/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2989 - (hide annotations) (download)
Sat Sep 24 14:00:46 2016 UTC (7 years, 6 months ago) by schoenebeck
File size: 277006 byte(s)
* src/gig.cpp, src/gig.h: Fixed samples' CRC checksums were misordered
  when a Sample was deleted.
* src/gig.cpp, src/gig.h: Added new method
  Sample::GetWaveDataCRC32Checksum().
* src/tools/gigdump.cpp: print samples' CRC32 checksums.
* Bumped version (4.0.0.svn9).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2912 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31 schoenebeck 2555 #include <assert.h>
32 schoenebeck 384
33 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
34     /// format with libgig's own custom data / custom features).
35     #define GIG_FILE_EXT_VERSION 2
36    
37 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
38     /// compressed sample wave streams - this value should always be bigger than
39     /// the biggest sample piece expected to be read by the sampler engine,
40     /// otherwise the buffer size will be raised at runtime and thus the buffer
41     /// reallocated which is time consuming and unefficient.
42     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43    
44     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57    
58 schoenebeck 515 namespace gig {
59 schoenebeck 2
60 schoenebeck 809 // *************** Internal functions for sample decompression ***************
61 persson 365 // *
62    
63 schoenebeck 515 namespace {
64    
65 persson 365 inline int get12lo(const unsigned char* pSrc)
66     {
67     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68     return x & 0x800 ? x - 0x1000 : x;
69     }
70    
71     inline int get12hi(const unsigned char* pSrc)
72     {
73     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74     return x & 0x800 ? x - 0x1000 : x;
75     }
76    
77     inline int16_t get16(const unsigned char* pSrc)
78     {
79     return int16_t(pSrc[0] | pSrc[1] << 8);
80     }
81    
82     inline int get24(const unsigned char* pSrc)
83     {
84     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85     return x & 0x800000 ? x - 0x1000000 : x;
86     }
87    
88 persson 902 inline void store24(unsigned char* pDst, int x)
89     {
90     pDst[0] = x;
91     pDst[1] = x >> 8;
92     pDst[2] = x >> 16;
93     }
94    
95 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
96 persson 372 int srcStep, int dstStep,
97     const unsigned char* pSrc, int16_t* pDst,
98 schoenebeck 2912 file_offset_t currentframeoffset,
99     file_offset_t copysamples)
100 persson 365 {
101     switch (compressionmode) {
102     case 0: // 16 bit uncompressed
103     pSrc += currentframeoffset * srcStep;
104     while (copysamples) {
105     *pDst = get16(pSrc);
106 persson 372 pDst += dstStep;
107 persson 365 pSrc += srcStep;
108     copysamples--;
109     }
110     break;
111    
112     case 1: // 16 bit compressed to 8 bit
113     int y = get16(params);
114     int dy = get16(params + 2);
115     while (currentframeoffset) {
116     dy -= int8_t(*pSrc);
117     y -= dy;
118     pSrc += srcStep;
119     currentframeoffset--;
120     }
121     while (copysamples) {
122     dy -= int8_t(*pSrc);
123     y -= dy;
124     *pDst = y;
125 persson 372 pDst += dstStep;
126 persson 365 pSrc += srcStep;
127     copysamples--;
128     }
129     break;
130     }
131     }
132    
133     void Decompress24(int compressionmode, const unsigned char* params,
134 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135 schoenebeck 2912 file_offset_t currentframeoffset,
136     file_offset_t copysamples, int truncatedBits)
137 persson 365 {
138 persson 695 int y, dy, ddy, dddy;
139 persson 437
140 persson 695 #define GET_PARAMS(params) \
141     y = get24(params); \
142     dy = y - get24((params) + 3); \
143     ddy = get24((params) + 6); \
144     dddy = get24((params) + 9)
145 persson 365
146     #define SKIP_ONE(x) \
147 persson 695 dddy -= (x); \
148     ddy -= dddy; \
149     dy = -dy - ddy; \
150     y += dy
151 persson 365
152     #define COPY_ONE(x) \
153     SKIP_ONE(x); \
154 persson 902 store24(pDst, y << truncatedBits); \
155 persson 372 pDst += dstStep
156 persson 365
157     switch (compressionmode) {
158     case 2: // 24 bit uncompressed
159     pSrc += currentframeoffset * 3;
160     while (copysamples) {
161 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
162 persson 372 pDst += dstStep;
163 persson 365 pSrc += 3;
164     copysamples--;
165     }
166     break;
167    
168     case 3: // 24 bit compressed to 16 bit
169     GET_PARAMS(params);
170     while (currentframeoffset) {
171     SKIP_ONE(get16(pSrc));
172     pSrc += 2;
173     currentframeoffset--;
174     }
175     while (copysamples) {
176     COPY_ONE(get16(pSrc));
177     pSrc += 2;
178     copysamples--;
179     }
180     break;
181    
182     case 4: // 24 bit compressed to 12 bit
183     GET_PARAMS(params);
184     while (currentframeoffset > 1) {
185     SKIP_ONE(get12lo(pSrc));
186     SKIP_ONE(get12hi(pSrc));
187     pSrc += 3;
188     currentframeoffset -= 2;
189     }
190     if (currentframeoffset) {
191     SKIP_ONE(get12lo(pSrc));
192     currentframeoffset--;
193     if (copysamples) {
194     COPY_ONE(get12hi(pSrc));
195     pSrc += 3;
196     copysamples--;
197     }
198     }
199     while (copysamples > 1) {
200     COPY_ONE(get12lo(pSrc));
201     COPY_ONE(get12hi(pSrc));
202     pSrc += 3;
203     copysamples -= 2;
204     }
205     if (copysamples) {
206     COPY_ONE(get12lo(pSrc));
207     }
208     break;
209    
210     case 5: // 24 bit compressed to 8 bit
211     GET_PARAMS(params);
212     while (currentframeoffset) {
213     SKIP_ONE(int8_t(*pSrc++));
214     currentframeoffset--;
215     }
216     while (copysamples) {
217     COPY_ONE(int8_t(*pSrc++));
218     copysamples--;
219     }
220     break;
221     }
222     }
223    
224     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
225     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
227     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
228     }
229    
230    
231 schoenebeck 1113
232 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
233     // *
234    
235     static uint32_t* __initCRCTable() {
236     static uint32_t res[256];
237    
238     for (int i = 0 ; i < 256 ; i++) {
239     uint32_t c = i;
240     for (int j = 0 ; j < 8 ; j++) {
241     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242     }
243     res[i] = c;
244     }
245     return res;
246     }
247    
248     static const uint32_t* __CRCTable = __initCRCTable();
249    
250     /**
251     * Initialize a CRC variable.
252     *
253     * @param crc - variable to be initialized
254     */
255     inline static void __resetCRC(uint32_t& crc) {
256     crc = 0xffffffff;
257     }
258    
259     /**
260     * Used to calculate checksums of the sample data in a gig file. The
261     * checksums are stored in the 3crc chunk of the gig file and
262     * automatically updated when a sample is written with Sample::Write().
263     *
264     * One should call __resetCRC() to initialize the CRC variable to be
265     * used before calling this function the first time.
266     *
267     * After initializing the CRC variable one can call this function
268     * arbitrary times, i.e. to split the overall CRC calculation into
269     * steps.
270     *
271     * Once the whole data was processed by __calculateCRC(), one should
272     * call __encodeCRC() to get the final CRC result.
273     *
274     * @param buf - pointer to data the CRC shall be calculated of
275     * @param bufSize - size of the data to be processed
276     * @param crc - variable the CRC sum shall be stored to
277     */
278     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279     for (int i = 0 ; i < bufSize ; i++) {
280     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281     }
282     }
283    
284     /**
285     * Returns the final CRC result.
286     *
287     * @param crc - variable previously passed to __calculateCRC()
288     */
289     inline static uint32_t __encodeCRC(const uint32_t& crc) {
290     return crc ^ 0xffffffff;
291     }
292    
293    
294    
295 schoenebeck 1113 // *************** Other Internal functions ***************
296     // *
297    
298     static split_type_t __resolveSplitType(dimension_t dimension) {
299     return (
300     dimension == dimension_layer ||
301     dimension == dimension_samplechannel ||
302     dimension == dimension_releasetrigger ||
303     dimension == dimension_keyboard ||
304     dimension == dimension_roundrobin ||
305     dimension == dimension_random ||
306     dimension == dimension_smartmidi ||
307     dimension == dimension_roundrobinkeyboard
308     ) ? split_type_bit : split_type_normal;
309     }
310    
311     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312     return (dimension_definition.split_type == split_type_normal)
313     ? int(128.0 / dimension_definition.zones) : 0;
314     }
315    
316    
317    
318 schoenebeck 2 // *************** Sample ***************
319     // *
320    
321 schoenebeck 2922 size_t Sample::Instances = 0;
322 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
323 schoenebeck 2
324 schoenebeck 809 /** @brief Constructor.
325     *
326     * Load an existing sample or create a new one. A 'wave' list chunk must
327     * be given to this constructor. In case the given 'wave' list chunk
328     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329     * format and sample data will be loaded from there, otherwise default
330     * values will be used and those chunks will be created when
331     * File::Save() will be called later on.
332     *
333     * @param pFile - pointer to gig::File where this sample is
334     * located (or will be located)
335     * @param waveList - pointer to 'wave' list chunk which is (or
336     * will be) associated with this sample
337     * @param WavePoolOffset - offset of this sample data from wave pool
338     * ('wvpl') list chunk
339     * @param fileNo - number of an extension file where this sample
340     * is located, 0 otherwise
341 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
342 schoenebeck 809 */
343 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
344     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
345     {
346 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
347 persson 1180 { CHUNK_ID_INAM, 64 },
348     { 0, 0 }
349     };
350 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
351 schoenebeck 2 Instances++;
352 persson 666 FileNo = fileNo;
353 schoenebeck 2
354 schoenebeck 1381 __resetCRC(crc);
355 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
356     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
357     // checksum of the time when the sample was consciously modified by the
358     // user for the last time (by calling Sample::Write() that is).
359     if (index >= 0) { // not a new file ...
360     try {
361     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
362     this->crc = crc;
363     } catch (...) {}
364     }
365 schoenebeck 1381
366 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
367     if (pCk3gix) {
368 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
369 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
370 schoenebeck 809 } else { // '3gix' chunk missing
371 schoenebeck 930 // by default assigned to that mandatory "Default Group"
372     pGroup = pFile->GetGroup(0);
373 schoenebeck 809 }
374 schoenebeck 2
375 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
376     if (pCkSmpl) {
377     Manufacturer = pCkSmpl->ReadInt32();
378     Product = pCkSmpl->ReadInt32();
379     SamplePeriod = pCkSmpl->ReadInt32();
380     MIDIUnityNote = pCkSmpl->ReadInt32();
381     FineTune = pCkSmpl->ReadInt32();
382     pCkSmpl->Read(&SMPTEFormat, 1, 4);
383     SMPTEOffset = pCkSmpl->ReadInt32();
384     Loops = pCkSmpl->ReadInt32();
385     pCkSmpl->ReadInt32(); // manufByt
386     LoopID = pCkSmpl->ReadInt32();
387     pCkSmpl->Read(&LoopType, 1, 4);
388     LoopStart = pCkSmpl->ReadInt32();
389     LoopEnd = pCkSmpl->ReadInt32();
390     LoopFraction = pCkSmpl->ReadInt32();
391     LoopPlayCount = pCkSmpl->ReadInt32();
392     } else { // 'smpl' chunk missing
393     // use default values
394     Manufacturer = 0;
395     Product = 0;
396 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
397 persson 1218 MIDIUnityNote = 60;
398 schoenebeck 809 FineTune = 0;
399 persson 1182 SMPTEFormat = smpte_format_no_offset;
400 schoenebeck 809 SMPTEOffset = 0;
401     Loops = 0;
402     LoopID = 0;
403 persson 1182 LoopType = loop_type_normal;
404 schoenebeck 809 LoopStart = 0;
405     LoopEnd = 0;
406     LoopFraction = 0;
407     LoopPlayCount = 0;
408     }
409 schoenebeck 2
410     FrameTable = NULL;
411     SamplePos = 0;
412     RAMCache.Size = 0;
413     RAMCache.pStart = NULL;
414     RAMCache.NullExtensionSize = 0;
415    
416 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
417    
418 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
419     Compressed = ewav;
420     Dithered = false;
421     TruncatedBits = 0;
422 schoenebeck 2 if (Compressed) {
423 persson 437 uint32_t version = ewav->ReadInt32();
424     if (version == 3 && BitDepth == 24) {
425     Dithered = ewav->ReadInt32();
426     ewav->SetPos(Channels == 2 ? 84 : 64);
427     TruncatedBits = ewav->ReadInt32();
428     }
429 schoenebeck 2 ScanCompressedSample();
430     }
431 schoenebeck 317
432     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
433 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
434     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
435     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
436 schoenebeck 317 }
437 persson 437 FrameOffset = 0; // just for streaming compressed samples
438 schoenebeck 21
439 persson 864 LoopSize = LoopEnd - LoopStart + 1;
440 schoenebeck 2 }
441    
442 schoenebeck 809 /**
443 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
444     * the actual waveform data) and assign it to this object.
445     *
446     * Discussion: copying .gig samples is a bit tricky. It requires three
447     * steps:
448     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
449     * its new sample waveform data size.
450     * 2. Saving the file (done by File::Save()) so that it gains correct size
451     * and layout for writing the actual wave form data directly to disc
452     * in next step.
453     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
454     *
455     * @param orig - original Sample object to be copied from
456     */
457     void Sample::CopyAssignMeta(const Sample* orig) {
458     // handle base classes
459     DLS::Sample::CopyAssignCore(orig);
460    
461     // handle actual own attributes of this class
462     Manufacturer = orig->Manufacturer;
463     Product = orig->Product;
464     SamplePeriod = orig->SamplePeriod;
465     MIDIUnityNote = orig->MIDIUnityNote;
466     FineTune = orig->FineTune;
467     SMPTEFormat = orig->SMPTEFormat;
468     SMPTEOffset = orig->SMPTEOffset;
469     Loops = orig->Loops;
470     LoopID = orig->LoopID;
471     LoopType = orig->LoopType;
472     LoopStart = orig->LoopStart;
473     LoopEnd = orig->LoopEnd;
474     LoopSize = orig->LoopSize;
475     LoopFraction = orig->LoopFraction;
476     LoopPlayCount = orig->LoopPlayCount;
477    
478     // schedule resizing this sample to the given sample's size
479     Resize(orig->GetSize());
480     }
481    
482     /**
483     * Should be called after CopyAssignMeta() and File::Save() sequence.
484     * Read more about it in the discussion of CopyAssignMeta(). This method
485     * copies the actual waveform data by disk streaming.
486     *
487     * @e CAUTION: this method is currently not thread safe! During this
488     * operation the sample must not be used for other purposes by other
489     * threads!
490     *
491     * @param orig - original Sample object to be copied from
492     */
493     void Sample::CopyAssignWave(const Sample* orig) {
494     const int iReadAtOnce = 32*1024;
495     char* buf = new char[iReadAtOnce * orig->FrameSize];
496     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
497 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
498 schoenebeck 2482 pOrig->SetPos(0);
499     SetPos(0);
500 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
501 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
502     {
503     Write(buf, n);
504     }
505     pOrig->SetPos(restorePos);
506     delete [] buf;
507     }
508    
509     /**
510 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
511     * to call File::Save() to make changes persistent.
512     *
513     * Usually there is absolutely no need to call this method explicitly.
514     * It will be called automatically when File::Save() was called.
515     *
516 schoenebeck 2682 * @param pProgress - callback function for progress notification
517 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
518 schoenebeck 809 * was provided yet
519     * @throws gig::Exception if there is any invalid sample setting
520     */
521 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
522 schoenebeck 809 // first update base class's chunks
523 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
524 schoenebeck 809
525     // make sure 'smpl' chunk exists
526     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
527 persson 1182 if (!pCkSmpl) {
528     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
529     memset(pCkSmpl->LoadChunkData(), 0, 60);
530     }
531 schoenebeck 809 // update 'smpl' chunk
532     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
533 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
534 persson 1179 store32(&pData[0], Manufacturer);
535     store32(&pData[4], Product);
536     store32(&pData[8], SamplePeriod);
537     store32(&pData[12], MIDIUnityNote);
538     store32(&pData[16], FineTune);
539     store32(&pData[20], SMPTEFormat);
540     store32(&pData[24], SMPTEOffset);
541     store32(&pData[28], Loops);
542 schoenebeck 809
543     // we skip 'manufByt' for now (4 bytes)
544    
545 persson 1179 store32(&pData[36], LoopID);
546     store32(&pData[40], LoopType);
547     store32(&pData[44], LoopStart);
548     store32(&pData[48], LoopEnd);
549     store32(&pData[52], LoopFraction);
550     store32(&pData[56], LoopPlayCount);
551 schoenebeck 809
552     // make sure '3gix' chunk exists
553     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
554     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
555 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
556 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
557 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
558     if (pFile->pGroups) {
559     std::list<Group*>::iterator iter = pFile->pGroups->begin();
560     std::list<Group*>::iterator end = pFile->pGroups->end();
561 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
562 schoenebeck 929 if (*iter == pGroup) {
563     iSampleGroup = i;
564     break; // found
565     }
566     }
567     }
568 schoenebeck 809 // update '3gix' chunk
569     pData = (uint8_t*) pCk3gix->LoadChunkData();
570 persson 1179 store16(&pData[0], iSampleGroup);
571 schoenebeck 2484
572     // if the library user toggled the "Compressed" attribute from true to
573     // false, then the EWAV chunk associated with compressed samples needs
574     // to be deleted
575     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
576     if (ewav && !Compressed) {
577     pWaveList->DeleteSubChunk(ewav);
578     }
579 schoenebeck 809 }
580    
581 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
582     void Sample::ScanCompressedSample() {
583     //TODO: we have to add some more scans here (e.g. determine compression rate)
584     this->SamplesTotal = 0;
585 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
586 schoenebeck 2
587 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
588 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
589 persson 365
590 schoenebeck 2 // Scanning
591     pCkData->SetPos(0);
592 persson 365 if (Channels == 2) { // Stereo
593     for (int i = 0 ; ; i++) {
594     // for 24 bit samples every 8:th frame offset is
595     // stored, to save some memory
596     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
597    
598     const int mode_l = pCkData->ReadUint8();
599     const int mode_r = pCkData->ReadUint8();
600     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
601 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
602 persson 365
603     if (pCkData->RemainingBytes() <= frameSize) {
604     SamplesInLastFrame =
605     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
606     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
607     SamplesTotal += SamplesInLastFrame;
608 schoenebeck 2 break;
609 persson 365 }
610     SamplesTotal += SamplesPerFrame;
611     pCkData->SetPos(frameSize, RIFF::stream_curpos);
612     }
613     }
614     else { // Mono
615     for (int i = 0 ; ; i++) {
616     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
617    
618     const int mode = pCkData->ReadUint8();
619     if (mode > 5) throw gig::Exception("Unknown compression mode");
620 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
621 persson 365
622     if (pCkData->RemainingBytes() <= frameSize) {
623     SamplesInLastFrame =
624     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
625     SamplesTotal += SamplesInLastFrame;
626 schoenebeck 2 break;
627 persson 365 }
628     SamplesTotal += SamplesPerFrame;
629     pCkData->SetPos(frameSize, RIFF::stream_curpos);
630 schoenebeck 2 }
631     }
632     pCkData->SetPos(0);
633    
634     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
635     if (FrameTable) delete[] FrameTable;
636 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
637     std::list<file_offset_t>::iterator end = frameOffsets.end();
638     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
639 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
640     FrameTable[i] = *iter;
641     }
642     }
643    
644     /**
645     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
646     * ReleaseSampleData() to free the memory if you don't need the cached
647     * sample data anymore.
648     *
649     * @returns buffer_t structure with start address and size of the buffer
650     * in bytes
651     * @see ReleaseSampleData(), Read(), SetPos()
652     */
653     buffer_t Sample::LoadSampleData() {
654     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
655     }
656    
657     /**
658     * Reads (uncompresses if needed) and caches the first \a SampleCount
659     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
660     * memory space if you don't need the cached samples anymore. There is no
661     * guarantee that exactly \a SampleCount samples will be cached; this is
662     * not an error. The size will be eventually truncated e.g. to the
663     * beginning of a frame of a compressed sample. This is done for
664     * efficiency reasons while streaming the wave by your sampler engine
665     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
666     * that will be returned to determine the actual cached samples, but note
667     * that the size is given in bytes! You get the number of actually cached
668     * samples by dividing it by the frame size of the sample:
669 schoenebeck 384 * @code
670 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
671     * long cachedsamples = buf.Size / pSample->FrameSize;
672 schoenebeck 384 * @endcode
673 schoenebeck 2 *
674     * @param SampleCount - number of sample points to load into RAM
675     * @returns buffer_t structure with start address and size of
676     * the cached sample data in bytes
677     * @see ReleaseSampleData(), Read(), SetPos()
678     */
679 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
680 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
681     }
682    
683     /**
684     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
685     * ReleaseSampleData() to free the memory if you don't need the cached
686     * sample data anymore.
687     * The method will add \a NullSamplesCount silence samples past the
688     * official buffer end (this won't affect the 'Size' member of the
689     * buffer_t structure, that means 'Size' always reflects the size of the
690     * actual sample data, the buffer might be bigger though). Silence
691     * samples past the official buffer are needed for differential
692     * algorithms that always have to take subsequent samples into account
693     * (resampling/interpolation would be an important example) and avoids
694     * memory access faults in such cases.
695     *
696     * @param NullSamplesCount - number of silence samples the buffer should
697     * be extended past it's data end
698     * @returns buffer_t structure with start address and
699     * size of the buffer in bytes
700     * @see ReleaseSampleData(), Read(), SetPos()
701     */
702     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
703     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
704     }
705    
706     /**
707     * Reads (uncompresses if needed) and caches the first \a SampleCount
708     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
709     * memory space if you don't need the cached samples anymore. There is no
710     * guarantee that exactly \a SampleCount samples will be cached; this is
711     * not an error. The size will be eventually truncated e.g. to the
712     * beginning of a frame of a compressed sample. This is done for
713     * efficiency reasons while streaming the wave by your sampler engine
714     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
715     * that will be returned to determine the actual cached samples, but note
716     * that the size is given in bytes! You get the number of actually cached
717     * samples by dividing it by the frame size of the sample:
718 schoenebeck 384 * @code
719 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
720     * long cachedsamples = buf.Size / pSample->FrameSize;
721 schoenebeck 384 * @endcode
722 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
723     * official buffer end (this won't affect the 'Size' member of the
724     * buffer_t structure, that means 'Size' always reflects the size of the
725     * actual sample data, the buffer might be bigger though). Silence
726     * samples past the official buffer are needed for differential
727     * algorithms that always have to take subsequent samples into account
728     * (resampling/interpolation would be an important example) and avoids
729     * memory access faults in such cases.
730     *
731     * @param SampleCount - number of sample points to load into RAM
732     * @param NullSamplesCount - number of silence samples the buffer should
733     * be extended past it's data end
734     * @returns buffer_t structure with start address and
735     * size of the cached sample data in bytes
736     * @see ReleaseSampleData(), Read(), SetPos()
737     */
738 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
739 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
740     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
741 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
742 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
743 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
744     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
745     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
746     // fill the remaining buffer space with silence samples
747     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
748     return GetCache();
749     }
750    
751     /**
752     * Returns current cached sample points. A buffer_t structure will be
753     * returned which contains address pointer to the begin of the cache and
754     * the size of the cached sample data in bytes. Use
755     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
756     * RAM.
757     *
758     * @returns buffer_t structure with current cached sample points
759     * @see LoadSampleData();
760     */
761     buffer_t Sample::GetCache() {
762     // return a copy of the buffer_t structure
763     buffer_t result;
764     result.Size = this->RAMCache.Size;
765     result.pStart = this->RAMCache.pStart;
766     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
767     return result;
768     }
769    
770     /**
771     * Frees the cached sample from RAM if loaded with
772     * <i>LoadSampleData()</i> previously.
773     *
774     * @see LoadSampleData();
775     */
776     void Sample::ReleaseSampleData() {
777     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
778     RAMCache.pStart = NULL;
779     RAMCache.Size = 0;
780 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
781 schoenebeck 2 }
782    
783 schoenebeck 809 /** @brief Resize sample.
784     *
785     * Resizes the sample's wave form data, that is the actual size of
786     * sample wave data possible to be written for this sample. This call
787     * will return immediately and just schedule the resize operation. You
788     * should call File::Save() to actually perform the resize operation(s)
789     * "physically" to the file. As this can take a while on large files, it
790     * is recommended to call Resize() first on all samples which have to be
791     * resized and finally to call File::Save() to perform all those resize
792     * operations in one rush.
793     *
794     * The actual size (in bytes) is dependant to the current FrameSize
795     * value. You may want to set FrameSize before calling Resize().
796     *
797     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
798     * enlarged samples before calling File::Save() as this might exceed the
799     * current sample's boundary!
800     *
801 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
802     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
803 schoenebeck 809 * other formats will fail!
804     *
805 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
806     * greater than zero)
807 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
808 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
809 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
810     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
811     * DLS::Sample::FormatTag, File::Save()
812     */
813 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
814 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
815 schoenebeck 2922 DLS::Sample::Resize(NewSize);
816 schoenebeck 809 }
817    
818 schoenebeck 2 /**
819     * Sets the position within the sample (in sample points, not in
820     * bytes). Use this method and <i>Read()</i> if you don't want to load
821     * the sample into RAM, thus for disk streaming.
822     *
823     * Although the original Gigasampler engine doesn't allow positioning
824     * within compressed samples, I decided to implement it. Even though
825     * the Gigasampler format doesn't allow to define loops for compressed
826     * samples at the moment, positioning within compressed samples might be
827     * interesting for some sampler engines though. The only drawback about
828     * my decision is that it takes longer to load compressed gig Files on
829     * startup, because it's neccessary to scan the samples for some
830     * mandatory informations. But I think as it doesn't affect the runtime
831     * efficiency, nobody will have a problem with that.
832     *
833     * @param SampleCount number of sample points to jump
834     * @param Whence optional: to which relation \a SampleCount refers
835     * to, if omited <i>RIFF::stream_start</i> is assumed
836     * @returns the new sample position
837     * @see Read()
838     */
839 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
840 schoenebeck 2 if (Compressed) {
841     switch (Whence) {
842     case RIFF::stream_curpos:
843     this->SamplePos += SampleCount;
844     break;
845     case RIFF::stream_end:
846     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
847     break;
848     case RIFF::stream_backward:
849     this->SamplePos -= SampleCount;
850     break;
851     case RIFF::stream_start: default:
852     this->SamplePos = SampleCount;
853     break;
854     }
855     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
856    
857 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
858 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
859     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
860     return this->SamplePos;
861     }
862     else { // not compressed
863 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
864     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
865 schoenebeck 2 return (result == orderedBytes) ? SampleCount
866     : result / this->FrameSize;
867     }
868     }
869    
870     /**
871     * Returns the current position in the sample (in sample points).
872     */
873 schoenebeck 2912 file_offset_t Sample::GetPos() const {
874 schoenebeck 2 if (Compressed) return SamplePos;
875     else return pCkData->GetPos() / FrameSize;
876     }
877    
878     /**
879 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
880     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
881     * the position within the sample respectively, this method honors the
882     * looping informations of the sample (if any). The sample wave stream
883     * will be decompressed on the fly if using a compressed sample. Use this
884     * method if you don't want to load the sample into RAM, thus for disk
885     * streaming. All this methods needs to know to proceed with streaming
886     * for the next time you call this method is stored in \a pPlaybackState.
887     * You have to allocate and initialize the playback_state_t structure by
888     * yourself before you use it to stream a sample:
889 schoenebeck 384 * @code
890     * gig::playback_state_t playbackstate;
891     * playbackstate.position = 0;
892     * playbackstate.reverse = false;
893     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
894     * @endcode
895 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
896     * defined or if the current read position is located within a loop area.
897     * The method already handles such cases by itself.
898     *
899 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
900     * have to use an external decompression buffer for <b>EACH</b>
901     * streaming thread to avoid race conditions and crashes!
902     *
903 schoenebeck 24 * @param pBuffer destination buffer
904     * @param SampleCount number of sample points to read
905     * @param pPlaybackState will be used to store and reload the playback
906     * state for the next ReadAndLoop() call
907 persson 864 * @param pDimRgn dimension region with looping information
908 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
909 schoenebeck 24 * @returns number of successfully read sample points
910 schoenebeck 384 * @see CreateDecompressionBuffer()
911 schoenebeck 24 */
912 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
913 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
914 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
915 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
916    
917     SetPos(pPlaybackState->position); // recover position from the last time
918    
919 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
920 schoenebeck 24
921 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
922     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
923 schoenebeck 24
924 persson 864 if (GetPos() <= loopEnd) {
925     switch (loop.LoopType) {
926 schoenebeck 24
927 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
928     do {
929     // if not endless loop check if max. number of loop cycles have been passed
930     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
931 schoenebeck 24
932 persson 864 if (!pPlaybackState->reverse) { // forward playback
933     do {
934     samplestoloopend = loopEnd - GetPos();
935     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
936     samplestoread -= readsamples;
937     totalreadsamples += readsamples;
938     if (readsamples == samplestoloopend) {
939     pPlaybackState->reverse = true;
940     break;
941     }
942     } while (samplestoread && readsamples);
943     }
944     else { // backward playback
945 schoenebeck 24
946 persson 864 // as we can only read forward from disk, we have to
947     // determine the end position within the loop first,
948     // read forward from that 'end' and finally after
949     // reading, swap all sample frames so it reflects
950     // backward playback
951 schoenebeck 24
952 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
953     file_offset_t loopoffset = GetPos() - loop.LoopStart;
954     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
955     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
956 schoenebeck 24
957 persson 864 SetPos(reverseplaybackend);
958 schoenebeck 24
959 persson 864 // read samples for backward playback
960     do {
961     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
962     samplestoreadinloop -= readsamples;
963     samplestoread -= readsamples;
964     totalreadsamples += readsamples;
965     } while (samplestoreadinloop && readsamples);
966 schoenebeck 24
967 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
968    
969     if (reverseplaybackend == loop.LoopStart) {
970     pPlaybackState->loop_cycles_left--;
971     pPlaybackState->reverse = false;
972     }
973    
974     // reverse the sample frames for backward playback
975 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
976     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
977 schoenebeck 24 }
978 persson 864 } while (samplestoread && readsamples);
979     break;
980     }
981 schoenebeck 24
982 persson 864 case loop_type_backward: { // TODO: not tested yet!
983     // forward playback (not entered the loop yet)
984     if (!pPlaybackState->reverse) do {
985     samplestoloopend = loopEnd - GetPos();
986     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
987     samplestoread -= readsamples;
988     totalreadsamples += readsamples;
989     if (readsamples == samplestoloopend) {
990     pPlaybackState->reverse = true;
991     break;
992     }
993     } while (samplestoread && readsamples);
994 schoenebeck 24
995 persson 864 if (!samplestoread) break;
996 schoenebeck 24
997 persson 864 // as we can only read forward from disk, we have to
998     // determine the end position within the loop first,
999     // read forward from that 'end' and finally after
1000     // reading, swap all sample frames so it reflects
1001     // backward playback
1002 schoenebeck 24
1003 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1004     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1005     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1006 persson 864 : samplestoread;
1007 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1008 schoenebeck 24
1009 persson 864 SetPos(reverseplaybackend);
1010 schoenebeck 24
1011 persson 864 // read samples for backward playback
1012     do {
1013     // if not endless loop check if max. number of loop cycles have been passed
1014     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1015     samplestoloopend = loopEnd - GetPos();
1016     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1017     samplestoreadinloop -= readsamples;
1018     samplestoread -= readsamples;
1019     totalreadsamples += readsamples;
1020     if (readsamples == samplestoloopend) {
1021     pPlaybackState->loop_cycles_left--;
1022     SetPos(loop.LoopStart);
1023     }
1024     } while (samplestoreadinloop && readsamples);
1025 schoenebeck 24
1026 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1027 schoenebeck 24
1028 persson 864 // reverse the sample frames for backward playback
1029     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030     break;
1031     }
1032 schoenebeck 24
1033 persson 864 default: case loop_type_normal: {
1034     do {
1035     // if not endless loop check if max. number of loop cycles have been passed
1036     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1037     samplestoloopend = loopEnd - GetPos();
1038     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1039     samplestoread -= readsamples;
1040     totalreadsamples += readsamples;
1041     if (readsamples == samplestoloopend) {
1042     pPlaybackState->loop_cycles_left--;
1043     SetPos(loop.LoopStart);
1044     }
1045     } while (samplestoread && readsamples);
1046     break;
1047     }
1048 schoenebeck 24 }
1049     }
1050     }
1051    
1052     // read on without looping
1053     if (samplestoread) do {
1054 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1055 schoenebeck 24 samplestoread -= readsamples;
1056     totalreadsamples += readsamples;
1057     } while (readsamples && samplestoread);
1058    
1059     // store current position
1060     pPlaybackState->position = GetPos();
1061    
1062     return totalreadsamples;
1063     }
1064    
1065     /**
1066 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1067     * position into the buffer pointed by \a pBuffer and increments the
1068     * position within the sample. The sample wave stream will be
1069     * decompressed on the fly if using a compressed sample. Use this method
1070     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1071     * thus for disk streaming.
1072     *
1073 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1074     * have to use an external decompression buffer for <b>EACH</b>
1075     * streaming thread to avoid race conditions and crashes!
1076     *
1077 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1078     * (using native endianness). For 24 bit, the buffer will
1079     * contain three bytes per sample, little-endian.
1080     *
1081 schoenebeck 2 * @param pBuffer destination buffer
1082     * @param SampleCount number of sample points to read
1083 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1084 schoenebeck 2 * @returns number of successfully read sample points
1085 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1086 schoenebeck 2 */
1087 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1088 schoenebeck 21 if (SampleCount == 0) return 0;
1089 schoenebeck 317 if (!Compressed) {
1090     if (BitDepth == 24) {
1091 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1092 schoenebeck 317 }
1093 persson 365 else { // 16 bit
1094     // (pCkData->Read does endian correction)
1095     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1096     : pCkData->Read(pBuffer, SampleCount, 2);
1097     }
1098 schoenebeck 317 }
1099 persson 365 else {
1100 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1101 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1102 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1103 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1104     remainingsamples = SampleCount,
1105 persson 365 copysamples, skipsamples,
1106     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1107 schoenebeck 2 this->FrameOffset = 0;
1108    
1109 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1110    
1111     // if decompression buffer too small, then reduce amount of samples to read
1112     if (pDecompressionBuffer->Size < assumedsize) {
1113     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1114     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1115     remainingsamples = SampleCount;
1116     assumedsize = GuessSize(SampleCount);
1117 schoenebeck 2 }
1118    
1119 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1120 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1121 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1122 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1123    
1124 persson 365 while (remainingsamples && remainingbytes) {
1125 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1126     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1127 schoenebeck 2
1128 persson 365 int mode_l = *pSrc++, mode_r = 0;
1129    
1130     if (Channels == 2) {
1131     mode_r = *pSrc++;
1132     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1133     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1134     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1135     if (remainingbytes < framebytes) { // last frame in sample
1136     framesamples = SamplesInLastFrame;
1137     if (mode_l == 4 && (framesamples & 1)) {
1138     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1139     }
1140     else {
1141     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1142     }
1143 schoenebeck 2 }
1144     }
1145 persson 365 else {
1146     framebytes = bytesPerFrame[mode_l] + 1;
1147     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1148     if (remainingbytes < framebytes) {
1149     framesamples = SamplesInLastFrame;
1150     }
1151     }
1152 schoenebeck 2
1153     // determine how many samples in this frame to skip and read
1154 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1155     if (currentframeoffset <= framesamples) {
1156     copysamples = framesamples - currentframeoffset;
1157     skipsamples = currentframeoffset;
1158     }
1159     else {
1160     copysamples = 0;
1161     skipsamples = framesamples;
1162     }
1163 schoenebeck 2 }
1164     else {
1165 persson 365 // This frame has enough data for pBuffer, but not
1166     // all of the frame is needed. Set file position
1167     // to start of this frame for next call to Read.
1168 schoenebeck 2 copysamples = remainingsamples;
1169 persson 365 skipsamples = currentframeoffset;
1170     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171     this->FrameOffset = currentframeoffset + copysamples;
1172     }
1173     remainingsamples -= copysamples;
1174    
1175     if (remainingbytes > framebytes) {
1176     remainingbytes -= framebytes;
1177     if (remainingsamples == 0 &&
1178     currentframeoffset + copysamples == framesamples) {
1179     // This frame has enough data for pBuffer, and
1180     // all of the frame is needed. Set file
1181     // position to start of next frame for next
1182     // call to Read. FrameOffset is 0.
1183 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1184     }
1185     }
1186 persson 365 else remainingbytes = 0;
1187 schoenebeck 2
1188 persson 365 currentframeoffset -= skipsamples;
1189 schoenebeck 2
1190 persson 365 if (copysamples == 0) {
1191     // skip this frame
1192     pSrc += framebytes - Channels;
1193     }
1194     else {
1195     const unsigned char* const param_l = pSrc;
1196     if (BitDepth == 24) {
1197     if (mode_l != 2) pSrc += 12;
1198 schoenebeck 2
1199 persson 365 if (Channels == 2) { // Stereo
1200     const unsigned char* const param_r = pSrc;
1201     if (mode_r != 2) pSrc += 12;
1202    
1203 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1204 persson 437 skipsamples, copysamples, TruncatedBits);
1205 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1206 persson 437 skipsamples, copysamples, TruncatedBits);
1207 persson 902 pDst24 += copysamples * 6;
1208 schoenebeck 2 }
1209 persson 365 else { // Mono
1210 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1211 persson 437 skipsamples, copysamples, TruncatedBits);
1212 persson 902 pDst24 += copysamples * 3;
1213 schoenebeck 2 }
1214 persson 365 }
1215     else { // 16 bit
1216     if (mode_l) pSrc += 4;
1217 schoenebeck 2
1218 persson 365 int step;
1219     if (Channels == 2) { // Stereo
1220     const unsigned char* const param_r = pSrc;
1221     if (mode_r) pSrc += 4;
1222    
1223     step = (2 - mode_l) + (2 - mode_r);
1224 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1225     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1226 persson 365 skipsamples, copysamples);
1227     pDst += copysamples << 1;
1228 schoenebeck 2 }
1229 persson 365 else { // Mono
1230     step = 2 - mode_l;
1231 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1232 persson 365 pDst += copysamples;
1233 schoenebeck 2 }
1234 persson 365 }
1235     pSrc += nextFrameOffset;
1236     }
1237 schoenebeck 2
1238 persson 365 // reload from disk to local buffer if needed
1239     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1240     assumedsize = GuessSize(remainingsamples);
1241     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1242     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1243 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1244     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1245 schoenebeck 2 }
1246 persson 365 } // while
1247    
1248 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1249 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1250 schoenebeck 2 return (SampleCount - remainingsamples);
1251     }
1252     }
1253    
1254 schoenebeck 809 /** @brief Write sample wave data.
1255     *
1256     * Writes \a SampleCount number of sample points from the buffer pointed
1257     * by \a pBuffer and increments the position within the sample. Use this
1258     * method to directly write the sample data to disk, i.e. if you don't
1259     * want or cannot load the whole sample data into RAM.
1260     *
1261     * You have to Resize() the sample to the desired size and call
1262     * File::Save() <b>before</b> using Write().
1263     *
1264     * Note: there is currently no support for writing compressed samples.
1265     *
1266 persson 1264 * For 16 bit samples, the data in the source buffer should be
1267     * int16_t (using native endianness). For 24 bit, the buffer
1268     * should contain three bytes per sample, little-endian.
1269     *
1270 schoenebeck 809 * @param pBuffer - source buffer
1271     * @param SampleCount - number of sample points to write
1272     * @throws DLS::Exception if current sample size is too small
1273     * @throws gig::Exception if sample is compressed
1274     * @see DLS::LoadSampleData()
1275     */
1276 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1277 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1278 persson 1207
1279     // if this is the first write in this sample, reset the
1280     // checksum calculator
1281 persson 1199 if (pCkData->GetPos() == 0) {
1282 schoenebeck 1381 __resetCRC(crc);
1283 persson 1199 }
1284 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1285 schoenebeck 2912 file_offset_t res;
1286 persson 1264 if (BitDepth == 24) {
1287     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1288     } else { // 16 bit
1289     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1290     : pCkData->Write(pBuffer, SampleCount, 2);
1291     }
1292 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1293 persson 1199
1294 persson 1207 // if this is the last write, update the checksum chunk in the
1295     // file
1296 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1297     File* pFile = static_cast<File*>(GetParent());
1298 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1299 persson 1199 }
1300     return res;
1301 schoenebeck 809 }
1302    
1303 schoenebeck 384 /**
1304     * Allocates a decompression buffer for streaming (compressed) samples
1305     * with Sample::Read(). If you are using more than one streaming thread
1306     * in your application you <b>HAVE</b> to create a decompression buffer
1307     * for <b>EACH</b> of your streaming threads and provide it with the
1308     * Sample::Read() call in order to avoid race conditions and crashes.
1309     *
1310     * You should free the memory occupied by the allocated buffer(s) once
1311     * you don't need one of your streaming threads anymore by calling
1312     * DestroyDecompressionBuffer().
1313     *
1314     * @param MaxReadSize - the maximum size (in sample points) you ever
1315     * expect to read with one Read() call
1316     * @returns allocated decompression buffer
1317     * @see DestroyDecompressionBuffer()
1318     */
1319 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1320 schoenebeck 384 buffer_t result;
1321     const double worstCaseHeaderOverhead =
1322     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1323 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1324 schoenebeck 384 result.pStart = new int8_t[result.Size];
1325     result.NullExtensionSize = 0;
1326     return result;
1327     }
1328    
1329     /**
1330     * Free decompression buffer, previously created with
1331     * CreateDecompressionBuffer().
1332     *
1333     * @param DecompressionBuffer - previously allocated decompression
1334     * buffer to free
1335     */
1336     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1337     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1338     delete[] (int8_t*) DecompressionBuffer.pStart;
1339     DecompressionBuffer.pStart = NULL;
1340     DecompressionBuffer.Size = 0;
1341     DecompressionBuffer.NullExtensionSize = 0;
1342     }
1343     }
1344    
1345 schoenebeck 930 /**
1346     * Returns pointer to the Group this Sample belongs to. In the .gig
1347     * format a sample always belongs to one group. If it wasn't explicitly
1348     * assigned to a certain group, it will be automatically assigned to a
1349     * default group.
1350     *
1351     * @returns Sample's Group (never NULL)
1352     */
1353     Group* Sample::GetGroup() const {
1354     return pGroup;
1355     }
1356    
1357 schoenebeck 2985 /**
1358 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1359     * time when this sample's wave form data was modified for the last time
1360     * by calling Write(). This checksum only covers the raw wave form data,
1361     * not any meta informations like i.e. bit depth or loop points. Since
1362     * this method just returns the checksum stored for this sample i.e. when
1363     * the gig file was loaded, this method returns immediately. So it does no
1364     * recalcuation of the checksum with the currently available sample wave
1365     * form data.
1366     *
1367     * @see VerifyWaveData()
1368     */
1369     uint32_t Sample::GetWaveDataCRC32Checksum() {
1370     return crc;
1371     }
1372    
1373     /**
1374 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1375     * Sample's raw wave data is intentionally modified (i.e. by calling
1376     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1377     * is calculated and stored/updated for this sample, along to the sample's
1378     * meta informations.
1379     *
1380     * Now by calling this method the current raw audio wave data is checked
1381     * against the already stored CRC32 check sum in order to check whether the
1382     * sample data had been damaged unintentionally for some reason. Since by
1383     * calling this method always the entire raw audio wave data has to be
1384     * read, verifying all samples this way may take a long time accordingly.
1385     * And that's also the reason why the sample integrity is not checked by
1386     * default whenever a gig file is loaded. So this method must be called
1387     * explicitly to fulfill this task.
1388     *
1389 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1390     * calculated checksum of the current raw wave form data,
1391     * you can get the expected checksum instead by calling
1392     * GetWaveDataCRC32Checksum()
1393 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1394     * @throws Exception if no checksum had been stored to disk for this
1395     * sample yet, or on I/O issues
1396 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1397 schoenebeck 2985 */
1398 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1399 schoenebeck 2985 File* pFile = static_cast<File*>(GetParent());
1400     uint32_t crc = CalculateWaveDataChecksum();
1401 schoenebeck 2989 if (pActually) *pActually = crc;
1402     return crc == this->crc;
1403 schoenebeck 2985 }
1404    
1405     uint32_t Sample::CalculateWaveDataChecksum() {
1406     const size_t sz = 20*1024; // 20kB buffer size
1407     std::vector<uint8_t> buffer(sz);
1408     buffer.resize(sz);
1409    
1410     const size_t n = sz / FrameSize;
1411     SetPos(0);
1412     uint32_t crc = 0;
1413     __resetCRC(crc);
1414     while (true) {
1415     file_offset_t nRead = Read(&buffer[0], n);
1416     if (nRead <= 0) break;
1417     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1418     }
1419     __encodeCRC(crc);
1420     return crc;
1421     }
1422    
1423 schoenebeck 2 Sample::~Sample() {
1424     Instances--;
1425 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1426     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1427     InternalDecompressionBuffer.pStart = NULL;
1428     InternalDecompressionBuffer.Size = 0;
1429 schoenebeck 355 }
1430 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1431     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1432     }
1433    
1434    
1435    
1436     // *************** DimensionRegion ***************
1437     // *
1438    
1439 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1440 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1441    
1442 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1443 schoenebeck 16 Instances++;
1444    
1445 schoenebeck 823 pSample = NULL;
1446 schoenebeck 1316 pRegion = pParent;
1447 schoenebeck 823
1448 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1449     else memset(&Crossfade, 0, 4);
1450    
1451 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1452 schoenebeck 2
1453     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1454 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1455 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1456 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1457     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458     _3ewa->ReadInt16(); // unknown
1459     LFO1InternalDepth = _3ewa->ReadUint16();
1460     _3ewa->ReadInt16(); // unknown
1461     LFO3InternalDepth = _3ewa->ReadInt16();
1462     _3ewa->ReadInt16(); // unknown
1463     LFO1ControlDepth = _3ewa->ReadUint16();
1464     _3ewa->ReadInt16(); // unknown
1465     LFO3ControlDepth = _3ewa->ReadInt16();
1466     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1467     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1468     _3ewa->ReadInt16(); // unknown
1469     EG1Sustain = _3ewa->ReadUint16();
1470     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1471     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1472     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1473     EG1ControllerInvert = eg1ctrloptions & 0x01;
1474     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1475     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1476     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1477     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1478     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1479     EG2ControllerInvert = eg2ctrloptions & 0x01;
1480     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1481     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1482     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1483     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1486     _3ewa->ReadInt16(); // unknown
1487     EG2Sustain = _3ewa->ReadUint16();
1488     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1489     _3ewa->ReadInt16(); // unknown
1490     LFO2ControlDepth = _3ewa->ReadUint16();
1491     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1492     _3ewa->ReadInt16(); // unknown
1493     LFO2InternalDepth = _3ewa->ReadUint16();
1494     int32_t eg1decay2 = _3ewa->ReadInt32();
1495     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1496     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1497     _3ewa->ReadInt16(); // unknown
1498     EG1PreAttack = _3ewa->ReadUint16();
1499     int32_t eg2decay2 = _3ewa->ReadInt32();
1500     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1501     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1502     _3ewa->ReadInt16(); // unknown
1503     EG2PreAttack = _3ewa->ReadUint16();
1504     uint8_t velocityresponse = _3ewa->ReadUint8();
1505     if (velocityresponse < 5) {
1506     VelocityResponseCurve = curve_type_nonlinear;
1507     VelocityResponseDepth = velocityresponse;
1508     } else if (velocityresponse < 10) {
1509     VelocityResponseCurve = curve_type_linear;
1510     VelocityResponseDepth = velocityresponse - 5;
1511     } else if (velocityresponse < 15) {
1512     VelocityResponseCurve = curve_type_special;
1513     VelocityResponseDepth = velocityresponse - 10;
1514     } else {
1515     VelocityResponseCurve = curve_type_unknown;
1516     VelocityResponseDepth = 0;
1517     }
1518     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1519     if (releasevelocityresponse < 5) {
1520     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1521     ReleaseVelocityResponseDepth = releasevelocityresponse;
1522     } else if (releasevelocityresponse < 10) {
1523     ReleaseVelocityResponseCurve = curve_type_linear;
1524     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1525     } else if (releasevelocityresponse < 15) {
1526     ReleaseVelocityResponseCurve = curve_type_special;
1527     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1528     } else {
1529     ReleaseVelocityResponseCurve = curve_type_unknown;
1530     ReleaseVelocityResponseDepth = 0;
1531     }
1532     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1533     AttenuationControllerThreshold = _3ewa->ReadInt8();
1534     _3ewa->ReadInt32(); // unknown
1535     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1536     _3ewa->ReadInt16(); // unknown
1537     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1538     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1539     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1540     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1541     else DimensionBypass = dim_bypass_ctrl_none;
1542     uint8_t pan = _3ewa->ReadUint8();
1543     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1544     SelfMask = _3ewa->ReadInt8() & 0x01;
1545     _3ewa->ReadInt8(); // unknown
1546     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1547     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1548     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1549     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1550     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1551     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1552     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1553     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1554     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1555     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1556     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1557     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1558     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1559     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1560     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1561     : vcf_res_ctrl_none;
1562     uint16_t eg3depth = _3ewa->ReadUint16();
1563     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1564 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1565 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1566     ChannelOffset = _3ewa->ReadUint8() / 4;
1567     uint8_t regoptions = _3ewa->ReadUint8();
1568     MSDecode = regoptions & 0x01; // bit 0
1569     SustainDefeat = regoptions & 0x02; // bit 1
1570     _3ewa->ReadInt16(); // unknown
1571     VelocityUpperLimit = _3ewa->ReadInt8();
1572     _3ewa->ReadInt8(); // unknown
1573     _3ewa->ReadInt16(); // unknown
1574     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1575     _3ewa->ReadInt8(); // unknown
1576     _3ewa->ReadInt8(); // unknown
1577     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1578     uint8_t vcfcutoff = _3ewa->ReadUint8();
1579     VCFEnabled = vcfcutoff & 0x80; // bit 7
1580     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1581     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1582     uint8_t vcfvelscale = _3ewa->ReadUint8();
1583     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1584     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1585     _3ewa->ReadInt8(); // unknown
1586     uint8_t vcfresonance = _3ewa->ReadUint8();
1587     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1588     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1589     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1590     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1591     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1592     uint8_t vcfvelocity = _3ewa->ReadUint8();
1593     VCFVelocityDynamicRange = vcfvelocity % 5;
1594     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1595     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1596     if (VCFType == vcf_type_lowpass) {
1597     if (lfo3ctrl & 0x40) // bit 6
1598     VCFType = vcf_type_lowpassturbo;
1599     }
1600 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1601     _3ewa->Read(DimensionUpperLimits, 1, 8);
1602     } else {
1603     memset(DimensionUpperLimits, 0, 8);
1604     }
1605 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1606     // use default values
1607     LFO3Frequency = 1.0;
1608     EG3Attack = 0.0;
1609     LFO1InternalDepth = 0;
1610     LFO3InternalDepth = 0;
1611     LFO1ControlDepth = 0;
1612     LFO3ControlDepth = 0;
1613     EG1Attack = 0.0;
1614 persson 1218 EG1Decay1 = 0.005;
1615     EG1Sustain = 1000;
1616     EG1Release = 0.3;
1617 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1618     EG1Controller.controller_number = 0;
1619     EG1ControllerInvert = false;
1620     EG1ControllerAttackInfluence = 0;
1621     EG1ControllerDecayInfluence = 0;
1622     EG1ControllerReleaseInfluence = 0;
1623     EG2Controller.type = eg2_ctrl_t::type_none;
1624     EG2Controller.controller_number = 0;
1625     EG2ControllerInvert = false;
1626     EG2ControllerAttackInfluence = 0;
1627     EG2ControllerDecayInfluence = 0;
1628     EG2ControllerReleaseInfluence = 0;
1629     LFO1Frequency = 1.0;
1630     EG2Attack = 0.0;
1631 persson 1218 EG2Decay1 = 0.005;
1632     EG2Sustain = 1000;
1633     EG2Release = 0.3;
1634 schoenebeck 809 LFO2ControlDepth = 0;
1635     LFO2Frequency = 1.0;
1636     LFO2InternalDepth = 0;
1637     EG1Decay2 = 0.0;
1638 persson 1218 EG1InfiniteSustain = true;
1639     EG1PreAttack = 0;
1640 schoenebeck 809 EG2Decay2 = 0.0;
1641 persson 1218 EG2InfiniteSustain = true;
1642     EG2PreAttack = 0;
1643 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1644     VelocityResponseDepth = 3;
1645     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1646     ReleaseVelocityResponseDepth = 3;
1647     VelocityResponseCurveScaling = 32;
1648     AttenuationControllerThreshold = 0;
1649     SampleStartOffset = 0;
1650     PitchTrack = true;
1651     DimensionBypass = dim_bypass_ctrl_none;
1652     Pan = 0;
1653     SelfMask = true;
1654     LFO3Controller = lfo3_ctrl_modwheel;
1655     LFO3Sync = false;
1656     InvertAttenuationController = false;
1657     AttenuationController.type = attenuation_ctrl_t::type_none;
1658     AttenuationController.controller_number = 0;
1659     LFO2Controller = lfo2_ctrl_internal;
1660     LFO2FlipPhase = false;
1661     LFO2Sync = false;
1662     LFO1Controller = lfo1_ctrl_internal;
1663     LFO1FlipPhase = false;
1664     LFO1Sync = false;
1665     VCFResonanceController = vcf_res_ctrl_none;
1666     EG3Depth = 0;
1667     ChannelOffset = 0;
1668     MSDecode = false;
1669     SustainDefeat = false;
1670     VelocityUpperLimit = 0;
1671     ReleaseTriggerDecay = 0;
1672     EG1Hold = false;
1673     VCFEnabled = false;
1674     VCFCutoff = 0;
1675     VCFCutoffController = vcf_cutoff_ctrl_none;
1676     VCFCutoffControllerInvert = false;
1677     VCFVelocityScale = 0;
1678     VCFResonance = 0;
1679     VCFResonanceDynamic = false;
1680     VCFKeyboardTracking = false;
1681     VCFKeyboardTrackingBreakpoint = 0;
1682     VCFVelocityDynamicRange = 0x04;
1683     VCFVelocityCurve = curve_type_linear;
1684     VCFType = vcf_type_lowpass;
1685 persson 1247 memset(DimensionUpperLimits, 127, 8);
1686 schoenebeck 2 }
1687 schoenebeck 16
1688 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1689     VelocityResponseDepth,
1690     VelocityResponseCurveScaling);
1691    
1692 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1693     ReleaseVelocityResponseCurve,
1694     ReleaseVelocityResponseDepth
1695     );
1696 persson 613
1697 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1698     VCFVelocityDynamicRange,
1699     VCFVelocityScale,
1700     VCFCutoffController);
1701 persson 613
1702     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1703 persson 858 VelocityTable = 0;
1704 persson 613 }
1705    
1706 persson 1301 /*
1707     * Constructs a DimensionRegion by copying all parameters from
1708     * another DimensionRegion
1709     */
1710     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1711     Instances++;
1712 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1713 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1714     pParentList = _3ewl; // restore the chunk pointer
1715    
1716     // deep copy of owned structures
1717     if (src.VelocityTable) {
1718     VelocityTable = new uint8_t[128];
1719     for (int k = 0 ; k < 128 ; k++)
1720     VelocityTable[k] = src.VelocityTable[k];
1721     }
1722     if (src.pSampleLoops) {
1723     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1724     for (int k = 0 ; k < src.SampleLoops ; k++)
1725     pSampleLoops[k] = src.pSampleLoops[k];
1726     }
1727     }
1728 schoenebeck 2394
1729     /**
1730     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1731     * and assign it to this object.
1732     *
1733     * Note that all sample pointers referenced by @a orig are simply copied as
1734     * memory address. Thus the respective samples are shared, not duplicated!
1735     *
1736     * @param orig - original DimensionRegion object to be copied from
1737     */
1738     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1739 schoenebeck 2482 CopyAssign(orig, NULL);
1740     }
1741    
1742     /**
1743     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1744     * and assign it to this object.
1745     *
1746     * @param orig - original DimensionRegion object to be copied from
1747     * @param mSamples - crosslink map between the foreign file's samples and
1748     * this file's samples
1749     */
1750     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1751 schoenebeck 2394 // delete all allocated data first
1752     if (VelocityTable) delete [] VelocityTable;
1753     if (pSampleLoops) delete [] pSampleLoops;
1754    
1755     // backup parent list pointer
1756     RIFF::List* p = pParentList;
1757    
1758 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1759     gig::Region* pOriginalRegion = pRegion;
1760    
1761 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1762    
1763     *this = *orig; // default memberwise shallow copy of all parameters
1764 schoenebeck 2547
1765     // restore members that shall not be altered
1766 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1767 schoenebeck 2547 pRegion = pOriginalRegion;
1768 schoenebeck 2482
1769 schoenebeck 2547 // only take the raw sample reference reference if the
1770 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1771     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1772     pSample = pOriginalSample;
1773     }
1774    
1775     if (mSamples && mSamples->count(orig->pSample)) {
1776     pSample = mSamples->find(orig->pSample)->second;
1777     }
1778 persson 1301
1779 schoenebeck 2394 // deep copy of owned structures
1780     if (orig->VelocityTable) {
1781     VelocityTable = new uint8_t[128];
1782     for (int k = 0 ; k < 128 ; k++)
1783     VelocityTable[k] = orig->VelocityTable[k];
1784     }
1785     if (orig->pSampleLoops) {
1786     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1787     for (int k = 0 ; k < orig->SampleLoops ; k++)
1788     pSampleLoops[k] = orig->pSampleLoops[k];
1789     }
1790     }
1791    
1792 schoenebeck 809 /**
1793 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1794     * which depends on this value.
1795     */
1796     void DimensionRegion::SetGain(int32_t gain) {
1797     DLS::Sampler::SetGain(gain);
1798     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1799     }
1800    
1801     /**
1802 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1803     * have to call File::Save() to make changes persistent.
1804     *
1805     * Usually there is absolutely no need to call this method explicitly.
1806     * It will be called automatically when File::Save() was called.
1807 schoenebeck 2682 *
1808     * @param pProgress - callback function for progress notification
1809 schoenebeck 809 */
1810 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1811 schoenebeck 809 // first update base class's chunk
1812 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1813 schoenebeck 809
1814 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1815     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1816     pData[12] = Crossfade.in_start;
1817     pData[13] = Crossfade.in_end;
1818     pData[14] = Crossfade.out_start;
1819     pData[15] = Crossfade.out_end;
1820    
1821 schoenebeck 809 // make sure '3ewa' chunk exists
1822     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1823 persson 1317 if (!_3ewa) {
1824     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1825     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1826     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1827 persson 1264 }
1828 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1829 schoenebeck 809
1830     // update '3ewa' chunk with DimensionRegion's current settings
1831    
1832 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1833 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1834 schoenebeck 809
1835     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1836 persson 1179 store32(&pData[4], lfo3freq);
1837 schoenebeck 809
1838     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1839 persson 1179 store32(&pData[8], eg3attack);
1840 schoenebeck 809
1841     // next 2 bytes unknown
1842    
1843 persson 1179 store16(&pData[14], LFO1InternalDepth);
1844 schoenebeck 809
1845     // next 2 bytes unknown
1846    
1847 persson 1179 store16(&pData[18], LFO3InternalDepth);
1848 schoenebeck 809
1849     // next 2 bytes unknown
1850    
1851 persson 1179 store16(&pData[22], LFO1ControlDepth);
1852 schoenebeck 809
1853     // next 2 bytes unknown
1854    
1855 persson 1179 store16(&pData[26], LFO3ControlDepth);
1856 schoenebeck 809
1857     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1858 persson 1179 store32(&pData[28], eg1attack);
1859 schoenebeck 809
1860     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1861 persson 1179 store32(&pData[32], eg1decay1);
1862 schoenebeck 809
1863     // next 2 bytes unknown
1864    
1865 persson 1179 store16(&pData[38], EG1Sustain);
1866 schoenebeck 809
1867     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1868 persson 1179 store32(&pData[40], eg1release);
1869 schoenebeck 809
1870     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1871 persson 1179 pData[44] = eg1ctl;
1872 schoenebeck 809
1873     const uint8_t eg1ctrloptions =
1874 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1875 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1876     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1877     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1878 persson 1179 pData[45] = eg1ctrloptions;
1879 schoenebeck 809
1880     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1881 persson 1179 pData[46] = eg2ctl;
1882 schoenebeck 809
1883     const uint8_t eg2ctrloptions =
1884 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1885 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1886     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1887     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1888 persson 1179 pData[47] = eg2ctrloptions;
1889 schoenebeck 809
1890     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1891 persson 1179 store32(&pData[48], lfo1freq);
1892 schoenebeck 809
1893     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1894 persson 1179 store32(&pData[52], eg2attack);
1895 schoenebeck 809
1896     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1897 persson 1179 store32(&pData[56], eg2decay1);
1898 schoenebeck 809
1899     // next 2 bytes unknown
1900    
1901 persson 1179 store16(&pData[62], EG2Sustain);
1902 schoenebeck 809
1903     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1904 persson 1179 store32(&pData[64], eg2release);
1905 schoenebeck 809
1906     // next 2 bytes unknown
1907    
1908 persson 1179 store16(&pData[70], LFO2ControlDepth);
1909 schoenebeck 809
1910     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1911 persson 1179 store32(&pData[72], lfo2freq);
1912 schoenebeck 809
1913     // next 2 bytes unknown
1914    
1915 persson 1179 store16(&pData[78], LFO2InternalDepth);
1916 schoenebeck 809
1917     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1918 persson 1179 store32(&pData[80], eg1decay2);
1919 schoenebeck 809
1920     // next 2 bytes unknown
1921    
1922 persson 1179 store16(&pData[86], EG1PreAttack);
1923 schoenebeck 809
1924     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1925 persson 1179 store32(&pData[88], eg2decay2);
1926 schoenebeck 809
1927     // next 2 bytes unknown
1928    
1929 persson 1179 store16(&pData[94], EG2PreAttack);
1930 schoenebeck 809
1931     {
1932     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1933     uint8_t velocityresponse = VelocityResponseDepth;
1934     switch (VelocityResponseCurve) {
1935     case curve_type_nonlinear:
1936     break;
1937     case curve_type_linear:
1938     velocityresponse += 5;
1939     break;
1940     case curve_type_special:
1941     velocityresponse += 10;
1942     break;
1943     case curve_type_unknown:
1944     default:
1945     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1946     }
1947 persson 1179 pData[96] = velocityresponse;
1948 schoenebeck 809 }
1949    
1950     {
1951     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1952     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1953     switch (ReleaseVelocityResponseCurve) {
1954     case curve_type_nonlinear:
1955     break;
1956     case curve_type_linear:
1957     releasevelocityresponse += 5;
1958     break;
1959     case curve_type_special:
1960     releasevelocityresponse += 10;
1961     break;
1962     case curve_type_unknown:
1963     default:
1964     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1965     }
1966 persson 1179 pData[97] = releasevelocityresponse;
1967 schoenebeck 809 }
1968    
1969 persson 1179 pData[98] = VelocityResponseCurveScaling;
1970 schoenebeck 809
1971 persson 1179 pData[99] = AttenuationControllerThreshold;
1972 schoenebeck 809
1973     // next 4 bytes unknown
1974    
1975 persson 1179 store16(&pData[104], SampleStartOffset);
1976 schoenebeck 809
1977     // next 2 bytes unknown
1978    
1979     {
1980     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1981     switch (DimensionBypass) {
1982     case dim_bypass_ctrl_94:
1983     pitchTrackDimensionBypass |= 0x10;
1984     break;
1985     case dim_bypass_ctrl_95:
1986     pitchTrackDimensionBypass |= 0x20;
1987     break;
1988     case dim_bypass_ctrl_none:
1989     //FIXME: should we set anything here?
1990     break;
1991     default:
1992     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1993     }
1994 persson 1179 pData[108] = pitchTrackDimensionBypass;
1995 schoenebeck 809 }
1996    
1997     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1998 persson 1179 pData[109] = pan;
1999 schoenebeck 809
2000     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2001 persson 1179 pData[110] = selfmask;
2002 schoenebeck 809
2003     // next byte unknown
2004    
2005     {
2006     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2007     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2008     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2009     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2010 persson 1179 pData[112] = lfo3ctrl;
2011 schoenebeck 809 }
2012    
2013     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2014 persson 1179 pData[113] = attenctl;
2015 schoenebeck 809
2016     {
2017     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2018     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2019     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2020     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2021 persson 1179 pData[114] = lfo2ctrl;
2022 schoenebeck 809 }
2023    
2024     {
2025     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2026     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2027     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2028     if (VCFResonanceController != vcf_res_ctrl_none)
2029     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2030 persson 1179 pData[115] = lfo1ctrl;
2031 schoenebeck 809 }
2032    
2033     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2034 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2035 persson 1869 store16(&pData[116], eg3depth);
2036 schoenebeck 809
2037     // next 2 bytes unknown
2038    
2039     const uint8_t channeloffset = ChannelOffset * 4;
2040 persson 1179 pData[120] = channeloffset;
2041 schoenebeck 809
2042     {
2043     uint8_t regoptions = 0;
2044     if (MSDecode) regoptions |= 0x01; // bit 0
2045     if (SustainDefeat) regoptions |= 0x02; // bit 1
2046 persson 1179 pData[121] = regoptions;
2047 schoenebeck 809 }
2048    
2049     // next 2 bytes unknown
2050    
2051 persson 1179 pData[124] = VelocityUpperLimit;
2052 schoenebeck 809
2053     // next 3 bytes unknown
2054    
2055 persson 1179 pData[128] = ReleaseTriggerDecay;
2056 schoenebeck 809
2057     // next 2 bytes unknown
2058    
2059     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2060 persson 1179 pData[131] = eg1hold;
2061 schoenebeck 809
2062 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2063 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2064 persson 1179 pData[132] = vcfcutoff;
2065 schoenebeck 809
2066 persson 1179 pData[133] = VCFCutoffController;
2067 schoenebeck 809
2068 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2069 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2070 persson 1179 pData[134] = vcfvelscale;
2071 schoenebeck 809
2072     // next byte unknown
2073    
2074 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2075 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2076 persson 1179 pData[136] = vcfresonance;
2077 schoenebeck 809
2078 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2079 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2080 persson 1179 pData[137] = vcfbreakpoint;
2081 schoenebeck 809
2082 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2083 schoenebeck 809 VCFVelocityCurve * 5;
2084 persson 1179 pData[138] = vcfvelocity;
2085 schoenebeck 809
2086     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2087 persson 1179 pData[139] = vcftype;
2088 persson 1070
2089     if (chunksize >= 148) {
2090     memcpy(&pData[140], DimensionUpperLimits, 8);
2091     }
2092 schoenebeck 809 }
2093    
2094 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2095     curve_type_t curveType = releaseVelocityResponseCurve;
2096     uint8_t depth = releaseVelocityResponseDepth;
2097     // this models a strange behaviour or bug in GSt: two of the
2098     // velocity response curves for release time are not used even
2099     // if specified, instead another curve is chosen.
2100     if ((curveType == curve_type_nonlinear && depth == 0) ||
2101     (curveType == curve_type_special && depth == 4)) {
2102     curveType = curve_type_nonlinear;
2103     depth = 3;
2104     }
2105     return GetVelocityTable(curveType, depth, 0);
2106     }
2107    
2108     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2109     uint8_t vcfVelocityDynamicRange,
2110     uint8_t vcfVelocityScale,
2111     vcf_cutoff_ctrl_t vcfCutoffController)
2112     {
2113     curve_type_t curveType = vcfVelocityCurve;
2114     uint8_t depth = vcfVelocityDynamicRange;
2115     // even stranger GSt: two of the velocity response curves for
2116     // filter cutoff are not used, instead another special curve
2117     // is chosen. This curve is not used anywhere else.
2118     if ((curveType == curve_type_nonlinear && depth == 0) ||
2119     (curveType == curve_type_special && depth == 4)) {
2120     curveType = curve_type_special;
2121     depth = 5;
2122     }
2123     return GetVelocityTable(curveType, depth,
2124     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2125     ? vcfVelocityScale : 0);
2126     }
2127    
2128 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2129     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2130     {
2131     double* table;
2132     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2133 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2134 persson 613 table = (*pVelocityTables)[tableKey];
2135 schoenebeck 16 }
2136     else {
2137 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2138     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2139 schoenebeck 16 }
2140 persson 613 return table;
2141 schoenebeck 2 }
2142 schoenebeck 55
2143 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2144     return pRegion;
2145     }
2146    
2147 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2148     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2149     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2150     //#pragma GCC diagnostic push
2151     //#pragma GCC diagnostic error "-Wswitch"
2152    
2153 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2154     leverage_ctrl_t decodedcontroller;
2155     switch (EncodedController) {
2156     // special controller
2157     case _lev_ctrl_none:
2158     decodedcontroller.type = leverage_ctrl_t::type_none;
2159     decodedcontroller.controller_number = 0;
2160     break;
2161     case _lev_ctrl_velocity:
2162     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2163     decodedcontroller.controller_number = 0;
2164     break;
2165     case _lev_ctrl_channelaftertouch:
2166     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2167     decodedcontroller.controller_number = 0;
2168     break;
2169 schoenebeck 55
2170 schoenebeck 36 // ordinary MIDI control change controller
2171     case _lev_ctrl_modwheel:
2172     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2173     decodedcontroller.controller_number = 1;
2174     break;
2175     case _lev_ctrl_breath:
2176     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2177     decodedcontroller.controller_number = 2;
2178     break;
2179     case _lev_ctrl_foot:
2180     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2181     decodedcontroller.controller_number = 4;
2182     break;
2183     case _lev_ctrl_effect1:
2184     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2185     decodedcontroller.controller_number = 12;
2186     break;
2187     case _lev_ctrl_effect2:
2188     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2189     decodedcontroller.controller_number = 13;
2190     break;
2191     case _lev_ctrl_genpurpose1:
2192     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2193     decodedcontroller.controller_number = 16;
2194     break;
2195     case _lev_ctrl_genpurpose2:
2196     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2197     decodedcontroller.controller_number = 17;
2198     break;
2199     case _lev_ctrl_genpurpose3:
2200     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2201     decodedcontroller.controller_number = 18;
2202     break;
2203     case _lev_ctrl_genpurpose4:
2204     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2205     decodedcontroller.controller_number = 19;
2206     break;
2207     case _lev_ctrl_portamentotime:
2208     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2209     decodedcontroller.controller_number = 5;
2210     break;
2211     case _lev_ctrl_sustainpedal:
2212     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2213     decodedcontroller.controller_number = 64;
2214     break;
2215     case _lev_ctrl_portamento:
2216     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2217     decodedcontroller.controller_number = 65;
2218     break;
2219     case _lev_ctrl_sostenutopedal:
2220     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2221     decodedcontroller.controller_number = 66;
2222     break;
2223     case _lev_ctrl_softpedal:
2224     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2225     decodedcontroller.controller_number = 67;
2226     break;
2227     case _lev_ctrl_genpurpose5:
2228     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2229     decodedcontroller.controller_number = 80;
2230     break;
2231     case _lev_ctrl_genpurpose6:
2232     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2233     decodedcontroller.controller_number = 81;
2234     break;
2235     case _lev_ctrl_genpurpose7:
2236     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2237     decodedcontroller.controller_number = 82;
2238     break;
2239     case _lev_ctrl_genpurpose8:
2240     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2241     decodedcontroller.controller_number = 83;
2242     break;
2243     case _lev_ctrl_effect1depth:
2244     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2245     decodedcontroller.controller_number = 91;
2246     break;
2247     case _lev_ctrl_effect2depth:
2248     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2249     decodedcontroller.controller_number = 92;
2250     break;
2251     case _lev_ctrl_effect3depth:
2252     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2253     decodedcontroller.controller_number = 93;
2254     break;
2255     case _lev_ctrl_effect4depth:
2256     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2257     decodedcontroller.controller_number = 94;
2258     break;
2259     case _lev_ctrl_effect5depth:
2260     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2261     decodedcontroller.controller_number = 95;
2262     break;
2263 schoenebeck 55
2264 schoenebeck 2540 // format extension (these controllers are so far only supported by
2265     // LinuxSampler & gigedit) they will *NOT* work with
2266     // Gigasampler/GigaStudio !
2267     case _lev_ctrl_CC3_EXT:
2268     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2269     decodedcontroller.controller_number = 3;
2270     break;
2271     case _lev_ctrl_CC6_EXT:
2272     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2273     decodedcontroller.controller_number = 6;
2274     break;
2275     case _lev_ctrl_CC7_EXT:
2276     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2277     decodedcontroller.controller_number = 7;
2278     break;
2279     case _lev_ctrl_CC8_EXT:
2280     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2281     decodedcontroller.controller_number = 8;
2282     break;
2283     case _lev_ctrl_CC9_EXT:
2284     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2285     decodedcontroller.controller_number = 9;
2286     break;
2287     case _lev_ctrl_CC10_EXT:
2288     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2289     decodedcontroller.controller_number = 10;
2290     break;
2291     case _lev_ctrl_CC11_EXT:
2292     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2293     decodedcontroller.controller_number = 11;
2294     break;
2295     case _lev_ctrl_CC14_EXT:
2296     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2297     decodedcontroller.controller_number = 14;
2298     break;
2299     case _lev_ctrl_CC15_EXT:
2300     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2301     decodedcontroller.controller_number = 15;
2302     break;
2303     case _lev_ctrl_CC20_EXT:
2304     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2305     decodedcontroller.controller_number = 20;
2306     break;
2307     case _lev_ctrl_CC21_EXT:
2308     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2309     decodedcontroller.controller_number = 21;
2310     break;
2311     case _lev_ctrl_CC22_EXT:
2312     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2313     decodedcontroller.controller_number = 22;
2314     break;
2315     case _lev_ctrl_CC23_EXT:
2316     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2317     decodedcontroller.controller_number = 23;
2318     break;
2319     case _lev_ctrl_CC24_EXT:
2320     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2321     decodedcontroller.controller_number = 24;
2322     break;
2323     case _lev_ctrl_CC25_EXT:
2324     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2325     decodedcontroller.controller_number = 25;
2326     break;
2327     case _lev_ctrl_CC26_EXT:
2328     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2329     decodedcontroller.controller_number = 26;
2330     break;
2331     case _lev_ctrl_CC27_EXT:
2332     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2333     decodedcontroller.controller_number = 27;
2334     break;
2335     case _lev_ctrl_CC28_EXT:
2336     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2337     decodedcontroller.controller_number = 28;
2338     break;
2339     case _lev_ctrl_CC29_EXT:
2340     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2341     decodedcontroller.controller_number = 29;
2342     break;
2343     case _lev_ctrl_CC30_EXT:
2344     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345     decodedcontroller.controller_number = 30;
2346     break;
2347     case _lev_ctrl_CC31_EXT:
2348     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349     decodedcontroller.controller_number = 31;
2350     break;
2351     case _lev_ctrl_CC68_EXT:
2352     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353     decodedcontroller.controller_number = 68;
2354     break;
2355     case _lev_ctrl_CC69_EXT:
2356     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357     decodedcontroller.controller_number = 69;
2358     break;
2359     case _lev_ctrl_CC70_EXT:
2360     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361     decodedcontroller.controller_number = 70;
2362     break;
2363     case _lev_ctrl_CC71_EXT:
2364     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365     decodedcontroller.controller_number = 71;
2366     break;
2367     case _lev_ctrl_CC72_EXT:
2368     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369     decodedcontroller.controller_number = 72;
2370     break;
2371     case _lev_ctrl_CC73_EXT:
2372     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373     decodedcontroller.controller_number = 73;
2374     break;
2375     case _lev_ctrl_CC74_EXT:
2376     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377     decodedcontroller.controller_number = 74;
2378     break;
2379     case _lev_ctrl_CC75_EXT:
2380     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381     decodedcontroller.controller_number = 75;
2382     break;
2383     case _lev_ctrl_CC76_EXT:
2384     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385     decodedcontroller.controller_number = 76;
2386     break;
2387     case _lev_ctrl_CC77_EXT:
2388     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389     decodedcontroller.controller_number = 77;
2390     break;
2391     case _lev_ctrl_CC78_EXT:
2392     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393     decodedcontroller.controller_number = 78;
2394     break;
2395     case _lev_ctrl_CC79_EXT:
2396     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397     decodedcontroller.controller_number = 79;
2398     break;
2399     case _lev_ctrl_CC84_EXT:
2400     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401     decodedcontroller.controller_number = 84;
2402     break;
2403     case _lev_ctrl_CC85_EXT:
2404     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405     decodedcontroller.controller_number = 85;
2406     break;
2407     case _lev_ctrl_CC86_EXT:
2408     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409     decodedcontroller.controller_number = 86;
2410     break;
2411     case _lev_ctrl_CC87_EXT:
2412     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413     decodedcontroller.controller_number = 87;
2414     break;
2415     case _lev_ctrl_CC89_EXT:
2416     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417     decodedcontroller.controller_number = 89;
2418     break;
2419     case _lev_ctrl_CC90_EXT:
2420     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421     decodedcontroller.controller_number = 90;
2422     break;
2423     case _lev_ctrl_CC96_EXT:
2424     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425     decodedcontroller.controller_number = 96;
2426     break;
2427     case _lev_ctrl_CC97_EXT:
2428     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429     decodedcontroller.controller_number = 97;
2430     break;
2431     case _lev_ctrl_CC102_EXT:
2432     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433     decodedcontroller.controller_number = 102;
2434     break;
2435     case _lev_ctrl_CC103_EXT:
2436     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437     decodedcontroller.controller_number = 103;
2438     break;
2439     case _lev_ctrl_CC104_EXT:
2440     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441     decodedcontroller.controller_number = 104;
2442     break;
2443     case _lev_ctrl_CC105_EXT:
2444     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445     decodedcontroller.controller_number = 105;
2446     break;
2447     case _lev_ctrl_CC106_EXT:
2448     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449     decodedcontroller.controller_number = 106;
2450     break;
2451     case _lev_ctrl_CC107_EXT:
2452     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453     decodedcontroller.controller_number = 107;
2454     break;
2455     case _lev_ctrl_CC108_EXT:
2456     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457     decodedcontroller.controller_number = 108;
2458     break;
2459     case _lev_ctrl_CC109_EXT:
2460     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461     decodedcontroller.controller_number = 109;
2462     break;
2463     case _lev_ctrl_CC110_EXT:
2464     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465     decodedcontroller.controller_number = 110;
2466     break;
2467     case _lev_ctrl_CC111_EXT:
2468     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469     decodedcontroller.controller_number = 111;
2470     break;
2471     case _lev_ctrl_CC112_EXT:
2472     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473     decodedcontroller.controller_number = 112;
2474     break;
2475     case _lev_ctrl_CC113_EXT:
2476     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477     decodedcontroller.controller_number = 113;
2478     break;
2479     case _lev_ctrl_CC114_EXT:
2480     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481     decodedcontroller.controller_number = 114;
2482     break;
2483     case _lev_ctrl_CC115_EXT:
2484     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485     decodedcontroller.controller_number = 115;
2486     break;
2487     case _lev_ctrl_CC116_EXT:
2488     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489     decodedcontroller.controller_number = 116;
2490     break;
2491     case _lev_ctrl_CC117_EXT:
2492     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493     decodedcontroller.controller_number = 117;
2494     break;
2495     case _lev_ctrl_CC118_EXT:
2496     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497     decodedcontroller.controller_number = 118;
2498     break;
2499     case _lev_ctrl_CC119_EXT:
2500     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501     decodedcontroller.controller_number = 119;
2502     break;
2503    
2504 schoenebeck 36 // unknown controller type
2505     default:
2506     throw gig::Exception("Unknown leverage controller type.");
2507     }
2508     return decodedcontroller;
2509     }
2510 schoenebeck 2540
2511     // see above (diagnostic push not supported prior GCC 4.6)
2512     //#pragma GCC diagnostic pop
2513 schoenebeck 2
2514 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2515     _lev_ctrl_t encodedcontroller;
2516     switch (DecodedController.type) {
2517     // special controller
2518     case leverage_ctrl_t::type_none:
2519     encodedcontroller = _lev_ctrl_none;
2520     break;
2521     case leverage_ctrl_t::type_velocity:
2522     encodedcontroller = _lev_ctrl_velocity;
2523     break;
2524     case leverage_ctrl_t::type_channelaftertouch:
2525     encodedcontroller = _lev_ctrl_channelaftertouch;
2526     break;
2527    
2528     // ordinary MIDI control change controller
2529     case leverage_ctrl_t::type_controlchange:
2530     switch (DecodedController.controller_number) {
2531     case 1:
2532     encodedcontroller = _lev_ctrl_modwheel;
2533     break;
2534     case 2:
2535     encodedcontroller = _lev_ctrl_breath;
2536     break;
2537     case 4:
2538     encodedcontroller = _lev_ctrl_foot;
2539     break;
2540     case 12:
2541     encodedcontroller = _lev_ctrl_effect1;
2542     break;
2543     case 13:
2544     encodedcontroller = _lev_ctrl_effect2;
2545     break;
2546     case 16:
2547     encodedcontroller = _lev_ctrl_genpurpose1;
2548     break;
2549     case 17:
2550     encodedcontroller = _lev_ctrl_genpurpose2;
2551     break;
2552     case 18:
2553     encodedcontroller = _lev_ctrl_genpurpose3;
2554     break;
2555     case 19:
2556     encodedcontroller = _lev_ctrl_genpurpose4;
2557     break;
2558     case 5:
2559     encodedcontroller = _lev_ctrl_portamentotime;
2560     break;
2561     case 64:
2562     encodedcontroller = _lev_ctrl_sustainpedal;
2563     break;
2564     case 65:
2565     encodedcontroller = _lev_ctrl_portamento;
2566     break;
2567     case 66:
2568     encodedcontroller = _lev_ctrl_sostenutopedal;
2569     break;
2570     case 67:
2571     encodedcontroller = _lev_ctrl_softpedal;
2572     break;
2573     case 80:
2574     encodedcontroller = _lev_ctrl_genpurpose5;
2575     break;
2576     case 81:
2577     encodedcontroller = _lev_ctrl_genpurpose6;
2578     break;
2579     case 82:
2580     encodedcontroller = _lev_ctrl_genpurpose7;
2581     break;
2582     case 83:
2583     encodedcontroller = _lev_ctrl_genpurpose8;
2584     break;
2585     case 91:
2586     encodedcontroller = _lev_ctrl_effect1depth;
2587     break;
2588     case 92:
2589     encodedcontroller = _lev_ctrl_effect2depth;
2590     break;
2591     case 93:
2592     encodedcontroller = _lev_ctrl_effect3depth;
2593     break;
2594     case 94:
2595     encodedcontroller = _lev_ctrl_effect4depth;
2596     break;
2597     case 95:
2598     encodedcontroller = _lev_ctrl_effect5depth;
2599     break;
2600 schoenebeck 2540
2601     // format extension (these controllers are so far only
2602     // supported by LinuxSampler & gigedit) they will *NOT*
2603     // work with Gigasampler/GigaStudio !
2604     case 3:
2605     encodedcontroller = _lev_ctrl_CC3_EXT;
2606     break;
2607     case 6:
2608     encodedcontroller = _lev_ctrl_CC6_EXT;
2609     break;
2610     case 7:
2611     encodedcontroller = _lev_ctrl_CC7_EXT;
2612     break;
2613     case 8:
2614     encodedcontroller = _lev_ctrl_CC8_EXT;
2615     break;
2616     case 9:
2617     encodedcontroller = _lev_ctrl_CC9_EXT;
2618     break;
2619     case 10:
2620     encodedcontroller = _lev_ctrl_CC10_EXT;
2621     break;
2622     case 11:
2623     encodedcontroller = _lev_ctrl_CC11_EXT;
2624     break;
2625     case 14:
2626     encodedcontroller = _lev_ctrl_CC14_EXT;
2627     break;
2628     case 15:
2629     encodedcontroller = _lev_ctrl_CC15_EXT;
2630     break;
2631     case 20:
2632     encodedcontroller = _lev_ctrl_CC20_EXT;
2633     break;
2634     case 21:
2635     encodedcontroller = _lev_ctrl_CC21_EXT;
2636     break;
2637     case 22:
2638     encodedcontroller = _lev_ctrl_CC22_EXT;
2639     break;
2640     case 23:
2641     encodedcontroller = _lev_ctrl_CC23_EXT;
2642     break;
2643     case 24:
2644     encodedcontroller = _lev_ctrl_CC24_EXT;
2645     break;
2646     case 25:
2647     encodedcontroller = _lev_ctrl_CC25_EXT;
2648     break;
2649     case 26:
2650     encodedcontroller = _lev_ctrl_CC26_EXT;
2651     break;
2652     case 27:
2653     encodedcontroller = _lev_ctrl_CC27_EXT;
2654     break;
2655     case 28:
2656     encodedcontroller = _lev_ctrl_CC28_EXT;
2657     break;
2658     case 29:
2659     encodedcontroller = _lev_ctrl_CC29_EXT;
2660     break;
2661     case 30:
2662     encodedcontroller = _lev_ctrl_CC30_EXT;
2663     break;
2664     case 31:
2665     encodedcontroller = _lev_ctrl_CC31_EXT;
2666     break;
2667     case 68:
2668     encodedcontroller = _lev_ctrl_CC68_EXT;
2669     break;
2670     case 69:
2671     encodedcontroller = _lev_ctrl_CC69_EXT;
2672     break;
2673     case 70:
2674     encodedcontroller = _lev_ctrl_CC70_EXT;
2675     break;
2676     case 71:
2677     encodedcontroller = _lev_ctrl_CC71_EXT;
2678     break;
2679     case 72:
2680     encodedcontroller = _lev_ctrl_CC72_EXT;
2681     break;
2682     case 73:
2683     encodedcontroller = _lev_ctrl_CC73_EXT;
2684     break;
2685     case 74:
2686     encodedcontroller = _lev_ctrl_CC74_EXT;
2687     break;
2688     case 75:
2689     encodedcontroller = _lev_ctrl_CC75_EXT;
2690     break;
2691     case 76:
2692     encodedcontroller = _lev_ctrl_CC76_EXT;
2693     break;
2694     case 77:
2695     encodedcontroller = _lev_ctrl_CC77_EXT;
2696     break;
2697     case 78:
2698     encodedcontroller = _lev_ctrl_CC78_EXT;
2699     break;
2700     case 79:
2701     encodedcontroller = _lev_ctrl_CC79_EXT;
2702     break;
2703     case 84:
2704     encodedcontroller = _lev_ctrl_CC84_EXT;
2705     break;
2706     case 85:
2707     encodedcontroller = _lev_ctrl_CC85_EXT;
2708     break;
2709     case 86:
2710     encodedcontroller = _lev_ctrl_CC86_EXT;
2711     break;
2712     case 87:
2713     encodedcontroller = _lev_ctrl_CC87_EXT;
2714     break;
2715     case 89:
2716     encodedcontroller = _lev_ctrl_CC89_EXT;
2717     break;
2718     case 90:
2719     encodedcontroller = _lev_ctrl_CC90_EXT;
2720     break;
2721     case 96:
2722     encodedcontroller = _lev_ctrl_CC96_EXT;
2723     break;
2724     case 97:
2725     encodedcontroller = _lev_ctrl_CC97_EXT;
2726     break;
2727     case 102:
2728     encodedcontroller = _lev_ctrl_CC102_EXT;
2729     break;
2730     case 103:
2731     encodedcontroller = _lev_ctrl_CC103_EXT;
2732     break;
2733     case 104:
2734     encodedcontroller = _lev_ctrl_CC104_EXT;
2735     break;
2736     case 105:
2737     encodedcontroller = _lev_ctrl_CC105_EXT;
2738     break;
2739     case 106:
2740     encodedcontroller = _lev_ctrl_CC106_EXT;
2741     break;
2742     case 107:
2743     encodedcontroller = _lev_ctrl_CC107_EXT;
2744     break;
2745     case 108:
2746     encodedcontroller = _lev_ctrl_CC108_EXT;
2747     break;
2748     case 109:
2749     encodedcontroller = _lev_ctrl_CC109_EXT;
2750     break;
2751     case 110:
2752     encodedcontroller = _lev_ctrl_CC110_EXT;
2753     break;
2754     case 111:
2755     encodedcontroller = _lev_ctrl_CC111_EXT;
2756     break;
2757     case 112:
2758     encodedcontroller = _lev_ctrl_CC112_EXT;
2759     break;
2760     case 113:
2761     encodedcontroller = _lev_ctrl_CC113_EXT;
2762     break;
2763     case 114:
2764     encodedcontroller = _lev_ctrl_CC114_EXT;
2765     break;
2766     case 115:
2767     encodedcontroller = _lev_ctrl_CC115_EXT;
2768     break;
2769     case 116:
2770     encodedcontroller = _lev_ctrl_CC116_EXT;
2771     break;
2772     case 117:
2773     encodedcontroller = _lev_ctrl_CC117_EXT;
2774     break;
2775     case 118:
2776     encodedcontroller = _lev_ctrl_CC118_EXT;
2777     break;
2778     case 119:
2779     encodedcontroller = _lev_ctrl_CC119_EXT;
2780     break;
2781    
2782 schoenebeck 809 default:
2783     throw gig::Exception("leverage controller number is not supported by the gig format");
2784     }
2785 persson 1182 break;
2786 schoenebeck 809 default:
2787     throw gig::Exception("Unknown leverage controller type.");
2788     }
2789     return encodedcontroller;
2790     }
2791    
2792 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2793     Instances--;
2794     if (!Instances) {
2795     // delete the velocity->volume tables
2796     VelocityTableMap::iterator iter;
2797     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2798     double* pTable = iter->second;
2799     if (pTable) delete[] pTable;
2800     }
2801     pVelocityTables->clear();
2802     delete pVelocityTables;
2803     pVelocityTables = NULL;
2804     }
2805 persson 858 if (VelocityTable) delete[] VelocityTable;
2806 schoenebeck 16 }
2807 schoenebeck 2
2808 schoenebeck 16 /**
2809     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2810     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2811     * and VelocityResponseCurveScaling) involved are taken into account to
2812     * calculate the amplitude factor. Use this method when a key was
2813     * triggered to get the volume with which the sample should be played
2814     * back.
2815     *
2816 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2817     * @returns amplitude factor (between 0.0 and 1.0)
2818 schoenebeck 16 */
2819     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2820     return pVelocityAttenuationTable[MIDIKeyVelocity];
2821     }
2822 schoenebeck 2
2823 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2824     return pVelocityReleaseTable[MIDIKeyVelocity];
2825     }
2826    
2827 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2828     return pVelocityCutoffTable[MIDIKeyVelocity];
2829     }
2830    
2831 schoenebeck 1358 /**
2832     * Updates the respective member variable and the lookup table / cache
2833     * that depends on this value.
2834     */
2835     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2836     pVelocityAttenuationTable =
2837     GetVelocityTable(
2838     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2839     );
2840     VelocityResponseCurve = curve;
2841     }
2842    
2843     /**
2844     * Updates the respective member variable and the lookup table / cache
2845     * that depends on this value.
2846     */
2847     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2848     pVelocityAttenuationTable =
2849     GetVelocityTable(
2850     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2851     );
2852     VelocityResponseDepth = depth;
2853     }
2854    
2855     /**
2856     * Updates the respective member variable and the lookup table / cache
2857     * that depends on this value.
2858     */
2859     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2860     pVelocityAttenuationTable =
2861     GetVelocityTable(
2862     VelocityResponseCurve, VelocityResponseDepth, scaling
2863     );
2864     VelocityResponseCurveScaling = scaling;
2865     }
2866    
2867     /**
2868     * Updates the respective member variable and the lookup table / cache
2869     * that depends on this value.
2870     */
2871     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2872     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2873     ReleaseVelocityResponseCurve = curve;
2874     }
2875    
2876     /**
2877     * Updates the respective member variable and the lookup table / cache
2878     * that depends on this value.
2879     */
2880     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2881     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2882     ReleaseVelocityResponseDepth = depth;
2883     }
2884    
2885     /**
2886     * Updates the respective member variable and the lookup table / cache
2887     * that depends on this value.
2888     */
2889     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2890     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2891     VCFCutoffController = controller;
2892     }
2893    
2894     /**
2895     * Updates the respective member variable and the lookup table / cache
2896     * that depends on this value.
2897     */
2898     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2899     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2900     VCFVelocityCurve = curve;
2901     }
2902    
2903     /**
2904     * Updates the respective member variable and the lookup table / cache
2905     * that depends on this value.
2906     */
2907     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2908     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2909     VCFVelocityDynamicRange = range;
2910     }
2911    
2912     /**
2913     * Updates the respective member variable and the lookup table / cache
2914     * that depends on this value.
2915     */
2916     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2917     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2918     VCFVelocityScale = scaling;
2919     }
2920    
2921 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2922 schoenebeck 317
2923 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2924 schoenebeck 16
2925 schoenebeck 308 // linear
2926     const int lin0[] = { 1, 1, 127, 127 };
2927     const int lin1[] = { 1, 21, 127, 127 };
2928     const int lin2[] = { 1, 45, 127, 127 };
2929     const int lin3[] = { 1, 74, 127, 127 };
2930     const int lin4[] = { 1, 127, 127, 127 };
2931 schoenebeck 16
2932 schoenebeck 308 // non-linear
2933     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2934 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2935 schoenebeck 308 127, 127 };
2936     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2937     127, 127 };
2938     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2939     127, 127 };
2940     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2941 schoenebeck 317
2942 schoenebeck 308 // special
2943 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2944 schoenebeck 308 113, 127, 127, 127 };
2945     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2946     118, 127, 127, 127 };
2947 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2948 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2949 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2950 schoenebeck 308 117, 127, 127, 127 };
2951 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2952 schoenebeck 308 127, 127 };
2953 schoenebeck 317
2954 persson 728 // this is only used by the VCF velocity curve
2955     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2956     91, 127, 127, 127 };
2957    
2958 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2959 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2960 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2961 schoenebeck 317
2962 schoenebeck 308 double* const table = new double[128];
2963    
2964     const int* curve = curves[curveType * 5 + depth];
2965     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2966 schoenebeck 317
2967 schoenebeck 308 table[0] = 0;
2968     for (int x = 1 ; x < 128 ; x++) {
2969    
2970     if (x > curve[2]) curve += 2;
2971 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2972 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2973     y = y / 127;
2974    
2975     // Scale up for s > 20, down for s < 20. When
2976     // down-scaling, the curve still ends at 1.0.
2977     if (s < 20 && y >= 0.5)
2978     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2979     else
2980     y = y * (s / 20.0);
2981     if (y > 1) y = 1;
2982    
2983     table[x] = y;
2984     }
2985     return table;
2986     }
2987    
2988    
2989 schoenebeck 2 // *************** Region ***************
2990     // *
2991    
2992     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2993     // Initialization
2994     Dimensions = 0;
2995 schoenebeck 347 for (int i = 0; i < 256; i++) {
2996 schoenebeck 2 pDimensionRegions[i] = NULL;
2997     }
2998 schoenebeck 282 Layers = 1;
2999 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3000     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3001 schoenebeck 2
3002     // Actual Loading
3003    
3004 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3005    
3006 schoenebeck 2 LoadDimensionRegions(rgnList);
3007    
3008     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3009     if (_3lnk) {
3010     DimensionRegions = _3lnk->ReadUint32();
3011 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3012 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3013     uint8_t bits = _3lnk->ReadUint8();
3014 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3015     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3016 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3017 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3018     pDimensionDefinitions[i].dimension = dimension_none;
3019     pDimensionDefinitions[i].bits = 0;
3020     pDimensionDefinitions[i].zones = 0;
3021     pDimensionDefinitions[i].split_type = split_type_bit;
3022     pDimensionDefinitions[i].zone_size = 0;
3023     }
3024     else { // active dimension
3025     pDimensionDefinitions[i].dimension = dimension;
3026     pDimensionDefinitions[i].bits = bits;
3027 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3028 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3029     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3030 schoenebeck 2 Dimensions++;
3031 schoenebeck 282
3032     // if this is a layer dimension, remember the amount of layers
3033     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3034 schoenebeck 2 }
3035 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3036 schoenebeck 2 }
3037 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3038 schoenebeck 2
3039 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3040     // update the VelocityTables in the dimension regions
3041     UpdateVelocityTable();
3042 schoenebeck 2
3043 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3044     if (file->pVersion && file->pVersion->major == 3)
3045     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3046     else
3047     _3lnk->SetPos(44);
3048    
3049 schoenebeck 1524 // load sample references (if auto loading is enabled)
3050     if (file->GetAutoLoad()) {
3051     for (uint i = 0; i < DimensionRegions; i++) {
3052     uint32_t wavepoolindex = _3lnk->ReadUint32();
3053     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3054     }
3055     GetSample(); // load global region sample reference
3056 schoenebeck 2 }
3057 persson 1102 } else {
3058     DimensionRegions = 0;
3059 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3060     pDimensionDefinitions[i].dimension = dimension_none;
3061     pDimensionDefinitions[i].bits = 0;
3062     pDimensionDefinitions[i].zones = 0;
3063     }
3064 schoenebeck 2 }
3065 schoenebeck 823
3066     // make sure there is at least one dimension region
3067     if (!DimensionRegions) {
3068     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3069     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3070     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3071 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3072 schoenebeck 823 DimensionRegions = 1;
3073     }
3074 schoenebeck 2 }
3075    
3076 schoenebeck 809 /**
3077     * Apply Region settings and all its DimensionRegions to the respective
3078     * RIFF chunks. You have to call File::Save() to make changes persistent.
3079     *
3080     * Usually there is absolutely no need to call this method explicitly.
3081     * It will be called automatically when File::Save() was called.
3082     *
3083 schoenebeck 2682 * @param pProgress - callback function for progress notification
3084 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3085     */
3086 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3087 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3088     // but we still have to provide some existing one to not corrupt the
3089     // file, so to avoid the latter we simply always assign the sample of
3090     // the first dimension region of this region
3091     pSample = pDimensionRegions[0]->pSample;
3092    
3093 schoenebeck 809 // first update base class's chunks
3094 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3095 schoenebeck 809
3096     // update dimension region's chunks
3097 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3098 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3099 schoenebeck 823 }
3100 schoenebeck 809
3101 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3102     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3103 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3104     const int iMaxDimensionRegions = version3 ? 256 : 32;
3105 schoenebeck 809
3106     // make sure '3lnk' chunk exists
3107     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3108     if (!_3lnk) {
3109 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3110 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3111 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3112 persson 1192
3113     // move 3prg to last position
3114 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3115 schoenebeck 809 }
3116    
3117     // update dimension definitions in '3lnk' chunk
3118     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3119 persson 1179 store32(&pData[0], DimensionRegions);
3120 persson 1199 int shift = 0;
3121 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3122 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3123     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3124 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3125 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3126 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3127 persson 1199 // next 3 bytes unknown, always zero?
3128    
3129     shift += pDimensionDefinitions[i].bits;
3130 schoenebeck 809 }
3131    
3132     // update wave pool table in '3lnk' chunk
3133 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3134 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3135     int iWaveIndex = -1;
3136     if (i < DimensionRegions) {
3137 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3138     File::SampleList::iterator iter = pFile->pSamples->begin();
3139     File::SampleList::iterator end = pFile->pSamples->end();
3140 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3141 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3142     iWaveIndex = index;
3143     break;
3144     }
3145 schoenebeck 809 }
3146     }
3147 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3148 schoenebeck 809 }
3149     }
3150    
3151 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3152     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3153     if (_3prg) {
3154     int dimensionRegionNr = 0;
3155     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3156     while (_3ewl) {
3157     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3158 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3159 schoenebeck 2 dimensionRegionNr++;
3160     }
3161     _3ewl = _3prg->GetNextSubList();
3162     }
3163     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3164     }
3165     }
3166    
3167 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3168     // update KeyRange struct and make sure regions are in correct order
3169     DLS::Region::SetKeyRange(Low, High);
3170     // update Region key table for fast lookup
3171     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3172     }
3173    
3174 persson 858 void Region::UpdateVelocityTable() {
3175     // get velocity dimension's index
3176     int veldim = -1;
3177     for (int i = 0 ; i < Dimensions ; i++) {
3178     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3179     veldim = i;
3180 schoenebeck 809 break;
3181     }
3182     }
3183 persson 858 if (veldim == -1) return;
3184 schoenebeck 809
3185 persson 858 int step = 1;
3186     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3187     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3188 schoenebeck 809
3189 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3190     int dim[8] = { 0 };
3191     for (int i = 0 ; i < DimensionRegions ; i++) {
3192 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3193 persson 858
3194 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3195 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3196     pDimensionRegions[i]->VelocityUpperLimit) {
3197 persson 858 // create the velocity table
3198     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3199     if (!table) {
3200     table = new uint8_t[128];
3201     pDimensionRegions[i]->VelocityTable = table;
3202     }
3203     int tableidx = 0;
3204     int velocityZone = 0;
3205 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3206     for (int k = i ; k < end ; k += step) {
3207     DimensionRegion *d = pDimensionRegions[k];
3208     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3209     velocityZone++;
3210     }
3211     } else { // gig2
3212     for (int k = i ; k < end ; k += step) {
3213     DimensionRegion *d = pDimensionRegions[k];
3214     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3215     velocityZone++;
3216     }
3217 persson 858 }
3218     } else {
3219     if (pDimensionRegions[i]->VelocityTable) {
3220     delete[] pDimensionRegions[i]->VelocityTable;
3221     pDimensionRegions[i]->VelocityTable = 0;
3222     }
3223 schoenebeck 809 }
3224 persson 858
3225 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3226 persson 858 int j;
3227     int shift = 0;
3228     for (j = 0 ; j < Dimensions ; j++) {
3229     if (j == veldim) i += skipveldim; // skip velocity dimension
3230     else {
3231     dim[j]++;
3232     if (dim[j] < pDimensionDefinitions[j].zones) break;
3233     else {
3234     // skip unused dimension regions
3235     dim[j] = 0;
3236     i += ((1 << pDimensionDefinitions[j].bits) -
3237     pDimensionDefinitions[j].zones) << shift;
3238     }
3239     }
3240     shift += pDimensionDefinitions[j].bits;
3241     }
3242     if (j == Dimensions) break;
3243 schoenebeck 809 }
3244     }
3245    
3246     /** @brief Einstein would have dreamed of it - create a new dimension.
3247     *
3248     * Creates a new dimension with the dimension definition given by
3249     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3250     * There is a hard limit of dimensions and total amount of "bits" all
3251     * dimensions can have. This limit is dependant to what gig file format
3252     * version this file refers to. The gig v2 (and lower) format has a
3253     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3254     * format has a limit of 8.
3255     *
3256     * @param pDimDef - defintion of the new dimension
3257     * @throws gig::Exception if dimension of the same type exists already
3258     * @throws gig::Exception if amount of dimensions or total amount of
3259     * dimension bits limit is violated
3260     */
3261     void Region::AddDimension(dimension_def_t* pDimDef) {
3262 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3263     if (pDimDef->zones < 2)
3264     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3265     if (pDimDef->bits < 1)
3266     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3267     if (pDimDef->dimension == dimension_samplechannel) {
3268     if (pDimDef->zones != 2)
3269     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3270     if (pDimDef->bits != 1)
3271     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3272     }
3273    
3274 schoenebeck 809 // check if max. amount of dimensions reached
3275     File* file = (File*) GetParent()->GetParent();
3276     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3277     if (Dimensions >= iMaxDimensions)
3278     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3279     // check if max. amount of dimension bits reached
3280     int iCurrentBits = 0;
3281     for (int i = 0; i < Dimensions; i++)
3282     iCurrentBits += pDimensionDefinitions[i].bits;
3283     if (iCurrentBits >= iMaxDimensions)
3284     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3285     const int iNewBits = iCurrentBits + pDimDef->bits;
3286     if (iNewBits > iMaxDimensions)
3287     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3288     // check if there's already a dimensions of the same type
3289     for (int i = 0; i < Dimensions; i++)
3290     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3291     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3292    
3293 persson 1301 // pos is where the new dimension should be placed, normally
3294     // last in list, except for the samplechannel dimension which
3295     // has to be first in list
3296     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3297     int bitpos = 0;
3298     for (int i = 0 ; i < pos ; i++)
3299     bitpos += pDimensionDefinitions[i].bits;
3300    
3301     // make room for the new dimension
3302     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3303     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3304     for (int j = Dimensions ; j > pos ; j--) {
3305     pDimensionRegions[i]->DimensionUpperLimits[j] =
3306     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3307     }
3308     }
3309    
3310 schoenebeck 809 // assign definition of new dimension
3311 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3312 schoenebeck 809
3313 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3314 persson 1301 pDimensionDefinitions[pos].split_type =
3315     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3316     pDimensionDefinitions[pos].zone_size =
3317     __resolveZoneSize(pDimensionDefinitions[pos]);
3318 schoenebeck 1113
3319 persson 1301 // create new dimension region(s) for this new dimension, and make
3320     // sure that the dimension regions are placed correctly in both the
3321     // RIFF list and the pDimensionRegions array
3322     RIFF::Chunk* moveTo = NULL;
3323     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3324     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3325     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3326     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3327     }
3328     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3329     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3330     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3331     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3332     // create a new dimension region and copy all parameter values from
3333     // an existing dimension region
3334     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3335     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3336 persson 1247
3337 persson 1301 DimensionRegions++;
3338     }
3339     }
3340     moveTo = pDimensionRegions[i]->pParentList;
3341 schoenebeck 809 }
3342    
3343 persson 1247 // initialize the upper limits for this dimension
3344 persson 1301 int mask = (1 << bitpos) - 1;
3345     for (int z = 0 ; z < pDimDef->zones ; z++) {
3346 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3347 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3348 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3349     (z << bitpos) |
3350     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3351 persson 1247 }
3352     }
3353    
3354 schoenebeck 809 Dimensions++;
3355    
3356     // if this is a layer dimension, update 'Layers' attribute
3357     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3358    
3359 persson 858 UpdateVelocityTable();
3360 schoenebeck 809 }
3361    
3362     /** @brief Delete an existing dimension.
3363     *
3364     * Deletes the dimension given by \a pDimDef and deletes all respective
3365     * dimension regions, that is all dimension regions where the dimension's
3366     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3367     * for example this would delete all dimension regions for the case(s)
3368     * where the sustain pedal is pressed down.
3369     *
3370     * @param pDimDef - dimension to delete
3371     * @throws gig::Exception if given dimension cannot be found
3372     */
3373     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3374     // get dimension's index
3375     int iDimensionNr = -1;
3376     for (int i = 0; i < Dimensions; i++) {
3377     if (&pDimensionDefinitions[i] == pDimDef) {
3378     iDimensionNr = i;
3379     break;
3380     }
3381     }
3382     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3383    
3384     // get amount of bits below the dimension to delete
3385     int iLowerBits = 0;
3386     for (int i = 0; i < iDimensionNr; i++)
3387     iLowerBits += pDimensionDefinitions[i].bits;
3388    
3389     // get amount ot bits above the dimension to delete
3390     int iUpperBits = 0;
3391     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3392     iUpperBits += pDimensionDefinitions[i].bits;
3393    
3394 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3395    
3396 schoenebeck 809 // delete dimension regions which belong to the given dimension
3397     // (that is where the dimension's bit > 0)
3398     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3399     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3400     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3401     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3402     iObsoleteBit << iLowerBits |
3403     iLowerBit;
3404 persson 1247
3405     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3406 schoenebeck 809 delete pDimensionRegions[iToDelete];
3407     pDimensionRegions[iToDelete] = NULL;
3408     DimensionRegions--;
3409     }
3410     }
3411     }
3412    
3413     // defrag pDimensionRegions array
3414     // (that is remove the NULL spaces within the pDimensionRegions array)
3415     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3416     if (!pDimensionRegions[iTo]) {
3417     if (iFrom <= iTo) iFrom = iTo + 1;
3418     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3419     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3420     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3421     pDimensionRegions[iFrom] = NULL;
3422     }
3423     }
3424     }
3425    
3426 persson 1247 // remove the this dimension from the upper limits arrays
3427     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3428     DimensionRegion* d = pDimensionRegions[j];
3429     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3430     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3431     }
3432     d->DimensionUpperLimits[Dimensions - 1] = 127;
3433     }
3434    
3435 schoenebeck 809 // 'remove' dimension definition
3436     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3437     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3438     }
3439     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3440     pDimensionDefinitions[Dimensions - 1].bits = 0;
3441     pDimensionDefinitions[Dimensions - 1].zones = 0;
3442    
3443     Dimensions--;
3444    
3445     // if this was a layer dimension, update 'Layers' attribute
3446     if (pDimDef->dimension == dimension_layer) Layers = 1;
3447     }
3448    
3449 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3450     *
3451     * Instead of deleting an entire dimensions, this method will only delete
3452     * one particular split zone given by @a zone of the Region's dimension
3453     * given by @a type. So this method will simply decrement the amount of
3454     * zones by one of the dimension in question. To be able to do that, the
3455     * respective dimension must exist on this Region and it must have at least
3456     * 3 zones. All DimensionRegion objects associated with the zone will be
3457     * deleted.
3458     *
3459     * @param type - identifies the dimension where a zone shall be deleted
3460     * @param zone - index of the dimension split zone that shall be deleted
3461     * @throws gig::Exception if requested zone could not be deleted
3462     */
3463     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3464     dimension_def_t* oldDef = GetDimensionDefinition(type);
3465     if (!oldDef)
3466     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3467     if (oldDef->zones <= 2)
3468     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3469     if (zone < 0 || zone >= oldDef->zones)
3470     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3471    
3472     const int newZoneSize = oldDef->zones - 1;
3473    
3474     // create a temporary Region which just acts as a temporary copy
3475     // container and will be deleted at the end of this function and will
3476     // also not be visible through the API during this process
3477     gig::Region* tempRgn = NULL;
3478     {
3479     // adding these temporary chunks is probably not even necessary
3480     Instrument* instr = static_cast<Instrument*>(GetParent());
3481     RIFF::List* pCkInstrument = instr->pCkInstrument;
3482     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3483     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3484     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3485     tempRgn = new Region(instr, rgn);
3486     }
3487    
3488     // copy this region's dimensions (with already the dimension split size
3489     // requested by the arguments of this method call) to the temporary
3490     // region, and don't use Region::CopyAssign() here for this task, since
3491     // it would also alter fast lookup helper variables here and there
3492     dimension_def_t newDef;
3493     for (int i = 0; i < Dimensions; ++i) {
3494     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3495     // is this the dimension requested by the method arguments? ...
3496     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3497     def.zones = newZoneSize;
3498     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3499     newDef = def;
3500     }
3501     tempRgn->AddDimension(&def);
3502     }
3503    
3504     // find the dimension index in the tempRegion which is the dimension
3505     // type passed to this method (paranoidly expecting different order)
3506     int tempReducedDimensionIndex = -1;
3507     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3508     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3509     tempReducedDimensionIndex = d;
3510     break;
3511     }
3512     }
3513    
3514     // copy dimension regions from this region to the temporary region
3515     for (int iDst = 0; iDst < 256; ++iDst) {
3516     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3517     if (!dstDimRgn) continue;
3518     std::map<dimension_t,int> dimCase;
3519     bool isValidZone = true;
3520     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3521     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3522     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3523     (iDst >> baseBits) & ((1 << dstBits) - 1);
3524     baseBits += dstBits;
3525     // there are also DimensionRegion objects of unused zones, skip them
3526     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3527     isValidZone = false;
3528     break;
3529     }
3530     }
3531     if (!isValidZone) continue;
3532     // a bit paranoid: cope with the chance that the dimensions would
3533     // have different order in source and destination regions
3534     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3535     if (dimCase[type] >= zone) dimCase[type]++;
3536     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3537     dstDimRgn->CopyAssign(srcDimRgn);
3538     // if this is the upper most zone of the dimension passed to this
3539     // method, then correct (raise) its upper limit to 127
3540     if (newDef.split_type == split_type_normal && isLastZone)
3541     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3542     }
3543    
3544     // now tempRegion's dimensions and DimensionRegions basically reflect
3545     // what we wanted to get for this actual Region here, so we now just
3546     // delete and recreate the dimension in question with the new amount
3547     // zones and then copy back from tempRegion
3548     DeleteDimension(oldDef);
3549     AddDimension(&newDef);
3550     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3551     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3552     if (!srcDimRgn) continue;
3553     std::map<dimension_t,int> dimCase;
3554     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3555     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3556     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3557     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3558     baseBits += srcBits;
3559     }
3560     // a bit paranoid: cope with the chance that the dimensions would
3561     // have different order in source and destination regions
3562     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3563     if (!dstDimRgn) continue;
3564     dstDimRgn->CopyAssign(srcDimRgn);
3565     }
3566    
3567     // delete temporary region
3568     delete tempRgn;
3569 schoenebeck 2557
3570     UpdateVelocityTable();
3571 schoenebeck 2555 }
3572    
3573     /** @brief Divide split zone of a dimension in two (increment zone amount).
3574     *
3575     * This will increment the amount of zones for the dimension (given by
3576     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3577     * in the middle of its zone range in two. So the two zones resulting from
3578     * the zone being splitted, will be an equivalent copy regarding all their
3579     * articulation informations and sample reference. The two zones will only
3580     * differ in their zone's upper limit
3581     * (DimensionRegion::DimensionUpperLimits).
3582     *
3583     * @param type - identifies the dimension where a zone shall be splitted
3584     * @param zone - index of the dimension split zone that shall be splitted
3585     * @throws gig::Exception if requested zone could not be splitted
3586     */
3587     void Region::SplitDimensionZone(dimension_t type, int zone) {
3588     dimension_def_t* oldDef = GetDimensionDefinition(type);
3589     if (!oldDef)
3590     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3591     if (zone < 0 || zone >= oldDef->zones)
3592     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3593    
3594     const int newZoneSize = oldDef->zones + 1;
3595    
3596     // create a temporary Region which just acts as a temporary copy
3597     // container and will be deleted at the end of this function and will
3598     // also not be visible through the API during this process
3599     gig::Region* tempRgn = NULL;
3600     {
3601     // adding these temporary chunks is probably not even necessary
3602     Instrument* instr = static_cast<Instrument*>(GetParent());
3603     RIFF::List* pCkInstrument = instr->pCkInstrument;
3604     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3605     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3606     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3607     tempRgn = new Region(instr, rgn);
3608     }
3609    
3610     // copy this region's dimensions (with already the dimension split size
3611     // requested by the arguments of this method call) to the temporary
3612     // region, and don't use Region::CopyAssign() here for this task, since
3613     // it would also alter fast lookup helper variables here and there
3614     dimension_def_t newDef;
3615     for (int i = 0; i < Dimensions; ++i) {
3616     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3617     // is this the dimension requested by the method arguments? ...
3618     if (def.dimension == type) { // ... if yes, increment zone amount by one
3619     def.zones = newZoneSize;
3620     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3621     newDef = def;
3622     }
3623     tempRgn->AddDimension(&def);
3624     }
3625    
3626     // find the dimension index in the tempRegion which is the dimension
3627     // type passed to this method (paranoidly expecting different order)
3628     int tempIncreasedDimensionIndex = -1;
3629     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3630     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3631     tempIncreasedDimensionIndex = d;
3632     break;
3633     }
3634     }
3635    
3636     // copy dimension regions from this region to the temporary region
3637     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3638     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3639     if (!srcDimRgn) continue;
3640     std::map<dimension_t,int> dimCase;
3641     bool isValidZone = true;
3642     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3643     const int srcBits = pDimensionDefinitions[d].bits;
3644     dimCase[pDimensionDefinitions[d].dimension] =
3645     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3646     // there are also DimensionRegion objects for unused zones, skip them
3647     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3648     isValidZone = false;
3649     break;
3650     }
3651     baseBits += srcBits;
3652     }
3653     if (!isValidZone) continue;
3654     // a bit paranoid: cope with the chance that the dimensions would
3655     // have different order in source and destination regions
3656     if (dimCase[type] > zone) dimCase[type]++;
3657     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3658     dstDimRgn->CopyAssign(srcDimRgn);
3659     // if this is the requested zone to be splitted, then also copy
3660     // the source DimensionRegion to the newly created target zone
3661     // and set the old zones upper limit lower
3662     if (dimCase[type] == zone) {
3663     // lower old zones upper limit
3664     if (newDef.split_type == split_type_normal) {
3665     const int high =
3666     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3667     int low = 0;
3668     if (zone > 0) {
3669     std::map<dimension_t,int> lowerCase = dimCase;
3670     lowerCase[type]--;
3671     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3672     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3673     }
3674     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3675     }
3676     // fill the newly created zone of the divided zone as well
3677     dimCase[type]++;
3678     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3679     dstDimRgn->CopyAssign(srcDimRgn);
3680     }
3681     }
3682    
3683     // now tempRegion's dimensions and DimensionRegions basically reflect
3684     // what we wanted to get for this actual Region here, so we now just
3685     // delete and recreate the dimension in question with the new amount
3686     // zones and then copy back from tempRegion
3687     DeleteDimension(oldDef);
3688     AddDimension(&newDef);
3689     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3690     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3691     if (!srcDimRgn) continue;
3692     std::map<dimension_t,int> dimCase;
3693     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3694     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3695     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3696     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3697     baseBits += srcBits;
3698     }
3699     // a bit paranoid: cope with the chance that the dimensions would
3700     // have different order in source and destination regions
3701     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3702     if (!dstDimRgn) continue;
3703     dstDimRgn->CopyAssign(srcDimRgn);
3704     }
3705    
3706     // delete temporary region
3707     delete tempRgn;
3708 schoenebeck 2557
3709     UpdateVelocityTable();
3710 schoenebeck 2555 }
3711    
3712 schoenebeck 2639 /** @brief Change type of an existing dimension.
3713     *
3714     * Alters the dimension type of a dimension already existing on this
3715     * region. If there is currently no dimension on this Region with type
3716     * @a oldType, then this call with throw an Exception. Likewise there are
3717     * cases where the requested dimension type cannot be performed. For example
3718     * if the new dimension type shall be gig::dimension_samplechannel, and the
3719     * current dimension has more than 2 zones. In such cases an Exception is
3720     * thrown as well.
3721     *
3722     * @param oldType - identifies the existing dimension to be changed
3723     * @param newType - to which dimension type it should be changed to
3724     * @throws gig::Exception if requested change cannot be performed
3725     */
3726     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3727     if (oldType == newType) return;
3728     dimension_def_t* def = GetDimensionDefinition(oldType);
3729     if (!def)
3730     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3731     if (newType == dimension_samplechannel && def->zones != 2)
3732     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3733 schoenebeck 2640 if (GetDimensionDefinition(newType))
3734     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3735     def->dimension = newType;
3736 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3737     }
3738    
3739 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3740     uint8_t bits[8] = {};
3741     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3742     it != DimCase.end(); ++it)
3743     {
3744     for (int d = 0; d < Dimensions; ++d) {
3745     if (pDimensionDefinitions[d].dimension == it->first) {
3746     bits[d] = it->second;
3747     goto nextDimCaseSlice;
3748     }
3749     }
3750     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3751     nextDimCaseSlice:
3752     ; // noop
3753     }
3754     return GetDimensionRegionByBit(bits);
3755     }
3756    
3757 schoenebeck 2547 /**
3758     * Searches in the current Region for a dimension of the given dimension
3759     * type and returns the precise configuration of that dimension in this
3760     * Region.
3761     *
3762     * @param type - dimension type of the sought dimension
3763     * @returns dimension definition or NULL if there is no dimension with
3764     * sought type in this Region.
3765     */
3766     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3767     for (int i = 0; i < Dimensions; ++i)
3768     if (pDimensionDefinitions[i].dimension == type)
3769     return &pDimensionDefinitions[i];
3770     return NULL;
3771     }
3772    
3773 schoenebeck 2 Region::~Region() {
3774 schoenebeck 350 for (int i = 0; i < 256; i++) {
3775 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3776     }
3777     }
3778    
3779     /**
3780     * Use this method in your audio engine to get the appropriate dimension
3781     * region with it's articulation data for the current situation. Just
3782     * call the method with the current MIDI controller values and you'll get
3783     * the DimensionRegion with the appropriate articulation data for the
3784     * current situation (for this Region of course only). To do that you'll
3785     * first have to look which dimensions with which controllers and in
3786     * which order are defined for this Region when you load the .gig file.
3787     * Special cases are e.g. layer or channel dimensions where you just put
3788     * in the index numbers instead of a MIDI controller value (means 0 for
3789     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3790     * etc.).
3791     *
3792 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3793 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3794     * @see pDimensionDefinitions
3795     * @see Dimensions
3796     */
3797 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3798 persson 858 uint8_t bits;
3799     int veldim = -1;
3800     int velbitpos;
3801     int bitpos = 0;
3802     int dimregidx = 0;
3803 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3804 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3805     // the velocity dimension must be handled after the other dimensions
3806     veldim = i;
3807     velbitpos = bitpos;
3808     } else {
3809     switch (pDimensionDefinitions[i].split_type) {
3810     case split_type_normal:
3811 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3812     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3813     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3814     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3815     }
3816     } else {
3817     // gig2: evenly sized zones
3818     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3819     }
3820 persson 858 break;
3821     case split_type_bit: // the value is already the sought dimension bit number
3822     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3823     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3824     break;
3825     }
3826     dimregidx |= bits << bitpos;
3827 schoenebeck 2 }
3828 persson 858 bitpos += pDimensionDefinitions[i].bits;
3829 schoenebeck 2 }
3830 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3831     if (!dimreg) return NULL;
3832 persson 858 if (veldim != -1) {
3833     // (dimreg is now the dimension region for the lowest velocity)
3834 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
3835 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3836 persson 858 else // normal split type
3837 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3838 persson 858
3839 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3840     dimregidx |= (bits & limiter_mask) << velbitpos;
3841     dimreg = pDimensionRegions[dimregidx & 255];
3842 persson 858 }
3843     return dimreg;
3844 schoenebeck 2 }
3845    
3846 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3847     uint8_t bits;
3848     int veldim = -1;
3849     int velbitpos;
3850     int bitpos = 0;
3851     int dimregidx = 0;
3852     for (uint i = 0; i < Dimensions; i++) {
3853     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3854     // the velocity dimension must be handled after the other dimensions
3855     veldim = i;
3856     velbitpos = bitpos;
3857     } else {
3858     switch (pDimensionDefinitions[i].split_type) {
3859     case split_type_normal:
3860     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3861     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3862     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3863     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3864     }
3865     } else {
3866     // gig2: evenly sized zones
3867     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3868     }
3869     break;
3870     case split_type_bit: // the value is already the sought dimension bit number
3871     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3872     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3873     break;
3874     }
3875     dimregidx |= bits << bitpos;
3876     }
3877     bitpos += pDimensionDefinitions[i].bits;
3878     }
3879     dimregidx &= 255;
3880     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3881     if (!dimreg) return -1;
3882     if (veldim != -1) {
3883     // (dimreg is now the dimension region for the lowest velocity)
3884     if (dimreg->VelocityTable) // custom defined zone ranges
3885     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3886     else // normal split type
3887     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3888    
3889     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3890     dimregidx |= (bits & limiter_mask) << velbitpos;
3891     dimregidx &= 255;
3892     }
3893     return dimregidx;
3894     }
3895    
3896 schoenebeck 2 /**
3897     * Returns the appropriate DimensionRegion for the given dimension bit
3898     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3899     * instead of calling this method directly!
3900     *
3901 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
3902 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
3903     * bit numbers
3904     * @see GetDimensionRegionByValue()
3905     */
3906 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3907     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3908     << pDimensionDefinitions[5].bits | DimBits[5])
3909     << pDimensionDefinitions[4].bits | DimBits[4])
3910     << pDimensionDefinitions[3].bits | DimBits[3])
3911     << pDimensionDefinitions[2].bits | DimBits[2])
3912     << pDimensionDefinitions[1].bits | DimBits[1])
3913     << pDimensionDefinitions[0].bits | DimBits[0]];
3914 schoenebeck 2 }
3915    
3916     /**
3917     * Returns pointer address to the Sample referenced with this region.
3918     * This is the global Sample for the entire Region (not sure if this is
3919     * actually used by the Gigasampler engine - I would only use the Sample
3920     * referenced by the appropriate DimensionRegion instead of this sample).
3921     *
3922     * @returns address to Sample or NULL if there is no reference to a
3923     * sample saved in the .gig file
3924     */
3925     Sample* Region::GetSample() {
3926     if (pSample) return static_cast<gig::Sample*>(pSample);
3927     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3928     }
3929    
3930 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3931 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3932 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
3933 persson 902 if (!file->pWavePoolTable) return NULL;
3934 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
3935     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3936     // use 64 bit wave pool offsets (treating this as large file)
3937 schoenebeck 2912 uint64_t soughtoffset =
3938     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3939     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3940     Sample* sample = file->GetFirstSample(pProgress);
3941     while (sample) {
3942     if (sample->ullWavePoolOffset == soughtoffset)
3943     return static_cast<gig::Sample*>(sample);
3944     sample = file->GetNextSample();
3945     }
3946     } else {
3947 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
3948 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3949     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3950     Sample* sample = file->GetFirstSample(pProgress);
3951     while (sample) {
3952     if (sample->ullWavePoolOffset == soughtoffset &&
3953     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3954     sample = file->GetNextSample();
3955     }
3956 schoenebeck 2 }
3957     return NULL;
3958     }
3959 schoenebeck 2394
3960     /**
3961     * Make a (semi) deep copy of the Region object given by @a orig
3962     * and assign it to this object.
3963     *
3964     * Note that all sample pointers referenced by @a orig are simply copied as
3965     * memory address. Thus the respective samples are shared, not duplicated!
3966     *
3967     * @param orig - original Region object to be copied from
3968     */
3969     void Region::CopyAssign(const Region* orig) {
3970 schoenebeck 2482 CopyAssign(orig, NULL);
3971     }
3972    
3973     /**
3974     * Make a (semi) deep copy of the Region object given by @a orig and
3975     * assign it to this object
3976     *
3977     * @param mSamples - crosslink map between the foreign file's samples and
3978     * this file's samples
3979     */
3980     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3981 schoenebeck 2394 // handle base classes
3982     DLS::Region::CopyAssign(orig);
3983    
3984 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3985     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3986     }
3987    
3988 schoenebeck 2394 // handle own member variables
3989     for (int i = Dimensions - 1; i >= 0; --i) {
3990     DeleteDimension(&pDimensionDefinitions[i]);
3991     }
3992     Layers = 0; // just to be sure
3993     for (int i = 0; i < orig->Dimensions; i++) {
3994     // we need to copy the dim definition here, to avoid the compiler
3995     // complaining about const-ness issue
3996     dimension_def_t def = orig->pDimensionDefinitions[i];
3997     AddDimension(&def);
3998     }
3999     for (int i = 0; i < 256; i++) {
4000     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4001     pDimensionRegions[i]->CopyAssign(
4002 schoenebeck 2482 orig->pDimensionRegions[i],
4003     mSamples
4004 schoenebeck 2394 );
4005     }
4006     }
4007     Layers = orig->Layers;
4008     }
4009 schoenebeck 2
4010    
4011 persson 1627 // *************** MidiRule ***************
4012     // *
4013 schoenebeck 2
4014 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4015     _3ewg->SetPos(36);
4016     Triggers = _3ewg->ReadUint8();
4017     _3ewg->SetPos(40);
4018     ControllerNumber = _3ewg->ReadUint8();
4019     _3ewg->SetPos(46);
4020     for (int i = 0 ; i < Triggers ; i++) {
4021     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4022     pTriggers[i].Descending = _3ewg->ReadUint8();
4023     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4024     pTriggers[i].Key = _3ewg->ReadUint8();
4025     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4026     pTriggers[i].Velocity = _3ewg->ReadUint8();
4027     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4028     _3ewg->ReadUint8();
4029     }
4030 persson 1627 }
4031    
4032 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4033     ControllerNumber(0),
4034     Triggers(0) {
4035     }
4036 persson 1627
4037 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4038     pData[32] = 4;
4039     pData[33] = 16;
4040     pData[36] = Triggers;
4041     pData[40] = ControllerNumber;
4042     for (int i = 0 ; i < Triggers ; i++) {
4043     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4044     pData[47 + i * 8] = pTriggers[i].Descending;
4045     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4046     pData[49 + i * 8] = pTriggers[i].Key;
4047     pData[50 + i * 8] = pTriggers[i].NoteOff;
4048     pData[51 + i * 8] = pTriggers[i].Velocity;
4049     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4050     }
4051     }
4052    
4053     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4054     _3ewg->SetPos(36);
4055     LegatoSamples = _3ewg->ReadUint8(); // always 12
4056     _3ewg->SetPos(40);
4057     BypassUseController = _3ewg->ReadUint8();
4058     BypassKey = _3ewg->ReadUint8();
4059     BypassController = _3ewg->ReadUint8();
4060     ThresholdTime = _3ewg->ReadUint16();
4061     _3ewg->ReadInt16();
4062     ReleaseTime = _3ewg->ReadUint16();
4063     _3ewg->ReadInt16();
4064     KeyRange.low = _3ewg->ReadUint8();
4065     KeyRange.high = _3ewg->ReadUint8();
4066     _3ewg->SetPos(64);
4067     ReleaseTriggerKey = _3ewg->ReadUint8();
4068     AltSustain1Key = _3ewg->ReadUint8();
4069     AltSustain2Key = _3ewg->ReadUint8();
4070     }
4071    
4072     MidiRuleLegato::MidiRuleLegato() :
4073     LegatoSamples(12),
4074     BypassUseController(false),
4075     BypassKey(0),
4076     BypassController(1),
4077     ThresholdTime(20),
4078     ReleaseTime(20),
4079     ReleaseTriggerKey(0),
4080     AltSustain1Key(0),
4081     AltSustain2Key(0)
4082     {
4083     KeyRange.low = KeyRange.high = 0;
4084     }
4085    
4086     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4087     pData[32] = 0;
4088     pData[33] = 16;
4089     pData[36] = LegatoSamples;
4090     pData[40] = BypassUseController;
4091     pData[41] = BypassKey;
4092     pData[42] = BypassController;
4093     store16(&pData[43], ThresholdTime);
4094     store16(&pData[47], ReleaseTime);
4095     pData[51] = KeyRange.low;
4096     pData[52] = KeyRange.high;
4097     pData[64] = ReleaseTriggerKey;
4098     pData[65] = AltSustain1Key;
4099     pData[66] = AltSustain2Key;
4100     }
4101    
4102     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4103     _3ewg->SetPos(36);
4104     Articulations = _3ewg->ReadUint8();
4105     int flags = _3ewg->ReadUint8();
4106     Polyphonic = flags & 8;
4107     Chained = flags & 4;
4108     Selector = (flags & 2) ? selector_controller :
4109     (flags & 1) ? selector_key_switch : selector_none;
4110     Patterns = _3ewg->ReadUint8();
4111     _3ewg->ReadUint8(); // chosen row
4112     _3ewg->ReadUint8(); // unknown
4113     _3ewg->ReadUint8(); // unknown
4114     _3ewg->ReadUint8(); // unknown
4115     KeySwitchRange.low = _3ewg->ReadUint8();
4116     KeySwitchRange.high = _3ewg->ReadUint8();
4117     Controller = _3ewg->ReadUint8();
4118     PlayRange.low = _3ewg->ReadUint8();
4119     PlayRange.high = _3ewg->ReadUint8();
4120    
4121     int n = std::min(int(Articulations), 32);
4122     for (int i = 0 ; i < n ; i++) {
4123     _3ewg->ReadString(pArticulations[i], 32);
4124     }
4125     _3ewg->SetPos(1072);
4126     n = std::min(int(Patterns), 32);
4127     for (int i = 0 ; i < n ; i++) {
4128     _3ewg->ReadString(pPatterns[i].Name, 16);
4129     pPatterns[i].Size = _3ewg->ReadUint8();
4130     _3ewg->Read(&pPatterns[i][0], 1, 32);
4131     }
4132     }
4133    
4134     MidiRuleAlternator::MidiRuleAlternator() :
4135     Articulations(0),
4136     Patterns(0),
4137     Selector(selector_none),
4138     Controller(0),
4139     Polyphonic(false),
4140     Chained(false)
4141     {
4142     PlayRange.low = PlayRange.high = 0;
4143     KeySwitchRange.low = KeySwitchRange.high = 0;
4144     }
4145    
4146     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4147     pData[32] = 3;
4148     pData[33] = 16;
4149     pData[36] = Articulations;
4150     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4151     (Selector == selector_controller ? 2 :
4152     (Selector == selector_key_switch ? 1 : 0));
4153     pData[38] = Patterns;
4154    
4155     pData[43] = KeySwitchRange.low;
4156     pData[44] = KeySwitchRange.high;
4157     pData[45] = Controller;
4158     pData[46] = PlayRange.low;
4159     pData[47] = PlayRange.high;
4160    
4161     char* str = reinterpret_cast<char*>(pData);
4162     int pos = 48;
4163     int n = std::min(int(Articulations), 32);
4164     for (int i = 0 ; i < n ; i++, pos += 32) {
4165     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4166     }
4167    
4168     pos = 1072;
4169     n = std::min(int(Patterns), 32);
4170     for (int i = 0 ; i < n ; i++, pos += 49) {
4171     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4172     pData[pos + 16] = pPatterns[i].Size;
4173     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4174     }
4175     }
4176    
4177 schoenebeck 2584 // *************** Script ***************
4178     // *
4179    
4180     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4181     pGroup = group;
4182     pChunk = ckScri;
4183     if (ckScri) { // object is loaded from file ...
4184     // read header
4185     uint32_t headerSize = ckScri->ReadUint32();
4186     Compression = (Compression_t) ckScri->ReadUint32();
4187     Encoding = (Encoding_t) ckScri->ReadUint32();
4188     Language = (Language_t) ckScri->ReadUint32();
4189     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4190     crc = ckScri->ReadUint32();
4191     uint32_t nameSize = ckScri->ReadUint32();
4192     Name.resize(nameSize, ' ');
4193     for (int i = 0; i < nameSize; ++i)
4194     Name[i] = ckScri->ReadUint8();
4195     // to handle potential future extensions of the header
4196 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4197 schoenebeck 2584 // read actual script data
4198     uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4199     data.resize(scriptSize);
4200     for (int i = 0; i < scriptSize; ++i)
4201     data[i] = ckScri->ReadUint8();
4202     } else { // this is a new script object, so just initialize it as such ...
4203     Compression = COMPRESSION_NONE;
4204     Encoding = ENCODING_ASCII;
4205     Language = LANGUAGE_NKSP;
4206     Bypass = false;
4207     crc = 0;
4208     Name = "Unnamed Script";
4209     }
4210     }
4211    
4212     Script::~Script() {
4213     }
4214    
4215     /**
4216     * Returns the current script (i.e. as source code) in text format.
4217     */
4218     String Script::GetScriptAsText() {
4219     String s;
4220     s.resize(data.size(), ' ');
4221     memcpy(&s[0], &data[0], data.size());
4222     return s;
4223     }
4224    
4225     /**
4226     * Replaces the current script with the new script source code text given
4227     * by @a text.
4228     *
4229     * @param text - new script source code
4230     */
4231     void Script::SetScriptAsText(const String& text) {
4232     data.resize(text.size());
4233     memcpy(&data[0], &text[0], text.size());
4234     }
4235    
4236 schoenebeck 2682 /**
4237     * Apply this script to the respective RIFF chunks. You have to call
4238     * File::Save() to make changes persistent.
4239     *
4240     * Usually there is absolutely no need to call this method explicitly.
4241     * It will be called automatically when File::Save() was called.
4242     *
4243     * @param pProgress - callback function for progress notification
4244     */
4245     void Script::UpdateChunks(progress_t* pProgress) {
4246 schoenebeck 2584 // recalculate CRC32 check sum
4247     __resetCRC(crc);
4248     __calculateCRC(&data[0], data.size(), crc);
4249     __encodeCRC(crc);
4250     // make sure chunk exists and has the required size
4251     const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4252     if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4253     else pChunk->Resize(chunkSize);
4254     // fill the chunk data to be written to disk
4255     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4256     int pos = 0;
4257     store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4258     pos += sizeof(int32_t);
4259     store32(&pData[pos], Compression);
4260     pos += sizeof(int32_t);
4261     store32(&pData[pos], Encoding);
4262     pos += sizeof(int32_t);
4263     store32(&pData[pos], Language);
4264     pos += sizeof(int32_t);
4265     store32(&pData[pos], Bypass ? 1 : 0);
4266     pos += sizeof(int32_t);
4267     store32(&pData[pos], crc);
4268     pos += sizeof(int32_t);
4269     store32(&pData[pos], Name.size());
4270     pos += sizeof(int32_t);
4271     for (int i = 0; i < Name.size(); ++i, ++pos)
4272     pData[pos] = Name[i];
4273     for (int i = 0; i < data.size(); ++i, ++pos)
4274     pData[pos] = data[i];
4275     }
4276    
4277     /**
4278     * Move this script from its current ScriptGroup to another ScriptGroup
4279     * given by @a pGroup.
4280     *
4281     * @param pGroup - script's new group
4282     */
4283     void Script::SetGroup(ScriptGroup* pGroup) {
4284 persson 2836 if (this->pGroup == pGroup) return;
4285 schoenebeck 2584 if (pChunk)
4286     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4287     this->pGroup = pGroup;
4288     }
4289    
4290 schoenebeck 2601 /**
4291     * Returns the script group this script currently belongs to. Each script
4292     * is a member of exactly one ScriptGroup.
4293     *
4294     * @returns current script group
4295     */
4296     ScriptGroup* Script::GetGroup() const {
4297     return pGroup;
4298     }
4299    
4300 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4301     File* pFile = pGroup->pFile;
4302     for (int i = 0; pFile->GetInstrument(i); ++i) {
4303     Instrument* instr = pFile->GetInstrument(i);
4304     instr->RemoveScript(this);
4305     }
4306     }
4307    
4308     // *************** ScriptGroup ***************
4309     // *
4310    
4311     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4312     pFile = file;
4313     pList = lstRTIS;
4314     pScripts = NULL;
4315     if (lstRTIS) {
4316     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4317     ::LoadString(ckName, Name);
4318     } else {
4319     Name = "Default Group";
4320     }
4321     }
4322    
4323     ScriptGroup::~ScriptGroup() {
4324     if (pScripts) {
4325     std::list<Script*>::iterator iter = pScripts->begin();
4326     std::list<Script*>::iterator end = pScripts->end();
4327     while (iter != end) {
4328     delete *iter;
4329     ++iter;
4330     }
4331     delete pScripts;
4332     }
4333     }
4334    
4335 schoenebeck 2682 /**
4336     * Apply this script group to the respective RIFF chunks. You have to call
4337     * File::Save() to make changes persistent.
4338     *
4339     * Usually there is absolutely no need to call this method explicitly.
4340     * It will be called automatically when File::Save() was called.
4341     *
4342     * @param pProgress - callback function for progress notification
4343     */
4344     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4345 schoenebeck 2584 if (pScripts) {
4346     if (!pList)
4347     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4348    
4349     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4350     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4351    
4352     for (std::list<Script*>::iterator it = pScripts->begin();
4353     it != pScripts->end(); ++it)
4354     {
4355 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4356 schoenebeck 2584 }
4357     }
4358     }
4359    
4360     /** @brief Get instrument script.
4361     *
4362     * Returns the real-time instrument script with the given index.
4363     *
4364     * @param index - number of the sought script (0..n)
4365     * @returns sought script or NULL if there's no such script
4366     */
4367     Script* ScriptGroup::GetScript(uint index) {
4368     if (!pScripts) LoadScripts();
4369     std::list<Script*>::iterator it = pScripts->begin();
4370     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4371     if (i == index) return *it;
4372     return NULL;
4373     }
4374    
4375     /** @brief Add new instrument script.
4376     *
4377     * Adds a new real-time instrument script to the file. The script is not
4378     * actually used / executed unless it is referenced by an instrument to be
4379     * used. This is similar to samples, which you can add to a file, without
4380     * an instrument necessarily actually using it.
4381     *
4382     * You have to call Save() to make this persistent to the file.
4383     *
4384     * @return new empty script object
4385     */
4386     Script* ScriptGroup::AddScript() {
4387     if (!pScripts) LoadScripts();
4388     Script* pScript = new Script(this, NULL);
4389     pScripts->push_back(pScript);
4390     return pScript;
4391     }
4392    
4393     /** @brief Delete an instrument script.
4394     *
4395     * This will delete the given real-time instrument script. References of
4396     * instruments that are using that script will be removed accordingly.
4397     *
4398     * You have to call Save() to make this persistent to the file.
4399     *
4400     * @param pScript - script to delete
4401     * @throws gig::Exception if given script could not be found
4402     */
4403     void ScriptGroup::DeleteScript(Script* pScript) {
4404     if (!pScripts) LoadScripts();
4405     std::list<Script*>::iterator iter =
4406     find(pScripts->begin(), pScripts->end(), pScript);
4407     if (iter == pScripts->end())
4408     throw gig::Exception("Could not delete script, could not find given script");
4409     pScripts->erase(iter);
4410     pScript->RemoveAllScriptReferences();
4411     if (pScript->pChunk)
4412     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4413     delete pScript;
4414     }
4415    
4416     void ScriptGroup::LoadScripts() {
4417     if (pScripts) return;
4418     pScripts = new std::list<Script*>;
4419     if (!pList) return;
4420    
4421     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4422     ck = pList->GetNextSubChunk())
4423     {
4424     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4425     pScripts->push_back(new Script(this, ck));
4426     }
4427     }
4428     }
4429    
4430 schoenebeck 2 // *************** Instrument ***************
4431     // *
4432    
4433 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4434 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4435 persson 1180 { CHUNK_ID_INAM, 64 },
4436     { CHUNK_ID_ISFT, 12 },
4437     { 0, 0 }
4438     };
4439 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4440 persson 918
4441 schoenebeck 2 // Initialization
4442     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4443 persson 1182 EffectSend = 0;
4444     Attenuation = 0;
4445     FineTune = 0;
4446     PitchbendRange = 0;
4447     PianoReleaseMode = false;
4448     DimensionKeyRange.low = 0;
4449     DimensionKeyRange.high = 0;
4450 persson 1678 pMidiRules = new MidiRule*[3];
4451     pMidiRules[0] = NULL;
4452 schoenebeck 2584 pScriptRefs = NULL;
4453 schoenebeck 2
4454     // Loading
4455     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4456     if (lart) {
4457     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4458     if (_3ewg) {
4459     EffectSend = _3ewg->ReadUint16();
4460     Attenuation = _3ewg->ReadInt32();
4461     FineTune = _3ewg->ReadInt16();
4462     PitchbendRange = _3ewg->ReadInt16();
4463     uint8_t dimkeystart = _3ewg->ReadUint8();
4464     PianoReleaseMode = dimkeystart & 0x01;
4465     DimensionKeyRange.low = dimkeystart >> 1;
4466     DimensionKeyRange.high = _3ewg->ReadUint8();
4467 persson 1627
4468     if (_3ewg->GetSize() > 32) {
4469     // read MIDI rules
4470 persson 1678 int i = 0;
4471 persson 1627 _3ewg->SetPos(32);
4472     uint8_t id1 = _3ewg->ReadUint8();
4473     uint8_t id2 = _3ewg->ReadUint8();
4474    
4475 persson 2450 if (id2 == 16) {
4476     if (id1 == 4) {
4477     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4478     } else if (id1 == 0) {
4479     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4480     } else if (id1 == 3) {
4481     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4482     } else {
4483     pMidiRules[i++] = new MidiRuleUnknown;
4484     }
4485 persson 1627 }
4486 persson 2450 else if (id1 != 0 || id2 != 0) {
4487     pMidiRules[i++] = new MidiRuleUnknown;
4488     }
4489 persson 1627 //TODO: all the other types of rules
4490 persson 1678
4491     pMidiRules[i] = NULL;
4492 persson 1627 }
4493 schoenebeck 2 }
4494     }
4495    
4496 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4497     if (!pRegions) pRegions = new RegionList;
4498     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4499     if (lrgn) {
4500     RIFF::List* rgn = lrgn->GetFirstSubList();
4501     while (rgn) {
4502     if (rgn->GetListType() == LIST_TYPE_RGN) {
4503     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4504     pRegions->push_back(new Region(this, rgn));
4505     }
4506     rgn = lrgn->GetNextSubList();
4507 schoenebeck 809 }
4508 schoenebeck 1524 // Creating Region Key Table for fast lookup
4509     UpdateRegionKeyTable();
4510 schoenebeck 2 }
4511     }
4512    
4513 schoenebeck 2584 // own gig format extensions
4514     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4515     if (lst3LS) {
4516     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4517     if (ckSCSL) {
4518 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4519     int slotCount = ckSCSL->ReadUint32();
4520     if (slotCount) {
4521     int slotSize = ckSCSL->ReadUint32();
4522     ckSCSL->SetPos(headerSize); // in case of future header extensions
4523     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4524     for (int i = 0; i < slotCount; ++i) {
4525     _ScriptPooolEntry e;
4526     e.fileOffset = ckSCSL->ReadUint32();
4527     e.bypass = ckSCSL->ReadUint32() & 1;
4528     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4529     scriptPoolFileOffsets.push_back(e);
4530     }
4531 schoenebeck 2584 }
4532     }
4533     }
4534    
4535 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4536     }
4537    
4538     void Instrument::UpdateRegionKeyTable() {
4539 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4540 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4541     RegionList::iterator end = pRegions->end();
4542     for (; iter != end; ++iter) {
4543     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4544     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4545     RegionKeyTable[iKey] = pRegion;
4546 schoenebeck 2 }
4547     }
4548     }
4549    
4550     Instrument::~Instrument() {
4551 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4552     delete pMidiRules[i];
4553     }
4554 persson 1678 delete[] pMidiRules;
4555 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4556 schoenebeck 2 }
4557    
4558     /**
4559 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4560     * You have to call File::Save() to make changes persistent.
4561     *
4562     * Usually there is absolutely no need to call this method explicitly.
4563     * It will be called automatically when File::Save() was called.
4564     *
4565 schoenebeck 2682 * @param pProgress - callback function for progress notification
4566 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4567     */
4568 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4569 schoenebeck 809 // first update base classes' chunks
4570 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4571 schoenebeck 809
4572     // update Regions' chunks
4573 schoenebeck 823 {
4574     RegionList::iterator iter = pRegions->begin();
4575     RegionList::iterator end = pRegions->end();
4576     for (; iter != end; ++iter)
4577 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4578 schoenebeck 823 }
4579 schoenebeck 809
4580     // make sure 'lart' RIFF list chunk exists
4581     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4582     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4583     // make sure '3ewg' RIFF chunk exists
4584     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4585 persson 1264 if (!_3ewg) {
4586     File* pFile = (File*) GetParent();
4587    
4588     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4589     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4590     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4591     memset(_3ewg->LoadChunkData(), 0, size);
4592     }
4593 schoenebeck 809 // update '3ewg' RIFF chunk
4594     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4595 persson 1179 store16(&pData[0], EffectSend);
4596     store32(&pData[2], Attenuation);
4597     store16(&pData[6], FineTune);
4598     store16(&pData[8], PitchbendRange);
4599 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4600 schoenebeck 809 DimensionKeyRange.low << 1;
4601 persson 1179 pData[10] = dimkeystart;
4602     pData[11] = DimensionKeyRange.high;
4603 persson 2450
4604     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4605     pData[32] = 0;
4606     pData[33] = 0;
4607     } else {
4608     for (int i = 0 ; pMidiRules[i] ; i++) {
4609     pMidiRules[i]->UpdateChunks(pData);
4610     }
4611     }
4612 schoenebeck 2584
4613     // own gig format extensions
4614 schoenebeck 2648 if (ScriptSlotCount()) {
4615     // make sure we have converted the original loaded script file
4616     // offsets into valid Script object pointers
4617     LoadScripts();
4618    
4619 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4620     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4621 schoenebeck 2609 const int slotCount = pScriptRefs->size();
4622     const int headerSize = 3 * sizeof(uint32_t);
4623     const int slotSize = 2 * sizeof(uint32_t);
4624     const int totalChunkSize = headerSize + slotCount * slotSize;
4625 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4626 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4627     else ckSCSL->Resize(totalChunkSize);
4628 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4629 schoenebeck 2609 int pos = 0;
4630     store32(&pData[pos], headerSize);
4631     pos += sizeof(uint32_t);
4632     store32(&pData[pos], slotCount);
4633     pos += sizeof(uint32_t);
4634     store32(&pData[pos], slotSize);
4635     pos += sizeof(uint32_t);
4636     for (int i = 0; i < slotCount; ++i) {
4637     // arbitrary value, the actual file offset will be updated in
4638     // UpdateScriptFileOffsets() after the file has been resized
4639     int bogusFileOffset = 0;
4640     store32(&pData[pos], bogusFileOffset);
4641 schoenebeck 2584 pos += sizeof(uint32_t);
4642     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4643     pos += sizeof(uint32_t);
4644     }
4645 schoenebeck 2648 } else {
4646     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4647     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4648     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4649 schoenebeck 2584 }
4650 schoenebeck 809 }
4651    
4652 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4653     // own gig format extensions
4654 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4655 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4656     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4657     const int slotCount = pScriptRefs->size();
4658     const int headerSize = 3 * sizeof(uint32_t);
4659     ckSCSL->SetPos(headerSize);
4660     for (int i = 0; i < slotCount; ++i) {
4661     uint32_t fileOffset =
4662     (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4663     (*pScriptRefs)[i].script->pChunk->GetPos() -
4664 schoenebeck 2912 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize());
4665 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4666     // jump over flags entry (containing the bypass flag)
4667     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4668     }
4669     }
4670     }
4671    
4672 schoenebeck 809 /**
4673 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4674     *
4675     * @param Key MIDI Key number of triggered note / key (0 - 127)
4676     * @returns pointer adress to the appropriate Region or NULL if there
4677     * there is no Region defined for the given \a Key
4678     */
4679     Region* Instrument::GetRegion(unsigned int Key) {
4680 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4681 schoenebeck 2 return RegionKeyTable[Key];
4682 schoenebeck 823
4683 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4684     if (Key <= pRegions[i]->KeyRange.high &&
4685     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4686     }
4687     return NULL;*/
4688     }
4689    
4690     /**
4691     * Returns the first Region of the instrument. You have to call this
4692     * method once before you use GetNextRegion().
4693     *
4694     * @returns pointer address to first region or NULL if there is none
4695     * @see GetNextRegion()
4696     */
4697     Region* Instrument::GetFirstRegion() {
4698 schoenebeck 823 if (!pRegions) return NULL;
4699     RegionsIterator = pRegions->begin();
4700     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4701 schoenebeck 2 }
4702    
4703     /**
4704     * Returns the next Region of the instrument. You have to call
4705     * GetFirstRegion() once before you can use this method. By calling this
4706     * method multiple times it iterates through the available Regions.
4707     *
4708     * @returns pointer address to the next region or NULL if end reached
4709     * @see GetFirstRegion()
4710     */
4711     Region* Instrument::GetNextRegion() {
4712 schoenebeck 823 if (!pRegions) return NULL;
4713     RegionsIterator++;
4714     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4715 schoenebeck 2 }
4716    
4717 schoenebeck 809 Region* Instrument::AddRegion() {
4718     // create new Region object (and its RIFF chunks)
4719     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4720     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4721     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4722     Region* pNewRegion = new Region(this, rgn);
4723 schoenebeck 823 pRegions->push_back(pNewRegion);
4724     Regions = pRegions->size();
4725 schoenebeck 809 // update Region key table for fast lookup
4726     UpdateRegionKeyTable();
4727     // done
4728     return pNewRegion;
4729     }
4730 schoenebeck 2
4731 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4732     if (!pRegions) return;
4733 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4734 schoenebeck 809 // update Region key table for fast lookup
4735     UpdateRegionKeyTable();
4736     }
4737 schoenebeck 2
4738 persson 1627 /**
4739 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4740     *
4741     * This method can be used to reorder the sequence of instruments in a
4742     * .gig file. This might be helpful especially on large .gig files which
4743     * contain a large number of instruments within the same .gig file. So
4744     * grouping such instruments to similar ones, can help to keep track of them
4745     * when working with such complex .gig files.
4746     *
4747     * When calling this method, this instrument will be removed from in its
4748     * current position in the instruments list and moved to the requested
4749     * target position provided by @param dst. You may also pass NULL as
4750     * argument to this method, in that case this intrument will be moved to the
4751     * very end of the .gig file's instrument list.
4752     *
4753     * You have to call Save() to make the order change persistent to the .gig
4754     * file.
4755     *
4756     * Currently this method is limited to moving the instrument within the same
4757     * .gig file. Trying to move it to another .gig file by calling this method
4758     * will throw an exception.
4759     *
4760     * @param dst - destination instrument at which this instrument will be
4761     * moved to, or pass NULL for moving to end of list
4762     * @throw gig::Exception if this instrument and target instrument are not
4763     * part of the same file
4764     */
4765     void Instrument::MoveTo(Instrument* dst) {
4766     if (dst && GetParent() != dst->GetParent())
4767     throw Exception(
4768     "gig::Instrument::MoveTo() can only be used for moving within "
4769     "the same gig file."
4770     );
4771    
4772     File* pFile = (File*) GetParent();
4773    
4774     // move this instrument within the instrument list
4775     {
4776 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
4777 schoenebeck 2700
4778 persson 2836 File::InstrumentList::iterator itFrom =
4779 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4780    
4781 persson 2836 File::InstrumentList::iterator itTo =
4782 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4783    
4784     list.splice(itTo, list, itFrom);
4785     }
4786    
4787     // move the instrument's actual list RIFF chunk appropriately
4788     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4789     lstCkInstruments->MoveSubChunk(
4790     this->pCkInstrument,
4791 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4792 schoenebeck 2700 );
4793     }
4794    
4795     /**
4796 persson 1678 * Returns a MIDI rule of the instrument.
4797 persson 1627 *
4798     * The list of MIDI rules, at least in gig v3, always contains at
4799     * most two rules. The second rule can only be the DEF filter
4800     * (which currently isn't supported by libgig).
4801     *
4802 persson 1678 * @param i - MIDI rule number
4803     * @returns pointer address to MIDI rule number i or NULL if there is none
4804 persson 1627 */
4805 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
4806     return pMidiRules[i];
4807 persson 1627 }
4808 persson 2450
4809 schoenebeck 2394 /**
4810 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
4811     *
4812     * @returns the new MIDI rule
4813     */
4814     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4815     delete pMidiRules[0];
4816     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4817     pMidiRules[0] = r;
4818     pMidiRules[1] = 0;
4819     return r;
4820     }
4821    
4822     /**
4823     * Adds the legato MIDI rule to the instrument.
4824     *
4825     * @returns the new MIDI rule
4826     */
4827     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4828     delete pMidiRules[0];
4829     MidiRuleLegato* r = new MidiRuleLegato;
4830     pMidiRules[0] = r;
4831     pMidiRules[1] = 0;
4832     return r;
4833     }
4834    
4835     /**
4836     * Adds the alternator MIDI rule to the instrument.
4837     *
4838     * @returns the new MIDI rule
4839     */
4840     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4841     delete pMidiRules[0];
4842     MidiRuleAlternator* r = new MidiRuleAlternator;
4843     pMidiRules[0] = r;
4844     pMidiRules[1] = 0;
4845     return r;
4846     }
4847    
4848     /**
4849     * Deletes a MIDI rule from the instrument.
4850     *
4851     * @param i - MIDI rule number
4852     */
4853     void Instrument::DeleteMidiRule(int i) {
4854     delete pMidiRules[i];
4855     pMidiRules[i] = 0;
4856     }
4857    
4858 schoenebeck 2584 void Instrument::LoadScripts() {
4859     if (pScriptRefs) return;
4860     pScriptRefs = new std::vector<_ScriptPooolRef>;
4861     if (scriptPoolFileOffsets.empty()) return;
4862     File* pFile = (File*) GetParent();
4863     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4864 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4865 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4866     ScriptGroup* group = pFile->GetScriptGroup(i);
4867     for (uint s = 0; group->GetScript(s); ++s) {
4868     Script* script = group->GetScript(s);
4869     if (script->pChunk) {
4870 schoenebeck 2609 uint32_t offset = script->pChunk->GetFilePos() -
4871     script->pChunk->GetPos() -
4872 schoenebeck 2912 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize());
4873 schoenebeck 2609 if (offset == soughtOffset)
4874 schoenebeck 2584 {
4875     _ScriptPooolRef ref;
4876     ref.script = script;
4877     ref.bypass = scriptPoolFileOffsets[k].bypass;
4878     pScriptRefs->push_back(ref);
4879     break;
4880     }
4881     }
4882     }
4883     }
4884     }
4885     // we don't need that anymore
4886     scriptPoolFileOffsets.clear();
4887     }
4888    
4889 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
4890 schoenebeck 2584 *
4891 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
4892     * @a index.
4893     *
4894     * @note This is an own format extension which did not exist i.e. in the
4895     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4896     * gigedit.
4897     *
4898     * @param index - instrument script slot index
4899     * @returns script or NULL if index is out of bounds
4900     */
4901     Script* Instrument::GetScriptOfSlot(uint index) {
4902     LoadScripts();
4903     if (index >= pScriptRefs->size()) return NULL;
4904     return pScriptRefs->at(index).script;
4905     }
4906    
4907     /** @brief Add new instrument script slot (gig format extension).
4908     *
4909 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
4910     * which shall be executed by the sampler for for this instrument. The
4911     * script will be added to the end of the script list of this instrument.
4912     * The positions of the scripts in the Instrument's Script list are
4913     * relevant, because they define in which order they shall be executed by
4914     * the sampler. For this reason it is also legal to add the same script
4915     * twice to an instrument, for example you might have a script called
4916     * "MyFilter" which performs an event filter task, and you might have
4917     * another script called "MyNoteTrigger" which triggers new notes, then you
4918     * might for example have the following list of scripts on the instrument:
4919     *
4920     * 1. Script "MyFilter"
4921     * 2. Script "MyNoteTrigger"
4922     * 3. Script "MyFilter"
4923     *
4924     * Which would make sense, because the 2nd script launched new events, which
4925     * you might need to filter as well.
4926     *
4927     * There are two ways to disable / "bypass" scripts. You can either disable
4928     * a script locally for the respective script slot on an instrument (i.e. by
4929     * passing @c false to the 2nd argument of this method, or by calling
4930     * SetScriptBypassed()). Or you can disable a script globally for all slots
4931     * and all instruments by setting Script::Bypass.
4932     *
4933     * @note This is an own format extension which did not exist i.e. in the
4934     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4935     * gigedit.
4936     *
4937     * @param pScript - script that shall be executed for this instrument
4938     * @param bypass - if enabled, the sampler shall skip executing this
4939     * script (in the respective list position)
4940     * @see SetScriptBypassed()
4941     */
4942     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4943     LoadScripts();
4944     _ScriptPooolRef ref = { pScript, bypass };
4945     pScriptRefs->push_back(ref);
4946     }
4947    
4948     /** @brief Flip two script slots with each other (gig format extension).
4949     *
4950     * Swaps the position of the two given scripts in the Instrument's Script
4951     * list. The positions of the scripts in the Instrument's Script list are
4952     * relevant, because they define in which order they shall be executed by
4953     * the sampler.
4954     *
4955     * @note This is an own format extension which did not exist i.e. in the
4956     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4957     * gigedit.
4958     *
4959     * @param index1 - index of the first script slot to swap
4960     * @param index2 - index of the second script slot to swap
4961     */
4962     void Instrument::SwapScriptSlots(uint index1, uint index2) {
4963     LoadScripts();
4964     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4965     return;
4966     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4967     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4968     (*pScriptRefs)[index2] = tmp;
4969     }
4970    
4971     /** @brief Remove script slot.
4972     *
4973     * Removes the script slot with the given slot index.
4974     *
4975     * @param index - index of script slot to remove
4976     */
4977     void Instrument::RemoveScriptSlot(uint index) {
4978     LoadScripts();
4979     if (index >= pScriptRefs->size()) return;
4980     pScriptRefs->erase( pScriptRefs->begin() + index );
4981     }
4982    
4983     /** @brief Remove reference to given Script (gig format extension).
4984     *
4985     * This will remove all script slots on the instrument which are referencing
4986     * the given script.
4987     *
4988     * @note This is an own format extension which did not exist i.e. in the
4989     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4990     * gigedit.
4991     *
4992     * @param pScript - script reference to remove from this instrument
4993     * @see RemoveScriptSlot()
4994     */
4995     void Instrument::RemoveScript(Script* pScript) {
4996     LoadScripts();
4997     for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4998     if ((*pScriptRefs)[i].script == pScript) {
4999     pScriptRefs->erase( pScriptRefs->begin() + i );
5000     }
5001     }
5002     }
5003    
5004     /** @brief Instrument's amount of script slots.
5005     *
5006     * This method returns the amount of script slots this instrument currently
5007     * uses.
5008     *
5009     * A script slot is a reference of a real-time instrument script to be
5010     * executed by the sampler. The scripts will be executed by the sampler in
5011     * sequence of the slots. One (same) script may be referenced multiple
5012     * times in different slots.
5013     *
5014     * @note This is an own format extension which did not exist i.e. in the
5015     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5016     * gigedit.
5017     */
5018     uint Instrument::ScriptSlotCount() const {
5019     return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
5020     }
5021    
5022     /** @brief Whether script execution shall be skipped.
5023     *
5024     * Defines locally for the Script reference slot in the Instrument's Script
5025     * list, whether the script shall be skipped by the sampler regarding
5026     * execution.
5027     *
5028     * It is also possible to ignore exeuction of the script globally, for all
5029     * slots and for all instruments by setting Script::Bypass.
5030     *
5031     * @note This is an own format extension which did not exist i.e. in the
5032     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5033     * gigedit.
5034     *
5035     * @param index - index of the script slot on this instrument
5036     * @see Script::Bypass
5037     */
5038     bool Instrument::IsScriptSlotBypassed(uint index) {
5039     if (index >= ScriptSlotCount()) return false;
5040     return pScriptRefs ? pScriptRefs->at(index).bypass
5041     : scriptPoolFileOffsets.at(index).bypass;
5042    
5043     }
5044    
5045     /** @brief Defines whether execution shall be skipped.
5046     *
5047     * You can call this method to define locally whether or whether not the
5048     * given script slot shall be executed by the sampler.
5049     *
5050     * @note This is an own format extension which did not exist i.e. in the
5051     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5052     * gigedit.
5053     *
5054     * @param index - script slot index on this instrument
5055     * @param bBypass - if true, the script slot will be skipped by the sampler
5056     * @see Script::Bypass
5057     */
5058     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5059     if (index >= ScriptSlotCount()) return;
5060     if (pScriptRefs)
5061     pScriptRefs->at(index).bypass = bBypass;
5062     else
5063     scriptPoolFileOffsets.at(index).bypass = bBypass;
5064     }
5065    
5066 persson 2450 /**
5067 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5068     * and assign it to this object.
5069     *
5070     * Note that all sample pointers referenced by @a orig are simply copied as
5071     * memory address. Thus the respective samples are shared, not duplicated!
5072     *
5073     * @param orig - original Instrument object to be copied from
5074     */
5075     void Instrument::CopyAssign(const Instrument* orig) {
5076 schoenebeck 2482 CopyAssign(orig, NULL);
5077     }
5078    
5079     /**
5080     * Make a (semi) deep copy of the Instrument object given by @a orig
5081     * and assign it to this object.
5082     *
5083     * @param orig - original Instrument object to be copied from
5084     * @param mSamples - crosslink map between the foreign file's samples and
5085     * this file's samples
5086     */
5087     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5088 schoenebeck 2394 // handle base class
5089     // (without copying DLS region stuff)
5090     DLS::Instrument::CopyAssignCore(orig);
5091    
5092     // handle own member variables
5093     Attenuation = orig->Attenuation;
5094     EffectSend = orig->EffectSend;
5095     FineTune = orig->FineTune;
5096     PitchbendRange = orig->PitchbendRange;
5097     PianoReleaseMode = orig->PianoReleaseMode;
5098     DimensionKeyRange = orig->DimensionKeyRange;
5099 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5100     pScriptRefs = orig->pScriptRefs;
5101 schoenebeck 2394
5102     // free old midi rules
5103     for (int i = 0 ; pMidiRules[i] ; i++) {
5104     delete pMidiRules[i];
5105     }
5106     //TODO: MIDI rule copying
5107     pMidiRules[0] = NULL;
5108    
5109     // delete all old regions
5110     while (Regions) DeleteRegion(GetFirstRegion());
5111     // create new regions and copy them from original
5112     {
5113     RegionList::const_iterator it = orig->pRegions->begin();
5114     for (int i = 0; i < orig->Regions; ++i, ++it) {
5115     Region* dstRgn = AddRegion();
5116     //NOTE: Region does semi-deep copy !
5117     dstRgn->CopyAssign(
5118 schoenebeck 2482 static_cast<gig::Region*>(*it),
5119     mSamples
5120 schoenebeck 2394 );
5121     }
5122     }
5123 schoenebeck 809
5124 schoenebeck 2394 UpdateRegionKeyTable();
5125     }
5126 schoenebeck 809
5127 schoenebeck 2394
5128 schoenebeck 929 // *************** Group ***************
5129     // *
5130    
5131     /** @brief Constructor.
5132     *
5133 schoenebeck 930 * @param file - pointer to the gig::File object
5134     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5135     * NULL if this is a new Group
5136 schoenebeck 929 */
5137 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5138 schoenebeck 929 pFile = file;
5139     pNameChunk = ck3gnm;
5140     ::LoadString(pNameChunk, Name);
5141     }
5142    
5143     Group::~Group() {
5144 schoenebeck 1099 // remove the chunk associated with this group (if any)
5145     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5146 schoenebeck 929 }
5147    
5148     /** @brief Update chunks with current group settings.
5149     *
5150 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5151     * to call File::Save() to make changes persistent.
5152     *
5153     * Usually there is absolutely no need to call this method explicitly.
5154     * It will be called automatically when File::Save() was called.
5155 schoenebeck 2682 *
5156     * @param pProgress - callback function for progress notification
5157 schoenebeck 929 */
5158 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5159 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5160 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5161 persson 1192 if (!_3gri) {
5162     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5163     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5164     }
5165 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5166 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5167 persson 1266
5168     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5169     // v3 has a fixed list of 128 strings, find a free one
5170     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5171     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5172     pNameChunk = ck;
5173     break;
5174     }
5175     }
5176     }
5177    
5178 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5179     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5180     }
5181    
5182 schoenebeck 930 /**
5183     * Returns the first Sample of this Group. You have to call this method
5184     * once before you use GetNextSample().
5185     *
5186     * <b>Notice:</b> this method might block for a long time, in case the
5187     * samples of this .gig file were not scanned yet
5188     *
5189     * @returns pointer address to first Sample or NULL if there is none
5190     * applied to this Group
5191     * @see GetNextSample()
5192     */
5193     Sample* Group::GetFirstSample() {
5194     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5195     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5196     if (pSample->GetGroup() == this) return pSample;
5197     }
5198     return NULL;
5199     }
5200 schoenebeck 929
5201 schoenebeck 930 /**
5202     * Returns the next Sample of the Group. You have to call
5203     * GetFirstSample() once before you can use this method. By calling this
5204     * method multiple times it iterates through the Samples assigned to
5205     * this Group.
5206     *
5207     * @returns pointer address to the next Sample of this Group or NULL if
5208     * end reached
5209     * @see GetFirstSample()
5210     */
5211     Sample* Group::GetNextSample() {
5212     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5213     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5214     if (pSample->GetGroup() == this) return pSample;
5215     }
5216     return NULL;
5217     }
5218 schoenebeck 929
5219 schoenebeck 930 /**
5220     * Move Sample given by \a pSample from another Group to this Group.
5221     */
5222     void Group::AddSample(Sample* pSample) {
5223     pSample->pGroup = this;
5224     }
5225    
5226     /**
5227     * Move all members of this group to another group (preferably the 1st
5228     * one except this). This method is called explicitly by
5229     * File::DeleteGroup() thus when a Group was deleted. This code was
5230     * intentionally not placed in the destructor!
5231     */
5232     void Group::MoveAll() {
5233     // get "that" other group first
5234     Group* pOtherGroup = NULL;
5235     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5236     if (pOtherGroup != this) break;
5237     }
5238     if (!pOtherGroup) throw Exception(
5239     "Could not move samples to another group, since there is no "
5240     "other Group. This is a bug, report it!"
5241     );
5242     // now move all samples of this group to the other group
5243     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5244     pOtherGroup->AddSample(pSample);
5245     }
5246     }
5247    
5248    
5249    
5250 schoenebeck 2 // *************** File ***************
5251     // *
5252    
5253 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5254 persson 1199 const DLS::version_t File::VERSION_2 = {
5255     0, 2, 19980628 & 0xffff, 19980628 >> 16
5256     };
5257    
5258 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5259 persson 1199 const DLS::version_t File::VERSION_3 = {
5260     0, 3, 20030331 & 0xffff, 20030331 >> 16
5261     };
5262    
5263 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5264 persson 1180 { CHUNK_ID_IARL, 256 },
5265     { CHUNK_ID_IART, 128 },
5266     { CHUNK_ID_ICMS, 128 },
5267     { CHUNK_ID_ICMT, 1024 },
5268     { CHUNK_ID_ICOP, 128 },
5269     { CHUNK_ID_ICRD, 128 },
5270     { CHUNK_ID_IENG, 128 },
5271     { CHUNK_ID_IGNR, 128 },
5272     { CHUNK_ID_IKEY, 128 },
5273     { CHUNK_ID_IMED, 128 },
5274     { CHUNK_ID_INAM, 128 },
5275     { CHUNK_ID_IPRD, 128 },
5276     { CHUNK_ID_ISBJ, 128 },
5277     { CHUNK_ID_ISFT, 128 },
5278     { CHUNK_ID_ISRC, 128 },
5279     { CHUNK_ID_ISRF, 128 },
5280     { CHUNK_ID_ITCH, 128 },
5281     { 0, 0 }
5282     };
5283    
5284 schoenebeck 809 File::File() : DLS::File() {
5285 schoenebeck 1524 bAutoLoad = true;
5286 persson 1264 *pVersion = VERSION_3;
5287 schoenebeck 929 pGroups = NULL;
5288 schoenebeck 2584 pScriptGroups = NULL;
5289 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5290 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5291 persson 1192
5292     // add some mandatory chunks to get the file chunks in right
5293     // order (INFO chunk will be moved to first position later)
5294     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5295     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5296 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5297    
5298     GenerateDLSID();
5299 schoenebeck 809 }
5300    
5301 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5302 schoenebeck 1524 bAutoLoad = true;
5303 schoenebeck 929 pGroups = NULL;
5304 schoenebeck 2584 pScriptGroups = NULL;
5305 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5306 schoenebeck 2 }
5307    
5308 schoenebeck 929 File::~File() {
5309     if (pGroups) {
5310     std::list<Group*>::iterator iter = pGroups->begin();
5311     std::list<Group*>::iterator end = pGroups->end();
5312     while (iter != end) {
5313     delete *iter;
5314     ++iter;
5315     }
5316     delete pGroups;
5317     }
5318 schoenebeck 2584 if (pScriptGroups) {
5319     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5320     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5321     while (iter != end) {
5322     delete *iter;
5323     ++iter;
5324     }
5325     delete pScriptGroups;
5326     }
5327 schoenebeck 929 }
5328    
5329 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5330     if (!pSamples) LoadSamples(pProgress);
5331 schoenebeck 2 if (!pSamples) return NULL;
5332     SamplesIterator = pSamples->begin();
5333     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5334     }
5335    
5336     Sample* File::GetNextSample() {
5337     if (!pSamples) return NULL;
5338     SamplesIterator++;
5339     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5340     }
5341 schoenebeck 2482
5342     /**
5343     * Returns Sample object of @a index.
5344     *
5345     * @returns sample object or NULL if index is out of bounds
5346     */
5347     Sample* File::GetSample(uint index) {
5348     if (!pSamples) LoadSamples();
5349     if (!pSamples) return NULL;
5350     DLS::File::SampleList::iterator it = pSamples->begin();
5351     for (int i = 0; i < index; ++i) {
5352     ++it;
5353     if (it == pSamples->end()) return NULL;
5354     }
5355     if (it == pSamples->end()) return NULL;
5356     return static_cast<gig::Sample*>( *it );
5357     }
5358 schoenebeck 2
5359 schoenebeck 809 /** @brief Add a new sample.
5360     *
5361     * This will create a new Sample object for the gig file. You have to
5362     * call Save() to make this persistent to the file.
5363     *
5364     * @returns pointer to new Sample object
5365     */
5366     Sample* File::AddSample() {
5367     if (!pSamples) LoadSamples();
5368     __ensureMandatoryChunksExist();
5369     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5370     // create new Sample object and its respective 'wave' list chunk
5371     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5372     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5373 persson 1192
5374     // add mandatory chunks to get the chunks in right order
5375     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5376     wave->AddSubList(LIST_TYPE_INFO);
5377    
5378 schoenebeck 809 pSamples->push_back(pSample);
5379     return pSample;
5380     }
5381    
5382     /** @brief Delete a sample.
5383     *
5384 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5385     * references to this sample from Regions and DimensionRegions will be
5386     * removed. You have to call Save() to make this persistent to the file.
5387 schoenebeck 809 *
5388     * @param pSample - sample to delete
5389     * @throws gig::Exception if given sample could not be found
5390     */
5391     void File::DeleteSample(Sample* pSample) {
5392 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5393     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5394 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5395 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5396 schoenebeck 809 pSamples->erase(iter);
5397     delete pSample;
5398 persson 1266
5399 persson 1678 SampleList::iterator tmp = SamplesIterator;
5400 persson 1266 // remove all references to the sample
5401     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5402     instrument = GetNextInstrument()) {
5403     for (Region* region = instrument->GetFirstRegion() ; region ;
5404     region = instrument->GetNextRegion()) {
5405    
5406     if (region->GetSample() == pSample) region->SetSample(NULL);
5407    
5408     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5409     gig::DimensionRegion *d = region->pDimensionRegions[i];
5410     if (d->pSample == pSample) d->pSample = NULL;
5411     }
5412     }
5413     }
5414 persson 1678 SamplesIterator = tmp; // restore iterator
5415 schoenebeck 809 }
5416    
5417 schoenebeck 823 void File::LoadSamples() {
5418     LoadSamples(NULL);
5419     }
5420    
5421 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5422 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5423     // to resolve the group they belong to
5424 schoenebeck 1158 if (!pGroups) LoadGroups();
5425 schoenebeck 930
5426 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5427    
5428 persson 666 RIFF::File* file = pRIFF;
5429 schoenebeck 515
5430 persson 666 // just for progress calculation
5431     int iSampleIndex = 0;
5432     int iTotalSamples = WavePoolCount;
5433 schoenebeck 515
5434 persson 666 // check if samples should be loaded from extension files
5435 schoenebeck 2913 // (only for old gig files < 2 GB)
5436 persson 666 int lastFileNo = 0;
5437 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5438 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5439     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5440     }
5441 persson 666 }
5442 schoenebeck 780 String name(pRIFF->GetFileName());
5443     int nameLen = name.length();
5444 persson 666 char suffix[6];
5445 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5446 schoenebeck 515
5447 persson 666 for (int fileNo = 0 ; ; ) {
5448     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5449     if (wvpl) {
5450 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5451 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5452     while (wave) {
5453     if (wave->GetListType() == LIST_TYPE_WAVE) {
5454     // notify current progress
5455     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5456     __notify_progress(pProgress, subprogress);
5457    
5458 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5459 schoenebeck 2989 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5460 persson 666
5461     iSampleIndex++;
5462     }
5463     wave = wvpl->GetNextSubList();
5464 schoenebeck 2 }
5465 persson 666
5466     if (fileNo == lastFileNo) break;
5467    
5468     // open extension file (*.gx01, *.gx02, ...)
5469     fileNo++;
5470     sprintf(suffix, ".gx%02d", fileNo);
5471     name.replace(nameLen, 5, suffix);
5472     file = new RIFF::File(name);
5473     ExtensionFiles.push_back(file);
5474 schoenebeck 823 } else break;
5475 schoenebeck 2 }
5476 persson 666
5477     __notify_progress(pProgress, 1.0); // notify done
5478 schoenebeck 2 }
5479    
5480     Instrument* File::GetFirstInstrument() {
5481     if (!pInstruments) LoadInstruments();
5482     if (!pInstruments) return NULL;
5483     InstrumentsIterator = pInstruments->begin();
5484 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5485 schoenebeck 2 }
5486    
5487     Instrument* File::GetNextInstrument() {
5488     if (!pInstruments) return NULL;
5489     InstrumentsIterator++;
5490 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5491 schoenebeck 2 }
5492    
5493 schoenebeck 21 /**
5494     * Returns the instrument with the given index.
5495     *
5496 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5497     * @param pProgress - optional: callback function for progress notification
5498 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5499     */
5500 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5501     if (!pInstruments) {
5502     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5503    
5504     // sample loading subtask
5505     progress_t subprogress;
5506     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5507     __notify_progress(&subprogress, 0.0f);
5508 schoenebeck 1524 if (GetAutoLoad())
5509     GetFirstSample(&subprogress); // now force all samples to be loaded
5510 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5511    
5512     // instrument loading subtask
5513     if (pProgress && pProgress->callback) {
5514     subprogress.__range_min = subprogress.__range_max;
5515     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5516     }
5517     __notify_progress(&subprogress, 0.0f);
5518     LoadInstruments(&subprogress);
5519     __notify_progress(&subprogress, 1.0f);
5520     }
5521 schoenebeck 21 if (!pInstruments) return NULL;
5522     InstrumentsIterator = pInstruments->begin();
5523     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5524 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5525 schoenebeck 21 InstrumentsIterator++;
5526     }
5527     return NULL;
5528     }
5529    
5530 schoenebeck 809 /** @brief Add a new instrument definition.
5531     *
5532     * This will create a new Instrument object for the gig file. You have
5533     * to call Save() to make this persistent to the file.
5534     *
5535     * @returns pointer to new Instrument object
5536     */
5537     Instrument* File::AddInstrument() {
5538     if (!pInstruments) LoadInstruments();
5539     __ensureMandatoryChunksExist();
5540     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5541     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5542 persson 1192
5543     // add mandatory chunks to get the chunks in right order
5544     lstInstr->AddSubList(LIST_TYPE_INFO);
5545 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5546 persson 1192
5547 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5548 persson 1209 pInstrument->GenerateDLSID();
5549 persson 1182
5550 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5551    
5552 persson 1182 // this string is needed for the gig to be loadable in GSt:
5553     pInstrument->pInfo->Software = "Endless Wave";
5554    
5555 schoenebeck 809 pInstruments->push_back(pInstrument);
5556     return pInstrument;
5557     }
5558 schoenebeck 2394
5559     /** @brief Add a duplicate of an existing instrument.
5560     *
5561     * Duplicates the instrument definition given by @a orig and adds it
5562     * to this file. This allows in an instrument editor application to
5563     * easily create variations of an instrument, which will be stored in
5564     * the same .gig file, sharing i.e. the same samples.
5565     *
5566     * Note that all sample pointers referenced by @a orig are simply copied as
5567     * memory address. Thus the respective samples are shared, not duplicated!
5568     *
5569     * You have to call Save() to make this persistent to the file.
5570     *
5571     * @param orig - original instrument to be copied
5572     * @returns duplicated copy of the given instrument
5573     */
5574     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5575     Instrument* instr = AddInstrument();
5576     instr->CopyAssign(orig);
5577     return instr;
5578     }
5579 schoenebeck 2482
5580     /** @brief Add content of another existing file.
5581     *
5582     * Duplicates the samples, groups and instruments of the original file
5583     * given by @a pFile and adds them to @c this File. In case @c this File is
5584     * a new one that you haven't saved before, then you have to call
5585     * SetFileName() before calling AddContentOf(), because this method will
5586     * automatically save this file during operation, which is required for
5587     * writing the sample waveform data by disk streaming.
5588     *
5589     * @param pFile - original file whose's content shall be copied from
5590     */
5591     void File::AddContentOf(File* pFile) {
5592     static int iCallCount = -1;
5593     iCallCount++;
5594     std::map<Group*,Group*> mGroups;
5595     std::map<Sample*,Sample*> mSamples;
5596    
5597     // clone sample groups
5598     for (int i = 0; pFile->GetGroup(i); ++i) {
5599     Group* g = AddGroup();
5600     g->Name =
5601     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5602     mGroups[pFile->GetGroup(i)] = g;
5603     }
5604    
5605     // clone samples (not waveform data here yet)
5606     for (int i = 0; pFile->GetSample(i); ++i) {
5607     Sample* s = AddSample();
5608     s->CopyAssignMeta(pFile->GetSample(i));
5609     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5610     mSamples[pFile->GetSample(i)] = s;
5611     }
5612    
5613     //BUG: For some reason this method only works with this additional
5614     // Save() call in between here.
5615     //
5616     // Important: The correct one of the 2 Save() methods has to be called
5617     // here, depending on whether the file is completely new or has been
5618     // saved to disk already, otherwise it will result in data corruption.
5619     if (pRIFF->IsNew())
5620     Save(GetFileName());
5621     else
5622     Save();
5623    
5624     // clone instruments
5625     // (passing the crosslink table here for the cloned samples)
5626     for (int i = 0; pFile->GetInstrument(i); ++i) {
5627     Instrument* instr = AddInstrument();
5628     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5629     }
5630    
5631     // Mandatory: file needs to be saved to disk at this point, so this
5632     // file has the correct size and data layout for writing the samples'
5633     // waveform data to disk.
5634     Save();
5635    
5636     // clone samples' waveform data
5637     // (using direct read & write disk streaming)
5638     for (int i = 0; pFile->GetSample(i); ++i) {
5639     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5640     }
5641     }
5642 schoenebeck 809
5643     /** @brief Delete an instrument.
5644     *
5645     * This will delete the given Instrument object from the gig file. You
5646     * have to call Save() to make this persistent to the file.
5647     *
5648     * @param pInstrument - instrument to delete
5649 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5650 schoenebeck 809 */
5651     void File::DeleteInstrument(Instrument* pInstrument) {
5652     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5653 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5654 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5655     pInstruments->erase(iter);
5656     delete pInstrument;
5657     }
5658    
5659 schoenebeck 823 void File::LoadInstruments() {
5660     LoadInstruments(NULL);
5661     }
5662    
5663 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5664 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5665 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5666     if (lstInstruments) {
5667 schoenebeck 515 int iInstrumentIndex = 0;
5668 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5669     while (lstInstr) {
5670     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5671 schoenebeck 515 // notify current progress
5672     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5673     __notify_progress(pProgress, localProgress);
5674    
5675     // divide local progress into subprogress for loading current Instrument
5676     progress_t subprogress;
5677     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5678    
5679     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5680    
5681     iInstrumentIndex++;
5682 schoenebeck 2 }
5683     lstInstr = lstInstruments->GetNextSubList();
5684     }
5685 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5686 schoenebeck 2 }
5687     }
5688    
5689 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5690     /// update is done directly to disk, as this method is called
5691     /// after File::Save()
5692 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5693     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5694     if (!_3crc) return;
5695 persson 1207
5696     // get the index of the sample
5697 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5698 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5699    
5700 persson 1207 // write the CRC-32 checksum to disk
5701 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5702 schoenebeck 2985 uint32_t one = 1;
5703     _3crc->WriteUint32(&one); // always 1
5704 persson 1199 _3crc->WriteUint32(&crc);
5705 schoenebeck 2989 }
5706 schoenebeck 2985
5707 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
5708     // get the index of the sample
5709     int iWaveIndex = GetWaveTableIndexOf(pSample);
5710     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5711    
5712     return GetSampleChecksumByIndex(iWaveIndex);
5713 persson 1199 }
5714    
5715 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
5716     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5717    
5718 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5719     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5720     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5721     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5722    
5723     // read the CRC-32 checksum directly from disk
5724 schoenebeck 2989 size_t pos = index * 8;
5725 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
5726     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5727    
5728     uint32_t one = load32(&pData[pos]); // always 1
5729     if (one != 1)
5730 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5731 schoenebeck 2985
5732     return load32(&pData[pos+4]);
5733     }
5734 schoenebeck 2989
5735 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5736     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5737     File::SampleList::iterator iter = pSamples->begin();
5738     File::SampleList::iterator end = pSamples->end();
5739     for (int index = 0; iter != end; ++iter, ++index)
5740     if (*iter == pSample)
5741     return index;
5742     return -1;
5743     }
5744    
5745     /**
5746     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5747     * the CRC32 check sums of all samples' raw wave data.
5748     *
5749     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5750     */
5751     bool File::VerifySampleChecksumTable() {
5752     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5753     if (!_3crc) return false;
5754     if (_3crc->GetNewSize() <= 0) return false;
5755     if (_3crc->GetNewSize() % 8) return false;
5756     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5757     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5758    
5759     const int n = _3crc->GetNewSize() / 8;
5760    
5761     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5762     if (!pData) return false;
5763    
5764     for (int i = 0; i < n; ++i) {
5765     uint32_t one = pData[i*2];
5766     if (one != 1) return false;
5767     }
5768    
5769     return true;
5770     }
5771    
5772     /**
5773     * Recalculates CRC32 checksums for all samples and rebuilds this gig
5774     * file's checksum table with those new checksums. This might usually
5775     * just be necessary if the checksum table was damaged.
5776     *
5777     * @e IMPORTANT: The current implementation of this method only works
5778     * with files that have not been modified since it was loaded, because
5779     * it expects that no externally caused file structure changes are
5780     * required!
5781     *
5782     * Due to the expectation above, this method is currently protected
5783     * and actually only used by the command line tool "gigdump" yet.
5784     *
5785     * @returns true if Save() is required to be called after this call,
5786     * false if no further action is required
5787     */
5788     bool File::RebuildSampleChecksumTable() {
5789     // make sure sample chunks were scanned
5790     if (!pSamples) GetFirstSample();
5791    
5792     bool bRequiresSave = false;
5793    
5794     // make sure "3CRC" chunk exists with required size
5795     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5796     if (!_3crc) {
5797     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5798 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
5799     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5800     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5801 schoenebeck 2985 bRequiresSave = true;
5802     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5803     _3crc->Resize(pSamples->size() * 8);
5804     bRequiresSave = true;
5805     }
5806    
5807     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5808     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5809     {
5810     File::SampleList::iterator iter = pSamples->begin();
5811     File::SampleList::iterator end = pSamples->end();
5812     for (; iter != end; ++iter) {
5813     gig::Sample* pSample = (gig::Sample*) *iter;
5814     int index = GetWaveTableIndexOf(pSample);
5815     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5816     pData[index*2] = 1; // always 1
5817     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5818     }
5819     }
5820     } else { // no file structure changes necessary, so directly write to disk and we are done ...
5821     // make sure file is in write mode
5822     pRIFF->SetMode(RIFF::stream_mode_read_write);
5823     {
5824     File::SampleList::iterator iter = pSamples->begin();
5825     File::SampleList::iterator end = pSamples->end();
5826     for (; iter != end; ++iter) {
5827     gig::Sample* pSample = (gig::Sample*) *iter;
5828     int index = GetWaveTableIndexOf(pSample);
5829     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5830 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
5831     SetSampleChecksum(pSample, pSample->crc);
5832 schoenebeck 2985 }
5833     }
5834     }
5835    
5836     return bRequiresSave;
5837     }
5838    
5839 schoenebeck 929 Group* File::GetFirstGroup() {
5840     if (!pGroups) LoadGroups();
5841 schoenebeck 930 // there must always be at least one group
5842 schoenebeck 929 GroupsIterator = pGroups->begin();
5843 schoenebeck 930 return *GroupsIterator;
5844 schoenebeck 929 }
5845 schoenebeck 2
5846 schoenebeck 929 Group* File::GetNextGroup() {
5847     if (!pGroups) return NULL;
5848     ++GroupsIterator;
5849     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5850     }
5851 schoenebeck 2
5852 schoenebeck 929 /**
5853     * Returns the group with the given index.
5854     *
5855     * @param index - number of the sought group (0..n)
5856     * @returns sought group or NULL if there's no such group
5857     */
5858     Group* File::GetGroup(uint index) {
5859     if (!pGroups) LoadGroups();
5860     GroupsIterator = pGroups->begin();
5861     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5862     if (i == index) return *GroupsIterator;
5863     ++GroupsIterator;
5864     }
5865     return NULL;
5866     }
5867    
5868 schoenebeck 2543 /**
5869     * Returns the group with the given group name.
5870     *
5871     * Note: group names don't have to be unique in the gig format! So there
5872     * can be multiple groups with the same name. This method will simply
5873     * return the first group found with the given name.
5874     *
5875     * @param name - name of the sought group
5876     * @returns sought group or NULL if there's no group with that name
5877     */
5878     Group* File::GetGroup(String name) {
5879     if (!pGroups) LoadGroups();
5880     GroupsIterator = pGroups->begin();
5881     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5882     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5883     return NULL;
5884     }
5885    
5886 schoenebeck 929 Group* File::AddGroup() {
5887     if (!pGroups) LoadGroups();
5888 schoenebeck 930 // there must always be at least one group
5889 schoenebeck 929 __ensureMandatoryChunksExist();
5890 schoenebeck 930 Group* pGroup = new Group(this, NULL);
5891 schoenebeck 929 pGroups->push_back(pGroup);
5892     return pGroup;
5893     }
5894    
5895 schoenebeck 1081 /** @brief Delete a group and its samples.
5896     *
5897     * This will delete the given Group object and all the samples that
5898     * belong to this group from the gig file. You have to call Save() to
5899     * make this persistent to the file.
5900     *
5901     * @param pGroup - group to delete
5902     * @throws gig::Exception if given group could not be found
5903     */
5904 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
5905 schoenebeck 930 if (!pGroups) LoadGroups();
5906 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5907     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5908 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5909 schoenebeck 1081 // delete all members of this group
5910     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5911     DeleteSample(pSample);
5912     }
5913     // now delete this group object
5914     pGroups->erase(iter);
5915     delete pGroup;
5916     }
5917    
5918     /** @brief Delete a group.
5919     *
5920     * This will delete the given Group object from the gig file. All the
5921     * samples that belong to this group will not be deleted, but instead
5922     * be moved to another group. You have to call Save() to make this
5923     * persistent to the file.
5924     *
5925     * @param pGroup - group to delete
5926     * @throws gig::Exception if given group could not be found
5927     */
5928     void File::DeleteGroupOnly(Group* pGroup) {
5929     if (!pGroups) LoadGroups();
5930     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5931     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5932     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5933 schoenebeck 930 // move all members of this group to another group
5934     pGroup->MoveAll();
5935 schoenebeck 929 pGroups->erase(iter);
5936     delete pGroup;
5937     }
5938    
5939     void File::LoadGroups() {
5940     if (!pGroups) pGroups = new std::list<Group*>;
5941 schoenebeck 930 // try to read defined groups from file
5942 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5943 schoenebeck 930 if (lst3gri) {
5944     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5945     if (lst3gnl) {
5946     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5947     while (ck) {
5948     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5949 persson 1266 if (pVersion && pVersion->major == 3 &&
5950     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5951    
5952 schoenebeck 930 pGroups->push_back(new Group(this, ck));
5953     }
5954     ck = lst3gnl->GetNextSubChunk();
5955 schoenebeck 929 }
5956     }
5957     }
5958 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
5959     if (!pGroups->size()) {
5960     Group* pGroup = new Group(this, NULL);
5961     pGroup->Name = "Default Group";
5962     pGroups->push_back(pGroup);
5963     }
5964 schoenebeck 929 }
5965    
5966 schoenebeck 2584 /** @brief Get instrument script group (by index).
5967     *
5968     * Returns the real-time instrument script group with the given index.
5969     *
5970     * @param index - number of the sought group (0..n)
5971     * @returns sought script group or NULL if there's no such group
5972     */
5973     ScriptGroup* File::GetScriptGroup(uint index) {
5974     if (!pScriptGroups) LoadScriptGroups();
5975     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5976     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5977     if (i == index) return *it;
5978     return NULL;
5979     }
5980    
5981     /** @brief Get instrument script group (by name).
5982     *
5983     * Returns the first real-time instrument script group found with the given
5984     * group name. Note that group names may not necessarily be unique.
5985     *
5986     * @param name - name of the sought script group
5987     * @returns sought script group or NULL if there's no such group
5988     */
5989     ScriptGroup* File::GetScriptGroup(const String& name) {
5990     if (!pScriptGroups) LoadScriptGroups();
5991     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5992     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5993     if ((*it)->Name == name) return *it;
5994     return NULL;
5995     }
5996    
5997     /** @brief Add new instrument script group.
5998     *
5999     * Adds a new, empty real-time instrument script group to the file.
6000     *
6001     * You have to call Save() to make this persistent to the file.
6002     *
6003     * @return new empty script group
6004     */
6005     ScriptGroup* File::AddScriptGroup() {
6006     if (!pScriptGroups) LoadScriptGroups();
6007     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6008     pScriptGroups->push_back(pScriptGroup);
6009     return pScriptGroup;
6010     }
6011    
6012     /** @brief Delete an instrument script group.
6013     *
6014     * This will delete the given real-time instrument script group and all its
6015     * instrument scripts it contains. References inside instruments that are
6016     * using the deleted scripts will be removed from the respective instruments
6017     * accordingly.
6018     *
6019     * You have to call Save() to make this persistent to the file.
6020     *
6021     * @param pScriptGroup - script group to delete
6022     * @throws gig::Exception if given script group could not be found
6023     */
6024     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6025     if (!pScriptGroups) LoadScriptGroups();
6026     std::list<ScriptGroup*>::iterator iter =
6027     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6028     if (iter == pScriptGroups->end())
6029     throw gig::Exception("Could not delete script group, could not find given script group");
6030     pScriptGroups->erase(iter);
6031     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6032     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6033     if (pScriptGroup->pList)
6034     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6035     delete pScriptGroup;
6036     }
6037    
6038     void File::LoadScriptGroups() {
6039     if (pScriptGroups) return;
6040     pScriptGroups = new std::list<ScriptGroup*>;
6041     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6042     if (lstLS) {
6043     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6044     lst = lstLS->GetNextSubList())
6045     {
6046     if (lst->GetListType() == LIST_TYPE_RTIS) {
6047     pScriptGroups->push_back(new ScriptGroup(this, lst));
6048     }
6049     }
6050     }
6051     }
6052    
6053 schoenebeck 1098 /**
6054     * Apply all the gig file's current instruments, samples, groups and settings
6055     * to the respective RIFF chunks. You have to call Save() to make changes
6056     * persistent.
6057     *
6058     * Usually there is absolutely no need to call this method explicitly.
6059     * It will be called automatically when File::Save() was called.
6060     *
6061 schoenebeck 2682 * @param pProgress - callback function for progress notification
6062 schoenebeck 1098 * @throws Exception - on errors
6063     */
6064 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6065 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6066 persson 1192
6067 schoenebeck 2584 // update own gig format extension chunks
6068     // (not part of the GigaStudio 4 format)
6069 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6070     if (!lst3LS) {
6071     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6072     }
6073     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6074 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6075     // before the actual wave data
6076 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6077     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6078    
6079 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6080     // because the instruments' script slots will write the file offsets
6081     // of the respective instrument script chunk as reference.
6082     if (pScriptGroups) {
6083 schoenebeck 2912 // Update instrument script (group) chunks.
6084     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6085     it != pScriptGroups->end(); ++it)
6086     {
6087     (*it)->UpdateChunks(pProgress);
6088 schoenebeck 2584 }
6089     }
6090    
6091 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6092     // custom "3LS " chunk again
6093     if (!lst3LS->CountSubChunks()) {
6094     pRIFF->DeleteSubChunk(lst3LS);
6095     lst3LS = NULL;
6096     }
6097    
6098 schoenebeck 1098 // first update base class's chunks
6099 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6100 schoenebeck 929
6101 persson 1199 if (newFile) {
6102 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6103     // is placed first in file
6104 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6105 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6106     if (first != info) {
6107     pRIFF->MoveSubChunk(info, first);
6108     }
6109     }
6110    
6111 schoenebeck 1098 // update group's chunks
6112     if (pGroups) {
6113 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6114     // (before updating the Group chunks)
6115     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6116     if (!_3gri) {
6117     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6118     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6119 schoenebeck 1098 }
6120 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6121     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6122 persson 1266
6123     // v3: make sure the file has 128 3gnm chunks
6124 schoenebeck 2467 // (before updating the Group chunks)
6125 persson 1266 if (pVersion && pVersion->major == 3) {
6126     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6127     for (int i = 0 ; i < 128 ; i++) {
6128     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6129     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6130     }
6131     }
6132 schoenebeck 2467
6133     std::list<Group*>::iterator iter = pGroups->begin();
6134     std::list<Group*>::iterator end = pGroups->end();
6135     for (; iter != end; ++iter) {
6136 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6137 schoenebeck 2467 }
6138 schoenebeck 1098 }
6139 persson 1199
6140     // update einf chunk
6141    
6142     // The einf chunk contains statistics about the gig file, such
6143     // as the number of regions and samples used by each
6144     // instrument. It is divided in equally sized parts, where the
6145     // first part contains information about the whole gig file,
6146     // and the rest of the parts map to each instrument in the
6147     // file.
6148     //
6149     // At the end of each part there is a bit map of each sample
6150     // in the file, where a set bit means that the sample is used
6151     // by the file/instrument.
6152     //
6153     // Note that there are several fields with unknown use. These
6154     // are set to zero.
6155    
6156     int sublen = pSamples->size() / 8 + 49;
6157     int einfSize = (Instruments + 1) * sublen;
6158    
6159     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6160     if (einf) {
6161     if (einf->GetSize() != einfSize) {
6162     einf->Resize(einfSize);
6163     memset(einf->LoadChunkData(), 0, einfSize);
6164     }
6165     } else if (newFile) {
6166     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6167     }
6168     if (einf) {
6169     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6170    
6171     std::map<gig::Sample*,int> sampleMap;
6172     int sampleIdx = 0;
6173     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6174     sampleMap[pSample] = sampleIdx++;
6175     }
6176    
6177     int totnbusedsamples = 0;
6178     int totnbusedchannels = 0;
6179     int totnbregions = 0;
6180     int totnbdimregions = 0;
6181 persson 1264 int totnbloops = 0;
6182 persson 1199 int instrumentIdx = 0;
6183    
6184     memset(&pData[48], 0, sublen - 48);
6185    
6186     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6187     instrument = GetNextInstrument()) {
6188     int nbusedsamples = 0;
6189     int nbusedchannels = 0;
6190     int nbdimregions = 0;
6191 persson 1264 int nbloops = 0;
6192 persson 1199
6193     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6194    
6195     for (Region* region = instrument->GetFirstRegion() ; region ;
6196     region = instrument->GetNextRegion()) {
6197     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6198     gig::DimensionRegion *d = region->pDimensionRegions[i];
6199     if (d->pSample) {
6200     int sampleIdx = sampleMap[d->pSample];
6201     int byte = 48 + sampleIdx / 8;
6202     int bit = 1 << (sampleIdx & 7);
6203     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6204     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6205     nbusedsamples++;
6206     nbusedchannels += d->pSample->Channels;
6207    
6208     if ((pData[byte] & bit) == 0) {
6209     pData[byte] |= bit;
6210     totnbusedsamples++;
6211     totnbusedchannels += d->pSample->Channels;
6212     }
6213     }
6214     }
6215 persson 1264 if (d->SampleLoops) nbloops++;
6216 persson 1199 }
6217     nbdimregions += region->DimensionRegions;
6218     }
6219     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6220     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6221     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6222     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6223     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6224     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6225     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6226 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6227     // next 8 bytes unknown
6228 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6229     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
6230     // next 4 bytes unknown
6231    
6232     totnbregions += instrument->Regions;
6233     totnbdimregions += nbdimregions;
6234 persson 1264 totnbloops += nbloops;
6235 persson 1199 instrumentIdx++;
6236     }
6237     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6238     // store32(&pData[0], sublen);
6239     store32(&pData[4], totnbusedchannels);
6240     store32(&pData[8], totnbusedsamples);
6241     store32(&pData[12], Instruments);
6242     store32(&pData[16], totnbregions);
6243     store32(&pData[20], totnbdimregions);
6244 persson 1264 store32(&pData[24], totnbloops);
6245     // next 8 bytes unknown
6246     // next 4 bytes unknown, not always 0
6247 persson 1199 store32(&pData[40], pSamples->size());
6248     // next 4 bytes unknown
6249     }
6250    
6251     // update 3crc chunk
6252    
6253     // The 3crc chunk contains CRC-32 checksums for the
6254 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6255     // chunk here (in RAM) with the old crc values which we read from the
6256     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6257     // member variable). This step is required, because samples might have
6258     // been deleted by the user since the file was opened, which in turn
6259     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6260     // If a sample was conciously modified by the user (that is if
6261     // Sample::Write() was called later on) then Sample::Write() will just
6262     // update the respective individual checksum(s) directly on disk and
6263     // leaves all other sample checksums untouched.
6264 persson 1199
6265 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6266 persson 1199 if (_3crc) {
6267     _3crc->Resize(pSamples->size() * 8);
6268 schoenebeck 2989 } else /*if (newFile)*/ {
6269 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6270 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6271     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6272 persson 1199 }
6273 schoenebeck 2989 { // must be performed in RAM here ...
6274     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6275     if (pData) {
6276     File::SampleList::iterator iter = pSamples->begin();
6277     File::SampleList::iterator end = pSamples->end();
6278     for (int index = 0; iter != end; ++iter, ++index) {
6279     gig::Sample* pSample = (gig::Sample*) *iter;
6280     pData[index*2] = 1; // always 1
6281     pData[index*2+1] = pSample->crc;
6282     }
6283     }
6284     }
6285 schoenebeck 1098 }
6286 schoenebeck 2609
6287     void File::UpdateFileOffsets() {
6288     DLS::File::UpdateFileOffsets();
6289 schoenebeck 929
6290 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6291     instrument = GetNextInstrument())
6292     {
6293     instrument->UpdateScriptFileOffsets();
6294     }
6295     }
6296    
6297 schoenebeck 1524 /**
6298     * Enable / disable automatic loading. By default this properyt is
6299     * enabled and all informations are loaded automatically. However
6300     * loading all Regions, DimensionRegions and especially samples might
6301     * take a long time for large .gig files, and sometimes one might only
6302     * be interested in retrieving very superficial informations like the
6303     * amount of instruments and their names. In this case one might disable
6304     * automatic loading to avoid very slow response times.
6305     *
6306     * @e CAUTION: by disabling this property many pointers (i.e. sample
6307     * references) and informations will have invalid or even undefined
6308     * data! This feature is currently only intended for retrieving very
6309     * superficial informations in a very fast way. Don't use it to retrieve
6310     * details like synthesis informations or even to modify .gig files!
6311     */
6312     void File::SetAutoLoad(bool b) {
6313     bAutoLoad = b;
6314     }
6315 schoenebeck 1098
6316 schoenebeck 1524 /**
6317     * Returns whether automatic loading is enabled.
6318     * @see SetAutoLoad()
6319     */
6320     bool File::GetAutoLoad() {
6321     return bAutoLoad;
6322     }
6323 schoenebeck 1098
6324 schoenebeck 1524
6325    
6326 schoenebeck 2 // *************** Exception ***************
6327     // *
6328    
6329     Exception::Exception(String Message) : DLS::Exception(Message) {
6330     }
6331    
6332     void Exception::PrintMessage() {
6333     std::cout << "gig::Exception: " << Message << std::endl;
6334     }
6335    
6336 schoenebeck 518
6337     // *************** functions ***************
6338     // *
6339    
6340     /**
6341     * Returns the name of this C++ library. This is usually "libgig" of
6342     * course. This call is equivalent to RIFF::libraryName() and
6343     * DLS::libraryName().
6344     */
6345     String libraryName() {
6346     return PACKAGE;
6347     }
6348    
6349     /**
6350     * Returns version of this C++ library. This call is equivalent to
6351     * RIFF::libraryVersion() and DLS::libraryVersion().
6352     */
6353     String libraryVersion() {
6354     return VERSION;
6355     }
6356    
6357 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC