/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2450 - (hide annotations) (download)
Wed May 8 17:53:07 2013 UTC (10 years, 10 months ago) by persson
File size: 187309 byte(s)
* added write support for CtrlTrigger midi rule
* added read and write support for Legato and Alternator midi rules

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2394 * Copyright (C) 2003-2013 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31    
32 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
33     /// compressed sample wave streams - this value should always be bigger than
34     /// the biggest sample piece expected to be read by the sampler engine,
35     /// otherwise the buffer size will be raised at runtime and thus the buffer
36     /// reallocated which is time consuming and unefficient.
37     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38    
39     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52    
53 schoenebeck 515 namespace gig {
54 schoenebeck 2
55 schoenebeck 515 // *************** progress_t ***************
56     // *
57    
58     progress_t::progress_t() {
59     callback = NULL;
60 schoenebeck 516 custom = NULL;
61 schoenebeck 515 __range_min = 0.0f;
62     __range_max = 1.0f;
63     }
64    
65     // private helper function to convert progress of a subprocess into the global progress
66     static void __notify_progress(progress_t* pProgress, float subprogress) {
67     if (pProgress && pProgress->callback) {
68     const float totalrange = pProgress->__range_max - pProgress->__range_min;
69     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 schoenebeck 516 pProgress->factor = totalprogress;
71     pProgress->callback(pProgress); // now actually notify about the progress
72 schoenebeck 515 }
73     }
74    
75     // private helper function to divide a progress into subprogresses
76     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77     if (pParentProgress && pParentProgress->callback) {
78     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79     pSubProgress->callback = pParentProgress->callback;
80 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
81 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83     }
84     }
85    
86    
87 schoenebeck 809 // *************** Internal functions for sample decompression ***************
88 persson 365 // *
89    
90 schoenebeck 515 namespace {
91    
92 persson 365 inline int get12lo(const unsigned char* pSrc)
93     {
94     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95     return x & 0x800 ? x - 0x1000 : x;
96     }
97    
98     inline int get12hi(const unsigned char* pSrc)
99     {
100     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101     return x & 0x800 ? x - 0x1000 : x;
102     }
103    
104     inline int16_t get16(const unsigned char* pSrc)
105     {
106     return int16_t(pSrc[0] | pSrc[1] << 8);
107     }
108    
109     inline int get24(const unsigned char* pSrc)
110     {
111     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112     return x & 0x800000 ? x - 0x1000000 : x;
113     }
114    
115 persson 902 inline void store24(unsigned char* pDst, int x)
116     {
117     pDst[0] = x;
118     pDst[1] = x >> 8;
119     pDst[2] = x >> 16;
120     }
121    
122 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
123 persson 372 int srcStep, int dstStep,
124     const unsigned char* pSrc, int16_t* pDst,
125 persson 365 unsigned long currentframeoffset,
126     unsigned long copysamples)
127     {
128     switch (compressionmode) {
129     case 0: // 16 bit uncompressed
130     pSrc += currentframeoffset * srcStep;
131     while (copysamples) {
132     *pDst = get16(pSrc);
133 persson 372 pDst += dstStep;
134 persson 365 pSrc += srcStep;
135     copysamples--;
136     }
137     break;
138    
139     case 1: // 16 bit compressed to 8 bit
140     int y = get16(params);
141     int dy = get16(params + 2);
142     while (currentframeoffset) {
143     dy -= int8_t(*pSrc);
144     y -= dy;
145     pSrc += srcStep;
146     currentframeoffset--;
147     }
148     while (copysamples) {
149     dy -= int8_t(*pSrc);
150     y -= dy;
151     *pDst = y;
152 persson 372 pDst += dstStep;
153 persson 365 pSrc += srcStep;
154     copysamples--;
155     }
156     break;
157     }
158     }
159    
160     void Decompress24(int compressionmode, const unsigned char* params,
161 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 persson 365 unsigned long currentframeoffset,
163 persson 437 unsigned long copysamples, int truncatedBits)
164 persson 365 {
165 persson 695 int y, dy, ddy, dddy;
166 persson 437
167 persson 695 #define GET_PARAMS(params) \
168     y = get24(params); \
169     dy = y - get24((params) + 3); \
170     ddy = get24((params) + 6); \
171     dddy = get24((params) + 9)
172 persson 365
173     #define SKIP_ONE(x) \
174 persson 695 dddy -= (x); \
175     ddy -= dddy; \
176     dy = -dy - ddy; \
177     y += dy
178 persson 365
179     #define COPY_ONE(x) \
180     SKIP_ONE(x); \
181 persson 902 store24(pDst, y << truncatedBits); \
182 persson 372 pDst += dstStep
183 persson 365
184     switch (compressionmode) {
185     case 2: // 24 bit uncompressed
186     pSrc += currentframeoffset * 3;
187     while (copysamples) {
188 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
189 persson 372 pDst += dstStep;
190 persson 365 pSrc += 3;
191     copysamples--;
192     }
193     break;
194    
195     case 3: // 24 bit compressed to 16 bit
196     GET_PARAMS(params);
197     while (currentframeoffset) {
198     SKIP_ONE(get16(pSrc));
199     pSrc += 2;
200     currentframeoffset--;
201     }
202     while (copysamples) {
203     COPY_ONE(get16(pSrc));
204     pSrc += 2;
205     copysamples--;
206     }
207     break;
208    
209     case 4: // 24 bit compressed to 12 bit
210     GET_PARAMS(params);
211     while (currentframeoffset > 1) {
212     SKIP_ONE(get12lo(pSrc));
213     SKIP_ONE(get12hi(pSrc));
214     pSrc += 3;
215     currentframeoffset -= 2;
216     }
217     if (currentframeoffset) {
218     SKIP_ONE(get12lo(pSrc));
219     currentframeoffset--;
220     if (copysamples) {
221     COPY_ONE(get12hi(pSrc));
222     pSrc += 3;
223     copysamples--;
224     }
225     }
226     while (copysamples > 1) {
227     COPY_ONE(get12lo(pSrc));
228     COPY_ONE(get12hi(pSrc));
229     pSrc += 3;
230     copysamples -= 2;
231     }
232     if (copysamples) {
233     COPY_ONE(get12lo(pSrc));
234     }
235     break;
236    
237     case 5: // 24 bit compressed to 8 bit
238     GET_PARAMS(params);
239     while (currentframeoffset) {
240     SKIP_ONE(int8_t(*pSrc++));
241     currentframeoffset--;
242     }
243     while (copysamples) {
244     COPY_ONE(int8_t(*pSrc++));
245     copysamples--;
246     }
247     break;
248     }
249     }
250    
251     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255     }
256    
257    
258 schoenebeck 1113
259 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260     // *
261    
262     static uint32_t* __initCRCTable() {
263     static uint32_t res[256];
264    
265     for (int i = 0 ; i < 256 ; i++) {
266     uint32_t c = i;
267     for (int j = 0 ; j < 8 ; j++) {
268     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269     }
270     res[i] = c;
271     }
272     return res;
273     }
274    
275     static const uint32_t* __CRCTable = __initCRCTable();
276    
277     /**
278     * Initialize a CRC variable.
279     *
280     * @param crc - variable to be initialized
281     */
282     inline static void __resetCRC(uint32_t& crc) {
283     crc = 0xffffffff;
284     }
285    
286     /**
287     * Used to calculate checksums of the sample data in a gig file. The
288     * checksums are stored in the 3crc chunk of the gig file and
289     * automatically updated when a sample is written with Sample::Write().
290     *
291     * One should call __resetCRC() to initialize the CRC variable to be
292     * used before calling this function the first time.
293     *
294     * After initializing the CRC variable one can call this function
295     * arbitrary times, i.e. to split the overall CRC calculation into
296     * steps.
297     *
298     * Once the whole data was processed by __calculateCRC(), one should
299     * call __encodeCRC() to get the final CRC result.
300     *
301     * @param buf - pointer to data the CRC shall be calculated of
302     * @param bufSize - size of the data to be processed
303     * @param crc - variable the CRC sum shall be stored to
304     */
305     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306     for (int i = 0 ; i < bufSize ; i++) {
307     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308     }
309     }
310    
311     /**
312     * Returns the final CRC result.
313     *
314     * @param crc - variable previously passed to __calculateCRC()
315     */
316     inline static uint32_t __encodeCRC(const uint32_t& crc) {
317     return crc ^ 0xffffffff;
318     }
319    
320    
321    
322 schoenebeck 1113 // *************** Other Internal functions ***************
323     // *
324    
325     static split_type_t __resolveSplitType(dimension_t dimension) {
326     return (
327     dimension == dimension_layer ||
328     dimension == dimension_samplechannel ||
329     dimension == dimension_releasetrigger ||
330     dimension == dimension_keyboard ||
331     dimension == dimension_roundrobin ||
332     dimension == dimension_random ||
333     dimension == dimension_smartmidi ||
334     dimension == dimension_roundrobinkeyboard
335     ) ? split_type_bit : split_type_normal;
336     }
337    
338     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339     return (dimension_definition.split_type == split_type_normal)
340     ? int(128.0 / dimension_definition.zones) : 0;
341     }
342    
343    
344    
345 schoenebeck 2 // *************** Sample ***************
346     // *
347    
348 schoenebeck 384 unsigned int Sample::Instances = 0;
349     buffer_t Sample::InternalDecompressionBuffer;
350 schoenebeck 2
351 schoenebeck 809 /** @brief Constructor.
352     *
353     * Load an existing sample or create a new one. A 'wave' list chunk must
354     * be given to this constructor. In case the given 'wave' list chunk
355     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356     * format and sample data will be loaded from there, otherwise default
357     * values will be used and those chunks will be created when
358     * File::Save() will be called later on.
359     *
360     * @param pFile - pointer to gig::File where this sample is
361     * located (or will be located)
362     * @param waveList - pointer to 'wave' list chunk which is (or
363     * will be) associated with this sample
364     * @param WavePoolOffset - offset of this sample data from wave pool
365     * ('wvpl') list chunk
366     * @param fileNo - number of an extension file where this sample
367     * is located, 0 otherwise
368     */
369 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 persson 1180 { CHUNK_ID_INAM, 64 },
372     { 0, 0 }
373     };
374 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
375 schoenebeck 2 Instances++;
376 persson 666 FileNo = fileNo;
377 schoenebeck 2
378 schoenebeck 1381 __resetCRC(crc);
379    
380 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381     if (pCk3gix) {
382 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
384 schoenebeck 809 } else { // '3gix' chunk missing
385 schoenebeck 930 // by default assigned to that mandatory "Default Group"
386     pGroup = pFile->GetGroup(0);
387 schoenebeck 809 }
388 schoenebeck 2
389 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390     if (pCkSmpl) {
391     Manufacturer = pCkSmpl->ReadInt32();
392     Product = pCkSmpl->ReadInt32();
393     SamplePeriod = pCkSmpl->ReadInt32();
394     MIDIUnityNote = pCkSmpl->ReadInt32();
395     FineTune = pCkSmpl->ReadInt32();
396     pCkSmpl->Read(&SMPTEFormat, 1, 4);
397     SMPTEOffset = pCkSmpl->ReadInt32();
398     Loops = pCkSmpl->ReadInt32();
399     pCkSmpl->ReadInt32(); // manufByt
400     LoopID = pCkSmpl->ReadInt32();
401     pCkSmpl->Read(&LoopType, 1, 4);
402     LoopStart = pCkSmpl->ReadInt32();
403     LoopEnd = pCkSmpl->ReadInt32();
404     LoopFraction = pCkSmpl->ReadInt32();
405     LoopPlayCount = pCkSmpl->ReadInt32();
406     } else { // 'smpl' chunk missing
407     // use default values
408     Manufacturer = 0;
409     Product = 0;
410 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 persson 1218 MIDIUnityNote = 60;
412 schoenebeck 809 FineTune = 0;
413 persson 1182 SMPTEFormat = smpte_format_no_offset;
414 schoenebeck 809 SMPTEOffset = 0;
415     Loops = 0;
416     LoopID = 0;
417 persson 1182 LoopType = loop_type_normal;
418 schoenebeck 809 LoopStart = 0;
419     LoopEnd = 0;
420     LoopFraction = 0;
421     LoopPlayCount = 0;
422     }
423 schoenebeck 2
424     FrameTable = NULL;
425     SamplePos = 0;
426     RAMCache.Size = 0;
427     RAMCache.pStart = NULL;
428     RAMCache.NullExtensionSize = 0;
429    
430 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433     Compressed = ewav;
434     Dithered = false;
435     TruncatedBits = 0;
436 schoenebeck 2 if (Compressed) {
437 persson 437 uint32_t version = ewav->ReadInt32();
438     if (version == 3 && BitDepth == 24) {
439     Dithered = ewav->ReadInt32();
440     ewav->SetPos(Channels == 2 ? 84 : 64);
441     TruncatedBits = ewav->ReadInt32();
442     }
443 schoenebeck 2 ScanCompressedSample();
444     }
445 schoenebeck 317
446     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 schoenebeck 317 }
451 persson 437 FrameOffset = 0; // just for streaming compressed samples
452 schoenebeck 21
453 persson 864 LoopSize = LoopEnd - LoopStart + 1;
454 schoenebeck 2 }
455    
456 schoenebeck 809 /**
457     * Apply sample and its settings to the respective RIFF chunks. You have
458     * to call File::Save() to make changes persistent.
459     *
460     * Usually there is absolutely no need to call this method explicitly.
461     * It will be called automatically when File::Save() was called.
462     *
463 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 schoenebeck 809 * was provided yet
465     * @throws gig::Exception if there is any invalid sample setting
466     */
467     void Sample::UpdateChunks() {
468     // first update base class's chunks
469     DLS::Sample::UpdateChunks();
470    
471     // make sure 'smpl' chunk exists
472     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 persson 1182 if (!pCkSmpl) {
474     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475     memset(pCkSmpl->LoadChunkData(), 0, 60);
476     }
477 schoenebeck 809 // update 'smpl' chunk
478     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 persson 1179 store32(&pData[0], Manufacturer);
481     store32(&pData[4], Product);
482     store32(&pData[8], SamplePeriod);
483     store32(&pData[12], MIDIUnityNote);
484     store32(&pData[16], FineTune);
485     store32(&pData[20], SMPTEFormat);
486     store32(&pData[24], SMPTEOffset);
487     store32(&pData[28], Loops);
488 schoenebeck 809
489     // we skip 'manufByt' for now (4 bytes)
490    
491 persson 1179 store32(&pData[36], LoopID);
492     store32(&pData[40], LoopType);
493     store32(&pData[44], LoopStart);
494     store32(&pData[48], LoopEnd);
495     store32(&pData[52], LoopFraction);
496     store32(&pData[56], LoopPlayCount);
497 schoenebeck 809
498     // make sure '3gix' chunk exists
499     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
502 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
504     if (pFile->pGroups) {
505     std::list<Group*>::iterator iter = pFile->pGroups->begin();
506     std::list<Group*>::iterator end = pFile->pGroups->end();
507 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
508 schoenebeck 929 if (*iter == pGroup) {
509     iSampleGroup = i;
510     break; // found
511     }
512     }
513     }
514 schoenebeck 809 // update '3gix' chunk
515     pData = (uint8_t*) pCk3gix->LoadChunkData();
516 persson 1179 store16(&pData[0], iSampleGroup);
517 schoenebeck 809 }
518    
519 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520     void Sample::ScanCompressedSample() {
521     //TODO: we have to add some more scans here (e.g. determine compression rate)
522     this->SamplesTotal = 0;
523     std::list<unsigned long> frameOffsets;
524    
525 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527 persson 365
528 schoenebeck 2 // Scanning
529     pCkData->SetPos(0);
530 persson 365 if (Channels == 2) { // Stereo
531     for (int i = 0 ; ; i++) {
532     // for 24 bit samples every 8:th frame offset is
533     // stored, to save some memory
534     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535    
536     const int mode_l = pCkData->ReadUint8();
537     const int mode_r = pCkData->ReadUint8();
538     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540    
541     if (pCkData->RemainingBytes() <= frameSize) {
542     SamplesInLastFrame =
543     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545     SamplesTotal += SamplesInLastFrame;
546 schoenebeck 2 break;
547 persson 365 }
548     SamplesTotal += SamplesPerFrame;
549     pCkData->SetPos(frameSize, RIFF::stream_curpos);
550     }
551     }
552     else { // Mono
553     for (int i = 0 ; ; i++) {
554     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555    
556     const int mode = pCkData->ReadUint8();
557     if (mode > 5) throw gig::Exception("Unknown compression mode");
558     const unsigned long frameSize = bytesPerFrame[mode];
559    
560     if (pCkData->RemainingBytes() <= frameSize) {
561     SamplesInLastFrame =
562     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563     SamplesTotal += SamplesInLastFrame;
564 schoenebeck 2 break;
565 persson 365 }
566     SamplesTotal += SamplesPerFrame;
567     pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 schoenebeck 2 }
569     }
570     pCkData->SetPos(0);
571    
572     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573     if (FrameTable) delete[] FrameTable;
574     FrameTable = new unsigned long[frameOffsets.size()];
575     std::list<unsigned long>::iterator end = frameOffsets.end();
576     std::list<unsigned long>::iterator iter = frameOffsets.begin();
577     for (int i = 0; iter != end; i++, iter++) {
578     FrameTable[i] = *iter;
579     }
580     }
581    
582     /**
583     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584     * ReleaseSampleData() to free the memory if you don't need the cached
585     * sample data anymore.
586     *
587     * @returns buffer_t structure with start address and size of the buffer
588     * in bytes
589     * @see ReleaseSampleData(), Read(), SetPos()
590     */
591     buffer_t Sample::LoadSampleData() {
592     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593     }
594    
595     /**
596     * Reads (uncompresses if needed) and caches the first \a SampleCount
597     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598     * memory space if you don't need the cached samples anymore. There is no
599     * guarantee that exactly \a SampleCount samples will be cached; this is
600     * not an error. The size will be eventually truncated e.g. to the
601     * beginning of a frame of a compressed sample. This is done for
602     * efficiency reasons while streaming the wave by your sampler engine
603     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604     * that will be returned to determine the actual cached samples, but note
605     * that the size is given in bytes! You get the number of actually cached
606     * samples by dividing it by the frame size of the sample:
607 schoenebeck 384 * @code
608 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609     * long cachedsamples = buf.Size / pSample->FrameSize;
610 schoenebeck 384 * @endcode
611 schoenebeck 2 *
612     * @param SampleCount - number of sample points to load into RAM
613     * @returns buffer_t structure with start address and size of
614     * the cached sample data in bytes
615     * @see ReleaseSampleData(), Read(), SetPos()
616     */
617     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619     }
620    
621     /**
622     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623     * ReleaseSampleData() to free the memory if you don't need the cached
624     * sample data anymore.
625     * The method will add \a NullSamplesCount silence samples past the
626     * official buffer end (this won't affect the 'Size' member of the
627     * buffer_t structure, that means 'Size' always reflects the size of the
628     * actual sample data, the buffer might be bigger though). Silence
629     * samples past the official buffer are needed for differential
630     * algorithms that always have to take subsequent samples into account
631     * (resampling/interpolation would be an important example) and avoids
632     * memory access faults in such cases.
633     *
634     * @param NullSamplesCount - number of silence samples the buffer should
635     * be extended past it's data end
636     * @returns buffer_t structure with start address and
637     * size of the buffer in bytes
638     * @see ReleaseSampleData(), Read(), SetPos()
639     */
640     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642     }
643    
644     /**
645     * Reads (uncompresses if needed) and caches the first \a SampleCount
646     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647     * memory space if you don't need the cached samples anymore. There is no
648     * guarantee that exactly \a SampleCount samples will be cached; this is
649     * not an error. The size will be eventually truncated e.g. to the
650     * beginning of a frame of a compressed sample. This is done for
651     * efficiency reasons while streaming the wave by your sampler engine
652     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653     * that will be returned to determine the actual cached samples, but note
654     * that the size is given in bytes! You get the number of actually cached
655     * samples by dividing it by the frame size of the sample:
656 schoenebeck 384 * @code
657 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658     * long cachedsamples = buf.Size / pSample->FrameSize;
659 schoenebeck 384 * @endcode
660 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
661     * official buffer end (this won't affect the 'Size' member of the
662     * buffer_t structure, that means 'Size' always reflects the size of the
663     * actual sample data, the buffer might be bigger though). Silence
664     * samples past the official buffer are needed for differential
665     * algorithms that always have to take subsequent samples into account
666     * (resampling/interpolation would be an important example) and avoids
667     * memory access faults in such cases.
668     *
669     * @param SampleCount - number of sample points to load into RAM
670     * @param NullSamplesCount - number of silence samples the buffer should
671     * be extended past it's data end
672     * @returns buffer_t structure with start address and
673     * size of the cached sample data in bytes
674     * @see ReleaseSampleData(), Read(), SetPos()
675     */
676     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
681 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
682     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684     // fill the remaining buffer space with silence samples
685     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686     return GetCache();
687     }
688    
689     /**
690     * Returns current cached sample points. A buffer_t structure will be
691     * returned which contains address pointer to the begin of the cache and
692     * the size of the cached sample data in bytes. Use
693     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
694     * RAM.
695     *
696     * @returns buffer_t structure with current cached sample points
697     * @see LoadSampleData();
698     */
699     buffer_t Sample::GetCache() {
700     // return a copy of the buffer_t structure
701     buffer_t result;
702     result.Size = this->RAMCache.Size;
703     result.pStart = this->RAMCache.pStart;
704     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
705     return result;
706     }
707    
708     /**
709     * Frees the cached sample from RAM if loaded with
710     * <i>LoadSampleData()</i> previously.
711     *
712     * @see LoadSampleData();
713     */
714     void Sample::ReleaseSampleData() {
715     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716     RAMCache.pStart = NULL;
717     RAMCache.Size = 0;
718 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
719 schoenebeck 2 }
720    
721 schoenebeck 809 /** @brief Resize sample.
722     *
723     * Resizes the sample's wave form data, that is the actual size of
724     * sample wave data possible to be written for this sample. This call
725     * will return immediately and just schedule the resize operation. You
726     * should call File::Save() to actually perform the resize operation(s)
727     * "physically" to the file. As this can take a while on large files, it
728     * is recommended to call Resize() first on all samples which have to be
729     * resized and finally to call File::Save() to perform all those resize
730     * operations in one rush.
731     *
732     * The actual size (in bytes) is dependant to the current FrameSize
733     * value. You may want to set FrameSize before calling Resize().
734     *
735     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
736     * enlarged samples before calling File::Save() as this might exceed the
737     * current sample's boundary!
738     *
739 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
740     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
741 schoenebeck 809 * other formats will fail!
742     *
743     * @param iNewSize - new sample wave data size in sample points (must be
744     * greater than zero)
745 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
746 schoenebeck 809 * or if \a iNewSize is less than 1
747     * @throws gig::Exception if existing sample is compressed
748     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
749     * DLS::Sample::FormatTag, File::Save()
750     */
751     void Sample::Resize(int iNewSize) {
752     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753     DLS::Sample::Resize(iNewSize);
754     }
755    
756 schoenebeck 2 /**
757     * Sets the position within the sample (in sample points, not in
758     * bytes). Use this method and <i>Read()</i> if you don't want to load
759     * the sample into RAM, thus for disk streaming.
760     *
761     * Although the original Gigasampler engine doesn't allow positioning
762     * within compressed samples, I decided to implement it. Even though
763     * the Gigasampler format doesn't allow to define loops for compressed
764     * samples at the moment, positioning within compressed samples might be
765     * interesting for some sampler engines though. The only drawback about
766     * my decision is that it takes longer to load compressed gig Files on
767     * startup, because it's neccessary to scan the samples for some
768     * mandatory informations. But I think as it doesn't affect the runtime
769     * efficiency, nobody will have a problem with that.
770     *
771     * @param SampleCount number of sample points to jump
772     * @param Whence optional: to which relation \a SampleCount refers
773     * to, if omited <i>RIFF::stream_start</i> is assumed
774     * @returns the new sample position
775     * @see Read()
776     */
777     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778     if (Compressed) {
779     switch (Whence) {
780     case RIFF::stream_curpos:
781     this->SamplePos += SampleCount;
782     break;
783     case RIFF::stream_end:
784     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785     break;
786     case RIFF::stream_backward:
787     this->SamplePos -= SampleCount;
788     break;
789     case RIFF::stream_start: default:
790     this->SamplePos = SampleCount;
791     break;
792     }
793     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794    
795     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798     return this->SamplePos;
799     }
800     else { // not compressed
801     unsigned long orderedBytes = SampleCount * this->FrameSize;
802     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803     return (result == orderedBytes) ? SampleCount
804     : result / this->FrameSize;
805     }
806     }
807    
808     /**
809     * Returns the current position in the sample (in sample points).
810     */
811     unsigned long Sample::GetPos() {
812     if (Compressed) return SamplePos;
813     else return pCkData->GetPos() / FrameSize;
814     }
815    
816     /**
817 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
818     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
819     * the position within the sample respectively, this method honors the
820     * looping informations of the sample (if any). The sample wave stream
821     * will be decompressed on the fly if using a compressed sample. Use this
822     * method if you don't want to load the sample into RAM, thus for disk
823     * streaming. All this methods needs to know to proceed with streaming
824     * for the next time you call this method is stored in \a pPlaybackState.
825     * You have to allocate and initialize the playback_state_t structure by
826     * yourself before you use it to stream a sample:
827 schoenebeck 384 * @code
828     * gig::playback_state_t playbackstate;
829     * playbackstate.position = 0;
830     * playbackstate.reverse = false;
831     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
832     * @endcode
833 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
834     * defined or if the current read position is located within a loop area.
835     * The method already handles such cases by itself.
836     *
837 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
838     * have to use an external decompression buffer for <b>EACH</b>
839     * streaming thread to avoid race conditions and crashes!
840     *
841 schoenebeck 24 * @param pBuffer destination buffer
842     * @param SampleCount number of sample points to read
843     * @param pPlaybackState will be used to store and reload the playback
844     * state for the next ReadAndLoop() call
845 persson 864 * @param pDimRgn dimension region with looping information
846 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
847 schoenebeck 24 * @returns number of successfully read sample points
848 schoenebeck 384 * @see CreateDecompressionBuffer()
849 schoenebeck 24 */
850 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853     uint8_t* pDst = (uint8_t*) pBuffer;
854    
855     SetPos(pPlaybackState->position); // recover position from the last time
856    
857 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858 schoenebeck 24
859 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861 schoenebeck 24
862 persson 864 if (GetPos() <= loopEnd) {
863     switch (loop.LoopType) {
864 schoenebeck 24
865 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
866     do {
867     // if not endless loop check if max. number of loop cycles have been passed
868     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869 schoenebeck 24
870 persson 864 if (!pPlaybackState->reverse) { // forward playback
871     do {
872     samplestoloopend = loopEnd - GetPos();
873     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874     samplestoread -= readsamples;
875     totalreadsamples += readsamples;
876     if (readsamples == samplestoloopend) {
877     pPlaybackState->reverse = true;
878     break;
879     }
880     } while (samplestoread && readsamples);
881     }
882     else { // backward playback
883 schoenebeck 24
884 persson 864 // as we can only read forward from disk, we have to
885     // determine the end position within the loop first,
886     // read forward from that 'end' and finally after
887     // reading, swap all sample frames so it reflects
888     // backward playback
889 schoenebeck 24
890 persson 864 unsigned long swapareastart = totalreadsamples;
891     unsigned long loopoffset = GetPos() - loop.LoopStart;
892     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894 schoenebeck 24
895 persson 864 SetPos(reverseplaybackend);
896 schoenebeck 24
897 persson 864 // read samples for backward playback
898     do {
899     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900     samplestoreadinloop -= readsamples;
901     samplestoread -= readsamples;
902     totalreadsamples += readsamples;
903     } while (samplestoreadinloop && readsamples);
904 schoenebeck 24
905 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
906    
907     if (reverseplaybackend == loop.LoopStart) {
908     pPlaybackState->loop_cycles_left--;
909     pPlaybackState->reverse = false;
910     }
911    
912     // reverse the sample frames for backward playback
913 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915 schoenebeck 24 }
916 persson 864 } while (samplestoread && readsamples);
917     break;
918     }
919 schoenebeck 24
920 persson 864 case loop_type_backward: { // TODO: not tested yet!
921     // forward playback (not entered the loop yet)
922     if (!pPlaybackState->reverse) do {
923     samplestoloopend = loopEnd - GetPos();
924     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
925     samplestoread -= readsamples;
926     totalreadsamples += readsamples;
927     if (readsamples == samplestoloopend) {
928     pPlaybackState->reverse = true;
929     break;
930     }
931     } while (samplestoread && readsamples);
932 schoenebeck 24
933 persson 864 if (!samplestoread) break;
934 schoenebeck 24
935 persson 864 // as we can only read forward from disk, we have to
936     // determine the end position within the loop first,
937     // read forward from that 'end' and finally after
938     // reading, swap all sample frames so it reflects
939     // backward playback
940 schoenebeck 24
941 persson 864 unsigned long swapareastart = totalreadsamples;
942     unsigned long loopoffset = GetPos() - loop.LoopStart;
943     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
944     : samplestoread;
945     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
946 schoenebeck 24
947 persson 864 SetPos(reverseplaybackend);
948 schoenebeck 24
949 persson 864 // read samples for backward playback
950     do {
951     // if not endless loop check if max. number of loop cycles have been passed
952     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
953     samplestoloopend = loopEnd - GetPos();
954     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
955     samplestoreadinloop -= readsamples;
956     samplestoread -= readsamples;
957     totalreadsamples += readsamples;
958     if (readsamples == samplestoloopend) {
959     pPlaybackState->loop_cycles_left--;
960     SetPos(loop.LoopStart);
961     }
962     } while (samplestoreadinloop && readsamples);
963 schoenebeck 24
964 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
965 schoenebeck 24
966 persson 864 // reverse the sample frames for backward playback
967     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
968     break;
969     }
970 schoenebeck 24
971 persson 864 default: case loop_type_normal: {
972     do {
973     // if not endless loop check if max. number of loop cycles have been passed
974     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
975     samplestoloopend = loopEnd - GetPos();
976     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
977     samplestoread -= readsamples;
978     totalreadsamples += readsamples;
979     if (readsamples == samplestoloopend) {
980     pPlaybackState->loop_cycles_left--;
981     SetPos(loop.LoopStart);
982     }
983     } while (samplestoread && readsamples);
984     break;
985     }
986 schoenebeck 24 }
987     }
988     }
989    
990     // read on without looping
991     if (samplestoread) do {
992 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
993 schoenebeck 24 samplestoread -= readsamples;
994     totalreadsamples += readsamples;
995     } while (readsamples && samplestoread);
996    
997     // store current position
998     pPlaybackState->position = GetPos();
999    
1000     return totalreadsamples;
1001     }
1002    
1003     /**
1004 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1005     * position into the buffer pointed by \a pBuffer and increments the
1006     * position within the sample. The sample wave stream will be
1007     * decompressed on the fly if using a compressed sample. Use this method
1008     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1009     * thus for disk streaming.
1010     *
1011 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1012     * have to use an external decompression buffer for <b>EACH</b>
1013     * streaming thread to avoid race conditions and crashes!
1014     *
1015 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1016     * (using native endianness). For 24 bit, the buffer will
1017     * contain three bytes per sample, little-endian.
1018     *
1019 schoenebeck 2 * @param pBuffer destination buffer
1020     * @param SampleCount number of sample points to read
1021 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1022 schoenebeck 2 * @returns number of successfully read sample points
1023 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1024 schoenebeck 2 */
1025 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1026 schoenebeck 21 if (SampleCount == 0) return 0;
1027 schoenebeck 317 if (!Compressed) {
1028     if (BitDepth == 24) {
1029 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1030 schoenebeck 317 }
1031 persson 365 else { // 16 bit
1032     // (pCkData->Read does endian correction)
1033     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1034     : pCkData->Read(pBuffer, SampleCount, 2);
1035     }
1036 schoenebeck 317 }
1037 persson 365 else {
1038 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1039 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1040     unsigned long assumedsize = GuessSize(SampleCount),
1041 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1042     remainingsamples = SampleCount,
1043 persson 365 copysamples, skipsamples,
1044     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1045 schoenebeck 2 this->FrameOffset = 0;
1046    
1047 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1048    
1049     // if decompression buffer too small, then reduce amount of samples to read
1050     if (pDecompressionBuffer->Size < assumedsize) {
1051     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1052     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1053     remainingsamples = SampleCount;
1054     assumedsize = GuessSize(SampleCount);
1055 schoenebeck 2 }
1056    
1057 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1058 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1059 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1060 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1061    
1062 persson 365 while (remainingsamples && remainingbytes) {
1063     unsigned long framesamples = SamplesPerFrame;
1064     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1065 schoenebeck 2
1066 persson 365 int mode_l = *pSrc++, mode_r = 0;
1067    
1068     if (Channels == 2) {
1069     mode_r = *pSrc++;
1070     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1071     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1072     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1073     if (remainingbytes < framebytes) { // last frame in sample
1074     framesamples = SamplesInLastFrame;
1075     if (mode_l == 4 && (framesamples & 1)) {
1076     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1077     }
1078     else {
1079     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1080     }
1081 schoenebeck 2 }
1082     }
1083 persson 365 else {
1084     framebytes = bytesPerFrame[mode_l] + 1;
1085     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1086     if (remainingbytes < framebytes) {
1087     framesamples = SamplesInLastFrame;
1088     }
1089     }
1090 schoenebeck 2
1091     // determine how many samples in this frame to skip and read
1092 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1093     if (currentframeoffset <= framesamples) {
1094     copysamples = framesamples - currentframeoffset;
1095     skipsamples = currentframeoffset;
1096     }
1097     else {
1098     copysamples = 0;
1099     skipsamples = framesamples;
1100     }
1101 schoenebeck 2 }
1102     else {
1103 persson 365 // This frame has enough data for pBuffer, but not
1104     // all of the frame is needed. Set file position
1105     // to start of this frame for next call to Read.
1106 schoenebeck 2 copysamples = remainingsamples;
1107 persson 365 skipsamples = currentframeoffset;
1108     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1109     this->FrameOffset = currentframeoffset + copysamples;
1110     }
1111     remainingsamples -= copysamples;
1112    
1113     if (remainingbytes > framebytes) {
1114     remainingbytes -= framebytes;
1115     if (remainingsamples == 0 &&
1116     currentframeoffset + copysamples == framesamples) {
1117     // This frame has enough data for pBuffer, and
1118     // all of the frame is needed. Set file
1119     // position to start of next frame for next
1120     // call to Read. FrameOffset is 0.
1121 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1122     }
1123     }
1124 persson 365 else remainingbytes = 0;
1125 schoenebeck 2
1126 persson 365 currentframeoffset -= skipsamples;
1127 schoenebeck 2
1128 persson 365 if (copysamples == 0) {
1129     // skip this frame
1130     pSrc += framebytes - Channels;
1131     }
1132     else {
1133     const unsigned char* const param_l = pSrc;
1134     if (BitDepth == 24) {
1135     if (mode_l != 2) pSrc += 12;
1136 schoenebeck 2
1137 persson 365 if (Channels == 2) { // Stereo
1138     const unsigned char* const param_r = pSrc;
1139     if (mode_r != 2) pSrc += 12;
1140    
1141 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1142 persson 437 skipsamples, copysamples, TruncatedBits);
1143 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1144 persson 437 skipsamples, copysamples, TruncatedBits);
1145 persson 902 pDst24 += copysamples * 6;
1146 schoenebeck 2 }
1147 persson 365 else { // Mono
1148 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1149 persson 437 skipsamples, copysamples, TruncatedBits);
1150 persson 902 pDst24 += copysamples * 3;
1151 schoenebeck 2 }
1152 persson 365 }
1153     else { // 16 bit
1154     if (mode_l) pSrc += 4;
1155 schoenebeck 2
1156 persson 365 int step;
1157     if (Channels == 2) { // Stereo
1158     const unsigned char* const param_r = pSrc;
1159     if (mode_r) pSrc += 4;
1160    
1161     step = (2 - mode_l) + (2 - mode_r);
1162 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1163     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1164 persson 365 skipsamples, copysamples);
1165     pDst += copysamples << 1;
1166 schoenebeck 2 }
1167 persson 365 else { // Mono
1168     step = 2 - mode_l;
1169 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1170 persson 365 pDst += copysamples;
1171 schoenebeck 2 }
1172 persson 365 }
1173     pSrc += nextFrameOffset;
1174     }
1175 schoenebeck 2
1176 persson 365 // reload from disk to local buffer if needed
1177     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1178     assumedsize = GuessSize(remainingsamples);
1179     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1180     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1181 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1182     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1183 schoenebeck 2 }
1184 persson 365 } // while
1185    
1186 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1187 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1188 schoenebeck 2 return (SampleCount - remainingsamples);
1189     }
1190     }
1191    
1192 schoenebeck 809 /** @brief Write sample wave data.
1193     *
1194     * Writes \a SampleCount number of sample points from the buffer pointed
1195     * by \a pBuffer and increments the position within the sample. Use this
1196     * method to directly write the sample data to disk, i.e. if you don't
1197     * want or cannot load the whole sample data into RAM.
1198     *
1199     * You have to Resize() the sample to the desired size and call
1200     * File::Save() <b>before</b> using Write().
1201     *
1202     * Note: there is currently no support for writing compressed samples.
1203     *
1204 persson 1264 * For 16 bit samples, the data in the source buffer should be
1205     * int16_t (using native endianness). For 24 bit, the buffer
1206     * should contain three bytes per sample, little-endian.
1207     *
1208 schoenebeck 809 * @param pBuffer - source buffer
1209     * @param SampleCount - number of sample points to write
1210     * @throws DLS::Exception if current sample size is too small
1211     * @throws gig::Exception if sample is compressed
1212     * @see DLS::LoadSampleData()
1213     */
1214     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216 persson 1207
1217     // if this is the first write in this sample, reset the
1218     // checksum calculator
1219 persson 1199 if (pCkData->GetPos() == 0) {
1220 schoenebeck 1381 __resetCRC(crc);
1221 persson 1199 }
1222 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223     unsigned long res;
1224     if (BitDepth == 24) {
1225     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226     } else { // 16 bit
1227     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228     : pCkData->Write(pBuffer, SampleCount, 2);
1229     }
1230 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231 persson 1199
1232 persson 1207 // if this is the last write, update the checksum chunk in the
1233     // file
1234 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1235     File* pFile = static_cast<File*>(GetParent());
1236 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237 persson 1199 }
1238     return res;
1239 schoenebeck 809 }
1240    
1241 schoenebeck 384 /**
1242     * Allocates a decompression buffer for streaming (compressed) samples
1243     * with Sample::Read(). If you are using more than one streaming thread
1244     * in your application you <b>HAVE</b> to create a decompression buffer
1245     * for <b>EACH</b> of your streaming threads and provide it with the
1246     * Sample::Read() call in order to avoid race conditions and crashes.
1247     *
1248     * You should free the memory occupied by the allocated buffer(s) once
1249     * you don't need one of your streaming threads anymore by calling
1250     * DestroyDecompressionBuffer().
1251     *
1252     * @param MaxReadSize - the maximum size (in sample points) you ever
1253     * expect to read with one Read() call
1254     * @returns allocated decompression buffer
1255     * @see DestroyDecompressionBuffer()
1256     */
1257     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1258     buffer_t result;
1259     const double worstCaseHeaderOverhead =
1260     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1261     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1262     result.pStart = new int8_t[result.Size];
1263     result.NullExtensionSize = 0;
1264     return result;
1265     }
1266    
1267     /**
1268     * Free decompression buffer, previously created with
1269     * CreateDecompressionBuffer().
1270     *
1271     * @param DecompressionBuffer - previously allocated decompression
1272     * buffer to free
1273     */
1274     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1275     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1276     delete[] (int8_t*) DecompressionBuffer.pStart;
1277     DecompressionBuffer.pStart = NULL;
1278     DecompressionBuffer.Size = 0;
1279     DecompressionBuffer.NullExtensionSize = 0;
1280     }
1281     }
1282    
1283 schoenebeck 930 /**
1284     * Returns pointer to the Group this Sample belongs to. In the .gig
1285     * format a sample always belongs to one group. If it wasn't explicitly
1286     * assigned to a certain group, it will be automatically assigned to a
1287     * default group.
1288     *
1289     * @returns Sample's Group (never NULL)
1290     */
1291     Group* Sample::GetGroup() const {
1292     return pGroup;
1293     }
1294    
1295 schoenebeck 2 Sample::~Sample() {
1296     Instances--;
1297 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1298     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1299     InternalDecompressionBuffer.pStart = NULL;
1300     InternalDecompressionBuffer.Size = 0;
1301 schoenebeck 355 }
1302 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1303     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1304     }
1305    
1306    
1307    
1308     // *************** DimensionRegion ***************
1309     // *
1310    
1311 schoenebeck 16 uint DimensionRegion::Instances = 0;
1312     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313    
1314 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315 schoenebeck 16 Instances++;
1316    
1317 schoenebeck 823 pSample = NULL;
1318 schoenebeck 1316 pRegion = pParent;
1319 schoenebeck 823
1320 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321     else memset(&Crossfade, 0, 4);
1322    
1323 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324 schoenebeck 2
1325     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1326 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1327 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1328 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1330     _3ewa->ReadInt16(); // unknown
1331     LFO1InternalDepth = _3ewa->ReadUint16();
1332     _3ewa->ReadInt16(); // unknown
1333     LFO3InternalDepth = _3ewa->ReadInt16();
1334     _3ewa->ReadInt16(); // unknown
1335     LFO1ControlDepth = _3ewa->ReadUint16();
1336     _3ewa->ReadInt16(); // unknown
1337     LFO3ControlDepth = _3ewa->ReadInt16();
1338     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340     _3ewa->ReadInt16(); // unknown
1341     EG1Sustain = _3ewa->ReadUint16();
1342     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1343     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1344     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1345     EG1ControllerInvert = eg1ctrloptions & 0x01;
1346     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1347     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1348     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1349     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1350     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1351     EG2ControllerInvert = eg2ctrloptions & 0x01;
1352     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1353     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1354     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1355     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358     _3ewa->ReadInt16(); // unknown
1359     EG2Sustain = _3ewa->ReadUint16();
1360     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361     _3ewa->ReadInt16(); // unknown
1362     LFO2ControlDepth = _3ewa->ReadUint16();
1363     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1364     _3ewa->ReadInt16(); // unknown
1365     LFO2InternalDepth = _3ewa->ReadUint16();
1366     int32_t eg1decay2 = _3ewa->ReadInt32();
1367     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1368     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1369     _3ewa->ReadInt16(); // unknown
1370     EG1PreAttack = _3ewa->ReadUint16();
1371     int32_t eg2decay2 = _3ewa->ReadInt32();
1372     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1373     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1374     _3ewa->ReadInt16(); // unknown
1375     EG2PreAttack = _3ewa->ReadUint16();
1376     uint8_t velocityresponse = _3ewa->ReadUint8();
1377     if (velocityresponse < 5) {
1378     VelocityResponseCurve = curve_type_nonlinear;
1379     VelocityResponseDepth = velocityresponse;
1380     } else if (velocityresponse < 10) {
1381     VelocityResponseCurve = curve_type_linear;
1382     VelocityResponseDepth = velocityresponse - 5;
1383     } else if (velocityresponse < 15) {
1384     VelocityResponseCurve = curve_type_special;
1385     VelocityResponseDepth = velocityresponse - 10;
1386     } else {
1387     VelocityResponseCurve = curve_type_unknown;
1388     VelocityResponseDepth = 0;
1389     }
1390     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1391     if (releasevelocityresponse < 5) {
1392     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1393     ReleaseVelocityResponseDepth = releasevelocityresponse;
1394     } else if (releasevelocityresponse < 10) {
1395     ReleaseVelocityResponseCurve = curve_type_linear;
1396     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1397     } else if (releasevelocityresponse < 15) {
1398     ReleaseVelocityResponseCurve = curve_type_special;
1399     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1400     } else {
1401     ReleaseVelocityResponseCurve = curve_type_unknown;
1402     ReleaseVelocityResponseDepth = 0;
1403     }
1404     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1405     AttenuationControllerThreshold = _3ewa->ReadInt8();
1406     _3ewa->ReadInt32(); // unknown
1407     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1408     _3ewa->ReadInt16(); // unknown
1409     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1410     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1411     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1412     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1413     else DimensionBypass = dim_bypass_ctrl_none;
1414     uint8_t pan = _3ewa->ReadUint8();
1415     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1416     SelfMask = _3ewa->ReadInt8() & 0x01;
1417     _3ewa->ReadInt8(); // unknown
1418     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1419     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1420     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1421     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1422     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1423     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1424     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1425     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1426     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1427     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1428     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1429     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1430     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1431     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1432     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1433     : vcf_res_ctrl_none;
1434     uint16_t eg3depth = _3ewa->ReadUint16();
1435     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1436 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1437 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1438     ChannelOffset = _3ewa->ReadUint8() / 4;
1439     uint8_t regoptions = _3ewa->ReadUint8();
1440     MSDecode = regoptions & 0x01; // bit 0
1441     SustainDefeat = regoptions & 0x02; // bit 1
1442     _3ewa->ReadInt16(); // unknown
1443     VelocityUpperLimit = _3ewa->ReadInt8();
1444     _3ewa->ReadInt8(); // unknown
1445     _3ewa->ReadInt16(); // unknown
1446     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1447     _3ewa->ReadInt8(); // unknown
1448     _3ewa->ReadInt8(); // unknown
1449     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1450     uint8_t vcfcutoff = _3ewa->ReadUint8();
1451     VCFEnabled = vcfcutoff & 0x80; // bit 7
1452     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1453     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1454     uint8_t vcfvelscale = _3ewa->ReadUint8();
1455     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1456     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1457     _3ewa->ReadInt8(); // unknown
1458     uint8_t vcfresonance = _3ewa->ReadUint8();
1459     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1460     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1461     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1462     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1463     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1464     uint8_t vcfvelocity = _3ewa->ReadUint8();
1465     VCFVelocityDynamicRange = vcfvelocity % 5;
1466     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1467     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1468     if (VCFType == vcf_type_lowpass) {
1469     if (lfo3ctrl & 0x40) // bit 6
1470     VCFType = vcf_type_lowpassturbo;
1471     }
1472 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1473     _3ewa->Read(DimensionUpperLimits, 1, 8);
1474     } else {
1475     memset(DimensionUpperLimits, 0, 8);
1476     }
1477 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1478     // use default values
1479     LFO3Frequency = 1.0;
1480     EG3Attack = 0.0;
1481     LFO1InternalDepth = 0;
1482     LFO3InternalDepth = 0;
1483     LFO1ControlDepth = 0;
1484     LFO3ControlDepth = 0;
1485     EG1Attack = 0.0;
1486 persson 1218 EG1Decay1 = 0.005;
1487     EG1Sustain = 1000;
1488     EG1Release = 0.3;
1489 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1490     EG1Controller.controller_number = 0;
1491     EG1ControllerInvert = false;
1492     EG1ControllerAttackInfluence = 0;
1493     EG1ControllerDecayInfluence = 0;
1494     EG1ControllerReleaseInfluence = 0;
1495     EG2Controller.type = eg2_ctrl_t::type_none;
1496     EG2Controller.controller_number = 0;
1497     EG2ControllerInvert = false;
1498     EG2ControllerAttackInfluence = 0;
1499     EG2ControllerDecayInfluence = 0;
1500     EG2ControllerReleaseInfluence = 0;
1501     LFO1Frequency = 1.0;
1502     EG2Attack = 0.0;
1503 persson 1218 EG2Decay1 = 0.005;
1504     EG2Sustain = 1000;
1505     EG2Release = 0.3;
1506 schoenebeck 809 LFO2ControlDepth = 0;
1507     LFO2Frequency = 1.0;
1508     LFO2InternalDepth = 0;
1509     EG1Decay2 = 0.0;
1510 persson 1218 EG1InfiniteSustain = true;
1511     EG1PreAttack = 0;
1512 schoenebeck 809 EG2Decay2 = 0.0;
1513 persson 1218 EG2InfiniteSustain = true;
1514     EG2PreAttack = 0;
1515 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1516     VelocityResponseDepth = 3;
1517     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1518     ReleaseVelocityResponseDepth = 3;
1519     VelocityResponseCurveScaling = 32;
1520     AttenuationControllerThreshold = 0;
1521     SampleStartOffset = 0;
1522     PitchTrack = true;
1523     DimensionBypass = dim_bypass_ctrl_none;
1524     Pan = 0;
1525     SelfMask = true;
1526     LFO3Controller = lfo3_ctrl_modwheel;
1527     LFO3Sync = false;
1528     InvertAttenuationController = false;
1529     AttenuationController.type = attenuation_ctrl_t::type_none;
1530     AttenuationController.controller_number = 0;
1531     LFO2Controller = lfo2_ctrl_internal;
1532     LFO2FlipPhase = false;
1533     LFO2Sync = false;
1534     LFO1Controller = lfo1_ctrl_internal;
1535     LFO1FlipPhase = false;
1536     LFO1Sync = false;
1537     VCFResonanceController = vcf_res_ctrl_none;
1538     EG3Depth = 0;
1539     ChannelOffset = 0;
1540     MSDecode = false;
1541     SustainDefeat = false;
1542     VelocityUpperLimit = 0;
1543     ReleaseTriggerDecay = 0;
1544     EG1Hold = false;
1545     VCFEnabled = false;
1546     VCFCutoff = 0;
1547     VCFCutoffController = vcf_cutoff_ctrl_none;
1548     VCFCutoffControllerInvert = false;
1549     VCFVelocityScale = 0;
1550     VCFResonance = 0;
1551     VCFResonanceDynamic = false;
1552     VCFKeyboardTracking = false;
1553     VCFKeyboardTrackingBreakpoint = 0;
1554     VCFVelocityDynamicRange = 0x04;
1555     VCFVelocityCurve = curve_type_linear;
1556     VCFType = vcf_type_lowpass;
1557 persson 1247 memset(DimensionUpperLimits, 127, 8);
1558 schoenebeck 2 }
1559 schoenebeck 16
1560 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1561     VelocityResponseDepth,
1562     VelocityResponseCurveScaling);
1563    
1564 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1565     ReleaseVelocityResponseCurve,
1566     ReleaseVelocityResponseDepth
1567     );
1568 persson 613
1569 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1570     VCFVelocityDynamicRange,
1571     VCFVelocityScale,
1572     VCFCutoffController);
1573 persson 613
1574     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575 persson 858 VelocityTable = 0;
1576 persson 613 }
1577    
1578 persson 1301 /*
1579     * Constructs a DimensionRegion by copying all parameters from
1580     * another DimensionRegion
1581     */
1582     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583     Instances++;
1584 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1585 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1586     pParentList = _3ewl; // restore the chunk pointer
1587    
1588     // deep copy of owned structures
1589     if (src.VelocityTable) {
1590     VelocityTable = new uint8_t[128];
1591     for (int k = 0 ; k < 128 ; k++)
1592     VelocityTable[k] = src.VelocityTable[k];
1593     }
1594     if (src.pSampleLoops) {
1595     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1596     for (int k = 0 ; k < src.SampleLoops ; k++)
1597     pSampleLoops[k] = src.pSampleLoops[k];
1598     }
1599     }
1600 schoenebeck 2394
1601     /**
1602     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1603     * and assign it to this object.
1604     *
1605     * Note that all sample pointers referenced by @a orig are simply copied as
1606     * memory address. Thus the respective samples are shared, not duplicated!
1607     *
1608     * @param orig - original DimensionRegion object to be copied from
1609     */
1610     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1611     // delete all allocated data first
1612     if (VelocityTable) delete [] VelocityTable;
1613     if (pSampleLoops) delete [] pSampleLoops;
1614    
1615     // backup parent list pointer
1616     RIFF::List* p = pParentList;
1617    
1618     //NOTE: copy code copied from assignment constructor above, see comment there as well
1619    
1620     *this = *orig; // default memberwise shallow copy of all parameters
1621     pParentList = p; // restore the chunk pointer
1622 persson 1301
1623 schoenebeck 2394 // deep copy of owned structures
1624     if (orig->VelocityTable) {
1625     VelocityTable = new uint8_t[128];
1626     for (int k = 0 ; k < 128 ; k++)
1627     VelocityTable[k] = orig->VelocityTable[k];
1628     }
1629     if (orig->pSampleLoops) {
1630     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1631     for (int k = 0 ; k < orig->SampleLoops ; k++)
1632     pSampleLoops[k] = orig->pSampleLoops[k];
1633     }
1634     }
1635    
1636 schoenebeck 809 /**
1637 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1638     * which depends on this value.
1639     */
1640     void DimensionRegion::SetGain(int32_t gain) {
1641     DLS::Sampler::SetGain(gain);
1642     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1643     }
1644    
1645     /**
1646 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1647     * have to call File::Save() to make changes persistent.
1648     *
1649     * Usually there is absolutely no need to call this method explicitly.
1650     * It will be called automatically when File::Save() was called.
1651     */
1652     void DimensionRegion::UpdateChunks() {
1653     // first update base class's chunk
1654     DLS::Sampler::UpdateChunks();
1655    
1656 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1657     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1658     pData[12] = Crossfade.in_start;
1659     pData[13] = Crossfade.in_end;
1660     pData[14] = Crossfade.out_start;
1661     pData[15] = Crossfade.out_end;
1662    
1663 schoenebeck 809 // make sure '3ewa' chunk exists
1664     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1665 persson 1317 if (!_3ewa) {
1666     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1667     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1668     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1669 persson 1264 }
1670 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1671 schoenebeck 809
1672     // update '3ewa' chunk with DimensionRegion's current settings
1673    
1674 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1675 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1676 schoenebeck 809
1677     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1678 persson 1179 store32(&pData[4], lfo3freq);
1679 schoenebeck 809
1680     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1681 persson 1179 store32(&pData[8], eg3attack);
1682 schoenebeck 809
1683     // next 2 bytes unknown
1684    
1685 persson 1179 store16(&pData[14], LFO1InternalDepth);
1686 schoenebeck 809
1687     // next 2 bytes unknown
1688    
1689 persson 1179 store16(&pData[18], LFO3InternalDepth);
1690 schoenebeck 809
1691     // next 2 bytes unknown
1692    
1693 persson 1179 store16(&pData[22], LFO1ControlDepth);
1694 schoenebeck 809
1695     // next 2 bytes unknown
1696    
1697 persson 1179 store16(&pData[26], LFO3ControlDepth);
1698 schoenebeck 809
1699     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1700 persson 1179 store32(&pData[28], eg1attack);
1701 schoenebeck 809
1702     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1703 persson 1179 store32(&pData[32], eg1decay1);
1704 schoenebeck 809
1705     // next 2 bytes unknown
1706    
1707 persson 1179 store16(&pData[38], EG1Sustain);
1708 schoenebeck 809
1709     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1710 persson 1179 store32(&pData[40], eg1release);
1711 schoenebeck 809
1712     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1713 persson 1179 pData[44] = eg1ctl;
1714 schoenebeck 809
1715     const uint8_t eg1ctrloptions =
1716 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1717 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1718     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1719     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1720 persson 1179 pData[45] = eg1ctrloptions;
1721 schoenebeck 809
1722     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1723 persson 1179 pData[46] = eg2ctl;
1724 schoenebeck 809
1725     const uint8_t eg2ctrloptions =
1726 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1727 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1728     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1729     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1730 persson 1179 pData[47] = eg2ctrloptions;
1731 schoenebeck 809
1732     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1733 persson 1179 store32(&pData[48], lfo1freq);
1734 schoenebeck 809
1735     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1736 persson 1179 store32(&pData[52], eg2attack);
1737 schoenebeck 809
1738     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1739 persson 1179 store32(&pData[56], eg2decay1);
1740 schoenebeck 809
1741     // next 2 bytes unknown
1742    
1743 persson 1179 store16(&pData[62], EG2Sustain);
1744 schoenebeck 809
1745     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1746 persson 1179 store32(&pData[64], eg2release);
1747 schoenebeck 809
1748     // next 2 bytes unknown
1749    
1750 persson 1179 store16(&pData[70], LFO2ControlDepth);
1751 schoenebeck 809
1752     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1753 persson 1179 store32(&pData[72], lfo2freq);
1754 schoenebeck 809
1755     // next 2 bytes unknown
1756    
1757 persson 1179 store16(&pData[78], LFO2InternalDepth);
1758 schoenebeck 809
1759     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1760 persson 1179 store32(&pData[80], eg1decay2);
1761 schoenebeck 809
1762     // next 2 bytes unknown
1763    
1764 persson 1179 store16(&pData[86], EG1PreAttack);
1765 schoenebeck 809
1766     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1767 persson 1179 store32(&pData[88], eg2decay2);
1768 schoenebeck 809
1769     // next 2 bytes unknown
1770    
1771 persson 1179 store16(&pData[94], EG2PreAttack);
1772 schoenebeck 809
1773     {
1774     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1775     uint8_t velocityresponse = VelocityResponseDepth;
1776     switch (VelocityResponseCurve) {
1777     case curve_type_nonlinear:
1778     break;
1779     case curve_type_linear:
1780     velocityresponse += 5;
1781     break;
1782     case curve_type_special:
1783     velocityresponse += 10;
1784     break;
1785     case curve_type_unknown:
1786     default:
1787     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1788     }
1789 persson 1179 pData[96] = velocityresponse;
1790 schoenebeck 809 }
1791    
1792     {
1793     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1794     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1795     switch (ReleaseVelocityResponseCurve) {
1796     case curve_type_nonlinear:
1797     break;
1798     case curve_type_linear:
1799     releasevelocityresponse += 5;
1800     break;
1801     case curve_type_special:
1802     releasevelocityresponse += 10;
1803     break;
1804     case curve_type_unknown:
1805     default:
1806     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1807     }
1808 persson 1179 pData[97] = releasevelocityresponse;
1809 schoenebeck 809 }
1810    
1811 persson 1179 pData[98] = VelocityResponseCurveScaling;
1812 schoenebeck 809
1813 persson 1179 pData[99] = AttenuationControllerThreshold;
1814 schoenebeck 809
1815     // next 4 bytes unknown
1816    
1817 persson 1179 store16(&pData[104], SampleStartOffset);
1818 schoenebeck 809
1819     // next 2 bytes unknown
1820    
1821     {
1822     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1823     switch (DimensionBypass) {
1824     case dim_bypass_ctrl_94:
1825     pitchTrackDimensionBypass |= 0x10;
1826     break;
1827     case dim_bypass_ctrl_95:
1828     pitchTrackDimensionBypass |= 0x20;
1829     break;
1830     case dim_bypass_ctrl_none:
1831     //FIXME: should we set anything here?
1832     break;
1833     default:
1834     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1835     }
1836 persson 1179 pData[108] = pitchTrackDimensionBypass;
1837 schoenebeck 809 }
1838    
1839     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1840 persson 1179 pData[109] = pan;
1841 schoenebeck 809
1842     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1843 persson 1179 pData[110] = selfmask;
1844 schoenebeck 809
1845     // next byte unknown
1846    
1847     {
1848     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1849     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1850     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1851     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1852 persson 1179 pData[112] = lfo3ctrl;
1853 schoenebeck 809 }
1854    
1855     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1856 persson 1179 pData[113] = attenctl;
1857 schoenebeck 809
1858     {
1859     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1860     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1861     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1862     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1863 persson 1179 pData[114] = lfo2ctrl;
1864 schoenebeck 809 }
1865    
1866     {
1867     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1868     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1869     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1870     if (VCFResonanceController != vcf_res_ctrl_none)
1871     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1872 persson 1179 pData[115] = lfo1ctrl;
1873 schoenebeck 809 }
1874    
1875     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1876 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1877 persson 1869 store16(&pData[116], eg3depth);
1878 schoenebeck 809
1879     // next 2 bytes unknown
1880    
1881     const uint8_t channeloffset = ChannelOffset * 4;
1882 persson 1179 pData[120] = channeloffset;
1883 schoenebeck 809
1884     {
1885     uint8_t regoptions = 0;
1886     if (MSDecode) regoptions |= 0x01; // bit 0
1887     if (SustainDefeat) regoptions |= 0x02; // bit 1
1888 persson 1179 pData[121] = regoptions;
1889 schoenebeck 809 }
1890    
1891     // next 2 bytes unknown
1892    
1893 persson 1179 pData[124] = VelocityUpperLimit;
1894 schoenebeck 809
1895     // next 3 bytes unknown
1896    
1897 persson 1179 pData[128] = ReleaseTriggerDecay;
1898 schoenebeck 809
1899     // next 2 bytes unknown
1900    
1901     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1902 persson 1179 pData[131] = eg1hold;
1903 schoenebeck 809
1904 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1905 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1906 persson 1179 pData[132] = vcfcutoff;
1907 schoenebeck 809
1908 persson 1179 pData[133] = VCFCutoffController;
1909 schoenebeck 809
1910 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1911 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1912 persson 1179 pData[134] = vcfvelscale;
1913 schoenebeck 809
1914     // next byte unknown
1915    
1916 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1917 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1918 persson 1179 pData[136] = vcfresonance;
1919 schoenebeck 809
1920 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1921 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1922 persson 1179 pData[137] = vcfbreakpoint;
1923 schoenebeck 809
1924 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
1925 schoenebeck 809 VCFVelocityCurve * 5;
1926 persson 1179 pData[138] = vcfvelocity;
1927 schoenebeck 809
1928     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1929 persson 1179 pData[139] = vcftype;
1930 persson 1070
1931     if (chunksize >= 148) {
1932     memcpy(&pData[140], DimensionUpperLimits, 8);
1933     }
1934 schoenebeck 809 }
1935    
1936 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1937     curve_type_t curveType = releaseVelocityResponseCurve;
1938     uint8_t depth = releaseVelocityResponseDepth;
1939     // this models a strange behaviour or bug in GSt: two of the
1940     // velocity response curves for release time are not used even
1941     // if specified, instead another curve is chosen.
1942     if ((curveType == curve_type_nonlinear && depth == 0) ||
1943     (curveType == curve_type_special && depth == 4)) {
1944     curveType = curve_type_nonlinear;
1945     depth = 3;
1946     }
1947     return GetVelocityTable(curveType, depth, 0);
1948     }
1949    
1950     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1951     uint8_t vcfVelocityDynamicRange,
1952     uint8_t vcfVelocityScale,
1953     vcf_cutoff_ctrl_t vcfCutoffController)
1954     {
1955     curve_type_t curveType = vcfVelocityCurve;
1956     uint8_t depth = vcfVelocityDynamicRange;
1957     // even stranger GSt: two of the velocity response curves for
1958     // filter cutoff are not used, instead another special curve
1959     // is chosen. This curve is not used anywhere else.
1960     if ((curveType == curve_type_nonlinear && depth == 0) ||
1961     (curveType == curve_type_special && depth == 4)) {
1962     curveType = curve_type_special;
1963     depth = 5;
1964     }
1965     return GetVelocityTable(curveType, depth,
1966     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1967     ? vcfVelocityScale : 0);
1968     }
1969    
1970 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1971     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1972     {
1973     double* table;
1974     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1975 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1976 persson 613 table = (*pVelocityTables)[tableKey];
1977 schoenebeck 16 }
1978     else {
1979 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1980     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1981 schoenebeck 16 }
1982 persson 613 return table;
1983 schoenebeck 2 }
1984 schoenebeck 55
1985 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1986     return pRegion;
1987     }
1988    
1989 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1990     leverage_ctrl_t decodedcontroller;
1991     switch (EncodedController) {
1992     // special controller
1993     case _lev_ctrl_none:
1994     decodedcontroller.type = leverage_ctrl_t::type_none;
1995     decodedcontroller.controller_number = 0;
1996     break;
1997     case _lev_ctrl_velocity:
1998     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1999     decodedcontroller.controller_number = 0;
2000     break;
2001     case _lev_ctrl_channelaftertouch:
2002     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2003     decodedcontroller.controller_number = 0;
2004     break;
2005 schoenebeck 55
2006 schoenebeck 36 // ordinary MIDI control change controller
2007     case _lev_ctrl_modwheel:
2008     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009     decodedcontroller.controller_number = 1;
2010     break;
2011     case _lev_ctrl_breath:
2012     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013     decodedcontroller.controller_number = 2;
2014     break;
2015     case _lev_ctrl_foot:
2016     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017     decodedcontroller.controller_number = 4;
2018     break;
2019     case _lev_ctrl_effect1:
2020     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021     decodedcontroller.controller_number = 12;
2022     break;
2023     case _lev_ctrl_effect2:
2024     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025     decodedcontroller.controller_number = 13;
2026     break;
2027     case _lev_ctrl_genpurpose1:
2028     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029     decodedcontroller.controller_number = 16;
2030     break;
2031     case _lev_ctrl_genpurpose2:
2032     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033     decodedcontroller.controller_number = 17;
2034     break;
2035     case _lev_ctrl_genpurpose3:
2036     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037     decodedcontroller.controller_number = 18;
2038     break;
2039     case _lev_ctrl_genpurpose4:
2040     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041     decodedcontroller.controller_number = 19;
2042     break;
2043     case _lev_ctrl_portamentotime:
2044     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045     decodedcontroller.controller_number = 5;
2046     break;
2047     case _lev_ctrl_sustainpedal:
2048     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049     decodedcontroller.controller_number = 64;
2050     break;
2051     case _lev_ctrl_portamento:
2052     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053     decodedcontroller.controller_number = 65;
2054     break;
2055     case _lev_ctrl_sostenutopedal:
2056     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057     decodedcontroller.controller_number = 66;
2058     break;
2059     case _lev_ctrl_softpedal:
2060     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2061     decodedcontroller.controller_number = 67;
2062     break;
2063     case _lev_ctrl_genpurpose5:
2064     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2065     decodedcontroller.controller_number = 80;
2066     break;
2067     case _lev_ctrl_genpurpose6:
2068     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2069     decodedcontroller.controller_number = 81;
2070     break;
2071     case _lev_ctrl_genpurpose7:
2072     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2073     decodedcontroller.controller_number = 82;
2074     break;
2075     case _lev_ctrl_genpurpose8:
2076     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2077     decodedcontroller.controller_number = 83;
2078     break;
2079     case _lev_ctrl_effect1depth:
2080     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2081     decodedcontroller.controller_number = 91;
2082     break;
2083     case _lev_ctrl_effect2depth:
2084     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2085     decodedcontroller.controller_number = 92;
2086     break;
2087     case _lev_ctrl_effect3depth:
2088     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2089     decodedcontroller.controller_number = 93;
2090     break;
2091     case _lev_ctrl_effect4depth:
2092     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2093     decodedcontroller.controller_number = 94;
2094     break;
2095     case _lev_ctrl_effect5depth:
2096     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2097     decodedcontroller.controller_number = 95;
2098     break;
2099 schoenebeck 55
2100 schoenebeck 36 // unknown controller type
2101     default:
2102     throw gig::Exception("Unknown leverage controller type.");
2103     }
2104     return decodedcontroller;
2105     }
2106 schoenebeck 2
2107 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2108     _lev_ctrl_t encodedcontroller;
2109     switch (DecodedController.type) {
2110     // special controller
2111     case leverage_ctrl_t::type_none:
2112     encodedcontroller = _lev_ctrl_none;
2113     break;
2114     case leverage_ctrl_t::type_velocity:
2115     encodedcontroller = _lev_ctrl_velocity;
2116     break;
2117     case leverage_ctrl_t::type_channelaftertouch:
2118     encodedcontroller = _lev_ctrl_channelaftertouch;
2119     break;
2120    
2121     // ordinary MIDI control change controller
2122     case leverage_ctrl_t::type_controlchange:
2123     switch (DecodedController.controller_number) {
2124     case 1:
2125     encodedcontroller = _lev_ctrl_modwheel;
2126     break;
2127     case 2:
2128     encodedcontroller = _lev_ctrl_breath;
2129     break;
2130     case 4:
2131     encodedcontroller = _lev_ctrl_foot;
2132     break;
2133     case 12:
2134     encodedcontroller = _lev_ctrl_effect1;
2135     break;
2136     case 13:
2137     encodedcontroller = _lev_ctrl_effect2;
2138     break;
2139     case 16:
2140     encodedcontroller = _lev_ctrl_genpurpose1;
2141     break;
2142     case 17:
2143     encodedcontroller = _lev_ctrl_genpurpose2;
2144     break;
2145     case 18:
2146     encodedcontroller = _lev_ctrl_genpurpose3;
2147     break;
2148     case 19:
2149     encodedcontroller = _lev_ctrl_genpurpose4;
2150     break;
2151     case 5:
2152     encodedcontroller = _lev_ctrl_portamentotime;
2153     break;
2154     case 64:
2155     encodedcontroller = _lev_ctrl_sustainpedal;
2156     break;
2157     case 65:
2158     encodedcontroller = _lev_ctrl_portamento;
2159     break;
2160     case 66:
2161     encodedcontroller = _lev_ctrl_sostenutopedal;
2162     break;
2163     case 67:
2164     encodedcontroller = _lev_ctrl_softpedal;
2165     break;
2166     case 80:
2167     encodedcontroller = _lev_ctrl_genpurpose5;
2168     break;
2169     case 81:
2170     encodedcontroller = _lev_ctrl_genpurpose6;
2171     break;
2172     case 82:
2173     encodedcontroller = _lev_ctrl_genpurpose7;
2174     break;
2175     case 83:
2176     encodedcontroller = _lev_ctrl_genpurpose8;
2177     break;
2178     case 91:
2179     encodedcontroller = _lev_ctrl_effect1depth;
2180     break;
2181     case 92:
2182     encodedcontroller = _lev_ctrl_effect2depth;
2183     break;
2184     case 93:
2185     encodedcontroller = _lev_ctrl_effect3depth;
2186     break;
2187     case 94:
2188     encodedcontroller = _lev_ctrl_effect4depth;
2189     break;
2190     case 95:
2191     encodedcontroller = _lev_ctrl_effect5depth;
2192     break;
2193     default:
2194     throw gig::Exception("leverage controller number is not supported by the gig format");
2195     }
2196 persson 1182 break;
2197 schoenebeck 809 default:
2198     throw gig::Exception("Unknown leverage controller type.");
2199     }
2200     return encodedcontroller;
2201     }
2202    
2203 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2204     Instances--;
2205     if (!Instances) {
2206     // delete the velocity->volume tables
2207     VelocityTableMap::iterator iter;
2208     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2209     double* pTable = iter->second;
2210     if (pTable) delete[] pTable;
2211     }
2212     pVelocityTables->clear();
2213     delete pVelocityTables;
2214     pVelocityTables = NULL;
2215     }
2216 persson 858 if (VelocityTable) delete[] VelocityTable;
2217 schoenebeck 16 }
2218 schoenebeck 2
2219 schoenebeck 16 /**
2220     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2221     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2222     * and VelocityResponseCurveScaling) involved are taken into account to
2223     * calculate the amplitude factor. Use this method when a key was
2224     * triggered to get the volume with which the sample should be played
2225     * back.
2226     *
2227 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2228     * @returns amplitude factor (between 0.0 and 1.0)
2229 schoenebeck 16 */
2230     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2231     return pVelocityAttenuationTable[MIDIKeyVelocity];
2232     }
2233 schoenebeck 2
2234 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2235     return pVelocityReleaseTable[MIDIKeyVelocity];
2236     }
2237    
2238 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2239     return pVelocityCutoffTable[MIDIKeyVelocity];
2240     }
2241    
2242 schoenebeck 1358 /**
2243     * Updates the respective member variable and the lookup table / cache
2244     * that depends on this value.
2245     */
2246     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2247     pVelocityAttenuationTable =
2248     GetVelocityTable(
2249     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2250     );
2251     VelocityResponseCurve = curve;
2252     }
2253    
2254     /**
2255     * Updates the respective member variable and the lookup table / cache
2256     * that depends on this value.
2257     */
2258     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2259     pVelocityAttenuationTable =
2260     GetVelocityTable(
2261     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2262     );
2263     VelocityResponseDepth = depth;
2264     }
2265    
2266     /**
2267     * Updates the respective member variable and the lookup table / cache
2268     * that depends on this value.
2269     */
2270     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2271     pVelocityAttenuationTable =
2272     GetVelocityTable(
2273     VelocityResponseCurve, VelocityResponseDepth, scaling
2274     );
2275     VelocityResponseCurveScaling = scaling;
2276     }
2277    
2278     /**
2279     * Updates the respective member variable and the lookup table / cache
2280     * that depends on this value.
2281     */
2282     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2283     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2284     ReleaseVelocityResponseCurve = curve;
2285     }
2286    
2287     /**
2288     * Updates the respective member variable and the lookup table / cache
2289     * that depends on this value.
2290     */
2291     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2292     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2293     ReleaseVelocityResponseDepth = depth;
2294     }
2295    
2296     /**
2297     * Updates the respective member variable and the lookup table / cache
2298     * that depends on this value.
2299     */
2300     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2301     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2302     VCFCutoffController = controller;
2303     }
2304    
2305     /**
2306     * Updates the respective member variable and the lookup table / cache
2307     * that depends on this value.
2308     */
2309     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2310     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2311     VCFVelocityCurve = curve;
2312     }
2313    
2314     /**
2315     * Updates the respective member variable and the lookup table / cache
2316     * that depends on this value.
2317     */
2318     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2319     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2320     VCFVelocityDynamicRange = range;
2321     }
2322    
2323     /**
2324     * Updates the respective member variable and the lookup table / cache
2325     * that depends on this value.
2326     */
2327     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2328     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2329     VCFVelocityScale = scaling;
2330     }
2331    
2332 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2333 schoenebeck 317
2334 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2335 schoenebeck 16
2336 schoenebeck 308 // linear
2337     const int lin0[] = { 1, 1, 127, 127 };
2338     const int lin1[] = { 1, 21, 127, 127 };
2339     const int lin2[] = { 1, 45, 127, 127 };
2340     const int lin3[] = { 1, 74, 127, 127 };
2341     const int lin4[] = { 1, 127, 127, 127 };
2342 schoenebeck 16
2343 schoenebeck 308 // non-linear
2344     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2345 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2346 schoenebeck 308 127, 127 };
2347     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2348     127, 127 };
2349     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2350     127, 127 };
2351     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2352 schoenebeck 317
2353 schoenebeck 308 // special
2354 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2355 schoenebeck 308 113, 127, 127, 127 };
2356     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2357     118, 127, 127, 127 };
2358 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2359 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2360 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2361 schoenebeck 308 117, 127, 127, 127 };
2362 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2363 schoenebeck 308 127, 127 };
2364 schoenebeck 317
2365 persson 728 // this is only used by the VCF velocity curve
2366     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2367     91, 127, 127, 127 };
2368    
2369 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2370 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2371 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2372 schoenebeck 317
2373 schoenebeck 308 double* const table = new double[128];
2374    
2375     const int* curve = curves[curveType * 5 + depth];
2376     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2377 schoenebeck 317
2378 schoenebeck 308 table[0] = 0;
2379     for (int x = 1 ; x < 128 ; x++) {
2380    
2381     if (x > curve[2]) curve += 2;
2382 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2383 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2384     y = y / 127;
2385    
2386     // Scale up for s > 20, down for s < 20. When
2387     // down-scaling, the curve still ends at 1.0.
2388     if (s < 20 && y >= 0.5)
2389     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2390     else
2391     y = y * (s / 20.0);
2392     if (y > 1) y = 1;
2393    
2394     table[x] = y;
2395     }
2396     return table;
2397     }
2398    
2399    
2400 schoenebeck 2 // *************** Region ***************
2401     // *
2402    
2403     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2404     // Initialization
2405     Dimensions = 0;
2406 schoenebeck 347 for (int i = 0; i < 256; i++) {
2407 schoenebeck 2 pDimensionRegions[i] = NULL;
2408     }
2409 schoenebeck 282 Layers = 1;
2410 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2411     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2412 schoenebeck 2
2413     // Actual Loading
2414    
2415 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2416    
2417 schoenebeck 2 LoadDimensionRegions(rgnList);
2418    
2419     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2420     if (_3lnk) {
2421     DimensionRegions = _3lnk->ReadUint32();
2422 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2423 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2424     uint8_t bits = _3lnk->ReadUint8();
2425 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2426     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2427 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2428 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2429     pDimensionDefinitions[i].dimension = dimension_none;
2430     pDimensionDefinitions[i].bits = 0;
2431     pDimensionDefinitions[i].zones = 0;
2432     pDimensionDefinitions[i].split_type = split_type_bit;
2433     pDimensionDefinitions[i].zone_size = 0;
2434     }
2435     else { // active dimension
2436     pDimensionDefinitions[i].dimension = dimension;
2437     pDimensionDefinitions[i].bits = bits;
2438 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2439 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2440     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2441 schoenebeck 2 Dimensions++;
2442 schoenebeck 282
2443     // if this is a layer dimension, remember the amount of layers
2444     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2445 schoenebeck 2 }
2446 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2447 schoenebeck 2 }
2448 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2449 schoenebeck 2
2450 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2451     // update the VelocityTables in the dimension regions
2452     UpdateVelocityTable();
2453 schoenebeck 2
2454 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2455     if (file->pVersion && file->pVersion->major == 3)
2456     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2457     else
2458     _3lnk->SetPos(44);
2459    
2460 schoenebeck 1524 // load sample references (if auto loading is enabled)
2461     if (file->GetAutoLoad()) {
2462     for (uint i = 0; i < DimensionRegions; i++) {
2463     uint32_t wavepoolindex = _3lnk->ReadUint32();
2464     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2465     }
2466     GetSample(); // load global region sample reference
2467 schoenebeck 2 }
2468 persson 1102 } else {
2469     DimensionRegions = 0;
2470 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2471     pDimensionDefinitions[i].dimension = dimension_none;
2472     pDimensionDefinitions[i].bits = 0;
2473     pDimensionDefinitions[i].zones = 0;
2474     }
2475 schoenebeck 2 }
2476 schoenebeck 823
2477     // make sure there is at least one dimension region
2478     if (!DimensionRegions) {
2479     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2480     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2481     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2482 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2483 schoenebeck 823 DimensionRegions = 1;
2484     }
2485 schoenebeck 2 }
2486    
2487 schoenebeck 809 /**
2488     * Apply Region settings and all its DimensionRegions to the respective
2489     * RIFF chunks. You have to call File::Save() to make changes persistent.
2490     *
2491     * Usually there is absolutely no need to call this method explicitly.
2492     * It will be called automatically when File::Save() was called.
2493     *
2494     * @throws gig::Exception if samples cannot be dereferenced
2495     */
2496     void Region::UpdateChunks() {
2497 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2498     // but we still have to provide some existing one to not corrupt the
2499     // file, so to avoid the latter we simply always assign the sample of
2500     // the first dimension region of this region
2501     pSample = pDimensionRegions[0]->pSample;
2502    
2503 schoenebeck 809 // first update base class's chunks
2504     DLS::Region::UpdateChunks();
2505    
2506     // update dimension region's chunks
2507 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2508 persson 1317 pDimensionRegions[i]->UpdateChunks();
2509 schoenebeck 823 }
2510 schoenebeck 809
2511 persson 1317 File* pFile = (File*) GetParent()->GetParent();
2512     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2513 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2514     const int iMaxDimensionRegions = version3 ? 256 : 32;
2515 schoenebeck 809
2516     // make sure '3lnk' chunk exists
2517     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2518     if (!_3lnk) {
2519 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2520 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2521 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2522 persson 1192
2523     // move 3prg to last position
2524     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2525 schoenebeck 809 }
2526    
2527     // update dimension definitions in '3lnk' chunk
2528     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2529 persson 1179 store32(&pData[0], DimensionRegions);
2530 persson 1199 int shift = 0;
2531 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2532 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2533     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2534 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2535 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2536 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2537 persson 1199 // next 3 bytes unknown, always zero?
2538    
2539     shift += pDimensionDefinitions[i].bits;
2540 schoenebeck 809 }
2541    
2542     // update wave pool table in '3lnk' chunk
2543 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2544 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2545     int iWaveIndex = -1;
2546     if (i < DimensionRegions) {
2547 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2548     File::SampleList::iterator iter = pFile->pSamples->begin();
2549     File::SampleList::iterator end = pFile->pSamples->end();
2550 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2551 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2552     iWaveIndex = index;
2553     break;
2554     }
2555 schoenebeck 809 }
2556     }
2557 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2558 schoenebeck 809 }
2559     }
2560    
2561 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2562     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2563     if (_3prg) {
2564     int dimensionRegionNr = 0;
2565     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2566     while (_3ewl) {
2567     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2568 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2569 schoenebeck 2 dimensionRegionNr++;
2570     }
2571     _3ewl = _3prg->GetNextSubList();
2572     }
2573     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2574     }
2575     }
2576    
2577 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2578     // update KeyRange struct and make sure regions are in correct order
2579     DLS::Region::SetKeyRange(Low, High);
2580     // update Region key table for fast lookup
2581     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2582     }
2583    
2584 persson 858 void Region::UpdateVelocityTable() {
2585     // get velocity dimension's index
2586     int veldim = -1;
2587     for (int i = 0 ; i < Dimensions ; i++) {
2588     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2589     veldim = i;
2590 schoenebeck 809 break;
2591     }
2592     }
2593 persson 858 if (veldim == -1) return;
2594 schoenebeck 809
2595 persson 858 int step = 1;
2596     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2597     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2598     int end = step * pDimensionDefinitions[veldim].zones;
2599 schoenebeck 809
2600 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2601     int dim[8] = { 0 };
2602     for (int i = 0 ; i < DimensionRegions ; i++) {
2603    
2604 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2605     pDimensionRegions[i]->VelocityUpperLimit) {
2606 persson 858 // create the velocity table
2607     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2608     if (!table) {
2609     table = new uint8_t[128];
2610     pDimensionRegions[i]->VelocityTable = table;
2611     }
2612     int tableidx = 0;
2613     int velocityZone = 0;
2614 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2615     for (int k = i ; k < end ; k += step) {
2616     DimensionRegion *d = pDimensionRegions[k];
2617     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2618     velocityZone++;
2619     }
2620     } else { // gig2
2621     for (int k = i ; k < end ; k += step) {
2622     DimensionRegion *d = pDimensionRegions[k];
2623     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2624     velocityZone++;
2625     }
2626 persson 858 }
2627     } else {
2628     if (pDimensionRegions[i]->VelocityTable) {
2629     delete[] pDimensionRegions[i]->VelocityTable;
2630     pDimensionRegions[i]->VelocityTable = 0;
2631     }
2632 schoenebeck 809 }
2633 persson 858
2634     int j;
2635     int shift = 0;
2636     for (j = 0 ; j < Dimensions ; j++) {
2637     if (j == veldim) i += skipveldim; // skip velocity dimension
2638     else {
2639     dim[j]++;
2640     if (dim[j] < pDimensionDefinitions[j].zones) break;
2641     else {
2642     // skip unused dimension regions
2643     dim[j] = 0;
2644     i += ((1 << pDimensionDefinitions[j].bits) -
2645     pDimensionDefinitions[j].zones) << shift;
2646     }
2647     }
2648     shift += pDimensionDefinitions[j].bits;
2649     }
2650     if (j == Dimensions) break;
2651 schoenebeck 809 }
2652     }
2653    
2654     /** @brief Einstein would have dreamed of it - create a new dimension.
2655     *
2656     * Creates a new dimension with the dimension definition given by
2657     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2658     * There is a hard limit of dimensions and total amount of "bits" all
2659     * dimensions can have. This limit is dependant to what gig file format
2660     * version this file refers to. The gig v2 (and lower) format has a
2661     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2662     * format has a limit of 8.
2663     *
2664     * @param pDimDef - defintion of the new dimension
2665     * @throws gig::Exception if dimension of the same type exists already
2666     * @throws gig::Exception if amount of dimensions or total amount of
2667     * dimension bits limit is violated
2668     */
2669     void Region::AddDimension(dimension_def_t* pDimDef) {
2670     // check if max. amount of dimensions reached
2671     File* file = (File*) GetParent()->GetParent();
2672     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2673     if (Dimensions >= iMaxDimensions)
2674     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2675     // check if max. amount of dimension bits reached
2676     int iCurrentBits = 0;
2677     for (int i = 0; i < Dimensions; i++)
2678     iCurrentBits += pDimensionDefinitions[i].bits;
2679     if (iCurrentBits >= iMaxDimensions)
2680     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2681     const int iNewBits = iCurrentBits + pDimDef->bits;
2682     if (iNewBits > iMaxDimensions)
2683     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2684     // check if there's already a dimensions of the same type
2685     for (int i = 0; i < Dimensions; i++)
2686     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2687     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2688    
2689 persson 1301 // pos is where the new dimension should be placed, normally
2690     // last in list, except for the samplechannel dimension which
2691     // has to be first in list
2692     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2693     int bitpos = 0;
2694     for (int i = 0 ; i < pos ; i++)
2695     bitpos += pDimensionDefinitions[i].bits;
2696    
2697     // make room for the new dimension
2698     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2699     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2700     for (int j = Dimensions ; j > pos ; j--) {
2701     pDimensionRegions[i]->DimensionUpperLimits[j] =
2702     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2703     }
2704     }
2705    
2706 schoenebeck 809 // assign definition of new dimension
2707 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2708 schoenebeck 809
2709 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2710 persson 1301 pDimensionDefinitions[pos].split_type =
2711     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2712     pDimensionDefinitions[pos].zone_size =
2713     __resolveZoneSize(pDimensionDefinitions[pos]);
2714 schoenebeck 1113
2715 persson 1301 // create new dimension region(s) for this new dimension, and make
2716     // sure that the dimension regions are placed correctly in both the
2717     // RIFF list and the pDimensionRegions array
2718     RIFF::Chunk* moveTo = NULL;
2719     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2720     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2721     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2722     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2723     }
2724     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2725     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2726     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2727     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2728     // create a new dimension region and copy all parameter values from
2729     // an existing dimension region
2730     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2731     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2732 persson 1247
2733 persson 1301 DimensionRegions++;
2734     }
2735     }
2736     moveTo = pDimensionRegions[i]->pParentList;
2737 schoenebeck 809 }
2738    
2739 persson 1247 // initialize the upper limits for this dimension
2740 persson 1301 int mask = (1 << bitpos) - 1;
2741     for (int z = 0 ; z < pDimDef->zones ; z++) {
2742 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2743 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2744 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2745     (z << bitpos) |
2746     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2747 persson 1247 }
2748     }
2749    
2750 schoenebeck 809 Dimensions++;
2751    
2752     // if this is a layer dimension, update 'Layers' attribute
2753     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2754    
2755 persson 858 UpdateVelocityTable();
2756 schoenebeck 809 }
2757    
2758     /** @brief Delete an existing dimension.
2759     *
2760     * Deletes the dimension given by \a pDimDef and deletes all respective
2761     * dimension regions, that is all dimension regions where the dimension's
2762     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2763     * for example this would delete all dimension regions for the case(s)
2764     * where the sustain pedal is pressed down.
2765     *
2766     * @param pDimDef - dimension to delete
2767     * @throws gig::Exception if given dimension cannot be found
2768     */
2769     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2770     // get dimension's index
2771     int iDimensionNr = -1;
2772     for (int i = 0; i < Dimensions; i++) {
2773     if (&pDimensionDefinitions[i] == pDimDef) {
2774     iDimensionNr = i;
2775     break;
2776     }
2777     }
2778     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2779    
2780     // get amount of bits below the dimension to delete
2781     int iLowerBits = 0;
2782     for (int i = 0; i < iDimensionNr; i++)
2783     iLowerBits += pDimensionDefinitions[i].bits;
2784    
2785     // get amount ot bits above the dimension to delete
2786     int iUpperBits = 0;
2787     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2788     iUpperBits += pDimensionDefinitions[i].bits;
2789    
2790 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2791    
2792 schoenebeck 809 // delete dimension regions which belong to the given dimension
2793     // (that is where the dimension's bit > 0)
2794     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2795     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2796     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2797     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2798     iObsoleteBit << iLowerBits |
2799     iLowerBit;
2800 persson 1247
2801     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2802 schoenebeck 809 delete pDimensionRegions[iToDelete];
2803     pDimensionRegions[iToDelete] = NULL;
2804     DimensionRegions--;
2805     }
2806     }
2807     }
2808    
2809     // defrag pDimensionRegions array
2810     // (that is remove the NULL spaces within the pDimensionRegions array)
2811     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2812     if (!pDimensionRegions[iTo]) {
2813     if (iFrom <= iTo) iFrom = iTo + 1;
2814     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2815     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2816     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2817     pDimensionRegions[iFrom] = NULL;
2818     }
2819     }
2820     }
2821    
2822 persson 1247 // remove the this dimension from the upper limits arrays
2823     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2824     DimensionRegion* d = pDimensionRegions[j];
2825     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2826     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2827     }
2828     d->DimensionUpperLimits[Dimensions - 1] = 127;
2829     }
2830    
2831 schoenebeck 809 // 'remove' dimension definition
2832     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2833     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2834     }
2835     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2836     pDimensionDefinitions[Dimensions - 1].bits = 0;
2837     pDimensionDefinitions[Dimensions - 1].zones = 0;
2838    
2839     Dimensions--;
2840    
2841     // if this was a layer dimension, update 'Layers' attribute
2842     if (pDimDef->dimension == dimension_layer) Layers = 1;
2843     }
2844    
2845 schoenebeck 2 Region::~Region() {
2846 schoenebeck 350 for (int i = 0; i < 256; i++) {
2847 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2848     }
2849     }
2850    
2851     /**
2852     * Use this method in your audio engine to get the appropriate dimension
2853     * region with it's articulation data for the current situation. Just
2854     * call the method with the current MIDI controller values and you'll get
2855     * the DimensionRegion with the appropriate articulation data for the
2856     * current situation (for this Region of course only). To do that you'll
2857     * first have to look which dimensions with which controllers and in
2858     * which order are defined for this Region when you load the .gig file.
2859     * Special cases are e.g. layer or channel dimensions where you just put
2860     * in the index numbers instead of a MIDI controller value (means 0 for
2861     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2862     * etc.).
2863     *
2864 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2865 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2866     * @see pDimensionDefinitions
2867     * @see Dimensions
2868     */
2869 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2870 persson 858 uint8_t bits;
2871     int veldim = -1;
2872     int velbitpos;
2873     int bitpos = 0;
2874     int dimregidx = 0;
2875 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2876 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2877     // the velocity dimension must be handled after the other dimensions
2878     veldim = i;
2879     velbitpos = bitpos;
2880     } else {
2881     switch (pDimensionDefinitions[i].split_type) {
2882     case split_type_normal:
2883 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2884     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2885     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2886     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2887     }
2888     } else {
2889     // gig2: evenly sized zones
2890     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2891     }
2892 persson 858 break;
2893     case split_type_bit: // the value is already the sought dimension bit number
2894     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2895     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2896     break;
2897     }
2898     dimregidx |= bits << bitpos;
2899 schoenebeck 2 }
2900 persson 858 bitpos += pDimensionDefinitions[i].bits;
2901 schoenebeck 2 }
2902 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2903     if (veldim != -1) {
2904     // (dimreg is now the dimension region for the lowest velocity)
2905 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2906 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2907     else // normal split type
2908     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2909    
2910     dimregidx |= bits << velbitpos;
2911     dimreg = pDimensionRegions[dimregidx];
2912     }
2913     return dimreg;
2914 schoenebeck 2 }
2915    
2916     /**
2917     * Returns the appropriate DimensionRegion for the given dimension bit
2918     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2919     * instead of calling this method directly!
2920     *
2921 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2922 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2923     * bit numbers
2924     * @see GetDimensionRegionByValue()
2925     */
2926 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2927     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2928     << pDimensionDefinitions[5].bits | DimBits[5])
2929     << pDimensionDefinitions[4].bits | DimBits[4])
2930     << pDimensionDefinitions[3].bits | DimBits[3])
2931     << pDimensionDefinitions[2].bits | DimBits[2])
2932     << pDimensionDefinitions[1].bits | DimBits[1])
2933     << pDimensionDefinitions[0].bits | DimBits[0]];
2934 schoenebeck 2 }
2935    
2936     /**
2937     * Returns pointer address to the Sample referenced with this region.
2938     * This is the global Sample for the entire Region (not sure if this is
2939     * actually used by the Gigasampler engine - I would only use the Sample
2940     * referenced by the appropriate DimensionRegion instead of this sample).
2941     *
2942     * @returns address to Sample or NULL if there is no reference to a
2943     * sample saved in the .gig file
2944     */
2945     Sample* Region::GetSample() {
2946     if (pSample) return static_cast<gig::Sample*>(pSample);
2947     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2948     }
2949    
2950 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2951 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2952 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2953 persson 902 if (!file->pWavePoolTable) return NULL;
2954 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2955 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2956 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2957 schoenebeck 2 while (sample) {
2958 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2959 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2960 schoenebeck 2 sample = file->GetNextSample();
2961     }
2962     return NULL;
2963     }
2964 schoenebeck 2394
2965     /**
2966     * Make a (semi) deep copy of the Region object given by @a orig
2967     * and assign it to this object.
2968     *
2969     * Note that all sample pointers referenced by @a orig are simply copied as
2970     * memory address. Thus the respective samples are shared, not duplicated!
2971     *
2972     * @param orig - original Region object to be copied from
2973     */
2974     void Region::CopyAssign(const Region* orig) {
2975     // handle base classes
2976     DLS::Region::CopyAssign(orig);
2977    
2978     // handle own member variables
2979     for (int i = Dimensions - 1; i >= 0; --i) {
2980     DeleteDimension(&pDimensionDefinitions[i]);
2981     }
2982     Layers = 0; // just to be sure
2983     for (int i = 0; i < orig->Dimensions; i++) {
2984     // we need to copy the dim definition here, to avoid the compiler
2985     // complaining about const-ness issue
2986     dimension_def_t def = orig->pDimensionDefinitions[i];
2987     AddDimension(&def);
2988     }
2989     for (int i = 0; i < 256; i++) {
2990     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
2991     pDimensionRegions[i]->CopyAssign(
2992     orig->pDimensionRegions[i]
2993     );
2994     }
2995     }
2996     Layers = orig->Layers;
2997     }
2998 schoenebeck 2
2999    
3000 persson 1627 // *************** MidiRule ***************
3001     // *
3002 schoenebeck 2
3003 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3004     _3ewg->SetPos(36);
3005     Triggers = _3ewg->ReadUint8();
3006     _3ewg->SetPos(40);
3007     ControllerNumber = _3ewg->ReadUint8();
3008     _3ewg->SetPos(46);
3009     for (int i = 0 ; i < Triggers ; i++) {
3010     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3011     pTriggers[i].Descending = _3ewg->ReadUint8();
3012     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3013     pTriggers[i].Key = _3ewg->ReadUint8();
3014     pTriggers[i].NoteOff = _3ewg->ReadUint8();
3015     pTriggers[i].Velocity = _3ewg->ReadUint8();
3016     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3017     _3ewg->ReadUint8();
3018     }
3019 persson 1627 }
3020    
3021 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3022     ControllerNumber(0),
3023     Triggers(0) {
3024     }
3025 persson 1627
3026 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3027     pData[32] = 4;
3028     pData[33] = 16;
3029     pData[36] = Triggers;
3030     pData[40] = ControllerNumber;
3031     for (int i = 0 ; i < Triggers ; i++) {
3032     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3033     pData[47 + i * 8] = pTriggers[i].Descending;
3034     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3035     pData[49 + i * 8] = pTriggers[i].Key;
3036     pData[50 + i * 8] = pTriggers[i].NoteOff;
3037     pData[51 + i * 8] = pTriggers[i].Velocity;
3038     pData[52 + i * 8] = pTriggers[i].OverridePedal;
3039     }
3040     }
3041    
3042     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3043     _3ewg->SetPos(36);
3044     LegatoSamples = _3ewg->ReadUint8(); // always 12
3045     _3ewg->SetPos(40);
3046     BypassUseController = _3ewg->ReadUint8();
3047     BypassKey = _3ewg->ReadUint8();
3048     BypassController = _3ewg->ReadUint8();
3049     ThresholdTime = _3ewg->ReadUint16();
3050     _3ewg->ReadInt16();
3051     ReleaseTime = _3ewg->ReadUint16();
3052     _3ewg->ReadInt16();
3053     KeyRange.low = _3ewg->ReadUint8();
3054     KeyRange.high = _3ewg->ReadUint8();
3055     _3ewg->SetPos(64);
3056     ReleaseTriggerKey = _3ewg->ReadUint8();
3057     AltSustain1Key = _3ewg->ReadUint8();
3058     AltSustain2Key = _3ewg->ReadUint8();
3059     }
3060    
3061     MidiRuleLegato::MidiRuleLegato() :
3062     LegatoSamples(12),
3063     BypassUseController(false),
3064     BypassKey(0),
3065     BypassController(1),
3066     ThresholdTime(20),
3067     ReleaseTime(20),
3068     ReleaseTriggerKey(0),
3069     AltSustain1Key(0),
3070     AltSustain2Key(0)
3071     {
3072     KeyRange.low = KeyRange.high = 0;
3073     }
3074    
3075     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3076     pData[32] = 0;
3077     pData[33] = 16;
3078     pData[36] = LegatoSamples;
3079     pData[40] = BypassUseController;
3080     pData[41] = BypassKey;
3081     pData[42] = BypassController;
3082     store16(&pData[43], ThresholdTime);
3083     store16(&pData[47], ReleaseTime);
3084     pData[51] = KeyRange.low;
3085     pData[52] = KeyRange.high;
3086     pData[64] = ReleaseTriggerKey;
3087     pData[65] = AltSustain1Key;
3088     pData[66] = AltSustain2Key;
3089     }
3090    
3091     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3092     _3ewg->SetPos(36);
3093     Articulations = _3ewg->ReadUint8();
3094     int flags = _3ewg->ReadUint8();
3095     Polyphonic = flags & 8;
3096     Chained = flags & 4;
3097     Selector = (flags & 2) ? selector_controller :
3098     (flags & 1) ? selector_key_switch : selector_none;
3099     Patterns = _3ewg->ReadUint8();
3100     _3ewg->ReadUint8(); // chosen row
3101     _3ewg->ReadUint8(); // unknown
3102     _3ewg->ReadUint8(); // unknown
3103     _3ewg->ReadUint8(); // unknown
3104     KeySwitchRange.low = _3ewg->ReadUint8();
3105     KeySwitchRange.high = _3ewg->ReadUint8();
3106     Controller = _3ewg->ReadUint8();
3107     PlayRange.low = _3ewg->ReadUint8();
3108     PlayRange.high = _3ewg->ReadUint8();
3109    
3110     int n = std::min(int(Articulations), 32);
3111     for (int i = 0 ; i < n ; i++) {
3112     _3ewg->ReadString(pArticulations[i], 32);
3113     }
3114     _3ewg->SetPos(1072);
3115     n = std::min(int(Patterns), 32);
3116     for (int i = 0 ; i < n ; i++) {
3117     _3ewg->ReadString(pPatterns[i].Name, 16);
3118     pPatterns[i].Size = _3ewg->ReadUint8();
3119     _3ewg->Read(&pPatterns[i][0], 1, 32);
3120     }
3121     }
3122    
3123     MidiRuleAlternator::MidiRuleAlternator() :
3124     Articulations(0),
3125     Patterns(0),
3126     Selector(selector_none),
3127     Controller(0),
3128     Polyphonic(false),
3129     Chained(false)
3130     {
3131     PlayRange.low = PlayRange.high = 0;
3132     KeySwitchRange.low = KeySwitchRange.high = 0;
3133     }
3134    
3135     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3136     pData[32] = 3;
3137     pData[33] = 16;
3138     pData[36] = Articulations;
3139     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
3140     (Selector == selector_controller ? 2 :
3141     (Selector == selector_key_switch ? 1 : 0));
3142     pData[38] = Patterns;
3143    
3144     pData[43] = KeySwitchRange.low;
3145     pData[44] = KeySwitchRange.high;
3146     pData[45] = Controller;
3147     pData[46] = PlayRange.low;
3148     pData[47] = PlayRange.high;
3149    
3150     char* str = reinterpret_cast<char*>(pData);
3151     int pos = 48;
3152     int n = std::min(int(Articulations), 32);
3153     for (int i = 0 ; i < n ; i++, pos += 32) {
3154     strncpy(&str[pos], pArticulations[i].c_str(), 32);
3155     }
3156    
3157     pos = 1072;
3158     n = std::min(int(Patterns), 32);
3159     for (int i = 0 ; i < n ; i++, pos += 49) {
3160     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
3161     pData[pos + 16] = pPatterns[i].Size;
3162     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
3163     }
3164     }
3165    
3166 schoenebeck 2 // *************** Instrument ***************
3167     // *
3168    
3169 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3170 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
3171 persson 1180 { CHUNK_ID_INAM, 64 },
3172     { CHUNK_ID_ISFT, 12 },
3173     { 0, 0 }
3174     };
3175 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
3176 persson 918
3177 schoenebeck 2 // Initialization
3178     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3179 persson 1182 EffectSend = 0;
3180     Attenuation = 0;
3181     FineTune = 0;
3182     PitchbendRange = 0;
3183     PianoReleaseMode = false;
3184     DimensionKeyRange.low = 0;
3185     DimensionKeyRange.high = 0;
3186 persson 1678 pMidiRules = new MidiRule*[3];
3187     pMidiRules[0] = NULL;
3188 schoenebeck 2
3189     // Loading
3190     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
3191     if (lart) {
3192     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3193     if (_3ewg) {
3194     EffectSend = _3ewg->ReadUint16();
3195     Attenuation = _3ewg->ReadInt32();
3196     FineTune = _3ewg->ReadInt16();
3197     PitchbendRange = _3ewg->ReadInt16();
3198     uint8_t dimkeystart = _3ewg->ReadUint8();
3199     PianoReleaseMode = dimkeystart & 0x01;
3200     DimensionKeyRange.low = dimkeystart >> 1;
3201     DimensionKeyRange.high = _3ewg->ReadUint8();
3202 persson 1627
3203     if (_3ewg->GetSize() > 32) {
3204     // read MIDI rules
3205 persson 1678 int i = 0;
3206 persson 1627 _3ewg->SetPos(32);
3207     uint8_t id1 = _3ewg->ReadUint8();
3208     uint8_t id2 = _3ewg->ReadUint8();
3209    
3210 persson 2450 if (id2 == 16) {
3211     if (id1 == 4) {
3212     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3213     } else if (id1 == 0) {
3214     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
3215     } else if (id1 == 3) {
3216     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
3217     } else {
3218     pMidiRules[i++] = new MidiRuleUnknown;
3219     }
3220 persson 1627 }
3221 persson 2450 else if (id1 != 0 || id2 != 0) {
3222     pMidiRules[i++] = new MidiRuleUnknown;
3223     }
3224 persson 1627 //TODO: all the other types of rules
3225 persson 1678
3226     pMidiRules[i] = NULL;
3227 persson 1627 }
3228 schoenebeck 2 }
3229     }
3230    
3231 schoenebeck 1524 if (pFile->GetAutoLoad()) {
3232     if (!pRegions) pRegions = new RegionList;
3233     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3234     if (lrgn) {
3235     RIFF::List* rgn = lrgn->GetFirstSubList();
3236     while (rgn) {
3237     if (rgn->GetListType() == LIST_TYPE_RGN) {
3238     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3239     pRegions->push_back(new Region(this, rgn));
3240     }
3241     rgn = lrgn->GetNextSubList();
3242 schoenebeck 809 }
3243 schoenebeck 1524 // Creating Region Key Table for fast lookup
3244     UpdateRegionKeyTable();
3245 schoenebeck 2 }
3246     }
3247    
3248 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
3249     }
3250    
3251     void Instrument::UpdateRegionKeyTable() {
3252 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3253 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
3254     RegionList::iterator end = pRegions->end();
3255     for (; iter != end; ++iter) {
3256     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3257     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3258     RegionKeyTable[iKey] = pRegion;
3259 schoenebeck 2 }
3260     }
3261     }
3262    
3263     Instrument::~Instrument() {
3264 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
3265     delete pMidiRules[i];
3266     }
3267 persson 1678 delete[] pMidiRules;
3268 schoenebeck 2 }
3269    
3270     /**
3271 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
3272     * You have to call File::Save() to make changes persistent.
3273     *
3274     * Usually there is absolutely no need to call this method explicitly.
3275     * It will be called automatically when File::Save() was called.
3276     *
3277     * @throws gig::Exception if samples cannot be dereferenced
3278     */
3279     void Instrument::UpdateChunks() {
3280     // first update base classes' chunks
3281     DLS::Instrument::UpdateChunks();
3282    
3283     // update Regions' chunks
3284 schoenebeck 823 {
3285     RegionList::iterator iter = pRegions->begin();
3286     RegionList::iterator end = pRegions->end();
3287     for (; iter != end; ++iter)
3288     (*iter)->UpdateChunks();
3289     }
3290 schoenebeck 809
3291     // make sure 'lart' RIFF list chunk exists
3292     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3293     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3294     // make sure '3ewg' RIFF chunk exists
3295     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3296 persson 1264 if (!_3ewg) {
3297     File* pFile = (File*) GetParent();
3298    
3299     // 3ewg is bigger in gig3, as it includes the iMIDI rules
3300     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3301     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3302     memset(_3ewg->LoadChunkData(), 0, size);
3303     }
3304 schoenebeck 809 // update '3ewg' RIFF chunk
3305     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3306 persson 1179 store16(&pData[0], EffectSend);
3307     store32(&pData[2], Attenuation);
3308     store16(&pData[6], FineTune);
3309     store16(&pData[8], PitchbendRange);
3310 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3311 schoenebeck 809 DimensionKeyRange.low << 1;
3312 persson 1179 pData[10] = dimkeystart;
3313     pData[11] = DimensionKeyRange.high;
3314 persson 2450
3315     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
3316     pData[32] = 0;
3317     pData[33] = 0;
3318     } else {
3319     for (int i = 0 ; pMidiRules[i] ; i++) {
3320     pMidiRules[i]->UpdateChunks(pData);
3321     }
3322     }
3323 schoenebeck 809 }
3324    
3325     /**
3326 schoenebeck 2 * Returns the appropriate Region for a triggered note.
3327     *
3328     * @param Key MIDI Key number of triggered note / key (0 - 127)
3329     * @returns pointer adress to the appropriate Region or NULL if there
3330     * there is no Region defined for the given \a Key
3331     */
3332     Region* Instrument::GetRegion(unsigned int Key) {
3333 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3334 schoenebeck 2 return RegionKeyTable[Key];
3335 schoenebeck 823
3336 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
3337     if (Key <= pRegions[i]->KeyRange.high &&
3338     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3339     }
3340     return NULL;*/
3341     }
3342    
3343     /**
3344     * Returns the first Region of the instrument. You have to call this
3345     * method once before you use GetNextRegion().
3346     *
3347     * @returns pointer address to first region or NULL if there is none
3348     * @see GetNextRegion()
3349     */
3350     Region* Instrument::GetFirstRegion() {
3351 schoenebeck 823 if (!pRegions) return NULL;
3352     RegionsIterator = pRegions->begin();
3353     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3354 schoenebeck 2 }
3355    
3356     /**
3357     * Returns the next Region of the instrument. You have to call
3358     * GetFirstRegion() once before you can use this method. By calling this
3359     * method multiple times it iterates through the available Regions.
3360     *
3361     * @returns pointer address to the next region or NULL if end reached
3362     * @see GetFirstRegion()
3363     */
3364     Region* Instrument::GetNextRegion() {
3365 schoenebeck 823 if (!pRegions) return NULL;
3366     RegionsIterator++;
3367     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3368 schoenebeck 2 }
3369    
3370 schoenebeck 809 Region* Instrument::AddRegion() {
3371     // create new Region object (and its RIFF chunks)
3372     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3373     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3374     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3375     Region* pNewRegion = new Region(this, rgn);
3376 schoenebeck 823 pRegions->push_back(pNewRegion);
3377     Regions = pRegions->size();
3378 schoenebeck 809 // update Region key table for fast lookup
3379     UpdateRegionKeyTable();
3380     // done
3381     return pNewRegion;
3382     }
3383 schoenebeck 2
3384 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
3385     if (!pRegions) return;
3386 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3387 schoenebeck 809 // update Region key table for fast lookup
3388     UpdateRegionKeyTable();
3389     }
3390 schoenebeck 2
3391 persson 1627 /**
3392 persson 1678 * Returns a MIDI rule of the instrument.
3393 persson 1627 *
3394     * The list of MIDI rules, at least in gig v3, always contains at
3395     * most two rules. The second rule can only be the DEF filter
3396     * (which currently isn't supported by libgig).
3397     *
3398 persson 1678 * @param i - MIDI rule number
3399     * @returns pointer address to MIDI rule number i or NULL if there is none
3400 persson 1627 */
3401 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
3402     return pMidiRules[i];
3403 persson 1627 }
3404 persson 2450
3405 schoenebeck 2394 /**
3406 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
3407     *
3408     * @returns the new MIDI rule
3409     */
3410     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
3411     delete pMidiRules[0];
3412     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
3413     pMidiRules[0] = r;
3414     pMidiRules[1] = 0;
3415     return r;
3416     }
3417    
3418     /**
3419     * Adds the legato MIDI rule to the instrument.
3420     *
3421     * @returns the new MIDI rule
3422     */
3423     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
3424     delete pMidiRules[0];
3425     MidiRuleLegato* r = new MidiRuleLegato;
3426     pMidiRules[0] = r;
3427     pMidiRules[1] = 0;
3428     return r;
3429     }
3430    
3431     /**
3432     * Adds the alternator MIDI rule to the instrument.
3433     *
3434     * @returns the new MIDI rule
3435     */
3436     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
3437     delete pMidiRules[0];
3438     MidiRuleAlternator* r = new MidiRuleAlternator;
3439     pMidiRules[0] = r;
3440     pMidiRules[1] = 0;
3441     return r;
3442     }
3443    
3444     /**
3445     * Deletes a MIDI rule from the instrument.
3446     *
3447     * @param i - MIDI rule number
3448     */
3449     void Instrument::DeleteMidiRule(int i) {
3450     delete pMidiRules[i];
3451     pMidiRules[i] = 0;
3452     }
3453    
3454     /**
3455 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
3456     * and assign it to this object.
3457     *
3458     * Note that all sample pointers referenced by @a orig are simply copied as
3459     * memory address. Thus the respective samples are shared, not duplicated!
3460     *
3461     * @param orig - original Instrument object to be copied from
3462     */
3463     void Instrument::CopyAssign(const Instrument* orig) {
3464     // handle base class
3465     // (without copying DLS region stuff)
3466     DLS::Instrument::CopyAssignCore(orig);
3467    
3468     // handle own member variables
3469     Attenuation = orig->Attenuation;
3470     EffectSend = orig->EffectSend;
3471     FineTune = orig->FineTune;
3472     PitchbendRange = orig->PitchbendRange;
3473     PianoReleaseMode = orig->PianoReleaseMode;
3474     DimensionKeyRange = orig->DimensionKeyRange;
3475    
3476     // free old midi rules
3477     for (int i = 0 ; pMidiRules[i] ; i++) {
3478     delete pMidiRules[i];
3479     }
3480     //TODO: MIDI rule copying
3481     pMidiRules[0] = NULL;
3482    
3483     // delete all old regions
3484     while (Regions) DeleteRegion(GetFirstRegion());
3485     // create new regions and copy them from original
3486     {
3487     RegionList::const_iterator it = orig->pRegions->begin();
3488     for (int i = 0; i < orig->Regions; ++i, ++it) {
3489     Region* dstRgn = AddRegion();
3490     //NOTE: Region does semi-deep copy !
3491     dstRgn->CopyAssign(
3492     static_cast<gig::Region*>(*it)
3493     );
3494     }
3495     }
3496 schoenebeck 809
3497 schoenebeck 2394 UpdateRegionKeyTable();
3498     }
3499 schoenebeck 809
3500 schoenebeck 2394
3501 schoenebeck 929 // *************** Group ***************
3502     // *
3503    
3504     /** @brief Constructor.
3505     *
3506 schoenebeck 930 * @param file - pointer to the gig::File object
3507     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3508     * NULL if this is a new Group
3509 schoenebeck 929 */
3510 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3511 schoenebeck 929 pFile = file;
3512     pNameChunk = ck3gnm;
3513     ::LoadString(pNameChunk, Name);
3514     }
3515    
3516     Group::~Group() {
3517 schoenebeck 1099 // remove the chunk associated with this group (if any)
3518     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3519 schoenebeck 929 }
3520    
3521     /** @brief Update chunks with current group settings.
3522     *
3523 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
3524     * to call File::Save() to make changes persistent.
3525     *
3526     * Usually there is absolutely no need to call this method explicitly.
3527     * It will be called automatically when File::Save() was called.
3528 schoenebeck 929 */
3529     void Group::UpdateChunks() {
3530     // make sure <3gri> and <3gnl> list chunks exist
3531 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3532 persson 1192 if (!_3gri) {
3533     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3534     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3535     }
3536 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3537 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3538 persson 1266
3539     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3540     // v3 has a fixed list of 128 strings, find a free one
3541     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3542     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3543     pNameChunk = ck;
3544     break;
3545     }
3546     }
3547     }
3548    
3549 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3550     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3551     }
3552    
3553 schoenebeck 930 /**
3554     * Returns the first Sample of this Group. You have to call this method
3555     * once before you use GetNextSample().
3556     *
3557     * <b>Notice:</b> this method might block for a long time, in case the
3558     * samples of this .gig file were not scanned yet
3559     *
3560     * @returns pointer address to first Sample or NULL if there is none
3561     * applied to this Group
3562     * @see GetNextSample()
3563     */
3564     Sample* Group::GetFirstSample() {
3565     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3566     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3567     if (pSample->GetGroup() == this) return pSample;
3568     }
3569     return NULL;
3570     }
3571 schoenebeck 929
3572 schoenebeck 930 /**
3573     * Returns the next Sample of the Group. You have to call
3574     * GetFirstSample() once before you can use this method. By calling this
3575     * method multiple times it iterates through the Samples assigned to
3576     * this Group.
3577     *
3578     * @returns pointer address to the next Sample of this Group or NULL if
3579     * end reached
3580     * @see GetFirstSample()
3581     */
3582     Sample* Group::GetNextSample() {
3583     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3584     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3585     if (pSample->GetGroup() == this) return pSample;
3586     }
3587     return NULL;
3588     }
3589 schoenebeck 929
3590 schoenebeck 930 /**
3591     * Move Sample given by \a pSample from another Group to this Group.
3592     */
3593     void Group::AddSample(Sample* pSample) {
3594     pSample->pGroup = this;
3595     }
3596    
3597     /**
3598     * Move all members of this group to another group (preferably the 1st
3599     * one except this). This method is called explicitly by
3600     * File::DeleteGroup() thus when a Group was deleted. This code was
3601     * intentionally not placed in the destructor!
3602     */
3603     void Group::MoveAll() {
3604     // get "that" other group first
3605     Group* pOtherGroup = NULL;
3606     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3607     if (pOtherGroup != this) break;
3608     }
3609     if (!pOtherGroup) throw Exception(
3610     "Could not move samples to another group, since there is no "
3611     "other Group. This is a bug, report it!"
3612     );
3613     // now move all samples of this group to the other group
3614     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3615     pOtherGroup->AddSample(pSample);
3616     }
3617     }
3618    
3619    
3620    
3621 schoenebeck 2 // *************** File ***************
3622     // *
3623    
3624 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3625 persson 1199 const DLS::version_t File::VERSION_2 = {
3626     0, 2, 19980628 & 0xffff, 19980628 >> 16
3627     };
3628    
3629 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3630 persson 1199 const DLS::version_t File::VERSION_3 = {
3631     0, 3, 20030331 & 0xffff, 20030331 >> 16
3632     };
3633    
3634 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3635 persson 1180 { CHUNK_ID_IARL, 256 },
3636     { CHUNK_ID_IART, 128 },
3637     { CHUNK_ID_ICMS, 128 },
3638     { CHUNK_ID_ICMT, 1024 },
3639     { CHUNK_ID_ICOP, 128 },
3640     { CHUNK_ID_ICRD, 128 },
3641     { CHUNK_ID_IENG, 128 },
3642     { CHUNK_ID_IGNR, 128 },
3643     { CHUNK_ID_IKEY, 128 },
3644     { CHUNK_ID_IMED, 128 },
3645     { CHUNK_ID_INAM, 128 },
3646     { CHUNK_ID_IPRD, 128 },
3647     { CHUNK_ID_ISBJ, 128 },
3648     { CHUNK_ID_ISFT, 128 },
3649     { CHUNK_ID_ISRC, 128 },
3650     { CHUNK_ID_ISRF, 128 },
3651     { CHUNK_ID_ITCH, 128 },
3652     { 0, 0 }
3653     };
3654    
3655 schoenebeck 809 File::File() : DLS::File() {
3656 schoenebeck 1524 bAutoLoad = true;
3657 persson 1264 *pVersion = VERSION_3;
3658 schoenebeck 929 pGroups = NULL;
3659 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3660 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3661 persson 1192
3662     // add some mandatory chunks to get the file chunks in right
3663     // order (INFO chunk will be moved to first position later)
3664     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3665     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3666 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3667    
3668     GenerateDLSID();
3669 schoenebeck 809 }
3670    
3671 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3672 schoenebeck 1524 bAutoLoad = true;
3673 schoenebeck 929 pGroups = NULL;
3674 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3675 schoenebeck 2 }
3676    
3677 schoenebeck 929 File::~File() {
3678     if (pGroups) {
3679     std::list<Group*>::iterator iter = pGroups->begin();
3680     std::list<Group*>::iterator end = pGroups->end();
3681     while (iter != end) {
3682     delete *iter;
3683     ++iter;
3684     }
3685     delete pGroups;
3686     }
3687     }
3688    
3689 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3690     if (!pSamples) LoadSamples(pProgress);
3691 schoenebeck 2 if (!pSamples) return NULL;
3692     SamplesIterator = pSamples->begin();
3693     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3694     }
3695    
3696     Sample* File::GetNextSample() {
3697     if (!pSamples) return NULL;
3698     SamplesIterator++;
3699     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3700     }
3701    
3702 schoenebeck 809 /** @brief Add a new sample.
3703     *
3704     * This will create a new Sample object for the gig file. You have to
3705     * call Save() to make this persistent to the file.
3706     *
3707     * @returns pointer to new Sample object
3708     */
3709     Sample* File::AddSample() {
3710     if (!pSamples) LoadSamples();
3711     __ensureMandatoryChunksExist();
3712     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3713     // create new Sample object and its respective 'wave' list chunk
3714     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3715     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3716 persson 1192
3717     // add mandatory chunks to get the chunks in right order
3718     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3719     wave->AddSubList(LIST_TYPE_INFO);
3720    
3721 schoenebeck 809 pSamples->push_back(pSample);
3722     return pSample;
3723     }
3724    
3725     /** @brief Delete a sample.
3726     *
3727 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3728     * references to this sample from Regions and DimensionRegions will be
3729     * removed. You have to call Save() to make this persistent to the file.
3730 schoenebeck 809 *
3731     * @param pSample - sample to delete
3732     * @throws gig::Exception if given sample could not be found
3733     */
3734     void File::DeleteSample(Sample* pSample) {
3735 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3736     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3737 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3738 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3739 schoenebeck 809 pSamples->erase(iter);
3740     delete pSample;
3741 persson 1266
3742 persson 1678 SampleList::iterator tmp = SamplesIterator;
3743 persson 1266 // remove all references to the sample
3744     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3745     instrument = GetNextInstrument()) {
3746     for (Region* region = instrument->GetFirstRegion() ; region ;
3747     region = instrument->GetNextRegion()) {
3748    
3749     if (region->GetSample() == pSample) region->SetSample(NULL);
3750    
3751     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3752     gig::DimensionRegion *d = region->pDimensionRegions[i];
3753     if (d->pSample == pSample) d->pSample = NULL;
3754     }
3755     }
3756     }
3757 persson 1678 SamplesIterator = tmp; // restore iterator
3758 schoenebeck 809 }
3759    
3760 schoenebeck 823 void File::LoadSamples() {
3761     LoadSamples(NULL);
3762     }
3763    
3764 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3765 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3766     // to resolve the group they belong to
3767 schoenebeck 1158 if (!pGroups) LoadGroups();
3768 schoenebeck 930
3769 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3770    
3771 persson 666 RIFF::File* file = pRIFF;
3772 schoenebeck 515
3773 persson 666 // just for progress calculation
3774     int iSampleIndex = 0;
3775     int iTotalSamples = WavePoolCount;
3776 schoenebeck 515
3777 persson 666 // check if samples should be loaded from extension files
3778     int lastFileNo = 0;
3779     for (int i = 0 ; i < WavePoolCount ; i++) {
3780     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3781     }
3782 schoenebeck 780 String name(pRIFF->GetFileName());
3783     int nameLen = name.length();
3784 persson 666 char suffix[6];
3785 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3786 schoenebeck 515
3787 persson 666 for (int fileNo = 0 ; ; ) {
3788     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3789     if (wvpl) {
3790     unsigned long wvplFileOffset = wvpl->GetFilePos();
3791     RIFF::List* wave = wvpl->GetFirstSubList();
3792     while (wave) {
3793     if (wave->GetListType() == LIST_TYPE_WAVE) {
3794     // notify current progress
3795     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3796     __notify_progress(pProgress, subprogress);
3797    
3798     unsigned long waveFileOffset = wave->GetFilePos();
3799     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3800    
3801     iSampleIndex++;
3802     }
3803     wave = wvpl->GetNextSubList();
3804 schoenebeck 2 }
3805 persson 666
3806     if (fileNo == lastFileNo) break;
3807    
3808     // open extension file (*.gx01, *.gx02, ...)
3809     fileNo++;
3810     sprintf(suffix, ".gx%02d", fileNo);
3811     name.replace(nameLen, 5, suffix);
3812     file = new RIFF::File(name);
3813     ExtensionFiles.push_back(file);
3814 schoenebeck 823 } else break;
3815 schoenebeck 2 }
3816 persson 666
3817     __notify_progress(pProgress, 1.0); // notify done
3818 schoenebeck 2 }
3819    
3820     Instrument* File::GetFirstInstrument() {
3821     if (!pInstruments) LoadInstruments();
3822     if (!pInstruments) return NULL;
3823     InstrumentsIterator = pInstruments->begin();
3824 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3825 schoenebeck 2 }
3826    
3827     Instrument* File::GetNextInstrument() {
3828     if (!pInstruments) return NULL;
3829     InstrumentsIterator++;
3830 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3831 schoenebeck 2 }
3832    
3833 schoenebeck 21 /**
3834     * Returns the instrument with the given index.
3835     *
3836 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3837     * @param pProgress - optional: callback function for progress notification
3838 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3839     */
3840 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3841     if (!pInstruments) {
3842     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3843    
3844     // sample loading subtask
3845     progress_t subprogress;
3846     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3847     __notify_progress(&subprogress, 0.0f);
3848 schoenebeck 1524 if (GetAutoLoad())
3849     GetFirstSample(&subprogress); // now force all samples to be loaded
3850 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
3851    
3852     // instrument loading subtask
3853     if (pProgress && pProgress->callback) {
3854     subprogress.__range_min = subprogress.__range_max;
3855     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3856     }
3857     __notify_progress(&subprogress, 0.0f);
3858     LoadInstruments(&subprogress);
3859     __notify_progress(&subprogress, 1.0f);
3860     }
3861 schoenebeck 21 if (!pInstruments) return NULL;
3862     InstrumentsIterator = pInstruments->begin();
3863     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3864 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3865 schoenebeck 21 InstrumentsIterator++;
3866     }
3867     return NULL;
3868     }
3869    
3870 schoenebeck 809 /** @brief Add a new instrument definition.
3871     *
3872     * This will create a new Instrument object for the gig file. You have
3873     * to call Save() to make this persistent to the file.
3874     *
3875     * @returns pointer to new Instrument object
3876     */
3877     Instrument* File::AddInstrument() {
3878     if (!pInstruments) LoadInstruments();
3879     __ensureMandatoryChunksExist();
3880     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3881     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3882 persson 1192
3883     // add mandatory chunks to get the chunks in right order
3884     lstInstr->AddSubList(LIST_TYPE_INFO);
3885 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3886 persson 1192
3887 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3888 persson 1209 pInstrument->GenerateDLSID();
3889 persson 1182
3890 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3891    
3892 persson 1182 // this string is needed for the gig to be loadable in GSt:
3893     pInstrument->pInfo->Software = "Endless Wave";
3894    
3895 schoenebeck 809 pInstruments->push_back(pInstrument);
3896     return pInstrument;
3897     }
3898 schoenebeck 2394
3899     /** @brief Add a duplicate of an existing instrument.
3900     *
3901     * Duplicates the instrument definition given by @a orig and adds it
3902     * to this file. This allows in an instrument editor application to
3903     * easily create variations of an instrument, which will be stored in
3904     * the same .gig file, sharing i.e. the same samples.
3905     *
3906     * Note that all sample pointers referenced by @a orig are simply copied as
3907     * memory address. Thus the respective samples are shared, not duplicated!
3908     *
3909     * You have to call Save() to make this persistent to the file.
3910     *
3911     * @param orig - original instrument to be copied
3912     * @returns duplicated copy of the given instrument
3913     */
3914     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
3915     Instrument* instr = AddInstrument();
3916     instr->CopyAssign(orig);
3917     return instr;
3918     }
3919 schoenebeck 809
3920     /** @brief Delete an instrument.
3921     *
3922     * This will delete the given Instrument object from the gig file. You
3923     * have to call Save() to make this persistent to the file.
3924     *
3925     * @param pInstrument - instrument to delete
3926 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3927 schoenebeck 809 */
3928     void File::DeleteInstrument(Instrument* pInstrument) {
3929     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3930 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3931 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3932     pInstruments->erase(iter);
3933     delete pInstrument;
3934     }
3935    
3936 schoenebeck 823 void File::LoadInstruments() {
3937     LoadInstruments(NULL);
3938     }
3939    
3940 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3941 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3942 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3943     if (lstInstruments) {
3944 schoenebeck 515 int iInstrumentIndex = 0;
3945 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3946     while (lstInstr) {
3947     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3948 schoenebeck 515 // notify current progress
3949     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3950     __notify_progress(pProgress, localProgress);
3951    
3952     // divide local progress into subprogress for loading current Instrument
3953     progress_t subprogress;
3954     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3955    
3956     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3957    
3958     iInstrumentIndex++;
3959 schoenebeck 2 }
3960     lstInstr = lstInstruments->GetNextSubList();
3961     }
3962 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3963 schoenebeck 2 }
3964     }
3965    
3966 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3967     /// update is done directly to disk, as this method is called
3968     /// after File::Save()
3969 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3970     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3971     if (!_3crc) return;
3972 persson 1207
3973     // get the index of the sample
3974 persson 1199 int iWaveIndex = -1;
3975     File::SampleList::iterator iter = pSamples->begin();
3976     File::SampleList::iterator end = pSamples->end();
3977     for (int index = 0; iter != end; ++iter, ++index) {
3978     if (*iter == pSample) {
3979     iWaveIndex = index;
3980     break;
3981     }
3982     }
3983     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3984    
3985 persson 1207 // write the CRC-32 checksum to disk
3986 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3987     uint32_t tmp = 1;
3988     _3crc->WriteUint32(&tmp); // unknown, always 1?
3989     _3crc->WriteUint32(&crc);
3990     }
3991    
3992 schoenebeck 929 Group* File::GetFirstGroup() {
3993     if (!pGroups) LoadGroups();
3994 schoenebeck 930 // there must always be at least one group
3995 schoenebeck 929 GroupsIterator = pGroups->begin();
3996 schoenebeck 930 return *GroupsIterator;
3997 schoenebeck 929 }
3998 schoenebeck 2
3999 schoenebeck 929 Group* File::GetNextGroup() {
4000     if (!pGroups) return NULL;
4001     ++GroupsIterator;
4002     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4003     }
4004 schoenebeck 2
4005 schoenebeck 929 /**
4006     * Returns the group with the given index.
4007     *
4008     * @param index - number of the sought group (0..n)
4009     * @returns sought group or NULL if there's no such group
4010     */
4011     Group* File::GetGroup(uint index) {
4012     if (!pGroups) LoadGroups();
4013     GroupsIterator = pGroups->begin();
4014     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4015     if (i == index) return *GroupsIterator;
4016     ++GroupsIterator;
4017     }
4018     return NULL;
4019     }
4020    
4021     Group* File::AddGroup() {
4022     if (!pGroups) LoadGroups();
4023 schoenebeck 930 // there must always be at least one group
4024 schoenebeck 929 __ensureMandatoryChunksExist();
4025 schoenebeck 930 Group* pGroup = new Group(this, NULL);
4026 schoenebeck 929 pGroups->push_back(pGroup);
4027     return pGroup;
4028     }
4029    
4030 schoenebeck 1081 /** @brief Delete a group and its samples.
4031     *
4032     * This will delete the given Group object and all the samples that
4033     * belong to this group from the gig file. You have to call Save() to
4034     * make this persistent to the file.
4035     *
4036     * @param pGroup - group to delete
4037     * @throws gig::Exception if given group could not be found
4038     */
4039 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
4040 schoenebeck 930 if (!pGroups) LoadGroups();
4041 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4042     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4043 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4044 schoenebeck 1081 // delete all members of this group
4045     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
4046     DeleteSample(pSample);
4047     }
4048     // now delete this group object
4049     pGroups->erase(iter);
4050     delete pGroup;
4051     }
4052    
4053     /** @brief Delete a group.
4054     *
4055     * This will delete the given Group object from the gig file. All the
4056     * samples that belong to this group will not be deleted, but instead
4057     * be moved to another group. You have to call Save() to make this
4058     * persistent to the file.
4059     *
4060     * @param pGroup - group to delete
4061     * @throws gig::Exception if given group could not be found
4062     */
4063     void File::DeleteGroupOnly(Group* pGroup) {
4064     if (!pGroups) LoadGroups();
4065     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4066     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4067     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4068 schoenebeck 930 // move all members of this group to another group
4069     pGroup->MoveAll();
4070 schoenebeck 929 pGroups->erase(iter);
4071     delete pGroup;
4072     }
4073    
4074     void File::LoadGroups() {
4075     if (!pGroups) pGroups = new std::list<Group*>;
4076 schoenebeck 930 // try to read defined groups from file
4077 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4078 schoenebeck 930 if (lst3gri) {
4079     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
4080     if (lst3gnl) {
4081     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
4082     while (ck) {
4083     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
4084 persson 1266 if (pVersion && pVersion->major == 3 &&
4085     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
4086    
4087 schoenebeck 930 pGroups->push_back(new Group(this, ck));
4088     }
4089     ck = lst3gnl->GetNextSubChunk();
4090 schoenebeck 929 }
4091     }
4092     }
4093 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
4094     if (!pGroups->size()) {
4095     Group* pGroup = new Group(this, NULL);
4096     pGroup->Name = "Default Group";
4097     pGroups->push_back(pGroup);
4098     }
4099 schoenebeck 929 }
4100    
4101 schoenebeck 1098 /**
4102     * Apply all the gig file's current instruments, samples, groups and settings
4103     * to the respective RIFF chunks. You have to call Save() to make changes
4104     * persistent.
4105     *
4106     * Usually there is absolutely no need to call this method explicitly.
4107     * It will be called automatically when File::Save() was called.
4108     *
4109     * @throws Exception - on errors
4110     */
4111     void File::UpdateChunks() {
4112 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
4113 persson 1192
4114 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
4115    
4116 schoenebeck 1098 // first update base class's chunks
4117     DLS::File::UpdateChunks();
4118 schoenebeck 929
4119 persson 1199 if (newFile) {
4120 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
4121     // is placed first in file
4122 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
4123 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
4124     if (first != info) {
4125     pRIFF->MoveSubChunk(info, first);
4126     }
4127     }
4128    
4129 schoenebeck 1098 // update group's chunks
4130     if (pGroups) {
4131     std::list<Group*>::iterator iter = pGroups->begin();
4132     std::list<Group*>::iterator end = pGroups->end();
4133     for (; iter != end; ++iter) {
4134     (*iter)->UpdateChunks();
4135     }
4136 persson 1266
4137     // v3: make sure the file has 128 3gnm chunks
4138     if (pVersion && pVersion->major == 3) {
4139     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
4140     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
4141     for (int i = 0 ; i < 128 ; i++) {
4142     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
4143     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
4144     }
4145     }
4146 schoenebeck 1098 }
4147 persson 1199
4148     // update einf chunk
4149    
4150     // The einf chunk contains statistics about the gig file, such
4151     // as the number of regions and samples used by each
4152     // instrument. It is divided in equally sized parts, where the
4153     // first part contains information about the whole gig file,
4154     // and the rest of the parts map to each instrument in the
4155     // file.
4156     //
4157     // At the end of each part there is a bit map of each sample
4158     // in the file, where a set bit means that the sample is used
4159     // by the file/instrument.
4160     //
4161     // Note that there are several fields with unknown use. These
4162     // are set to zero.
4163    
4164     int sublen = pSamples->size() / 8 + 49;
4165     int einfSize = (Instruments + 1) * sublen;
4166    
4167     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
4168     if (einf) {
4169     if (einf->GetSize() != einfSize) {
4170     einf->Resize(einfSize);
4171     memset(einf->LoadChunkData(), 0, einfSize);
4172     }
4173     } else if (newFile) {
4174     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
4175     }
4176     if (einf) {
4177     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
4178    
4179     std::map<gig::Sample*,int> sampleMap;
4180     int sampleIdx = 0;
4181     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4182     sampleMap[pSample] = sampleIdx++;
4183     }
4184    
4185     int totnbusedsamples = 0;
4186     int totnbusedchannels = 0;
4187     int totnbregions = 0;
4188     int totnbdimregions = 0;
4189 persson 1264 int totnbloops = 0;
4190 persson 1199 int instrumentIdx = 0;
4191    
4192     memset(&pData[48], 0, sublen - 48);
4193    
4194     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4195     instrument = GetNextInstrument()) {
4196     int nbusedsamples = 0;
4197     int nbusedchannels = 0;
4198     int nbdimregions = 0;
4199 persson 1264 int nbloops = 0;
4200 persson 1199
4201     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
4202    
4203     for (Region* region = instrument->GetFirstRegion() ; region ;
4204     region = instrument->GetNextRegion()) {
4205     for (int i = 0 ; i < region->DimensionRegions ; i++) {
4206     gig::DimensionRegion *d = region->pDimensionRegions[i];
4207     if (d->pSample) {
4208     int sampleIdx = sampleMap[d->pSample];
4209     int byte = 48 + sampleIdx / 8;
4210     int bit = 1 << (sampleIdx & 7);
4211     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
4212     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4213     nbusedsamples++;
4214     nbusedchannels += d->pSample->Channels;
4215    
4216     if ((pData[byte] & bit) == 0) {
4217     pData[byte] |= bit;
4218     totnbusedsamples++;
4219     totnbusedchannels += d->pSample->Channels;
4220     }
4221     }
4222     }
4223 persson 1264 if (d->SampleLoops) nbloops++;
4224 persson 1199 }
4225     nbdimregions += region->DimensionRegions;
4226     }
4227     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4228     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4229     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4230     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4231     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4232     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4233     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4234 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4235     // next 8 bytes unknown
4236 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4237     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4238     // next 4 bytes unknown
4239    
4240     totnbregions += instrument->Regions;
4241     totnbdimregions += nbdimregions;
4242 persson 1264 totnbloops += nbloops;
4243 persson 1199 instrumentIdx++;
4244     }
4245     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4246     // store32(&pData[0], sublen);
4247     store32(&pData[4], totnbusedchannels);
4248     store32(&pData[8], totnbusedsamples);
4249     store32(&pData[12], Instruments);
4250     store32(&pData[16], totnbregions);
4251     store32(&pData[20], totnbdimregions);
4252 persson 1264 store32(&pData[24], totnbloops);
4253     // next 8 bytes unknown
4254     // next 4 bytes unknown, not always 0
4255 persson 1199 store32(&pData[40], pSamples->size());
4256     // next 4 bytes unknown
4257     }
4258    
4259     // update 3crc chunk
4260    
4261     // The 3crc chunk contains CRC-32 checksums for the
4262     // samples. The actual checksum values will be filled in
4263     // later, by Sample::Write.
4264    
4265     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4266     if (_3crc) {
4267     _3crc->Resize(pSamples->size() * 8);
4268     } else if (newFile) {
4269     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4270     _3crc->LoadChunkData();
4271 persson 1264
4272     // the order of einf and 3crc is not the same in v2 and v3
4273     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4274 persson 1199 }
4275 schoenebeck 1098 }
4276 schoenebeck 929
4277 schoenebeck 1524 /**
4278     * Enable / disable automatic loading. By default this properyt is
4279     * enabled and all informations are loaded automatically. However
4280     * loading all Regions, DimensionRegions and especially samples might
4281     * take a long time for large .gig files, and sometimes one might only
4282     * be interested in retrieving very superficial informations like the
4283     * amount of instruments and their names. In this case one might disable
4284     * automatic loading to avoid very slow response times.
4285     *
4286     * @e CAUTION: by disabling this property many pointers (i.e. sample
4287     * references) and informations will have invalid or even undefined
4288     * data! This feature is currently only intended for retrieving very
4289     * superficial informations in a very fast way. Don't use it to retrieve
4290     * details like synthesis informations or even to modify .gig files!
4291     */
4292     void File::SetAutoLoad(bool b) {
4293     bAutoLoad = b;
4294     }
4295 schoenebeck 1098
4296 schoenebeck 1524 /**
4297     * Returns whether automatic loading is enabled.
4298     * @see SetAutoLoad()
4299     */
4300     bool File::GetAutoLoad() {
4301     return bAutoLoad;
4302     }
4303 schoenebeck 1098
4304 schoenebeck 1524
4305    
4306 schoenebeck 2 // *************** Exception ***************
4307     // *
4308    
4309     Exception::Exception(String Message) : DLS::Exception(Message) {
4310     }
4311    
4312     void Exception::PrintMessage() {
4313     std::cout << "gig::Exception: " << Message << std::endl;
4314     }
4315    
4316 schoenebeck 518
4317     // *************** functions ***************
4318     // *
4319    
4320     /**
4321     * Returns the name of this C++ library. This is usually "libgig" of
4322     * course. This call is equivalent to RIFF::libraryName() and
4323     * DLS::libraryName().
4324     */
4325     String libraryName() {
4326     return PACKAGE;
4327     }
4328    
4329     /**
4330     * Returns version of this C++ library. This call is equivalent to
4331     * RIFF::libraryVersion() and DLS::libraryVersion().
4332     */
4333     String libraryVersion() {
4334     return VERSION;
4335     }
4336    
4337 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC