/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2922 - (hide annotations) (download)
Wed May 18 18:04:49 2016 UTC (7 years, 10 months ago) by schoenebeck
File size: 266362 byte(s)
* Using now native integer size where appropriate.
* Bumped version (4.0.0.svn5).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2912 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31 schoenebeck 2555 #include <assert.h>
32 schoenebeck 384
33 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
34     /// format with libgig's own custom data / custom features).
35     #define GIG_FILE_EXT_VERSION 2
36    
37 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
38     /// compressed sample wave streams - this value should always be bigger than
39     /// the biggest sample piece expected to be read by the sampler engine,
40     /// otherwise the buffer size will be raised at runtime and thus the buffer
41     /// reallocated which is time consuming and unefficient.
42     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43    
44     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57    
58 schoenebeck 515 namespace gig {
59 schoenebeck 2
60 schoenebeck 809 // *************** Internal functions for sample decompression ***************
61 persson 365 // *
62    
63 schoenebeck 515 namespace {
64    
65 persson 365 inline int get12lo(const unsigned char* pSrc)
66     {
67     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68     return x & 0x800 ? x - 0x1000 : x;
69     }
70    
71     inline int get12hi(const unsigned char* pSrc)
72     {
73     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74     return x & 0x800 ? x - 0x1000 : x;
75     }
76    
77     inline int16_t get16(const unsigned char* pSrc)
78     {
79     return int16_t(pSrc[0] | pSrc[1] << 8);
80     }
81    
82     inline int get24(const unsigned char* pSrc)
83     {
84     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85     return x & 0x800000 ? x - 0x1000000 : x;
86     }
87    
88 persson 902 inline void store24(unsigned char* pDst, int x)
89     {
90     pDst[0] = x;
91     pDst[1] = x >> 8;
92     pDst[2] = x >> 16;
93     }
94    
95 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
96 persson 372 int srcStep, int dstStep,
97     const unsigned char* pSrc, int16_t* pDst,
98 schoenebeck 2912 file_offset_t currentframeoffset,
99     file_offset_t copysamples)
100 persson 365 {
101     switch (compressionmode) {
102     case 0: // 16 bit uncompressed
103     pSrc += currentframeoffset * srcStep;
104     while (copysamples) {
105     *pDst = get16(pSrc);
106 persson 372 pDst += dstStep;
107 persson 365 pSrc += srcStep;
108     copysamples--;
109     }
110     break;
111    
112     case 1: // 16 bit compressed to 8 bit
113     int y = get16(params);
114     int dy = get16(params + 2);
115     while (currentframeoffset) {
116     dy -= int8_t(*pSrc);
117     y -= dy;
118     pSrc += srcStep;
119     currentframeoffset--;
120     }
121     while (copysamples) {
122     dy -= int8_t(*pSrc);
123     y -= dy;
124     *pDst = y;
125 persson 372 pDst += dstStep;
126 persson 365 pSrc += srcStep;
127     copysamples--;
128     }
129     break;
130     }
131     }
132    
133     void Decompress24(int compressionmode, const unsigned char* params,
134 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135 schoenebeck 2912 file_offset_t currentframeoffset,
136     file_offset_t copysamples, int truncatedBits)
137 persson 365 {
138 persson 695 int y, dy, ddy, dddy;
139 persson 437
140 persson 695 #define GET_PARAMS(params) \
141     y = get24(params); \
142     dy = y - get24((params) + 3); \
143     ddy = get24((params) + 6); \
144     dddy = get24((params) + 9)
145 persson 365
146     #define SKIP_ONE(x) \
147 persson 695 dddy -= (x); \
148     ddy -= dddy; \
149     dy = -dy - ddy; \
150     y += dy
151 persson 365
152     #define COPY_ONE(x) \
153     SKIP_ONE(x); \
154 persson 902 store24(pDst, y << truncatedBits); \
155 persson 372 pDst += dstStep
156 persson 365
157     switch (compressionmode) {
158     case 2: // 24 bit uncompressed
159     pSrc += currentframeoffset * 3;
160     while (copysamples) {
161 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
162 persson 372 pDst += dstStep;
163 persson 365 pSrc += 3;
164     copysamples--;
165     }
166     break;
167    
168     case 3: // 24 bit compressed to 16 bit
169     GET_PARAMS(params);
170     while (currentframeoffset) {
171     SKIP_ONE(get16(pSrc));
172     pSrc += 2;
173     currentframeoffset--;
174     }
175     while (copysamples) {
176     COPY_ONE(get16(pSrc));
177     pSrc += 2;
178     copysamples--;
179     }
180     break;
181    
182     case 4: // 24 bit compressed to 12 bit
183     GET_PARAMS(params);
184     while (currentframeoffset > 1) {
185     SKIP_ONE(get12lo(pSrc));
186     SKIP_ONE(get12hi(pSrc));
187     pSrc += 3;
188     currentframeoffset -= 2;
189     }
190     if (currentframeoffset) {
191     SKIP_ONE(get12lo(pSrc));
192     currentframeoffset--;
193     if (copysamples) {
194     COPY_ONE(get12hi(pSrc));
195     pSrc += 3;
196     copysamples--;
197     }
198     }
199     while (copysamples > 1) {
200     COPY_ONE(get12lo(pSrc));
201     COPY_ONE(get12hi(pSrc));
202     pSrc += 3;
203     copysamples -= 2;
204     }
205     if (copysamples) {
206     COPY_ONE(get12lo(pSrc));
207     }
208     break;
209    
210     case 5: // 24 bit compressed to 8 bit
211     GET_PARAMS(params);
212     while (currentframeoffset) {
213     SKIP_ONE(int8_t(*pSrc++));
214     currentframeoffset--;
215     }
216     while (copysamples) {
217     COPY_ONE(int8_t(*pSrc++));
218     copysamples--;
219     }
220     break;
221     }
222     }
223    
224     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
225     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
227     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
228     }
229    
230    
231 schoenebeck 1113
232 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
233     // *
234    
235     static uint32_t* __initCRCTable() {
236     static uint32_t res[256];
237    
238     for (int i = 0 ; i < 256 ; i++) {
239     uint32_t c = i;
240     for (int j = 0 ; j < 8 ; j++) {
241     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242     }
243     res[i] = c;
244     }
245     return res;
246     }
247    
248     static const uint32_t* __CRCTable = __initCRCTable();
249    
250     /**
251     * Initialize a CRC variable.
252     *
253     * @param crc - variable to be initialized
254     */
255     inline static void __resetCRC(uint32_t& crc) {
256     crc = 0xffffffff;
257     }
258    
259     /**
260     * Used to calculate checksums of the sample data in a gig file. The
261     * checksums are stored in the 3crc chunk of the gig file and
262     * automatically updated when a sample is written with Sample::Write().
263     *
264     * One should call __resetCRC() to initialize the CRC variable to be
265     * used before calling this function the first time.
266     *
267     * After initializing the CRC variable one can call this function
268     * arbitrary times, i.e. to split the overall CRC calculation into
269     * steps.
270     *
271     * Once the whole data was processed by __calculateCRC(), one should
272     * call __encodeCRC() to get the final CRC result.
273     *
274     * @param buf - pointer to data the CRC shall be calculated of
275     * @param bufSize - size of the data to be processed
276     * @param crc - variable the CRC sum shall be stored to
277     */
278     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279     for (int i = 0 ; i < bufSize ; i++) {
280     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281     }
282     }
283    
284     /**
285     * Returns the final CRC result.
286     *
287     * @param crc - variable previously passed to __calculateCRC()
288     */
289     inline static uint32_t __encodeCRC(const uint32_t& crc) {
290     return crc ^ 0xffffffff;
291     }
292    
293    
294    
295 schoenebeck 1113 // *************** Other Internal functions ***************
296     // *
297    
298     static split_type_t __resolveSplitType(dimension_t dimension) {
299     return (
300     dimension == dimension_layer ||
301     dimension == dimension_samplechannel ||
302     dimension == dimension_releasetrigger ||
303     dimension == dimension_keyboard ||
304     dimension == dimension_roundrobin ||
305     dimension == dimension_random ||
306     dimension == dimension_smartmidi ||
307     dimension == dimension_roundrobinkeyboard
308     ) ? split_type_bit : split_type_normal;
309     }
310    
311     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312     return (dimension_definition.split_type == split_type_normal)
313     ? int(128.0 / dimension_definition.zones) : 0;
314     }
315    
316    
317    
318 schoenebeck 2 // *************** Sample ***************
319     // *
320    
321 schoenebeck 2922 size_t Sample::Instances = 0;
322 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
323 schoenebeck 2
324 schoenebeck 809 /** @brief Constructor.
325     *
326     * Load an existing sample or create a new one. A 'wave' list chunk must
327     * be given to this constructor. In case the given 'wave' list chunk
328     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329     * format and sample data will be loaded from there, otherwise default
330     * values will be used and those chunks will be created when
331     * File::Save() will be called later on.
332     *
333     * @param pFile - pointer to gig::File where this sample is
334     * located (or will be located)
335     * @param waveList - pointer to 'wave' list chunk which is (or
336     * will be) associated with this sample
337     * @param WavePoolOffset - offset of this sample data from wave pool
338     * ('wvpl') list chunk
339     * @param fileNo - number of an extension file where this sample
340     * is located, 0 otherwise
341     */
342 schoenebeck 2912 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
343 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
344 persson 1180 { CHUNK_ID_INAM, 64 },
345     { 0, 0 }
346     };
347 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
348 schoenebeck 2 Instances++;
349 persson 666 FileNo = fileNo;
350 schoenebeck 2
351 schoenebeck 1381 __resetCRC(crc);
352    
353 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
354     if (pCk3gix) {
355 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
356 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
357 schoenebeck 809 } else { // '3gix' chunk missing
358 schoenebeck 930 // by default assigned to that mandatory "Default Group"
359     pGroup = pFile->GetGroup(0);
360 schoenebeck 809 }
361 schoenebeck 2
362 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
363     if (pCkSmpl) {
364     Manufacturer = pCkSmpl->ReadInt32();
365     Product = pCkSmpl->ReadInt32();
366     SamplePeriod = pCkSmpl->ReadInt32();
367     MIDIUnityNote = pCkSmpl->ReadInt32();
368     FineTune = pCkSmpl->ReadInt32();
369     pCkSmpl->Read(&SMPTEFormat, 1, 4);
370     SMPTEOffset = pCkSmpl->ReadInt32();
371     Loops = pCkSmpl->ReadInt32();
372     pCkSmpl->ReadInt32(); // manufByt
373     LoopID = pCkSmpl->ReadInt32();
374     pCkSmpl->Read(&LoopType, 1, 4);
375     LoopStart = pCkSmpl->ReadInt32();
376     LoopEnd = pCkSmpl->ReadInt32();
377     LoopFraction = pCkSmpl->ReadInt32();
378     LoopPlayCount = pCkSmpl->ReadInt32();
379     } else { // 'smpl' chunk missing
380     // use default values
381     Manufacturer = 0;
382     Product = 0;
383 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
384 persson 1218 MIDIUnityNote = 60;
385 schoenebeck 809 FineTune = 0;
386 persson 1182 SMPTEFormat = smpte_format_no_offset;
387 schoenebeck 809 SMPTEOffset = 0;
388     Loops = 0;
389     LoopID = 0;
390 persson 1182 LoopType = loop_type_normal;
391 schoenebeck 809 LoopStart = 0;
392     LoopEnd = 0;
393     LoopFraction = 0;
394     LoopPlayCount = 0;
395     }
396 schoenebeck 2
397     FrameTable = NULL;
398     SamplePos = 0;
399     RAMCache.Size = 0;
400     RAMCache.pStart = NULL;
401     RAMCache.NullExtensionSize = 0;
402    
403 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
404    
405 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
406     Compressed = ewav;
407     Dithered = false;
408     TruncatedBits = 0;
409 schoenebeck 2 if (Compressed) {
410 persson 437 uint32_t version = ewav->ReadInt32();
411     if (version == 3 && BitDepth == 24) {
412     Dithered = ewav->ReadInt32();
413     ewav->SetPos(Channels == 2 ? 84 : 64);
414     TruncatedBits = ewav->ReadInt32();
415     }
416 schoenebeck 2 ScanCompressedSample();
417     }
418 schoenebeck 317
419     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
420 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
421     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
422     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
423 schoenebeck 317 }
424 persson 437 FrameOffset = 0; // just for streaming compressed samples
425 schoenebeck 21
426 persson 864 LoopSize = LoopEnd - LoopStart + 1;
427 schoenebeck 2 }
428    
429 schoenebeck 809 /**
430 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
431     * the actual waveform data) and assign it to this object.
432     *
433     * Discussion: copying .gig samples is a bit tricky. It requires three
434     * steps:
435     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
436     * its new sample waveform data size.
437     * 2. Saving the file (done by File::Save()) so that it gains correct size
438     * and layout for writing the actual wave form data directly to disc
439     * in next step.
440     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
441     *
442     * @param orig - original Sample object to be copied from
443     */
444     void Sample::CopyAssignMeta(const Sample* orig) {
445     // handle base classes
446     DLS::Sample::CopyAssignCore(orig);
447    
448     // handle actual own attributes of this class
449     Manufacturer = orig->Manufacturer;
450     Product = orig->Product;
451     SamplePeriod = orig->SamplePeriod;
452     MIDIUnityNote = orig->MIDIUnityNote;
453     FineTune = orig->FineTune;
454     SMPTEFormat = orig->SMPTEFormat;
455     SMPTEOffset = orig->SMPTEOffset;
456     Loops = orig->Loops;
457     LoopID = orig->LoopID;
458     LoopType = orig->LoopType;
459     LoopStart = orig->LoopStart;
460     LoopEnd = orig->LoopEnd;
461     LoopSize = orig->LoopSize;
462     LoopFraction = orig->LoopFraction;
463     LoopPlayCount = orig->LoopPlayCount;
464    
465     // schedule resizing this sample to the given sample's size
466     Resize(orig->GetSize());
467     }
468    
469     /**
470     * Should be called after CopyAssignMeta() and File::Save() sequence.
471     * Read more about it in the discussion of CopyAssignMeta(). This method
472     * copies the actual waveform data by disk streaming.
473     *
474     * @e CAUTION: this method is currently not thread safe! During this
475     * operation the sample must not be used for other purposes by other
476     * threads!
477     *
478     * @param orig - original Sample object to be copied from
479     */
480     void Sample::CopyAssignWave(const Sample* orig) {
481     const int iReadAtOnce = 32*1024;
482     char* buf = new char[iReadAtOnce * orig->FrameSize];
483     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
484 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
485 schoenebeck 2482 pOrig->SetPos(0);
486     SetPos(0);
487 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
488 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
489     {
490     Write(buf, n);
491     }
492     pOrig->SetPos(restorePos);
493     delete [] buf;
494     }
495    
496     /**
497 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
498     * to call File::Save() to make changes persistent.
499     *
500     * Usually there is absolutely no need to call this method explicitly.
501     * It will be called automatically when File::Save() was called.
502     *
503 schoenebeck 2682 * @param pProgress - callback function for progress notification
504 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
505 schoenebeck 809 * was provided yet
506     * @throws gig::Exception if there is any invalid sample setting
507     */
508 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
509 schoenebeck 809 // first update base class's chunks
510 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
511 schoenebeck 809
512     // make sure 'smpl' chunk exists
513     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
514 persson 1182 if (!pCkSmpl) {
515     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
516     memset(pCkSmpl->LoadChunkData(), 0, 60);
517     }
518 schoenebeck 809 // update 'smpl' chunk
519     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
520 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
521 persson 1179 store32(&pData[0], Manufacturer);
522     store32(&pData[4], Product);
523     store32(&pData[8], SamplePeriod);
524     store32(&pData[12], MIDIUnityNote);
525     store32(&pData[16], FineTune);
526     store32(&pData[20], SMPTEFormat);
527     store32(&pData[24], SMPTEOffset);
528     store32(&pData[28], Loops);
529 schoenebeck 809
530     // we skip 'manufByt' for now (4 bytes)
531    
532 persson 1179 store32(&pData[36], LoopID);
533     store32(&pData[40], LoopType);
534     store32(&pData[44], LoopStart);
535     store32(&pData[48], LoopEnd);
536     store32(&pData[52], LoopFraction);
537     store32(&pData[56], LoopPlayCount);
538 schoenebeck 809
539     // make sure '3gix' chunk exists
540     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
541     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
542 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
543 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
544 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
545     if (pFile->pGroups) {
546     std::list<Group*>::iterator iter = pFile->pGroups->begin();
547     std::list<Group*>::iterator end = pFile->pGroups->end();
548 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
549 schoenebeck 929 if (*iter == pGroup) {
550     iSampleGroup = i;
551     break; // found
552     }
553     }
554     }
555 schoenebeck 809 // update '3gix' chunk
556     pData = (uint8_t*) pCk3gix->LoadChunkData();
557 persson 1179 store16(&pData[0], iSampleGroup);
558 schoenebeck 2484
559     // if the library user toggled the "Compressed" attribute from true to
560     // false, then the EWAV chunk associated with compressed samples needs
561     // to be deleted
562     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
563     if (ewav && !Compressed) {
564     pWaveList->DeleteSubChunk(ewav);
565     }
566 schoenebeck 809 }
567    
568 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
569     void Sample::ScanCompressedSample() {
570     //TODO: we have to add some more scans here (e.g. determine compression rate)
571     this->SamplesTotal = 0;
572 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
573 schoenebeck 2
574 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
575 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
576 persson 365
577 schoenebeck 2 // Scanning
578     pCkData->SetPos(0);
579 persson 365 if (Channels == 2) { // Stereo
580     for (int i = 0 ; ; i++) {
581     // for 24 bit samples every 8:th frame offset is
582     // stored, to save some memory
583     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
584    
585     const int mode_l = pCkData->ReadUint8();
586     const int mode_r = pCkData->ReadUint8();
587     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
588 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
589 persson 365
590     if (pCkData->RemainingBytes() <= frameSize) {
591     SamplesInLastFrame =
592     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
593     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
594     SamplesTotal += SamplesInLastFrame;
595 schoenebeck 2 break;
596 persson 365 }
597     SamplesTotal += SamplesPerFrame;
598     pCkData->SetPos(frameSize, RIFF::stream_curpos);
599     }
600     }
601     else { // Mono
602     for (int i = 0 ; ; i++) {
603     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
604    
605     const int mode = pCkData->ReadUint8();
606     if (mode > 5) throw gig::Exception("Unknown compression mode");
607 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
608 persson 365
609     if (pCkData->RemainingBytes() <= frameSize) {
610     SamplesInLastFrame =
611     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
612     SamplesTotal += SamplesInLastFrame;
613 schoenebeck 2 break;
614 persson 365 }
615     SamplesTotal += SamplesPerFrame;
616     pCkData->SetPos(frameSize, RIFF::stream_curpos);
617 schoenebeck 2 }
618     }
619     pCkData->SetPos(0);
620    
621     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
622     if (FrameTable) delete[] FrameTable;
623 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
624     std::list<file_offset_t>::iterator end = frameOffsets.end();
625     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
626 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
627     FrameTable[i] = *iter;
628     }
629     }
630    
631     /**
632     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
633     * ReleaseSampleData() to free the memory if you don't need the cached
634     * sample data anymore.
635     *
636     * @returns buffer_t structure with start address and size of the buffer
637     * in bytes
638     * @see ReleaseSampleData(), Read(), SetPos()
639     */
640     buffer_t Sample::LoadSampleData() {
641     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
642     }
643    
644     /**
645     * Reads (uncompresses if needed) and caches the first \a SampleCount
646     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647     * memory space if you don't need the cached samples anymore. There is no
648     * guarantee that exactly \a SampleCount samples will be cached; this is
649     * not an error. The size will be eventually truncated e.g. to the
650     * beginning of a frame of a compressed sample. This is done for
651     * efficiency reasons while streaming the wave by your sampler engine
652     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653     * that will be returned to determine the actual cached samples, but note
654     * that the size is given in bytes! You get the number of actually cached
655     * samples by dividing it by the frame size of the sample:
656 schoenebeck 384 * @code
657 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
658     * long cachedsamples = buf.Size / pSample->FrameSize;
659 schoenebeck 384 * @endcode
660 schoenebeck 2 *
661     * @param SampleCount - number of sample points to load into RAM
662     * @returns buffer_t structure with start address and size of
663     * the cached sample data in bytes
664     * @see ReleaseSampleData(), Read(), SetPos()
665     */
666 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
667 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
668     }
669    
670     /**
671     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672     * ReleaseSampleData() to free the memory if you don't need the cached
673     * sample data anymore.
674     * The method will add \a NullSamplesCount silence samples past the
675     * official buffer end (this won't affect the 'Size' member of the
676     * buffer_t structure, that means 'Size' always reflects the size of the
677     * actual sample data, the buffer might be bigger though). Silence
678     * samples past the official buffer are needed for differential
679     * algorithms that always have to take subsequent samples into account
680     * (resampling/interpolation would be an important example) and avoids
681     * memory access faults in such cases.
682     *
683     * @param NullSamplesCount - number of silence samples the buffer should
684     * be extended past it's data end
685     * @returns buffer_t structure with start address and
686     * size of the buffer in bytes
687     * @see ReleaseSampleData(), Read(), SetPos()
688     */
689     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
690     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
691     }
692    
693     /**
694     * Reads (uncompresses if needed) and caches the first \a SampleCount
695     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
696     * memory space if you don't need the cached samples anymore. There is no
697     * guarantee that exactly \a SampleCount samples will be cached; this is
698     * not an error. The size will be eventually truncated e.g. to the
699     * beginning of a frame of a compressed sample. This is done for
700     * efficiency reasons while streaming the wave by your sampler engine
701     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
702     * that will be returned to determine the actual cached samples, but note
703     * that the size is given in bytes! You get the number of actually cached
704     * samples by dividing it by the frame size of the sample:
705 schoenebeck 384 * @code
706 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
707     * long cachedsamples = buf.Size / pSample->FrameSize;
708 schoenebeck 384 * @endcode
709 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
710     * official buffer end (this won't affect the 'Size' member of the
711     * buffer_t structure, that means 'Size' always reflects the size of the
712     * actual sample data, the buffer might be bigger though). Silence
713     * samples past the official buffer are needed for differential
714     * algorithms that always have to take subsequent samples into account
715     * (resampling/interpolation would be an important example) and avoids
716     * memory access faults in such cases.
717     *
718     * @param SampleCount - number of sample points to load into RAM
719     * @param NullSamplesCount - number of silence samples the buffer should
720     * be extended past it's data end
721     * @returns buffer_t structure with start address and
722     * size of the cached sample data in bytes
723     * @see ReleaseSampleData(), Read(), SetPos()
724     */
725 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
726 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
727     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
728 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
729 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
730 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
731     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
732     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
733     // fill the remaining buffer space with silence samples
734     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
735     return GetCache();
736     }
737    
738     /**
739     * Returns current cached sample points. A buffer_t structure will be
740     * returned which contains address pointer to the begin of the cache and
741     * the size of the cached sample data in bytes. Use
742     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
743     * RAM.
744     *
745     * @returns buffer_t structure with current cached sample points
746     * @see LoadSampleData();
747     */
748     buffer_t Sample::GetCache() {
749     // return a copy of the buffer_t structure
750     buffer_t result;
751     result.Size = this->RAMCache.Size;
752     result.pStart = this->RAMCache.pStart;
753     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
754     return result;
755     }
756    
757     /**
758     * Frees the cached sample from RAM if loaded with
759     * <i>LoadSampleData()</i> previously.
760     *
761     * @see LoadSampleData();
762     */
763     void Sample::ReleaseSampleData() {
764     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
765     RAMCache.pStart = NULL;
766     RAMCache.Size = 0;
767 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
768 schoenebeck 2 }
769    
770 schoenebeck 809 /** @brief Resize sample.
771     *
772     * Resizes the sample's wave form data, that is the actual size of
773     * sample wave data possible to be written for this sample. This call
774     * will return immediately and just schedule the resize operation. You
775     * should call File::Save() to actually perform the resize operation(s)
776     * "physically" to the file. As this can take a while on large files, it
777     * is recommended to call Resize() first on all samples which have to be
778     * resized and finally to call File::Save() to perform all those resize
779     * operations in one rush.
780     *
781     * The actual size (in bytes) is dependant to the current FrameSize
782     * value. You may want to set FrameSize before calling Resize().
783     *
784     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
785     * enlarged samples before calling File::Save() as this might exceed the
786     * current sample's boundary!
787     *
788 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
789     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
790 schoenebeck 809 * other formats will fail!
791     *
792 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
793     * greater than zero)
794 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
795 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
796 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
797     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
798     * DLS::Sample::FormatTag, File::Save()
799     */
800 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
801 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
802 schoenebeck 2922 DLS::Sample::Resize(NewSize);
803 schoenebeck 809 }
804    
805 schoenebeck 2 /**
806     * Sets the position within the sample (in sample points, not in
807     * bytes). Use this method and <i>Read()</i> if you don't want to load
808     * the sample into RAM, thus for disk streaming.
809     *
810     * Although the original Gigasampler engine doesn't allow positioning
811     * within compressed samples, I decided to implement it. Even though
812     * the Gigasampler format doesn't allow to define loops for compressed
813     * samples at the moment, positioning within compressed samples might be
814     * interesting for some sampler engines though. The only drawback about
815     * my decision is that it takes longer to load compressed gig Files on
816     * startup, because it's neccessary to scan the samples for some
817     * mandatory informations. But I think as it doesn't affect the runtime
818     * efficiency, nobody will have a problem with that.
819     *
820     * @param SampleCount number of sample points to jump
821     * @param Whence optional: to which relation \a SampleCount refers
822     * to, if omited <i>RIFF::stream_start</i> is assumed
823     * @returns the new sample position
824     * @see Read()
825     */
826 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
827 schoenebeck 2 if (Compressed) {
828     switch (Whence) {
829     case RIFF::stream_curpos:
830     this->SamplePos += SampleCount;
831     break;
832     case RIFF::stream_end:
833     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
834     break;
835     case RIFF::stream_backward:
836     this->SamplePos -= SampleCount;
837     break;
838     case RIFF::stream_start: default:
839     this->SamplePos = SampleCount;
840     break;
841     }
842     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
843    
844 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
845 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
846     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
847     return this->SamplePos;
848     }
849     else { // not compressed
850 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
851     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
852 schoenebeck 2 return (result == orderedBytes) ? SampleCount
853     : result / this->FrameSize;
854     }
855     }
856    
857     /**
858     * Returns the current position in the sample (in sample points).
859     */
860 schoenebeck 2912 file_offset_t Sample::GetPos() const {
861 schoenebeck 2 if (Compressed) return SamplePos;
862     else return pCkData->GetPos() / FrameSize;
863     }
864    
865     /**
866 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
867     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
868     * the position within the sample respectively, this method honors the
869     * looping informations of the sample (if any). The sample wave stream
870     * will be decompressed on the fly if using a compressed sample. Use this
871     * method if you don't want to load the sample into RAM, thus for disk
872     * streaming. All this methods needs to know to proceed with streaming
873     * for the next time you call this method is stored in \a pPlaybackState.
874     * You have to allocate and initialize the playback_state_t structure by
875     * yourself before you use it to stream a sample:
876 schoenebeck 384 * @code
877     * gig::playback_state_t playbackstate;
878     * playbackstate.position = 0;
879     * playbackstate.reverse = false;
880     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
881     * @endcode
882 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
883     * defined or if the current read position is located within a loop area.
884     * The method already handles such cases by itself.
885     *
886 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
887     * have to use an external decompression buffer for <b>EACH</b>
888     * streaming thread to avoid race conditions and crashes!
889     *
890 schoenebeck 24 * @param pBuffer destination buffer
891     * @param SampleCount number of sample points to read
892     * @param pPlaybackState will be used to store and reload the playback
893     * state for the next ReadAndLoop() call
894 persson 864 * @param pDimRgn dimension region with looping information
895 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
896 schoenebeck 24 * @returns number of successfully read sample points
897 schoenebeck 384 * @see CreateDecompressionBuffer()
898 schoenebeck 24 */
899 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
900 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
901 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
902 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
903    
904     SetPos(pPlaybackState->position); // recover position from the last time
905    
906 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
907 schoenebeck 24
908 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
909     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
910 schoenebeck 24
911 persson 864 if (GetPos() <= loopEnd) {
912     switch (loop.LoopType) {
913 schoenebeck 24
914 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
915     do {
916     // if not endless loop check if max. number of loop cycles have been passed
917     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
918 schoenebeck 24
919 persson 864 if (!pPlaybackState->reverse) { // forward playback
920     do {
921     samplestoloopend = loopEnd - GetPos();
922     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
923     samplestoread -= readsamples;
924     totalreadsamples += readsamples;
925     if (readsamples == samplestoloopend) {
926     pPlaybackState->reverse = true;
927     break;
928     }
929     } while (samplestoread && readsamples);
930     }
931     else { // backward playback
932 schoenebeck 24
933 persson 864 // as we can only read forward from disk, we have to
934     // determine the end position within the loop first,
935     // read forward from that 'end' and finally after
936     // reading, swap all sample frames so it reflects
937     // backward playback
938 schoenebeck 24
939 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
940     file_offset_t loopoffset = GetPos() - loop.LoopStart;
941     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
942     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
943 schoenebeck 24
944 persson 864 SetPos(reverseplaybackend);
945 schoenebeck 24
946 persson 864 // read samples for backward playback
947     do {
948     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
949     samplestoreadinloop -= readsamples;
950     samplestoread -= readsamples;
951     totalreadsamples += readsamples;
952     } while (samplestoreadinloop && readsamples);
953 schoenebeck 24
954 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
955    
956     if (reverseplaybackend == loop.LoopStart) {
957     pPlaybackState->loop_cycles_left--;
958     pPlaybackState->reverse = false;
959     }
960    
961     // reverse the sample frames for backward playback
962 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
963     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964 schoenebeck 24 }
965 persson 864 } while (samplestoread && readsamples);
966     break;
967     }
968 schoenebeck 24
969 persson 864 case loop_type_backward: { // TODO: not tested yet!
970     // forward playback (not entered the loop yet)
971     if (!pPlaybackState->reverse) do {
972     samplestoloopend = loopEnd - GetPos();
973     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974     samplestoread -= readsamples;
975     totalreadsamples += readsamples;
976     if (readsamples == samplestoloopend) {
977     pPlaybackState->reverse = true;
978     break;
979     }
980     } while (samplestoread && readsamples);
981 schoenebeck 24
982 persson 864 if (!samplestoread) break;
983 schoenebeck 24
984 persson 864 // as we can only read forward from disk, we have to
985     // determine the end position within the loop first,
986     // read forward from that 'end' and finally after
987     // reading, swap all sample frames so it reflects
988     // backward playback
989 schoenebeck 24
990 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
991     file_offset_t loopoffset = GetPos() - loop.LoopStart;
992     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
993 persson 864 : samplestoread;
994 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
995 schoenebeck 24
996 persson 864 SetPos(reverseplaybackend);
997 schoenebeck 24
998 persson 864 // read samples for backward playback
999     do {
1000     // if not endless loop check if max. number of loop cycles have been passed
1001     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1002     samplestoloopend = loopEnd - GetPos();
1003     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1004     samplestoreadinloop -= readsamples;
1005     samplestoread -= readsamples;
1006     totalreadsamples += readsamples;
1007     if (readsamples == samplestoloopend) {
1008     pPlaybackState->loop_cycles_left--;
1009     SetPos(loop.LoopStart);
1010     }
1011     } while (samplestoreadinloop && readsamples);
1012 schoenebeck 24
1013 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1014 schoenebeck 24
1015 persson 864 // reverse the sample frames for backward playback
1016     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1017     break;
1018     }
1019 schoenebeck 24
1020 persson 864 default: case loop_type_normal: {
1021     do {
1022     // if not endless loop check if max. number of loop cycles have been passed
1023     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1024     samplestoloopend = loopEnd - GetPos();
1025     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1026     samplestoread -= readsamples;
1027     totalreadsamples += readsamples;
1028     if (readsamples == samplestoloopend) {
1029     pPlaybackState->loop_cycles_left--;
1030     SetPos(loop.LoopStart);
1031     }
1032     } while (samplestoread && readsamples);
1033     break;
1034     }
1035 schoenebeck 24 }
1036     }
1037     }
1038    
1039     // read on without looping
1040     if (samplestoread) do {
1041 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1042 schoenebeck 24 samplestoread -= readsamples;
1043     totalreadsamples += readsamples;
1044     } while (readsamples && samplestoread);
1045    
1046     // store current position
1047     pPlaybackState->position = GetPos();
1048    
1049     return totalreadsamples;
1050     }
1051    
1052     /**
1053 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1054     * position into the buffer pointed by \a pBuffer and increments the
1055     * position within the sample. The sample wave stream will be
1056     * decompressed on the fly if using a compressed sample. Use this method
1057     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1058     * thus for disk streaming.
1059     *
1060 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1061     * have to use an external decompression buffer for <b>EACH</b>
1062     * streaming thread to avoid race conditions and crashes!
1063     *
1064 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1065     * (using native endianness). For 24 bit, the buffer will
1066     * contain three bytes per sample, little-endian.
1067     *
1068 schoenebeck 2 * @param pBuffer destination buffer
1069     * @param SampleCount number of sample points to read
1070 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1071 schoenebeck 2 * @returns number of successfully read sample points
1072 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1073 schoenebeck 2 */
1074 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1075 schoenebeck 21 if (SampleCount == 0) return 0;
1076 schoenebeck 317 if (!Compressed) {
1077     if (BitDepth == 24) {
1078 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1079 schoenebeck 317 }
1080 persson 365 else { // 16 bit
1081     // (pCkData->Read does endian correction)
1082     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1083     : pCkData->Read(pBuffer, SampleCount, 2);
1084     }
1085 schoenebeck 317 }
1086 persson 365 else {
1087 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1088 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1089 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1090 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1091     remainingsamples = SampleCount,
1092 persson 365 copysamples, skipsamples,
1093     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1094 schoenebeck 2 this->FrameOffset = 0;
1095    
1096 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1097    
1098     // if decompression buffer too small, then reduce amount of samples to read
1099     if (pDecompressionBuffer->Size < assumedsize) {
1100     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1101     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1102     remainingsamples = SampleCount;
1103     assumedsize = GuessSize(SampleCount);
1104 schoenebeck 2 }
1105    
1106 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1107 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1108 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1109 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1110    
1111 persson 365 while (remainingsamples && remainingbytes) {
1112 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1113     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1114 schoenebeck 2
1115 persson 365 int mode_l = *pSrc++, mode_r = 0;
1116    
1117     if (Channels == 2) {
1118     mode_r = *pSrc++;
1119     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1120     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1121     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1122     if (remainingbytes < framebytes) { // last frame in sample
1123     framesamples = SamplesInLastFrame;
1124     if (mode_l == 4 && (framesamples & 1)) {
1125     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1126     }
1127     else {
1128     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1129     }
1130 schoenebeck 2 }
1131     }
1132 persson 365 else {
1133     framebytes = bytesPerFrame[mode_l] + 1;
1134     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1135     if (remainingbytes < framebytes) {
1136     framesamples = SamplesInLastFrame;
1137     }
1138     }
1139 schoenebeck 2
1140     // determine how many samples in this frame to skip and read
1141 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1142     if (currentframeoffset <= framesamples) {
1143     copysamples = framesamples - currentframeoffset;
1144     skipsamples = currentframeoffset;
1145     }
1146     else {
1147     copysamples = 0;
1148     skipsamples = framesamples;
1149     }
1150 schoenebeck 2 }
1151     else {
1152 persson 365 // This frame has enough data for pBuffer, but not
1153     // all of the frame is needed. Set file position
1154     // to start of this frame for next call to Read.
1155 schoenebeck 2 copysamples = remainingsamples;
1156 persson 365 skipsamples = currentframeoffset;
1157     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1158     this->FrameOffset = currentframeoffset + copysamples;
1159     }
1160     remainingsamples -= copysamples;
1161    
1162     if (remainingbytes > framebytes) {
1163     remainingbytes -= framebytes;
1164     if (remainingsamples == 0 &&
1165     currentframeoffset + copysamples == framesamples) {
1166     // This frame has enough data for pBuffer, and
1167     // all of the frame is needed. Set file
1168     // position to start of next frame for next
1169     // call to Read. FrameOffset is 0.
1170 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171     }
1172     }
1173 persson 365 else remainingbytes = 0;
1174 schoenebeck 2
1175 persson 365 currentframeoffset -= skipsamples;
1176 schoenebeck 2
1177 persson 365 if (copysamples == 0) {
1178     // skip this frame
1179     pSrc += framebytes - Channels;
1180     }
1181     else {
1182     const unsigned char* const param_l = pSrc;
1183     if (BitDepth == 24) {
1184     if (mode_l != 2) pSrc += 12;
1185 schoenebeck 2
1186 persson 365 if (Channels == 2) { // Stereo
1187     const unsigned char* const param_r = pSrc;
1188     if (mode_r != 2) pSrc += 12;
1189    
1190 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1191 persson 437 skipsamples, copysamples, TruncatedBits);
1192 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1193 persson 437 skipsamples, copysamples, TruncatedBits);
1194 persson 902 pDst24 += copysamples * 6;
1195 schoenebeck 2 }
1196 persson 365 else { // Mono
1197 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1198 persson 437 skipsamples, copysamples, TruncatedBits);
1199 persson 902 pDst24 += copysamples * 3;
1200 schoenebeck 2 }
1201 persson 365 }
1202     else { // 16 bit
1203     if (mode_l) pSrc += 4;
1204 schoenebeck 2
1205 persson 365 int step;
1206     if (Channels == 2) { // Stereo
1207     const unsigned char* const param_r = pSrc;
1208     if (mode_r) pSrc += 4;
1209    
1210     step = (2 - mode_l) + (2 - mode_r);
1211 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1212     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1213 persson 365 skipsamples, copysamples);
1214     pDst += copysamples << 1;
1215 schoenebeck 2 }
1216 persson 365 else { // Mono
1217     step = 2 - mode_l;
1218 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1219 persson 365 pDst += copysamples;
1220 schoenebeck 2 }
1221 persson 365 }
1222     pSrc += nextFrameOffset;
1223     }
1224 schoenebeck 2
1225 persson 365 // reload from disk to local buffer if needed
1226     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1227     assumedsize = GuessSize(remainingsamples);
1228     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1229     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1230 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1231     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1232 schoenebeck 2 }
1233 persson 365 } // while
1234    
1235 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1236 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1237 schoenebeck 2 return (SampleCount - remainingsamples);
1238     }
1239     }
1240    
1241 schoenebeck 809 /** @brief Write sample wave data.
1242     *
1243     * Writes \a SampleCount number of sample points from the buffer pointed
1244     * by \a pBuffer and increments the position within the sample. Use this
1245     * method to directly write the sample data to disk, i.e. if you don't
1246     * want or cannot load the whole sample data into RAM.
1247     *
1248     * You have to Resize() the sample to the desired size and call
1249     * File::Save() <b>before</b> using Write().
1250     *
1251     * Note: there is currently no support for writing compressed samples.
1252     *
1253 persson 1264 * For 16 bit samples, the data in the source buffer should be
1254     * int16_t (using native endianness). For 24 bit, the buffer
1255     * should contain three bytes per sample, little-endian.
1256     *
1257 schoenebeck 809 * @param pBuffer - source buffer
1258     * @param SampleCount - number of sample points to write
1259     * @throws DLS::Exception if current sample size is too small
1260     * @throws gig::Exception if sample is compressed
1261     * @see DLS::LoadSampleData()
1262     */
1263 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1264 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1265 persson 1207
1266     // if this is the first write in this sample, reset the
1267     // checksum calculator
1268 persson 1199 if (pCkData->GetPos() == 0) {
1269 schoenebeck 1381 __resetCRC(crc);
1270 persson 1199 }
1271 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1272 schoenebeck 2912 file_offset_t res;
1273 persson 1264 if (BitDepth == 24) {
1274     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1275     } else { // 16 bit
1276     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1277     : pCkData->Write(pBuffer, SampleCount, 2);
1278     }
1279 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1280 persson 1199
1281 persson 1207 // if this is the last write, update the checksum chunk in the
1282     // file
1283 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1284     File* pFile = static_cast<File*>(GetParent());
1285 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1286 persson 1199 }
1287     return res;
1288 schoenebeck 809 }
1289    
1290 schoenebeck 384 /**
1291     * Allocates a decompression buffer for streaming (compressed) samples
1292     * with Sample::Read(). If you are using more than one streaming thread
1293     * in your application you <b>HAVE</b> to create a decompression buffer
1294     * for <b>EACH</b> of your streaming threads and provide it with the
1295     * Sample::Read() call in order to avoid race conditions and crashes.
1296     *
1297     * You should free the memory occupied by the allocated buffer(s) once
1298     * you don't need one of your streaming threads anymore by calling
1299     * DestroyDecompressionBuffer().
1300     *
1301     * @param MaxReadSize - the maximum size (in sample points) you ever
1302     * expect to read with one Read() call
1303     * @returns allocated decompression buffer
1304     * @see DestroyDecompressionBuffer()
1305     */
1306 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1307 schoenebeck 384 buffer_t result;
1308     const double worstCaseHeaderOverhead =
1309     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1310 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1311 schoenebeck 384 result.pStart = new int8_t[result.Size];
1312     result.NullExtensionSize = 0;
1313     return result;
1314     }
1315    
1316     /**
1317     * Free decompression buffer, previously created with
1318     * CreateDecompressionBuffer().
1319     *
1320     * @param DecompressionBuffer - previously allocated decompression
1321     * buffer to free
1322     */
1323     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1324     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1325     delete[] (int8_t*) DecompressionBuffer.pStart;
1326     DecompressionBuffer.pStart = NULL;
1327     DecompressionBuffer.Size = 0;
1328     DecompressionBuffer.NullExtensionSize = 0;
1329     }
1330     }
1331    
1332 schoenebeck 930 /**
1333     * Returns pointer to the Group this Sample belongs to. In the .gig
1334     * format a sample always belongs to one group. If it wasn't explicitly
1335     * assigned to a certain group, it will be automatically assigned to a
1336     * default group.
1337     *
1338     * @returns Sample's Group (never NULL)
1339     */
1340     Group* Sample::GetGroup() const {
1341     return pGroup;
1342     }
1343    
1344 schoenebeck 2 Sample::~Sample() {
1345     Instances--;
1346 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1347     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1348     InternalDecompressionBuffer.pStart = NULL;
1349     InternalDecompressionBuffer.Size = 0;
1350 schoenebeck 355 }
1351 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1352     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1353     }
1354    
1355    
1356    
1357     // *************** DimensionRegion ***************
1358     // *
1359    
1360 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1361 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1362    
1363 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1364 schoenebeck 16 Instances++;
1365    
1366 schoenebeck 823 pSample = NULL;
1367 schoenebeck 1316 pRegion = pParent;
1368 schoenebeck 823
1369 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1370     else memset(&Crossfade, 0, 4);
1371    
1372 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1373 schoenebeck 2
1374     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1375 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1376 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1377 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1378     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1379     _3ewa->ReadInt16(); // unknown
1380     LFO1InternalDepth = _3ewa->ReadUint16();
1381     _3ewa->ReadInt16(); // unknown
1382     LFO3InternalDepth = _3ewa->ReadInt16();
1383     _3ewa->ReadInt16(); // unknown
1384     LFO1ControlDepth = _3ewa->ReadUint16();
1385     _3ewa->ReadInt16(); // unknown
1386     LFO3ControlDepth = _3ewa->ReadInt16();
1387     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1388     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1389     _3ewa->ReadInt16(); // unknown
1390     EG1Sustain = _3ewa->ReadUint16();
1391     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1392     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1393     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1394     EG1ControllerInvert = eg1ctrloptions & 0x01;
1395     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1396     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1397     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1398     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1399     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1400     EG2ControllerInvert = eg2ctrloptions & 0x01;
1401     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1402     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1403     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1404     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1407     _3ewa->ReadInt16(); // unknown
1408     EG2Sustain = _3ewa->ReadUint16();
1409     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1410     _3ewa->ReadInt16(); // unknown
1411     LFO2ControlDepth = _3ewa->ReadUint16();
1412     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1413     _3ewa->ReadInt16(); // unknown
1414     LFO2InternalDepth = _3ewa->ReadUint16();
1415     int32_t eg1decay2 = _3ewa->ReadInt32();
1416     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1417     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1418     _3ewa->ReadInt16(); // unknown
1419     EG1PreAttack = _3ewa->ReadUint16();
1420     int32_t eg2decay2 = _3ewa->ReadInt32();
1421     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1422     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1423     _3ewa->ReadInt16(); // unknown
1424     EG2PreAttack = _3ewa->ReadUint16();
1425     uint8_t velocityresponse = _3ewa->ReadUint8();
1426     if (velocityresponse < 5) {
1427     VelocityResponseCurve = curve_type_nonlinear;
1428     VelocityResponseDepth = velocityresponse;
1429     } else if (velocityresponse < 10) {
1430     VelocityResponseCurve = curve_type_linear;
1431     VelocityResponseDepth = velocityresponse - 5;
1432     } else if (velocityresponse < 15) {
1433     VelocityResponseCurve = curve_type_special;
1434     VelocityResponseDepth = velocityresponse - 10;
1435     } else {
1436     VelocityResponseCurve = curve_type_unknown;
1437     VelocityResponseDepth = 0;
1438     }
1439     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1440     if (releasevelocityresponse < 5) {
1441     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1442     ReleaseVelocityResponseDepth = releasevelocityresponse;
1443     } else if (releasevelocityresponse < 10) {
1444     ReleaseVelocityResponseCurve = curve_type_linear;
1445     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1446     } else if (releasevelocityresponse < 15) {
1447     ReleaseVelocityResponseCurve = curve_type_special;
1448     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1449     } else {
1450     ReleaseVelocityResponseCurve = curve_type_unknown;
1451     ReleaseVelocityResponseDepth = 0;
1452     }
1453     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1454     AttenuationControllerThreshold = _3ewa->ReadInt8();
1455     _3ewa->ReadInt32(); // unknown
1456     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1457     _3ewa->ReadInt16(); // unknown
1458     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1459     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1460     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1461     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1462     else DimensionBypass = dim_bypass_ctrl_none;
1463     uint8_t pan = _3ewa->ReadUint8();
1464     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1465     SelfMask = _3ewa->ReadInt8() & 0x01;
1466     _3ewa->ReadInt8(); // unknown
1467     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1468     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1469     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1470     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1471     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1472     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1473     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1474     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1475     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1476     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1477     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1478     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1479     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1480     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1481     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1482     : vcf_res_ctrl_none;
1483     uint16_t eg3depth = _3ewa->ReadUint16();
1484     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1485 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1486 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1487     ChannelOffset = _3ewa->ReadUint8() / 4;
1488     uint8_t regoptions = _3ewa->ReadUint8();
1489     MSDecode = regoptions & 0x01; // bit 0
1490     SustainDefeat = regoptions & 0x02; // bit 1
1491     _3ewa->ReadInt16(); // unknown
1492     VelocityUpperLimit = _3ewa->ReadInt8();
1493     _3ewa->ReadInt8(); // unknown
1494     _3ewa->ReadInt16(); // unknown
1495     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1496     _3ewa->ReadInt8(); // unknown
1497     _3ewa->ReadInt8(); // unknown
1498     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1499     uint8_t vcfcutoff = _3ewa->ReadUint8();
1500     VCFEnabled = vcfcutoff & 0x80; // bit 7
1501     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1502     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1503     uint8_t vcfvelscale = _3ewa->ReadUint8();
1504     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1505     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1506     _3ewa->ReadInt8(); // unknown
1507     uint8_t vcfresonance = _3ewa->ReadUint8();
1508     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1509     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1510     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1511     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1512     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1513     uint8_t vcfvelocity = _3ewa->ReadUint8();
1514     VCFVelocityDynamicRange = vcfvelocity % 5;
1515     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1516     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1517     if (VCFType == vcf_type_lowpass) {
1518     if (lfo3ctrl & 0x40) // bit 6
1519     VCFType = vcf_type_lowpassturbo;
1520     }
1521 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1522     _3ewa->Read(DimensionUpperLimits, 1, 8);
1523     } else {
1524     memset(DimensionUpperLimits, 0, 8);
1525     }
1526 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1527     // use default values
1528     LFO3Frequency = 1.0;
1529     EG3Attack = 0.0;
1530     LFO1InternalDepth = 0;
1531     LFO3InternalDepth = 0;
1532     LFO1ControlDepth = 0;
1533     LFO3ControlDepth = 0;
1534     EG1Attack = 0.0;
1535 persson 1218 EG1Decay1 = 0.005;
1536     EG1Sustain = 1000;
1537     EG1Release = 0.3;
1538 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1539     EG1Controller.controller_number = 0;
1540     EG1ControllerInvert = false;
1541     EG1ControllerAttackInfluence = 0;
1542     EG1ControllerDecayInfluence = 0;
1543     EG1ControllerReleaseInfluence = 0;
1544     EG2Controller.type = eg2_ctrl_t::type_none;
1545     EG2Controller.controller_number = 0;
1546     EG2ControllerInvert = false;
1547     EG2ControllerAttackInfluence = 0;
1548     EG2ControllerDecayInfluence = 0;
1549     EG2ControllerReleaseInfluence = 0;
1550     LFO1Frequency = 1.0;
1551     EG2Attack = 0.0;
1552 persson 1218 EG2Decay1 = 0.005;
1553     EG2Sustain = 1000;
1554     EG2Release = 0.3;
1555 schoenebeck 809 LFO2ControlDepth = 0;
1556     LFO2Frequency = 1.0;
1557     LFO2InternalDepth = 0;
1558     EG1Decay2 = 0.0;
1559 persson 1218 EG1InfiniteSustain = true;
1560     EG1PreAttack = 0;
1561 schoenebeck 809 EG2Decay2 = 0.0;
1562 persson 1218 EG2InfiniteSustain = true;
1563     EG2PreAttack = 0;
1564 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1565     VelocityResponseDepth = 3;
1566     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1567     ReleaseVelocityResponseDepth = 3;
1568     VelocityResponseCurveScaling = 32;
1569     AttenuationControllerThreshold = 0;
1570     SampleStartOffset = 0;
1571     PitchTrack = true;
1572     DimensionBypass = dim_bypass_ctrl_none;
1573     Pan = 0;
1574     SelfMask = true;
1575     LFO3Controller = lfo3_ctrl_modwheel;
1576     LFO3Sync = false;
1577     InvertAttenuationController = false;
1578     AttenuationController.type = attenuation_ctrl_t::type_none;
1579     AttenuationController.controller_number = 0;
1580     LFO2Controller = lfo2_ctrl_internal;
1581     LFO2FlipPhase = false;
1582     LFO2Sync = false;
1583     LFO1Controller = lfo1_ctrl_internal;
1584     LFO1FlipPhase = false;
1585     LFO1Sync = false;
1586     VCFResonanceController = vcf_res_ctrl_none;
1587     EG3Depth = 0;
1588     ChannelOffset = 0;
1589     MSDecode = false;
1590     SustainDefeat = false;
1591     VelocityUpperLimit = 0;
1592     ReleaseTriggerDecay = 0;
1593     EG1Hold = false;
1594     VCFEnabled = false;
1595     VCFCutoff = 0;
1596     VCFCutoffController = vcf_cutoff_ctrl_none;
1597     VCFCutoffControllerInvert = false;
1598     VCFVelocityScale = 0;
1599     VCFResonance = 0;
1600     VCFResonanceDynamic = false;
1601     VCFKeyboardTracking = false;
1602     VCFKeyboardTrackingBreakpoint = 0;
1603     VCFVelocityDynamicRange = 0x04;
1604     VCFVelocityCurve = curve_type_linear;
1605     VCFType = vcf_type_lowpass;
1606 persson 1247 memset(DimensionUpperLimits, 127, 8);
1607 schoenebeck 2 }
1608 schoenebeck 16
1609 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1610     VelocityResponseDepth,
1611     VelocityResponseCurveScaling);
1612    
1613 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1614     ReleaseVelocityResponseCurve,
1615     ReleaseVelocityResponseDepth
1616     );
1617 persson 613
1618 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1619     VCFVelocityDynamicRange,
1620     VCFVelocityScale,
1621     VCFCutoffController);
1622 persson 613
1623     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1624 persson 858 VelocityTable = 0;
1625 persson 613 }
1626    
1627 persson 1301 /*
1628     * Constructs a DimensionRegion by copying all parameters from
1629     * another DimensionRegion
1630     */
1631     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1632     Instances++;
1633 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1634 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1635     pParentList = _3ewl; // restore the chunk pointer
1636    
1637     // deep copy of owned structures
1638     if (src.VelocityTable) {
1639     VelocityTable = new uint8_t[128];
1640     for (int k = 0 ; k < 128 ; k++)
1641     VelocityTable[k] = src.VelocityTable[k];
1642     }
1643     if (src.pSampleLoops) {
1644     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1645     for (int k = 0 ; k < src.SampleLoops ; k++)
1646     pSampleLoops[k] = src.pSampleLoops[k];
1647     }
1648     }
1649 schoenebeck 2394
1650     /**
1651     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1652     * and assign it to this object.
1653     *
1654     * Note that all sample pointers referenced by @a orig are simply copied as
1655     * memory address. Thus the respective samples are shared, not duplicated!
1656     *
1657     * @param orig - original DimensionRegion object to be copied from
1658     */
1659     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1660 schoenebeck 2482 CopyAssign(orig, NULL);
1661     }
1662    
1663     /**
1664     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1665     * and assign it to this object.
1666     *
1667     * @param orig - original DimensionRegion object to be copied from
1668     * @param mSamples - crosslink map between the foreign file's samples and
1669     * this file's samples
1670     */
1671     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1672 schoenebeck 2394 // delete all allocated data first
1673     if (VelocityTable) delete [] VelocityTable;
1674     if (pSampleLoops) delete [] pSampleLoops;
1675    
1676     // backup parent list pointer
1677     RIFF::List* p = pParentList;
1678    
1679 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1680     gig::Region* pOriginalRegion = pRegion;
1681    
1682 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1683    
1684     *this = *orig; // default memberwise shallow copy of all parameters
1685 schoenebeck 2547
1686     // restore members that shall not be altered
1687 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1688 schoenebeck 2547 pRegion = pOriginalRegion;
1689 schoenebeck 2482
1690 schoenebeck 2547 // only take the raw sample reference reference if the
1691 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1692     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1693     pSample = pOriginalSample;
1694     }
1695    
1696     if (mSamples && mSamples->count(orig->pSample)) {
1697     pSample = mSamples->find(orig->pSample)->second;
1698     }
1699 persson 1301
1700 schoenebeck 2394 // deep copy of owned structures
1701     if (orig->VelocityTable) {
1702     VelocityTable = new uint8_t[128];
1703     for (int k = 0 ; k < 128 ; k++)
1704     VelocityTable[k] = orig->VelocityTable[k];
1705     }
1706     if (orig->pSampleLoops) {
1707     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1708     for (int k = 0 ; k < orig->SampleLoops ; k++)
1709     pSampleLoops[k] = orig->pSampleLoops[k];
1710     }
1711     }
1712    
1713 schoenebeck 809 /**
1714 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1715     * which depends on this value.
1716     */
1717     void DimensionRegion::SetGain(int32_t gain) {
1718     DLS::Sampler::SetGain(gain);
1719     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1720     }
1721    
1722     /**
1723 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1724     * have to call File::Save() to make changes persistent.
1725     *
1726     * Usually there is absolutely no need to call this method explicitly.
1727     * It will be called automatically when File::Save() was called.
1728 schoenebeck 2682 *
1729     * @param pProgress - callback function for progress notification
1730 schoenebeck 809 */
1731 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1732 schoenebeck 809 // first update base class's chunk
1733 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1734 schoenebeck 809
1735 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1736     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1737     pData[12] = Crossfade.in_start;
1738     pData[13] = Crossfade.in_end;
1739     pData[14] = Crossfade.out_start;
1740     pData[15] = Crossfade.out_end;
1741    
1742 schoenebeck 809 // make sure '3ewa' chunk exists
1743     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1744 persson 1317 if (!_3ewa) {
1745     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1746     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1747     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1748 persson 1264 }
1749 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1750 schoenebeck 809
1751     // update '3ewa' chunk with DimensionRegion's current settings
1752    
1753 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1754 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1755 schoenebeck 809
1756     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1757 persson 1179 store32(&pData[4], lfo3freq);
1758 schoenebeck 809
1759     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1760 persson 1179 store32(&pData[8], eg3attack);
1761 schoenebeck 809
1762     // next 2 bytes unknown
1763    
1764 persson 1179 store16(&pData[14], LFO1InternalDepth);
1765 schoenebeck 809
1766     // next 2 bytes unknown
1767    
1768 persson 1179 store16(&pData[18], LFO3InternalDepth);
1769 schoenebeck 809
1770     // next 2 bytes unknown
1771    
1772 persson 1179 store16(&pData[22], LFO1ControlDepth);
1773 schoenebeck 809
1774     // next 2 bytes unknown
1775    
1776 persson 1179 store16(&pData[26], LFO3ControlDepth);
1777 schoenebeck 809
1778     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1779 persson 1179 store32(&pData[28], eg1attack);
1780 schoenebeck 809
1781     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1782 persson 1179 store32(&pData[32], eg1decay1);
1783 schoenebeck 809
1784     // next 2 bytes unknown
1785    
1786 persson 1179 store16(&pData[38], EG1Sustain);
1787 schoenebeck 809
1788     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1789 persson 1179 store32(&pData[40], eg1release);
1790 schoenebeck 809
1791     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1792 persson 1179 pData[44] = eg1ctl;
1793 schoenebeck 809
1794     const uint8_t eg1ctrloptions =
1795 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1796 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1797     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1798     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1799 persson 1179 pData[45] = eg1ctrloptions;
1800 schoenebeck 809
1801     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1802 persson 1179 pData[46] = eg2ctl;
1803 schoenebeck 809
1804     const uint8_t eg2ctrloptions =
1805 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1806 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1807     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1808     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1809 persson 1179 pData[47] = eg2ctrloptions;
1810 schoenebeck 809
1811     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1812 persson 1179 store32(&pData[48], lfo1freq);
1813 schoenebeck 809
1814     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1815 persson 1179 store32(&pData[52], eg2attack);
1816 schoenebeck 809
1817     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1818 persson 1179 store32(&pData[56], eg2decay1);
1819 schoenebeck 809
1820     // next 2 bytes unknown
1821    
1822 persson 1179 store16(&pData[62], EG2Sustain);
1823 schoenebeck 809
1824     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1825 persson 1179 store32(&pData[64], eg2release);
1826 schoenebeck 809
1827     // next 2 bytes unknown
1828    
1829 persson 1179 store16(&pData[70], LFO2ControlDepth);
1830 schoenebeck 809
1831     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1832 persson 1179 store32(&pData[72], lfo2freq);
1833 schoenebeck 809
1834     // next 2 bytes unknown
1835    
1836 persson 1179 store16(&pData[78], LFO2InternalDepth);
1837 schoenebeck 809
1838     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1839 persson 1179 store32(&pData[80], eg1decay2);
1840 schoenebeck 809
1841     // next 2 bytes unknown
1842    
1843 persson 1179 store16(&pData[86], EG1PreAttack);
1844 schoenebeck 809
1845     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1846 persson 1179 store32(&pData[88], eg2decay2);
1847 schoenebeck 809
1848     // next 2 bytes unknown
1849    
1850 persson 1179 store16(&pData[94], EG2PreAttack);
1851 schoenebeck 809
1852     {
1853     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1854     uint8_t velocityresponse = VelocityResponseDepth;
1855     switch (VelocityResponseCurve) {
1856     case curve_type_nonlinear:
1857     break;
1858     case curve_type_linear:
1859     velocityresponse += 5;
1860     break;
1861     case curve_type_special:
1862     velocityresponse += 10;
1863     break;
1864     case curve_type_unknown:
1865     default:
1866     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1867     }
1868 persson 1179 pData[96] = velocityresponse;
1869 schoenebeck 809 }
1870    
1871     {
1872     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1873     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1874     switch (ReleaseVelocityResponseCurve) {
1875     case curve_type_nonlinear:
1876     break;
1877     case curve_type_linear:
1878     releasevelocityresponse += 5;
1879     break;
1880     case curve_type_special:
1881     releasevelocityresponse += 10;
1882     break;
1883     case curve_type_unknown:
1884     default:
1885     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1886     }
1887 persson 1179 pData[97] = releasevelocityresponse;
1888 schoenebeck 809 }
1889    
1890 persson 1179 pData[98] = VelocityResponseCurveScaling;
1891 schoenebeck 809
1892 persson 1179 pData[99] = AttenuationControllerThreshold;
1893 schoenebeck 809
1894     // next 4 bytes unknown
1895    
1896 persson 1179 store16(&pData[104], SampleStartOffset);
1897 schoenebeck 809
1898     // next 2 bytes unknown
1899    
1900     {
1901     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1902     switch (DimensionBypass) {
1903     case dim_bypass_ctrl_94:
1904     pitchTrackDimensionBypass |= 0x10;
1905     break;
1906     case dim_bypass_ctrl_95:
1907     pitchTrackDimensionBypass |= 0x20;
1908     break;
1909     case dim_bypass_ctrl_none:
1910     //FIXME: should we set anything here?
1911     break;
1912     default:
1913     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1914     }
1915 persson 1179 pData[108] = pitchTrackDimensionBypass;
1916 schoenebeck 809 }
1917    
1918     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1919 persson 1179 pData[109] = pan;
1920 schoenebeck 809
1921     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1922 persson 1179 pData[110] = selfmask;
1923 schoenebeck 809
1924     // next byte unknown
1925    
1926     {
1927     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1928     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1929     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1930     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1931 persson 1179 pData[112] = lfo3ctrl;
1932 schoenebeck 809 }
1933    
1934     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1935 persson 1179 pData[113] = attenctl;
1936 schoenebeck 809
1937     {
1938     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1939     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1940     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1941     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1942 persson 1179 pData[114] = lfo2ctrl;
1943 schoenebeck 809 }
1944    
1945     {
1946     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1947     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1948     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1949     if (VCFResonanceController != vcf_res_ctrl_none)
1950     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1951 persson 1179 pData[115] = lfo1ctrl;
1952 schoenebeck 809 }
1953    
1954     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1955 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1956 persson 1869 store16(&pData[116], eg3depth);
1957 schoenebeck 809
1958     // next 2 bytes unknown
1959    
1960     const uint8_t channeloffset = ChannelOffset * 4;
1961 persson 1179 pData[120] = channeloffset;
1962 schoenebeck 809
1963     {
1964     uint8_t regoptions = 0;
1965     if (MSDecode) regoptions |= 0x01; // bit 0
1966     if (SustainDefeat) regoptions |= 0x02; // bit 1
1967 persson 1179 pData[121] = regoptions;
1968 schoenebeck 809 }
1969    
1970     // next 2 bytes unknown
1971    
1972 persson 1179 pData[124] = VelocityUpperLimit;
1973 schoenebeck 809
1974     // next 3 bytes unknown
1975    
1976 persson 1179 pData[128] = ReleaseTriggerDecay;
1977 schoenebeck 809
1978     // next 2 bytes unknown
1979    
1980     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1981 persson 1179 pData[131] = eg1hold;
1982 schoenebeck 809
1983 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1984 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1985 persson 1179 pData[132] = vcfcutoff;
1986 schoenebeck 809
1987 persson 1179 pData[133] = VCFCutoffController;
1988 schoenebeck 809
1989 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1990 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1991 persson 1179 pData[134] = vcfvelscale;
1992 schoenebeck 809
1993     // next byte unknown
1994    
1995 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1996 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1997 persson 1179 pData[136] = vcfresonance;
1998 schoenebeck 809
1999 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2000 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2001 persson 1179 pData[137] = vcfbreakpoint;
2002 schoenebeck 809
2003 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2004 schoenebeck 809 VCFVelocityCurve * 5;
2005 persson 1179 pData[138] = vcfvelocity;
2006 schoenebeck 809
2007     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2008 persson 1179 pData[139] = vcftype;
2009 persson 1070
2010     if (chunksize >= 148) {
2011     memcpy(&pData[140], DimensionUpperLimits, 8);
2012     }
2013 schoenebeck 809 }
2014    
2015 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2016     curve_type_t curveType = releaseVelocityResponseCurve;
2017     uint8_t depth = releaseVelocityResponseDepth;
2018     // this models a strange behaviour or bug in GSt: two of the
2019     // velocity response curves for release time are not used even
2020     // if specified, instead another curve is chosen.
2021     if ((curveType == curve_type_nonlinear && depth == 0) ||
2022     (curveType == curve_type_special && depth == 4)) {
2023     curveType = curve_type_nonlinear;
2024     depth = 3;
2025     }
2026     return GetVelocityTable(curveType, depth, 0);
2027     }
2028    
2029     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2030     uint8_t vcfVelocityDynamicRange,
2031     uint8_t vcfVelocityScale,
2032     vcf_cutoff_ctrl_t vcfCutoffController)
2033     {
2034     curve_type_t curveType = vcfVelocityCurve;
2035     uint8_t depth = vcfVelocityDynamicRange;
2036     // even stranger GSt: two of the velocity response curves for
2037     // filter cutoff are not used, instead another special curve
2038     // is chosen. This curve is not used anywhere else.
2039     if ((curveType == curve_type_nonlinear && depth == 0) ||
2040     (curveType == curve_type_special && depth == 4)) {
2041     curveType = curve_type_special;
2042     depth = 5;
2043     }
2044     return GetVelocityTable(curveType, depth,
2045     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2046     ? vcfVelocityScale : 0);
2047     }
2048    
2049 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2050     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2051     {
2052     double* table;
2053     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2054 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2055 persson 613 table = (*pVelocityTables)[tableKey];
2056 schoenebeck 16 }
2057     else {
2058 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2059     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2060 schoenebeck 16 }
2061 persson 613 return table;
2062 schoenebeck 2 }
2063 schoenebeck 55
2064 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2065     return pRegion;
2066     }
2067    
2068 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2069     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2070     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2071     //#pragma GCC diagnostic push
2072     //#pragma GCC diagnostic error "-Wswitch"
2073    
2074 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2075     leverage_ctrl_t decodedcontroller;
2076     switch (EncodedController) {
2077     // special controller
2078     case _lev_ctrl_none:
2079     decodedcontroller.type = leverage_ctrl_t::type_none;
2080     decodedcontroller.controller_number = 0;
2081     break;
2082     case _lev_ctrl_velocity:
2083     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2084     decodedcontroller.controller_number = 0;
2085     break;
2086     case _lev_ctrl_channelaftertouch:
2087     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2088     decodedcontroller.controller_number = 0;
2089     break;
2090 schoenebeck 55
2091 schoenebeck 36 // ordinary MIDI control change controller
2092     case _lev_ctrl_modwheel:
2093     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2094     decodedcontroller.controller_number = 1;
2095     break;
2096     case _lev_ctrl_breath:
2097     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2098     decodedcontroller.controller_number = 2;
2099     break;
2100     case _lev_ctrl_foot:
2101     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2102     decodedcontroller.controller_number = 4;
2103     break;
2104     case _lev_ctrl_effect1:
2105     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2106     decodedcontroller.controller_number = 12;
2107     break;
2108     case _lev_ctrl_effect2:
2109     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2110     decodedcontroller.controller_number = 13;
2111     break;
2112     case _lev_ctrl_genpurpose1:
2113     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2114     decodedcontroller.controller_number = 16;
2115     break;
2116     case _lev_ctrl_genpurpose2:
2117     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2118     decodedcontroller.controller_number = 17;
2119     break;
2120     case _lev_ctrl_genpurpose3:
2121     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2122     decodedcontroller.controller_number = 18;
2123     break;
2124     case _lev_ctrl_genpurpose4:
2125     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2126     decodedcontroller.controller_number = 19;
2127     break;
2128     case _lev_ctrl_portamentotime:
2129     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2130     decodedcontroller.controller_number = 5;
2131     break;
2132     case _lev_ctrl_sustainpedal:
2133     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2134     decodedcontroller.controller_number = 64;
2135     break;
2136     case _lev_ctrl_portamento:
2137     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2138     decodedcontroller.controller_number = 65;
2139     break;
2140     case _lev_ctrl_sostenutopedal:
2141     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2142     decodedcontroller.controller_number = 66;
2143     break;
2144     case _lev_ctrl_softpedal:
2145     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2146     decodedcontroller.controller_number = 67;
2147     break;
2148     case _lev_ctrl_genpurpose5:
2149     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2150     decodedcontroller.controller_number = 80;
2151     break;
2152     case _lev_ctrl_genpurpose6:
2153     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2154     decodedcontroller.controller_number = 81;
2155     break;
2156     case _lev_ctrl_genpurpose7:
2157     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2158     decodedcontroller.controller_number = 82;
2159     break;
2160     case _lev_ctrl_genpurpose8:
2161     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2162     decodedcontroller.controller_number = 83;
2163     break;
2164     case _lev_ctrl_effect1depth:
2165     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2166     decodedcontroller.controller_number = 91;
2167     break;
2168     case _lev_ctrl_effect2depth:
2169     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2170     decodedcontroller.controller_number = 92;
2171     break;
2172     case _lev_ctrl_effect3depth:
2173     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174     decodedcontroller.controller_number = 93;
2175     break;
2176     case _lev_ctrl_effect4depth:
2177     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178     decodedcontroller.controller_number = 94;
2179     break;
2180     case _lev_ctrl_effect5depth:
2181     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2182     decodedcontroller.controller_number = 95;
2183     break;
2184 schoenebeck 55
2185 schoenebeck 2540 // format extension (these controllers are so far only supported by
2186     // LinuxSampler & gigedit) they will *NOT* work with
2187     // Gigasampler/GigaStudio !
2188     case _lev_ctrl_CC3_EXT:
2189     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190     decodedcontroller.controller_number = 3;
2191     break;
2192     case _lev_ctrl_CC6_EXT:
2193     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194     decodedcontroller.controller_number = 6;
2195     break;
2196     case _lev_ctrl_CC7_EXT:
2197     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198     decodedcontroller.controller_number = 7;
2199     break;
2200     case _lev_ctrl_CC8_EXT:
2201     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202     decodedcontroller.controller_number = 8;
2203     break;
2204     case _lev_ctrl_CC9_EXT:
2205     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206     decodedcontroller.controller_number = 9;
2207     break;
2208     case _lev_ctrl_CC10_EXT:
2209     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2210     decodedcontroller.controller_number = 10;
2211     break;
2212     case _lev_ctrl_CC11_EXT:
2213     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214     decodedcontroller.controller_number = 11;
2215     break;
2216     case _lev_ctrl_CC14_EXT:
2217     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218     decodedcontroller.controller_number = 14;
2219     break;
2220     case _lev_ctrl_CC15_EXT:
2221     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222     decodedcontroller.controller_number = 15;
2223     break;
2224     case _lev_ctrl_CC20_EXT:
2225     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226     decodedcontroller.controller_number = 20;
2227     break;
2228     case _lev_ctrl_CC21_EXT:
2229     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230     decodedcontroller.controller_number = 21;
2231     break;
2232     case _lev_ctrl_CC22_EXT:
2233     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234     decodedcontroller.controller_number = 22;
2235     break;
2236     case _lev_ctrl_CC23_EXT:
2237     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238     decodedcontroller.controller_number = 23;
2239     break;
2240     case _lev_ctrl_CC24_EXT:
2241     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242     decodedcontroller.controller_number = 24;
2243     break;
2244     case _lev_ctrl_CC25_EXT:
2245     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246     decodedcontroller.controller_number = 25;
2247     break;
2248     case _lev_ctrl_CC26_EXT:
2249     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250     decodedcontroller.controller_number = 26;
2251     break;
2252     case _lev_ctrl_CC27_EXT:
2253     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254     decodedcontroller.controller_number = 27;
2255     break;
2256     case _lev_ctrl_CC28_EXT:
2257     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258     decodedcontroller.controller_number = 28;
2259     break;
2260     case _lev_ctrl_CC29_EXT:
2261     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262     decodedcontroller.controller_number = 29;
2263     break;
2264     case _lev_ctrl_CC30_EXT:
2265     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2266     decodedcontroller.controller_number = 30;
2267     break;
2268     case _lev_ctrl_CC31_EXT:
2269     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270     decodedcontroller.controller_number = 31;
2271     break;
2272     case _lev_ctrl_CC68_EXT:
2273     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274     decodedcontroller.controller_number = 68;
2275     break;
2276     case _lev_ctrl_CC69_EXT:
2277     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278     decodedcontroller.controller_number = 69;
2279     break;
2280     case _lev_ctrl_CC70_EXT:
2281     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282     decodedcontroller.controller_number = 70;
2283     break;
2284     case _lev_ctrl_CC71_EXT:
2285     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286     decodedcontroller.controller_number = 71;
2287     break;
2288     case _lev_ctrl_CC72_EXT:
2289     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290     decodedcontroller.controller_number = 72;
2291     break;
2292     case _lev_ctrl_CC73_EXT:
2293     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294     decodedcontroller.controller_number = 73;
2295     break;
2296     case _lev_ctrl_CC74_EXT:
2297     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298     decodedcontroller.controller_number = 74;
2299     break;
2300     case _lev_ctrl_CC75_EXT:
2301     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302     decodedcontroller.controller_number = 75;
2303     break;
2304     case _lev_ctrl_CC76_EXT:
2305     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306     decodedcontroller.controller_number = 76;
2307     break;
2308     case _lev_ctrl_CC77_EXT:
2309     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310     decodedcontroller.controller_number = 77;
2311     break;
2312     case _lev_ctrl_CC78_EXT:
2313     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314     decodedcontroller.controller_number = 78;
2315     break;
2316     case _lev_ctrl_CC79_EXT:
2317     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318     decodedcontroller.controller_number = 79;
2319     break;
2320     case _lev_ctrl_CC84_EXT:
2321     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322     decodedcontroller.controller_number = 84;
2323     break;
2324     case _lev_ctrl_CC85_EXT:
2325     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326     decodedcontroller.controller_number = 85;
2327     break;
2328     case _lev_ctrl_CC86_EXT:
2329     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330     decodedcontroller.controller_number = 86;
2331     break;
2332     case _lev_ctrl_CC87_EXT:
2333     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334     decodedcontroller.controller_number = 87;
2335     break;
2336     case _lev_ctrl_CC89_EXT:
2337     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338     decodedcontroller.controller_number = 89;
2339     break;
2340     case _lev_ctrl_CC90_EXT:
2341     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342     decodedcontroller.controller_number = 90;
2343     break;
2344     case _lev_ctrl_CC96_EXT:
2345     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346     decodedcontroller.controller_number = 96;
2347     break;
2348     case _lev_ctrl_CC97_EXT:
2349     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350     decodedcontroller.controller_number = 97;
2351     break;
2352     case _lev_ctrl_CC102_EXT:
2353     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354     decodedcontroller.controller_number = 102;
2355     break;
2356     case _lev_ctrl_CC103_EXT:
2357     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358     decodedcontroller.controller_number = 103;
2359     break;
2360     case _lev_ctrl_CC104_EXT:
2361     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362     decodedcontroller.controller_number = 104;
2363     break;
2364     case _lev_ctrl_CC105_EXT:
2365     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366     decodedcontroller.controller_number = 105;
2367     break;
2368     case _lev_ctrl_CC106_EXT:
2369     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370     decodedcontroller.controller_number = 106;
2371     break;
2372     case _lev_ctrl_CC107_EXT:
2373     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374     decodedcontroller.controller_number = 107;
2375     break;
2376     case _lev_ctrl_CC108_EXT:
2377     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378     decodedcontroller.controller_number = 108;
2379     break;
2380     case _lev_ctrl_CC109_EXT:
2381     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382     decodedcontroller.controller_number = 109;
2383     break;
2384     case _lev_ctrl_CC110_EXT:
2385     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386     decodedcontroller.controller_number = 110;
2387     break;
2388     case _lev_ctrl_CC111_EXT:
2389     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390     decodedcontroller.controller_number = 111;
2391     break;
2392     case _lev_ctrl_CC112_EXT:
2393     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394     decodedcontroller.controller_number = 112;
2395     break;
2396     case _lev_ctrl_CC113_EXT:
2397     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398     decodedcontroller.controller_number = 113;
2399     break;
2400     case _lev_ctrl_CC114_EXT:
2401     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402     decodedcontroller.controller_number = 114;
2403     break;
2404     case _lev_ctrl_CC115_EXT:
2405     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406     decodedcontroller.controller_number = 115;
2407     break;
2408     case _lev_ctrl_CC116_EXT:
2409     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410     decodedcontroller.controller_number = 116;
2411     break;
2412     case _lev_ctrl_CC117_EXT:
2413     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414     decodedcontroller.controller_number = 117;
2415     break;
2416     case _lev_ctrl_CC118_EXT:
2417     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418     decodedcontroller.controller_number = 118;
2419     break;
2420     case _lev_ctrl_CC119_EXT:
2421     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422     decodedcontroller.controller_number = 119;
2423     break;
2424    
2425 schoenebeck 36 // unknown controller type
2426     default:
2427     throw gig::Exception("Unknown leverage controller type.");
2428     }
2429     return decodedcontroller;
2430     }
2431 schoenebeck 2540
2432     // see above (diagnostic push not supported prior GCC 4.6)
2433     //#pragma GCC diagnostic pop
2434 schoenebeck 2
2435 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2436     _lev_ctrl_t encodedcontroller;
2437     switch (DecodedController.type) {
2438     // special controller
2439     case leverage_ctrl_t::type_none:
2440     encodedcontroller = _lev_ctrl_none;
2441     break;
2442     case leverage_ctrl_t::type_velocity:
2443     encodedcontroller = _lev_ctrl_velocity;
2444     break;
2445     case leverage_ctrl_t::type_channelaftertouch:
2446     encodedcontroller = _lev_ctrl_channelaftertouch;
2447     break;
2448    
2449     // ordinary MIDI control change controller
2450     case leverage_ctrl_t::type_controlchange:
2451     switch (DecodedController.controller_number) {
2452     case 1:
2453     encodedcontroller = _lev_ctrl_modwheel;
2454     break;
2455     case 2:
2456     encodedcontroller = _lev_ctrl_breath;
2457     break;
2458     case 4:
2459     encodedcontroller = _lev_ctrl_foot;
2460     break;
2461     case 12:
2462     encodedcontroller = _lev_ctrl_effect1;
2463     break;
2464     case 13:
2465     encodedcontroller = _lev_ctrl_effect2;
2466     break;
2467     case 16:
2468     encodedcontroller = _lev_ctrl_genpurpose1;
2469     break;
2470     case 17:
2471     encodedcontroller = _lev_ctrl_genpurpose2;
2472     break;
2473     case 18:
2474     encodedcontroller = _lev_ctrl_genpurpose3;
2475     break;
2476     case 19:
2477     encodedcontroller = _lev_ctrl_genpurpose4;
2478     break;
2479     case 5:
2480     encodedcontroller = _lev_ctrl_portamentotime;
2481     break;
2482     case 64:
2483     encodedcontroller = _lev_ctrl_sustainpedal;
2484     break;
2485     case 65:
2486     encodedcontroller = _lev_ctrl_portamento;
2487     break;
2488     case 66:
2489     encodedcontroller = _lev_ctrl_sostenutopedal;
2490     break;
2491     case 67:
2492     encodedcontroller = _lev_ctrl_softpedal;
2493     break;
2494     case 80:
2495     encodedcontroller = _lev_ctrl_genpurpose5;
2496     break;
2497     case 81:
2498     encodedcontroller = _lev_ctrl_genpurpose6;
2499     break;
2500     case 82:
2501     encodedcontroller = _lev_ctrl_genpurpose7;
2502     break;
2503     case 83:
2504     encodedcontroller = _lev_ctrl_genpurpose8;
2505     break;
2506     case 91:
2507     encodedcontroller = _lev_ctrl_effect1depth;
2508     break;
2509     case 92:
2510     encodedcontroller = _lev_ctrl_effect2depth;
2511     break;
2512     case 93:
2513     encodedcontroller = _lev_ctrl_effect3depth;
2514     break;
2515     case 94:
2516     encodedcontroller = _lev_ctrl_effect4depth;
2517     break;
2518     case 95:
2519     encodedcontroller = _lev_ctrl_effect5depth;
2520     break;
2521 schoenebeck 2540
2522     // format extension (these controllers are so far only
2523     // supported by LinuxSampler & gigedit) they will *NOT*
2524     // work with Gigasampler/GigaStudio !
2525     case 3:
2526     encodedcontroller = _lev_ctrl_CC3_EXT;
2527     break;
2528     case 6:
2529     encodedcontroller = _lev_ctrl_CC6_EXT;
2530     break;
2531     case 7:
2532     encodedcontroller = _lev_ctrl_CC7_EXT;
2533     break;
2534     case 8:
2535     encodedcontroller = _lev_ctrl_CC8_EXT;
2536     break;
2537     case 9:
2538     encodedcontroller = _lev_ctrl_CC9_EXT;
2539     break;
2540     case 10:
2541     encodedcontroller = _lev_ctrl_CC10_EXT;
2542     break;
2543     case 11:
2544     encodedcontroller = _lev_ctrl_CC11_EXT;
2545     break;
2546     case 14:
2547     encodedcontroller = _lev_ctrl_CC14_EXT;
2548     break;
2549     case 15:
2550     encodedcontroller = _lev_ctrl_CC15_EXT;
2551     break;
2552     case 20:
2553     encodedcontroller = _lev_ctrl_CC20_EXT;
2554     break;
2555     case 21:
2556     encodedcontroller = _lev_ctrl_CC21_EXT;
2557     break;
2558     case 22:
2559     encodedcontroller = _lev_ctrl_CC22_EXT;
2560     break;
2561     case 23:
2562     encodedcontroller = _lev_ctrl_CC23_EXT;
2563     break;
2564     case 24:
2565     encodedcontroller = _lev_ctrl_CC24_EXT;
2566     break;
2567     case 25:
2568     encodedcontroller = _lev_ctrl_CC25_EXT;
2569     break;
2570     case 26:
2571     encodedcontroller = _lev_ctrl_CC26_EXT;
2572     break;
2573     case 27:
2574     encodedcontroller = _lev_ctrl_CC27_EXT;
2575     break;
2576     case 28:
2577     encodedcontroller = _lev_ctrl_CC28_EXT;
2578     break;
2579     case 29:
2580     encodedcontroller = _lev_ctrl_CC29_EXT;
2581     break;
2582     case 30:
2583     encodedcontroller = _lev_ctrl_CC30_EXT;
2584     break;
2585     case 31:
2586     encodedcontroller = _lev_ctrl_CC31_EXT;
2587     break;
2588     case 68:
2589     encodedcontroller = _lev_ctrl_CC68_EXT;
2590     break;
2591     case 69:
2592     encodedcontroller = _lev_ctrl_CC69_EXT;
2593     break;
2594     case 70:
2595     encodedcontroller = _lev_ctrl_CC70_EXT;
2596     break;
2597     case 71:
2598     encodedcontroller = _lev_ctrl_CC71_EXT;
2599     break;
2600     case 72:
2601     encodedcontroller = _lev_ctrl_CC72_EXT;
2602     break;
2603     case 73:
2604     encodedcontroller = _lev_ctrl_CC73_EXT;
2605     break;
2606     case 74:
2607     encodedcontroller = _lev_ctrl_CC74_EXT;
2608     break;
2609     case 75:
2610     encodedcontroller = _lev_ctrl_CC75_EXT;
2611     break;
2612     case 76:
2613     encodedcontroller = _lev_ctrl_CC76_EXT;
2614     break;
2615     case 77:
2616     encodedcontroller = _lev_ctrl_CC77_EXT;
2617     break;
2618     case 78:
2619     encodedcontroller = _lev_ctrl_CC78_EXT;
2620     break;
2621     case 79:
2622     encodedcontroller = _lev_ctrl_CC79_EXT;
2623     break;
2624     case 84:
2625     encodedcontroller = _lev_ctrl_CC84_EXT;
2626     break;
2627     case 85:
2628     encodedcontroller = _lev_ctrl_CC85_EXT;
2629     break;
2630     case 86:
2631     encodedcontroller = _lev_ctrl_CC86_EXT;
2632     break;
2633     case 87:
2634     encodedcontroller = _lev_ctrl_CC87_EXT;
2635     break;
2636     case 89:
2637     encodedcontroller = _lev_ctrl_CC89_EXT;
2638     break;
2639     case 90:
2640     encodedcontroller = _lev_ctrl_CC90_EXT;
2641     break;
2642     case 96:
2643     encodedcontroller = _lev_ctrl_CC96_EXT;
2644     break;
2645     case 97:
2646     encodedcontroller = _lev_ctrl_CC97_EXT;
2647     break;
2648     case 102:
2649     encodedcontroller = _lev_ctrl_CC102_EXT;
2650     break;
2651     case 103:
2652     encodedcontroller = _lev_ctrl_CC103_EXT;
2653     break;
2654     case 104:
2655     encodedcontroller = _lev_ctrl_CC104_EXT;
2656     break;
2657     case 105:
2658     encodedcontroller = _lev_ctrl_CC105_EXT;
2659     break;
2660     case 106:
2661     encodedcontroller = _lev_ctrl_CC106_EXT;
2662     break;
2663     case 107:
2664     encodedcontroller = _lev_ctrl_CC107_EXT;
2665     break;
2666     case 108:
2667     encodedcontroller = _lev_ctrl_CC108_EXT;
2668     break;
2669     case 109:
2670     encodedcontroller = _lev_ctrl_CC109_EXT;
2671     break;
2672     case 110:
2673     encodedcontroller = _lev_ctrl_CC110_EXT;
2674     break;
2675     case 111:
2676     encodedcontroller = _lev_ctrl_CC111_EXT;
2677     break;
2678     case 112:
2679     encodedcontroller = _lev_ctrl_CC112_EXT;
2680     break;
2681     case 113:
2682     encodedcontroller = _lev_ctrl_CC113_EXT;
2683     break;
2684     case 114:
2685     encodedcontroller = _lev_ctrl_CC114_EXT;
2686     break;
2687     case 115:
2688     encodedcontroller = _lev_ctrl_CC115_EXT;
2689     break;
2690     case 116:
2691     encodedcontroller = _lev_ctrl_CC116_EXT;
2692     break;
2693     case 117:
2694     encodedcontroller = _lev_ctrl_CC117_EXT;
2695     break;
2696     case 118:
2697     encodedcontroller = _lev_ctrl_CC118_EXT;
2698     break;
2699     case 119:
2700     encodedcontroller = _lev_ctrl_CC119_EXT;
2701     break;
2702    
2703 schoenebeck 809 default:
2704     throw gig::Exception("leverage controller number is not supported by the gig format");
2705     }
2706 persson 1182 break;
2707 schoenebeck 809 default:
2708     throw gig::Exception("Unknown leverage controller type.");
2709     }
2710     return encodedcontroller;
2711     }
2712    
2713 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2714     Instances--;
2715     if (!Instances) {
2716     // delete the velocity->volume tables
2717     VelocityTableMap::iterator iter;
2718     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2719     double* pTable = iter->second;
2720     if (pTable) delete[] pTable;
2721     }
2722     pVelocityTables->clear();
2723     delete pVelocityTables;
2724     pVelocityTables = NULL;
2725     }
2726 persson 858 if (VelocityTable) delete[] VelocityTable;
2727 schoenebeck 16 }
2728 schoenebeck 2
2729 schoenebeck 16 /**
2730     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2731     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2732     * and VelocityResponseCurveScaling) involved are taken into account to
2733     * calculate the amplitude factor. Use this method when a key was
2734     * triggered to get the volume with which the sample should be played
2735     * back.
2736     *
2737 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2738     * @returns amplitude factor (between 0.0 and 1.0)
2739 schoenebeck 16 */
2740     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2741     return pVelocityAttenuationTable[MIDIKeyVelocity];
2742     }
2743 schoenebeck 2
2744 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2745     return pVelocityReleaseTable[MIDIKeyVelocity];
2746     }
2747    
2748 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2749     return pVelocityCutoffTable[MIDIKeyVelocity];
2750     }
2751    
2752 schoenebeck 1358 /**
2753     * Updates the respective member variable and the lookup table / cache
2754     * that depends on this value.
2755     */
2756     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2757     pVelocityAttenuationTable =
2758     GetVelocityTable(
2759     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2760     );
2761     VelocityResponseCurve = curve;
2762     }
2763    
2764     /**
2765     * Updates the respective member variable and the lookup table / cache
2766     * that depends on this value.
2767     */
2768     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2769     pVelocityAttenuationTable =
2770     GetVelocityTable(
2771     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2772     );
2773     VelocityResponseDepth = depth;
2774     }
2775    
2776     /**
2777     * Updates the respective member variable and the lookup table / cache
2778     * that depends on this value.
2779     */
2780     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2781     pVelocityAttenuationTable =
2782     GetVelocityTable(
2783     VelocityResponseCurve, VelocityResponseDepth, scaling
2784     );
2785     VelocityResponseCurveScaling = scaling;
2786     }
2787    
2788     /**
2789     * Updates the respective member variable and the lookup table / cache
2790     * that depends on this value.
2791     */
2792     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2793     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2794     ReleaseVelocityResponseCurve = curve;
2795     }
2796    
2797     /**
2798     * Updates the respective member variable and the lookup table / cache
2799     * that depends on this value.
2800     */
2801     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2802     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2803     ReleaseVelocityResponseDepth = depth;
2804     }
2805    
2806     /**
2807     * Updates the respective member variable and the lookup table / cache
2808     * that depends on this value.
2809     */
2810     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2811     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2812     VCFCutoffController = controller;
2813     }
2814    
2815     /**
2816     * Updates the respective member variable and the lookup table / cache
2817     * that depends on this value.
2818     */
2819     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2820     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2821     VCFVelocityCurve = curve;
2822     }
2823    
2824     /**
2825     * Updates the respective member variable and the lookup table / cache
2826     * that depends on this value.
2827     */
2828     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2829     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2830     VCFVelocityDynamicRange = range;
2831     }
2832    
2833     /**
2834     * Updates the respective member variable and the lookup table / cache
2835     * that depends on this value.
2836     */
2837     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2838     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2839     VCFVelocityScale = scaling;
2840     }
2841    
2842 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2843 schoenebeck 317
2844 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2845 schoenebeck 16
2846 schoenebeck 308 // linear
2847     const int lin0[] = { 1, 1, 127, 127 };
2848     const int lin1[] = { 1, 21, 127, 127 };
2849     const int lin2[] = { 1, 45, 127, 127 };
2850     const int lin3[] = { 1, 74, 127, 127 };
2851     const int lin4[] = { 1, 127, 127, 127 };
2852 schoenebeck 16
2853 schoenebeck 308 // non-linear
2854     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2855 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2856 schoenebeck 308 127, 127 };
2857     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2858     127, 127 };
2859     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2860     127, 127 };
2861     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2862 schoenebeck 317
2863 schoenebeck 308 // special
2864 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2865 schoenebeck 308 113, 127, 127, 127 };
2866     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2867     118, 127, 127, 127 };
2868 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2869 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2870 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2871 schoenebeck 308 117, 127, 127, 127 };
2872 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2873 schoenebeck 308 127, 127 };
2874 schoenebeck 317
2875 persson 728 // this is only used by the VCF velocity curve
2876     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2877     91, 127, 127, 127 };
2878    
2879 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2880 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2881 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2882 schoenebeck 317
2883 schoenebeck 308 double* const table = new double[128];
2884    
2885     const int* curve = curves[curveType * 5 + depth];
2886     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2887 schoenebeck 317
2888 schoenebeck 308 table[0] = 0;
2889     for (int x = 1 ; x < 128 ; x++) {
2890    
2891     if (x > curve[2]) curve += 2;
2892 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2893 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2894     y = y / 127;
2895    
2896     // Scale up for s > 20, down for s < 20. When
2897     // down-scaling, the curve still ends at 1.0.
2898     if (s < 20 && y >= 0.5)
2899     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2900     else
2901     y = y * (s / 20.0);
2902     if (y > 1) y = 1;
2903    
2904     table[x] = y;
2905     }
2906     return table;
2907     }
2908    
2909    
2910 schoenebeck 2 // *************** Region ***************
2911     // *
2912    
2913     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2914     // Initialization
2915     Dimensions = 0;
2916 schoenebeck 347 for (int i = 0; i < 256; i++) {
2917 schoenebeck 2 pDimensionRegions[i] = NULL;
2918     }
2919 schoenebeck 282 Layers = 1;
2920 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2921     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2922 schoenebeck 2
2923     // Actual Loading
2924    
2925 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2926    
2927 schoenebeck 2 LoadDimensionRegions(rgnList);
2928    
2929     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2930     if (_3lnk) {
2931     DimensionRegions = _3lnk->ReadUint32();
2932 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2933 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2934     uint8_t bits = _3lnk->ReadUint8();
2935 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2936     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2937 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2938 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2939     pDimensionDefinitions[i].dimension = dimension_none;
2940     pDimensionDefinitions[i].bits = 0;
2941     pDimensionDefinitions[i].zones = 0;
2942     pDimensionDefinitions[i].split_type = split_type_bit;
2943     pDimensionDefinitions[i].zone_size = 0;
2944     }
2945     else { // active dimension
2946     pDimensionDefinitions[i].dimension = dimension;
2947     pDimensionDefinitions[i].bits = bits;
2948 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2949 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2950     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2951 schoenebeck 2 Dimensions++;
2952 schoenebeck 282
2953     // if this is a layer dimension, remember the amount of layers
2954     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2955 schoenebeck 2 }
2956 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2957 schoenebeck 2 }
2958 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2959 schoenebeck 2
2960 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2961     // update the VelocityTables in the dimension regions
2962     UpdateVelocityTable();
2963 schoenebeck 2
2964 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2965     if (file->pVersion && file->pVersion->major == 3)
2966     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2967     else
2968     _3lnk->SetPos(44);
2969    
2970 schoenebeck 1524 // load sample references (if auto loading is enabled)
2971     if (file->GetAutoLoad()) {
2972     for (uint i = 0; i < DimensionRegions; i++) {
2973     uint32_t wavepoolindex = _3lnk->ReadUint32();
2974     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2975     }
2976     GetSample(); // load global region sample reference
2977 schoenebeck 2 }
2978 persson 1102 } else {
2979     DimensionRegions = 0;
2980 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2981     pDimensionDefinitions[i].dimension = dimension_none;
2982     pDimensionDefinitions[i].bits = 0;
2983     pDimensionDefinitions[i].zones = 0;
2984     }
2985 schoenebeck 2 }
2986 schoenebeck 823
2987     // make sure there is at least one dimension region
2988     if (!DimensionRegions) {
2989     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2990     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2991     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2992 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2993 schoenebeck 823 DimensionRegions = 1;
2994     }
2995 schoenebeck 2 }
2996    
2997 schoenebeck 809 /**
2998     * Apply Region settings and all its DimensionRegions to the respective
2999     * RIFF chunks. You have to call File::Save() to make changes persistent.
3000     *
3001     * Usually there is absolutely no need to call this method explicitly.
3002     * It will be called automatically when File::Save() was called.
3003     *
3004 schoenebeck 2682 * @param pProgress - callback function for progress notification
3005 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3006     */
3007 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3008 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3009     // but we still have to provide some existing one to not corrupt the
3010     // file, so to avoid the latter we simply always assign the sample of
3011     // the first dimension region of this region
3012     pSample = pDimensionRegions[0]->pSample;
3013    
3014 schoenebeck 809 // first update base class's chunks
3015 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3016 schoenebeck 809
3017     // update dimension region's chunks
3018 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3019 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3020 schoenebeck 823 }
3021 schoenebeck 809
3022 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3023     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3024 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3025     const int iMaxDimensionRegions = version3 ? 256 : 32;
3026 schoenebeck 809
3027     // make sure '3lnk' chunk exists
3028     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3029     if (!_3lnk) {
3030 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3031 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3032 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3033 persson 1192
3034     // move 3prg to last position
3035 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3036 schoenebeck 809 }
3037    
3038     // update dimension definitions in '3lnk' chunk
3039     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3040 persson 1179 store32(&pData[0], DimensionRegions);
3041 persson 1199 int shift = 0;
3042 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3043 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3044     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3045 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3046 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3047 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3048 persson 1199 // next 3 bytes unknown, always zero?
3049    
3050     shift += pDimensionDefinitions[i].bits;
3051 schoenebeck 809 }
3052    
3053     // update wave pool table in '3lnk' chunk
3054 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3055 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3056     int iWaveIndex = -1;
3057     if (i < DimensionRegions) {
3058 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3059     File::SampleList::iterator iter = pFile->pSamples->begin();
3060     File::SampleList::iterator end = pFile->pSamples->end();
3061 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3062 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3063     iWaveIndex = index;
3064     break;
3065     }
3066 schoenebeck 809 }
3067     }
3068 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3069 schoenebeck 809 }
3070     }
3071    
3072 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3073     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3074     if (_3prg) {
3075     int dimensionRegionNr = 0;
3076     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3077     while (_3ewl) {
3078     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3079 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3080 schoenebeck 2 dimensionRegionNr++;
3081     }
3082     _3ewl = _3prg->GetNextSubList();
3083     }
3084     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3085     }
3086     }
3087    
3088 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3089     // update KeyRange struct and make sure regions are in correct order
3090     DLS::Region::SetKeyRange(Low, High);
3091     // update Region key table for fast lookup
3092     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3093     }
3094    
3095 persson 858 void Region::UpdateVelocityTable() {
3096     // get velocity dimension's index
3097     int veldim = -1;
3098     for (int i = 0 ; i < Dimensions ; i++) {
3099     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3100     veldim = i;
3101 schoenebeck 809 break;
3102     }
3103     }
3104 persson 858 if (veldim == -1) return;
3105 schoenebeck 809
3106 persson 858 int step = 1;
3107     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3108     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3109     int end = step * pDimensionDefinitions[veldim].zones;
3110 schoenebeck 809
3111 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3112     int dim[8] = { 0 };
3113     for (int i = 0 ; i < DimensionRegions ; i++) {
3114    
3115 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3116     pDimensionRegions[i]->VelocityUpperLimit) {
3117 persson 858 // create the velocity table
3118     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3119     if (!table) {
3120     table = new uint8_t[128];
3121     pDimensionRegions[i]->VelocityTable = table;
3122     }
3123     int tableidx = 0;
3124     int velocityZone = 0;
3125 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3126     for (int k = i ; k < end ; k += step) {
3127     DimensionRegion *d = pDimensionRegions[k];
3128     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3129     velocityZone++;
3130     }
3131     } else { // gig2
3132     for (int k = i ; k < end ; k += step) {
3133     DimensionRegion *d = pDimensionRegions[k];
3134     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3135     velocityZone++;
3136     }
3137 persson 858 }
3138     } else {
3139     if (pDimensionRegions[i]->VelocityTable) {
3140     delete[] pDimensionRegions[i]->VelocityTable;
3141     pDimensionRegions[i]->VelocityTable = 0;
3142     }
3143 schoenebeck 809 }
3144 persson 858
3145     int j;
3146     int shift = 0;
3147     for (j = 0 ; j < Dimensions ; j++) {
3148     if (j == veldim) i += skipveldim; // skip velocity dimension
3149     else {
3150     dim[j]++;
3151     if (dim[j] < pDimensionDefinitions[j].zones) break;
3152     else {
3153     // skip unused dimension regions
3154     dim[j] = 0;
3155     i += ((1 << pDimensionDefinitions[j].bits) -
3156     pDimensionDefinitions[j].zones) << shift;
3157     }
3158     }
3159     shift += pDimensionDefinitions[j].bits;
3160     }
3161     if (j == Dimensions) break;
3162 schoenebeck 809 }
3163     }
3164    
3165     /** @brief Einstein would have dreamed of it - create a new dimension.
3166     *
3167     * Creates a new dimension with the dimension definition given by
3168     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3169     * There is a hard limit of dimensions and total amount of "bits" all
3170     * dimensions can have. This limit is dependant to what gig file format
3171     * version this file refers to. The gig v2 (and lower) format has a
3172     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3173     * format has a limit of 8.
3174     *
3175     * @param pDimDef - defintion of the new dimension
3176     * @throws gig::Exception if dimension of the same type exists already
3177     * @throws gig::Exception if amount of dimensions or total amount of
3178     * dimension bits limit is violated
3179     */
3180     void Region::AddDimension(dimension_def_t* pDimDef) {
3181 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3182     if (pDimDef->zones < 2)
3183     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3184     if (pDimDef->bits < 1)
3185     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3186     if (pDimDef->dimension == dimension_samplechannel) {
3187     if (pDimDef->zones != 2)
3188     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3189     if (pDimDef->bits != 1)
3190     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3191     }
3192    
3193 schoenebeck 809 // check if max. amount of dimensions reached
3194     File* file = (File*) GetParent()->GetParent();
3195     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3196     if (Dimensions >= iMaxDimensions)
3197     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3198     // check if max. amount of dimension bits reached
3199     int iCurrentBits = 0;
3200     for (int i = 0; i < Dimensions; i++)
3201     iCurrentBits += pDimensionDefinitions[i].bits;
3202     if (iCurrentBits >= iMaxDimensions)
3203     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3204     const int iNewBits = iCurrentBits + pDimDef->bits;
3205     if (iNewBits > iMaxDimensions)
3206     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3207     // check if there's already a dimensions of the same type
3208     for (int i = 0; i < Dimensions; i++)
3209     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3210     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3211    
3212 persson 1301 // pos is where the new dimension should be placed, normally
3213     // last in list, except for the samplechannel dimension which
3214     // has to be first in list
3215     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3216     int bitpos = 0;
3217     for (int i = 0 ; i < pos ; i++)
3218     bitpos += pDimensionDefinitions[i].bits;
3219    
3220     // make room for the new dimension
3221     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3222     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3223     for (int j = Dimensions ; j > pos ; j--) {
3224     pDimensionRegions[i]->DimensionUpperLimits[j] =
3225     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3226     }
3227     }
3228    
3229 schoenebeck 809 // assign definition of new dimension
3230 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3231 schoenebeck 809
3232 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3233 persson 1301 pDimensionDefinitions[pos].split_type =
3234     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3235     pDimensionDefinitions[pos].zone_size =
3236     __resolveZoneSize(pDimensionDefinitions[pos]);
3237 schoenebeck 1113
3238 persson 1301 // create new dimension region(s) for this new dimension, and make
3239     // sure that the dimension regions are placed correctly in both the
3240     // RIFF list and the pDimensionRegions array
3241     RIFF::Chunk* moveTo = NULL;
3242     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3243     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3244     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3245     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3246     }
3247     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3248     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3249     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3250     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3251     // create a new dimension region and copy all parameter values from
3252     // an existing dimension region
3253     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3254     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3255 persson 1247
3256 persson 1301 DimensionRegions++;
3257     }
3258     }
3259     moveTo = pDimensionRegions[i]->pParentList;
3260 schoenebeck 809 }
3261    
3262 persson 1247 // initialize the upper limits for this dimension
3263 persson 1301 int mask = (1 << bitpos) - 1;
3264     for (int z = 0 ; z < pDimDef->zones ; z++) {
3265 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3266 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3267 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3268     (z << bitpos) |
3269     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3270 persson 1247 }
3271     }
3272    
3273 schoenebeck 809 Dimensions++;
3274    
3275     // if this is a layer dimension, update 'Layers' attribute
3276     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3277    
3278 persson 858 UpdateVelocityTable();
3279 schoenebeck 809 }
3280    
3281     /** @brief Delete an existing dimension.
3282     *
3283     * Deletes the dimension given by \a pDimDef and deletes all respective
3284     * dimension regions, that is all dimension regions where the dimension's
3285     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3286     * for example this would delete all dimension regions for the case(s)
3287     * where the sustain pedal is pressed down.
3288     *
3289     * @param pDimDef - dimension to delete
3290     * @throws gig::Exception if given dimension cannot be found
3291     */
3292     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3293     // get dimension's index
3294     int iDimensionNr = -1;
3295     for (int i = 0; i < Dimensions; i++) {
3296     if (&pDimensionDefinitions[i] == pDimDef) {
3297     iDimensionNr = i;
3298     break;
3299     }
3300     }
3301     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3302    
3303     // get amount of bits below the dimension to delete
3304     int iLowerBits = 0;
3305     for (int i = 0; i < iDimensionNr; i++)
3306     iLowerBits += pDimensionDefinitions[i].bits;
3307    
3308     // get amount ot bits above the dimension to delete
3309     int iUpperBits = 0;
3310     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3311     iUpperBits += pDimensionDefinitions[i].bits;
3312    
3313 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3314    
3315 schoenebeck 809 // delete dimension regions which belong to the given dimension
3316     // (that is where the dimension's bit > 0)
3317     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3318     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3319     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3320     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3321     iObsoleteBit << iLowerBits |
3322     iLowerBit;
3323 persson 1247
3324     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3325 schoenebeck 809 delete pDimensionRegions[iToDelete];
3326     pDimensionRegions[iToDelete] = NULL;
3327     DimensionRegions--;
3328     }
3329     }
3330     }
3331    
3332     // defrag pDimensionRegions array
3333     // (that is remove the NULL spaces within the pDimensionRegions array)
3334     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3335     if (!pDimensionRegions[iTo]) {
3336     if (iFrom <= iTo) iFrom = iTo + 1;
3337     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3338     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3339     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3340     pDimensionRegions[iFrom] = NULL;
3341     }
3342     }
3343     }
3344    
3345 persson 1247 // remove the this dimension from the upper limits arrays
3346     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3347     DimensionRegion* d = pDimensionRegions[j];
3348     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3349     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3350     }
3351     d->DimensionUpperLimits[Dimensions - 1] = 127;
3352     }
3353    
3354 schoenebeck 809 // 'remove' dimension definition
3355     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3356     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3357     }
3358     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3359     pDimensionDefinitions[Dimensions - 1].bits = 0;
3360     pDimensionDefinitions[Dimensions - 1].zones = 0;
3361    
3362     Dimensions--;
3363    
3364     // if this was a layer dimension, update 'Layers' attribute
3365     if (pDimDef->dimension == dimension_layer) Layers = 1;
3366     }
3367    
3368 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3369     *
3370     * Instead of deleting an entire dimensions, this method will only delete
3371     * one particular split zone given by @a zone of the Region's dimension
3372     * given by @a type. So this method will simply decrement the amount of
3373     * zones by one of the dimension in question. To be able to do that, the
3374     * respective dimension must exist on this Region and it must have at least
3375     * 3 zones. All DimensionRegion objects associated with the zone will be
3376     * deleted.
3377     *
3378     * @param type - identifies the dimension where a zone shall be deleted
3379     * @param zone - index of the dimension split zone that shall be deleted
3380     * @throws gig::Exception if requested zone could not be deleted
3381     */
3382     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3383     dimension_def_t* oldDef = GetDimensionDefinition(type);
3384     if (!oldDef)
3385     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3386     if (oldDef->zones <= 2)
3387     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3388     if (zone < 0 || zone >= oldDef->zones)
3389     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3390    
3391     const int newZoneSize = oldDef->zones - 1;
3392    
3393     // create a temporary Region which just acts as a temporary copy
3394     // container and will be deleted at the end of this function and will
3395     // also not be visible through the API during this process
3396     gig::Region* tempRgn = NULL;
3397     {
3398     // adding these temporary chunks is probably not even necessary
3399     Instrument* instr = static_cast<Instrument*>(GetParent());
3400     RIFF::List* pCkInstrument = instr->pCkInstrument;
3401     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3402     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3403     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3404     tempRgn = new Region(instr, rgn);
3405     }
3406    
3407     // copy this region's dimensions (with already the dimension split size
3408     // requested by the arguments of this method call) to the temporary
3409     // region, and don't use Region::CopyAssign() here for this task, since
3410     // it would also alter fast lookup helper variables here and there
3411     dimension_def_t newDef;
3412     for (int i = 0; i < Dimensions; ++i) {
3413     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3414     // is this the dimension requested by the method arguments? ...
3415     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3416     def.zones = newZoneSize;
3417     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3418     newDef = def;
3419     }
3420     tempRgn->AddDimension(&def);
3421     }
3422    
3423     // find the dimension index in the tempRegion which is the dimension
3424     // type passed to this method (paranoidly expecting different order)
3425     int tempReducedDimensionIndex = -1;
3426     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3427     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3428     tempReducedDimensionIndex = d;
3429     break;
3430     }
3431     }
3432    
3433     // copy dimension regions from this region to the temporary region
3434     for (int iDst = 0; iDst < 256; ++iDst) {
3435     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3436     if (!dstDimRgn) continue;
3437     std::map<dimension_t,int> dimCase;
3438     bool isValidZone = true;
3439     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3440     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3441     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3442     (iDst >> baseBits) & ((1 << dstBits) - 1);
3443     baseBits += dstBits;
3444     // there are also DimensionRegion objects of unused zones, skip them
3445     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3446     isValidZone = false;
3447     break;
3448     }
3449     }
3450     if (!isValidZone) continue;
3451     // a bit paranoid: cope with the chance that the dimensions would
3452     // have different order in source and destination regions
3453     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3454     if (dimCase[type] >= zone) dimCase[type]++;
3455     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3456     dstDimRgn->CopyAssign(srcDimRgn);
3457     // if this is the upper most zone of the dimension passed to this
3458     // method, then correct (raise) its upper limit to 127
3459     if (newDef.split_type == split_type_normal && isLastZone)
3460     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3461     }
3462    
3463     // now tempRegion's dimensions and DimensionRegions basically reflect
3464     // what we wanted to get for this actual Region here, so we now just
3465     // delete and recreate the dimension in question with the new amount
3466     // zones and then copy back from tempRegion
3467     DeleteDimension(oldDef);
3468     AddDimension(&newDef);
3469     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3470     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3471     if (!srcDimRgn) continue;
3472     std::map<dimension_t,int> dimCase;
3473     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3474     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3475     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3476     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3477     baseBits += srcBits;
3478     }
3479     // a bit paranoid: cope with the chance that the dimensions would
3480     // have different order in source and destination regions
3481     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3482     if (!dstDimRgn) continue;
3483     dstDimRgn->CopyAssign(srcDimRgn);
3484     }
3485    
3486     // delete temporary region
3487     delete tempRgn;
3488 schoenebeck 2557
3489     UpdateVelocityTable();
3490 schoenebeck 2555 }
3491    
3492     /** @brief Divide split zone of a dimension in two (increment zone amount).
3493     *
3494     * This will increment the amount of zones for the dimension (given by
3495     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3496     * in the middle of its zone range in two. So the two zones resulting from
3497     * the zone being splitted, will be an equivalent copy regarding all their
3498     * articulation informations and sample reference. The two zones will only
3499     * differ in their zone's upper limit
3500     * (DimensionRegion::DimensionUpperLimits).
3501     *
3502     * @param type - identifies the dimension where a zone shall be splitted
3503     * @param zone - index of the dimension split zone that shall be splitted
3504     * @throws gig::Exception if requested zone could not be splitted
3505     */
3506     void Region::SplitDimensionZone(dimension_t type, int zone) {
3507     dimension_def_t* oldDef = GetDimensionDefinition(type);
3508     if (!oldDef)
3509     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3510     if (zone < 0 || zone >= oldDef->zones)
3511     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3512    
3513     const int newZoneSize = oldDef->zones + 1;
3514    
3515     // create a temporary Region which just acts as a temporary copy
3516     // container and will be deleted at the end of this function and will
3517     // also not be visible through the API during this process
3518     gig::Region* tempRgn = NULL;
3519     {
3520     // adding these temporary chunks is probably not even necessary
3521     Instrument* instr = static_cast<Instrument*>(GetParent());
3522     RIFF::List* pCkInstrument = instr->pCkInstrument;
3523     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3524     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3525     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3526     tempRgn = new Region(instr, rgn);
3527     }
3528    
3529     // copy this region's dimensions (with already the dimension split size
3530     // requested by the arguments of this method call) to the temporary
3531     // region, and don't use Region::CopyAssign() here for this task, since
3532     // it would also alter fast lookup helper variables here and there
3533     dimension_def_t newDef;
3534     for (int i = 0; i < Dimensions; ++i) {
3535     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3536     // is this the dimension requested by the method arguments? ...
3537     if (def.dimension == type) { // ... if yes, increment zone amount by one
3538     def.zones = newZoneSize;
3539     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3540     newDef = def;
3541     }
3542     tempRgn->AddDimension(&def);
3543     }
3544    
3545     // find the dimension index in the tempRegion which is the dimension
3546     // type passed to this method (paranoidly expecting different order)
3547     int tempIncreasedDimensionIndex = -1;
3548     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3549     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3550     tempIncreasedDimensionIndex = d;
3551     break;
3552     }
3553     }
3554    
3555     // copy dimension regions from this region to the temporary region
3556     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3557     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3558     if (!srcDimRgn) continue;
3559     std::map<dimension_t,int> dimCase;
3560     bool isValidZone = true;
3561     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3562     const int srcBits = pDimensionDefinitions[d].bits;
3563     dimCase[pDimensionDefinitions[d].dimension] =
3564     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3565     // there are also DimensionRegion objects for unused zones, skip them
3566     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3567     isValidZone = false;
3568     break;
3569     }
3570     baseBits += srcBits;
3571     }
3572     if (!isValidZone) continue;
3573     // a bit paranoid: cope with the chance that the dimensions would
3574     // have different order in source and destination regions
3575     if (dimCase[type] > zone) dimCase[type]++;
3576     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3577     dstDimRgn->CopyAssign(srcDimRgn);
3578     // if this is the requested zone to be splitted, then also copy
3579     // the source DimensionRegion to the newly created target zone
3580     // and set the old zones upper limit lower
3581     if (dimCase[type] == zone) {
3582     // lower old zones upper limit
3583     if (newDef.split_type == split_type_normal) {
3584     const int high =
3585     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3586     int low = 0;
3587     if (zone > 0) {
3588     std::map<dimension_t,int> lowerCase = dimCase;
3589     lowerCase[type]--;
3590     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3591     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3592     }
3593     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3594     }
3595     // fill the newly created zone of the divided zone as well
3596     dimCase[type]++;
3597     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3598     dstDimRgn->CopyAssign(srcDimRgn);
3599     }
3600     }
3601    
3602     // now tempRegion's dimensions and DimensionRegions basically reflect
3603     // what we wanted to get for this actual Region here, so we now just
3604     // delete and recreate the dimension in question with the new amount
3605     // zones and then copy back from tempRegion
3606     DeleteDimension(oldDef);
3607     AddDimension(&newDef);
3608     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3609     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3610     if (!srcDimRgn) continue;
3611     std::map<dimension_t,int> dimCase;
3612     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3613     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3614     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3615     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3616     baseBits += srcBits;
3617     }
3618     // a bit paranoid: cope with the chance that the dimensions would
3619     // have different order in source and destination regions
3620     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3621     if (!dstDimRgn) continue;
3622     dstDimRgn->CopyAssign(srcDimRgn);
3623     }
3624    
3625     // delete temporary region
3626     delete tempRgn;
3627 schoenebeck 2557
3628     UpdateVelocityTable();
3629 schoenebeck 2555 }
3630    
3631 schoenebeck 2639 /** @brief Change type of an existing dimension.
3632     *
3633     * Alters the dimension type of a dimension already existing on this
3634     * region. If there is currently no dimension on this Region with type
3635     * @a oldType, then this call with throw an Exception. Likewise there are
3636     * cases where the requested dimension type cannot be performed. For example
3637     * if the new dimension type shall be gig::dimension_samplechannel, and the
3638     * current dimension has more than 2 zones. In such cases an Exception is
3639     * thrown as well.
3640     *
3641     * @param oldType - identifies the existing dimension to be changed
3642     * @param newType - to which dimension type it should be changed to
3643     * @throws gig::Exception if requested change cannot be performed
3644     */
3645     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3646     if (oldType == newType) return;
3647     dimension_def_t* def = GetDimensionDefinition(oldType);
3648     if (!def)
3649     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3650     if (newType == dimension_samplechannel && def->zones != 2)
3651     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3652 schoenebeck 2640 if (GetDimensionDefinition(newType))
3653     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3654     def->dimension = newType;
3655 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3656     }
3657    
3658 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3659     uint8_t bits[8] = {};
3660     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3661     it != DimCase.end(); ++it)
3662     {
3663     for (int d = 0; d < Dimensions; ++d) {
3664     if (pDimensionDefinitions[d].dimension == it->first) {
3665     bits[d] = it->second;
3666     goto nextDimCaseSlice;
3667     }
3668     }
3669     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3670     nextDimCaseSlice:
3671     ; // noop
3672     }
3673     return GetDimensionRegionByBit(bits);
3674     }
3675    
3676 schoenebeck 2547 /**
3677     * Searches in the current Region for a dimension of the given dimension
3678     * type and returns the precise configuration of that dimension in this
3679     * Region.
3680     *
3681     * @param type - dimension type of the sought dimension
3682     * @returns dimension definition or NULL if there is no dimension with
3683     * sought type in this Region.
3684     */
3685     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3686     for (int i = 0; i < Dimensions; ++i)
3687     if (pDimensionDefinitions[i].dimension == type)
3688     return &pDimensionDefinitions[i];
3689     return NULL;
3690     }
3691    
3692 schoenebeck 2 Region::~Region() {
3693 schoenebeck 350 for (int i = 0; i < 256; i++) {
3694 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3695     }
3696     }
3697    
3698     /**
3699     * Use this method in your audio engine to get the appropriate dimension
3700     * region with it's articulation data for the current situation. Just
3701     * call the method with the current MIDI controller values and you'll get
3702     * the DimensionRegion with the appropriate articulation data for the
3703     * current situation (for this Region of course only). To do that you'll
3704     * first have to look which dimensions with which controllers and in
3705     * which order are defined for this Region when you load the .gig file.
3706     * Special cases are e.g. layer or channel dimensions where you just put
3707     * in the index numbers instead of a MIDI controller value (means 0 for
3708     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3709     * etc.).
3710     *
3711 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3712 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3713     * @see pDimensionDefinitions
3714     * @see Dimensions
3715     */
3716 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3717 persson 858 uint8_t bits;
3718     int veldim = -1;
3719     int velbitpos;
3720     int bitpos = 0;
3721     int dimregidx = 0;
3722 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3723 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3724     // the velocity dimension must be handled after the other dimensions
3725     veldim = i;
3726     velbitpos = bitpos;
3727     } else {
3728     switch (pDimensionDefinitions[i].split_type) {
3729     case split_type_normal:
3730 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3731     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3732     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3733     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3734     }
3735     } else {
3736     // gig2: evenly sized zones
3737     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3738     }
3739 persson 858 break;
3740     case split_type_bit: // the value is already the sought dimension bit number
3741     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3742     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3743     break;
3744     }
3745     dimregidx |= bits << bitpos;
3746 schoenebeck 2 }
3747 persson 858 bitpos += pDimensionDefinitions[i].bits;
3748 schoenebeck 2 }
3749 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3750     if (!dimreg) return NULL;
3751 persson 858 if (veldim != -1) {
3752     // (dimreg is now the dimension region for the lowest velocity)
3753 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
3754 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3755 persson 858 else // normal split type
3756 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3757 persson 858
3758 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3759     dimregidx |= (bits & limiter_mask) << velbitpos;
3760     dimreg = pDimensionRegions[dimregidx & 255];
3761 persson 858 }
3762     return dimreg;
3763 schoenebeck 2 }
3764    
3765 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3766     uint8_t bits;
3767     int veldim = -1;
3768     int velbitpos;
3769     int bitpos = 0;
3770     int dimregidx = 0;
3771     for (uint i = 0; i < Dimensions; i++) {
3772     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3773     // the velocity dimension must be handled after the other dimensions
3774     veldim = i;
3775     velbitpos = bitpos;
3776     } else {
3777     switch (pDimensionDefinitions[i].split_type) {
3778     case split_type_normal:
3779     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3780     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3781     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3782     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3783     }
3784     } else {
3785     // gig2: evenly sized zones
3786     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3787     }
3788     break;
3789     case split_type_bit: // the value is already the sought dimension bit number
3790     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3791     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3792     break;
3793     }
3794     dimregidx |= bits << bitpos;
3795     }
3796     bitpos += pDimensionDefinitions[i].bits;
3797     }
3798     dimregidx &= 255;
3799     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3800     if (!dimreg) return -1;
3801     if (veldim != -1) {
3802     // (dimreg is now the dimension region for the lowest velocity)
3803     if (dimreg->VelocityTable) // custom defined zone ranges
3804     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3805     else // normal split type
3806     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3807    
3808     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3809     dimregidx |= (bits & limiter_mask) << velbitpos;
3810     dimregidx &= 255;
3811     }
3812     return dimregidx;
3813     }
3814    
3815 schoenebeck 2 /**
3816     * Returns the appropriate DimensionRegion for the given dimension bit
3817     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3818     * instead of calling this method directly!
3819     *
3820 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
3821 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
3822     * bit numbers
3823     * @see GetDimensionRegionByValue()
3824     */
3825 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3826     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3827     << pDimensionDefinitions[5].bits | DimBits[5])
3828     << pDimensionDefinitions[4].bits | DimBits[4])
3829     << pDimensionDefinitions[3].bits | DimBits[3])
3830     << pDimensionDefinitions[2].bits | DimBits[2])
3831     << pDimensionDefinitions[1].bits | DimBits[1])
3832     << pDimensionDefinitions[0].bits | DimBits[0]];
3833 schoenebeck 2 }
3834    
3835     /**
3836     * Returns pointer address to the Sample referenced with this region.
3837     * This is the global Sample for the entire Region (not sure if this is
3838     * actually used by the Gigasampler engine - I would only use the Sample
3839     * referenced by the appropriate DimensionRegion instead of this sample).
3840     *
3841     * @returns address to Sample or NULL if there is no reference to a
3842     * sample saved in the .gig file
3843     */
3844     Sample* Region::GetSample() {
3845     if (pSample) return static_cast<gig::Sample*>(pSample);
3846     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3847     }
3848    
3849 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3850 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3851 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
3852 persson 902 if (!file->pWavePoolTable) return NULL;
3853 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
3854     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3855     // use 64 bit wave pool offsets (treating this as large file)
3856 schoenebeck 2912 uint64_t soughtoffset =
3857     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3858     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3859     Sample* sample = file->GetFirstSample(pProgress);
3860     while (sample) {
3861     if (sample->ullWavePoolOffset == soughtoffset)
3862     return static_cast<gig::Sample*>(sample);
3863     sample = file->GetNextSample();
3864     }
3865     } else {
3866 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
3867 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3868     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3869     Sample* sample = file->GetFirstSample(pProgress);
3870     while (sample) {
3871     if (sample->ullWavePoolOffset == soughtoffset &&
3872     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3873     sample = file->GetNextSample();
3874     }
3875 schoenebeck 2 }
3876     return NULL;
3877     }
3878 schoenebeck 2394
3879     /**
3880     * Make a (semi) deep copy of the Region object given by @a orig
3881     * and assign it to this object.
3882     *
3883     * Note that all sample pointers referenced by @a orig are simply copied as
3884     * memory address. Thus the respective samples are shared, not duplicated!
3885     *
3886     * @param orig - original Region object to be copied from
3887     */
3888     void Region::CopyAssign(const Region* orig) {
3889 schoenebeck 2482 CopyAssign(orig, NULL);
3890     }
3891    
3892     /**
3893     * Make a (semi) deep copy of the Region object given by @a orig and
3894     * assign it to this object
3895     *
3896     * @param mSamples - crosslink map between the foreign file's samples and
3897     * this file's samples
3898     */
3899     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3900 schoenebeck 2394 // handle base classes
3901     DLS::Region::CopyAssign(orig);
3902    
3903 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3904     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3905     }
3906    
3907 schoenebeck 2394 // handle own member variables
3908     for (int i = Dimensions - 1; i >= 0; --i) {
3909     DeleteDimension(&pDimensionDefinitions[i]);
3910     }
3911     Layers = 0; // just to be sure
3912     for (int i = 0; i < orig->Dimensions; i++) {
3913     // we need to copy the dim definition here, to avoid the compiler
3914     // complaining about const-ness issue
3915     dimension_def_t def = orig->pDimensionDefinitions[i];
3916     AddDimension(&def);
3917     }
3918     for (int i = 0; i < 256; i++) {
3919     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3920     pDimensionRegions[i]->CopyAssign(
3921 schoenebeck 2482 orig->pDimensionRegions[i],
3922     mSamples
3923 schoenebeck 2394 );
3924     }
3925     }
3926     Layers = orig->Layers;
3927     }
3928 schoenebeck 2
3929    
3930 persson 1627 // *************** MidiRule ***************
3931     // *
3932 schoenebeck 2
3933 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3934     _3ewg->SetPos(36);
3935     Triggers = _3ewg->ReadUint8();
3936     _3ewg->SetPos(40);
3937     ControllerNumber = _3ewg->ReadUint8();
3938     _3ewg->SetPos(46);
3939     for (int i = 0 ; i < Triggers ; i++) {
3940     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3941     pTriggers[i].Descending = _3ewg->ReadUint8();
3942     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3943     pTriggers[i].Key = _3ewg->ReadUint8();
3944     pTriggers[i].NoteOff = _3ewg->ReadUint8();
3945     pTriggers[i].Velocity = _3ewg->ReadUint8();
3946     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3947     _3ewg->ReadUint8();
3948     }
3949 persson 1627 }
3950    
3951 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3952     ControllerNumber(0),
3953     Triggers(0) {
3954     }
3955 persson 1627
3956 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3957     pData[32] = 4;
3958     pData[33] = 16;
3959     pData[36] = Triggers;
3960     pData[40] = ControllerNumber;
3961     for (int i = 0 ; i < Triggers ; i++) {
3962     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3963     pData[47 + i * 8] = pTriggers[i].Descending;
3964     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3965     pData[49 + i * 8] = pTriggers[i].Key;
3966     pData[50 + i * 8] = pTriggers[i].NoteOff;
3967     pData[51 + i * 8] = pTriggers[i].Velocity;
3968     pData[52 + i * 8] = pTriggers[i].OverridePedal;
3969     }
3970     }
3971    
3972     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3973     _3ewg->SetPos(36);
3974     LegatoSamples = _3ewg->ReadUint8(); // always 12
3975     _3ewg->SetPos(40);
3976     BypassUseController = _3ewg->ReadUint8();
3977     BypassKey = _3ewg->ReadUint8();
3978     BypassController = _3ewg->ReadUint8();
3979     ThresholdTime = _3ewg->ReadUint16();
3980     _3ewg->ReadInt16();
3981     ReleaseTime = _3ewg->ReadUint16();
3982     _3ewg->ReadInt16();
3983     KeyRange.low = _3ewg->ReadUint8();
3984     KeyRange.high = _3ewg->ReadUint8();
3985     _3ewg->SetPos(64);
3986     ReleaseTriggerKey = _3ewg->ReadUint8();
3987     AltSustain1Key = _3ewg->ReadUint8();
3988     AltSustain2Key = _3ewg->ReadUint8();
3989     }
3990    
3991     MidiRuleLegato::MidiRuleLegato() :
3992     LegatoSamples(12),
3993     BypassUseController(false),
3994     BypassKey(0),
3995     BypassController(1),
3996     ThresholdTime(20),
3997     ReleaseTime(20),
3998     ReleaseTriggerKey(0),
3999     AltSustain1Key(0),
4000     AltSustain2Key(0)
4001     {
4002     KeyRange.low = KeyRange.high = 0;
4003     }
4004    
4005     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4006     pData[32] = 0;
4007     pData[33] = 16;
4008     pData[36] = LegatoSamples;
4009     pData[40] = BypassUseController;
4010     pData[41] = BypassKey;
4011     pData[42] = BypassController;
4012     store16(&pData[43], ThresholdTime);
4013     store16(&pData[47], ReleaseTime);
4014     pData[51] = KeyRange.low;
4015     pData[52] = KeyRange.high;
4016     pData[64] = ReleaseTriggerKey;
4017     pData[65] = AltSustain1Key;
4018     pData[66] = AltSustain2Key;
4019     }
4020    
4021     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4022     _3ewg->SetPos(36);
4023     Articulations = _3ewg->ReadUint8();
4024     int flags = _3ewg->ReadUint8();
4025     Polyphonic = flags & 8;
4026     Chained = flags & 4;
4027     Selector = (flags & 2) ? selector_controller :
4028     (flags & 1) ? selector_key_switch : selector_none;
4029     Patterns = _3ewg->ReadUint8();
4030     _3ewg->ReadUint8(); // chosen row
4031     _3ewg->ReadUint8(); // unknown
4032     _3ewg->ReadUint8(); // unknown
4033     _3ewg->ReadUint8(); // unknown
4034     KeySwitchRange.low = _3ewg->ReadUint8();
4035     KeySwitchRange.high = _3ewg->ReadUint8();
4036     Controller = _3ewg->ReadUint8();
4037     PlayRange.low = _3ewg->ReadUint8();
4038     PlayRange.high = _3ewg->ReadUint8();
4039    
4040     int n = std::min(int(Articulations), 32);
4041     for (int i = 0 ; i < n ; i++) {
4042     _3ewg->ReadString(pArticulations[i], 32);
4043     }
4044     _3ewg->SetPos(1072);
4045     n = std::min(int(Patterns), 32);
4046     for (int i = 0 ; i < n ; i++) {
4047     _3ewg->ReadString(pPatterns[i].Name, 16);
4048     pPatterns[i].Size = _3ewg->ReadUint8();
4049     _3ewg->Read(&pPatterns[i][0], 1, 32);
4050     }
4051     }
4052    
4053     MidiRuleAlternator::MidiRuleAlternator() :
4054     Articulations(0),
4055     Patterns(0),
4056     Selector(selector_none),
4057     Controller(0),
4058     Polyphonic(false),
4059     Chained(false)
4060     {
4061     PlayRange.low = PlayRange.high = 0;
4062     KeySwitchRange.low = KeySwitchRange.high = 0;
4063     }
4064    
4065     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4066     pData[32] = 3;
4067     pData[33] = 16;
4068     pData[36] = Articulations;
4069     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4070     (Selector == selector_controller ? 2 :
4071     (Selector == selector_key_switch ? 1 : 0));
4072     pData[38] = Patterns;
4073    
4074     pData[43] = KeySwitchRange.low;
4075     pData[44] = KeySwitchRange.high;
4076     pData[45] = Controller;
4077     pData[46] = PlayRange.low;
4078     pData[47] = PlayRange.high;
4079    
4080     char* str = reinterpret_cast<char*>(pData);
4081     int pos = 48;
4082     int n = std::min(int(Articulations), 32);
4083     for (int i = 0 ; i < n ; i++, pos += 32) {
4084     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4085     }
4086    
4087     pos = 1072;
4088     n = std::min(int(Patterns), 32);
4089     for (int i = 0 ; i < n ; i++, pos += 49) {
4090     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4091     pData[pos + 16] = pPatterns[i].Size;
4092     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4093     }
4094     }
4095    
4096 schoenebeck 2584 // *************** Script ***************
4097     // *
4098    
4099     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4100     pGroup = group;
4101     pChunk = ckScri;
4102     if (ckScri) { // object is loaded from file ...
4103     // read header
4104     uint32_t headerSize = ckScri->ReadUint32();
4105     Compression = (Compression_t) ckScri->ReadUint32();
4106     Encoding = (Encoding_t) ckScri->ReadUint32();
4107     Language = (Language_t) ckScri->ReadUint32();
4108     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4109     crc = ckScri->ReadUint32();
4110     uint32_t nameSize = ckScri->ReadUint32();
4111     Name.resize(nameSize, ' ');
4112     for (int i = 0; i < nameSize; ++i)
4113     Name[i] = ckScri->ReadUint8();
4114     // to handle potential future extensions of the header
4115 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4116 schoenebeck 2584 // read actual script data
4117     uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4118     data.resize(scriptSize);
4119     for (int i = 0; i < scriptSize; ++i)
4120     data[i] = ckScri->ReadUint8();
4121     } else { // this is a new script object, so just initialize it as such ...
4122     Compression = COMPRESSION_NONE;
4123     Encoding = ENCODING_ASCII;
4124     Language = LANGUAGE_NKSP;
4125     Bypass = false;
4126     crc = 0;
4127     Name = "Unnamed Script";
4128     }
4129     }
4130    
4131     Script::~Script() {
4132     }
4133    
4134     /**
4135     * Returns the current script (i.e. as source code) in text format.
4136     */
4137     String Script::GetScriptAsText() {
4138     String s;
4139     s.resize(data.size(), ' ');
4140     memcpy(&s[0], &data[0], data.size());
4141     return s;
4142     }
4143    
4144     /**
4145     * Replaces the current script with the new script source code text given
4146     * by @a text.
4147     *
4148     * @param text - new script source code
4149     */
4150     void Script::SetScriptAsText(const String& text) {
4151     data.resize(text.size());
4152     memcpy(&data[0], &text[0], text.size());
4153     }
4154    
4155 schoenebeck 2682 /**
4156     * Apply this script to the respective RIFF chunks. You have to call
4157     * File::Save() to make changes persistent.
4158     *
4159     * Usually there is absolutely no need to call this method explicitly.
4160     * It will be called automatically when File::Save() was called.
4161     *
4162     * @param pProgress - callback function for progress notification
4163     */
4164     void Script::UpdateChunks(progress_t* pProgress) {
4165 schoenebeck 2584 // recalculate CRC32 check sum
4166     __resetCRC(crc);
4167     __calculateCRC(&data[0], data.size(), crc);
4168     __encodeCRC(crc);
4169     // make sure chunk exists and has the required size
4170     const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4171     if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4172     else pChunk->Resize(chunkSize);
4173     // fill the chunk data to be written to disk
4174     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4175     int pos = 0;
4176     store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4177     pos += sizeof(int32_t);
4178     store32(&pData[pos], Compression);
4179     pos += sizeof(int32_t);
4180     store32(&pData[pos], Encoding);
4181     pos += sizeof(int32_t);
4182     store32(&pData[pos], Language);
4183     pos += sizeof(int32_t);
4184     store32(&pData[pos], Bypass ? 1 : 0);
4185     pos += sizeof(int32_t);
4186     store32(&pData[pos], crc);
4187     pos += sizeof(int32_t);
4188     store32(&pData[pos], Name.size());
4189     pos += sizeof(int32_t);
4190     for (int i = 0; i < Name.size(); ++i, ++pos)
4191     pData[pos] = Name[i];
4192     for (int i = 0; i < data.size(); ++i, ++pos)
4193     pData[pos] = data[i];
4194     }
4195    
4196     /**
4197     * Move this script from its current ScriptGroup to another ScriptGroup
4198     * given by @a pGroup.
4199     *
4200     * @param pGroup - script's new group
4201     */
4202     void Script::SetGroup(ScriptGroup* pGroup) {
4203 persson 2836 if (this->pGroup == pGroup) return;
4204 schoenebeck 2584 if (pChunk)
4205     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4206     this->pGroup = pGroup;
4207     }
4208    
4209 schoenebeck 2601 /**
4210     * Returns the script group this script currently belongs to. Each script
4211     * is a member of exactly one ScriptGroup.
4212     *
4213     * @returns current script group
4214     */
4215     ScriptGroup* Script::GetGroup() const {
4216     return pGroup;
4217     }
4218    
4219 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4220     File* pFile = pGroup->pFile;
4221     for (int i = 0; pFile->GetInstrument(i); ++i) {
4222     Instrument* instr = pFile->GetInstrument(i);
4223     instr->RemoveScript(this);
4224     }
4225     }
4226    
4227     // *************** ScriptGroup ***************
4228     // *
4229    
4230     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4231     pFile = file;
4232     pList = lstRTIS;
4233     pScripts = NULL;
4234     if (lstRTIS) {
4235     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4236     ::LoadString(ckName, Name);
4237     } else {
4238     Name = "Default Group";
4239     }
4240     }
4241    
4242     ScriptGroup::~ScriptGroup() {
4243     if (pScripts) {
4244     std::list<Script*>::iterator iter = pScripts->begin();
4245     std::list<Script*>::iterator end = pScripts->end();
4246     while (iter != end) {
4247     delete *iter;
4248     ++iter;
4249     }
4250     delete pScripts;
4251     }
4252     }
4253    
4254 schoenebeck 2682 /**
4255     * Apply this script group to the respective RIFF chunks. You have to call
4256     * File::Save() to make changes persistent.
4257     *
4258     * Usually there is absolutely no need to call this method explicitly.
4259     * It will be called automatically when File::Save() was called.
4260     *
4261     * @param pProgress - callback function for progress notification
4262     */
4263     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4264 schoenebeck 2584 if (pScripts) {
4265     if (!pList)
4266     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4267    
4268     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4269     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4270    
4271     for (std::list<Script*>::iterator it = pScripts->begin();
4272     it != pScripts->end(); ++it)
4273     {
4274 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4275 schoenebeck 2584 }
4276     }
4277     }
4278    
4279     /** @brief Get instrument script.
4280     *
4281     * Returns the real-time instrument script with the given index.
4282     *
4283     * @param index - number of the sought script (0..n)
4284     * @returns sought script or NULL if there's no such script
4285     */
4286     Script* ScriptGroup::GetScript(uint index) {
4287     if (!pScripts) LoadScripts();
4288     std::list<Script*>::iterator it = pScripts->begin();
4289     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4290     if (i == index) return *it;
4291     return NULL;
4292     }
4293    
4294     /** @brief Add new instrument script.
4295     *
4296     * Adds a new real-time instrument script to the file. The script is not
4297     * actually used / executed unless it is referenced by an instrument to be
4298     * used. This is similar to samples, which you can add to a file, without
4299     * an instrument necessarily actually using it.
4300     *
4301     * You have to call Save() to make this persistent to the file.
4302     *
4303     * @return new empty script object
4304     */
4305     Script* ScriptGroup::AddScript() {
4306     if (!pScripts) LoadScripts();
4307     Script* pScript = new Script(this, NULL);
4308     pScripts->push_back(pScript);
4309     return pScript;
4310     }
4311    
4312     /** @brief Delete an instrument script.
4313     *
4314     * This will delete the given real-time instrument script. References of
4315     * instruments that are using that script will be removed accordingly.
4316     *
4317     * You have to call Save() to make this persistent to the file.
4318     *
4319     * @param pScript - script to delete
4320     * @throws gig::Exception if given script could not be found
4321     */
4322     void ScriptGroup::DeleteScript(Script* pScript) {
4323     if (!pScripts) LoadScripts();
4324     std::list<Script*>::iterator iter =
4325     find(pScripts->begin(), pScripts->end(), pScript);
4326     if (iter == pScripts->end())
4327     throw gig::Exception("Could not delete script, could not find given script");
4328     pScripts->erase(iter);
4329     pScript->RemoveAllScriptReferences();
4330     if (pScript->pChunk)
4331     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4332     delete pScript;
4333     }
4334    
4335     void ScriptGroup::LoadScripts() {
4336     if (pScripts) return;
4337     pScripts = new std::list<Script*>;
4338     if (!pList) return;
4339    
4340     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4341     ck = pList->GetNextSubChunk())
4342     {
4343     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4344     pScripts->push_back(new Script(this, ck));
4345     }
4346     }
4347     }
4348    
4349 schoenebeck 2 // *************** Instrument ***************
4350     // *
4351    
4352 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4353 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4354 persson 1180 { CHUNK_ID_INAM, 64 },
4355     { CHUNK_ID_ISFT, 12 },
4356     { 0, 0 }
4357     };
4358 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4359 persson 918
4360 schoenebeck 2 // Initialization
4361     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4362 persson 1182 EffectSend = 0;
4363     Attenuation = 0;
4364     FineTune = 0;
4365     PitchbendRange = 0;
4366     PianoReleaseMode = false;
4367     DimensionKeyRange.low = 0;
4368     DimensionKeyRange.high = 0;
4369 persson 1678 pMidiRules = new MidiRule*[3];
4370     pMidiRules[0] = NULL;
4371 schoenebeck 2584 pScriptRefs = NULL;
4372 schoenebeck 2
4373     // Loading
4374     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4375     if (lart) {
4376     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4377     if (_3ewg) {
4378     EffectSend = _3ewg->ReadUint16();
4379     Attenuation = _3ewg->ReadInt32();
4380     FineTune = _3ewg->ReadInt16();
4381     PitchbendRange = _3ewg->ReadInt16();
4382     uint8_t dimkeystart = _3ewg->ReadUint8();
4383     PianoReleaseMode = dimkeystart & 0x01;
4384     DimensionKeyRange.low = dimkeystart >> 1;
4385     DimensionKeyRange.high = _3ewg->ReadUint8();
4386 persson 1627
4387     if (_3ewg->GetSize() > 32) {
4388     // read MIDI rules
4389 persson 1678 int i = 0;
4390 persson 1627 _3ewg->SetPos(32);
4391     uint8_t id1 = _3ewg->ReadUint8();
4392     uint8_t id2 = _3ewg->ReadUint8();
4393    
4394 persson 2450 if (id2 == 16) {
4395     if (id1 == 4) {
4396     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4397     } else if (id1 == 0) {
4398     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4399     } else if (id1 == 3) {
4400     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4401     } else {
4402     pMidiRules[i++] = new MidiRuleUnknown;
4403     }
4404 persson 1627 }
4405 persson 2450 else if (id1 != 0 || id2 != 0) {
4406     pMidiRules[i++] = new MidiRuleUnknown;
4407     }
4408 persson 1627 //TODO: all the other types of rules
4409 persson 1678
4410     pMidiRules[i] = NULL;
4411 persson 1627 }
4412 schoenebeck 2 }
4413     }
4414    
4415 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4416     if (!pRegions) pRegions = new RegionList;
4417     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4418     if (lrgn) {
4419     RIFF::List* rgn = lrgn->GetFirstSubList();
4420     while (rgn) {
4421     if (rgn->GetListType() == LIST_TYPE_RGN) {
4422     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4423     pRegions->push_back(new Region(this, rgn));
4424     }
4425     rgn = lrgn->GetNextSubList();
4426 schoenebeck 809 }
4427 schoenebeck 1524 // Creating Region Key Table for fast lookup
4428     UpdateRegionKeyTable();
4429 schoenebeck 2 }
4430     }
4431    
4432 schoenebeck 2584 // own gig format extensions
4433     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4434     if (lst3LS) {
4435     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4436     if (ckSCSL) {
4437 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4438     int slotCount = ckSCSL->ReadUint32();
4439     if (slotCount) {
4440     int slotSize = ckSCSL->ReadUint32();
4441     ckSCSL->SetPos(headerSize); // in case of future header extensions
4442     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4443     for (int i = 0; i < slotCount; ++i) {
4444     _ScriptPooolEntry e;
4445     e.fileOffset = ckSCSL->ReadUint32();
4446     e.bypass = ckSCSL->ReadUint32() & 1;
4447     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4448     scriptPoolFileOffsets.push_back(e);
4449     }
4450 schoenebeck 2584 }
4451     }
4452     }
4453    
4454 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4455     }
4456    
4457     void Instrument::UpdateRegionKeyTable() {
4458 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4459 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4460     RegionList::iterator end = pRegions->end();
4461     for (; iter != end; ++iter) {
4462     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4463     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4464     RegionKeyTable[iKey] = pRegion;
4465 schoenebeck 2 }
4466     }
4467     }
4468    
4469     Instrument::~Instrument() {
4470 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4471     delete pMidiRules[i];
4472     }
4473 persson 1678 delete[] pMidiRules;
4474 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4475 schoenebeck 2 }
4476    
4477     /**
4478 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4479     * You have to call File::Save() to make changes persistent.
4480     *
4481     * Usually there is absolutely no need to call this method explicitly.
4482     * It will be called automatically when File::Save() was called.
4483     *
4484 schoenebeck 2682 * @param pProgress - callback function for progress notification
4485 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4486     */
4487 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4488 schoenebeck 809 // first update base classes' chunks
4489 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4490 schoenebeck 809
4491     // update Regions' chunks
4492 schoenebeck 823 {
4493     RegionList::iterator iter = pRegions->begin();
4494     RegionList::iterator end = pRegions->end();
4495     for (; iter != end; ++iter)
4496 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4497 schoenebeck 823 }
4498 schoenebeck 809
4499     // make sure 'lart' RIFF list chunk exists
4500     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4501     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4502     // make sure '3ewg' RIFF chunk exists
4503     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4504 persson 1264 if (!_3ewg) {
4505     File* pFile = (File*) GetParent();
4506    
4507     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4508     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4509     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4510     memset(_3ewg->LoadChunkData(), 0, size);
4511     }
4512 schoenebeck 809 // update '3ewg' RIFF chunk
4513     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4514 persson 1179 store16(&pData[0], EffectSend);
4515     store32(&pData[2], Attenuation);
4516     store16(&pData[6], FineTune);
4517     store16(&pData[8], PitchbendRange);
4518 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4519 schoenebeck 809 DimensionKeyRange.low << 1;
4520 persson 1179 pData[10] = dimkeystart;
4521     pData[11] = DimensionKeyRange.high;
4522 persson 2450
4523     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4524     pData[32] = 0;
4525     pData[33] = 0;
4526     } else {
4527     for (int i = 0 ; pMidiRules[i] ; i++) {
4528     pMidiRules[i]->UpdateChunks(pData);
4529     }
4530     }
4531 schoenebeck 2584
4532     // own gig format extensions
4533 schoenebeck 2648 if (ScriptSlotCount()) {
4534     // make sure we have converted the original loaded script file
4535     // offsets into valid Script object pointers
4536     LoadScripts();
4537    
4538 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4539     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4540 schoenebeck 2609 const int slotCount = pScriptRefs->size();
4541     const int headerSize = 3 * sizeof(uint32_t);
4542     const int slotSize = 2 * sizeof(uint32_t);
4543     const int totalChunkSize = headerSize + slotCount * slotSize;
4544 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4545 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4546     else ckSCSL->Resize(totalChunkSize);
4547 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4548 schoenebeck 2609 int pos = 0;
4549     store32(&pData[pos], headerSize);
4550     pos += sizeof(uint32_t);
4551     store32(&pData[pos], slotCount);
4552     pos += sizeof(uint32_t);
4553     store32(&pData[pos], slotSize);
4554     pos += sizeof(uint32_t);
4555     for (int i = 0; i < slotCount; ++i) {
4556     // arbitrary value, the actual file offset will be updated in
4557     // UpdateScriptFileOffsets() after the file has been resized
4558     int bogusFileOffset = 0;
4559     store32(&pData[pos], bogusFileOffset);
4560 schoenebeck 2584 pos += sizeof(uint32_t);
4561     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4562     pos += sizeof(uint32_t);
4563     }
4564 schoenebeck 2648 } else {
4565     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4566     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4567     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4568 schoenebeck 2584 }
4569 schoenebeck 809 }
4570    
4571 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4572     // own gig format extensions
4573 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4574 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4575     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4576     const int slotCount = pScriptRefs->size();
4577     const int headerSize = 3 * sizeof(uint32_t);
4578     ckSCSL->SetPos(headerSize);
4579     for (int i = 0; i < slotCount; ++i) {
4580     uint32_t fileOffset =
4581     (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4582     (*pScriptRefs)[i].script->pChunk->GetPos() -
4583 schoenebeck 2912 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize());
4584 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4585     // jump over flags entry (containing the bypass flag)
4586     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4587     }
4588     }
4589     }
4590    
4591 schoenebeck 809 /**
4592 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4593     *
4594     * @param Key MIDI Key number of triggered note / key (0 - 127)
4595     * @returns pointer adress to the appropriate Region or NULL if there
4596     * there is no Region defined for the given \a Key
4597     */
4598     Region* Instrument::GetRegion(unsigned int Key) {
4599 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4600 schoenebeck 2 return RegionKeyTable[Key];
4601 schoenebeck 823
4602 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4603     if (Key <= pRegions[i]->KeyRange.high &&
4604     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4605     }
4606     return NULL;*/
4607     }
4608    
4609     /**
4610     * Returns the first Region of the instrument. You have to call this
4611     * method once before you use GetNextRegion().
4612     *
4613     * @returns pointer address to first region or NULL if there is none
4614     * @see GetNextRegion()
4615     */
4616     Region* Instrument::GetFirstRegion() {
4617 schoenebeck 823 if (!pRegions) return NULL;
4618     RegionsIterator = pRegions->begin();
4619     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4620 schoenebeck 2 }
4621    
4622     /**
4623     * Returns the next Region of the instrument. You have to call
4624     * GetFirstRegion() once before you can use this method. By calling this
4625     * method multiple times it iterates through the available Regions.
4626     *
4627     * @returns pointer address to the next region or NULL if end reached
4628     * @see GetFirstRegion()
4629     */
4630     Region* Instrument::GetNextRegion() {
4631 schoenebeck 823 if (!pRegions) return NULL;
4632     RegionsIterator++;
4633     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4634 schoenebeck 2 }
4635    
4636 schoenebeck 809 Region* Instrument::AddRegion() {
4637     // create new Region object (and its RIFF chunks)
4638     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4639     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4640     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4641     Region* pNewRegion = new Region(this, rgn);
4642 schoenebeck 823 pRegions->push_back(pNewRegion);
4643     Regions = pRegions->size();
4644 schoenebeck 809 // update Region key table for fast lookup
4645     UpdateRegionKeyTable();
4646     // done
4647     return pNewRegion;
4648     }
4649 schoenebeck 2
4650 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4651     if (!pRegions) return;
4652 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4653 schoenebeck 809 // update Region key table for fast lookup
4654     UpdateRegionKeyTable();
4655     }
4656 schoenebeck 2
4657 persson 1627 /**
4658 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4659     *
4660     * This method can be used to reorder the sequence of instruments in a
4661     * .gig file. This might be helpful especially on large .gig files which
4662     * contain a large number of instruments within the same .gig file. So
4663     * grouping such instruments to similar ones, can help to keep track of them
4664     * when working with such complex .gig files.
4665     *
4666     * When calling this method, this instrument will be removed from in its
4667     * current position in the instruments list and moved to the requested
4668     * target position provided by @param dst. You may also pass NULL as
4669     * argument to this method, in that case this intrument will be moved to the
4670     * very end of the .gig file's instrument list.
4671     *
4672     * You have to call Save() to make the order change persistent to the .gig
4673     * file.
4674     *
4675     * Currently this method is limited to moving the instrument within the same
4676     * .gig file. Trying to move it to another .gig file by calling this method
4677     * will throw an exception.
4678     *
4679     * @param dst - destination instrument at which this instrument will be
4680     * moved to, or pass NULL for moving to end of list
4681     * @throw gig::Exception if this instrument and target instrument are not
4682     * part of the same file
4683     */
4684     void Instrument::MoveTo(Instrument* dst) {
4685     if (dst && GetParent() != dst->GetParent())
4686     throw Exception(
4687     "gig::Instrument::MoveTo() can only be used for moving within "
4688     "the same gig file."
4689     );
4690    
4691     File* pFile = (File*) GetParent();
4692    
4693     // move this instrument within the instrument list
4694     {
4695 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
4696 schoenebeck 2700
4697 persson 2836 File::InstrumentList::iterator itFrom =
4698 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4699    
4700 persson 2836 File::InstrumentList::iterator itTo =
4701 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4702    
4703     list.splice(itTo, list, itFrom);
4704     }
4705    
4706     // move the instrument's actual list RIFF chunk appropriately
4707     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4708     lstCkInstruments->MoveSubChunk(
4709     this->pCkInstrument,
4710 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4711 schoenebeck 2700 );
4712     }
4713    
4714     /**
4715 persson 1678 * Returns a MIDI rule of the instrument.
4716 persson 1627 *
4717     * The list of MIDI rules, at least in gig v3, always contains at
4718     * most two rules. The second rule can only be the DEF filter
4719     * (which currently isn't supported by libgig).
4720     *
4721 persson 1678 * @param i - MIDI rule number
4722     * @returns pointer address to MIDI rule number i or NULL if there is none
4723 persson 1627 */
4724 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
4725     return pMidiRules[i];
4726 persson 1627 }
4727 persson 2450
4728 schoenebeck 2394 /**
4729 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
4730     *
4731     * @returns the new MIDI rule
4732     */
4733     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4734     delete pMidiRules[0];
4735     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4736     pMidiRules[0] = r;
4737     pMidiRules[1] = 0;
4738     return r;
4739     }
4740    
4741     /**
4742     * Adds the legato MIDI rule to the instrument.
4743     *
4744     * @returns the new MIDI rule
4745     */
4746     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4747     delete pMidiRules[0];
4748     MidiRuleLegato* r = new MidiRuleLegato;
4749     pMidiRules[0] = r;
4750     pMidiRules[1] = 0;
4751     return r;
4752     }
4753    
4754     /**
4755     * Adds the alternator MIDI rule to the instrument.
4756     *
4757     * @returns the new MIDI rule
4758     */
4759     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4760     delete pMidiRules[0];
4761     MidiRuleAlternator* r = new MidiRuleAlternator;
4762     pMidiRules[0] = r;
4763     pMidiRules[1] = 0;
4764     return r;
4765     }
4766    
4767     /**
4768     * Deletes a MIDI rule from the instrument.
4769     *
4770     * @param i - MIDI rule number
4771     */
4772     void Instrument::DeleteMidiRule(int i) {
4773     delete pMidiRules[i];
4774     pMidiRules[i] = 0;
4775     }
4776    
4777 schoenebeck 2584 void Instrument::LoadScripts() {
4778     if (pScriptRefs) return;
4779     pScriptRefs = new std::vector<_ScriptPooolRef>;
4780     if (scriptPoolFileOffsets.empty()) return;
4781     File* pFile = (File*) GetParent();
4782     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4783 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4784 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4785     ScriptGroup* group = pFile->GetScriptGroup(i);
4786     for (uint s = 0; group->GetScript(s); ++s) {
4787     Script* script = group->GetScript(s);
4788     if (script->pChunk) {
4789 schoenebeck 2609 uint32_t offset = script->pChunk->GetFilePos() -
4790     script->pChunk->GetPos() -
4791 schoenebeck 2912 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize());
4792 schoenebeck 2609 if (offset == soughtOffset)
4793 schoenebeck 2584 {
4794     _ScriptPooolRef ref;
4795     ref.script = script;
4796     ref.bypass = scriptPoolFileOffsets[k].bypass;
4797     pScriptRefs->push_back(ref);
4798     break;
4799     }
4800     }
4801     }
4802     }
4803     }
4804     // we don't need that anymore
4805     scriptPoolFileOffsets.clear();
4806     }
4807    
4808 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
4809 schoenebeck 2584 *
4810 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
4811     * @a index.
4812     *
4813     * @note This is an own format extension which did not exist i.e. in the
4814     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4815     * gigedit.
4816     *
4817     * @param index - instrument script slot index
4818     * @returns script or NULL if index is out of bounds
4819     */
4820     Script* Instrument::GetScriptOfSlot(uint index) {
4821     LoadScripts();
4822     if (index >= pScriptRefs->size()) return NULL;
4823     return pScriptRefs->at(index).script;
4824     }
4825    
4826     /** @brief Add new instrument script slot (gig format extension).
4827     *
4828 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
4829     * which shall be executed by the sampler for for this instrument. The
4830     * script will be added to the end of the script list of this instrument.
4831     * The positions of the scripts in the Instrument's Script list are
4832     * relevant, because they define in which order they shall be executed by
4833     * the sampler. For this reason it is also legal to add the same script
4834     * twice to an instrument, for example you might have a script called
4835     * "MyFilter" which performs an event filter task, and you might have
4836     * another script called "MyNoteTrigger" which triggers new notes, then you
4837     * might for example have the following list of scripts on the instrument:
4838     *
4839     * 1. Script "MyFilter"
4840     * 2. Script "MyNoteTrigger"
4841     * 3. Script "MyFilter"
4842     *
4843     * Which would make sense, because the 2nd script launched new events, which
4844     * you might need to filter as well.
4845     *
4846     * There are two ways to disable / "bypass" scripts. You can either disable
4847     * a script locally for the respective script slot on an instrument (i.e. by
4848     * passing @c false to the 2nd argument of this method, or by calling
4849     * SetScriptBypassed()). Or you can disable a script globally for all slots
4850     * and all instruments by setting Script::Bypass.
4851     *
4852     * @note This is an own format extension which did not exist i.e. in the
4853     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4854     * gigedit.
4855     *
4856     * @param pScript - script that shall be executed for this instrument
4857     * @param bypass - if enabled, the sampler shall skip executing this
4858     * script (in the respective list position)
4859     * @see SetScriptBypassed()
4860     */
4861     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4862     LoadScripts();
4863     _ScriptPooolRef ref = { pScript, bypass };
4864     pScriptRefs->push_back(ref);
4865     }
4866    
4867     /** @brief Flip two script slots with each other (gig format extension).
4868     *
4869     * Swaps the position of the two given scripts in the Instrument's Script
4870     * list. The positions of the scripts in the Instrument's Script list are
4871     * relevant, because they define in which order they shall be executed by
4872     * the sampler.
4873     *
4874     * @note This is an own format extension which did not exist i.e. in the
4875     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4876     * gigedit.
4877     *
4878     * @param index1 - index of the first script slot to swap
4879     * @param index2 - index of the second script slot to swap
4880     */
4881     void Instrument::SwapScriptSlots(uint index1, uint index2) {
4882     LoadScripts();
4883     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4884     return;
4885     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4886     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4887     (*pScriptRefs)[index2] = tmp;
4888     }
4889    
4890     /** @brief Remove script slot.
4891     *
4892     * Removes the script slot with the given slot index.
4893     *
4894     * @param index - index of script slot to remove
4895     */
4896     void Instrument::RemoveScriptSlot(uint index) {
4897     LoadScripts();
4898     if (index >= pScriptRefs->size()) return;
4899     pScriptRefs->erase( pScriptRefs->begin() + index );
4900     }
4901    
4902     /** @brief Remove reference to given Script (gig format extension).
4903     *
4904     * This will remove all script slots on the instrument which are referencing
4905     * the given script.
4906     *
4907     * @note This is an own format extension which did not exist i.e. in the
4908     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4909     * gigedit.
4910     *
4911     * @param pScript - script reference to remove from this instrument
4912     * @see RemoveScriptSlot()
4913     */
4914     void Instrument::RemoveScript(Script* pScript) {
4915     LoadScripts();
4916     for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4917     if ((*pScriptRefs)[i].script == pScript) {
4918     pScriptRefs->erase( pScriptRefs->begin() + i );
4919     }
4920     }
4921     }
4922    
4923     /** @brief Instrument's amount of script slots.
4924     *
4925     * This method returns the amount of script slots this instrument currently
4926     * uses.
4927     *
4928     * A script slot is a reference of a real-time instrument script to be
4929     * executed by the sampler. The scripts will be executed by the sampler in
4930     * sequence of the slots. One (same) script may be referenced multiple
4931     * times in different slots.
4932     *
4933     * @note This is an own format extension which did not exist i.e. in the
4934     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4935     * gigedit.
4936     */
4937     uint Instrument::ScriptSlotCount() const {
4938     return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4939     }
4940    
4941     /** @brief Whether script execution shall be skipped.
4942     *
4943     * Defines locally for the Script reference slot in the Instrument's Script
4944     * list, whether the script shall be skipped by the sampler regarding
4945     * execution.
4946     *
4947     * It is also possible to ignore exeuction of the script globally, for all
4948     * slots and for all instruments by setting Script::Bypass.
4949     *
4950     * @note This is an own format extension which did not exist i.e. in the
4951     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4952     * gigedit.
4953     *
4954     * @param index - index of the script slot on this instrument
4955     * @see Script::Bypass
4956     */
4957     bool Instrument::IsScriptSlotBypassed(uint index) {
4958     if (index >= ScriptSlotCount()) return false;
4959     return pScriptRefs ? pScriptRefs->at(index).bypass
4960     : scriptPoolFileOffsets.at(index).bypass;
4961    
4962     }
4963    
4964     /** @brief Defines whether execution shall be skipped.
4965     *
4966     * You can call this method to define locally whether or whether not the
4967     * given script slot shall be executed by the sampler.
4968     *
4969     * @note This is an own format extension which did not exist i.e. in the
4970     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4971     * gigedit.
4972     *
4973     * @param index - script slot index on this instrument
4974     * @param bBypass - if true, the script slot will be skipped by the sampler
4975     * @see Script::Bypass
4976     */
4977     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
4978     if (index >= ScriptSlotCount()) return;
4979     if (pScriptRefs)
4980     pScriptRefs->at(index).bypass = bBypass;
4981     else
4982     scriptPoolFileOffsets.at(index).bypass = bBypass;
4983     }
4984    
4985 persson 2450 /**
4986 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
4987     * and assign it to this object.
4988     *
4989     * Note that all sample pointers referenced by @a orig are simply copied as
4990     * memory address. Thus the respective samples are shared, not duplicated!
4991     *
4992     * @param orig - original Instrument object to be copied from
4993     */
4994     void Instrument::CopyAssign(const Instrument* orig) {
4995 schoenebeck 2482 CopyAssign(orig, NULL);
4996     }
4997    
4998     /**
4999     * Make a (semi) deep copy of the Instrument object given by @a orig
5000     * and assign it to this object.
5001     *
5002     * @param orig - original Instrument object to be copied from
5003     * @param mSamples - crosslink map between the foreign file's samples and
5004     * this file's samples
5005     */
5006     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5007 schoenebeck 2394 // handle base class
5008     // (without copying DLS region stuff)
5009     DLS::Instrument::CopyAssignCore(orig);
5010    
5011     // handle own member variables
5012     Attenuation = orig->Attenuation;
5013     EffectSend = orig->EffectSend;
5014     FineTune = orig->FineTune;
5015     PitchbendRange = orig->PitchbendRange;
5016     PianoReleaseMode = orig->PianoReleaseMode;
5017     DimensionKeyRange = orig->DimensionKeyRange;
5018 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5019     pScriptRefs = orig->pScriptRefs;
5020 schoenebeck 2394
5021     // free old midi rules
5022     for (int i = 0 ; pMidiRules[i] ; i++) {
5023     delete pMidiRules[i];
5024     }
5025     //TODO: MIDI rule copying
5026     pMidiRules[0] = NULL;
5027    
5028     // delete all old regions
5029     while (Regions) DeleteRegion(GetFirstRegion());
5030     // create new regions and copy them from original
5031     {
5032     RegionList::const_iterator it = orig->pRegions->begin();
5033     for (int i = 0; i < orig->Regions; ++i, ++it) {
5034     Region* dstRgn = AddRegion();
5035     //NOTE: Region does semi-deep copy !
5036     dstRgn->CopyAssign(
5037 schoenebeck 2482 static_cast<gig::Region*>(*it),
5038     mSamples
5039 schoenebeck 2394 );
5040     }
5041     }
5042 schoenebeck 809
5043 schoenebeck 2394 UpdateRegionKeyTable();
5044     }
5045 schoenebeck 809
5046 schoenebeck 2394
5047 schoenebeck 929 // *************** Group ***************
5048     // *
5049    
5050     /** @brief Constructor.
5051     *
5052 schoenebeck 930 * @param file - pointer to the gig::File object
5053     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5054     * NULL if this is a new Group
5055 schoenebeck 929 */
5056 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5057 schoenebeck 929 pFile = file;
5058     pNameChunk = ck3gnm;
5059     ::LoadString(pNameChunk, Name);
5060     }
5061    
5062     Group::~Group() {
5063 schoenebeck 1099 // remove the chunk associated with this group (if any)
5064     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5065 schoenebeck 929 }
5066    
5067     /** @brief Update chunks with current group settings.
5068     *
5069 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5070     * to call File::Save() to make changes persistent.
5071     *
5072     * Usually there is absolutely no need to call this method explicitly.
5073     * It will be called automatically when File::Save() was called.
5074 schoenebeck 2682 *
5075     * @param pProgress - callback function for progress notification
5076 schoenebeck 929 */
5077 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5078 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5079 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5080 persson 1192 if (!_3gri) {
5081     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5082     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5083     }
5084 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5085 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5086 persson 1266
5087     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5088     // v3 has a fixed list of 128 strings, find a free one
5089     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5090     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5091     pNameChunk = ck;
5092     break;
5093     }
5094     }
5095     }
5096    
5097 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5098     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5099     }
5100    
5101 schoenebeck 930 /**
5102     * Returns the first Sample of this Group. You have to call this method
5103     * once before you use GetNextSample().
5104     *
5105     * <b>Notice:</b> this method might block for a long time, in case the
5106     * samples of this .gig file were not scanned yet
5107     *
5108     * @returns pointer address to first Sample or NULL if there is none
5109     * applied to this Group
5110     * @see GetNextSample()
5111     */
5112     Sample* Group::GetFirstSample() {
5113     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5114     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5115     if (pSample->GetGroup() == this) return pSample;
5116     }
5117     return NULL;
5118     }
5119 schoenebeck 929
5120 schoenebeck 930 /**
5121     * Returns the next Sample of the Group. You have to call
5122     * GetFirstSample() once before you can use this method. By calling this
5123     * method multiple times it iterates through the Samples assigned to
5124     * this Group.
5125     *
5126     * @returns pointer address to the next Sample of this Group or NULL if
5127     * end reached
5128     * @see GetFirstSample()
5129     */
5130     Sample* Group::GetNextSample() {
5131     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5132     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5133     if (pSample->GetGroup() == this) return pSample;
5134     }
5135     return NULL;
5136     }
5137 schoenebeck 929
5138 schoenebeck 930 /**
5139     * Move Sample given by \a pSample from another Group to this Group.
5140     */
5141     void Group::AddSample(Sample* pSample) {
5142     pSample->pGroup = this;
5143     }
5144    
5145     /**
5146     * Move all members of this group to another group (preferably the 1st
5147     * one except this). This method is called explicitly by
5148     * File::DeleteGroup() thus when a Group was deleted. This code was
5149     * intentionally not placed in the destructor!
5150     */
5151     void Group::MoveAll() {
5152     // get "that" other group first
5153     Group* pOtherGroup = NULL;
5154     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5155     if (pOtherGroup != this) break;
5156     }
5157     if (!pOtherGroup) throw Exception(
5158     "Could not move samples to another group, since there is no "
5159     "other Group. This is a bug, report it!"
5160     );
5161     // now move all samples of this group to the other group
5162     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5163     pOtherGroup->AddSample(pSample);
5164     }
5165     }
5166    
5167    
5168    
5169 schoenebeck 2 // *************** File ***************
5170     // *
5171    
5172 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5173 persson 1199 const DLS::version_t File::VERSION_2 = {
5174     0, 2, 19980628 & 0xffff, 19980628 >> 16
5175     };
5176    
5177 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5178 persson 1199 const DLS::version_t File::VERSION_3 = {
5179     0, 3, 20030331 & 0xffff, 20030331 >> 16
5180     };
5181    
5182 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5183 persson 1180 { CHUNK_ID_IARL, 256 },
5184     { CHUNK_ID_IART, 128 },
5185     { CHUNK_ID_ICMS, 128 },
5186     { CHUNK_ID_ICMT, 1024 },
5187     { CHUNK_ID_ICOP, 128 },
5188     { CHUNK_ID_ICRD, 128 },
5189     { CHUNK_ID_IENG, 128 },
5190     { CHUNK_ID_IGNR, 128 },
5191     { CHUNK_ID_IKEY, 128 },
5192     { CHUNK_ID_IMED, 128 },
5193     { CHUNK_ID_INAM, 128 },
5194     { CHUNK_ID_IPRD, 128 },
5195     { CHUNK_ID_ISBJ, 128 },
5196     { CHUNK_ID_ISFT, 128 },
5197     { CHUNK_ID_ISRC, 128 },
5198     { CHUNK_ID_ISRF, 128 },
5199     { CHUNK_ID_ITCH, 128 },
5200     { 0, 0 }
5201     };
5202    
5203 schoenebeck 809 File::File() : DLS::File() {
5204 schoenebeck 1524 bAutoLoad = true;
5205 persson 1264 *pVersion = VERSION_3;
5206 schoenebeck 929 pGroups = NULL;
5207 schoenebeck 2584 pScriptGroups = NULL;
5208 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5209 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5210 persson 1192
5211     // add some mandatory chunks to get the file chunks in right
5212     // order (INFO chunk will be moved to first position later)
5213     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5214     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5215 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5216    
5217     GenerateDLSID();
5218 schoenebeck 809 }
5219    
5220 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5221 schoenebeck 1524 bAutoLoad = true;
5222 schoenebeck 929 pGroups = NULL;
5223 schoenebeck 2584 pScriptGroups = NULL;
5224 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5225 schoenebeck 2 }
5226    
5227 schoenebeck 929 File::~File() {
5228     if (pGroups) {
5229     std::list<Group*>::iterator iter = pGroups->begin();
5230     std::list<Group*>::iterator end = pGroups->end();
5231     while (iter != end) {
5232     delete *iter;
5233     ++iter;
5234     }
5235     delete pGroups;
5236     }
5237 schoenebeck 2584 if (pScriptGroups) {
5238     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5239     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5240     while (iter != end) {
5241     delete *iter;
5242     ++iter;
5243     }
5244     delete pScriptGroups;
5245     }
5246 schoenebeck 929 }
5247    
5248 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5249     if (!pSamples) LoadSamples(pProgress);
5250 schoenebeck 2 if (!pSamples) return NULL;
5251     SamplesIterator = pSamples->begin();
5252     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5253     }
5254    
5255     Sample* File::GetNextSample() {
5256     if (!pSamples) return NULL;
5257     SamplesIterator++;
5258     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5259     }
5260 schoenebeck 2482
5261     /**
5262     * Returns Sample object of @a index.
5263     *
5264     * @returns sample object or NULL if index is out of bounds
5265     */
5266     Sample* File::GetSample(uint index) {
5267     if (!pSamples) LoadSamples();
5268     if (!pSamples) return NULL;
5269     DLS::File::SampleList::iterator it = pSamples->begin();
5270     for (int i = 0; i < index; ++i) {
5271     ++it;
5272     if (it == pSamples->end()) return NULL;
5273     }
5274     if (it == pSamples->end()) return NULL;
5275     return static_cast<gig::Sample*>( *it );
5276     }
5277 schoenebeck 2
5278 schoenebeck 809 /** @brief Add a new sample.
5279     *
5280     * This will create a new Sample object for the gig file. You have to
5281     * call Save() to make this persistent to the file.
5282     *
5283     * @returns pointer to new Sample object
5284     */
5285     Sample* File::AddSample() {
5286     if (!pSamples) LoadSamples();
5287     __ensureMandatoryChunksExist();
5288     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5289     // create new Sample object and its respective 'wave' list chunk
5290     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5291     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5292 persson 1192
5293     // add mandatory chunks to get the chunks in right order
5294     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5295     wave->AddSubList(LIST_TYPE_INFO);
5296    
5297 schoenebeck 809 pSamples->push_back(pSample);
5298     return pSample;
5299     }
5300    
5301     /** @brief Delete a sample.
5302     *
5303 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5304     * references to this sample from Regions and DimensionRegions will be
5305     * removed. You have to call Save() to make this persistent to the file.
5306 schoenebeck 809 *
5307     * @param pSample - sample to delete
5308     * @throws gig::Exception if given sample could not be found
5309     */
5310     void File::DeleteSample(Sample* pSample) {
5311 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5312     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5313 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5314 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5315 schoenebeck 809 pSamples->erase(iter);
5316     delete pSample;
5317 persson 1266
5318 persson 1678 SampleList::iterator tmp = SamplesIterator;
5319 persson 1266 // remove all references to the sample
5320     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5321     instrument = GetNextInstrument()) {
5322     for (Region* region = instrument->GetFirstRegion() ; region ;
5323     region = instrument->GetNextRegion()) {
5324    
5325     if (region->GetSample() == pSample) region->SetSample(NULL);
5326    
5327     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5328     gig::DimensionRegion *d = region->pDimensionRegions[i];
5329     if (d->pSample == pSample) d->pSample = NULL;
5330     }
5331     }
5332     }
5333 persson 1678 SamplesIterator = tmp; // restore iterator
5334 schoenebeck 809 }
5335    
5336 schoenebeck 823 void File::LoadSamples() {
5337     LoadSamples(NULL);
5338     }
5339    
5340 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5341 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5342     // to resolve the group they belong to
5343 schoenebeck 1158 if (!pGroups) LoadGroups();
5344 schoenebeck 930
5345 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5346    
5347 persson 666 RIFF::File* file = pRIFF;
5348 schoenebeck 515
5349 persson 666 // just for progress calculation
5350     int iSampleIndex = 0;
5351     int iTotalSamples = WavePoolCount;
5352 schoenebeck 515
5353 persson 666 // check if samples should be loaded from extension files
5354 schoenebeck 2913 // (only for old gig files < 2 GB)
5355 persson 666 int lastFileNo = 0;
5356 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5357 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5358     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5359     }
5360 persson 666 }
5361 schoenebeck 780 String name(pRIFF->GetFileName());
5362     int nameLen = name.length();
5363 persson 666 char suffix[6];
5364 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5365 schoenebeck 515
5366 persson 666 for (int fileNo = 0 ; ; ) {
5367     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5368     if (wvpl) {
5369 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5370 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5371     while (wave) {
5372     if (wave->GetListType() == LIST_TYPE_WAVE) {
5373     // notify current progress
5374     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5375     __notify_progress(pProgress, subprogress);
5376    
5377 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5378 persson 666 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5379    
5380     iSampleIndex++;
5381     }
5382     wave = wvpl->GetNextSubList();
5383 schoenebeck 2 }
5384 persson 666
5385     if (fileNo == lastFileNo) break;
5386    
5387     // open extension file (*.gx01, *.gx02, ...)
5388     fileNo++;
5389     sprintf(suffix, ".gx%02d", fileNo);
5390     name.replace(nameLen, 5, suffix);
5391     file = new RIFF::File(name);
5392     ExtensionFiles.push_back(file);
5393 schoenebeck 823 } else break;
5394 schoenebeck 2 }
5395 persson 666
5396     __notify_progress(pProgress, 1.0); // notify done
5397 schoenebeck 2 }
5398    
5399     Instrument* File::GetFirstInstrument() {
5400     if (!pInstruments) LoadInstruments();
5401     if (!pInstruments) return NULL;
5402     InstrumentsIterator = pInstruments->begin();
5403 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5404 schoenebeck 2 }
5405    
5406     Instrument* File::GetNextInstrument() {
5407     if (!pInstruments) return NULL;
5408     InstrumentsIterator++;
5409 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5410 schoenebeck 2 }
5411    
5412 schoenebeck 21 /**
5413     * Returns the instrument with the given index.
5414     *
5415 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5416     * @param pProgress - optional: callback function for progress notification
5417 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5418     */
5419 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5420     if (!pInstruments) {
5421     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5422    
5423     // sample loading subtask
5424     progress_t subprogress;
5425     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5426     __notify_progress(&subprogress, 0.0f);
5427 schoenebeck 1524 if (GetAutoLoad())
5428     GetFirstSample(&subprogress); // now force all samples to be loaded
5429 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5430    
5431     // instrument loading subtask
5432     if (pProgress && pProgress->callback) {
5433     subprogress.__range_min = subprogress.__range_max;
5434     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5435     }
5436     __notify_progress(&subprogress, 0.0f);
5437     LoadInstruments(&subprogress);
5438     __notify_progress(&subprogress, 1.0f);
5439     }
5440 schoenebeck 21 if (!pInstruments) return NULL;
5441     InstrumentsIterator = pInstruments->begin();
5442     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5443 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5444 schoenebeck 21 InstrumentsIterator++;
5445     }
5446     return NULL;
5447     }
5448    
5449 schoenebeck 809 /** @brief Add a new instrument definition.
5450     *
5451     * This will create a new Instrument object for the gig file. You have
5452     * to call Save() to make this persistent to the file.
5453     *
5454     * @returns pointer to new Instrument object
5455     */
5456     Instrument* File::AddInstrument() {
5457     if (!pInstruments) LoadInstruments();
5458     __ensureMandatoryChunksExist();
5459     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5460     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5461 persson 1192
5462     // add mandatory chunks to get the chunks in right order
5463     lstInstr->AddSubList(LIST_TYPE_INFO);
5464 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5465 persson 1192
5466 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5467 persson 1209 pInstrument->GenerateDLSID();
5468 persson 1182
5469 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5470    
5471 persson 1182 // this string is needed for the gig to be loadable in GSt:
5472     pInstrument->pInfo->Software = "Endless Wave";
5473    
5474 schoenebeck 809 pInstruments->push_back(pInstrument);
5475     return pInstrument;
5476     }
5477 schoenebeck 2394
5478     /** @brief Add a duplicate of an existing instrument.
5479     *
5480     * Duplicates the instrument definition given by @a orig and adds it
5481     * to this file. This allows in an instrument editor application to
5482     * easily create variations of an instrument, which will be stored in
5483     * the same .gig file, sharing i.e. the same samples.
5484     *
5485     * Note that all sample pointers referenced by @a orig are simply copied as
5486     * memory address. Thus the respective samples are shared, not duplicated!
5487     *
5488     * You have to call Save() to make this persistent to the file.
5489     *
5490     * @param orig - original instrument to be copied
5491     * @returns duplicated copy of the given instrument
5492     */
5493     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5494     Instrument* instr = AddInstrument();
5495     instr->CopyAssign(orig);
5496     return instr;
5497     }
5498 schoenebeck 2482
5499     /** @brief Add content of another existing file.
5500     *
5501     * Duplicates the samples, groups and instruments of the original file
5502     * given by @a pFile and adds them to @c this File. In case @c this File is
5503     * a new one that you haven't saved before, then you have to call
5504     * SetFileName() before calling AddContentOf(), because this method will
5505     * automatically save this file during operation, which is required for
5506     * writing the sample waveform data by disk streaming.
5507     *
5508     * @param pFile - original file whose's content shall be copied from
5509     */
5510     void File::AddContentOf(File* pFile) {
5511     static int iCallCount = -1;
5512     iCallCount++;
5513     std::map<Group*,Group*> mGroups;
5514     std::map<Sample*,Sample*> mSamples;
5515    
5516     // clone sample groups
5517     for (int i = 0; pFile->GetGroup(i); ++i) {
5518     Group* g = AddGroup();
5519     g->Name =
5520     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5521     mGroups[pFile->GetGroup(i)] = g;
5522     }
5523    
5524     // clone samples (not waveform data here yet)
5525     for (int i = 0; pFile->GetSample(i); ++i) {
5526     Sample* s = AddSample();
5527     s->CopyAssignMeta(pFile->GetSample(i));
5528     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5529     mSamples[pFile->GetSample(i)] = s;
5530     }
5531    
5532     //BUG: For some reason this method only works with this additional
5533     // Save() call in between here.
5534     //
5535     // Important: The correct one of the 2 Save() methods has to be called
5536     // here, depending on whether the file is completely new or has been
5537     // saved to disk already, otherwise it will result in data corruption.
5538     if (pRIFF->IsNew())
5539     Save(GetFileName());
5540     else
5541     Save();
5542    
5543     // clone instruments
5544     // (passing the crosslink table here for the cloned samples)
5545     for (int i = 0; pFile->GetInstrument(i); ++i) {
5546     Instrument* instr = AddInstrument();
5547     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5548     }
5549    
5550     // Mandatory: file needs to be saved to disk at this point, so this
5551     // file has the correct size and data layout for writing the samples'
5552     // waveform data to disk.
5553     Save();
5554    
5555     // clone samples' waveform data
5556     // (using direct read & write disk streaming)
5557     for (int i = 0; pFile->GetSample(i); ++i) {
5558     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5559     }
5560     }
5561 schoenebeck 809
5562     /** @brief Delete an instrument.
5563     *
5564     * This will delete the given Instrument object from the gig file. You
5565     * have to call Save() to make this persistent to the file.
5566     *
5567     * @param pInstrument - instrument to delete
5568 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5569 schoenebeck 809 */
5570     void File::DeleteInstrument(Instrument* pInstrument) {
5571     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5572 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5573 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5574     pInstruments->erase(iter);
5575     delete pInstrument;
5576     }
5577    
5578 schoenebeck 823 void File::LoadInstruments() {
5579     LoadInstruments(NULL);
5580     }
5581    
5582 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5583 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5584 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5585     if (lstInstruments) {
5586 schoenebeck 515 int iInstrumentIndex = 0;
5587 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5588     while (lstInstr) {
5589     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5590 schoenebeck 515 // notify current progress
5591     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5592     __notify_progress(pProgress, localProgress);
5593    
5594     // divide local progress into subprogress for loading current Instrument
5595     progress_t subprogress;
5596     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5597    
5598     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5599    
5600     iInstrumentIndex++;
5601 schoenebeck 2 }
5602     lstInstr = lstInstruments->GetNextSubList();
5603     }
5604 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5605 schoenebeck 2 }
5606     }
5607    
5608 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5609     /// update is done directly to disk, as this method is called
5610     /// after File::Save()
5611 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5612     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5613     if (!_3crc) return;
5614 persson 1207
5615     // get the index of the sample
5616 persson 1199 int iWaveIndex = -1;
5617     File::SampleList::iterator iter = pSamples->begin();
5618     File::SampleList::iterator end = pSamples->end();
5619     for (int index = 0; iter != end; ++iter, ++index) {
5620     if (*iter == pSample) {
5621     iWaveIndex = index;
5622     break;
5623     }
5624     }
5625     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5626    
5627 persson 1207 // write the CRC-32 checksum to disk
5628 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5629     uint32_t tmp = 1;
5630     _3crc->WriteUint32(&tmp); // unknown, always 1?
5631     _3crc->WriteUint32(&crc);
5632     }
5633    
5634 schoenebeck 929 Group* File::GetFirstGroup() {
5635     if (!pGroups) LoadGroups();
5636 schoenebeck 930 // there must always be at least one group
5637 schoenebeck 929 GroupsIterator = pGroups->begin();
5638 schoenebeck 930 return *GroupsIterator;
5639 schoenebeck 929 }
5640 schoenebeck 2
5641 schoenebeck 929 Group* File::GetNextGroup() {
5642     if (!pGroups) return NULL;
5643     ++GroupsIterator;
5644     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5645     }
5646 schoenebeck 2
5647 schoenebeck 929 /**
5648     * Returns the group with the given index.
5649     *
5650     * @param index - number of the sought group (0..n)
5651     * @returns sought group or NULL if there's no such group
5652     */
5653     Group* File::GetGroup(uint index) {
5654     if (!pGroups) LoadGroups();
5655     GroupsIterator = pGroups->begin();
5656     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5657     if (i == index) return *GroupsIterator;
5658     ++GroupsIterator;
5659     }
5660     return NULL;
5661     }
5662    
5663 schoenebeck 2543 /**
5664     * Returns the group with the given group name.
5665     *
5666     * Note: group names don't have to be unique in the gig format! So there
5667     * can be multiple groups with the same name. This method will simply
5668     * return the first group found with the given name.
5669     *
5670     * @param name - name of the sought group
5671     * @returns sought group or NULL if there's no group with that name
5672     */
5673     Group* File::GetGroup(String name) {
5674     if (!pGroups) LoadGroups();
5675     GroupsIterator = pGroups->begin();
5676     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5677     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5678     return NULL;
5679     }
5680    
5681 schoenebeck 929 Group* File::AddGroup() {
5682     if (!pGroups) LoadGroups();
5683 schoenebeck 930 // there must always be at least one group
5684 schoenebeck 929 __ensureMandatoryChunksExist();
5685 schoenebeck 930 Group* pGroup = new Group(this, NULL);
5686 schoenebeck 929 pGroups->push_back(pGroup);
5687     return pGroup;
5688     }
5689    
5690 schoenebeck 1081 /** @brief Delete a group and its samples.
5691     *
5692     * This will delete the given Group object and all the samples that
5693     * belong to this group from the gig file. You have to call Save() to
5694     * make this persistent to the file.
5695     *
5696     * @param pGroup - group to delete
5697     * @throws gig::Exception if given group could not be found
5698     */
5699 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
5700 schoenebeck 930 if (!pGroups) LoadGroups();
5701 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5702     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5703 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5704 schoenebeck 1081 // delete all members of this group
5705     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5706     DeleteSample(pSample);
5707     }
5708     // now delete this group object
5709     pGroups->erase(iter);
5710     delete pGroup;
5711     }
5712    
5713     /** @brief Delete a group.
5714     *
5715     * This will delete the given Group object from the gig file. All the
5716     * samples that belong to this group will not be deleted, but instead
5717     * be moved to another group. You have to call Save() to make this
5718     * persistent to the file.
5719     *
5720     * @param pGroup - group to delete
5721     * @throws gig::Exception if given group could not be found
5722     */
5723     void File::DeleteGroupOnly(Group* pGroup) {
5724     if (!pGroups) LoadGroups();
5725     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5726     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5727     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5728 schoenebeck 930 // move all members of this group to another group
5729     pGroup->MoveAll();
5730 schoenebeck 929 pGroups->erase(iter);
5731     delete pGroup;
5732     }
5733    
5734     void File::LoadGroups() {
5735     if (!pGroups) pGroups = new std::list<Group*>;
5736 schoenebeck 930 // try to read defined groups from file
5737 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5738 schoenebeck 930 if (lst3gri) {
5739     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5740     if (lst3gnl) {
5741     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5742     while (ck) {
5743     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5744 persson 1266 if (pVersion && pVersion->major == 3 &&
5745     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5746    
5747 schoenebeck 930 pGroups->push_back(new Group(this, ck));
5748     }
5749     ck = lst3gnl->GetNextSubChunk();
5750 schoenebeck 929 }
5751     }
5752     }
5753 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
5754     if (!pGroups->size()) {
5755     Group* pGroup = new Group(this, NULL);
5756     pGroup->Name = "Default Group";
5757     pGroups->push_back(pGroup);
5758     }
5759 schoenebeck 929 }
5760    
5761 schoenebeck 2584 /** @brief Get instrument script group (by index).
5762     *
5763     * Returns the real-time instrument script group with the given index.
5764     *
5765     * @param index - number of the sought group (0..n)
5766     * @returns sought script group or NULL if there's no such group
5767     */
5768     ScriptGroup* File::GetScriptGroup(uint index) {
5769     if (!pScriptGroups) LoadScriptGroups();
5770     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5771     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5772     if (i == index) return *it;
5773     return NULL;
5774     }
5775    
5776     /** @brief Get instrument script group (by name).
5777     *
5778     * Returns the first real-time instrument script group found with the given
5779     * group name. Note that group names may not necessarily be unique.
5780     *
5781     * @param name - name of the sought script group
5782     * @returns sought script group or NULL if there's no such group
5783     */
5784     ScriptGroup* File::GetScriptGroup(const String& name) {
5785     if (!pScriptGroups) LoadScriptGroups();
5786     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5787     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5788     if ((*it)->Name == name) return *it;
5789     return NULL;
5790     }
5791    
5792     /** @brief Add new instrument script group.
5793     *
5794     * Adds a new, empty real-time instrument script group to the file.
5795     *
5796     * You have to call Save() to make this persistent to the file.
5797     *
5798     * @return new empty script group
5799     */
5800     ScriptGroup* File::AddScriptGroup() {
5801     if (!pScriptGroups) LoadScriptGroups();
5802     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5803     pScriptGroups->push_back(pScriptGroup);
5804     return pScriptGroup;
5805     }
5806    
5807     /** @brief Delete an instrument script group.
5808     *
5809     * This will delete the given real-time instrument script group and all its
5810     * instrument scripts it contains. References inside instruments that are
5811     * using the deleted scripts will be removed from the respective instruments
5812     * accordingly.
5813     *
5814     * You have to call Save() to make this persistent to the file.
5815     *
5816     * @param pScriptGroup - script group to delete
5817     * @throws gig::Exception if given script group could not be found
5818     */
5819     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5820     if (!pScriptGroups) LoadScriptGroups();
5821     std::list<ScriptGroup*>::iterator iter =
5822     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5823     if (iter == pScriptGroups->end())
5824     throw gig::Exception("Could not delete script group, could not find given script group");
5825     pScriptGroups->erase(iter);
5826     for (int i = 0; pScriptGroup->GetScript(i); ++i)
5827     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5828     if (pScriptGroup->pList)
5829     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5830     delete pScriptGroup;
5831     }
5832    
5833     void File::LoadScriptGroups() {
5834     if (pScriptGroups) return;
5835     pScriptGroups = new std::list<ScriptGroup*>;
5836     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
5837     if (lstLS) {
5838     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
5839     lst = lstLS->GetNextSubList())
5840     {
5841     if (lst->GetListType() == LIST_TYPE_RTIS) {
5842     pScriptGroups->push_back(new ScriptGroup(this, lst));
5843     }
5844     }
5845     }
5846     }
5847    
5848 schoenebeck 1098 /**
5849     * Apply all the gig file's current instruments, samples, groups and settings
5850     * to the respective RIFF chunks. You have to call Save() to make changes
5851     * persistent.
5852     *
5853     * Usually there is absolutely no need to call this method explicitly.
5854     * It will be called automatically when File::Save() was called.
5855     *
5856 schoenebeck 2682 * @param pProgress - callback function for progress notification
5857 schoenebeck 1098 * @throws Exception - on errors
5858     */
5859 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
5860 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5861 persson 1192
5862 schoenebeck 2584 // update own gig format extension chunks
5863     // (not part of the GigaStudio 4 format)
5864 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
5865     if (!lst3LS) {
5866     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
5867     }
5868     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
5869 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
5870     // before the actual wave data
5871 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
5872     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
5873    
5874 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
5875     // because the instruments' script slots will write the file offsets
5876     // of the respective instrument script chunk as reference.
5877     if (pScriptGroups) {
5878 schoenebeck 2912 // Update instrument script (group) chunks.
5879     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5880     it != pScriptGroups->end(); ++it)
5881     {
5882     (*it)->UpdateChunks(pProgress);
5883 schoenebeck 2584 }
5884     }
5885    
5886 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
5887     // custom "3LS " chunk again
5888     if (!lst3LS->CountSubChunks()) {
5889     pRIFF->DeleteSubChunk(lst3LS);
5890     lst3LS = NULL;
5891     }
5892    
5893 schoenebeck 1098 // first update base class's chunks
5894 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
5895 schoenebeck 929
5896 persson 1199 if (newFile) {
5897 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
5898     // is placed first in file
5899 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5900 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5901     if (first != info) {
5902     pRIFF->MoveSubChunk(info, first);
5903     }
5904     }
5905    
5906 schoenebeck 1098 // update group's chunks
5907     if (pGroups) {
5908 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
5909     // (before updating the Group chunks)
5910     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5911     if (!_3gri) {
5912     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5913     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5914 schoenebeck 1098 }
5915 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5916     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5917 persson 1266
5918     // v3: make sure the file has 128 3gnm chunks
5919 schoenebeck 2467 // (before updating the Group chunks)
5920 persson 1266 if (pVersion && pVersion->major == 3) {
5921     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5922     for (int i = 0 ; i < 128 ; i++) {
5923     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5924     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5925     }
5926     }
5927 schoenebeck 2467
5928     std::list<Group*>::iterator iter = pGroups->begin();
5929     std::list<Group*>::iterator end = pGroups->end();
5930     for (; iter != end; ++iter) {
5931 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
5932 schoenebeck 2467 }
5933 schoenebeck 1098 }
5934 persson 1199
5935     // update einf chunk
5936    
5937     // The einf chunk contains statistics about the gig file, such
5938     // as the number of regions and samples used by each
5939     // instrument. It is divided in equally sized parts, where the
5940     // first part contains information about the whole gig file,
5941     // and the rest of the parts map to each instrument in the
5942     // file.
5943     //
5944     // At the end of each part there is a bit map of each sample
5945     // in the file, where a set bit means that the sample is used
5946     // by the file/instrument.
5947     //
5948     // Note that there are several fields with unknown use. These
5949     // are set to zero.
5950    
5951     int sublen = pSamples->size() / 8 + 49;
5952     int einfSize = (Instruments + 1) * sublen;
5953    
5954     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5955     if (einf) {
5956     if (einf->GetSize() != einfSize) {
5957     einf->Resize(einfSize);
5958     memset(einf->LoadChunkData(), 0, einfSize);
5959     }
5960     } else if (newFile) {
5961     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5962     }
5963     if (einf) {
5964     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5965    
5966     std::map<gig::Sample*,int> sampleMap;
5967     int sampleIdx = 0;
5968     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5969     sampleMap[pSample] = sampleIdx++;
5970     }
5971    
5972     int totnbusedsamples = 0;
5973     int totnbusedchannels = 0;
5974     int totnbregions = 0;
5975     int totnbdimregions = 0;
5976 persson 1264 int totnbloops = 0;
5977 persson 1199 int instrumentIdx = 0;
5978    
5979     memset(&pData[48], 0, sublen - 48);
5980    
5981     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5982     instrument = GetNextInstrument()) {
5983     int nbusedsamples = 0;
5984     int nbusedchannels = 0;
5985     int nbdimregions = 0;
5986 persson 1264 int nbloops = 0;
5987 persson 1199
5988     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5989    
5990     for (Region* region = instrument->GetFirstRegion() ; region ;
5991     region = instrument->GetNextRegion()) {
5992     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5993     gig::DimensionRegion *d = region->pDimensionRegions[i];
5994     if (d->pSample) {
5995     int sampleIdx = sampleMap[d->pSample];
5996     int byte = 48 + sampleIdx / 8;
5997     int bit = 1 << (sampleIdx & 7);
5998     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
5999     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6000     nbusedsamples++;
6001     nbusedchannels += d->pSample->Channels;
6002    
6003     if ((pData[byte] & bit) == 0) {
6004     pData[byte] |= bit;
6005     totnbusedsamples++;
6006     totnbusedchannels += d->pSample->Channels;
6007     }
6008     }
6009     }
6010 persson 1264 if (d->SampleLoops) nbloops++;
6011 persson 1199 }
6012     nbdimregions += region->DimensionRegions;
6013     }
6014     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6015     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6016     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6017     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6018     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6019     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6020     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6021 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6022     // next 8 bytes unknown
6023 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6024     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
6025     // next 4 bytes unknown
6026    
6027     totnbregions += instrument->Regions;
6028     totnbdimregions += nbdimregions;
6029 persson 1264 totnbloops += nbloops;
6030 persson 1199 instrumentIdx++;
6031     }
6032     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6033     // store32(&pData[0], sublen);
6034     store32(&pData[4], totnbusedchannels);
6035     store32(&pData[8], totnbusedsamples);
6036     store32(&pData[12], Instruments);
6037     store32(&pData[16], totnbregions);
6038     store32(&pData[20], totnbdimregions);
6039 persson 1264 store32(&pData[24], totnbloops);
6040     // next 8 bytes unknown
6041     // next 4 bytes unknown, not always 0
6042 persson 1199 store32(&pData[40], pSamples->size());
6043     // next 4 bytes unknown
6044     }
6045    
6046     // update 3crc chunk
6047    
6048     // The 3crc chunk contains CRC-32 checksums for the
6049     // samples. The actual checksum values will be filled in
6050     // later, by Sample::Write.
6051    
6052     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6053     if (_3crc) {
6054     _3crc->Resize(pSamples->size() * 8);
6055     } else if (newFile) {
6056     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6057     _3crc->LoadChunkData();
6058 persson 1264
6059     // the order of einf and 3crc is not the same in v2 and v3
6060     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6061 persson 1199 }
6062 schoenebeck 1098 }
6063 schoenebeck 2609
6064     void File::UpdateFileOffsets() {
6065     DLS::File::UpdateFileOffsets();
6066 schoenebeck 929
6067 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6068     instrument = GetNextInstrument())
6069     {
6070     instrument->UpdateScriptFileOffsets();
6071     }
6072     }
6073    
6074 schoenebeck 1524 /**
6075     * Enable / disable automatic loading. By default this properyt is
6076     * enabled and all informations are loaded automatically. However
6077     * loading all Regions, DimensionRegions and especially samples might
6078     * take a long time for large .gig files, and sometimes one might only
6079     * be interested in retrieving very superficial informations like the
6080     * amount of instruments and their names. In this case one might disable
6081     * automatic loading to avoid very slow response times.
6082     *
6083     * @e CAUTION: by disabling this property many pointers (i.e. sample
6084     * references) and informations will have invalid or even undefined
6085     * data! This feature is currently only intended for retrieving very
6086     * superficial informations in a very fast way. Don't use it to retrieve
6087     * details like synthesis informations or even to modify .gig files!
6088     */
6089     void File::SetAutoLoad(bool b) {
6090     bAutoLoad = b;
6091     }
6092 schoenebeck 1098
6093 schoenebeck 1524 /**
6094     * Returns whether automatic loading is enabled.
6095     * @see SetAutoLoad()
6096     */
6097     bool File::GetAutoLoad() {
6098     return bAutoLoad;
6099     }
6100 schoenebeck 1098
6101 schoenebeck 1524
6102    
6103 schoenebeck 2 // *************** Exception ***************
6104     // *
6105    
6106     Exception::Exception(String Message) : DLS::Exception(Message) {
6107     }
6108    
6109     void Exception::PrintMessage() {
6110     std::cout << "gig::Exception: " << Message << std::endl;
6111     }
6112    
6113 schoenebeck 518
6114     // *************** functions ***************
6115     // *
6116    
6117     /**
6118     * Returns the name of this C++ library. This is usually "libgig" of
6119     * course. This call is equivalent to RIFF::libraryName() and
6120     * DLS::libraryName().
6121     */
6122     String libraryName() {
6123     return PACKAGE;
6124     }
6125    
6126     /**
6127     * Returns version of this C++ library. This call is equivalent to
6128     * RIFF::libraryVersion() and DLS::libraryVersion().
6129     */
6130     String libraryVersion() {
6131     return VERSION;
6132     }
6133    
6134 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC