has a fixed list of 128 strings, find a free one
3209     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3210     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3211     pNameChunk = ck;
3212     break;
3213     }
3214     }
3215     }
3216    
3217 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3218     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3219     }
3220    
3221 schoenebeck 930 /**
3222     * Returns the first Sample of this Group. You have to call this method
3223     * once before you use GetNextSample().
3224     *
3225     * <b>Notice:</b> this method might block for a long time, in case the
3226     * samples of this .gig file were not scanned yet
3227     *
3228     * @returns pointer address to first Sample or NULL if there is none
3229     * applied to this Group
3230     * @see GetNextSample()
3231     */
3232     Sample* Group::GetFirstSample() {
3233     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3234     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3235     if (pSample->GetGroup() == this) return pSample;
3236     }
3237     return NULL;
3238     }
3239 schoenebeck 929
3240 schoenebeck 930 /**
3241     * Returns the next Sample of the Group. You have to call
3242     * GetFirstSample() once before you can use this method. By calling this
3243     * method multiple times it iterates through the Samples assigned to
3244     * this Group.
3245     *
3246     * @returns pointer address to the next Sample of this Group or NULL if
3247     * end reached
3248     * @see GetFirstSample()
3249     */
3250     Sample* Group::GetNextSample() {
3251     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3252     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3253     if (pSample->GetGroup() == this) return pSample;
3254     }
3255     return NULL;
3256     }
3257 schoenebeck 929
3258 schoenebeck 930 /**
3259     * Move Sample given by \a pSample from another Group to this Group.
3260     */
3261     void Group::AddSample(Sample* pSample) {
3262     pSample->pGroup = this;
3263     }
3264    
3265     /**
3266     * Move all members of this group to another group (preferably the 1st
3267     * one except this). This method is called explicitly by
3268     * File::DeleteGroup() thus when a Group was deleted. This code was
3269     * intentionally not placed in the destructor!
3270     */
3271     void Group::MoveAll() {
3272     // get "that" other group first
3273     Group* pOtherGroup = NULL;
3274     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3275     if (pOtherGroup != this) break;
3276     }
3277     if (!pOtherGroup) throw Exception(
3278     "Could not move samples to another group, since there is no "
3279     "other Group. This is a bug, report it!"
3280     );
3281     // now move all samples of this group to the other group
3282     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3283     pOtherGroup->AddSample(pSample);
3284     }
3285     }
3286    
3287    
3288    
3289 schoenebeck 2 // *************** File ***************
3290     // *
3291    
3292 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3293 persson 1199 const DLS::version_t File::VERSION_2 = {
3294     0, 2, 19980628 & 0xffff, 19980628 >> 16
3295     };
3296    
3297 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3298 persson 1199 const DLS::version_t File::VERSION_3 = {
3299     0, 3, 20030331 & 0xffff, 20030331 >> 16
3300     };
3301    
3302 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3303 persson 1180 { CHUNK_ID_IARL, 256 },
3304     { CHUNK_ID_IART, 128 },
3305     { CHUNK_ID_ICMS, 128 },
3306     { CHUNK_ID_ICMT, 1024 },
3307     { CHUNK_ID_ICOP, 128 },
3308     { CHUNK_ID_ICRD, 128 },
3309     { CHUNK_ID_IENG, 128 },
3310     { CHUNK_ID_IGNR, 128 },
3311     { CHUNK_ID_IKEY, 128 },
3312     { CHUNK_ID_IMED, 128 },
3313     { CHUNK_ID_INAM, 128 },
3314     { CHUNK_ID_IPRD, 128 },
3315     { CHUNK_ID_ISBJ, 128 },
3316     { CHUNK_ID_ISFT, 128 },
3317     { CHUNK_ID_ISRC, 128 },
3318     { CHUNK_ID_ISRF, 128 },
3319     { CHUNK_ID_ITCH, 128 },
3320     { 0, 0 }
3321     };
3322    
3323 schoenebeck 809 File::File() : DLS::File() {
3324 schoenebeck 1524 bAutoLoad = true;
3325 persson 1264 *pVersion = VERSION_3;
3326 schoenebeck 929 pGroups = NULL;
3327 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3328 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3329 persson 1192
3330     // add some mandatory chunks to get the file chunks in right
3331     // order (INFO chunk will be moved to first position later)
3332     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3333     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3334 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3335    
3336     GenerateDLSID();
3337 schoenebeck 809 }
3338    
3339 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3340 schoenebeck 1524 bAutoLoad = true;
3341 schoenebeck 929 pGroups = NULL;
3342 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3343 schoenebeck 2 }
3344    
3345 schoenebeck 929 File::~File() {
3346     if (pGroups) {
3347     std::list<Group*>::iterator iter = pGroups->begin();
3348     std::list<Group*>::iterator end = pGroups->end();
3349     while (iter != end) {
3350     delete *iter;
3351     ++iter;
3352     }
3353     delete pGroups;
3354     }
3355     }
3356    
3357 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3358     if (!pSamples) LoadSamples(pProgress);
3359 schoenebeck 2 if (!pSamples) return NULL;
3360     SamplesIterator = pSamples->begin();
3361     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3362     }
3363    
3364     Sample* File::GetNextSample() {
3365     if (!pSamples) return NULL;
3366     SamplesIterator++;
3367     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3368     }
3369    
3370 schoenebeck 809 /** @brief Add a new sample.
3371     *
3372     * This will create a new Sample object for the gig file. You have to
3373     * call Save() to make this persistent to the file.
3374     *
3375     * @returns pointer to new Sample object
3376     */
3377     Sample* File::AddSample() {
3378     if (!pSamples) LoadSamples();
3379     __ensureMandatoryChunksExist();
3380     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3381     // create new Sample object and its respective 'wave' list chunk
3382     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3383     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3384 persson 1192
3385     // add mandatory chunks to get the chunks in right order
3386     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3387     wave->AddSubList(LIST_TYPE_INFO);
3388    
3389 schoenebeck 809 pSamples->push_back(pSample);
3390     return pSample;
3391     }
3392    
3393     /** @brief Delete a sample.
3394     *
3395 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3396     * references to this sample from Regions and DimensionRegions will be
3397     * removed. You have to call Save() to make this persistent to the file.
3398 schoenebeck 809 *
3399     * @param pSample - sample to delete
3400     * @throws gig::Exception if given sample could not be found
3401     */
3402     void File::DeleteSample(Sample* pSample) {
3403 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3404     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3405 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3406 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3407 schoenebeck 809 pSamples->erase(iter);
3408     delete pSample;
3409 persson 1266
3410 persson 1678 SampleList::iterator tmp = SamplesIterator;
3411 persson 1266 // remove all references to the sample
3412     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3413     instrument = GetNextInstrument()) {
3414     for (Region* region = instrument->GetFirstRegion() ; region ;
3415     region = instrument->GetNextRegion()) {
3416    
3417     if (region->GetSample() == pSample) region->SetSample(NULL);
3418    
3419     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3420     gig::DimensionRegion *d = region->pDimensionRegions[i];
3421     if (d->pSample == pSample) d->pSample = NULL;
3422     }
3423     }
3424     }
3425 persson 1678 SamplesIterator = tmp; // restore iterator
3426 schoenebeck 809 }
3427    
3428 schoenebeck 823 void File::LoadSamples() {
3429     LoadSamples(NULL);
3430     }
3431    
3432 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3433 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3434     // to resolve the group they belong to
3435 schoenebeck 1158 if (!pGroups) LoadGroups();
3436 schoenebeck 930
3437 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3438    
3439 persson 666 RIFF::File* file = pRIFF;
3440 schoenebeck 515
3441 persson 666 // just for progress calculation
3442     int iSampleIndex = 0;
3443     int iTotalSamples = WavePoolCount;
3444 schoenebeck 515
3445 persson 666 // check if samples should be loaded from extension files
3446     int lastFileNo = 0;
3447     for (int i = 0 ; i < WavePoolCount ; i++) {
3448     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3449     }
3450 schoenebeck 780 String name(pRIFF->GetFileName());
3451     int nameLen = name.length();
3452 persson 666 char suffix[6];
3453 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3454 schoenebeck 515
3455 persson 666 for (int fileNo = 0 ; ; ) {
3456     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3457     if (wvpl) {
3458     unsigned long wvplFileOffset = wvpl->GetFilePos();
3459     RIFF::List* wave = wvpl->GetFirstSubList();
3460     while (wave) {
3461     if (wave->GetListType() == LIST_TYPE_WAVE) {
3462     // notify current progress
3463     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3464     __notify_progress(pProgress, subprogress);
3465    
3466     unsigned long waveFileOffset = wave->GetFilePos();
3467     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3468    
3469     iSampleIndex++;
3470     }
3471     wave = wvpl->GetNextSubList();
3472 schoenebeck 2 }
3473 persson 666
3474     if (fileNo == lastFileNo) break;
3475    
3476     // open extension file (*.gx01, *.gx02, ...)
3477     fileNo++;
3478     sprintf(suffix, ".gx%02d", fileNo);
3479     name.replace(nameLen, 5, suffix);
3480     file = new RIFF::File(name);
3481     ExtensionFiles.push_back(file);
3482 schoenebeck 823 } else break;
3483 schoenebeck 2 }
3484 persson 666
3485     __notify_progress(pProgress, 1.0); // notify done
3486 schoenebeck 2 }
3487    
3488     Instrument* File::GetFirstInstrument() {
3489     if (!pInstruments) LoadInstruments();
3490     if (!pInstruments) return NULL;
3491     InstrumentsIterator = pInstruments->begin();
3492 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3493 schoenebeck 2 }
3494    
3495     Instrument* File::GetNextInstrument() {
3496     if (!pInstruments) return NULL;
3497     InstrumentsIterator++;
3498 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3499 schoenebeck 2 }
3500    
3501 schoenebeck 21 /**
3502     * Returns the instrument with the given index.
3503     *
3504 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3505     * @param pProgress - optional: callback function for progress notification
3506 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3507     */
3508 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3509     if (!pInstruments) {
3510     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3511    
3512     // sample loading subtask
3513     progress_t subprogress;
3514     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3515     __notify_progress(&subprogress, 0.0f);
3516 schoenebeck 1524 if (GetAutoLoad())
3517     GetFirstSample(&subprogress); // now force all samples to be loaded
3518 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
3519    
3520     // instrument loading subtask
3521     if (pProgress && pProgress->callback) {
3522     subprogress.__range_min = subprogress.__range_max;
3523     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3524     }
3525     __notify_progress(&subprogress, 0.0f);
3526     LoadInstruments(&subprogress);
3527     __notify_progress(&subprogress, 1.0f);
3528     }
3529 schoenebeck 21 if (!pInstruments) return NULL;
3530     InstrumentsIterator = pInstruments->begin();
3531     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3532 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3533 schoenebeck 21 InstrumentsIterator++;
3534     }
3535     return NULL;
3536     }
3537    
3538 schoenebeck 809 /** @brief Add a new instrument definition.
3539     *
3540     * This will create a new Instrument object for the gig file. You have
3541     * to call Save() to make this persistent to the file.
3542     *
3543     * @returns pointer to new Instrument object
3544     */
3545     Instrument* File::AddInstrument() {
3546     if (!pInstruments) LoadInstruments();
3547     __ensureMandatoryChunksExist();
3548     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3549     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3550 persson 1192
3551     // add mandatory chunks to get the chunks in right order
3552     lstInstr->AddSubList(LIST_TYPE_INFO);
3553 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3554 persson 1192
3555 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3556 persson 1209 pInstrument->GenerateDLSID();
3557 persson 1182
3558 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3559    
3560 persson 1182 // this string is needed for the gig to be loadable in GSt:
3561     pInstrument->pInfo->Software = "Endless Wave";
3562    
3563 schoenebeck 809 pInstruments->push_back(pInstrument);
3564     return pInstrument;
3565     }
3566    
3567     /** @brief Delete an instrument.
3568     *
3569     * This will delete the given Instrument object from the gig file. You
3570     * have to call Save() to make this persistent to the file.
3571     *
3572     * @param pInstrument - instrument to delete
3573 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3574 schoenebeck 809 */
3575     void File::DeleteInstrument(Instrument* pInstrument) {
3576     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3577 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3578 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3579     pInstruments->erase(iter);
3580     delete pInstrument;
3581     }
3582    
3583 schoenebeck 823 void File::LoadInstruments() {
3584     LoadInstruments(NULL);
3585     }
3586    
3587 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3588 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3589 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3590     if (lstInstruments) {
3591 schoenebeck 515 int iInstrumentIndex = 0;
3592 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3593     while (lstInstr) {
3594     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3595 schoenebeck 515 // notify current progress
3596     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3597     __notify_progress(pProgress, localProgress);
3598    
3599     // divide local progress into subprogress for loading current Instrument
3600     progress_t subprogress;
3601     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3602    
3603     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3604    
3605     iInstrumentIndex++;
3606 schoenebeck 2 }
3607     lstInstr = lstInstruments->GetNextSubList();
3608     }
3609 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3610 schoenebeck 2 }
3611     }
3612    
3613 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3614     /// update is done directly to disk, as this method is called
3615     /// after File::Save()
3616 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3617     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3618     if (!_3crc) return;
3619 persson 1207
3620     // get the index of the sample
3621 persson 1199 int iWaveIndex = -1;
3622     File::SampleList::iterator iter = pSamples->begin();
3623     File::SampleList::iterator end = pSamples->end();
3624     for (int index = 0; iter != end; ++iter, ++index) {
3625     if (*iter == pSample) {
3626     iWaveIndex = index;
3627     break;
3628     }
3629     }
3630     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3631    
3632 persson 1207 // write the CRC-32 checksum to disk
3633 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3634     uint32_t tmp = 1;
3635     _3crc->WriteUint32(&tmp); // unknown, always 1?
3636     _3crc->WriteUint32(&crc);
3637     }
3638    
3639 schoenebeck 929 Group* File::GetFirstGroup() {
3640     if (!pGroups) LoadGroups();
3641 schoenebeck 930 // there must always be at least one group
3642 schoenebeck 929 GroupsIterator = pGroups->begin();
3643 schoenebeck 930 return *GroupsIterator;
3644 schoenebeck 929 }
3645 schoenebeck 2
3646 schoenebeck 929 Group* File::GetNextGroup() {
3647     if (!pGroups) return NULL;
3648     ++GroupsIterator;
3649     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3650     }
3651 schoenebeck 2
3652 schoenebeck 929 /**
3653     * Returns the group with the given index.
3654     *
3655     * @param index - number of the sought group (0..n)
3656     * @returns sought group or NULL if there's no such group
3657     */
3658     Group* File::GetGroup(uint index) {
3659     if (!pGroups) LoadGroups();
3660     GroupsIterator = pGroups->begin();
3661     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3662     if (i == index) return *GroupsIterator;
3663     ++GroupsIterator;
3664     }
3665     return NULL;
3666     }
3667    
3668     Group* File::AddGroup() {
3669     if (!pGroups) LoadGroups();
3670 schoenebeck 930 // there must always be at least one group
3671 schoenebeck 929 __ensureMandatoryChunksExist();
3672 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3673 schoenebeck 929 pGroups->push_back(pGroup);
3674     return pGroup;
3675     }
3676    
3677 schoenebeck 1081 /** @brief Delete a group and its samples.
3678     *
3679     * This will delete the given Group object and all the samples that
3680     * belong to this group from the gig file. You have to call Save() to
3681     * make this persistent to the file.
3682     *
3683     * @param pGroup - group to delete
3684     * @throws gig::Exception if given group could not be found
3685     */
3686 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3687 schoenebeck 930 if (!pGroups) LoadGroups();
3688 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3689     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3690 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3691 schoenebeck 1081 // delete all members of this group
3692     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3693     DeleteSample(pSample);
3694     }
3695     // now delete this group object
3696     pGroups->erase(iter);
3697     delete pGroup;
3698     }
3699    
3700     /** @brief Delete a group.
3701     *
3702     * This will delete the given Group object from the gig file. All the
3703     * samples that belong to this group will not be deleted, but instead
3704     * be moved to another group. You have to call Save() to make this
3705     * persistent to the file.
3706     *
3707     * @param pGroup - group to delete
3708     * @throws gig::Exception if given group could not be found
3709     */
3710     void File::DeleteGroupOnly(Group* pGroup) {
3711     if (!pGroups) LoadGroups();
3712     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3713     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3714     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3715 schoenebeck 930 // move all members of this group to another group
3716     pGroup->MoveAll();
3717 schoenebeck 929 pGroups->erase(iter);
3718     delete pGroup;
3719     }
3720    
3721     void File::LoadGroups() {
3722     if (!pGroups) pGroups = new std::list<Group*>;
3723 schoenebeck 930 // try to read defined groups from file
3724 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3725 schoenebeck 930 if (lst3gri) {
3726     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3727     if (lst3gnl) {
3728     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3729     while (ck) {
3730     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3731 persson 1266 if (pVersion && pVersion->major == 3 &&
3732     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3733    
3734 schoenebeck 930 pGroups->push_back(new Group(this, ck));
3735     }
3736     ck = lst3gnl->GetNextSubChunk();
3737 schoenebeck 929 }
3738     }
3739     }
3740 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3741     if (!pGroups->size()) {
3742     Group* pGroup = new Group(this, NULL);
3743     pGroup->Name = "Default Group";
3744     pGroups->push_back(pGroup);
3745     }
3746 schoenebeck 929 }
3747    
3748 schoenebeck 1098 /**
3749     * Apply all the gig file's current instruments, samples, groups and settings
3750     * to the respective RIFF chunks. You have to call Save() to make changes
3751     * persistent.
3752     *
3753     * Usually there is absolutely no need to call this method explicitly.
3754     * It will be called automatically when File::Save() was called.
3755     *
3756     * @throws Exception - on errors
3757     */
3758     void File::UpdateChunks() {
3759 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3760 persson 1192
3761 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3762    
3763 schoenebeck 1098 // first update base class's chunks
3764     DLS::File::UpdateChunks();
3765 schoenebeck 929
3766 persson 1199 if (newFile) {
3767 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3768     // is placed first in file
3769 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3770 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3771     if (first != info) {
3772     pRIFF->MoveSubChunk(info, first);
3773     }
3774     }
3775    
3776 schoenebeck 1098 // update group's chunks
3777     if (pGroups) {
3778     std::list<Group*>::iterator iter = pGroups->begin();
3779     std::list<Group*>::iterator end = pGroups->end();
3780     for (; iter != end; ++iter) {
3781     (*iter)->UpdateChunks();
3782     }
3783 persson 1266
3784     // v3: make sure the file has 128 3gnm chunks
3785     if (pVersion && pVersion->major == 3) {
3786     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3787     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3788     for (int i = 0 ; i < 128 ; i++) {
3789     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3790     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3791     }
3792     }
3793 schoenebeck 1098 }
3794 persson 1199
3795     // update einf chunk
3796    
3797     // The einf chunk contains statistics about the gig file, such
3798     // as the number of regions and samples used by each
3799     // instrument. It is divided in equally sized parts, where the
3800     // first part contains information about the whole gig file,
3801     // and the rest of the parts map to each instrument in the
3802     // file.
3803     //
3804     // At the end of each part there is a bit map of each sample
3805     // in the file, where a set bit means that the sample is used
3806     // by the file/instrument.
3807     //
3808     // Note that there are several fields with unknown use. These
3809     // are set to zero.
3810    
3811     int sublen = pSamples->size() / 8 + 49;
3812     int einfSize = (Instruments + 1) * sublen;
3813    
3814     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3815     if (einf) {
3816     if (einf->GetSize() != einfSize) {
3817     einf->Resize(einfSize);
3818     memset(einf->LoadChunkData(), 0, einfSize);
3819     }
3820     } else if (newFile) {
3821     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3822     }
3823     if (einf) {
3824     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3825    
3826     std::map<gig::Sample*,int> sampleMap;
3827     int sampleIdx = 0;
3828     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3829     sampleMap[pSample] = sampleIdx++;
3830     }
3831    
3832     int totnbusedsamples = 0;
3833     int totnbusedchannels = 0;
3834     int totnbregions = 0;
3835     int totnbdimregions = 0;
3836 persson 1264 int totnbloops = 0;
3837 persson 1199 int instrumentIdx = 0;
3838    
3839     memset(&pData[48], 0, sublen - 48);
3840    
3841     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3842     instrument = GetNextInstrument()) {
3843     int nbusedsamples = 0;
3844     int nbusedchannels = 0;
3845     int nbdimregions = 0;
3846 persson 1264 int nbloops = 0;
3847 persson 1199
3848     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3849    
3850     for (Region* region = instrument->GetFirstRegion() ; region ;
3851     region = instrument->GetNextRegion()) {
3852     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3853     gig::DimensionRegion *d = region->pDimensionRegions[i];
3854     if (d->pSample) {
3855     int sampleIdx = sampleMap[d->pSample];
3856     int byte = 48 + sampleIdx / 8;
3857     int bit = 1 << (sampleIdx & 7);
3858     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3859     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3860     nbusedsamples++;
3861     nbusedchannels += d->pSample->Channels;
3862    
3863     if ((pData[byte] & bit) == 0) {
3864     pData[byte] |= bit;
3865     totnbusedsamples++;
3866     totnbusedchannels += d->pSample->Channels;
3867     }
3868     }
3869     }
3870 persson 1264 if (d->SampleLoops) nbloops++;
3871 persson 1199 }
3872     nbdimregions += region->DimensionRegions;
3873     }
3874     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3875     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3876     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3877     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3878     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3879     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3880     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3881 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3882     // next 8 bytes unknown
3883 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3884     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3885     // next 4 bytes unknown
3886    
3887     totnbregions += instrument->Regions;
3888     totnbdimregions += nbdimregions;
3889 persson 1264 totnbloops += nbloops;
3890 persson 1199 instrumentIdx++;
3891     }
3892     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3893     // store32(&pData[0], sublen);
3894     store32(&pData[4], totnbusedchannels);
3895     store32(&pData[8], totnbusedsamples);
3896     store32(&pData[12], Instruments);
3897     store32(&pData[16], totnbregions);
3898     store32(&pData[20], totnbdimregions);
3899 persson 1264 store32(&pData[24], totnbloops);
3900     // next 8 bytes unknown
3901     // next 4 bytes unknown, not always 0
3902 persson 1199 store32(&pData[40], pSamples->size());
3903     // next 4 bytes unknown
3904     }
3905    
3906     // update 3crc chunk
3907    
3908     // The 3crc chunk contains CRC-32 checksums for the
3909     // samples. The actual checksum values will be filled in
3910     // later, by Sample::Write.
3911    
3912     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3913     if (_3crc) {
3914     _3crc->Resize(pSamples->size() * 8);
3915     } else if (newFile) {
3916     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3917     _3crc->LoadChunkData();
3918 persson 1264
3919     // the order of einf and 3crc is not the same in v2 and v3
3920     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3921 persson 1199 }
3922 schoenebeck 1098 }
3923 schoenebeck 929
3924 schoenebeck 1524 /**
3925     * Enable / disable automatic loading. By default this properyt is
3926     * enabled and all informations are loaded automatically. However
3927     * loading all Regions, DimensionRegions and especially samples might
3928     * take a long time for large .gig files, and sometimes one might only
3929     * be interested in retrieving very superficial informations like the
3930     * amount of instruments and their names. In this case one might disable
3931     * automatic loading to avoid very slow response times.
3932     *
3933     * @e CAUTION: by disabling this property many pointers (i.e. sample
3934     * references) and informations will have invalid or even undefined
3935     * data! This feature is currently only intended for retrieving very
3936     * superficial informations in a very fast way. Don't use it to retrieve
3937     * details like synthesis informations or even to modify .gig files!
3938     */
3939     void File::SetAutoLoad(bool b) {
3940     bAutoLoad = b;
3941     }
3942 schoenebeck 1098
3943 schoenebeck 1524 /**
3944     * Returns whether automatic loading is enabled.
3945     * @see SetAutoLoad()
3946     */
3947     bool File::GetAutoLoad() {
3948     return bAutoLoad;
3949     }
3950 schoenebeck 1098
3951 schoenebeck 1524
3952    
3953 schoenebeck 2 // *************** Exception ***************
3954     // *
3955    
3956     Exception::Exception(String Message) : DLS::Exception(Message) {
3957     }
3958    
3959     void Exception::PrintMessage() {
3960     std::cout << "gig::Exception: " << Message << std::endl;
3961     }
3962    
3963 schoenebeck 518
3964     // *************** functions ***************
3965     // *
3966    
3967     /**
3968     * Returns the name of this C++ library. This is usually "libgig" of
3969     * course. This call is equivalent to RIFF::libraryName() and
3970     * DLS::libraryName().
3971     */
3972     String libraryName() {
3973     return PACKAGE;
3974     }
3975    
3976     /**
3977     * Returns version of this C++ library. This call is equivalent to
3978     * RIFF::libraryVersion() and DLS::libraryVersion().
3979     */
3980     String libraryVersion() {
3981     return VERSION;
3982     }
3983    
3984 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC