/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2985 - (hide annotations) (download)
Tue Sep 20 22:13:37 2016 UTC (7 years, 6 months ago) by schoenebeck
File size: 274049 byte(s)
* gig.cpp/gig.h: Added new method Sample::VerifyWaveData() which
  allows to check whether a sample had been damaged for some
  reason.
* gigdump tool: added and implemented new parameter "--verify"
  which allows to check the raw wave form data integrity of all
  samples.
* gigdump tool: added and implemented new parameter
  "--rebuild-checksums" which allows to recalculate the CRC32
  checksum of all samples' raw wave data and rebuilding the gig
  file's global checksum table (i.e. in case the file's checksum
  table was damaged).
* Bumped version (4.0.0.svn8).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2912 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31 schoenebeck 2555 #include <assert.h>
32 schoenebeck 384
33 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
34     /// format with libgig's own custom data / custom features).
35     #define GIG_FILE_EXT_VERSION 2
36    
37 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
38     /// compressed sample wave streams - this value should always be bigger than
39     /// the biggest sample piece expected to be read by the sampler engine,
40     /// otherwise the buffer size will be raised at runtime and thus the buffer
41     /// reallocated which is time consuming and unefficient.
42     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43    
44     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57    
58 schoenebeck 515 namespace gig {
59 schoenebeck 2
60 schoenebeck 809 // *************** Internal functions for sample decompression ***************
61 persson 365 // *
62    
63 schoenebeck 515 namespace {
64    
65 persson 365 inline int get12lo(const unsigned char* pSrc)
66     {
67     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68     return x & 0x800 ? x - 0x1000 : x;
69     }
70    
71     inline int get12hi(const unsigned char* pSrc)
72     {
73     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74     return x & 0x800 ? x - 0x1000 : x;
75     }
76    
77     inline int16_t get16(const unsigned char* pSrc)
78     {
79     return int16_t(pSrc[0] | pSrc[1] << 8);
80     }
81    
82     inline int get24(const unsigned char* pSrc)
83     {
84     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85     return x & 0x800000 ? x - 0x1000000 : x;
86     }
87    
88 persson 902 inline void store24(unsigned char* pDst, int x)
89     {
90     pDst[0] = x;
91     pDst[1] = x >> 8;
92     pDst[2] = x >> 16;
93     }
94    
95 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
96 persson 372 int srcStep, int dstStep,
97     const unsigned char* pSrc, int16_t* pDst,
98 schoenebeck 2912 file_offset_t currentframeoffset,
99     file_offset_t copysamples)
100 persson 365 {
101     switch (compressionmode) {
102     case 0: // 16 bit uncompressed
103     pSrc += currentframeoffset * srcStep;
104     while (copysamples) {
105     *pDst = get16(pSrc);
106 persson 372 pDst += dstStep;
107 persson 365 pSrc += srcStep;
108     copysamples--;
109     }
110     break;
111    
112     case 1: // 16 bit compressed to 8 bit
113     int y = get16(params);
114     int dy = get16(params + 2);
115     while (currentframeoffset) {
116     dy -= int8_t(*pSrc);
117     y -= dy;
118     pSrc += srcStep;
119     currentframeoffset--;
120     }
121     while (copysamples) {
122     dy -= int8_t(*pSrc);
123     y -= dy;
124     *pDst = y;
125 persson 372 pDst += dstStep;
126 persson 365 pSrc += srcStep;
127     copysamples--;
128     }
129     break;
130     }
131     }
132    
133     void Decompress24(int compressionmode, const unsigned char* params,
134 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135 schoenebeck 2912 file_offset_t currentframeoffset,
136     file_offset_t copysamples, int truncatedBits)
137 persson 365 {
138 persson 695 int y, dy, ddy, dddy;
139 persson 437
140 persson 695 #define GET_PARAMS(params) \
141     y = get24(params); \
142     dy = y - get24((params) + 3); \
143     ddy = get24((params) + 6); \
144     dddy = get24((params) + 9)
145 persson 365
146     #define SKIP_ONE(x) \
147 persson 695 dddy -= (x); \
148     ddy -= dddy; \
149     dy = -dy - ddy; \
150     y += dy
151 persson 365
152     #define COPY_ONE(x) \
153     SKIP_ONE(x); \
154 persson 902 store24(pDst, y << truncatedBits); \
155 persson 372 pDst += dstStep
156 persson 365
157     switch (compressionmode) {
158     case 2: // 24 bit uncompressed
159     pSrc += currentframeoffset * 3;
160     while (copysamples) {
161 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
162 persson 372 pDst += dstStep;
163 persson 365 pSrc += 3;
164     copysamples--;
165     }
166     break;
167    
168     case 3: // 24 bit compressed to 16 bit
169     GET_PARAMS(params);
170     while (currentframeoffset) {
171     SKIP_ONE(get16(pSrc));
172     pSrc += 2;
173     currentframeoffset--;
174     }
175     while (copysamples) {
176     COPY_ONE(get16(pSrc));
177     pSrc += 2;
178     copysamples--;
179     }
180     break;
181    
182     case 4: // 24 bit compressed to 12 bit
183     GET_PARAMS(params);
184     while (currentframeoffset > 1) {
185     SKIP_ONE(get12lo(pSrc));
186     SKIP_ONE(get12hi(pSrc));
187     pSrc += 3;
188     currentframeoffset -= 2;
189     }
190     if (currentframeoffset) {
191     SKIP_ONE(get12lo(pSrc));
192     currentframeoffset--;
193     if (copysamples) {
194     COPY_ONE(get12hi(pSrc));
195     pSrc += 3;
196     copysamples--;
197     }
198     }
199     while (copysamples > 1) {
200     COPY_ONE(get12lo(pSrc));
201     COPY_ONE(get12hi(pSrc));
202     pSrc += 3;
203     copysamples -= 2;
204     }
205     if (copysamples) {
206     COPY_ONE(get12lo(pSrc));
207     }
208     break;
209    
210     case 5: // 24 bit compressed to 8 bit
211     GET_PARAMS(params);
212     while (currentframeoffset) {
213     SKIP_ONE(int8_t(*pSrc++));
214     currentframeoffset--;
215     }
216     while (copysamples) {
217     COPY_ONE(int8_t(*pSrc++));
218     copysamples--;
219     }
220     break;
221     }
222     }
223    
224     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
225     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
227     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
228     }
229    
230    
231 schoenebeck 1113
232 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
233     // *
234    
235     static uint32_t* __initCRCTable() {
236     static uint32_t res[256];
237    
238     for (int i = 0 ; i < 256 ; i++) {
239     uint32_t c = i;
240     for (int j = 0 ; j < 8 ; j++) {
241     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242     }
243     res[i] = c;
244     }
245     return res;
246     }
247    
248     static const uint32_t* __CRCTable = __initCRCTable();
249    
250     /**
251     * Initialize a CRC variable.
252     *
253     * @param crc - variable to be initialized
254     */
255     inline static void __resetCRC(uint32_t& crc) {
256     crc = 0xffffffff;
257     }
258    
259     /**
260     * Used to calculate checksums of the sample data in a gig file. The
261     * checksums are stored in the 3crc chunk of the gig file and
262     * automatically updated when a sample is written with Sample::Write().
263     *
264     * One should call __resetCRC() to initialize the CRC variable to be
265     * used before calling this function the first time.
266     *
267     * After initializing the CRC variable one can call this function
268     * arbitrary times, i.e. to split the overall CRC calculation into
269     * steps.
270     *
271     * Once the whole data was processed by __calculateCRC(), one should
272     * call __encodeCRC() to get the final CRC result.
273     *
274     * @param buf - pointer to data the CRC shall be calculated of
275     * @param bufSize - size of the data to be processed
276     * @param crc - variable the CRC sum shall be stored to
277     */
278     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279     for (int i = 0 ; i < bufSize ; i++) {
280     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281     }
282     }
283    
284     /**
285     * Returns the final CRC result.
286     *
287     * @param crc - variable previously passed to __calculateCRC()
288     */
289     inline static uint32_t __encodeCRC(const uint32_t& crc) {
290     return crc ^ 0xffffffff;
291     }
292    
293    
294    
295 schoenebeck 1113 // *************** Other Internal functions ***************
296     // *
297    
298     static split_type_t __resolveSplitType(dimension_t dimension) {
299     return (
300     dimension == dimension_layer ||
301     dimension == dimension_samplechannel ||
302     dimension == dimension_releasetrigger ||
303     dimension == dimension_keyboard ||
304     dimension == dimension_roundrobin ||
305     dimension == dimension_random ||
306     dimension == dimension_smartmidi ||
307     dimension == dimension_roundrobinkeyboard
308     ) ? split_type_bit : split_type_normal;
309     }
310    
311     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312     return (dimension_definition.split_type == split_type_normal)
313     ? int(128.0 / dimension_definition.zones) : 0;
314     }
315    
316    
317    
318 schoenebeck 2 // *************** Sample ***************
319     // *
320    
321 schoenebeck 2922 size_t Sample::Instances = 0;
322 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
323 schoenebeck 2
324 schoenebeck 809 /** @brief Constructor.
325     *
326     * Load an existing sample or create a new one. A 'wave' list chunk must
327     * be given to this constructor. In case the given 'wave' list chunk
328     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329     * format and sample data will be loaded from there, otherwise default
330     * values will be used and those chunks will be created when
331     * File::Save() will be called later on.
332     *
333     * @param pFile - pointer to gig::File where this sample is
334     * located (or will be located)
335     * @param waveList - pointer to 'wave' list chunk which is (or
336     * will be) associated with this sample
337     * @param WavePoolOffset - offset of this sample data from wave pool
338     * ('wvpl') list chunk
339     * @param fileNo - number of an extension file where this sample
340     * is located, 0 otherwise
341     */
342 schoenebeck 2912 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
343 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
344 persson 1180 { CHUNK_ID_INAM, 64 },
345     { 0, 0 }
346     };
347 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
348 schoenebeck 2 Instances++;
349 persson 666 FileNo = fileNo;
350 schoenebeck 2
351 schoenebeck 1381 __resetCRC(crc);
352    
353 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
354     if (pCk3gix) {
355 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
356 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
357 schoenebeck 809 } else { // '3gix' chunk missing
358 schoenebeck 930 // by default assigned to that mandatory "Default Group"
359     pGroup = pFile->GetGroup(0);
360 schoenebeck 809 }
361 schoenebeck 2
362 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
363     if (pCkSmpl) {
364     Manufacturer = pCkSmpl->ReadInt32();
365     Product = pCkSmpl->ReadInt32();
366     SamplePeriod = pCkSmpl->ReadInt32();
367     MIDIUnityNote = pCkSmpl->ReadInt32();
368     FineTune = pCkSmpl->ReadInt32();
369     pCkSmpl->Read(&SMPTEFormat, 1, 4);
370     SMPTEOffset = pCkSmpl->ReadInt32();
371     Loops = pCkSmpl->ReadInt32();
372     pCkSmpl->ReadInt32(); // manufByt
373     LoopID = pCkSmpl->ReadInt32();
374     pCkSmpl->Read(&LoopType, 1, 4);
375     LoopStart = pCkSmpl->ReadInt32();
376     LoopEnd = pCkSmpl->ReadInt32();
377     LoopFraction = pCkSmpl->ReadInt32();
378     LoopPlayCount = pCkSmpl->ReadInt32();
379     } else { // 'smpl' chunk missing
380     // use default values
381     Manufacturer = 0;
382     Product = 0;
383 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
384 persson 1218 MIDIUnityNote = 60;
385 schoenebeck 809 FineTune = 0;
386 persson 1182 SMPTEFormat = smpte_format_no_offset;
387 schoenebeck 809 SMPTEOffset = 0;
388     Loops = 0;
389     LoopID = 0;
390 persson 1182 LoopType = loop_type_normal;
391 schoenebeck 809 LoopStart = 0;
392     LoopEnd = 0;
393     LoopFraction = 0;
394     LoopPlayCount = 0;
395     }
396 schoenebeck 2
397     FrameTable = NULL;
398     SamplePos = 0;
399     RAMCache.Size = 0;
400     RAMCache.pStart = NULL;
401     RAMCache.NullExtensionSize = 0;
402    
403 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
404    
405 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
406     Compressed = ewav;
407     Dithered = false;
408     TruncatedBits = 0;
409 schoenebeck 2 if (Compressed) {
410 persson 437 uint32_t version = ewav->ReadInt32();
411     if (version == 3 && BitDepth == 24) {
412     Dithered = ewav->ReadInt32();
413     ewav->SetPos(Channels == 2 ? 84 : 64);
414     TruncatedBits = ewav->ReadInt32();
415     }
416 schoenebeck 2 ScanCompressedSample();
417     }
418 schoenebeck 317
419     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
420 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
421     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
422     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
423 schoenebeck 317 }
424 persson 437 FrameOffset = 0; // just for streaming compressed samples
425 schoenebeck 21
426 persson 864 LoopSize = LoopEnd - LoopStart + 1;
427 schoenebeck 2 }
428    
429 schoenebeck 809 /**
430 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
431     * the actual waveform data) and assign it to this object.
432     *
433     * Discussion: copying .gig samples is a bit tricky. It requires three
434     * steps:
435     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
436     * its new sample waveform data size.
437     * 2. Saving the file (done by File::Save()) so that it gains correct size
438     * and layout for writing the actual wave form data directly to disc
439     * in next step.
440     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
441     *
442     * @param orig - original Sample object to be copied from
443     */
444     void Sample::CopyAssignMeta(const Sample* orig) {
445     // handle base classes
446     DLS::Sample::CopyAssignCore(orig);
447    
448     // handle actual own attributes of this class
449     Manufacturer = orig->Manufacturer;
450     Product = orig->Product;
451     SamplePeriod = orig->SamplePeriod;
452     MIDIUnityNote = orig->MIDIUnityNote;
453     FineTune = orig->FineTune;
454     SMPTEFormat = orig->SMPTEFormat;
455     SMPTEOffset = orig->SMPTEOffset;
456     Loops = orig->Loops;
457     LoopID = orig->LoopID;
458     LoopType = orig->LoopType;
459     LoopStart = orig->LoopStart;
460     LoopEnd = orig->LoopEnd;
461     LoopSize = orig->LoopSize;
462     LoopFraction = orig->LoopFraction;
463     LoopPlayCount = orig->LoopPlayCount;
464    
465     // schedule resizing this sample to the given sample's size
466     Resize(orig->GetSize());
467     }
468    
469     /**
470     * Should be called after CopyAssignMeta() and File::Save() sequence.
471     * Read more about it in the discussion of CopyAssignMeta(). This method
472     * copies the actual waveform data by disk streaming.
473     *
474     * @e CAUTION: this method is currently not thread safe! During this
475     * operation the sample must not be used for other purposes by other
476     * threads!
477     *
478     * @param orig - original Sample object to be copied from
479     */
480     void Sample::CopyAssignWave(const Sample* orig) {
481     const int iReadAtOnce = 32*1024;
482     char* buf = new char[iReadAtOnce * orig->FrameSize];
483     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
484 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
485 schoenebeck 2482 pOrig->SetPos(0);
486     SetPos(0);
487 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
488 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
489     {
490     Write(buf, n);
491     }
492     pOrig->SetPos(restorePos);
493     delete [] buf;
494     }
495    
496     /**
497 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
498     * to call File::Save() to make changes persistent.
499     *
500     * Usually there is absolutely no need to call this method explicitly.
501     * It will be called automatically when File::Save() was called.
502     *
503 schoenebeck 2682 * @param pProgress - callback function for progress notification
504 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
505 schoenebeck 809 * was provided yet
506     * @throws gig::Exception if there is any invalid sample setting
507     */
508 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
509 schoenebeck 809 // first update base class's chunks
510 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
511 schoenebeck 809
512     // make sure 'smpl' chunk exists
513     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
514 persson 1182 if (!pCkSmpl) {
515     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
516     memset(pCkSmpl->LoadChunkData(), 0, 60);
517     }
518 schoenebeck 809 // update 'smpl' chunk
519     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
520 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
521 persson 1179 store32(&pData[0], Manufacturer);
522     store32(&pData[4], Product);
523     store32(&pData[8], SamplePeriod);
524     store32(&pData[12], MIDIUnityNote);
525     store32(&pData[16], FineTune);
526     store32(&pData[20], SMPTEFormat);
527     store32(&pData[24], SMPTEOffset);
528     store32(&pData[28], Loops);
529 schoenebeck 809
530     // we skip 'manufByt' for now (4 bytes)
531    
532 persson 1179 store32(&pData[36], LoopID);
533     store32(&pData[40], LoopType);
534     store32(&pData[44], LoopStart);
535     store32(&pData[48], LoopEnd);
536     store32(&pData[52], LoopFraction);
537     store32(&pData[56], LoopPlayCount);
538 schoenebeck 809
539     // make sure '3gix' chunk exists
540     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
541     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
542 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
543 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
544 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
545     if (pFile->pGroups) {
546     std::list<Group*>::iterator iter = pFile->pGroups->begin();
547     std::list<Group*>::iterator end = pFile->pGroups->end();
548 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
549 schoenebeck 929 if (*iter == pGroup) {
550     iSampleGroup = i;
551     break; // found
552     }
553     }
554     }
555 schoenebeck 809 // update '3gix' chunk
556     pData = (uint8_t*) pCk3gix->LoadChunkData();
557 persson 1179 store16(&pData[0], iSampleGroup);
558 schoenebeck 2484
559     // if the library user toggled the "Compressed" attribute from true to
560     // false, then the EWAV chunk associated with compressed samples needs
561     // to be deleted
562     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
563     if (ewav && !Compressed) {
564     pWaveList->DeleteSubChunk(ewav);
565     }
566 schoenebeck 809 }
567    
568 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
569     void Sample::ScanCompressedSample() {
570     //TODO: we have to add some more scans here (e.g. determine compression rate)
571     this->SamplesTotal = 0;
572 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
573 schoenebeck 2
574 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
575 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
576 persson 365
577 schoenebeck 2 // Scanning
578     pCkData->SetPos(0);
579 persson 365 if (Channels == 2) { // Stereo
580     for (int i = 0 ; ; i++) {
581     // for 24 bit samples every 8:th frame offset is
582     // stored, to save some memory
583     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
584    
585     const int mode_l = pCkData->ReadUint8();
586     const int mode_r = pCkData->ReadUint8();
587     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
588 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
589 persson 365
590     if (pCkData->RemainingBytes() <= frameSize) {
591     SamplesInLastFrame =
592     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
593     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
594     SamplesTotal += SamplesInLastFrame;
595 schoenebeck 2 break;
596 persson 365 }
597     SamplesTotal += SamplesPerFrame;
598     pCkData->SetPos(frameSize, RIFF::stream_curpos);
599     }
600     }
601     else { // Mono
602     for (int i = 0 ; ; i++) {
603     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
604    
605     const int mode = pCkData->ReadUint8();
606     if (mode > 5) throw gig::Exception("Unknown compression mode");
607 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
608 persson 365
609     if (pCkData->RemainingBytes() <= frameSize) {
610     SamplesInLastFrame =
611     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
612     SamplesTotal += SamplesInLastFrame;
613 schoenebeck 2 break;
614 persson 365 }
615     SamplesTotal += SamplesPerFrame;
616     pCkData->SetPos(frameSize, RIFF::stream_curpos);
617 schoenebeck 2 }
618     }
619     pCkData->SetPos(0);
620    
621     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
622     if (FrameTable) delete[] FrameTable;
623 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
624     std::list<file_offset_t>::iterator end = frameOffsets.end();
625     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
626 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
627     FrameTable[i] = *iter;
628     }
629     }
630    
631     /**
632     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
633     * ReleaseSampleData() to free the memory if you don't need the cached
634     * sample data anymore.
635     *
636     * @returns buffer_t structure with start address and size of the buffer
637     * in bytes
638     * @see ReleaseSampleData(), Read(), SetPos()
639     */
640     buffer_t Sample::LoadSampleData() {
641     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
642     }
643    
644     /**
645     * Reads (uncompresses if needed) and caches the first \a SampleCount
646     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647     * memory space if you don't need the cached samples anymore. There is no
648     * guarantee that exactly \a SampleCount samples will be cached; this is
649     * not an error. The size will be eventually truncated e.g. to the
650     * beginning of a frame of a compressed sample. This is done for
651     * efficiency reasons while streaming the wave by your sampler engine
652     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653     * that will be returned to determine the actual cached samples, but note
654     * that the size is given in bytes! You get the number of actually cached
655     * samples by dividing it by the frame size of the sample:
656 schoenebeck 384 * @code
657 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
658     * long cachedsamples = buf.Size / pSample->FrameSize;
659 schoenebeck 384 * @endcode
660 schoenebeck 2 *
661     * @param SampleCount - number of sample points to load into RAM
662     * @returns buffer_t structure with start address and size of
663     * the cached sample data in bytes
664     * @see ReleaseSampleData(), Read(), SetPos()
665     */
666 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
667 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
668     }
669    
670     /**
671     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672     * ReleaseSampleData() to free the memory if you don't need the cached
673     * sample data anymore.
674     * The method will add \a NullSamplesCount silence samples past the
675     * official buffer end (this won't affect the 'Size' member of the
676     * buffer_t structure, that means 'Size' always reflects the size of the
677     * actual sample data, the buffer might be bigger though). Silence
678     * samples past the official buffer are needed for differential
679     * algorithms that always have to take subsequent samples into account
680     * (resampling/interpolation would be an important example) and avoids
681     * memory access faults in such cases.
682     *
683     * @param NullSamplesCount - number of silence samples the buffer should
684     * be extended past it's data end
685     * @returns buffer_t structure with start address and
686     * size of the buffer in bytes
687     * @see ReleaseSampleData(), Read(), SetPos()
688     */
689     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
690     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
691     }
692    
693     /**
694     * Reads (uncompresses if needed) and caches the first \a SampleCount
695     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
696     * memory space if you don't need the cached samples anymore. There is no
697     * guarantee that exactly \a SampleCount samples will be cached; this is
698     * not an error. The size will be eventually truncated e.g. to the
699     * beginning of a frame of a compressed sample. This is done for
700     * efficiency reasons while streaming the wave by your sampler engine
701     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
702     * that will be returned to determine the actual cached samples, but note
703     * that the size is given in bytes! You get the number of actually cached
704     * samples by dividing it by the frame size of the sample:
705 schoenebeck 384 * @code
706 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
707     * long cachedsamples = buf.Size / pSample->FrameSize;
708 schoenebeck 384 * @endcode
709 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
710     * official buffer end (this won't affect the 'Size' member of the
711     * buffer_t structure, that means 'Size' always reflects the size of the
712     * actual sample data, the buffer might be bigger though). Silence
713     * samples past the official buffer are needed for differential
714     * algorithms that always have to take subsequent samples into account
715     * (resampling/interpolation would be an important example) and avoids
716     * memory access faults in such cases.
717     *
718     * @param SampleCount - number of sample points to load into RAM
719     * @param NullSamplesCount - number of silence samples the buffer should
720     * be extended past it's data end
721     * @returns buffer_t structure with start address and
722     * size of the cached sample data in bytes
723     * @see ReleaseSampleData(), Read(), SetPos()
724     */
725 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
726 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
727     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
728 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
729 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
730 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
731     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
732     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
733     // fill the remaining buffer space with silence samples
734     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
735     return GetCache();
736     }
737    
738     /**
739     * Returns current cached sample points. A buffer_t structure will be
740     * returned which contains address pointer to the begin of the cache and
741     * the size of the cached sample data in bytes. Use
742     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
743     * RAM.
744     *
745     * @returns buffer_t structure with current cached sample points
746     * @see LoadSampleData();
747     */
748     buffer_t Sample::GetCache() {
749     // return a copy of the buffer_t structure
750     buffer_t result;
751     result.Size = this->RAMCache.Size;
752     result.pStart = this->RAMCache.pStart;
753     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
754     return result;
755     }
756    
757     /**
758     * Frees the cached sample from RAM if loaded with
759     * <i>LoadSampleData()</i> previously.
760     *
761     * @see LoadSampleData();
762     */
763     void Sample::ReleaseSampleData() {
764     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
765     RAMCache.pStart = NULL;
766     RAMCache.Size = 0;
767 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
768 schoenebeck 2 }
769    
770 schoenebeck 809 /** @brief Resize sample.
771     *
772     * Resizes the sample's wave form data, that is the actual size of
773     * sample wave data possible to be written for this sample. This call
774     * will return immediately and just schedule the resize operation. You
775     * should call File::Save() to actually perform the resize operation(s)
776     * "physically" to the file. As this can take a while on large files, it
777     * is recommended to call Resize() first on all samples which have to be
778     * resized and finally to call File::Save() to perform all those resize
779     * operations in one rush.
780     *
781     * The actual size (in bytes) is dependant to the current FrameSize
782     * value. You may want to set FrameSize before calling Resize().
783     *
784     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
785     * enlarged samples before calling File::Save() as this might exceed the
786     * current sample's boundary!
787     *
788 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
789     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
790 schoenebeck 809 * other formats will fail!
791     *
792 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
793     * greater than zero)
794 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
795 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
796 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
797     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
798     * DLS::Sample::FormatTag, File::Save()
799     */
800 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
801 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
802 schoenebeck 2922 DLS::Sample::Resize(NewSize);
803 schoenebeck 809 }
804    
805 schoenebeck 2 /**
806     * Sets the position within the sample (in sample points, not in
807     * bytes). Use this method and <i>Read()</i> if you don't want to load
808     * the sample into RAM, thus for disk streaming.
809     *
810     * Although the original Gigasampler engine doesn't allow positioning
811     * within compressed samples, I decided to implement it. Even though
812     * the Gigasampler format doesn't allow to define loops for compressed
813     * samples at the moment, positioning within compressed samples might be
814     * interesting for some sampler engines though. The only drawback about
815     * my decision is that it takes longer to load compressed gig Files on
816     * startup, because it's neccessary to scan the samples for some
817     * mandatory informations. But I think as it doesn't affect the runtime
818     * efficiency, nobody will have a problem with that.
819     *
820     * @param SampleCount number of sample points to jump
821     * @param Whence optional: to which relation \a SampleCount refers
822     * to, if omited <i>RIFF::stream_start</i> is assumed
823     * @returns the new sample position
824     * @see Read()
825     */
826 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
827 schoenebeck 2 if (Compressed) {
828     switch (Whence) {
829     case RIFF::stream_curpos:
830     this->SamplePos += SampleCount;
831     break;
832     case RIFF::stream_end:
833     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
834     break;
835     case RIFF::stream_backward:
836     this->SamplePos -= SampleCount;
837     break;
838     case RIFF::stream_start: default:
839     this->SamplePos = SampleCount;
840     break;
841     }
842     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
843    
844 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
845 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
846     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
847     return this->SamplePos;
848     }
849     else { // not compressed
850 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
851     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
852 schoenebeck 2 return (result == orderedBytes) ? SampleCount
853     : result / this->FrameSize;
854     }
855     }
856    
857     /**
858     * Returns the current position in the sample (in sample points).
859     */
860 schoenebeck 2912 file_offset_t Sample::GetPos() const {
861 schoenebeck 2 if (Compressed) return SamplePos;
862     else return pCkData->GetPos() / FrameSize;
863     }
864    
865     /**
866 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
867     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
868     * the position within the sample respectively, this method honors the
869     * looping informations of the sample (if any). The sample wave stream
870     * will be decompressed on the fly if using a compressed sample. Use this
871     * method if you don't want to load the sample into RAM, thus for disk
872     * streaming. All this methods needs to know to proceed with streaming
873     * for the next time you call this method is stored in \a pPlaybackState.
874     * You have to allocate and initialize the playback_state_t structure by
875     * yourself before you use it to stream a sample:
876 schoenebeck 384 * @code
877     * gig::playback_state_t playbackstate;
878     * playbackstate.position = 0;
879     * playbackstate.reverse = false;
880     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
881     * @endcode
882 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
883     * defined or if the current read position is located within a loop area.
884     * The method already handles such cases by itself.
885     *
886 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
887     * have to use an external decompression buffer for <b>EACH</b>
888     * streaming thread to avoid race conditions and crashes!
889     *
890 schoenebeck 24 * @param pBuffer destination buffer
891     * @param SampleCount number of sample points to read
892     * @param pPlaybackState will be used to store and reload the playback
893     * state for the next ReadAndLoop() call
894 persson 864 * @param pDimRgn dimension region with looping information
895 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
896 schoenebeck 24 * @returns number of successfully read sample points
897 schoenebeck 384 * @see CreateDecompressionBuffer()
898 schoenebeck 24 */
899 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
900 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
901 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
902 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
903    
904     SetPos(pPlaybackState->position); // recover position from the last time
905    
906 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
907 schoenebeck 24
908 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
909     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
910 schoenebeck 24
911 persson 864 if (GetPos() <= loopEnd) {
912     switch (loop.LoopType) {
913 schoenebeck 24
914 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
915     do {
916     // if not endless loop check if max. number of loop cycles have been passed
917     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
918 schoenebeck 24
919 persson 864 if (!pPlaybackState->reverse) { // forward playback
920     do {
921     samplestoloopend = loopEnd - GetPos();
922     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
923     samplestoread -= readsamples;
924     totalreadsamples += readsamples;
925     if (readsamples == samplestoloopend) {
926     pPlaybackState->reverse = true;
927     break;
928     }
929     } while (samplestoread && readsamples);
930     }
931     else { // backward playback
932 schoenebeck 24
933 persson 864 // as we can only read forward from disk, we have to
934     // determine the end position within the loop first,
935     // read forward from that 'end' and finally after
936     // reading, swap all sample frames so it reflects
937     // backward playback
938 schoenebeck 24
939 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
940     file_offset_t loopoffset = GetPos() - loop.LoopStart;
941     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
942     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
943 schoenebeck 24
944 persson 864 SetPos(reverseplaybackend);
945 schoenebeck 24
946 persson 864 // read samples for backward playback
947     do {
948     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
949     samplestoreadinloop -= readsamples;
950     samplestoread -= readsamples;
951     totalreadsamples += readsamples;
952     } while (samplestoreadinloop && readsamples);
953 schoenebeck 24
954 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
955    
956     if (reverseplaybackend == loop.LoopStart) {
957     pPlaybackState->loop_cycles_left--;
958     pPlaybackState->reverse = false;
959     }
960    
961     // reverse the sample frames for backward playback
962 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
963     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964 schoenebeck 24 }
965 persson 864 } while (samplestoread && readsamples);
966     break;
967     }
968 schoenebeck 24
969 persson 864 case loop_type_backward: { // TODO: not tested yet!
970     // forward playback (not entered the loop yet)
971     if (!pPlaybackState->reverse) do {
972     samplestoloopend = loopEnd - GetPos();
973     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974     samplestoread -= readsamples;
975     totalreadsamples += readsamples;
976     if (readsamples == samplestoloopend) {
977     pPlaybackState->reverse = true;
978     break;
979     }
980     } while (samplestoread && readsamples);
981 schoenebeck 24
982 persson 864 if (!samplestoread) break;
983 schoenebeck 24
984 persson 864 // as we can only read forward from disk, we have to
985     // determine the end position within the loop first,
986     // read forward from that 'end' and finally after
987     // reading, swap all sample frames so it reflects
988     // backward playback
989 schoenebeck 24
990 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
991     file_offset_t loopoffset = GetPos() - loop.LoopStart;
992     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
993 persson 864 : samplestoread;
994 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
995 schoenebeck 24
996 persson 864 SetPos(reverseplaybackend);
997 schoenebeck 24
998 persson 864 // read samples for backward playback
999     do {
1000     // if not endless loop check if max. number of loop cycles have been passed
1001     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1002     samplestoloopend = loopEnd - GetPos();
1003     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1004     samplestoreadinloop -= readsamples;
1005     samplestoread -= readsamples;
1006     totalreadsamples += readsamples;
1007     if (readsamples == samplestoloopend) {
1008     pPlaybackState->loop_cycles_left--;
1009     SetPos(loop.LoopStart);
1010     }
1011     } while (samplestoreadinloop && readsamples);
1012 schoenebeck 24
1013 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1014 schoenebeck 24
1015 persson 864 // reverse the sample frames for backward playback
1016     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1017     break;
1018     }
1019 schoenebeck 24
1020 persson 864 default: case loop_type_normal: {
1021     do {
1022     // if not endless loop check if max. number of loop cycles have been passed
1023     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1024     samplestoloopend = loopEnd - GetPos();
1025     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1026     samplestoread -= readsamples;
1027     totalreadsamples += readsamples;
1028     if (readsamples == samplestoloopend) {
1029     pPlaybackState->loop_cycles_left--;
1030     SetPos(loop.LoopStart);
1031     }
1032     } while (samplestoread && readsamples);
1033     break;
1034     }
1035 schoenebeck 24 }
1036     }
1037     }
1038    
1039     // read on without looping
1040     if (samplestoread) do {
1041 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1042 schoenebeck 24 samplestoread -= readsamples;
1043     totalreadsamples += readsamples;
1044     } while (readsamples && samplestoread);
1045    
1046     // store current position
1047     pPlaybackState->position = GetPos();
1048    
1049     return totalreadsamples;
1050     }
1051    
1052     /**
1053 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1054     * position into the buffer pointed by \a pBuffer and increments the
1055     * position within the sample. The sample wave stream will be
1056     * decompressed on the fly if using a compressed sample. Use this method
1057     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1058     * thus for disk streaming.
1059     *
1060 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1061     * have to use an external decompression buffer for <b>EACH</b>
1062     * streaming thread to avoid race conditions and crashes!
1063     *
1064 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1065     * (using native endianness). For 24 bit, the buffer will
1066     * contain three bytes per sample, little-endian.
1067     *
1068 schoenebeck 2 * @param pBuffer destination buffer
1069     * @param SampleCount number of sample points to read
1070 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1071 schoenebeck 2 * @returns number of successfully read sample points
1072 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1073 schoenebeck 2 */
1074 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1075 schoenebeck 21 if (SampleCount == 0) return 0;
1076 schoenebeck 317 if (!Compressed) {
1077     if (BitDepth == 24) {
1078 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1079 schoenebeck 317 }
1080 persson 365 else { // 16 bit
1081     // (pCkData->Read does endian correction)
1082     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1083     : pCkData->Read(pBuffer, SampleCount, 2);
1084     }
1085 schoenebeck 317 }
1086 persson 365 else {
1087 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1088 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1089 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1090 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1091     remainingsamples = SampleCount,
1092 persson 365 copysamples, skipsamples,
1093     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1094 schoenebeck 2 this->FrameOffset = 0;
1095    
1096 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1097    
1098     // if decompression buffer too small, then reduce amount of samples to read
1099     if (pDecompressionBuffer->Size < assumedsize) {
1100     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1101     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1102     remainingsamples = SampleCount;
1103     assumedsize = GuessSize(SampleCount);
1104 schoenebeck 2 }
1105    
1106 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1107 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1108 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1109 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1110    
1111 persson 365 while (remainingsamples && remainingbytes) {
1112 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1113     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1114 schoenebeck 2
1115 persson 365 int mode_l = *pSrc++, mode_r = 0;
1116    
1117     if (Channels == 2) {
1118     mode_r = *pSrc++;
1119     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1120     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1121     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1122     if (remainingbytes < framebytes) { // last frame in sample
1123     framesamples = SamplesInLastFrame;
1124     if (mode_l == 4 && (framesamples & 1)) {
1125     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1126     }
1127     else {
1128     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1129     }
1130 schoenebeck 2 }
1131     }
1132 persson 365 else {
1133     framebytes = bytesPerFrame[mode_l] + 1;
1134     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1135     if (remainingbytes < framebytes) {
1136     framesamples = SamplesInLastFrame;
1137     }
1138     }
1139 schoenebeck 2
1140     // determine how many samples in this frame to skip and read
1141 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1142     if (currentframeoffset <= framesamples) {
1143     copysamples = framesamples - currentframeoffset;
1144     skipsamples = currentframeoffset;
1145     }
1146     else {
1147     copysamples = 0;
1148     skipsamples = framesamples;
1149     }
1150 schoenebeck 2 }
1151     else {
1152 persson 365 // This frame has enough data for pBuffer, but not
1153     // all of the frame is needed. Set file position
1154     // to start of this frame for next call to Read.
1155 schoenebeck 2 copysamples = remainingsamples;
1156 persson 365 skipsamples = currentframeoffset;
1157     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1158     this->FrameOffset = currentframeoffset + copysamples;
1159     }
1160     remainingsamples -= copysamples;
1161    
1162     if (remainingbytes > framebytes) {
1163     remainingbytes -= framebytes;
1164     if (remainingsamples == 0 &&
1165     currentframeoffset + copysamples == framesamples) {
1166     // This frame has enough data for pBuffer, and
1167     // all of the frame is needed. Set file
1168     // position to start of next frame for next
1169     // call to Read. FrameOffset is 0.
1170 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171     }
1172     }
1173 persson 365 else remainingbytes = 0;
1174 schoenebeck 2
1175 persson 365 currentframeoffset -= skipsamples;
1176 schoenebeck 2
1177 persson 365 if (copysamples == 0) {
1178     // skip this frame
1179     pSrc += framebytes - Channels;
1180     }
1181     else {
1182     const unsigned char* const param_l = pSrc;
1183     if (BitDepth == 24) {
1184     if (mode_l != 2) pSrc += 12;
1185 schoenebeck 2
1186 persson 365 if (Channels == 2) { // Stereo
1187     const unsigned char* const param_r = pSrc;
1188     if (mode_r != 2) pSrc += 12;
1189    
1190 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1191 persson 437 skipsamples, copysamples, TruncatedBits);
1192 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1193 persson 437 skipsamples, copysamples, TruncatedBits);
1194 persson 902 pDst24 += copysamples * 6;
1195 schoenebeck 2 }
1196 persson 365 else { // Mono
1197 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1198 persson 437 skipsamples, copysamples, TruncatedBits);
1199 persson 902 pDst24 += copysamples * 3;
1200 schoenebeck 2 }
1201 persson 365 }
1202     else { // 16 bit
1203     if (mode_l) pSrc += 4;
1204 schoenebeck 2
1205 persson 365 int step;
1206     if (Channels == 2) { // Stereo
1207     const unsigned char* const param_r = pSrc;
1208     if (mode_r) pSrc += 4;
1209    
1210     step = (2 - mode_l) + (2 - mode_r);
1211 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1212     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1213 persson 365 skipsamples, copysamples);
1214     pDst += copysamples << 1;
1215 schoenebeck 2 }
1216 persson 365 else { // Mono
1217     step = 2 - mode_l;
1218 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1219 persson 365 pDst += copysamples;
1220 schoenebeck 2 }
1221 persson 365 }
1222     pSrc += nextFrameOffset;
1223     }
1224 schoenebeck 2
1225 persson 365 // reload from disk to local buffer if needed
1226     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1227     assumedsize = GuessSize(remainingsamples);
1228     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1229     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1230 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1231     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1232 schoenebeck 2 }
1233 persson 365 } // while
1234    
1235 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1236 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1237 schoenebeck 2 return (SampleCount - remainingsamples);
1238     }
1239     }
1240    
1241 schoenebeck 809 /** @brief Write sample wave data.
1242     *
1243     * Writes \a SampleCount number of sample points from the buffer pointed
1244     * by \a pBuffer and increments the position within the sample. Use this
1245     * method to directly write the sample data to disk, i.e. if you don't
1246     * want or cannot load the whole sample data into RAM.
1247     *
1248     * You have to Resize() the sample to the desired size and call
1249     * File::Save() <b>before</b> using Write().
1250     *
1251     * Note: there is currently no support for writing compressed samples.
1252     *
1253 persson 1264 * For 16 bit samples, the data in the source buffer should be
1254     * int16_t (using native endianness). For 24 bit, the buffer
1255     * should contain three bytes per sample, little-endian.
1256     *
1257 schoenebeck 809 * @param pBuffer - source buffer
1258     * @param SampleCount - number of sample points to write
1259     * @throws DLS::Exception if current sample size is too small
1260     * @throws gig::Exception if sample is compressed
1261     * @see DLS::LoadSampleData()
1262     */
1263 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1264 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1265 persson 1207
1266     // if this is the first write in this sample, reset the
1267     // checksum calculator
1268 persson 1199 if (pCkData->GetPos() == 0) {
1269 schoenebeck 1381 __resetCRC(crc);
1270 persson 1199 }
1271 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1272 schoenebeck 2912 file_offset_t res;
1273 persson 1264 if (BitDepth == 24) {
1274     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1275     } else { // 16 bit
1276     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1277     : pCkData->Write(pBuffer, SampleCount, 2);
1278     }
1279 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1280 persson 1199
1281 persson 1207 // if this is the last write, update the checksum chunk in the
1282     // file
1283 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1284     File* pFile = static_cast<File*>(GetParent());
1285 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1286 persson 1199 }
1287     return res;
1288 schoenebeck 809 }
1289    
1290 schoenebeck 384 /**
1291     * Allocates a decompression buffer for streaming (compressed) samples
1292     * with Sample::Read(). If you are using more than one streaming thread
1293     * in your application you <b>HAVE</b> to create a decompression buffer
1294     * for <b>EACH</b> of your streaming threads and provide it with the
1295     * Sample::Read() call in order to avoid race conditions and crashes.
1296     *
1297     * You should free the memory occupied by the allocated buffer(s) once
1298     * you don't need one of your streaming threads anymore by calling
1299     * DestroyDecompressionBuffer().
1300     *
1301     * @param MaxReadSize - the maximum size (in sample points) you ever
1302     * expect to read with one Read() call
1303     * @returns allocated decompression buffer
1304     * @see DestroyDecompressionBuffer()
1305     */
1306 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1307 schoenebeck 384 buffer_t result;
1308     const double worstCaseHeaderOverhead =
1309     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1310 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1311 schoenebeck 384 result.pStart = new int8_t[result.Size];
1312     result.NullExtensionSize = 0;
1313     return result;
1314     }
1315    
1316     /**
1317     * Free decompression buffer, previously created with
1318     * CreateDecompressionBuffer().
1319     *
1320     * @param DecompressionBuffer - previously allocated decompression
1321     * buffer to free
1322     */
1323     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1324     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1325     delete[] (int8_t*) DecompressionBuffer.pStart;
1326     DecompressionBuffer.pStart = NULL;
1327     DecompressionBuffer.Size = 0;
1328     DecompressionBuffer.NullExtensionSize = 0;
1329     }
1330     }
1331    
1332 schoenebeck 930 /**
1333     * Returns pointer to the Group this Sample belongs to. In the .gig
1334     * format a sample always belongs to one group. If it wasn't explicitly
1335     * assigned to a certain group, it will be automatically assigned to a
1336     * default group.
1337     *
1338     * @returns Sample's Group (never NULL)
1339     */
1340     Group* Sample::GetGroup() const {
1341     return pGroup;
1342     }
1343    
1344 schoenebeck 2985 /**
1345     * Checks the integrity of this sample's raw audio wave data. Whenever a
1346     * Sample's raw wave data is intentionally modified (i.e. by calling
1347     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1348     * is calculated and stored/updated for this sample, along to the sample's
1349     * meta informations.
1350     *
1351     * Now by calling this method the current raw audio wave data is checked
1352     * against the already stored CRC32 check sum in order to check whether the
1353     * sample data had been damaged unintentionally for some reason. Since by
1354     * calling this method always the entire raw audio wave data has to be
1355     * read, verifying all samples this way may take a long time accordingly.
1356     * And that's also the reason why the sample integrity is not checked by
1357     * default whenever a gig file is loaded. So this method must be called
1358     * explicitly to fulfill this task.
1359     *
1360     * @returns true if sample is OK or false if the sample is damaged
1361     * @throws Exception if no checksum had been stored to disk for this
1362     * sample yet, or on I/O issues
1363     */
1364     bool Sample::VerifyWaveData() {
1365     File* pFile = static_cast<File*>(GetParent());
1366     const uint32_t referenceCRC = pFile->GetSampleChecksum(this);
1367     uint32_t crc = CalculateWaveDataChecksum();
1368     return crc == referenceCRC;
1369     }
1370    
1371     uint32_t Sample::CalculateWaveDataChecksum() {
1372     const size_t sz = 20*1024; // 20kB buffer size
1373     std::vector<uint8_t> buffer(sz);
1374     buffer.resize(sz);
1375    
1376     const size_t n = sz / FrameSize;
1377     SetPos(0);
1378     uint32_t crc = 0;
1379     __resetCRC(crc);
1380     while (true) {
1381     file_offset_t nRead = Read(&buffer[0], n);
1382     if (nRead <= 0) break;
1383     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1384     }
1385     __encodeCRC(crc);
1386     return crc;
1387     }
1388    
1389 schoenebeck 2 Sample::~Sample() {
1390     Instances--;
1391 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1392     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1393     InternalDecompressionBuffer.pStart = NULL;
1394     InternalDecompressionBuffer.Size = 0;
1395 schoenebeck 355 }
1396 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1397     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1398     }
1399    
1400    
1401    
1402     // *************** DimensionRegion ***************
1403     // *
1404    
1405 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1406 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1407    
1408 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1409 schoenebeck 16 Instances++;
1410    
1411 schoenebeck 823 pSample = NULL;
1412 schoenebeck 1316 pRegion = pParent;
1413 schoenebeck 823
1414 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1415     else memset(&Crossfade, 0, 4);
1416    
1417 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1418 schoenebeck 2
1419     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1420 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1421 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1422 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1423     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1424     _3ewa->ReadInt16(); // unknown
1425     LFO1InternalDepth = _3ewa->ReadUint16();
1426     _3ewa->ReadInt16(); // unknown
1427     LFO3InternalDepth = _3ewa->ReadInt16();
1428     _3ewa->ReadInt16(); // unknown
1429     LFO1ControlDepth = _3ewa->ReadUint16();
1430     _3ewa->ReadInt16(); // unknown
1431     LFO3ControlDepth = _3ewa->ReadInt16();
1432     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1434     _3ewa->ReadInt16(); // unknown
1435     EG1Sustain = _3ewa->ReadUint16();
1436     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1437     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1438     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1439     EG1ControllerInvert = eg1ctrloptions & 0x01;
1440     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1441     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1442     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1443     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1444     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1445     EG2ControllerInvert = eg2ctrloptions & 0x01;
1446     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1447     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1448     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1449     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1450     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1451     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1452     _3ewa->ReadInt16(); // unknown
1453     EG2Sustain = _3ewa->ReadUint16();
1454     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1455     _3ewa->ReadInt16(); // unknown
1456     LFO2ControlDepth = _3ewa->ReadUint16();
1457     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458     _3ewa->ReadInt16(); // unknown
1459     LFO2InternalDepth = _3ewa->ReadUint16();
1460     int32_t eg1decay2 = _3ewa->ReadInt32();
1461     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1462     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1463     _3ewa->ReadInt16(); // unknown
1464     EG1PreAttack = _3ewa->ReadUint16();
1465     int32_t eg2decay2 = _3ewa->ReadInt32();
1466     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1467     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1468     _3ewa->ReadInt16(); // unknown
1469     EG2PreAttack = _3ewa->ReadUint16();
1470     uint8_t velocityresponse = _3ewa->ReadUint8();
1471     if (velocityresponse < 5) {
1472     VelocityResponseCurve = curve_type_nonlinear;
1473     VelocityResponseDepth = velocityresponse;
1474     } else if (velocityresponse < 10) {
1475     VelocityResponseCurve = curve_type_linear;
1476     VelocityResponseDepth = velocityresponse - 5;
1477     } else if (velocityresponse < 15) {
1478     VelocityResponseCurve = curve_type_special;
1479     VelocityResponseDepth = velocityresponse - 10;
1480     } else {
1481     VelocityResponseCurve = curve_type_unknown;
1482     VelocityResponseDepth = 0;
1483     }
1484     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1485     if (releasevelocityresponse < 5) {
1486     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1487     ReleaseVelocityResponseDepth = releasevelocityresponse;
1488     } else if (releasevelocityresponse < 10) {
1489     ReleaseVelocityResponseCurve = curve_type_linear;
1490     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1491     } else if (releasevelocityresponse < 15) {
1492     ReleaseVelocityResponseCurve = curve_type_special;
1493     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1494     } else {
1495     ReleaseVelocityResponseCurve = curve_type_unknown;
1496     ReleaseVelocityResponseDepth = 0;
1497     }
1498     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1499     AttenuationControllerThreshold = _3ewa->ReadInt8();
1500     _3ewa->ReadInt32(); // unknown
1501     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1502     _3ewa->ReadInt16(); // unknown
1503     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1504     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1505     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1506     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1507     else DimensionBypass = dim_bypass_ctrl_none;
1508     uint8_t pan = _3ewa->ReadUint8();
1509     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1510     SelfMask = _3ewa->ReadInt8() & 0x01;
1511     _3ewa->ReadInt8(); // unknown
1512     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1513     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1514     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1515     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1516     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1517     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1518     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1519     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1520     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1521     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1522     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1523     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1524     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1525     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1526     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1527     : vcf_res_ctrl_none;
1528     uint16_t eg3depth = _3ewa->ReadUint16();
1529     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1530 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1531 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1532     ChannelOffset = _3ewa->ReadUint8() / 4;
1533     uint8_t regoptions = _3ewa->ReadUint8();
1534     MSDecode = regoptions & 0x01; // bit 0
1535     SustainDefeat = regoptions & 0x02; // bit 1
1536     _3ewa->ReadInt16(); // unknown
1537     VelocityUpperLimit = _3ewa->ReadInt8();
1538     _3ewa->ReadInt8(); // unknown
1539     _3ewa->ReadInt16(); // unknown
1540     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1541     _3ewa->ReadInt8(); // unknown
1542     _3ewa->ReadInt8(); // unknown
1543     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1544     uint8_t vcfcutoff = _3ewa->ReadUint8();
1545     VCFEnabled = vcfcutoff & 0x80; // bit 7
1546     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1547     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1548     uint8_t vcfvelscale = _3ewa->ReadUint8();
1549     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1550     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1551     _3ewa->ReadInt8(); // unknown
1552     uint8_t vcfresonance = _3ewa->ReadUint8();
1553     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1554     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1555     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1556     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1557     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1558     uint8_t vcfvelocity = _3ewa->ReadUint8();
1559     VCFVelocityDynamicRange = vcfvelocity % 5;
1560     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1561     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1562     if (VCFType == vcf_type_lowpass) {
1563     if (lfo3ctrl & 0x40) // bit 6
1564     VCFType = vcf_type_lowpassturbo;
1565     }
1566 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1567     _3ewa->Read(DimensionUpperLimits, 1, 8);
1568     } else {
1569     memset(DimensionUpperLimits, 0, 8);
1570     }
1571 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1572     // use default values
1573     LFO3Frequency = 1.0;
1574     EG3Attack = 0.0;
1575     LFO1InternalDepth = 0;
1576     LFO3InternalDepth = 0;
1577     LFO1ControlDepth = 0;
1578     LFO3ControlDepth = 0;
1579     EG1Attack = 0.0;
1580 persson 1218 EG1Decay1 = 0.005;
1581     EG1Sustain = 1000;
1582     EG1Release = 0.3;
1583 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1584     EG1Controller.controller_number = 0;
1585     EG1ControllerInvert = false;
1586     EG1ControllerAttackInfluence = 0;
1587     EG1ControllerDecayInfluence = 0;
1588     EG1ControllerReleaseInfluence = 0;
1589     EG2Controller.type = eg2_ctrl_t::type_none;
1590     EG2Controller.controller_number = 0;
1591     EG2ControllerInvert = false;
1592     EG2ControllerAttackInfluence = 0;
1593     EG2ControllerDecayInfluence = 0;
1594     EG2ControllerReleaseInfluence = 0;
1595     LFO1Frequency = 1.0;
1596     EG2Attack = 0.0;
1597 persson 1218 EG2Decay1 = 0.005;
1598     EG2Sustain = 1000;
1599     EG2Release = 0.3;
1600 schoenebeck 809 LFO2ControlDepth = 0;
1601     LFO2Frequency = 1.0;
1602     LFO2InternalDepth = 0;
1603     EG1Decay2 = 0.0;
1604 persson 1218 EG1InfiniteSustain = true;
1605     EG1PreAttack = 0;
1606 schoenebeck 809 EG2Decay2 = 0.0;
1607 persson 1218 EG2InfiniteSustain = true;
1608     EG2PreAttack = 0;
1609 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1610     VelocityResponseDepth = 3;
1611     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1612     ReleaseVelocityResponseDepth = 3;
1613     VelocityResponseCurveScaling = 32;
1614     AttenuationControllerThreshold = 0;
1615     SampleStartOffset = 0;
1616     PitchTrack = true;
1617     DimensionBypass = dim_bypass_ctrl_none;
1618     Pan = 0;
1619     SelfMask = true;
1620     LFO3Controller = lfo3_ctrl_modwheel;
1621     LFO3Sync = false;
1622     InvertAttenuationController = false;
1623     AttenuationController.type = attenuation_ctrl_t::type_none;
1624     AttenuationController.controller_number = 0;
1625     LFO2Controller = lfo2_ctrl_internal;
1626     LFO2FlipPhase = false;
1627     LFO2Sync = false;
1628     LFO1Controller = lfo1_ctrl_internal;
1629     LFO1FlipPhase = false;
1630     LFO1Sync = false;
1631     VCFResonanceController = vcf_res_ctrl_none;
1632     EG3Depth = 0;
1633     ChannelOffset = 0;
1634     MSDecode = false;
1635     SustainDefeat = false;
1636     VelocityUpperLimit = 0;
1637     ReleaseTriggerDecay = 0;
1638     EG1Hold = false;
1639     VCFEnabled = false;
1640     VCFCutoff = 0;
1641     VCFCutoffController = vcf_cutoff_ctrl_none;
1642     VCFCutoffControllerInvert = false;
1643     VCFVelocityScale = 0;
1644     VCFResonance = 0;
1645     VCFResonanceDynamic = false;
1646     VCFKeyboardTracking = false;
1647     VCFKeyboardTrackingBreakpoint = 0;
1648     VCFVelocityDynamicRange = 0x04;
1649     VCFVelocityCurve = curve_type_linear;
1650     VCFType = vcf_type_lowpass;
1651 persson 1247 memset(DimensionUpperLimits, 127, 8);
1652 schoenebeck 2 }
1653 schoenebeck 16
1654 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1655     VelocityResponseDepth,
1656     VelocityResponseCurveScaling);
1657    
1658 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1659     ReleaseVelocityResponseCurve,
1660     ReleaseVelocityResponseDepth
1661     );
1662 persson 613
1663 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1664     VCFVelocityDynamicRange,
1665     VCFVelocityScale,
1666     VCFCutoffController);
1667 persson 613
1668     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1669 persson 858 VelocityTable = 0;
1670 persson 613 }
1671    
1672 persson 1301 /*
1673     * Constructs a DimensionRegion by copying all parameters from
1674     * another DimensionRegion
1675     */
1676     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1677     Instances++;
1678 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1679 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1680     pParentList = _3ewl; // restore the chunk pointer
1681    
1682     // deep copy of owned structures
1683     if (src.VelocityTable) {
1684     VelocityTable = new uint8_t[128];
1685     for (int k = 0 ; k < 128 ; k++)
1686     VelocityTable[k] = src.VelocityTable[k];
1687     }
1688     if (src.pSampleLoops) {
1689     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1690     for (int k = 0 ; k < src.SampleLoops ; k++)
1691     pSampleLoops[k] = src.pSampleLoops[k];
1692     }
1693     }
1694 schoenebeck 2394
1695     /**
1696     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1697     * and assign it to this object.
1698     *
1699     * Note that all sample pointers referenced by @a orig are simply copied as
1700     * memory address. Thus the respective samples are shared, not duplicated!
1701     *
1702     * @param orig - original DimensionRegion object to be copied from
1703     */
1704     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1705 schoenebeck 2482 CopyAssign(orig, NULL);
1706     }
1707    
1708     /**
1709     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1710     * and assign it to this object.
1711     *
1712     * @param orig - original DimensionRegion object to be copied from
1713     * @param mSamples - crosslink map between the foreign file's samples and
1714     * this file's samples
1715     */
1716     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1717 schoenebeck 2394 // delete all allocated data first
1718     if (VelocityTable) delete [] VelocityTable;
1719     if (pSampleLoops) delete [] pSampleLoops;
1720    
1721     // backup parent list pointer
1722     RIFF::List* p = pParentList;
1723    
1724 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1725     gig::Region* pOriginalRegion = pRegion;
1726    
1727 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1728    
1729     *this = *orig; // default memberwise shallow copy of all parameters
1730 schoenebeck 2547
1731     // restore members that shall not be altered
1732 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1733 schoenebeck 2547 pRegion = pOriginalRegion;
1734 schoenebeck 2482
1735 schoenebeck 2547 // only take the raw sample reference reference if the
1736 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1737     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1738     pSample = pOriginalSample;
1739     }
1740    
1741     if (mSamples && mSamples->count(orig->pSample)) {
1742     pSample = mSamples->find(orig->pSample)->second;
1743     }
1744 persson 1301
1745 schoenebeck 2394 // deep copy of owned structures
1746     if (orig->VelocityTable) {
1747     VelocityTable = new uint8_t[128];
1748     for (int k = 0 ; k < 128 ; k++)
1749     VelocityTable[k] = orig->VelocityTable[k];
1750     }
1751     if (orig->pSampleLoops) {
1752     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1753     for (int k = 0 ; k < orig->SampleLoops ; k++)
1754     pSampleLoops[k] = orig->pSampleLoops[k];
1755     }
1756     }
1757    
1758 schoenebeck 809 /**
1759 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1760     * which depends on this value.
1761     */
1762     void DimensionRegion::SetGain(int32_t gain) {
1763     DLS::Sampler::SetGain(gain);
1764     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765     }
1766    
1767     /**
1768 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1769     * have to call File::Save() to make changes persistent.
1770     *
1771     * Usually there is absolutely no need to call this method explicitly.
1772     * It will be called automatically when File::Save() was called.
1773 schoenebeck 2682 *
1774     * @param pProgress - callback function for progress notification
1775 schoenebeck 809 */
1776 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1777 schoenebeck 809 // first update base class's chunk
1778 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1779 schoenebeck 809
1780 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1781     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1782     pData[12] = Crossfade.in_start;
1783     pData[13] = Crossfade.in_end;
1784     pData[14] = Crossfade.out_start;
1785     pData[15] = Crossfade.out_end;
1786    
1787 schoenebeck 809 // make sure '3ewa' chunk exists
1788     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1789 persson 1317 if (!_3ewa) {
1790     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1791     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1792     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1793 persson 1264 }
1794 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1795 schoenebeck 809
1796     // update '3ewa' chunk with DimensionRegion's current settings
1797    
1798 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1799 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1800 schoenebeck 809
1801     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1802 persson 1179 store32(&pData[4], lfo3freq);
1803 schoenebeck 809
1804     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1805 persson 1179 store32(&pData[8], eg3attack);
1806 schoenebeck 809
1807     // next 2 bytes unknown
1808    
1809 persson 1179 store16(&pData[14], LFO1InternalDepth);
1810 schoenebeck 809
1811     // next 2 bytes unknown
1812    
1813 persson 1179 store16(&pData[18], LFO3InternalDepth);
1814 schoenebeck 809
1815     // next 2 bytes unknown
1816    
1817 persson 1179 store16(&pData[22], LFO1ControlDepth);
1818 schoenebeck 809
1819     // next 2 bytes unknown
1820    
1821 persson 1179 store16(&pData[26], LFO3ControlDepth);
1822 schoenebeck 809
1823     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1824 persson 1179 store32(&pData[28], eg1attack);
1825 schoenebeck 809
1826     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1827 persson 1179 store32(&pData[32], eg1decay1);
1828 schoenebeck 809
1829     // next 2 bytes unknown
1830    
1831 persson 1179 store16(&pData[38], EG1Sustain);
1832 schoenebeck 809
1833     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1834 persson 1179 store32(&pData[40], eg1release);
1835 schoenebeck 809
1836     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1837 persson 1179 pData[44] = eg1ctl;
1838 schoenebeck 809
1839     const uint8_t eg1ctrloptions =
1840 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1841 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1842     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1843     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1844 persson 1179 pData[45] = eg1ctrloptions;
1845 schoenebeck 809
1846     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1847 persson 1179 pData[46] = eg2ctl;
1848 schoenebeck 809
1849     const uint8_t eg2ctrloptions =
1850 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1851 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1852     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1853     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1854 persson 1179 pData[47] = eg2ctrloptions;
1855 schoenebeck 809
1856     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1857 persson 1179 store32(&pData[48], lfo1freq);
1858 schoenebeck 809
1859     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1860 persson 1179 store32(&pData[52], eg2attack);
1861 schoenebeck 809
1862     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1863 persson 1179 store32(&pData[56], eg2decay1);
1864 schoenebeck 809
1865     // next 2 bytes unknown
1866    
1867 persson 1179 store16(&pData[62], EG2Sustain);
1868 schoenebeck 809
1869     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1870 persson 1179 store32(&pData[64], eg2release);
1871 schoenebeck 809
1872     // next 2 bytes unknown
1873    
1874 persson 1179 store16(&pData[70], LFO2ControlDepth);
1875 schoenebeck 809
1876     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1877 persson 1179 store32(&pData[72], lfo2freq);
1878 schoenebeck 809
1879     // next 2 bytes unknown
1880    
1881 persson 1179 store16(&pData[78], LFO2InternalDepth);
1882 schoenebeck 809
1883     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1884 persson 1179 store32(&pData[80], eg1decay2);
1885 schoenebeck 809
1886     // next 2 bytes unknown
1887    
1888 persson 1179 store16(&pData[86], EG1PreAttack);
1889 schoenebeck 809
1890     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1891 persson 1179 store32(&pData[88], eg2decay2);
1892 schoenebeck 809
1893     // next 2 bytes unknown
1894    
1895 persson 1179 store16(&pData[94], EG2PreAttack);
1896 schoenebeck 809
1897     {
1898     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1899     uint8_t velocityresponse = VelocityResponseDepth;
1900     switch (VelocityResponseCurve) {
1901     case curve_type_nonlinear:
1902     break;
1903     case curve_type_linear:
1904     velocityresponse += 5;
1905     break;
1906     case curve_type_special:
1907     velocityresponse += 10;
1908     break;
1909     case curve_type_unknown:
1910     default:
1911     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1912     }
1913 persson 1179 pData[96] = velocityresponse;
1914 schoenebeck 809 }
1915    
1916     {
1917     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1918     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1919     switch (ReleaseVelocityResponseCurve) {
1920     case curve_type_nonlinear:
1921     break;
1922     case curve_type_linear:
1923     releasevelocityresponse += 5;
1924     break;
1925     case curve_type_special:
1926     releasevelocityresponse += 10;
1927     break;
1928     case curve_type_unknown:
1929     default:
1930     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1931     }
1932 persson 1179 pData[97] = releasevelocityresponse;
1933 schoenebeck 809 }
1934    
1935 persson 1179 pData[98] = VelocityResponseCurveScaling;
1936 schoenebeck 809
1937 persson 1179 pData[99] = AttenuationControllerThreshold;
1938 schoenebeck 809
1939     // next 4 bytes unknown
1940    
1941 persson 1179 store16(&pData[104], SampleStartOffset);
1942 schoenebeck 809
1943     // next 2 bytes unknown
1944    
1945     {
1946     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1947     switch (DimensionBypass) {
1948     case dim_bypass_ctrl_94:
1949     pitchTrackDimensionBypass |= 0x10;
1950     break;
1951     case dim_bypass_ctrl_95:
1952     pitchTrackDimensionBypass |= 0x20;
1953     break;
1954     case dim_bypass_ctrl_none:
1955     //FIXME: should we set anything here?
1956     break;
1957     default:
1958     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1959     }
1960 persson 1179 pData[108] = pitchTrackDimensionBypass;
1961 schoenebeck 809 }
1962    
1963     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1964 persson 1179 pData[109] = pan;
1965 schoenebeck 809
1966     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1967 persson 1179 pData[110] = selfmask;
1968 schoenebeck 809
1969     // next byte unknown
1970    
1971     {
1972     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1973     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1974     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1975     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1976 persson 1179 pData[112] = lfo3ctrl;
1977 schoenebeck 809 }
1978    
1979     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1980 persson 1179 pData[113] = attenctl;
1981 schoenebeck 809
1982     {
1983     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1984     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1985     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1986     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1987 persson 1179 pData[114] = lfo2ctrl;
1988 schoenebeck 809 }
1989    
1990     {
1991     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1992     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1993     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1994     if (VCFResonanceController != vcf_res_ctrl_none)
1995     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1996 persson 1179 pData[115] = lfo1ctrl;
1997 schoenebeck 809 }
1998    
1999     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2000 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2001 persson 1869 store16(&pData[116], eg3depth);
2002 schoenebeck 809
2003     // next 2 bytes unknown
2004    
2005     const uint8_t channeloffset = ChannelOffset * 4;
2006 persson 1179 pData[120] = channeloffset;
2007 schoenebeck 809
2008     {
2009     uint8_t regoptions = 0;
2010     if (MSDecode) regoptions |= 0x01; // bit 0
2011     if (SustainDefeat) regoptions |= 0x02; // bit 1
2012 persson 1179 pData[121] = regoptions;
2013 schoenebeck 809 }
2014    
2015     // next 2 bytes unknown
2016    
2017 persson 1179 pData[124] = VelocityUpperLimit;
2018 schoenebeck 809
2019     // next 3 bytes unknown
2020    
2021 persson 1179 pData[128] = ReleaseTriggerDecay;
2022 schoenebeck 809
2023     // next 2 bytes unknown
2024    
2025     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2026 persson 1179 pData[131] = eg1hold;
2027 schoenebeck 809
2028 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2029 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2030 persson 1179 pData[132] = vcfcutoff;
2031 schoenebeck 809
2032 persson 1179 pData[133] = VCFCutoffController;
2033 schoenebeck 809
2034 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2035 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2036 persson 1179 pData[134] = vcfvelscale;
2037 schoenebeck 809
2038     // next byte unknown
2039    
2040 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2041 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2042 persson 1179 pData[136] = vcfresonance;
2043 schoenebeck 809
2044 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2045 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2046 persson 1179 pData[137] = vcfbreakpoint;
2047 schoenebeck 809
2048 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2049 schoenebeck 809 VCFVelocityCurve * 5;
2050 persson 1179 pData[138] = vcfvelocity;
2051 schoenebeck 809
2052     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2053 persson 1179 pData[139] = vcftype;
2054 persson 1070
2055     if (chunksize >= 148) {
2056     memcpy(&pData[140], DimensionUpperLimits, 8);
2057     }
2058 schoenebeck 809 }
2059    
2060 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2061     curve_type_t curveType = releaseVelocityResponseCurve;
2062     uint8_t depth = releaseVelocityResponseDepth;
2063     // this models a strange behaviour or bug in GSt: two of the
2064     // velocity response curves for release time are not used even
2065     // if specified, instead another curve is chosen.
2066     if ((curveType == curve_type_nonlinear && depth == 0) ||
2067     (curveType == curve_type_special && depth == 4)) {
2068     curveType = curve_type_nonlinear;
2069     depth = 3;
2070     }
2071     return GetVelocityTable(curveType, depth, 0);
2072     }
2073    
2074     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2075     uint8_t vcfVelocityDynamicRange,
2076     uint8_t vcfVelocityScale,
2077     vcf_cutoff_ctrl_t vcfCutoffController)
2078     {
2079     curve_type_t curveType = vcfVelocityCurve;
2080     uint8_t depth = vcfVelocityDynamicRange;
2081     // even stranger GSt: two of the velocity response curves for
2082     // filter cutoff are not used, instead another special curve
2083     // is chosen. This curve is not used anywhere else.
2084     if ((curveType == curve_type_nonlinear && depth == 0) ||
2085     (curveType == curve_type_special && depth == 4)) {
2086     curveType = curve_type_special;
2087     depth = 5;
2088     }
2089     return GetVelocityTable(curveType, depth,
2090     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2091     ? vcfVelocityScale : 0);
2092     }
2093    
2094 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2095     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2096     {
2097     double* table;
2098     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2099 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2100 persson 613 table = (*pVelocityTables)[tableKey];
2101 schoenebeck 16 }
2102     else {
2103 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2104     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2105 schoenebeck 16 }
2106 persson 613 return table;
2107 schoenebeck 2 }
2108 schoenebeck 55
2109 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2110     return pRegion;
2111     }
2112    
2113 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2114     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2115     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2116     //#pragma GCC diagnostic push
2117     //#pragma GCC diagnostic error "-Wswitch"
2118    
2119 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2120     leverage_ctrl_t decodedcontroller;
2121     switch (EncodedController) {
2122     // special controller
2123     case _lev_ctrl_none:
2124     decodedcontroller.type = leverage_ctrl_t::type_none;
2125     decodedcontroller.controller_number = 0;
2126     break;
2127     case _lev_ctrl_velocity:
2128     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2129     decodedcontroller.controller_number = 0;
2130     break;
2131     case _lev_ctrl_channelaftertouch:
2132     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2133     decodedcontroller.controller_number = 0;
2134     break;
2135 schoenebeck 55
2136 schoenebeck 36 // ordinary MIDI control change controller
2137     case _lev_ctrl_modwheel:
2138     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2139     decodedcontroller.controller_number = 1;
2140     break;
2141     case _lev_ctrl_breath:
2142     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2143     decodedcontroller.controller_number = 2;
2144     break;
2145     case _lev_ctrl_foot:
2146     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2147     decodedcontroller.controller_number = 4;
2148     break;
2149     case _lev_ctrl_effect1:
2150     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2151     decodedcontroller.controller_number = 12;
2152     break;
2153     case _lev_ctrl_effect2:
2154     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2155     decodedcontroller.controller_number = 13;
2156     break;
2157     case _lev_ctrl_genpurpose1:
2158     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2159     decodedcontroller.controller_number = 16;
2160     break;
2161     case _lev_ctrl_genpurpose2:
2162     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2163     decodedcontroller.controller_number = 17;
2164     break;
2165     case _lev_ctrl_genpurpose3:
2166     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2167     decodedcontroller.controller_number = 18;
2168     break;
2169     case _lev_ctrl_genpurpose4:
2170     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2171     decodedcontroller.controller_number = 19;
2172     break;
2173     case _lev_ctrl_portamentotime:
2174     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2175     decodedcontroller.controller_number = 5;
2176     break;
2177     case _lev_ctrl_sustainpedal:
2178     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2179     decodedcontroller.controller_number = 64;
2180     break;
2181     case _lev_ctrl_portamento:
2182     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2183     decodedcontroller.controller_number = 65;
2184     break;
2185     case _lev_ctrl_sostenutopedal:
2186     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2187     decodedcontroller.controller_number = 66;
2188     break;
2189     case _lev_ctrl_softpedal:
2190     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2191     decodedcontroller.controller_number = 67;
2192     break;
2193     case _lev_ctrl_genpurpose5:
2194     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2195     decodedcontroller.controller_number = 80;
2196     break;
2197     case _lev_ctrl_genpurpose6:
2198     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2199     decodedcontroller.controller_number = 81;
2200     break;
2201     case _lev_ctrl_genpurpose7:
2202     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2203     decodedcontroller.controller_number = 82;
2204     break;
2205     case _lev_ctrl_genpurpose8:
2206     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2207     decodedcontroller.controller_number = 83;
2208     break;
2209     case _lev_ctrl_effect1depth:
2210     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2211     decodedcontroller.controller_number = 91;
2212     break;
2213     case _lev_ctrl_effect2depth:
2214     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2215     decodedcontroller.controller_number = 92;
2216     break;
2217     case _lev_ctrl_effect3depth:
2218     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2219     decodedcontroller.controller_number = 93;
2220     break;
2221     case _lev_ctrl_effect4depth:
2222     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2223     decodedcontroller.controller_number = 94;
2224     break;
2225     case _lev_ctrl_effect5depth:
2226     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2227     decodedcontroller.controller_number = 95;
2228     break;
2229 schoenebeck 55
2230 schoenebeck 2540 // format extension (these controllers are so far only supported by
2231     // LinuxSampler & gigedit) they will *NOT* work with
2232     // Gigasampler/GigaStudio !
2233     case _lev_ctrl_CC3_EXT:
2234     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2235     decodedcontroller.controller_number = 3;
2236     break;
2237     case _lev_ctrl_CC6_EXT:
2238     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2239     decodedcontroller.controller_number = 6;
2240     break;
2241     case _lev_ctrl_CC7_EXT:
2242     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2243     decodedcontroller.controller_number = 7;
2244     break;
2245     case _lev_ctrl_CC8_EXT:
2246     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2247     decodedcontroller.controller_number = 8;
2248     break;
2249     case _lev_ctrl_CC9_EXT:
2250     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2251     decodedcontroller.controller_number = 9;
2252     break;
2253     case _lev_ctrl_CC10_EXT:
2254     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2255     decodedcontroller.controller_number = 10;
2256     break;
2257     case _lev_ctrl_CC11_EXT:
2258     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2259     decodedcontroller.controller_number = 11;
2260     break;
2261     case _lev_ctrl_CC14_EXT:
2262     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2263     decodedcontroller.controller_number = 14;
2264     break;
2265     case _lev_ctrl_CC15_EXT:
2266     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2267     decodedcontroller.controller_number = 15;
2268     break;
2269     case _lev_ctrl_CC20_EXT:
2270     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2271     decodedcontroller.controller_number = 20;
2272     break;
2273     case _lev_ctrl_CC21_EXT:
2274     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2275     decodedcontroller.controller_number = 21;
2276     break;
2277     case _lev_ctrl_CC22_EXT:
2278     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2279     decodedcontroller.controller_number = 22;
2280     break;
2281     case _lev_ctrl_CC23_EXT:
2282     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283     decodedcontroller.controller_number = 23;
2284     break;
2285     case _lev_ctrl_CC24_EXT:
2286     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287     decodedcontroller.controller_number = 24;
2288     break;
2289     case _lev_ctrl_CC25_EXT:
2290     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291     decodedcontroller.controller_number = 25;
2292     break;
2293     case _lev_ctrl_CC26_EXT:
2294     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295     decodedcontroller.controller_number = 26;
2296     break;
2297     case _lev_ctrl_CC27_EXT:
2298     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299     decodedcontroller.controller_number = 27;
2300     break;
2301     case _lev_ctrl_CC28_EXT:
2302     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303     decodedcontroller.controller_number = 28;
2304     break;
2305     case _lev_ctrl_CC29_EXT:
2306     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307     decodedcontroller.controller_number = 29;
2308     break;
2309     case _lev_ctrl_CC30_EXT:
2310     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311     decodedcontroller.controller_number = 30;
2312     break;
2313     case _lev_ctrl_CC31_EXT:
2314     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315     decodedcontroller.controller_number = 31;
2316     break;
2317     case _lev_ctrl_CC68_EXT:
2318     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319     decodedcontroller.controller_number = 68;
2320     break;
2321     case _lev_ctrl_CC69_EXT:
2322     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323     decodedcontroller.controller_number = 69;
2324     break;
2325     case _lev_ctrl_CC70_EXT:
2326     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327     decodedcontroller.controller_number = 70;
2328     break;
2329     case _lev_ctrl_CC71_EXT:
2330     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331     decodedcontroller.controller_number = 71;
2332     break;
2333     case _lev_ctrl_CC72_EXT:
2334     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335     decodedcontroller.controller_number = 72;
2336     break;
2337     case _lev_ctrl_CC73_EXT:
2338     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339     decodedcontroller.controller_number = 73;
2340     break;
2341     case _lev_ctrl_CC74_EXT:
2342     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343     decodedcontroller.controller_number = 74;
2344     break;
2345     case _lev_ctrl_CC75_EXT:
2346     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347     decodedcontroller.controller_number = 75;
2348     break;
2349     case _lev_ctrl_CC76_EXT:
2350     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351     decodedcontroller.controller_number = 76;
2352     break;
2353     case _lev_ctrl_CC77_EXT:
2354     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355     decodedcontroller.controller_number = 77;
2356     break;
2357     case _lev_ctrl_CC78_EXT:
2358     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359     decodedcontroller.controller_number = 78;
2360     break;
2361     case _lev_ctrl_CC79_EXT:
2362     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363     decodedcontroller.controller_number = 79;
2364     break;
2365     case _lev_ctrl_CC84_EXT:
2366     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367     decodedcontroller.controller_number = 84;
2368     break;
2369     case _lev_ctrl_CC85_EXT:
2370     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371     decodedcontroller.controller_number = 85;
2372     break;
2373     case _lev_ctrl_CC86_EXT:
2374     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2375     decodedcontroller.controller_number = 86;
2376     break;
2377     case _lev_ctrl_CC87_EXT:
2378     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379     decodedcontroller.controller_number = 87;
2380     break;
2381     case _lev_ctrl_CC89_EXT:
2382     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383     decodedcontroller.controller_number = 89;
2384     break;
2385     case _lev_ctrl_CC90_EXT:
2386     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387     decodedcontroller.controller_number = 90;
2388     break;
2389     case _lev_ctrl_CC96_EXT:
2390     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391     decodedcontroller.controller_number = 96;
2392     break;
2393     case _lev_ctrl_CC97_EXT:
2394     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395     decodedcontroller.controller_number = 97;
2396     break;
2397     case _lev_ctrl_CC102_EXT:
2398     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399     decodedcontroller.controller_number = 102;
2400     break;
2401     case _lev_ctrl_CC103_EXT:
2402     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403     decodedcontroller.controller_number = 103;
2404     break;
2405     case _lev_ctrl_CC104_EXT:
2406     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407     decodedcontroller.controller_number = 104;
2408     break;
2409     case _lev_ctrl_CC105_EXT:
2410     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411     decodedcontroller.controller_number = 105;
2412     break;
2413     case _lev_ctrl_CC106_EXT:
2414     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415     decodedcontroller.controller_number = 106;
2416     break;
2417     case _lev_ctrl_CC107_EXT:
2418     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419     decodedcontroller.controller_number = 107;
2420     break;
2421     case _lev_ctrl_CC108_EXT:
2422     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423     decodedcontroller.controller_number = 108;
2424     break;
2425     case _lev_ctrl_CC109_EXT:
2426     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427     decodedcontroller.controller_number = 109;
2428     break;
2429     case _lev_ctrl_CC110_EXT:
2430     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431     decodedcontroller.controller_number = 110;
2432     break;
2433     case _lev_ctrl_CC111_EXT:
2434     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435     decodedcontroller.controller_number = 111;
2436     break;
2437     case _lev_ctrl_CC112_EXT:
2438     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439     decodedcontroller.controller_number = 112;
2440     break;
2441     case _lev_ctrl_CC113_EXT:
2442     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443     decodedcontroller.controller_number = 113;
2444     break;
2445     case _lev_ctrl_CC114_EXT:
2446     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447     decodedcontroller.controller_number = 114;
2448     break;
2449     case _lev_ctrl_CC115_EXT:
2450     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2451     decodedcontroller.controller_number = 115;
2452     break;
2453     case _lev_ctrl_CC116_EXT:
2454     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2455     decodedcontroller.controller_number = 116;
2456     break;
2457     case _lev_ctrl_CC117_EXT:
2458     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2459     decodedcontroller.controller_number = 117;
2460     break;
2461     case _lev_ctrl_CC118_EXT:
2462     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2463     decodedcontroller.controller_number = 118;
2464     break;
2465     case _lev_ctrl_CC119_EXT:
2466     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2467     decodedcontroller.controller_number = 119;
2468     break;
2469    
2470 schoenebeck 36 // unknown controller type
2471     default:
2472     throw gig::Exception("Unknown leverage controller type.");
2473     }
2474     return decodedcontroller;
2475     }
2476 schoenebeck 2540
2477     // see above (diagnostic push not supported prior GCC 4.6)
2478     //#pragma GCC diagnostic pop
2479 schoenebeck 2
2480 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2481     _lev_ctrl_t encodedcontroller;
2482     switch (DecodedController.type) {
2483     // special controller
2484     case leverage_ctrl_t::type_none:
2485     encodedcontroller = _lev_ctrl_none;
2486     break;
2487     case leverage_ctrl_t::type_velocity:
2488     encodedcontroller = _lev_ctrl_velocity;
2489     break;
2490     case leverage_ctrl_t::type_channelaftertouch:
2491     encodedcontroller = _lev_ctrl_channelaftertouch;
2492     break;
2493    
2494     // ordinary MIDI control change controller
2495     case leverage_ctrl_t::type_controlchange:
2496     switch (DecodedController.controller_number) {
2497     case 1:
2498     encodedcontroller = _lev_ctrl_modwheel;
2499     break;
2500     case 2:
2501     encodedcontroller = _lev_ctrl_breath;
2502     break;
2503     case 4:
2504     encodedcontroller = _lev_ctrl_foot;
2505     break;
2506     case 12:
2507     encodedcontroller = _lev_ctrl_effect1;
2508     break;
2509     case 13:
2510     encodedcontroller = _lev_ctrl_effect2;
2511     break;
2512     case 16:
2513     encodedcontroller = _lev_ctrl_genpurpose1;
2514     break;
2515     case 17:
2516     encodedcontroller = _lev_ctrl_genpurpose2;
2517     break;
2518     case 18:
2519     encodedcontroller = _lev_ctrl_genpurpose3;
2520     break;
2521     case 19:
2522     encodedcontroller = _lev_ctrl_genpurpose4;
2523     break;
2524     case 5:
2525     encodedcontroller = _lev_ctrl_portamentotime;
2526     break;
2527     case 64:
2528     encodedcontroller = _lev_ctrl_sustainpedal;
2529     break;
2530     case 65:
2531     encodedcontroller = _lev_ctrl_portamento;
2532     break;
2533     case 66:
2534     encodedcontroller = _lev_ctrl_sostenutopedal;
2535     break;
2536     case 67:
2537     encodedcontroller = _lev_ctrl_softpedal;
2538     break;
2539     case 80:
2540     encodedcontroller = _lev_ctrl_genpurpose5;
2541     break;
2542     case 81:
2543     encodedcontroller = _lev_ctrl_genpurpose6;
2544     break;
2545     case 82:
2546     encodedcontroller = _lev_ctrl_genpurpose7;
2547     break;
2548     case 83:
2549     encodedcontroller = _lev_ctrl_genpurpose8;
2550     break;
2551     case 91:
2552     encodedcontroller = _lev_ctrl_effect1depth;
2553     break;
2554     case 92:
2555     encodedcontroller = _lev_ctrl_effect2depth;
2556     break;
2557     case 93:
2558     encodedcontroller = _lev_ctrl_effect3depth;
2559     break;
2560     case 94:
2561     encodedcontroller = _lev_ctrl_effect4depth;
2562     break;
2563     case 95:
2564     encodedcontroller = _lev_ctrl_effect5depth;
2565     break;
2566 schoenebeck 2540
2567     // format extension (these controllers are so far only
2568     // supported by LinuxSampler & gigedit) they will *NOT*
2569     // work with Gigasampler/GigaStudio !
2570     case 3:
2571     encodedcontroller = _lev_ctrl_CC3_EXT;
2572     break;
2573     case 6:
2574     encodedcontroller = _lev_ctrl_CC6_EXT;
2575     break;
2576     case 7:
2577     encodedcontroller = _lev_ctrl_CC7_EXT;
2578     break;
2579     case 8:
2580     encodedcontroller = _lev_ctrl_CC8_EXT;
2581     break;
2582     case 9:
2583     encodedcontroller = _lev_ctrl_CC9_EXT;
2584     break;
2585     case 10:
2586     encodedcontroller = _lev_ctrl_CC10_EXT;
2587     break;
2588     case 11:
2589     encodedcontroller = _lev_ctrl_CC11_EXT;
2590     break;
2591     case 14:
2592     encodedcontroller = _lev_ctrl_CC14_EXT;
2593     break;
2594     case 15:
2595     encodedcontroller = _lev_ctrl_CC15_EXT;
2596     break;
2597     case 20:
2598     encodedcontroller = _lev_ctrl_CC20_EXT;
2599     break;
2600     case 21:
2601     encodedcontroller = _lev_ctrl_CC21_EXT;
2602     break;
2603     case 22:
2604     encodedcontroller = _lev_ctrl_CC22_EXT;
2605     break;
2606     case 23:
2607     encodedcontroller = _lev_ctrl_CC23_EXT;
2608     break;
2609     case 24:
2610     encodedcontroller = _lev_ctrl_CC24_EXT;
2611     break;
2612     case 25:
2613     encodedcontroller = _lev_ctrl_CC25_EXT;
2614     break;
2615     case 26:
2616     encodedcontroller = _lev_ctrl_CC26_EXT;
2617     break;
2618     case 27:
2619     encodedcontroller = _lev_ctrl_CC27_EXT;
2620     break;
2621     case 28:
2622     encodedcontroller = _lev_ctrl_CC28_EXT;
2623     break;
2624     case 29:
2625     encodedcontroller = _lev_ctrl_CC29_EXT;
2626     break;
2627     case 30:
2628     encodedcontroller = _lev_ctrl_CC30_EXT;
2629     break;
2630     case 31:
2631     encodedcontroller = _lev_ctrl_CC31_EXT;
2632     break;
2633     case 68:
2634     encodedcontroller = _lev_ctrl_CC68_EXT;
2635     break;
2636     case 69:
2637     encodedcontroller = _lev_ctrl_CC69_EXT;
2638     break;
2639     case 70:
2640     encodedcontroller = _lev_ctrl_CC70_EXT;
2641     break;
2642     case 71:
2643     encodedcontroller = _lev_ctrl_CC71_EXT;
2644     break;
2645     case 72:
2646     encodedcontroller = _lev_ctrl_CC72_EXT;
2647     break;
2648     case 73:
2649     encodedcontroller = _lev_ctrl_CC73_EXT;
2650     break;
2651     case 74:
2652     encodedcontroller = _lev_ctrl_CC74_EXT;
2653     break;
2654     case 75:
2655     encodedcontroller = _lev_ctrl_CC75_EXT;
2656     break;
2657     case 76:
2658     encodedcontroller = _lev_ctrl_CC76_EXT;
2659     break;
2660     case 77:
2661     encodedcontroller = _lev_ctrl_CC77_EXT;
2662     break;
2663     case 78:
2664     encodedcontroller = _lev_ctrl_CC78_EXT;
2665     break;
2666     case 79:
2667     encodedcontroller = _lev_ctrl_CC79_EXT;
2668     break;
2669     case 84:
2670     encodedcontroller = _lev_ctrl_CC84_EXT;
2671     break;
2672     case 85:
2673     encodedcontroller = _lev_ctrl_CC85_EXT;
2674     break;
2675     case 86:
2676     encodedcontroller = _lev_ctrl_CC86_EXT;
2677     break;
2678     case 87:
2679     encodedcontroller = _lev_ctrl_CC87_EXT;
2680     break;
2681     case 89:
2682     encodedcontroller = _lev_ctrl_CC89_EXT;
2683     break;
2684     case 90:
2685     encodedcontroller = _lev_ctrl_CC90_EXT;
2686     break;
2687     case 96:
2688     encodedcontroller = _lev_ctrl_CC96_EXT;
2689     break;
2690     case 97:
2691     encodedcontroller = _lev_ctrl_CC97_EXT;
2692     break;
2693     case 102:
2694     encodedcontroller = _lev_ctrl_CC102_EXT;
2695     break;
2696     case 103:
2697     encodedcontroller = _lev_ctrl_CC103_EXT;
2698     break;
2699     case 104:
2700     encodedcontroller = _lev_ctrl_CC104_EXT;
2701     break;
2702     case 105:
2703     encodedcontroller = _lev_ctrl_CC105_EXT;
2704     break;
2705     case 106:
2706     encodedcontroller = _lev_ctrl_CC106_EXT;
2707     break;
2708     case 107:
2709     encodedcontroller = _lev_ctrl_CC107_EXT;
2710     break;
2711     case 108:
2712     encodedcontroller = _lev_ctrl_CC108_EXT;
2713     break;
2714     case 109:
2715     encodedcontroller = _lev_ctrl_CC109_EXT;
2716     break;
2717     case 110:
2718     encodedcontroller = _lev_ctrl_CC110_EXT;
2719     break;
2720     case 111:
2721     encodedcontroller = _lev_ctrl_CC111_EXT;
2722     break;
2723     case 112:
2724     encodedcontroller = _lev_ctrl_CC112_EXT;
2725     break;
2726     case 113:
2727     encodedcontroller = _lev_ctrl_CC113_EXT;
2728     break;
2729     case 114:
2730     encodedcontroller = _lev_ctrl_CC114_EXT;
2731     break;
2732     case 115:
2733     encodedcontroller = _lev_ctrl_CC115_EXT;
2734     break;
2735     case 116:
2736     encodedcontroller = _lev_ctrl_CC116_EXT;
2737     break;
2738     case 117:
2739     encodedcontroller = _lev_ctrl_CC117_EXT;
2740     break;
2741     case 118:
2742     encodedcontroller = _lev_ctrl_CC118_EXT;
2743     break;
2744     case 119:
2745     encodedcontroller = _lev_ctrl_CC119_EXT;
2746     break;
2747    
2748 schoenebeck 809 default:
2749     throw gig::Exception("leverage controller number is not supported by the gig format");
2750     }
2751 persson 1182 break;
2752 schoenebeck 809 default:
2753     throw gig::Exception("Unknown leverage controller type.");
2754     }
2755     return encodedcontroller;
2756     }
2757    
2758 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2759     Instances--;
2760     if (!Instances) {
2761     // delete the velocity->volume tables
2762     VelocityTableMap::iterator iter;
2763     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2764     double* pTable = iter->second;
2765     if (pTable) delete[] pTable;
2766     }
2767     pVelocityTables->clear();
2768     delete pVelocityTables;
2769     pVelocityTables = NULL;
2770     }
2771 persson 858 if (VelocityTable) delete[] VelocityTable;
2772 schoenebeck 16 }
2773 schoenebeck 2
2774 schoenebeck 16 /**
2775     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2776     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2777     * and VelocityResponseCurveScaling) involved are taken into account to
2778     * calculate the amplitude factor. Use this method when a key was
2779     * triggered to get the volume with which the sample should be played
2780     * back.
2781     *
2782 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2783     * @returns amplitude factor (between 0.0 and 1.0)
2784 schoenebeck 16 */
2785     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2786     return pVelocityAttenuationTable[MIDIKeyVelocity];
2787     }
2788 schoenebeck 2
2789 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2790     return pVelocityReleaseTable[MIDIKeyVelocity];
2791     }
2792    
2793 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2794     return pVelocityCutoffTable[MIDIKeyVelocity];
2795     }
2796    
2797 schoenebeck 1358 /**
2798     * Updates the respective member variable and the lookup table / cache
2799     * that depends on this value.
2800     */
2801     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2802     pVelocityAttenuationTable =
2803     GetVelocityTable(
2804     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2805     );
2806     VelocityResponseCurve = curve;
2807     }
2808    
2809     /**
2810     * Updates the respective member variable and the lookup table / cache
2811     * that depends on this value.
2812     */
2813     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2814     pVelocityAttenuationTable =
2815     GetVelocityTable(
2816     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2817     );
2818     VelocityResponseDepth = depth;
2819     }
2820    
2821     /**
2822     * Updates the respective member variable and the lookup table / cache
2823     * that depends on this value.
2824     */
2825     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2826     pVelocityAttenuationTable =
2827     GetVelocityTable(
2828     VelocityResponseCurve, VelocityResponseDepth, scaling
2829     );
2830     VelocityResponseCurveScaling = scaling;
2831     }
2832    
2833     /**
2834     * Updates the respective member variable and the lookup table / cache
2835     * that depends on this value.
2836     */
2837     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2838     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2839     ReleaseVelocityResponseCurve = curve;
2840     }
2841    
2842     /**
2843     * Updates the respective member variable and the lookup table / cache
2844     * that depends on this value.
2845     */
2846     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2847     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2848     ReleaseVelocityResponseDepth = depth;
2849     }
2850    
2851     /**
2852     * Updates the respective member variable and the lookup table / cache
2853     * that depends on this value.
2854     */
2855     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2856     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2857     VCFCutoffController = controller;
2858     }
2859    
2860     /**
2861     * Updates the respective member variable and the lookup table / cache
2862     * that depends on this value.
2863     */
2864     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2865     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2866     VCFVelocityCurve = curve;
2867     }
2868    
2869     /**
2870     * Updates the respective member variable and the lookup table / cache
2871     * that depends on this value.
2872     */
2873     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2874     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2875     VCFVelocityDynamicRange = range;
2876     }
2877    
2878     /**
2879     * Updates the respective member variable and the lookup table / cache
2880     * that depends on this value.
2881     */
2882     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2883     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2884     VCFVelocityScale = scaling;
2885     }
2886    
2887 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2888 schoenebeck 317
2889 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2890 schoenebeck 16
2891 schoenebeck 308 // linear
2892     const int lin0[] = { 1, 1, 127, 127 };
2893     const int lin1[] = { 1, 21, 127, 127 };
2894     const int lin2[] = { 1, 45, 127, 127 };
2895     const int lin3[] = { 1, 74, 127, 127 };
2896     const int lin4[] = { 1, 127, 127, 127 };
2897 schoenebeck 16
2898 schoenebeck 308 // non-linear
2899     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2900 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2901 schoenebeck 308 127, 127 };
2902     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2903     127, 127 };
2904     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2905     127, 127 };
2906     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2907 schoenebeck 317
2908 schoenebeck 308 // special
2909 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2910 schoenebeck 308 113, 127, 127, 127 };
2911     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2912     118, 127, 127, 127 };
2913 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2914 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2915 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2916 schoenebeck 308 117, 127, 127, 127 };
2917 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2918 schoenebeck 308 127, 127 };
2919 schoenebeck 317
2920 persson 728 // this is only used by the VCF velocity curve
2921     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2922     91, 127, 127, 127 };
2923    
2924 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2925 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2926 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2927 schoenebeck 317
2928 schoenebeck 308 double* const table = new double[128];
2929    
2930     const int* curve = curves[curveType * 5 + depth];
2931     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2932 schoenebeck 317
2933 schoenebeck 308 table[0] = 0;
2934     for (int x = 1 ; x < 128 ; x++) {
2935    
2936     if (x > curve[2]) curve += 2;
2937 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2938 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2939     y = y / 127;
2940    
2941     // Scale up for s > 20, down for s < 20. When
2942     // down-scaling, the curve still ends at 1.0.
2943     if (s < 20 && y >= 0.5)
2944     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2945     else
2946     y = y * (s / 20.0);
2947     if (y > 1) y = 1;
2948    
2949     table[x] = y;
2950     }
2951     return table;
2952     }
2953    
2954    
2955 schoenebeck 2 // *************** Region ***************
2956     // *
2957    
2958     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2959     // Initialization
2960     Dimensions = 0;
2961 schoenebeck 347 for (int i = 0; i < 256; i++) {
2962 schoenebeck 2 pDimensionRegions[i] = NULL;
2963     }
2964 schoenebeck 282 Layers = 1;
2965 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2966     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2967 schoenebeck 2
2968     // Actual Loading
2969    
2970 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2971    
2972 schoenebeck 2 LoadDimensionRegions(rgnList);
2973    
2974     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2975     if (_3lnk) {
2976     DimensionRegions = _3lnk->ReadUint32();
2977 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2978 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2979     uint8_t bits = _3lnk->ReadUint8();
2980 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2981     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2982 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2983 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2984     pDimensionDefinitions[i].dimension = dimension_none;
2985     pDimensionDefinitions[i].bits = 0;
2986     pDimensionDefinitions[i].zones = 0;
2987     pDimensionDefinitions[i].split_type = split_type_bit;
2988     pDimensionDefinitions[i].zone_size = 0;
2989     }
2990     else { // active dimension
2991     pDimensionDefinitions[i].dimension = dimension;
2992     pDimensionDefinitions[i].bits = bits;
2993 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2994 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2995     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2996 schoenebeck 2 Dimensions++;
2997 schoenebeck 282
2998     // if this is a layer dimension, remember the amount of layers
2999     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3000 schoenebeck 2 }
3001 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3002 schoenebeck 2 }
3003 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3004 schoenebeck 2
3005 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3006     // update the VelocityTables in the dimension regions
3007     UpdateVelocityTable();
3008 schoenebeck 2
3009 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3010     if (file->pVersion && file->pVersion->major == 3)
3011     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3012     else
3013     _3lnk->SetPos(44);
3014    
3015 schoenebeck 1524 // load sample references (if auto loading is enabled)
3016     if (file->GetAutoLoad()) {
3017     for (uint i = 0; i < DimensionRegions; i++) {
3018     uint32_t wavepoolindex = _3lnk->ReadUint32();
3019     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3020     }
3021     GetSample(); // load global region sample reference
3022 schoenebeck 2 }
3023 persson 1102 } else {
3024     DimensionRegions = 0;
3025 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3026     pDimensionDefinitions[i].dimension = dimension_none;
3027     pDimensionDefinitions[i].bits = 0;
3028     pDimensionDefinitions[i].zones = 0;
3029     }
3030 schoenebeck 2 }
3031 schoenebeck 823
3032     // make sure there is at least one dimension region
3033     if (!DimensionRegions) {
3034     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3035     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3036     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3037 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3038 schoenebeck 823 DimensionRegions = 1;
3039     }
3040 schoenebeck 2 }
3041    
3042 schoenebeck 809 /**
3043     * Apply Region settings and all its DimensionRegions to the respective
3044     * RIFF chunks. You have to call File::Save() to make changes persistent.
3045     *
3046     * Usually there is absolutely no need to call this method explicitly.
3047     * It will be called automatically when File::Save() was called.
3048     *
3049 schoenebeck 2682 * @param pProgress - callback function for progress notification
3050 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3051     */
3052 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3053 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3054     // but we still have to provide some existing one to not corrupt the
3055     // file, so to avoid the latter we simply always assign the sample of
3056     // the first dimension region of this region
3057     pSample = pDimensionRegions[0]->pSample;
3058    
3059 schoenebeck 809 // first update base class's chunks
3060 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3061 schoenebeck 809
3062     // update dimension region's chunks
3063 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3064 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3065 schoenebeck 823 }
3066 schoenebeck 809
3067 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3068     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3069 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3070     const int iMaxDimensionRegions = version3 ? 256 : 32;
3071 schoenebeck 809
3072     // make sure '3lnk' chunk exists
3073     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3074     if (!_3lnk) {
3075 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3076 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3077 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3078 persson 1192
3079     // move 3prg to last position
3080 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3081 schoenebeck 809 }
3082    
3083     // update dimension definitions in '3lnk' chunk
3084     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3085 persson 1179 store32(&pData[0], DimensionRegions);
3086 persson 1199 int shift = 0;
3087 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3088 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3089     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3090 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3091 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3092 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3093 persson 1199 // next 3 bytes unknown, always zero?
3094    
3095     shift += pDimensionDefinitions[i].bits;
3096 schoenebeck 809 }
3097    
3098     // update wave pool table in '3lnk' chunk
3099 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3100 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3101     int iWaveIndex = -1;
3102     if (i < DimensionRegions) {
3103 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3104     File::SampleList::iterator iter = pFile->pSamples->begin();
3105     File::SampleList::iterator end = pFile->pSamples->end();
3106 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3107 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3108     iWaveIndex = index;
3109     break;
3110     }
3111 schoenebeck 809 }
3112     }
3113 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3114 schoenebeck 809 }
3115     }
3116    
3117 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3118     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3119     if (_3prg) {
3120     int dimensionRegionNr = 0;
3121     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3122     while (_3ewl) {
3123     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3124 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3125 schoenebeck 2 dimensionRegionNr++;
3126     }
3127     _3ewl = _3prg->GetNextSubList();
3128     }
3129     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3130     }
3131     }
3132    
3133 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3134     // update KeyRange struct and make sure regions are in correct order
3135     DLS::Region::SetKeyRange(Low, High);
3136     // update Region key table for fast lookup
3137     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3138     }
3139    
3140 persson 858 void Region::UpdateVelocityTable() {
3141     // get velocity dimension's index
3142     int veldim = -1;
3143     for (int i = 0 ; i < Dimensions ; i++) {
3144     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3145     veldim = i;
3146 schoenebeck 809 break;
3147     }
3148     }
3149 persson 858 if (veldim == -1) return;
3150 schoenebeck 809
3151 persson 858 int step = 1;
3152     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3153     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3154 schoenebeck 809
3155 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3156     int dim[8] = { 0 };
3157     for (int i = 0 ; i < DimensionRegions ; i++) {
3158 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3159 persson 858
3160 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3161 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3162     pDimensionRegions[i]->VelocityUpperLimit) {
3163 persson 858 // create the velocity table
3164     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3165     if (!table) {
3166     table = new uint8_t[128];
3167     pDimensionRegions[i]->VelocityTable = table;
3168     }
3169     int tableidx = 0;
3170     int velocityZone = 0;
3171 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3172     for (int k = i ; k < end ; k += step) {
3173     DimensionRegion *d = pDimensionRegions[k];
3174     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3175     velocityZone++;
3176     }
3177     } else { // gig2
3178     for (int k = i ; k < end ; k += step) {
3179     DimensionRegion *d = pDimensionRegions[k];
3180     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3181     velocityZone++;
3182     }
3183 persson 858 }
3184     } else {
3185     if (pDimensionRegions[i]->VelocityTable) {
3186     delete[] pDimensionRegions[i]->VelocityTable;
3187     pDimensionRegions[i]->VelocityTable = 0;
3188     }
3189 schoenebeck 809 }
3190 persson 858
3191 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3192 persson 858 int j;
3193     int shift = 0;
3194     for (j = 0 ; j < Dimensions ; j++) {
3195     if (j == veldim) i += skipveldim; // skip velocity dimension
3196     else {
3197     dim[j]++;
3198     if (dim[j] < pDimensionDefinitions[j].zones) break;
3199     else {
3200     // skip unused dimension regions
3201     dim[j] = 0;
3202     i += ((1 << pDimensionDefinitions[j].bits) -
3203     pDimensionDefinitions[j].zones) << shift;
3204     }
3205     }
3206     shift += pDimensionDefinitions[j].bits;
3207     }
3208     if (j == Dimensions) break;
3209 schoenebeck 809 }
3210     }
3211    
3212     /** @brief Einstein would have dreamed of it - create a new dimension.
3213     *
3214     * Creates a new dimension with the dimension definition given by
3215     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3216     * There is a hard limit of dimensions and total amount of "bits" all
3217     * dimensions can have. This limit is dependant to what gig file format
3218     * version this file refers to. The gig v2 (and lower) format has a
3219     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3220     * format has a limit of 8.
3221     *
3222     * @param pDimDef - defintion of the new dimension
3223     * @throws gig::Exception if dimension of the same type exists already
3224     * @throws gig::Exception if amount of dimensions or total amount of
3225     * dimension bits limit is violated
3226     */
3227     void Region::AddDimension(dimension_def_t* pDimDef) {
3228 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3229     if (pDimDef->zones < 2)
3230     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3231     if (pDimDef->bits < 1)
3232     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3233     if (pDimDef->dimension == dimension_samplechannel) {
3234     if (pDimDef->zones != 2)
3235     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3236     if (pDimDef->bits != 1)
3237     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3238     }
3239    
3240 schoenebeck 809 // check if max. amount of dimensions reached
3241     File* file = (File*) GetParent()->GetParent();
3242     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3243     if (Dimensions >= iMaxDimensions)
3244     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3245     // check if max. amount of dimension bits reached
3246     int iCurrentBits = 0;
3247     for (int i = 0; i < Dimensions; i++)
3248     iCurrentBits += pDimensionDefinitions[i].bits;
3249     if (iCurrentBits >= iMaxDimensions)
3250     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3251     const int iNewBits = iCurrentBits + pDimDef->bits;
3252     if (iNewBits > iMaxDimensions)
3253     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3254     // check if there's already a dimensions of the same type
3255     for (int i = 0; i < Dimensions; i++)
3256     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3257     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3258    
3259 persson 1301 // pos is where the new dimension should be placed, normally
3260     // last in list, except for the samplechannel dimension which
3261     // has to be first in list
3262     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3263     int bitpos = 0;
3264     for (int i = 0 ; i < pos ; i++)
3265     bitpos += pDimensionDefinitions[i].bits;
3266    
3267     // make room for the new dimension
3268     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3269     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3270     for (int j = Dimensions ; j > pos ; j--) {
3271     pDimensionRegions[i]->DimensionUpperLimits[j] =
3272     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3273     }
3274     }
3275    
3276 schoenebeck 809 // assign definition of new dimension
3277 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3278 schoenebeck 809
3279 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3280 persson 1301 pDimensionDefinitions[pos].split_type =
3281     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3282     pDimensionDefinitions[pos].zone_size =
3283     __resolveZoneSize(pDimensionDefinitions[pos]);
3284 schoenebeck 1113
3285 persson 1301 // create new dimension region(s) for this new dimension, and make
3286     // sure that the dimension regions are placed correctly in both the
3287     // RIFF list and the pDimensionRegions array
3288     RIFF::Chunk* moveTo = NULL;
3289     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3290     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3291     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3292     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3293     }
3294     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3295     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3296     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3297     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3298     // create a new dimension region and copy all parameter values from
3299     // an existing dimension region
3300     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3301     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3302 persson 1247
3303 persson 1301 DimensionRegions++;
3304     }
3305     }
3306     moveTo = pDimensionRegions[i]->pParentList;
3307 schoenebeck 809 }
3308    
3309 persson 1247 // initialize the upper limits for this dimension
3310 persson 1301 int mask = (1 << bitpos) - 1;
3311     for (int z = 0 ; z < pDimDef->zones ; z++) {
3312 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3313 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3314 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3315     (z << bitpos) |
3316     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3317 persson 1247 }
3318     }
3319    
3320 schoenebeck 809 Dimensions++;
3321    
3322     // if this is a layer dimension, update 'Layers' attribute
3323     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3324    
3325 persson 858 UpdateVelocityTable();
3326 schoenebeck 809 }
3327    
3328     /** @brief Delete an existing dimension.
3329     *
3330     * Deletes the dimension given by \a pDimDef and deletes all respective
3331     * dimension regions, that is all dimension regions where the dimension's
3332     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3333     * for example this would delete all dimension regions for the case(s)
3334     * where the sustain pedal is pressed down.
3335     *
3336     * @param pDimDef - dimension to delete
3337     * @throws gig::Exception if given dimension cannot be found
3338     */
3339     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3340     // get dimension's index
3341     int iDimensionNr = -1;
3342     for (int i = 0; i < Dimensions; i++) {
3343     if (&pDimensionDefinitions[i] == pDimDef) {
3344     iDimensionNr = i;
3345     break;
3346     }
3347     }
3348     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3349    
3350     // get amount of bits below the dimension to delete
3351     int iLowerBits = 0;
3352     for (int i = 0; i < iDimensionNr; i++)
3353     iLowerBits += pDimensionDefinitions[i].bits;
3354    
3355     // get amount ot bits above the dimension to delete
3356     int iUpperBits = 0;
3357     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3358     iUpperBits += pDimensionDefinitions[i].bits;
3359    
3360 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3361    
3362 schoenebeck 809 // delete dimension regions which belong to the given dimension
3363     // (that is where the dimension's bit > 0)
3364     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3365     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3366     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3367     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3368     iObsoleteBit << iLowerBits |
3369     iLowerBit;
3370 persson 1247
3371     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3372 schoenebeck 809 delete pDimensionRegions[iToDelete];
3373     pDimensionRegions[iToDelete] = NULL;
3374     DimensionRegions--;
3375     }
3376     }
3377     }
3378    
3379     // defrag pDimensionRegions array
3380     // (that is remove the NULL spaces within the pDimensionRegions array)
3381     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3382     if (!pDimensionRegions[iTo]) {
3383     if (iFrom <= iTo) iFrom = iTo + 1;
3384     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3385     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3386     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3387     pDimensionRegions[iFrom] = NULL;
3388     }
3389     }
3390     }
3391    
3392 persson 1247 // remove the this dimension from the upper limits arrays
3393     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3394     DimensionRegion* d = pDimensionRegions[j];
3395     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3396     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3397     }
3398     d->DimensionUpperLimits[Dimensions - 1] = 127;
3399     }
3400    
3401 schoenebeck 809 // 'remove' dimension definition
3402     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3403     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3404     }
3405     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3406     pDimensionDefinitions[Dimensions - 1].bits = 0;
3407     pDimensionDefinitions[Dimensions - 1].zones = 0;
3408    
3409     Dimensions--;
3410    
3411     // if this was a layer dimension, update 'Layers' attribute
3412     if (pDimDef->dimension == dimension_layer) Layers = 1;
3413     }
3414    
3415 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3416     *
3417     * Instead of deleting an entire dimensions, this method will only delete
3418     * one particular split zone given by @a zone of the Region's dimension
3419     * given by @a type. So this method will simply decrement the amount of
3420     * zones by one of the dimension in question. To be able to do that, the
3421     * respective dimension must exist on this Region and it must have at least
3422     * 3 zones. All DimensionRegion objects associated with the zone will be
3423     * deleted.
3424     *
3425     * @param type - identifies the dimension where a zone shall be deleted
3426     * @param zone - index of the dimension split zone that shall be deleted
3427     * @throws gig::Exception if requested zone could not be deleted
3428     */
3429     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3430     dimension_def_t* oldDef = GetDimensionDefinition(type);
3431     if (!oldDef)
3432     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3433     if (oldDef->zones <= 2)
3434     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3435     if (zone < 0 || zone >= oldDef->zones)
3436     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3437    
3438     const int newZoneSize = oldDef->zones - 1;
3439    
3440     // create a temporary Region which just acts as a temporary copy
3441     // container and will be deleted at the end of this function and will
3442     // also not be visible through the API during this process
3443     gig::Region* tempRgn = NULL;
3444     {
3445     // adding these temporary chunks is probably not even necessary
3446     Instrument* instr = static_cast<Instrument*>(GetParent());
3447     RIFF::List* pCkInstrument = instr->pCkInstrument;
3448     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3449     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3450     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3451     tempRgn = new Region(instr, rgn);
3452     }
3453    
3454     // copy this region's dimensions (with already the dimension split size
3455     // requested by the arguments of this method call) to the temporary
3456     // region, and don't use Region::CopyAssign() here for this task, since
3457     // it would also alter fast lookup helper variables here and there
3458     dimension_def_t newDef;
3459     for (int i = 0; i < Dimensions; ++i) {
3460     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3461     // is this the dimension requested by the method arguments? ...
3462     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3463     def.zones = newZoneSize;
3464     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3465     newDef = def;
3466     }
3467     tempRgn->AddDimension(&def);
3468     }
3469    
3470     // find the dimension index in the tempRegion which is the dimension
3471     // type passed to this method (paranoidly expecting different order)
3472     int tempReducedDimensionIndex = -1;
3473     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3474     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3475     tempReducedDimensionIndex = d;
3476     break;
3477     }
3478     }
3479    
3480     // copy dimension regions from this region to the temporary region
3481     for (int iDst = 0; iDst < 256; ++iDst) {
3482     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3483     if (!dstDimRgn) continue;
3484     std::map<dimension_t,int> dimCase;
3485     bool isValidZone = true;
3486     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3487     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3488     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3489     (iDst >> baseBits) & ((1 << dstBits) - 1);
3490     baseBits += dstBits;
3491     // there are also DimensionRegion objects of unused zones, skip them
3492     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3493     isValidZone = false;
3494     break;
3495     }
3496     }
3497     if (!isValidZone) continue;
3498     // a bit paranoid: cope with the chance that the dimensions would
3499     // have different order in source and destination regions
3500     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3501     if (dimCase[type] >= zone) dimCase[type]++;
3502     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3503     dstDimRgn->CopyAssign(srcDimRgn);
3504     // if this is the upper most zone of the dimension passed to this
3505     // method, then correct (raise) its upper limit to 127
3506     if (newDef.split_type == split_type_normal && isLastZone)
3507     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3508     }
3509    
3510     // now tempRegion's dimensions and DimensionRegions basically reflect
3511     // what we wanted to get for this actual Region here, so we now just
3512     // delete and recreate the dimension in question with the new amount
3513     // zones and then copy back from tempRegion
3514     DeleteDimension(oldDef);
3515     AddDimension(&newDef);
3516     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3517     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3518     if (!srcDimRgn) continue;
3519     std::map<dimension_t,int> dimCase;
3520     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3521     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3522     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3523     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3524     baseBits += srcBits;
3525     }
3526     // a bit paranoid: cope with the chance that the dimensions would
3527     // have different order in source and destination regions
3528     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3529     if (!dstDimRgn) continue;
3530     dstDimRgn->CopyAssign(srcDimRgn);
3531     }
3532    
3533     // delete temporary region
3534     delete tempRgn;
3535 schoenebeck 2557
3536     UpdateVelocityTable();
3537 schoenebeck 2555 }
3538    
3539     /** @brief Divide split zone of a dimension in two (increment zone amount).
3540     *
3541     * This will increment the amount of zones for the dimension (given by
3542     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3543     * in the middle of its zone range in two. So the two zones resulting from
3544     * the zone being splitted, will be an equivalent copy regarding all their
3545     * articulation informations and sample reference. The two zones will only
3546     * differ in their zone's upper limit
3547     * (DimensionRegion::DimensionUpperLimits).
3548     *
3549     * @param type - identifies the dimension where a zone shall be splitted
3550     * @param zone - index of the dimension split zone that shall be splitted
3551     * @throws gig::Exception if requested zone could not be splitted
3552     */
3553     void Region::SplitDimensionZone(dimension_t type, int zone) {
3554     dimension_def_t* oldDef = GetDimensionDefinition(type);
3555     if (!oldDef)
3556     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3557     if (zone < 0 || zone >= oldDef->zones)
3558     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3559    
3560     const int newZoneSize = oldDef->zones + 1;
3561    
3562     // create a temporary Region which just acts as a temporary copy
3563     // container and will be deleted at the end of this function and will
3564     // also not be visible through the API during this process
3565     gig::Region* tempRgn = NULL;
3566     {
3567     // adding these temporary chunks is probably not even necessary
3568     Instrument* instr = static_cast<Instrument*>(GetParent());
3569     RIFF::List* pCkInstrument = instr->pCkInstrument;
3570     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3571     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3572     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3573     tempRgn = new Region(instr, rgn);
3574     }
3575    
3576     // copy this region's dimensions (with already the dimension split size
3577     // requested by the arguments of this method call) to the temporary
3578     // region, and don't use Region::CopyAssign() here for this task, since
3579     // it would also alter fast lookup helper variables here and there
3580     dimension_def_t newDef;
3581     for (int i = 0; i < Dimensions; ++i) {
3582     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3583     // is this the dimension requested by the method arguments? ...
3584     if (def.dimension == type) { // ... if yes, increment zone amount by one
3585     def.zones = newZoneSize;
3586     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3587     newDef = def;
3588     }
3589     tempRgn->AddDimension(&def);
3590     }
3591    
3592     // find the dimension index in the tempRegion which is the dimension
3593     // type passed to this method (paranoidly expecting different order)
3594     int tempIncreasedDimensionIndex = -1;
3595     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3596     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3597     tempIncreasedDimensionIndex = d;
3598     break;
3599     }
3600     }
3601    
3602     // copy dimension regions from this region to the temporary region
3603     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3604     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3605     if (!srcDimRgn) continue;
3606     std::map<dimension_t,int> dimCase;
3607     bool isValidZone = true;
3608     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3609     const int srcBits = pDimensionDefinitions[d].bits;
3610     dimCase[pDimensionDefinitions[d].dimension] =
3611     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3612     // there are also DimensionRegion objects for unused zones, skip them
3613     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3614     isValidZone = false;
3615     break;
3616     }
3617     baseBits += srcBits;
3618     }
3619     if (!isValidZone) continue;
3620     // a bit paranoid: cope with the chance that the dimensions would
3621     // have different order in source and destination regions
3622     if (dimCase[type] > zone) dimCase[type]++;
3623     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3624     dstDimRgn->CopyAssign(srcDimRgn);
3625     // if this is the requested zone to be splitted, then also copy
3626     // the source DimensionRegion to the newly created target zone
3627     // and set the old zones upper limit lower
3628     if (dimCase[type] == zone) {
3629     // lower old zones upper limit
3630     if (newDef.split_type == split_type_normal) {
3631     const int high =
3632     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3633     int low = 0;
3634     if (zone > 0) {
3635     std::map<dimension_t,int> lowerCase = dimCase;
3636     lowerCase[type]--;
3637     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3638     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3639     }
3640     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3641     }
3642     // fill the newly created zone of the divided zone as well
3643     dimCase[type]++;
3644     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3645     dstDimRgn->CopyAssign(srcDimRgn);
3646     }
3647     }
3648    
3649     // now tempRegion's dimensions and DimensionRegions basically reflect
3650     // what we wanted to get for this actual Region here, so we now just
3651     // delete and recreate the dimension in question with the new amount
3652     // zones and then copy back from tempRegion
3653     DeleteDimension(oldDef);
3654     AddDimension(&newDef);
3655     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3656     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3657     if (!srcDimRgn) continue;
3658     std::map<dimension_t,int> dimCase;
3659     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3660     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3661     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3662     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3663     baseBits += srcBits;
3664     }
3665     // a bit paranoid: cope with the chance that the dimensions would
3666     // have different order in source and destination regions
3667     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3668     if (!dstDimRgn) continue;
3669     dstDimRgn->CopyAssign(srcDimRgn);
3670     }
3671    
3672     // delete temporary region
3673     delete tempRgn;
3674 schoenebeck 2557
3675     UpdateVelocityTable();
3676 schoenebeck 2555 }
3677    
3678 schoenebeck 2639 /** @brief Change type of an existing dimension.
3679     *
3680     * Alters the dimension type of a dimension already existing on this
3681     * region. If there is currently no dimension on this Region with type
3682     * @a oldType, then this call with throw an Exception. Likewise there are
3683     * cases where the requested dimension type cannot be performed. For example
3684     * if the new dimension type shall be gig::dimension_samplechannel, and the
3685     * current dimension has more than 2 zones. In such cases an Exception is
3686     * thrown as well.
3687     *
3688     * @param oldType - identifies the existing dimension to be changed
3689     * @param newType - to which dimension type it should be changed to
3690     * @throws gig::Exception if requested change cannot be performed
3691     */
3692     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3693     if (oldType == newType) return;
3694     dimension_def_t* def = GetDimensionDefinition(oldType);
3695     if (!def)
3696     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3697     if (newType == dimension_samplechannel && def->zones != 2)
3698     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3699 schoenebeck 2640 if (GetDimensionDefinition(newType))
3700     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3701     def->dimension = newType;
3702 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3703     }
3704    
3705 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3706     uint8_t bits[8] = {};
3707     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3708     it != DimCase.end(); ++it)
3709     {
3710     for (int d = 0; d < Dimensions; ++d) {
3711     if (pDimensionDefinitions[d].dimension == it->first) {
3712     bits[d] = it->second;
3713     goto nextDimCaseSlice;
3714     }
3715     }
3716     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3717     nextDimCaseSlice:
3718     ; // noop
3719     }
3720     return GetDimensionRegionByBit(bits);
3721     }
3722    
3723 schoenebeck 2547 /**
3724     * Searches in the current Region for a dimension of the given dimension
3725     * type and returns the precise configuration of that dimension in this
3726     * Region.
3727     *
3728     * @param type - dimension type of the sought dimension
3729     * @returns dimension definition or NULL if there is no dimension with
3730     * sought type in this Region.
3731     */
3732     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3733     for (int i = 0; i < Dimensions; ++i)
3734     if (pDimensionDefinitions[i].dimension == type)
3735     return &pDimensionDefinitions[i];
3736     return NULL;
3737     }
3738    
3739 schoenebeck 2 Region::~Region() {
3740 schoenebeck 350 for (int i = 0; i < 256; i++) {
3741 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3742     }
3743     }
3744    
3745     /**
3746     * Use this method in your audio engine to get the appropriate dimension
3747     * region with it's articulation data for the current situation. Just
3748     * call the method with the current MIDI controller values and you'll get
3749     * the DimensionRegion with the appropriate articulation data for the
3750     * current situation (for this Region of course only). To do that you'll
3751     * first have to look which dimensions with which controllers and in
3752     * which order are defined for this Region when you load the .gig file.
3753     * Special cases are e.g. layer or channel dimensions where you just put
3754     * in the index numbers instead of a MIDI controller value (means 0 for
3755     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3756     * etc.).
3757     *
3758 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3759 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3760     * @see pDimensionDefinitions
3761     * @see Dimensions
3762     */
3763 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3764 persson 858 uint8_t bits;
3765     int veldim = -1;
3766     int velbitpos;
3767     int bitpos = 0;
3768     int dimregidx = 0;
3769 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3770 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3771     // the velocity dimension must be handled after the other dimensions
3772     veldim = i;
3773     velbitpos = bitpos;
3774     } else {
3775     switch (pDimensionDefinitions[i].split_type) {
3776     case split_type_normal:
3777 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3778     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3779     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3780     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3781     }
3782     } else {
3783     // gig2: evenly sized zones
3784     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3785     }
3786 persson 858 break;
3787     case split_type_bit: // the value is already the sought dimension bit number
3788     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3789     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3790     break;
3791     }
3792     dimregidx |= bits << bitpos;
3793 schoenebeck 2 }
3794 persson 858 bitpos += pDimensionDefinitions[i].bits;
3795 schoenebeck 2 }
3796 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3797     if (!dimreg) return NULL;
3798 persson 858 if (veldim != -1) {
3799     // (dimreg is now the dimension region for the lowest velocity)
3800 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
3801 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3802 persson 858 else // normal split type
3803 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3804 persson 858
3805 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3806     dimregidx |= (bits & limiter_mask) << velbitpos;
3807     dimreg = pDimensionRegions[dimregidx & 255];
3808 persson 858 }
3809     return dimreg;
3810 schoenebeck 2 }
3811    
3812 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3813     uint8_t bits;
3814     int veldim = -1;
3815     int velbitpos;
3816     int bitpos = 0;
3817     int dimregidx = 0;
3818     for (uint i = 0; i < Dimensions; i++) {
3819     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3820     // the velocity dimension must be handled after the other dimensions
3821     veldim = i;
3822     velbitpos = bitpos;
3823     } else {
3824     switch (pDimensionDefinitions[i].split_type) {
3825     case split_type_normal:
3826     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3827     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3828     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3829     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3830     }
3831     } else {
3832     // gig2: evenly sized zones
3833     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3834     }
3835     break;
3836     case split_type_bit: // the value is already the sought dimension bit number
3837     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3838     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3839     break;
3840     }
3841     dimregidx |= bits << bitpos;
3842     }
3843     bitpos += pDimensionDefinitions[i].bits;
3844     }
3845     dimregidx &= 255;
3846     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3847     if (!dimreg) return -1;
3848     if (veldim != -1) {
3849     // (dimreg is now the dimension region for the lowest velocity)
3850     if (dimreg->VelocityTable) // custom defined zone ranges
3851     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3852     else // normal split type
3853     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3854    
3855     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3856     dimregidx |= (bits & limiter_mask) << velbitpos;
3857     dimregidx &= 255;
3858     }
3859     return dimregidx;
3860     }
3861    
3862 schoenebeck 2 /**
3863     * Returns the appropriate DimensionRegion for the given dimension bit
3864     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3865     * instead of calling this method directly!
3866     *
3867 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
3868 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
3869     * bit numbers
3870     * @see GetDimensionRegionByValue()
3871     */
3872 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3873     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3874     << pDimensionDefinitions[5].bits | DimBits[5])
3875     << pDimensionDefinitions[4].bits | DimBits[4])
3876     << pDimensionDefinitions[3].bits | DimBits[3])
3877     << pDimensionDefinitions[2].bits | DimBits[2])
3878     << pDimensionDefinitions[1].bits | DimBits[1])
3879     << pDimensionDefinitions[0].bits | DimBits[0]];
3880 schoenebeck 2 }
3881    
3882     /**
3883     * Returns pointer address to the Sample referenced with this region.
3884     * This is the global Sample for the entire Region (not sure if this is
3885     * actually used by the Gigasampler engine - I would only use the Sample
3886     * referenced by the appropriate DimensionRegion instead of this sample).
3887     *
3888     * @returns address to Sample or NULL if there is no reference to a
3889     * sample saved in the .gig file
3890     */
3891     Sample* Region::GetSample() {
3892     if (pSample) return static_cast<gig::Sample*>(pSample);
3893     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3894     }
3895    
3896 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3897 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3898 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
3899 persson 902 if (!file->pWavePoolTable) return NULL;
3900 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
3901     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3902     // use 64 bit wave pool offsets (treating this as large file)
3903 schoenebeck 2912 uint64_t soughtoffset =
3904     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3905     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3906     Sample* sample = file->GetFirstSample(pProgress);
3907     while (sample) {
3908     if (sample->ullWavePoolOffset == soughtoffset)
3909     return static_cast<gig::Sample*>(sample);
3910     sample = file->GetNextSample();
3911     }
3912     } else {
3913 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
3914 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3915     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3916     Sample* sample = file->GetFirstSample(pProgress);
3917     while (sample) {
3918     if (sample->ullWavePoolOffset == soughtoffset &&
3919     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3920     sample = file->GetNextSample();
3921     }
3922 schoenebeck 2 }
3923     return NULL;
3924     }
3925 schoenebeck 2394
3926     /**
3927     * Make a (semi) deep copy of the Region object given by @a orig
3928     * and assign it to this object.
3929     *
3930     * Note that all sample pointers referenced by @a orig are simply copied as
3931     * memory address. Thus the respective samples are shared, not duplicated!
3932     *
3933     * @param orig - original Region object to be copied from
3934     */
3935     void Region::CopyAssign(const Region* orig) {
3936 schoenebeck 2482 CopyAssign(orig, NULL);
3937     }
3938    
3939     /**
3940     * Make a (semi) deep copy of the Region object given by @a orig and
3941     * assign it to this object
3942     *
3943     * @param mSamples - crosslink map between the foreign file's samples and
3944     * this file's samples
3945     */
3946     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3947 schoenebeck 2394 // handle base classes
3948     DLS::Region::CopyAssign(orig);
3949    
3950 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3951     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3952     }
3953    
3954 schoenebeck 2394 // handle own member variables
3955     for (int i = Dimensions - 1; i >= 0; --i) {
3956     DeleteDimension(&pDimensionDefinitions[i]);
3957     }
3958     Layers = 0; // just to be sure
3959     for (int i = 0; i < orig->Dimensions; i++) {
3960     // we need to copy the dim definition here, to avoid the compiler
3961     // complaining about const-ness issue
3962     dimension_def_t def = orig->pDimensionDefinitions[i];
3963     AddDimension(&def);
3964     }
3965     for (int i = 0; i < 256; i++) {
3966     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3967     pDimensionRegions[i]->CopyAssign(
3968 schoenebeck 2482 orig->pDimensionRegions[i],
3969     mSamples
3970 schoenebeck 2394 );
3971     }
3972     }
3973     Layers = orig->Layers;
3974     }
3975 schoenebeck 2
3976    
3977 persson 1627 // *************** MidiRule ***************
3978     // *
3979 schoenebeck 2
3980 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3981     _3ewg->SetPos(36);
3982     Triggers = _3ewg->ReadUint8();
3983     _3ewg->SetPos(40);
3984     ControllerNumber = _3ewg->ReadUint8();
3985     _3ewg->SetPos(46);
3986     for (int i = 0 ; i < Triggers ; i++) {
3987     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3988     pTriggers[i].Descending = _3ewg->ReadUint8();
3989     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3990     pTriggers[i].Key = _3ewg->ReadUint8();
3991     pTriggers[i].NoteOff = _3ewg->ReadUint8();
3992     pTriggers[i].Velocity = _3ewg->ReadUint8();
3993     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3994     _3ewg->ReadUint8();
3995     }
3996 persson 1627 }
3997    
3998 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3999     ControllerNumber(0),
4000     Triggers(0) {
4001     }
4002 persson 1627
4003 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4004     pData[32] = 4;
4005     pData[33] = 16;
4006     pData[36] = Triggers;
4007     pData[40] = ControllerNumber;
4008     for (int i = 0 ; i < Triggers ; i++) {
4009     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4010     pData[47 + i * 8] = pTriggers[i].Descending;
4011     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4012     pData[49 + i * 8] = pTriggers[i].Key;
4013     pData[50 + i * 8] = pTriggers[i].NoteOff;
4014     pData[51 + i * 8] = pTriggers[i].Velocity;
4015     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4016     }
4017     }
4018    
4019     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4020     _3ewg->SetPos(36);
4021     LegatoSamples = _3ewg->ReadUint8(); // always 12
4022     _3ewg->SetPos(40);
4023     BypassUseController = _3ewg->ReadUint8();
4024     BypassKey = _3ewg->ReadUint8();
4025     BypassController = _3ewg->ReadUint8();
4026     ThresholdTime = _3ewg->ReadUint16();
4027     _3ewg->ReadInt16();
4028     ReleaseTime = _3ewg->ReadUint16();
4029     _3ewg->ReadInt16();
4030     KeyRange.low = _3ewg->ReadUint8();
4031     KeyRange.high = _3ewg->ReadUint8();
4032     _3ewg->SetPos(64);
4033     ReleaseTriggerKey = _3ewg->ReadUint8();
4034     AltSustain1Key = _3ewg->ReadUint8();
4035     AltSustain2Key = _3ewg->ReadUint8();
4036     }
4037    
4038     MidiRuleLegato::MidiRuleLegato() :
4039     LegatoSamples(12),
4040     BypassUseController(false),
4041     BypassKey(0),
4042     BypassController(1),
4043     ThresholdTime(20),
4044     ReleaseTime(20),
4045     ReleaseTriggerKey(0),
4046     AltSustain1Key(0),
4047     AltSustain2Key(0)
4048     {
4049     KeyRange.low = KeyRange.high = 0;
4050     }
4051    
4052     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4053     pData[32] = 0;
4054     pData[33] = 16;
4055     pData[36] = LegatoSamples;
4056     pData[40] = BypassUseController;
4057     pData[41] = BypassKey;
4058     pData[42] = BypassController;
4059     store16(&pData[43], ThresholdTime);
4060     store16(&pData[47], ReleaseTime);
4061     pData[51] = KeyRange.low;
4062     pData[52] = KeyRange.high;
4063     pData[64] = ReleaseTriggerKey;
4064     pData[65] = AltSustain1Key;
4065     pData[66] = AltSustain2Key;
4066     }
4067    
4068     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4069     _3ewg->SetPos(36);
4070     Articulations = _3ewg->ReadUint8();
4071     int flags = _3ewg->ReadUint8();
4072     Polyphonic = flags & 8;
4073     Chained = flags & 4;
4074     Selector = (flags & 2) ? selector_controller :
4075     (flags & 1) ? selector_key_switch : selector_none;
4076     Patterns = _3ewg->ReadUint8();
4077     _3ewg->ReadUint8(); // chosen row
4078     _3ewg->ReadUint8(); // unknown
4079     _3ewg->ReadUint8(); // unknown
4080     _3ewg->ReadUint8(); // unknown
4081     KeySwitchRange.low = _3ewg->ReadUint8();
4082     KeySwitchRange.high = _3ewg->ReadUint8();
4083     Controller = _3ewg->ReadUint8();
4084     PlayRange.low = _3ewg->ReadUint8();
4085     PlayRange.high = _3ewg->ReadUint8();
4086    
4087     int n = std::min(int(Articulations), 32);
4088     for (int i = 0 ; i < n ; i++) {
4089     _3ewg->ReadString(pArticulations[i], 32);
4090     }
4091     _3ewg->SetPos(1072);
4092     n = std::min(int(Patterns), 32);
4093     for (int i = 0 ; i < n ; i++) {
4094     _3ewg->ReadString(pPatterns[i].Name, 16);
4095     pPatterns[i].Size = _3ewg->ReadUint8();
4096     _3ewg->Read(&pPatterns[i][0], 1, 32);
4097     }
4098     }
4099    
4100     MidiRuleAlternator::MidiRuleAlternator() :
4101     Articulations(0),
4102     Patterns(0),
4103     Selector(selector_none),
4104     Controller(0),
4105     Polyphonic(false),
4106     Chained(false)
4107     {
4108     PlayRange.low = PlayRange.high = 0;
4109     KeySwitchRange.low = KeySwitchRange.high = 0;
4110     }
4111    
4112     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4113     pData[32] = 3;
4114     pData[33] = 16;
4115     pData[36] = Articulations;
4116     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4117     (Selector == selector_controller ? 2 :
4118     (Selector == selector_key_switch ? 1 : 0));
4119     pData[38] = Patterns;
4120    
4121     pData[43] = KeySwitchRange.low;
4122     pData[44] = KeySwitchRange.high;
4123     pData[45] = Controller;
4124     pData[46] = PlayRange.low;
4125     pData[47] = PlayRange.high;
4126    
4127     char* str = reinterpret_cast<char*>(pData);
4128     int pos = 48;
4129     int n = std::min(int(Articulations), 32);
4130     for (int i = 0 ; i < n ; i++, pos += 32) {
4131     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4132     }
4133    
4134     pos = 1072;
4135     n = std::min(int(Patterns), 32);
4136     for (int i = 0 ; i < n ; i++, pos += 49) {
4137     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4138     pData[pos + 16] = pPatterns[i].Size;
4139     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4140     }
4141     }
4142    
4143 schoenebeck 2584 // *************** Script ***************
4144     // *
4145    
4146     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4147     pGroup = group;
4148     pChunk = ckScri;
4149     if (ckScri) { // object is loaded from file ...
4150     // read header
4151     uint32_t headerSize = ckScri->ReadUint32();
4152     Compression = (Compression_t) ckScri->ReadUint32();
4153     Encoding = (Encoding_t) ckScri->ReadUint32();
4154     Language = (Language_t) ckScri->ReadUint32();
4155     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4156     crc = ckScri->ReadUint32();
4157     uint32_t nameSize = ckScri->ReadUint32();
4158     Name.resize(nameSize, ' ');
4159     for (int i = 0; i < nameSize; ++i)
4160     Name[i] = ckScri->ReadUint8();
4161     // to handle potential future extensions of the header
4162 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4163 schoenebeck 2584 // read actual script data
4164     uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4165     data.resize(scriptSize);
4166     for (int i = 0; i < scriptSize; ++i)
4167     data[i] = ckScri->ReadUint8();
4168     } else { // this is a new script object, so just initialize it as such ...
4169     Compression = COMPRESSION_NONE;
4170     Encoding = ENCODING_ASCII;
4171     Language = LANGUAGE_NKSP;
4172     Bypass = false;
4173     crc = 0;
4174     Name = "Unnamed Script";
4175     }
4176     }
4177    
4178     Script::~Script() {
4179     }
4180    
4181     /**
4182     * Returns the current script (i.e. as source code) in text format.
4183     */
4184     String Script::GetScriptAsText() {
4185     String s;
4186     s.resize(data.size(), ' ');
4187     memcpy(&s[0], &data[0], data.size());
4188     return s;
4189     }
4190    
4191     /**
4192     * Replaces the current script with the new script source code text given
4193     * by @a text.
4194     *
4195     * @param text - new script source code
4196     */
4197     void Script::SetScriptAsText(const String& text) {
4198     data.resize(text.size());
4199     memcpy(&data[0], &text[0], text.size());
4200     }
4201    
4202 schoenebeck 2682 /**
4203     * Apply this script to the respective RIFF chunks. You have to call
4204     * File::Save() to make changes persistent.
4205     *
4206     * Usually there is absolutely no need to call this method explicitly.
4207     * It will be called automatically when File::Save() was called.
4208     *
4209     * @param pProgress - callback function for progress notification
4210     */
4211     void Script::UpdateChunks(progress_t* pProgress) {
4212 schoenebeck 2584 // recalculate CRC32 check sum
4213     __resetCRC(crc);
4214     __calculateCRC(&data[0], data.size(), crc);
4215     __encodeCRC(crc);
4216     // make sure chunk exists and has the required size
4217     const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4218     if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4219     else pChunk->Resize(chunkSize);
4220     // fill the chunk data to be written to disk
4221     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4222     int pos = 0;
4223     store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4224     pos += sizeof(int32_t);
4225     store32(&pData[pos], Compression);
4226     pos += sizeof(int32_t);
4227     store32(&pData[pos], Encoding);
4228     pos += sizeof(int32_t);
4229     store32(&pData[pos], Language);
4230     pos += sizeof(int32_t);
4231     store32(&pData[pos], Bypass ? 1 : 0);
4232     pos += sizeof(int32_t);
4233     store32(&pData[pos], crc);
4234     pos += sizeof(int32_t);
4235     store32(&pData[pos], Name.size());
4236     pos += sizeof(int32_t);
4237     for (int i = 0; i < Name.size(); ++i, ++pos)
4238     pData[pos] = Name[i];
4239     for (int i = 0; i < data.size(); ++i, ++pos)
4240     pData[pos] = data[i];
4241     }
4242    
4243     /**
4244     * Move this script from its current ScriptGroup to another ScriptGroup
4245     * given by @a pGroup.
4246     *
4247     * @param pGroup - script's new group
4248     */
4249     void Script::SetGroup(ScriptGroup* pGroup) {
4250 persson 2836 if (this->pGroup == pGroup) return;
4251 schoenebeck 2584 if (pChunk)
4252     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4253     this->pGroup = pGroup;
4254     }
4255    
4256 schoenebeck 2601 /**
4257     * Returns the script group this script currently belongs to. Each script
4258     * is a member of exactly one ScriptGroup.
4259     *
4260     * @returns current script group
4261     */
4262     ScriptGroup* Script::GetGroup() const {
4263     return pGroup;
4264     }
4265    
4266 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4267     File* pFile = pGroup->pFile;
4268     for (int i = 0; pFile->GetInstrument(i); ++i) {
4269     Instrument* instr = pFile->GetInstrument(i);
4270     instr->RemoveScript(this);
4271     }
4272     }
4273    
4274     // *************** ScriptGroup ***************
4275     // *
4276    
4277     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4278     pFile = file;
4279     pList = lstRTIS;
4280     pScripts = NULL;
4281     if (lstRTIS) {
4282     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4283     ::LoadString(ckName, Name);
4284     } else {
4285     Name = "Default Group";
4286     }
4287     }
4288    
4289     ScriptGroup::~ScriptGroup() {
4290     if (pScripts) {
4291     std::list<Script*>::iterator iter = pScripts->begin();
4292     std::list<Script*>::iterator end = pScripts->end();
4293     while (iter != end) {
4294     delete *iter;
4295     ++iter;
4296     }
4297     delete pScripts;
4298     }
4299     }
4300    
4301 schoenebeck 2682 /**
4302     * Apply this script group to the respective RIFF chunks. You have to call
4303     * File::Save() to make changes persistent.
4304     *
4305     * Usually there is absolutely no need to call this method explicitly.
4306     * It will be called automatically when File::Save() was called.
4307     *
4308     * @param pProgress - callback function for progress notification
4309     */
4310     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4311 schoenebeck 2584 if (pScripts) {
4312     if (!pList)
4313     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4314    
4315     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4316     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4317    
4318     for (std::list<Script*>::iterator it = pScripts->begin();
4319     it != pScripts->end(); ++it)
4320     {
4321 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4322 schoenebeck 2584 }
4323     }
4324     }
4325    
4326     /** @brief Get instrument script.
4327     *
4328     * Returns the real-time instrument script with the given index.
4329     *
4330     * @param index - number of the sought script (0..n)
4331     * @returns sought script or NULL if there's no such script
4332     */
4333     Script* ScriptGroup::GetScript(uint index) {
4334     if (!pScripts) LoadScripts();
4335     std::list<Script*>::iterator it = pScripts->begin();
4336     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4337     if (i == index) return *it;
4338     return NULL;
4339     }
4340    
4341     /** @brief Add new instrument script.
4342     *
4343     * Adds a new real-time instrument script to the file. The script is not
4344     * actually used / executed unless it is referenced by an instrument to be
4345     * used. This is similar to samples, which you can add to a file, without
4346     * an instrument necessarily actually using it.
4347     *
4348     * You have to call Save() to make this persistent to the file.
4349     *
4350     * @return new empty script object
4351     */
4352     Script* ScriptGroup::AddScript() {
4353     if (!pScripts) LoadScripts();
4354     Script* pScript = new Script(this, NULL);
4355     pScripts->push_back(pScript);
4356     return pScript;
4357     }
4358    
4359     /** @brief Delete an instrument script.
4360     *
4361     * This will delete the given real-time instrument script. References of
4362     * instruments that are using that script will be removed accordingly.
4363     *
4364     * You have to call Save() to make this persistent to the file.
4365     *
4366     * @param pScript - script to delete
4367     * @throws gig::Exception if given script could not be found
4368     */
4369     void ScriptGroup::DeleteScript(Script* pScript) {
4370     if (!pScripts) LoadScripts();
4371     std::list<Script*>::iterator iter =
4372     find(pScripts->begin(), pScripts->end(), pScript);
4373     if (iter == pScripts->end())
4374     throw gig::Exception("Could not delete script, could not find given script");
4375     pScripts->erase(iter);
4376     pScript->RemoveAllScriptReferences();
4377     if (pScript->pChunk)
4378     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4379     delete pScript;
4380     }
4381    
4382     void ScriptGroup::LoadScripts() {
4383     if (pScripts) return;
4384     pScripts = new std::list<Script*>;
4385     if (!pList) return;
4386    
4387     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4388     ck = pList->GetNextSubChunk())
4389     {
4390     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4391     pScripts->push_back(new Script(this, ck));
4392     }
4393     }
4394     }
4395    
4396 schoenebeck 2 // *************** Instrument ***************
4397     // *
4398    
4399 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4400 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4401 persson 1180 { CHUNK_ID_INAM, 64 },
4402     { CHUNK_ID_ISFT, 12 },
4403     { 0, 0 }
4404     };
4405 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4406 persson 918
4407 schoenebeck 2 // Initialization
4408     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4409 persson 1182 EffectSend = 0;
4410     Attenuation = 0;
4411     FineTune = 0;
4412     PitchbendRange = 0;
4413     PianoReleaseMode = false;
4414     DimensionKeyRange.low = 0;
4415     DimensionKeyRange.high = 0;
4416 persson 1678 pMidiRules = new MidiRule*[3];
4417     pMidiRules[0] = NULL;
4418 schoenebeck 2584 pScriptRefs = NULL;
4419 schoenebeck 2
4420     // Loading
4421     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4422     if (lart) {
4423     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4424     if (_3ewg) {
4425     EffectSend = _3ewg->ReadUint16();
4426     Attenuation = _3ewg->ReadInt32();
4427     FineTune = _3ewg->ReadInt16();
4428     PitchbendRange = _3ewg->ReadInt16();
4429     uint8_t dimkeystart = _3ewg->ReadUint8();
4430     PianoReleaseMode = dimkeystart & 0x01;
4431     DimensionKeyRange.low = dimkeystart >> 1;
4432     DimensionKeyRange.high = _3ewg->ReadUint8();
4433 persson 1627
4434     if (_3ewg->GetSize() > 32) {
4435     // read MIDI rules
4436 persson 1678 int i = 0;
4437 persson 1627 _3ewg->SetPos(32);
4438     uint8_t id1 = _3ewg->ReadUint8();
4439     uint8_t id2 = _3ewg->ReadUint8();
4440    
4441 persson 2450 if (id2 == 16) {
4442     if (id1 == 4) {
4443     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4444     } else if (id1 == 0) {
4445     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4446     } else if (id1 == 3) {
4447     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4448     } else {
4449     pMidiRules[i++] = new MidiRuleUnknown;
4450     }
4451 persson 1627 }
4452 persson 2450 else if (id1 != 0 || id2 != 0) {
4453     pMidiRules[i++] = new MidiRuleUnknown;
4454     }
4455 persson 1627 //TODO: all the other types of rules
4456 persson 1678
4457     pMidiRules[i] = NULL;
4458 persson 1627 }
4459 schoenebeck 2 }
4460     }
4461    
4462 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4463     if (!pRegions) pRegions = new RegionList;
4464     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4465     if (lrgn) {
4466     RIFF::List* rgn = lrgn->GetFirstSubList();
4467     while (rgn) {
4468     if (rgn->GetListType() == LIST_TYPE_RGN) {
4469     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4470     pRegions->push_back(new Region(this, rgn));
4471     }
4472     rgn = lrgn->GetNextSubList();
4473 schoenebeck 809 }
4474 schoenebeck 1524 // Creating Region Key Table for fast lookup
4475     UpdateRegionKeyTable();
4476 schoenebeck 2 }
4477     }
4478    
4479 schoenebeck 2584 // own gig format extensions
4480     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4481     if (lst3LS) {
4482     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4483     if (ckSCSL) {
4484 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4485     int slotCount = ckSCSL->ReadUint32();
4486     if (slotCount) {
4487     int slotSize = ckSCSL->ReadUint32();
4488     ckSCSL->SetPos(headerSize); // in case of future header extensions
4489     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4490     for (int i = 0; i < slotCount; ++i) {
4491     _ScriptPooolEntry e;
4492     e.fileOffset = ckSCSL->ReadUint32();
4493     e.bypass = ckSCSL->ReadUint32() & 1;
4494     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4495     scriptPoolFileOffsets.push_back(e);
4496     }
4497 schoenebeck 2584 }
4498     }
4499     }
4500    
4501 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4502     }
4503    
4504     void Instrument::UpdateRegionKeyTable() {
4505 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4506 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4507     RegionList::iterator end = pRegions->end();
4508     for (; iter != end; ++iter) {
4509     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4510     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4511     RegionKeyTable[iKey] = pRegion;
4512 schoenebeck 2 }
4513     }
4514     }
4515    
4516     Instrument::~Instrument() {
4517 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4518     delete pMidiRules[i];
4519     }
4520 persson 1678 delete[] pMidiRules;
4521 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4522 schoenebeck 2 }
4523    
4524     /**
4525 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4526     * You have to call File::Save() to make changes persistent.
4527     *
4528     * Usually there is absolutely no need to call this method explicitly.
4529     * It will be called automatically when File::Save() was called.
4530     *
4531 schoenebeck 2682 * @param pProgress - callback function for progress notification
4532 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4533     */
4534 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4535 schoenebeck 809 // first update base classes' chunks
4536 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4537 schoenebeck 809
4538     // update Regions' chunks
4539 schoenebeck 823 {
4540     RegionList::iterator iter = pRegions->begin();
4541     RegionList::iterator end = pRegions->end();
4542     for (; iter != end; ++iter)
4543 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4544 schoenebeck 823 }
4545 schoenebeck 809
4546     // make sure 'lart' RIFF list chunk exists
4547     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4548     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4549     // make sure '3ewg' RIFF chunk exists
4550     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4551 persson 1264 if (!_3ewg) {
4552     File* pFile = (File*) GetParent();
4553    
4554     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4555     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4556     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4557     memset(_3ewg->LoadChunkData(), 0, size);
4558     }
4559 schoenebeck 809 // update '3ewg' RIFF chunk
4560     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4561 persson 1179 store16(&pData[0], EffectSend);
4562     store32(&pData[2], Attenuation);
4563     store16(&pData[6], FineTune);
4564     store16(&pData[8], PitchbendRange);
4565 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4566 schoenebeck 809 DimensionKeyRange.low << 1;
4567 persson 1179 pData[10] = dimkeystart;
4568     pData[11] = DimensionKeyRange.high;
4569 persson 2450
4570     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4571     pData[32] = 0;
4572     pData[33] = 0;
4573     } else {
4574     for (int i = 0 ; pMidiRules[i] ; i++) {
4575     pMidiRules[i]->UpdateChunks(pData);
4576     }
4577     }
4578 schoenebeck 2584
4579     // own gig format extensions
4580 schoenebeck 2648 if (ScriptSlotCount()) {
4581     // make sure we have converted the original loaded script file
4582     // offsets into valid Script object pointers
4583     LoadScripts();
4584    
4585 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4586     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4587 schoenebeck 2609 const int slotCount = pScriptRefs->size();
4588     const int headerSize = 3 * sizeof(uint32_t);
4589     const int slotSize = 2 * sizeof(uint32_t);
4590     const int totalChunkSize = headerSize + slotCount * slotSize;
4591 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4592 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4593     else ckSCSL->Resize(totalChunkSize);
4594 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4595 schoenebeck 2609 int pos = 0;
4596     store32(&pData[pos], headerSize);
4597     pos += sizeof(uint32_t);
4598     store32(&pData[pos], slotCount);
4599     pos += sizeof(uint32_t);
4600     store32(&pData[pos], slotSize);
4601     pos += sizeof(uint32_t);
4602     for (int i = 0; i < slotCount; ++i) {
4603     // arbitrary value, the actual file offset will be updated in
4604     // UpdateScriptFileOffsets() after the file has been resized
4605     int bogusFileOffset = 0;
4606     store32(&pData[pos], bogusFileOffset);
4607 schoenebeck 2584 pos += sizeof(uint32_t);
4608     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4609     pos += sizeof(uint32_t);
4610     }
4611 schoenebeck 2648 } else {
4612     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4613     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4614     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4615 schoenebeck 2584 }
4616 schoenebeck 809 }
4617    
4618 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4619     // own gig format extensions
4620 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4621 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4622     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4623     const int slotCount = pScriptRefs->size();
4624     const int headerSize = 3 * sizeof(uint32_t);
4625     ckSCSL->SetPos(headerSize);
4626     for (int i = 0; i < slotCount; ++i) {
4627     uint32_t fileOffset =
4628     (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4629     (*pScriptRefs)[i].script->pChunk->GetPos() -
4630 schoenebeck 2912 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize());
4631 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4632     // jump over flags entry (containing the bypass flag)
4633     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4634     }
4635     }
4636     }
4637    
4638 schoenebeck 809 /**
4639 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4640     *
4641     * @param Key MIDI Key number of triggered note / key (0 - 127)
4642     * @returns pointer adress to the appropriate Region or NULL if there
4643     * there is no Region defined for the given \a Key
4644     */
4645     Region* Instrument::GetRegion(unsigned int Key) {
4646 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4647 schoenebeck 2 return RegionKeyTable[Key];
4648 schoenebeck 823
4649 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4650     if (Key <= pRegions[i]->KeyRange.high &&
4651     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4652     }
4653     return NULL;*/
4654     }
4655    
4656     /**
4657     * Returns the first Region of the instrument. You have to call this
4658     * method once before you use GetNextRegion().
4659     *
4660     * @returns pointer address to first region or NULL if there is none
4661     * @see GetNextRegion()
4662     */
4663     Region* Instrument::GetFirstRegion() {
4664 schoenebeck 823 if (!pRegions) return NULL;
4665     RegionsIterator = pRegions->begin();
4666     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4667 schoenebeck 2 }
4668    
4669     /**
4670     * Returns the next Region of the instrument. You have to call
4671     * GetFirstRegion() once before you can use this method. By calling this
4672     * method multiple times it iterates through the available Regions.
4673     *
4674     * @returns pointer address to the next region or NULL if end reached
4675     * @see GetFirstRegion()
4676     */
4677     Region* Instrument::GetNextRegion() {
4678 schoenebeck 823 if (!pRegions) return NULL;
4679     RegionsIterator++;
4680     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4681 schoenebeck 2 }
4682    
4683 schoenebeck 809 Region* Instrument::AddRegion() {
4684     // create new Region object (and its RIFF chunks)
4685     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4686     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4687     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4688     Region* pNewRegion = new Region(this, rgn);
4689 schoenebeck 823 pRegions->push_back(pNewRegion);
4690     Regions = pRegions->size();
4691 schoenebeck 809 // update Region key table for fast lookup
4692     UpdateRegionKeyTable();
4693     // done
4694     return pNewRegion;
4695     }
4696 schoenebeck 2
4697 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4698     if (!pRegions) return;
4699 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4700 schoenebeck 809 // update Region key table for fast lookup
4701     UpdateRegionKeyTable();
4702     }
4703 schoenebeck 2
4704 persson 1627 /**
4705 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4706     *
4707     * This method can be used to reorder the sequence of instruments in a
4708     * .gig file. This might be helpful especially on large .gig files which
4709     * contain a large number of instruments within the same .gig file. So
4710     * grouping such instruments to similar ones, can help to keep track of them
4711     * when working with such complex .gig files.
4712     *
4713     * When calling this method, this instrument will be removed from in its
4714     * current position in the instruments list and moved to the requested
4715     * target position provided by @param dst. You may also pass NULL as
4716     * argument to this method, in that case this intrument will be moved to the
4717     * very end of the .gig file's instrument list.
4718     *
4719     * You have to call Save() to make the order change persistent to the .gig
4720     * file.
4721     *
4722     * Currently this method is limited to moving the instrument within the same
4723     * .gig file. Trying to move it to another .gig file by calling this method
4724     * will throw an exception.
4725     *
4726     * @param dst - destination instrument at which this instrument will be
4727     * moved to, or pass NULL for moving to end of list
4728     * @throw gig::Exception if this instrument and target instrument are not
4729     * part of the same file
4730     */
4731     void Instrument::MoveTo(Instrument* dst) {
4732     if (dst && GetParent() != dst->GetParent())
4733     throw Exception(
4734     "gig::Instrument::MoveTo() can only be used for moving within "
4735     "the same gig file."
4736     );
4737    
4738     File* pFile = (File*) GetParent();
4739    
4740     // move this instrument within the instrument list
4741     {
4742 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
4743 schoenebeck 2700
4744 persson 2836 File::InstrumentList::iterator itFrom =
4745 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4746    
4747 persson 2836 File::InstrumentList::iterator itTo =
4748 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4749    
4750     list.splice(itTo, list, itFrom);
4751     }
4752    
4753     // move the instrument's actual list RIFF chunk appropriately
4754     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4755     lstCkInstruments->MoveSubChunk(
4756     this->pCkInstrument,
4757 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4758 schoenebeck 2700 );
4759     }
4760    
4761     /**
4762 persson 1678 * Returns a MIDI rule of the instrument.
4763 persson 1627 *
4764     * The list of MIDI rules, at least in gig v3, always contains at
4765     * most two rules. The second rule can only be the DEF filter
4766     * (which currently isn't supported by libgig).
4767     *
4768 persson 1678 * @param i - MIDI rule number
4769     * @returns pointer address to MIDI rule number i or NULL if there is none
4770 persson 1627 */
4771 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
4772     return pMidiRules[i];
4773 persson 1627 }
4774 persson 2450
4775 schoenebeck 2394 /**
4776 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
4777     *
4778     * @returns the new MIDI rule
4779     */
4780     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4781     delete pMidiRules[0];
4782     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4783     pMidiRules[0] = r;
4784     pMidiRules[1] = 0;
4785     return r;
4786     }
4787    
4788     /**
4789     * Adds the legato MIDI rule to the instrument.
4790     *
4791     * @returns the new MIDI rule
4792     */
4793     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4794     delete pMidiRules[0];
4795     MidiRuleLegato* r = new MidiRuleLegato;
4796     pMidiRules[0] = r;
4797     pMidiRules[1] = 0;
4798     return r;
4799     }
4800    
4801     /**
4802     * Adds the alternator MIDI rule to the instrument.
4803     *
4804     * @returns the new MIDI rule
4805     */
4806     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4807     delete pMidiRules[0];
4808     MidiRuleAlternator* r = new MidiRuleAlternator;
4809     pMidiRules[0] = r;
4810     pMidiRules[1] = 0;
4811     return r;
4812     }
4813    
4814     /**
4815     * Deletes a MIDI rule from the instrument.
4816     *
4817     * @param i - MIDI rule number
4818     */
4819     void Instrument::DeleteMidiRule(int i) {
4820     delete pMidiRules[i];
4821     pMidiRules[i] = 0;
4822     }
4823    
4824 schoenebeck 2584 void Instrument::LoadScripts() {
4825     if (pScriptRefs) return;
4826     pScriptRefs = new std::vector<_ScriptPooolRef>;
4827     if (scriptPoolFileOffsets.empty()) return;
4828     File* pFile = (File*) GetParent();
4829     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4830 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4831 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4832     ScriptGroup* group = pFile->GetScriptGroup(i);
4833     for (uint s = 0; group->GetScript(s); ++s) {
4834     Script* script = group->GetScript(s);
4835     if (script->pChunk) {
4836 schoenebeck 2609 uint32_t offset = script->pChunk->GetFilePos() -
4837     script->pChunk->GetPos() -
4838 schoenebeck 2912 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize());
4839 schoenebeck 2609 if (offset == soughtOffset)
4840 schoenebeck 2584 {
4841     _ScriptPooolRef ref;
4842     ref.script = script;
4843     ref.bypass = scriptPoolFileOffsets[k].bypass;
4844     pScriptRefs->push_back(ref);
4845     break;
4846     }
4847     }
4848     }
4849     }
4850     }
4851     // we don't need that anymore
4852     scriptPoolFileOffsets.clear();
4853     }
4854    
4855 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
4856 schoenebeck 2584 *
4857 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
4858     * @a index.
4859     *
4860     * @note This is an own format extension which did not exist i.e. in the
4861     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4862     * gigedit.
4863     *
4864     * @param index - instrument script slot index
4865     * @returns script or NULL if index is out of bounds
4866     */
4867     Script* Instrument::GetScriptOfSlot(uint index) {
4868     LoadScripts();
4869     if (index >= pScriptRefs->size()) return NULL;
4870     return pScriptRefs->at(index).script;
4871     }
4872    
4873     /** @brief Add new instrument script slot (gig format extension).
4874     *
4875 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
4876     * which shall be executed by the sampler for for this instrument. The
4877     * script will be added to the end of the script list of this instrument.
4878     * The positions of the scripts in the Instrument's Script list are
4879     * relevant, because they define in which order they shall be executed by
4880     * the sampler. For this reason it is also legal to add the same script
4881     * twice to an instrument, for example you might have a script called
4882     * "MyFilter" which performs an event filter task, and you might have
4883     * another script called "MyNoteTrigger" which triggers new notes, then you
4884     * might for example have the following list of scripts on the instrument:
4885     *
4886     * 1. Script "MyFilter"
4887     * 2. Script "MyNoteTrigger"
4888     * 3. Script "MyFilter"
4889     *
4890     * Which would make sense, because the 2nd script launched new events, which
4891     * you might need to filter as well.
4892     *
4893     * There are two ways to disable / "bypass" scripts. You can either disable
4894     * a script locally for the respective script slot on an instrument (i.e. by
4895     * passing @c false to the 2nd argument of this method, or by calling
4896     * SetScriptBypassed()). Or you can disable a script globally for all slots
4897     * and all instruments by setting Script::Bypass.
4898     *
4899     * @note This is an own format extension which did not exist i.e. in the
4900     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4901     * gigedit.
4902     *
4903     * @param pScript - script that shall be executed for this instrument
4904     * @param bypass - if enabled, the sampler shall skip executing this
4905     * script (in the respective list position)
4906     * @see SetScriptBypassed()
4907     */
4908     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4909     LoadScripts();
4910     _ScriptPooolRef ref = { pScript, bypass };
4911     pScriptRefs->push_back(ref);
4912     }
4913    
4914     /** @brief Flip two script slots with each other (gig format extension).
4915     *
4916     * Swaps the position of the two given scripts in the Instrument's Script
4917     * list. The positions of the scripts in the Instrument's Script list are
4918     * relevant, because they define in which order they shall be executed by
4919     * the sampler.
4920     *
4921     * @note This is an own format extension which did not exist i.e. in the
4922     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4923     * gigedit.
4924     *
4925     * @param index1 - index of the first script slot to swap
4926     * @param index2 - index of the second script slot to swap
4927     */
4928     void Instrument::SwapScriptSlots(uint index1, uint index2) {
4929     LoadScripts();
4930     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4931     return;
4932     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4933     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4934     (*pScriptRefs)[index2] = tmp;
4935     }
4936    
4937     /** @brief Remove script slot.
4938     *
4939     * Removes the script slot with the given slot index.
4940     *
4941     * @param index - index of script slot to remove
4942     */
4943     void Instrument::RemoveScriptSlot(uint index) {
4944     LoadScripts();
4945     if (index >= pScriptRefs->size()) return;
4946     pScriptRefs->erase( pScriptRefs->begin() + index );
4947     }
4948    
4949     /** @brief Remove reference to given Script (gig format extension).
4950     *
4951     * This will remove all script slots on the instrument which are referencing
4952     * the given script.
4953     *
4954     * @note This is an own format extension which did not exist i.e. in the
4955     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4956     * gigedit.
4957     *
4958     * @param pScript - script reference to remove from this instrument
4959     * @see RemoveScriptSlot()
4960     */
4961     void Instrument::RemoveScript(Script* pScript) {
4962     LoadScripts();
4963     for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4964     if ((*pScriptRefs)[i].script == pScript) {
4965     pScriptRefs->erase( pScriptRefs->begin() + i );
4966     }
4967     }
4968     }
4969    
4970     /** @brief Instrument's amount of script slots.
4971     *
4972     * This method returns the amount of script slots this instrument currently
4973     * uses.
4974     *
4975     * A script slot is a reference of a real-time instrument script to be
4976     * executed by the sampler. The scripts will be executed by the sampler in
4977     * sequence of the slots. One (same) script may be referenced multiple
4978     * times in different slots.
4979     *
4980     * @note This is an own format extension which did not exist i.e. in the
4981     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4982     * gigedit.
4983     */
4984     uint Instrument::ScriptSlotCount() const {
4985     return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4986     }
4987    
4988     /** @brief Whether script execution shall be skipped.
4989     *
4990     * Defines locally for the Script reference slot in the Instrument's Script
4991     * list, whether the script shall be skipped by the sampler regarding
4992     * execution.
4993     *
4994     * It is also possible to ignore exeuction of the script globally, for all
4995     * slots and for all instruments by setting Script::Bypass.
4996     *
4997     * @note This is an own format extension which did not exist i.e. in the
4998     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4999     * gigedit.
5000     *
5001     * @param index - index of the script slot on this instrument
5002     * @see Script::Bypass
5003     */
5004     bool Instrument::IsScriptSlotBypassed(uint index) {
5005     if (index >= ScriptSlotCount()) return false;
5006     return pScriptRefs ? pScriptRefs->at(index).bypass
5007     : scriptPoolFileOffsets.at(index).bypass;
5008    
5009     }
5010    
5011     /** @brief Defines whether execution shall be skipped.
5012     *
5013     * You can call this method to define locally whether or whether not the
5014     * given script slot shall be executed by the sampler.
5015     *
5016     * @note This is an own format extension which did not exist i.e. in the
5017     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5018     * gigedit.
5019     *
5020     * @param index - script slot index on this instrument
5021     * @param bBypass - if true, the script slot will be skipped by the sampler
5022     * @see Script::Bypass
5023     */
5024     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5025     if (index >= ScriptSlotCount()) return;
5026     if (pScriptRefs)
5027     pScriptRefs->at(index).bypass = bBypass;
5028     else
5029     scriptPoolFileOffsets.at(index).bypass = bBypass;
5030     }
5031    
5032 persson 2450 /**
5033 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5034     * and assign it to this object.
5035     *
5036     * Note that all sample pointers referenced by @a orig are simply copied as
5037     * memory address. Thus the respective samples are shared, not duplicated!
5038     *
5039     * @param orig - original Instrument object to be copied from
5040     */
5041     void Instrument::CopyAssign(const Instrument* orig) {
5042 schoenebeck 2482 CopyAssign(orig, NULL);
5043     }
5044    
5045     /**
5046     * Make a (semi) deep copy of the Instrument object given by @a orig
5047     * and assign it to this object.
5048     *
5049     * @param orig - original Instrument object to be copied from
5050     * @param mSamples - crosslink map between the foreign file's samples and
5051     * this file's samples
5052     */
5053     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5054 schoenebeck 2394 // handle base class
5055     // (without copying DLS region stuff)
5056     DLS::Instrument::CopyAssignCore(orig);
5057    
5058     // handle own member variables
5059     Attenuation = orig->Attenuation;
5060     EffectSend = orig->EffectSend;
5061     FineTune = orig->FineTune;
5062     PitchbendRange = orig->PitchbendRange;
5063     PianoReleaseMode = orig->PianoReleaseMode;
5064     DimensionKeyRange = orig->DimensionKeyRange;
5065 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5066     pScriptRefs = orig->pScriptRefs;
5067 schoenebeck 2394
5068     // free old midi rules
5069     for (int i = 0 ; pMidiRules[i] ; i++) {
5070     delete pMidiRules[i];
5071     }
5072     //TODO: MIDI rule copying
5073     pMidiRules[0] = NULL;
5074    
5075     // delete all old regions
5076     while (Regions) DeleteRegion(GetFirstRegion());
5077     // create new regions and copy them from original
5078     {
5079     RegionList::const_iterator it = orig->pRegions->begin();
5080     for (int i = 0; i < orig->Regions; ++i, ++it) {
5081     Region* dstRgn = AddRegion();
5082     //NOTE: Region does semi-deep copy !
5083     dstRgn->CopyAssign(
5084 schoenebeck 2482 static_cast<gig::Region*>(*it),
5085     mSamples
5086 schoenebeck 2394 );
5087     }
5088     }
5089 schoenebeck 809
5090 schoenebeck 2394 UpdateRegionKeyTable();
5091     }
5092 schoenebeck 809
5093 schoenebeck 2394
5094 schoenebeck 929 // *************** Group ***************
5095     // *
5096    
5097     /** @brief Constructor.
5098     *
5099 schoenebeck 930 * @param file - pointer to the gig::File object
5100     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5101     * NULL if this is a new Group
5102 schoenebeck 929 */
5103 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5104 schoenebeck 929 pFile = file;
5105     pNameChunk = ck3gnm;
5106     ::LoadString(pNameChunk, Name);
5107     }
5108    
5109     Group::~Group() {
5110 schoenebeck 1099 // remove the chunk associated with this group (if any)
5111     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5112 schoenebeck 929 }
5113    
5114     /** @brief Update chunks with current group settings.
5115     *
5116 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5117     * to call File::Save() to make changes persistent.
5118     *
5119     * Usually there is absolutely no need to call this method explicitly.
5120     * It will be called automatically when File::Save() was called.
5121 schoenebeck 2682 *
5122     * @param pProgress - callback function for progress notification
5123 schoenebeck 929 */
5124 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5125 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5126 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5127 persson 1192 if (!_3gri) {
5128     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5129     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5130     }
5131 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5132 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5133 persson 1266
5134     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5135     // v3 has a fixed list of 128 strings, find a free one
5136     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5137     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5138     pNameChunk = ck;
5139     break;
5140     }
5141     }
5142     }
5143    
5144 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5145     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5146     }
5147    
5148 schoenebeck 930 /**
5149     * Returns the first Sample of this Group. You have to call this method
5150     * once before you use GetNextSample().
5151     *
5152     * <b>Notice:</b> this method might block for a long time, in case the
5153     * samples of this .gig file were not scanned yet
5154     *
5155     * @returns pointer address to first Sample or NULL if there is none
5156     * applied to this Group
5157     * @see GetNextSample()
5158     */
5159     Sample* Group::GetFirstSample() {
5160     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5161     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5162     if (pSample->GetGroup() == this) return pSample;
5163     }
5164     return NULL;
5165     }
5166 schoenebeck 929
5167 schoenebeck 930 /**
5168     * Returns the next Sample of the Group. You have to call
5169     * GetFirstSample() once before you can use this method. By calling this
5170     * method multiple times it iterates through the Samples assigned to
5171     * this Group.
5172     *
5173     * @returns pointer address to the next Sample of this Group or NULL if
5174     * end reached
5175     * @see GetFirstSample()
5176     */
5177     Sample* Group::GetNextSample() {
5178     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5179     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5180     if (pSample->GetGroup() == this) return pSample;
5181     }
5182     return NULL;
5183     }
5184 schoenebeck 929
5185 schoenebeck 930 /**
5186     * Move Sample given by \a pSample from another Group to this Group.
5187     */
5188     void Group::AddSample(Sample* pSample) {
5189     pSample->pGroup = this;
5190     }
5191    
5192     /**
5193     * Move all members of this group to another group (preferably the 1st
5194     * one except this). This method is called explicitly by
5195     * File::DeleteGroup() thus when a Group was deleted. This code was
5196     * intentionally not placed in the destructor!
5197     */
5198     void Group::MoveAll() {
5199     // get "that" other group first
5200     Group* pOtherGroup = NULL;
5201     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5202     if (pOtherGroup != this) break;
5203     }
5204     if (!pOtherGroup) throw Exception(
5205     "Could not move samples to another group, since there is no "
5206     "other Group. This is a bug, report it!"
5207     );
5208     // now move all samples of this group to the other group
5209     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5210     pOtherGroup->AddSample(pSample);
5211     }
5212     }
5213    
5214    
5215    
5216 schoenebeck 2 // *************** File ***************
5217     // *
5218    
5219 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5220 persson 1199 const DLS::version_t File::VERSION_2 = {
5221     0, 2, 19980628 & 0xffff, 19980628 >> 16
5222     };
5223    
5224 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5225 persson 1199 const DLS::version_t File::VERSION_3 = {
5226     0, 3, 20030331 & 0xffff, 20030331 >> 16
5227     };
5228    
5229 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5230 persson 1180 { CHUNK_ID_IARL, 256 },
5231     { CHUNK_ID_IART, 128 },
5232     { CHUNK_ID_ICMS, 128 },
5233     { CHUNK_ID_ICMT, 1024 },
5234     { CHUNK_ID_ICOP, 128 },
5235     { CHUNK_ID_ICRD, 128 },
5236     { CHUNK_ID_IENG, 128 },
5237     { CHUNK_ID_IGNR, 128 },
5238     { CHUNK_ID_IKEY, 128 },
5239     { CHUNK_ID_IMED, 128 },
5240     { CHUNK_ID_INAM, 128 },
5241     { CHUNK_ID_IPRD, 128 },
5242     { CHUNK_ID_ISBJ, 128 },
5243     { CHUNK_ID_ISFT, 128 },
5244     { CHUNK_ID_ISRC, 128 },
5245     { CHUNK_ID_ISRF, 128 },
5246     { CHUNK_ID_ITCH, 128 },
5247     { 0, 0 }
5248     };
5249    
5250 schoenebeck 809 File::File() : DLS::File() {
5251 schoenebeck 1524 bAutoLoad = true;
5252 persson 1264 *pVersion = VERSION_3;
5253 schoenebeck 929 pGroups = NULL;
5254 schoenebeck 2584 pScriptGroups = NULL;
5255 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5256 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5257 persson 1192
5258     // add some mandatory chunks to get the file chunks in right
5259     // order (INFO chunk will be moved to first position later)
5260     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5261     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5262 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5263    
5264     GenerateDLSID();
5265 schoenebeck 809 }
5266    
5267 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5268 schoenebeck 1524 bAutoLoad = true;
5269 schoenebeck 929 pGroups = NULL;
5270 schoenebeck 2584 pScriptGroups = NULL;
5271 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5272 schoenebeck 2 }
5273    
5274 schoenebeck 929 File::~File() {
5275     if (pGroups) {
5276     std::list<Group*>::iterator iter = pGroups->begin();
5277     std::list<Group*>::iterator end = pGroups->end();
5278     while (iter != end) {
5279     delete *iter;
5280     ++iter;
5281     }
5282     delete pGroups;
5283     }
5284 schoenebeck 2584 if (pScriptGroups) {
5285     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5286     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5287     while (iter != end) {
5288     delete *iter;
5289     ++iter;
5290     }
5291     delete pScriptGroups;
5292     }
5293 schoenebeck 929 }
5294    
5295 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5296     if (!pSamples) LoadSamples(pProgress);
5297 schoenebeck 2 if (!pSamples) return NULL;
5298     SamplesIterator = pSamples->begin();
5299     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5300     }
5301    
5302     Sample* File::GetNextSample() {
5303     if (!pSamples) return NULL;
5304     SamplesIterator++;
5305     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5306     }
5307 schoenebeck 2482
5308     /**
5309     * Returns Sample object of @a index.
5310     *
5311     * @returns sample object or NULL if index is out of bounds
5312     */
5313     Sample* File::GetSample(uint index) {
5314     if (!pSamples) LoadSamples();
5315     if (!pSamples) return NULL;
5316     DLS::File::SampleList::iterator it = pSamples->begin();
5317     for (int i = 0; i < index; ++i) {
5318     ++it;
5319     if (it == pSamples->end()) return NULL;
5320     }
5321     if (it == pSamples->end()) return NULL;
5322     return static_cast<gig::Sample*>( *it );
5323     }
5324 schoenebeck 2
5325 schoenebeck 809 /** @brief Add a new sample.
5326     *
5327     * This will create a new Sample object for the gig file. You have to
5328     * call Save() to make this persistent to the file.
5329     *
5330     * @returns pointer to new Sample object
5331     */
5332     Sample* File::AddSample() {
5333     if (!pSamples) LoadSamples();
5334     __ensureMandatoryChunksExist();
5335     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5336     // create new Sample object and its respective 'wave' list chunk
5337     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5338     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5339 persson 1192
5340     // add mandatory chunks to get the chunks in right order
5341     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5342     wave->AddSubList(LIST_TYPE_INFO);
5343    
5344 schoenebeck 809 pSamples->push_back(pSample);
5345     return pSample;
5346     }
5347    
5348     /** @brief Delete a sample.
5349     *
5350 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5351     * references to this sample from Regions and DimensionRegions will be
5352     * removed. You have to call Save() to make this persistent to the file.
5353 schoenebeck 809 *
5354     * @param pSample - sample to delete
5355     * @throws gig::Exception if given sample could not be found
5356     */
5357     void File::DeleteSample(Sample* pSample) {
5358 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5359     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5360 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5361 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5362 schoenebeck 809 pSamples->erase(iter);
5363     delete pSample;
5364 persson 1266
5365 persson 1678 SampleList::iterator tmp = SamplesIterator;
5366 persson 1266 // remove all references to the sample
5367     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5368     instrument = GetNextInstrument()) {
5369     for (Region* region = instrument->GetFirstRegion() ; region ;
5370     region = instrument->GetNextRegion()) {
5371    
5372     if (region->GetSample() == pSample) region->SetSample(NULL);
5373    
5374     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5375     gig::DimensionRegion *d = region->pDimensionRegions[i];
5376     if (d->pSample == pSample) d->pSample = NULL;
5377     }
5378     }
5379     }
5380 persson 1678 SamplesIterator = tmp; // restore iterator
5381 schoenebeck 809 }
5382    
5383 schoenebeck 823 void File::LoadSamples() {
5384     LoadSamples(NULL);
5385     }
5386    
5387 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5388 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5389     // to resolve the group they belong to
5390 schoenebeck 1158 if (!pGroups) LoadGroups();
5391 schoenebeck 930
5392 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5393    
5394 persson 666 RIFF::File* file = pRIFF;
5395 schoenebeck 515
5396 persson 666 // just for progress calculation
5397     int iSampleIndex = 0;
5398     int iTotalSamples = WavePoolCount;
5399 schoenebeck 515
5400 persson 666 // check if samples should be loaded from extension files
5401 schoenebeck 2913 // (only for old gig files < 2 GB)
5402 persson 666 int lastFileNo = 0;
5403 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5404 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5405     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5406     }
5407 persson 666 }
5408 schoenebeck 780 String name(pRIFF->GetFileName());
5409     int nameLen = name.length();
5410 persson 666 char suffix[6];
5411 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5412 schoenebeck 515
5413 persson 666 for (int fileNo = 0 ; ; ) {
5414     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5415     if (wvpl) {
5416 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5417 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5418     while (wave) {
5419     if (wave->GetListType() == LIST_TYPE_WAVE) {
5420     // notify current progress
5421     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5422     __notify_progress(pProgress, subprogress);
5423    
5424 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5425 persson 666 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5426    
5427     iSampleIndex++;
5428     }
5429     wave = wvpl->GetNextSubList();
5430 schoenebeck 2 }
5431 persson 666
5432     if (fileNo == lastFileNo) break;
5433    
5434     // open extension file (*.gx01, *.gx02, ...)
5435     fileNo++;
5436     sprintf(suffix, ".gx%02d", fileNo);
5437     name.replace(nameLen, 5, suffix);
5438     file = new RIFF::File(name);
5439     ExtensionFiles.push_back(file);
5440 schoenebeck 823 } else break;
5441 schoenebeck 2 }
5442 persson 666
5443     __notify_progress(pProgress, 1.0); // notify done
5444 schoenebeck 2 }
5445    
5446     Instrument* File::GetFirstInstrument() {
5447     if (!pInstruments) LoadInstruments();
5448     if (!pInstruments) return NULL;
5449     InstrumentsIterator = pInstruments->begin();
5450 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5451 schoenebeck 2 }
5452    
5453     Instrument* File::GetNextInstrument() {
5454     if (!pInstruments) return NULL;
5455     InstrumentsIterator++;
5456 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5457 schoenebeck 2 }
5458    
5459 schoenebeck 21 /**
5460     * Returns the instrument with the given index.
5461     *
5462 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5463     * @param pProgress - optional: callback function for progress notification
5464 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5465     */
5466 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5467     if (!pInstruments) {
5468     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5469    
5470     // sample loading subtask
5471     progress_t subprogress;
5472     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5473     __notify_progress(&subprogress, 0.0f);
5474 schoenebeck 1524 if (GetAutoLoad())
5475     GetFirstSample(&subprogress); // now force all samples to be loaded
5476 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5477    
5478     // instrument loading subtask
5479     if (pProgress && pProgress->callback) {
5480     subprogress.__range_min = subprogress.__range_max;
5481     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5482     }
5483     __notify_progress(&subprogress, 0.0f);
5484     LoadInstruments(&subprogress);
5485     __notify_progress(&subprogress, 1.0f);
5486     }
5487 schoenebeck 21 if (!pInstruments) return NULL;
5488     InstrumentsIterator = pInstruments->begin();
5489     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5490 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5491 schoenebeck 21 InstrumentsIterator++;
5492     }
5493     return NULL;
5494     }
5495    
5496 schoenebeck 809 /** @brief Add a new instrument definition.
5497     *
5498     * This will create a new Instrument object for the gig file. You have
5499     * to call Save() to make this persistent to the file.
5500     *
5501     * @returns pointer to new Instrument object
5502     */
5503     Instrument* File::AddInstrument() {
5504     if (!pInstruments) LoadInstruments();
5505     __ensureMandatoryChunksExist();
5506     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5507     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5508 persson 1192
5509     // add mandatory chunks to get the chunks in right order
5510     lstInstr->AddSubList(LIST_TYPE_INFO);
5511 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5512 persson 1192
5513 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5514 persson 1209 pInstrument->GenerateDLSID();
5515 persson 1182
5516 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5517    
5518 persson 1182 // this string is needed for the gig to be loadable in GSt:
5519     pInstrument->pInfo->Software = "Endless Wave";
5520    
5521 schoenebeck 809 pInstruments->push_back(pInstrument);
5522     return pInstrument;
5523     }
5524 schoenebeck 2394
5525     /** @brief Add a duplicate of an existing instrument.
5526     *
5527     * Duplicates the instrument definition given by @a orig and adds it
5528     * to this file. This allows in an instrument editor application to
5529     * easily create variations of an instrument, which will be stored in
5530     * the same .gig file, sharing i.e. the same samples.
5531     *
5532     * Note that all sample pointers referenced by @a orig are simply copied as
5533     * memory address. Thus the respective samples are shared, not duplicated!
5534     *
5535     * You have to call Save() to make this persistent to the file.
5536     *
5537     * @param orig - original instrument to be copied
5538     * @returns duplicated copy of the given instrument
5539     */
5540     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5541     Instrument* instr = AddInstrument();
5542     instr->CopyAssign(orig);
5543     return instr;
5544     }
5545 schoenebeck 2482
5546     /** @brief Add content of another existing file.
5547     *
5548     * Duplicates the samples, groups and instruments of the original file
5549     * given by @a pFile and adds them to @c this File. In case @c this File is
5550     * a new one that you haven't saved before, then you have to call
5551     * SetFileName() before calling AddContentOf(), because this method will
5552     * automatically save this file during operation, which is required for
5553     * writing the sample waveform data by disk streaming.
5554     *
5555     * @param pFile - original file whose's content shall be copied from
5556     */
5557     void File::AddContentOf(File* pFile) {
5558     static int iCallCount = -1;
5559     iCallCount++;
5560     std::map<Group*,Group*> mGroups;
5561     std::map<Sample*,Sample*> mSamples;
5562    
5563     // clone sample groups
5564     for (int i = 0; pFile->GetGroup(i); ++i) {
5565     Group* g = AddGroup();
5566     g->Name =
5567     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5568     mGroups[pFile->GetGroup(i)] = g;
5569     }
5570    
5571     // clone samples (not waveform data here yet)
5572     for (int i = 0; pFile->GetSample(i); ++i) {
5573     Sample* s = AddSample();
5574     s->CopyAssignMeta(pFile->GetSample(i));
5575     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5576     mSamples[pFile->GetSample(i)] = s;
5577     }
5578    
5579     //BUG: For some reason this method only works with this additional
5580     // Save() call in between here.
5581     //
5582     // Important: The correct one of the 2 Save() methods has to be called
5583     // here, depending on whether the file is completely new or has been
5584     // saved to disk already, otherwise it will result in data corruption.
5585     if (pRIFF->IsNew())
5586     Save(GetFileName());
5587     else
5588     Save();
5589    
5590     // clone instruments
5591     // (passing the crosslink table here for the cloned samples)
5592     for (int i = 0; pFile->GetInstrument(i); ++i) {
5593     Instrument* instr = AddInstrument();
5594     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5595     }
5596    
5597     // Mandatory: file needs to be saved to disk at this point, so this
5598     // file has the correct size and data layout for writing the samples'
5599     // waveform data to disk.
5600     Save();
5601    
5602     // clone samples' waveform data
5603     // (using direct read & write disk streaming)
5604     for (int i = 0; pFile->GetSample(i); ++i) {
5605     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5606     }
5607     }
5608 schoenebeck 809
5609     /** @brief Delete an instrument.
5610     *
5611     * This will delete the given Instrument object from the gig file. You
5612     * have to call Save() to make this persistent to the file.
5613     *
5614     * @param pInstrument - instrument to delete
5615 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5616 schoenebeck 809 */
5617     void File::DeleteInstrument(Instrument* pInstrument) {
5618     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5619 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5620 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5621     pInstruments->erase(iter);
5622     delete pInstrument;
5623     }
5624    
5625 schoenebeck 823 void File::LoadInstruments() {
5626     LoadInstruments(NULL);
5627     }
5628    
5629 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5630 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5631 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5632     if (lstInstruments) {
5633 schoenebeck 515 int iInstrumentIndex = 0;
5634 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5635     while (lstInstr) {
5636     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5637 schoenebeck 515 // notify current progress
5638     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5639     __notify_progress(pProgress, localProgress);
5640    
5641     // divide local progress into subprogress for loading current Instrument
5642     progress_t subprogress;
5643     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5644    
5645     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5646    
5647     iInstrumentIndex++;
5648 schoenebeck 2 }
5649     lstInstr = lstInstruments->GetNextSubList();
5650     }
5651 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5652 schoenebeck 2 }
5653     }
5654    
5655 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5656     /// update is done directly to disk, as this method is called
5657     /// after File::Save()
5658 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5659     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5660     if (!_3crc) return;
5661 persson 1207
5662     // get the index of the sample
5663 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5664 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5665    
5666 persson 1207 // write the CRC-32 checksum to disk
5667 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5668 schoenebeck 2985 uint32_t one = 1;
5669     _3crc->WriteUint32(&one); // always 1
5670 persson 1199 _3crc->WriteUint32(&crc);
5671 schoenebeck 2985
5672     // reload CRC table to RAM to keep it persistent over several subsequent save operations
5673     _3crc->ReleaseChunkData();
5674     _3crc->LoadChunkData();
5675 persson 1199 }
5676    
5677 schoenebeck 2985 uint32_t File::GetSampleChecksum(Sample* pSample) {
5678     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5679     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5680     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5681     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5682    
5683     // get the index of the sample
5684     int iWaveIndex = GetWaveTableIndexOf(pSample);
5685     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5686    
5687     // read the CRC-32 checksum directly from disk
5688     size_t pos = iWaveIndex * 8;
5689     if (pos + 8 > _3crc->GetNewSize())
5690     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5691    
5692     uint32_t one = load32(&pData[pos]); // always 1
5693     if (one != 1)
5694     throw gig::Exception("Could not verify sample, because reference checksum table is damaged");
5695    
5696     return load32(&pData[pos+4]);
5697     }
5698    
5699     int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5700     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5701     File::SampleList::iterator iter = pSamples->begin();
5702     File::SampleList::iterator end = pSamples->end();
5703     for (int index = 0; iter != end; ++iter, ++index)
5704     if (*iter == pSample)
5705     return index;
5706     return -1;
5707     }
5708    
5709     /**
5710     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5711     * the CRC32 check sums of all samples' raw wave data.
5712     *
5713     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5714     */
5715     bool File::VerifySampleChecksumTable() {
5716     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5717     if (!_3crc) return false;
5718     if (_3crc->GetNewSize() <= 0) return false;
5719     if (_3crc->GetNewSize() % 8) return false;
5720     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5721     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5722    
5723     const int n = _3crc->GetNewSize() / 8;
5724    
5725     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5726     if (!pData) return false;
5727    
5728     for (int i = 0; i < n; ++i) {
5729     uint32_t one = pData[i*2];
5730     if (one != 1) return false;
5731     }
5732    
5733     return true;
5734     }
5735    
5736     /**
5737     * Recalculates CRC32 checksums for all samples and rebuilds this gig
5738     * file's checksum table with those new checksums. This might usually
5739     * just be necessary if the checksum table was damaged.
5740     *
5741     * @e IMPORTANT: The current implementation of this method only works
5742     * with files that have not been modified since it was loaded, because
5743     * it expects that no externally caused file structure changes are
5744     * required!
5745     *
5746     * Due to the expectation above, this method is currently protected
5747     * and actually only used by the command line tool "gigdump" yet.
5748     *
5749     * @returns true if Save() is required to be called after this call,
5750     * false if no further action is required
5751     */
5752     bool File::RebuildSampleChecksumTable() {
5753     // make sure sample chunks were scanned
5754     if (!pSamples) GetFirstSample();
5755    
5756     bool bRequiresSave = false;
5757    
5758     // make sure "3CRC" chunk exists with required size
5759     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5760     if (!_3crc) {
5761     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5762     bRequiresSave = true;
5763     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5764     _3crc->Resize(pSamples->size() * 8);
5765     bRequiresSave = true;
5766     }
5767    
5768     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5769     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5770     {
5771     File::SampleList::iterator iter = pSamples->begin();
5772     File::SampleList::iterator end = pSamples->end();
5773     for (; iter != end; ++iter) {
5774     gig::Sample* pSample = (gig::Sample*) *iter;
5775     int index = GetWaveTableIndexOf(pSample);
5776     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5777     pData[index*2] = 1; // always 1
5778     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5779     }
5780     }
5781     } else { // no file structure changes necessary, so directly write to disk and we are done ...
5782     // make sure file is in write mode
5783     pRIFF->SetMode(RIFF::stream_mode_read_write);
5784     {
5785     File::SampleList::iterator iter = pSamples->begin();
5786     File::SampleList::iterator end = pSamples->end();
5787     for (; iter != end; ++iter) {
5788     gig::Sample* pSample = (gig::Sample*) *iter;
5789     int index = GetWaveTableIndexOf(pSample);
5790     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5791     uint32_t crc = pSample->CalculateWaveDataChecksum();
5792     SetSampleChecksum(pSample, crc);
5793     }
5794     }
5795     }
5796    
5797     return bRequiresSave;
5798     }
5799    
5800 schoenebeck 929 Group* File::GetFirstGroup() {
5801     if (!pGroups) LoadGroups();
5802 schoenebeck 930 // there must always be at least one group
5803 schoenebeck 929 GroupsIterator = pGroups->begin();
5804 schoenebeck 930 return *GroupsIterator;
5805 schoenebeck 929 }
5806 schoenebeck 2
5807 schoenebeck 929 Group* File::GetNextGroup() {
5808     if (!pGroups) return NULL;
5809     ++GroupsIterator;
5810     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5811     }
5812 schoenebeck 2
5813 schoenebeck 929 /**
5814     * Returns the group with the given index.
5815     *
5816     * @param index - number of the sought group (0..n)
5817     * @returns sought group or NULL if there's no such group
5818     */
5819     Group* File::GetGroup(uint index) {
5820     if (!pGroups) LoadGroups();
5821     GroupsIterator = pGroups->begin();
5822     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5823     if (i == index) return *GroupsIterator;
5824     ++GroupsIterator;
5825     }
5826     return NULL;
5827     }
5828    
5829 schoenebeck 2543 /**
5830     * Returns the group with the given group name.
5831     *
5832     * Note: group names don't have to be unique in the gig format! So there
5833     * can be multiple groups with the same name. This method will simply
5834     * return the first group found with the given name.
5835     *
5836     * @param name - name of the sought group
5837     * @returns sought group or NULL if there's no group with that name
5838     */
5839     Group* File::GetGroup(String name) {
5840     if (!pGroups) LoadGroups();
5841     GroupsIterator = pGroups->begin();
5842     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5843     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5844     return NULL;
5845     }
5846    
5847 schoenebeck 929 Group* File::AddGroup() {
5848     if (!pGroups) LoadGroups();
5849 schoenebeck 930 // there must always be at least one group
5850 schoenebeck 929 __ensureMandatoryChunksExist();
5851 schoenebeck 930 Group* pGroup = new Group(this, NULL);
5852 schoenebeck 929 pGroups->push_back(pGroup);
5853     return pGroup;
5854     }
5855    
5856 schoenebeck 1081 /** @brief Delete a group and its samples.
5857     *
5858     * This will delete the given Group object and all the samples that
5859     * belong to this group from the gig file. You have to call Save() to
5860     * make this persistent to the file.
5861     *
5862     * @param pGroup - group to delete
5863     * @throws gig::Exception if given group could not be found
5864     */
5865 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
5866 schoenebeck 930 if (!pGroups) LoadGroups();
5867 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5868     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5869 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5870 schoenebeck 1081 // delete all members of this group
5871     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5872     DeleteSample(pSample);
5873     }
5874     // now delete this group object
5875     pGroups->erase(iter);
5876     delete pGroup;
5877     }
5878    
5879     /** @brief Delete a group.
5880     *
5881     * This will delete the given Group object from the gig file. All the
5882     * samples that belong to this group will not be deleted, but instead
5883     * be moved to another group. You have to call Save() to make this
5884     * persistent to the file.
5885     *
5886     * @param pGroup - group to delete
5887     * @throws gig::Exception if given group could not be found
5888     */
5889     void File::DeleteGroupOnly(Group* pGroup) {
5890     if (!pGroups) LoadGroups();
5891     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5892     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5893     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5894 schoenebeck 930 // move all members of this group to another group
5895     pGroup->MoveAll();
5896 schoenebeck 929 pGroups->erase(iter);
5897     delete pGroup;
5898     }
5899    
5900     void File::LoadGroups() {
5901     if (!pGroups) pGroups = new std::list<Group*>;
5902 schoenebeck 930 // try to read defined groups from file
5903 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5904 schoenebeck 930 if (lst3gri) {
5905     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5906     if (lst3gnl) {
5907     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5908     while (ck) {
5909     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5910 persson 1266 if (pVersion && pVersion->major == 3 &&
5911     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5912    
5913 schoenebeck 930 pGroups->push_back(new Group(this, ck));
5914     }
5915     ck = lst3gnl->GetNextSubChunk();
5916 schoenebeck 929 }
5917     }
5918     }
5919 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
5920     if (!pGroups->size()) {
5921     Group* pGroup = new Group(this, NULL);
5922     pGroup->Name = "Default Group";
5923     pGroups->push_back(pGroup);
5924     }
5925 schoenebeck 929 }
5926    
5927 schoenebeck 2584 /** @brief Get instrument script group (by index).
5928     *
5929     * Returns the real-time instrument script group with the given index.
5930     *
5931     * @param index - number of the sought group (0..n)
5932     * @returns sought script group or NULL if there's no such group
5933     */
5934     ScriptGroup* File::GetScriptGroup(uint index) {
5935     if (!pScriptGroups) LoadScriptGroups();
5936     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5937     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5938     if (i == index) return *it;
5939     return NULL;
5940     }
5941    
5942     /** @brief Get instrument script group (by name).
5943     *
5944     * Returns the first real-time instrument script group found with the given
5945     * group name. Note that group names may not necessarily be unique.
5946     *
5947     * @param name - name of the sought script group
5948     * @returns sought script group or NULL if there's no such group
5949     */
5950     ScriptGroup* File::GetScriptGroup(const String& name) {
5951     if (!pScriptGroups) LoadScriptGroups();
5952     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5953     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5954     if ((*it)->Name == name) return *it;
5955     return NULL;
5956     }
5957    
5958     /** @brief Add new instrument script group.
5959     *
5960     * Adds a new, empty real-time instrument script group to the file.
5961     *
5962     * You have to call Save() to make this persistent to the file.
5963     *
5964     * @return new empty script group
5965     */
5966     ScriptGroup* File::AddScriptGroup() {
5967     if (!pScriptGroups) LoadScriptGroups();
5968     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5969     pScriptGroups->push_back(pScriptGroup);
5970     return pScriptGroup;
5971     }
5972    
5973     /** @brief Delete an instrument script group.
5974     *
5975     * This will delete the given real-time instrument script group and all its
5976     * instrument scripts it contains. References inside instruments that are
5977     * using the deleted scripts will be removed from the respective instruments
5978     * accordingly.
5979     *
5980     * You have to call Save() to make this persistent to the file.
5981     *
5982     * @param pScriptGroup - script group to delete
5983     * @throws gig::Exception if given script group could not be found
5984     */
5985     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5986     if (!pScriptGroups) LoadScriptGroups();
5987     std::list<ScriptGroup*>::iterator iter =
5988     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5989     if (iter == pScriptGroups->end())
5990     throw gig::Exception("Could not delete script group, could not find given script group");
5991     pScriptGroups->erase(iter);
5992     for (int i = 0; pScriptGroup->GetScript(i); ++i)
5993     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5994     if (pScriptGroup->pList)
5995     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5996     delete pScriptGroup;
5997     }
5998    
5999     void File::LoadScriptGroups() {
6000     if (pScriptGroups) return;
6001     pScriptGroups = new std::list<ScriptGroup*>;
6002     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6003     if (lstLS) {
6004     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6005     lst = lstLS->GetNextSubList())
6006     {
6007     if (lst->GetListType() == LIST_TYPE_RTIS) {
6008     pScriptGroups->push_back(new ScriptGroup(this, lst));
6009     }
6010     }
6011     }
6012     }
6013    
6014 schoenebeck 1098 /**
6015     * Apply all the gig file's current instruments, samples, groups and settings
6016     * to the respective RIFF chunks. You have to call Save() to make changes
6017     * persistent.
6018     *
6019     * Usually there is absolutely no need to call this method explicitly.
6020     * It will be called automatically when File::Save() was called.
6021     *
6022 schoenebeck 2682 * @param pProgress - callback function for progress notification
6023 schoenebeck 1098 * @throws Exception - on errors
6024     */
6025 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6026 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6027 persson 1192
6028 schoenebeck 2584 // update own gig format extension chunks
6029     // (not part of the GigaStudio 4 format)
6030 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6031     if (!lst3LS) {
6032     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6033     }
6034     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6035 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6036     // before the actual wave data
6037 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6038     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6039    
6040 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6041     // because the instruments' script slots will write the file offsets
6042     // of the respective instrument script chunk as reference.
6043     if (pScriptGroups) {
6044 schoenebeck 2912 // Update instrument script (group) chunks.
6045     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6046     it != pScriptGroups->end(); ++it)
6047     {
6048     (*it)->UpdateChunks(pProgress);
6049 schoenebeck 2584 }
6050     }
6051    
6052 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6053     // custom "3LS " chunk again
6054     if (!lst3LS->CountSubChunks()) {
6055     pRIFF->DeleteSubChunk(lst3LS);
6056     lst3LS = NULL;
6057     }
6058    
6059 schoenebeck 2985 // if there is a 3CRC chunk, make sure it is loaded into RAM, otherwise
6060     // its data might get lost or damaged on file structure changes
6061     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6062     if (_3crc) _3crc->LoadChunkData();
6063    
6064 schoenebeck 1098 // first update base class's chunks
6065 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6066 schoenebeck 929
6067 persson 1199 if (newFile) {
6068 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6069     // is placed first in file
6070 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6071 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6072     if (first != info) {
6073     pRIFF->MoveSubChunk(info, first);
6074     }
6075     }
6076    
6077 schoenebeck 1098 // update group's chunks
6078     if (pGroups) {
6079 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6080     // (before updating the Group chunks)
6081     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6082     if (!_3gri) {
6083     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6084     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6085 schoenebeck 1098 }
6086 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6087     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6088 persson 1266
6089     // v3: make sure the file has 128 3gnm chunks
6090 schoenebeck 2467 // (before updating the Group chunks)
6091 persson 1266 if (pVersion && pVersion->major == 3) {
6092     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6093     for (int i = 0 ; i < 128 ; i++) {
6094     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6095     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6096     }
6097     }
6098 schoenebeck 2467
6099     std::list<Group*>::iterator iter = pGroups->begin();
6100     std::list<Group*>::iterator end = pGroups->end();
6101     for (; iter != end; ++iter) {
6102 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6103 schoenebeck 2467 }
6104 schoenebeck 1098 }
6105 persson 1199
6106     // update einf chunk
6107    
6108     // The einf chunk contains statistics about the gig file, such
6109     // as the number of regions and samples used by each
6110     // instrument. It is divided in equally sized parts, where the
6111     // first part contains information about the whole gig file,
6112     // and the rest of the parts map to each instrument in the
6113     // file.
6114     //
6115     // At the end of each part there is a bit map of each sample
6116     // in the file, where a set bit means that the sample is used
6117     // by the file/instrument.
6118     //
6119     // Note that there are several fields with unknown use. These
6120     // are set to zero.
6121    
6122     int sublen = pSamples->size() / 8 + 49;
6123     int einfSize = (Instruments + 1) * sublen;
6124    
6125     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6126     if (einf) {
6127     if (einf->GetSize() != einfSize) {
6128     einf->Resize(einfSize);
6129     memset(einf->LoadChunkData(), 0, einfSize);
6130     }
6131     } else if (newFile) {
6132     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6133     }
6134     if (einf) {
6135     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6136    
6137     std::map<gig::Sample*,int> sampleMap;
6138     int sampleIdx = 0;
6139     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6140     sampleMap[pSample] = sampleIdx++;
6141     }
6142    
6143     int totnbusedsamples = 0;
6144     int totnbusedchannels = 0;
6145     int totnbregions = 0;
6146     int totnbdimregions = 0;
6147 persson 1264 int totnbloops = 0;
6148 persson 1199 int instrumentIdx = 0;
6149    
6150     memset(&pData[48], 0, sublen - 48);
6151    
6152     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6153     instrument = GetNextInstrument()) {
6154     int nbusedsamples = 0;
6155     int nbusedchannels = 0;
6156     int nbdimregions = 0;
6157 persson 1264 int nbloops = 0;
6158 persson 1199
6159     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6160    
6161     for (Region* region = instrument->GetFirstRegion() ; region ;
6162     region = instrument->GetNextRegion()) {
6163     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6164     gig::DimensionRegion *d = region->pDimensionRegions[i];
6165     if (d->pSample) {
6166     int sampleIdx = sampleMap[d->pSample];
6167     int byte = 48 + sampleIdx / 8;
6168     int bit = 1 << (sampleIdx & 7);
6169     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6170     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6171     nbusedsamples++;
6172     nbusedchannels += d->pSample->Channels;
6173    
6174     if ((pData[byte] & bit) == 0) {
6175     pData[byte] |= bit;
6176     totnbusedsamples++;
6177     totnbusedchannels += d->pSample->Channels;
6178     }
6179     }
6180     }
6181 persson 1264 if (d->SampleLoops) nbloops++;
6182 persson 1199 }
6183     nbdimregions += region->DimensionRegions;
6184     }
6185     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6186     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6187     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6188     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6189     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6190     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6191     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6192 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6193     // next 8 bytes unknown
6194 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6195     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
6196     // next 4 bytes unknown
6197    
6198     totnbregions += instrument->Regions;
6199     totnbdimregions += nbdimregions;
6200 persson 1264 totnbloops += nbloops;
6201 persson 1199 instrumentIdx++;
6202     }
6203     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6204     // store32(&pData[0], sublen);
6205     store32(&pData[4], totnbusedchannels);
6206     store32(&pData[8], totnbusedsamples);
6207     store32(&pData[12], Instruments);
6208     store32(&pData[16], totnbregions);
6209     store32(&pData[20], totnbdimregions);
6210 persson 1264 store32(&pData[24], totnbloops);
6211     // next 8 bytes unknown
6212     // next 4 bytes unknown, not always 0
6213 persson 1199 store32(&pData[40], pSamples->size());
6214     // next 4 bytes unknown
6215     }
6216    
6217     // update 3crc chunk
6218    
6219     // The 3crc chunk contains CRC-32 checksums for the
6220     // samples. The actual checksum values will be filled in
6221     // later, by Sample::Write.
6222    
6223     if (_3crc) {
6224     _3crc->Resize(pSamples->size() * 8);
6225     } else if (newFile) {
6226     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6227     _3crc->LoadChunkData();
6228 persson 1264
6229     // the order of einf and 3crc is not the same in v2 and v3
6230     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6231 persson 1199 }
6232 schoenebeck 1098 }
6233 schoenebeck 2609
6234     void File::UpdateFileOffsets() {
6235     DLS::File::UpdateFileOffsets();
6236 schoenebeck 929
6237 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6238     instrument = GetNextInstrument())
6239     {
6240     instrument->UpdateScriptFileOffsets();
6241     }
6242     }
6243    
6244 schoenebeck 1524 /**
6245     * Enable / disable automatic loading. By default this properyt is
6246     * enabled and all informations are loaded automatically. However
6247     * loading all Regions, DimensionRegions and especially samples might
6248     * take a long time for large .gig files, and sometimes one might only
6249     * be interested in retrieving very superficial informations like the
6250     * amount of instruments and their names. In this case one might disable
6251     * automatic loading to avoid very slow response times.
6252     *
6253     * @e CAUTION: by disabling this property many pointers (i.e. sample
6254     * references) and informations will have invalid or even undefined
6255     * data! This feature is currently only intended for retrieving very
6256     * superficial informations in a very fast way. Don't use it to retrieve
6257     * details like synthesis informations or even to modify .gig files!
6258     */
6259     void File::SetAutoLoad(bool b) {
6260     bAutoLoad = b;
6261     }
6262 schoenebeck 1098
6263 schoenebeck 1524 /**
6264     * Returns whether automatic loading is enabled.
6265     * @see SetAutoLoad()
6266     */
6267     bool File::GetAutoLoad() {
6268     return bAutoLoad;
6269     }
6270 schoenebeck 1098
6271 schoenebeck 1524
6272    
6273 schoenebeck 2 // *************** Exception ***************
6274     // *
6275    
6276     Exception::Exception(String Message) : DLS::Exception(Message) {
6277     }
6278    
6279     void Exception::PrintMessage() {
6280     std::cout << "gig::Exception: " << Message << std::endl;
6281     }
6282    
6283 schoenebeck 518
6284     // *************** functions ***************
6285     // *
6286    
6287     /**
6288     * Returns the name of this C++ library. This is usually "libgig" of
6289     * course. This call is equivalent to RIFF::libraryName() and
6290     * DLS::libraryName().
6291     */
6292     String libraryName() {
6293     return PACKAGE;
6294     }
6295    
6296     /**
6297     * Returns version of this C++ library. This call is equivalent to
6298     * RIFF::libraryVersion() and DLS::libraryVersion().
6299     */
6300     String libraryVersion() {
6301     return VERSION;
6302     }
6303    
6304 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC