/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3138 - (hide annotations) (download)
Wed May 3 14:41:58 2017 UTC (6 years, 10 months ago) by schoenebeck
File size: 281449 byte(s)
* Added new "Serialization" framework (and equally named namespace)
  which allows to serialize and deserialize native C++ objects
  in a portable, easy and flexible way.
* gig.cpp/gig.h: Added support for serializing & deserializing
  DimensionRegion objects (and crossfade_t and leverage_ctrl_t
  objects).
* Bumped version (4.0.0.svn15).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31 schoenebeck 2555 #include <assert.h>
32 schoenebeck 384
33 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
34     /// format with libgig's own custom data / custom features).
35     #define GIG_FILE_EXT_VERSION 2
36    
37 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
38     /// compressed sample wave streams - this value should always be bigger than
39     /// the biggest sample piece expected to be read by the sampler engine,
40     /// otherwise the buffer size will be raised at runtime and thus the buffer
41     /// reallocated which is time consuming and unefficient.
42     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43    
44     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57    
58 schoenebeck 3138 #define SRLZ(member) \
59     archive->serializeMember(*this, member, #member);
60    
61 schoenebeck 515 namespace gig {
62 schoenebeck 2
63 schoenebeck 809 // *************** Internal functions for sample decompression ***************
64 persson 365 // *
65    
66 schoenebeck 515 namespace {
67    
68 persson 365 inline int get12lo(const unsigned char* pSrc)
69     {
70     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
71     return x & 0x800 ? x - 0x1000 : x;
72     }
73    
74     inline int get12hi(const unsigned char* pSrc)
75     {
76     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
77     return x & 0x800 ? x - 0x1000 : x;
78     }
79    
80     inline int16_t get16(const unsigned char* pSrc)
81     {
82     return int16_t(pSrc[0] | pSrc[1] << 8);
83     }
84    
85     inline int get24(const unsigned char* pSrc)
86     {
87     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
88     return x & 0x800000 ? x - 0x1000000 : x;
89     }
90    
91 persson 902 inline void store24(unsigned char* pDst, int x)
92     {
93     pDst[0] = x;
94     pDst[1] = x >> 8;
95     pDst[2] = x >> 16;
96     }
97    
98 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
99 persson 372 int srcStep, int dstStep,
100     const unsigned char* pSrc, int16_t* pDst,
101 schoenebeck 2912 file_offset_t currentframeoffset,
102     file_offset_t copysamples)
103 persson 365 {
104     switch (compressionmode) {
105     case 0: // 16 bit uncompressed
106     pSrc += currentframeoffset * srcStep;
107     while (copysamples) {
108     *pDst = get16(pSrc);
109 persson 372 pDst += dstStep;
110 persson 365 pSrc += srcStep;
111     copysamples--;
112     }
113     break;
114    
115     case 1: // 16 bit compressed to 8 bit
116     int y = get16(params);
117     int dy = get16(params + 2);
118     while (currentframeoffset) {
119     dy -= int8_t(*pSrc);
120     y -= dy;
121     pSrc += srcStep;
122     currentframeoffset--;
123     }
124     while (copysamples) {
125     dy -= int8_t(*pSrc);
126     y -= dy;
127     *pDst = y;
128 persson 372 pDst += dstStep;
129 persson 365 pSrc += srcStep;
130     copysamples--;
131     }
132     break;
133     }
134     }
135    
136     void Decompress24(int compressionmode, const unsigned char* params,
137 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
138 schoenebeck 2912 file_offset_t currentframeoffset,
139     file_offset_t copysamples, int truncatedBits)
140 persson 365 {
141 persson 695 int y, dy, ddy, dddy;
142 persson 437
143 persson 695 #define GET_PARAMS(params) \
144     y = get24(params); \
145     dy = y - get24((params) + 3); \
146     ddy = get24((params) + 6); \
147     dddy = get24((params) + 9)
148 persson 365
149     #define SKIP_ONE(x) \
150 persson 695 dddy -= (x); \
151     ddy -= dddy; \
152     dy = -dy - ddy; \
153     y += dy
154 persson 365
155     #define COPY_ONE(x) \
156     SKIP_ONE(x); \
157 persson 902 store24(pDst, y << truncatedBits); \
158 persson 372 pDst += dstStep
159 persson 365
160     switch (compressionmode) {
161     case 2: // 24 bit uncompressed
162     pSrc += currentframeoffset * 3;
163     while (copysamples) {
164 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
165 persson 372 pDst += dstStep;
166 persson 365 pSrc += 3;
167     copysamples--;
168     }
169     break;
170    
171     case 3: // 24 bit compressed to 16 bit
172     GET_PARAMS(params);
173     while (currentframeoffset) {
174     SKIP_ONE(get16(pSrc));
175     pSrc += 2;
176     currentframeoffset--;
177     }
178     while (copysamples) {
179     COPY_ONE(get16(pSrc));
180     pSrc += 2;
181     copysamples--;
182     }
183     break;
184    
185     case 4: // 24 bit compressed to 12 bit
186     GET_PARAMS(params);
187     while (currentframeoffset > 1) {
188     SKIP_ONE(get12lo(pSrc));
189     SKIP_ONE(get12hi(pSrc));
190     pSrc += 3;
191     currentframeoffset -= 2;
192     }
193     if (currentframeoffset) {
194     SKIP_ONE(get12lo(pSrc));
195     currentframeoffset--;
196     if (copysamples) {
197     COPY_ONE(get12hi(pSrc));
198     pSrc += 3;
199     copysamples--;
200     }
201     }
202     while (copysamples > 1) {
203     COPY_ONE(get12lo(pSrc));
204     COPY_ONE(get12hi(pSrc));
205     pSrc += 3;
206     copysamples -= 2;
207     }
208     if (copysamples) {
209     COPY_ONE(get12lo(pSrc));
210     }
211     break;
212    
213     case 5: // 24 bit compressed to 8 bit
214     GET_PARAMS(params);
215     while (currentframeoffset) {
216     SKIP_ONE(int8_t(*pSrc++));
217     currentframeoffset--;
218     }
219     while (copysamples) {
220     COPY_ONE(int8_t(*pSrc++));
221     copysamples--;
222     }
223     break;
224     }
225     }
226    
227     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
228     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
229     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
230     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
231     }
232    
233    
234 schoenebeck 1113
235 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
236     // *
237    
238     static uint32_t* __initCRCTable() {
239     static uint32_t res[256];
240    
241     for (int i = 0 ; i < 256 ; i++) {
242     uint32_t c = i;
243     for (int j = 0 ; j < 8 ; j++) {
244     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
245     }
246     res[i] = c;
247     }
248     return res;
249     }
250    
251     static const uint32_t* __CRCTable = __initCRCTable();
252    
253     /**
254     * Initialize a CRC variable.
255     *
256     * @param crc - variable to be initialized
257     */
258     inline static void __resetCRC(uint32_t& crc) {
259     crc = 0xffffffff;
260     }
261    
262     /**
263     * Used to calculate checksums of the sample data in a gig file. The
264     * checksums are stored in the 3crc chunk of the gig file and
265     * automatically updated when a sample is written with Sample::Write().
266     *
267     * One should call __resetCRC() to initialize the CRC variable to be
268     * used before calling this function the first time.
269     *
270     * After initializing the CRC variable one can call this function
271     * arbitrary times, i.e. to split the overall CRC calculation into
272     * steps.
273     *
274     * Once the whole data was processed by __calculateCRC(), one should
275 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
276 schoenebeck 1381 *
277     * @param buf - pointer to data the CRC shall be calculated of
278     * @param bufSize - size of the data to be processed
279     * @param crc - variable the CRC sum shall be stored to
280     */
281 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
282     for (size_t i = 0 ; i < bufSize ; i++) {
283 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
284     }
285     }
286    
287     /**
288     * Returns the final CRC result.
289     *
290     * @param crc - variable previously passed to __calculateCRC()
291     */
292 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
293     crc ^= 0xffffffff;
294 schoenebeck 1381 }
295    
296    
297    
298 schoenebeck 1113 // *************** Other Internal functions ***************
299     // *
300    
301     static split_type_t __resolveSplitType(dimension_t dimension) {
302     return (
303     dimension == dimension_layer ||
304     dimension == dimension_samplechannel ||
305     dimension == dimension_releasetrigger ||
306     dimension == dimension_keyboard ||
307     dimension == dimension_roundrobin ||
308     dimension == dimension_random ||
309     dimension == dimension_smartmidi ||
310     dimension == dimension_roundrobinkeyboard
311     ) ? split_type_bit : split_type_normal;
312     }
313    
314     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
315     return (dimension_definition.split_type == split_type_normal)
316     ? int(128.0 / dimension_definition.zones) : 0;
317     }
318    
319    
320    
321 schoenebeck 3138 // *************** leverage_ctrl_t ***************
322     // *
323    
324     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
325     SRLZ(type);
326     SRLZ(controller_number);
327     }
328    
329    
330    
331     // *************** crossfade_t ***************
332     // *
333    
334     void crossfade_t::serialize(Serialization::Archive* archive) {
335     SRLZ(in_start);
336     SRLZ(in_end);
337     SRLZ(out_start);
338     SRLZ(out_end);
339     }
340    
341    
342    
343 schoenebeck 2 // *************** Sample ***************
344     // *
345    
346 schoenebeck 2922 size_t Sample::Instances = 0;
347 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
348 schoenebeck 2
349 schoenebeck 809 /** @brief Constructor.
350     *
351     * Load an existing sample or create a new one. A 'wave' list chunk must
352     * be given to this constructor. In case the given 'wave' list chunk
353     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
354     * format and sample data will be loaded from there, otherwise default
355     * values will be used and those chunks will be created when
356     * File::Save() will be called later on.
357     *
358     * @param pFile - pointer to gig::File where this sample is
359     * located (or will be located)
360     * @param waveList - pointer to 'wave' list chunk which is (or
361     * will be) associated with this sample
362     * @param WavePoolOffset - offset of this sample data from wave pool
363     * ('wvpl') list chunk
364     * @param fileNo - number of an extension file where this sample
365     * is located, 0 otherwise
366 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
367 schoenebeck 809 */
368 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
369     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
370     {
371 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
372 persson 1180 { CHUNK_ID_INAM, 64 },
373     { 0, 0 }
374     };
375 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
376 schoenebeck 2 Instances++;
377 persson 666 FileNo = fileNo;
378 schoenebeck 2
379 schoenebeck 1381 __resetCRC(crc);
380 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
381     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
382     // checksum of the time when the sample was consciously modified by the
383     // user for the last time (by calling Sample::Write() that is).
384     if (index >= 0) { // not a new file ...
385     try {
386     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
387     this->crc = crc;
388     } catch (...) {}
389     }
390 schoenebeck 1381
391 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
392     if (pCk3gix) {
393 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
394 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
395 schoenebeck 809 } else { // '3gix' chunk missing
396 schoenebeck 930 // by default assigned to that mandatory "Default Group"
397     pGroup = pFile->GetGroup(0);
398 schoenebeck 809 }
399 schoenebeck 2
400 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
401     if (pCkSmpl) {
402     Manufacturer = pCkSmpl->ReadInt32();
403     Product = pCkSmpl->ReadInt32();
404     SamplePeriod = pCkSmpl->ReadInt32();
405     MIDIUnityNote = pCkSmpl->ReadInt32();
406     FineTune = pCkSmpl->ReadInt32();
407     pCkSmpl->Read(&SMPTEFormat, 1, 4);
408     SMPTEOffset = pCkSmpl->ReadInt32();
409     Loops = pCkSmpl->ReadInt32();
410     pCkSmpl->ReadInt32(); // manufByt
411     LoopID = pCkSmpl->ReadInt32();
412     pCkSmpl->Read(&LoopType, 1, 4);
413     LoopStart = pCkSmpl->ReadInt32();
414     LoopEnd = pCkSmpl->ReadInt32();
415     LoopFraction = pCkSmpl->ReadInt32();
416     LoopPlayCount = pCkSmpl->ReadInt32();
417     } else { // 'smpl' chunk missing
418     // use default values
419     Manufacturer = 0;
420     Product = 0;
421 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
422 persson 1218 MIDIUnityNote = 60;
423 schoenebeck 809 FineTune = 0;
424 persson 1182 SMPTEFormat = smpte_format_no_offset;
425 schoenebeck 809 SMPTEOffset = 0;
426     Loops = 0;
427     LoopID = 0;
428 persson 1182 LoopType = loop_type_normal;
429 schoenebeck 809 LoopStart = 0;
430     LoopEnd = 0;
431     LoopFraction = 0;
432     LoopPlayCount = 0;
433     }
434 schoenebeck 2
435     FrameTable = NULL;
436     SamplePos = 0;
437     RAMCache.Size = 0;
438     RAMCache.pStart = NULL;
439     RAMCache.NullExtensionSize = 0;
440    
441 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
442    
443 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
444     Compressed = ewav;
445     Dithered = false;
446     TruncatedBits = 0;
447 schoenebeck 2 if (Compressed) {
448 persson 437 uint32_t version = ewav->ReadInt32();
449     if (version == 3 && BitDepth == 24) {
450     Dithered = ewav->ReadInt32();
451     ewav->SetPos(Channels == 2 ? 84 : 64);
452     TruncatedBits = ewav->ReadInt32();
453     }
454 schoenebeck 2 ScanCompressedSample();
455     }
456 schoenebeck 317
457     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
458 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
459     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
460     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
461 schoenebeck 317 }
462 persson 437 FrameOffset = 0; // just for streaming compressed samples
463 schoenebeck 21
464 persson 864 LoopSize = LoopEnd - LoopStart + 1;
465 schoenebeck 2 }
466    
467 schoenebeck 809 /**
468 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
469     * the actual waveform data) and assign it to this object.
470     *
471     * Discussion: copying .gig samples is a bit tricky. It requires three
472     * steps:
473     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
474     * its new sample waveform data size.
475     * 2. Saving the file (done by File::Save()) so that it gains correct size
476     * and layout for writing the actual wave form data directly to disc
477     * in next step.
478     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
479     *
480     * @param orig - original Sample object to be copied from
481     */
482     void Sample::CopyAssignMeta(const Sample* orig) {
483     // handle base classes
484     DLS::Sample::CopyAssignCore(orig);
485    
486     // handle actual own attributes of this class
487     Manufacturer = orig->Manufacturer;
488     Product = orig->Product;
489     SamplePeriod = orig->SamplePeriod;
490     MIDIUnityNote = orig->MIDIUnityNote;
491     FineTune = orig->FineTune;
492     SMPTEFormat = orig->SMPTEFormat;
493     SMPTEOffset = orig->SMPTEOffset;
494     Loops = orig->Loops;
495     LoopID = orig->LoopID;
496     LoopType = orig->LoopType;
497     LoopStart = orig->LoopStart;
498     LoopEnd = orig->LoopEnd;
499     LoopSize = orig->LoopSize;
500     LoopFraction = orig->LoopFraction;
501     LoopPlayCount = orig->LoopPlayCount;
502    
503     // schedule resizing this sample to the given sample's size
504     Resize(orig->GetSize());
505     }
506    
507     /**
508     * Should be called after CopyAssignMeta() and File::Save() sequence.
509     * Read more about it in the discussion of CopyAssignMeta(). This method
510     * copies the actual waveform data by disk streaming.
511     *
512     * @e CAUTION: this method is currently not thread safe! During this
513     * operation the sample must not be used for other purposes by other
514     * threads!
515     *
516     * @param orig - original Sample object to be copied from
517     */
518     void Sample::CopyAssignWave(const Sample* orig) {
519     const int iReadAtOnce = 32*1024;
520     char* buf = new char[iReadAtOnce * orig->FrameSize];
521     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
522 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
523 schoenebeck 2482 pOrig->SetPos(0);
524     SetPos(0);
525 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
526 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
527     {
528     Write(buf, n);
529     }
530     pOrig->SetPos(restorePos);
531     delete [] buf;
532     }
533    
534     /**
535 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
536     * to call File::Save() to make changes persistent.
537     *
538     * Usually there is absolutely no need to call this method explicitly.
539     * It will be called automatically when File::Save() was called.
540     *
541 schoenebeck 2682 * @param pProgress - callback function for progress notification
542 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
543 schoenebeck 809 * was provided yet
544     * @throws gig::Exception if there is any invalid sample setting
545     */
546 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
547 schoenebeck 809 // first update base class's chunks
548 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
549 schoenebeck 809
550     // make sure 'smpl' chunk exists
551     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
552 persson 1182 if (!pCkSmpl) {
553     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
554     memset(pCkSmpl->LoadChunkData(), 0, 60);
555     }
556 schoenebeck 809 // update 'smpl' chunk
557     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
558 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
559 persson 1179 store32(&pData[0], Manufacturer);
560     store32(&pData[4], Product);
561     store32(&pData[8], SamplePeriod);
562     store32(&pData[12], MIDIUnityNote);
563     store32(&pData[16], FineTune);
564     store32(&pData[20], SMPTEFormat);
565     store32(&pData[24], SMPTEOffset);
566     store32(&pData[28], Loops);
567 schoenebeck 809
568     // we skip 'manufByt' for now (4 bytes)
569    
570 persson 1179 store32(&pData[36], LoopID);
571     store32(&pData[40], LoopType);
572     store32(&pData[44], LoopStart);
573     store32(&pData[48], LoopEnd);
574     store32(&pData[52], LoopFraction);
575     store32(&pData[56], LoopPlayCount);
576 schoenebeck 809
577     // make sure '3gix' chunk exists
578     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
579     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
580 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
581 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
582 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
583     if (pFile->pGroups) {
584     std::list<Group*>::iterator iter = pFile->pGroups->begin();
585     std::list<Group*>::iterator end = pFile->pGroups->end();
586 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
587 schoenebeck 929 if (*iter == pGroup) {
588     iSampleGroup = i;
589     break; // found
590     }
591     }
592     }
593 schoenebeck 809 // update '3gix' chunk
594     pData = (uint8_t*) pCk3gix->LoadChunkData();
595 persson 1179 store16(&pData[0], iSampleGroup);
596 schoenebeck 2484
597     // if the library user toggled the "Compressed" attribute from true to
598     // false, then the EWAV chunk associated with compressed samples needs
599     // to be deleted
600     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
601     if (ewav && !Compressed) {
602     pWaveList->DeleteSubChunk(ewav);
603     }
604 schoenebeck 809 }
605    
606 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
607     void Sample::ScanCompressedSample() {
608     //TODO: we have to add some more scans here (e.g. determine compression rate)
609     this->SamplesTotal = 0;
610 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
611 schoenebeck 2
612 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
613 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
614 persson 365
615 schoenebeck 2 // Scanning
616     pCkData->SetPos(0);
617 persson 365 if (Channels == 2) { // Stereo
618     for (int i = 0 ; ; i++) {
619     // for 24 bit samples every 8:th frame offset is
620     // stored, to save some memory
621     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
622    
623     const int mode_l = pCkData->ReadUint8();
624     const int mode_r = pCkData->ReadUint8();
625     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
626 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
627 persson 365
628     if (pCkData->RemainingBytes() <= frameSize) {
629     SamplesInLastFrame =
630     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
631     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
632     SamplesTotal += SamplesInLastFrame;
633 schoenebeck 2 break;
634 persson 365 }
635     SamplesTotal += SamplesPerFrame;
636     pCkData->SetPos(frameSize, RIFF::stream_curpos);
637     }
638     }
639     else { // Mono
640     for (int i = 0 ; ; i++) {
641     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
642    
643     const int mode = pCkData->ReadUint8();
644     if (mode > 5) throw gig::Exception("Unknown compression mode");
645 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
646 persson 365
647     if (pCkData->RemainingBytes() <= frameSize) {
648     SamplesInLastFrame =
649     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
650     SamplesTotal += SamplesInLastFrame;
651 schoenebeck 2 break;
652 persson 365 }
653     SamplesTotal += SamplesPerFrame;
654     pCkData->SetPos(frameSize, RIFF::stream_curpos);
655 schoenebeck 2 }
656     }
657     pCkData->SetPos(0);
658    
659     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
660     if (FrameTable) delete[] FrameTable;
661 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
662     std::list<file_offset_t>::iterator end = frameOffsets.end();
663     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
664 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
665     FrameTable[i] = *iter;
666     }
667     }
668    
669     /**
670     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
671     * ReleaseSampleData() to free the memory if you don't need the cached
672     * sample data anymore.
673     *
674     * @returns buffer_t structure with start address and size of the buffer
675     * in bytes
676     * @see ReleaseSampleData(), Read(), SetPos()
677     */
678     buffer_t Sample::LoadSampleData() {
679     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
680     }
681    
682     /**
683     * Reads (uncompresses if needed) and caches the first \a SampleCount
684     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
685     * memory space if you don't need the cached samples anymore. There is no
686     * guarantee that exactly \a SampleCount samples will be cached; this is
687     * not an error. The size will be eventually truncated e.g. to the
688     * beginning of a frame of a compressed sample. This is done for
689     * efficiency reasons while streaming the wave by your sampler engine
690     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
691     * that will be returned to determine the actual cached samples, but note
692     * that the size is given in bytes! You get the number of actually cached
693     * samples by dividing it by the frame size of the sample:
694 schoenebeck 384 * @code
695 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
696     * long cachedsamples = buf.Size / pSample->FrameSize;
697 schoenebeck 384 * @endcode
698 schoenebeck 2 *
699     * @param SampleCount - number of sample points to load into RAM
700     * @returns buffer_t structure with start address and size of
701     * the cached sample data in bytes
702     * @see ReleaseSampleData(), Read(), SetPos()
703     */
704 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
705 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
706     }
707    
708     /**
709     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
710     * ReleaseSampleData() to free the memory if you don't need the cached
711     * sample data anymore.
712     * The method will add \a NullSamplesCount silence samples past the
713     * official buffer end (this won't affect the 'Size' member of the
714     * buffer_t structure, that means 'Size' always reflects the size of the
715     * actual sample data, the buffer might be bigger though). Silence
716     * samples past the official buffer are needed for differential
717     * algorithms that always have to take subsequent samples into account
718     * (resampling/interpolation would be an important example) and avoids
719     * memory access faults in such cases.
720     *
721     * @param NullSamplesCount - number of silence samples the buffer should
722     * be extended past it's data end
723     * @returns buffer_t structure with start address and
724     * size of the buffer in bytes
725     * @see ReleaseSampleData(), Read(), SetPos()
726     */
727     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
728     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
729     }
730    
731     /**
732     * Reads (uncompresses if needed) and caches the first \a SampleCount
733     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
734     * memory space if you don't need the cached samples anymore. There is no
735     * guarantee that exactly \a SampleCount samples will be cached; this is
736     * not an error. The size will be eventually truncated e.g. to the
737     * beginning of a frame of a compressed sample. This is done for
738     * efficiency reasons while streaming the wave by your sampler engine
739     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
740     * that will be returned to determine the actual cached samples, but note
741     * that the size is given in bytes! You get the number of actually cached
742     * samples by dividing it by the frame size of the sample:
743 schoenebeck 384 * @code
744 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
745     * long cachedsamples = buf.Size / pSample->FrameSize;
746 schoenebeck 384 * @endcode
747 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
748     * official buffer end (this won't affect the 'Size' member of the
749     * buffer_t structure, that means 'Size' always reflects the size of the
750     * actual sample data, the buffer might be bigger though). Silence
751     * samples past the official buffer are needed for differential
752     * algorithms that always have to take subsequent samples into account
753     * (resampling/interpolation would be an important example) and avoids
754     * memory access faults in such cases.
755     *
756     * @param SampleCount - number of sample points to load into RAM
757     * @param NullSamplesCount - number of silence samples the buffer should
758     * be extended past it's data end
759     * @returns buffer_t structure with start address and
760     * size of the cached sample data in bytes
761     * @see ReleaseSampleData(), Read(), SetPos()
762     */
763 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
764 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
765     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
766 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
767 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
768 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
769     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
770     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
771     // fill the remaining buffer space with silence samples
772     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
773     return GetCache();
774     }
775    
776     /**
777     * Returns current cached sample points. A buffer_t structure will be
778     * returned which contains address pointer to the begin of the cache and
779     * the size of the cached sample data in bytes. Use
780     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
781     * RAM.
782     *
783     * @returns buffer_t structure with current cached sample points
784     * @see LoadSampleData();
785     */
786     buffer_t Sample::GetCache() {
787     // return a copy of the buffer_t structure
788     buffer_t result;
789     result.Size = this->RAMCache.Size;
790     result.pStart = this->RAMCache.pStart;
791     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
792     return result;
793     }
794    
795     /**
796     * Frees the cached sample from RAM if loaded with
797     * <i>LoadSampleData()</i> previously.
798     *
799     * @see LoadSampleData();
800     */
801     void Sample::ReleaseSampleData() {
802     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
803     RAMCache.pStart = NULL;
804     RAMCache.Size = 0;
805 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
806 schoenebeck 2 }
807    
808 schoenebeck 809 /** @brief Resize sample.
809     *
810     * Resizes the sample's wave form data, that is the actual size of
811     * sample wave data possible to be written for this sample. This call
812     * will return immediately and just schedule the resize operation. You
813     * should call File::Save() to actually perform the resize operation(s)
814     * "physically" to the file. As this can take a while on large files, it
815     * is recommended to call Resize() first on all samples which have to be
816     * resized and finally to call File::Save() to perform all those resize
817     * operations in one rush.
818     *
819     * The actual size (in bytes) is dependant to the current FrameSize
820     * value. You may want to set FrameSize before calling Resize().
821     *
822     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
823     * enlarged samples before calling File::Save() as this might exceed the
824     * current sample's boundary!
825     *
826 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
827     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
828 schoenebeck 809 * other formats will fail!
829     *
830 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
831     * greater than zero)
832 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
833 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
834 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
835     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
836     * DLS::Sample::FormatTag, File::Save()
837     */
838 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
839 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
840 schoenebeck 2922 DLS::Sample::Resize(NewSize);
841 schoenebeck 809 }
842    
843 schoenebeck 2 /**
844     * Sets the position within the sample (in sample points, not in
845     * bytes). Use this method and <i>Read()</i> if you don't want to load
846     * the sample into RAM, thus for disk streaming.
847     *
848     * Although the original Gigasampler engine doesn't allow positioning
849     * within compressed samples, I decided to implement it. Even though
850     * the Gigasampler format doesn't allow to define loops for compressed
851     * samples at the moment, positioning within compressed samples might be
852     * interesting for some sampler engines though. The only drawback about
853     * my decision is that it takes longer to load compressed gig Files on
854     * startup, because it's neccessary to scan the samples for some
855     * mandatory informations. But I think as it doesn't affect the runtime
856     * efficiency, nobody will have a problem with that.
857     *
858     * @param SampleCount number of sample points to jump
859     * @param Whence optional: to which relation \a SampleCount refers
860     * to, if omited <i>RIFF::stream_start</i> is assumed
861     * @returns the new sample position
862     * @see Read()
863     */
864 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
865 schoenebeck 2 if (Compressed) {
866     switch (Whence) {
867     case RIFF::stream_curpos:
868     this->SamplePos += SampleCount;
869     break;
870     case RIFF::stream_end:
871     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
872     break;
873     case RIFF::stream_backward:
874     this->SamplePos -= SampleCount;
875     break;
876     case RIFF::stream_start: default:
877     this->SamplePos = SampleCount;
878     break;
879     }
880     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
881    
882 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
883 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
884     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
885     return this->SamplePos;
886     }
887     else { // not compressed
888 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
889     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
890 schoenebeck 2 return (result == orderedBytes) ? SampleCount
891     : result / this->FrameSize;
892     }
893     }
894    
895     /**
896     * Returns the current position in the sample (in sample points).
897     */
898 schoenebeck 2912 file_offset_t Sample::GetPos() const {
899 schoenebeck 2 if (Compressed) return SamplePos;
900     else return pCkData->GetPos() / FrameSize;
901     }
902    
903     /**
904 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
905     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
906     * the position within the sample respectively, this method honors the
907     * looping informations of the sample (if any). The sample wave stream
908     * will be decompressed on the fly if using a compressed sample. Use this
909     * method if you don't want to load the sample into RAM, thus for disk
910     * streaming. All this methods needs to know to proceed with streaming
911     * for the next time you call this method is stored in \a pPlaybackState.
912     * You have to allocate and initialize the playback_state_t structure by
913     * yourself before you use it to stream a sample:
914 schoenebeck 384 * @code
915     * gig::playback_state_t playbackstate;
916     * playbackstate.position = 0;
917     * playbackstate.reverse = false;
918     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
919     * @endcode
920 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
921     * defined or if the current read position is located within a loop area.
922     * The method already handles such cases by itself.
923     *
924 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
925     * have to use an external decompression buffer for <b>EACH</b>
926     * streaming thread to avoid race conditions and crashes!
927     *
928 schoenebeck 24 * @param pBuffer destination buffer
929     * @param SampleCount number of sample points to read
930     * @param pPlaybackState will be used to store and reload the playback
931     * state for the next ReadAndLoop() call
932 persson 864 * @param pDimRgn dimension region with looping information
933 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
934 schoenebeck 24 * @returns number of successfully read sample points
935 schoenebeck 384 * @see CreateDecompressionBuffer()
936 schoenebeck 24 */
937 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
938 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
939 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
940 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
941    
942     SetPos(pPlaybackState->position); // recover position from the last time
943    
944 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
945 schoenebeck 24
946 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
947     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
948 schoenebeck 24
949 persson 864 if (GetPos() <= loopEnd) {
950     switch (loop.LoopType) {
951 schoenebeck 24
952 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
953     do {
954     // if not endless loop check if max. number of loop cycles have been passed
955     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
956 schoenebeck 24
957 persson 864 if (!pPlaybackState->reverse) { // forward playback
958     do {
959     samplestoloopend = loopEnd - GetPos();
960     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
961     samplestoread -= readsamples;
962     totalreadsamples += readsamples;
963     if (readsamples == samplestoloopend) {
964     pPlaybackState->reverse = true;
965     break;
966     }
967     } while (samplestoread && readsamples);
968     }
969     else { // backward playback
970 schoenebeck 24
971 persson 864 // as we can only read forward from disk, we have to
972     // determine the end position within the loop first,
973     // read forward from that 'end' and finally after
974     // reading, swap all sample frames so it reflects
975     // backward playback
976 schoenebeck 24
977 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
978     file_offset_t loopoffset = GetPos() - loop.LoopStart;
979     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
980     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
981 schoenebeck 24
982 persson 864 SetPos(reverseplaybackend);
983 schoenebeck 24
984 persson 864 // read samples for backward playback
985     do {
986     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
987     samplestoreadinloop -= readsamples;
988     samplestoread -= readsamples;
989     totalreadsamples += readsamples;
990     } while (samplestoreadinloop && readsamples);
991 schoenebeck 24
992 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
993    
994     if (reverseplaybackend == loop.LoopStart) {
995     pPlaybackState->loop_cycles_left--;
996     pPlaybackState->reverse = false;
997     }
998    
999     // reverse the sample frames for backward playback
1000 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1001     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1002 schoenebeck 24 }
1003 persson 864 } while (samplestoread && readsamples);
1004     break;
1005     }
1006 schoenebeck 24
1007 persson 864 case loop_type_backward: { // TODO: not tested yet!
1008     // forward playback (not entered the loop yet)
1009     if (!pPlaybackState->reverse) do {
1010     samplestoloopend = loopEnd - GetPos();
1011     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1012     samplestoread -= readsamples;
1013     totalreadsamples += readsamples;
1014     if (readsamples == samplestoloopend) {
1015     pPlaybackState->reverse = true;
1016     break;
1017     }
1018     } while (samplestoread && readsamples);
1019 schoenebeck 24
1020 persson 864 if (!samplestoread) break;
1021 schoenebeck 24
1022 persson 864 // as we can only read forward from disk, we have to
1023     // determine the end position within the loop first,
1024     // read forward from that 'end' and finally after
1025     // reading, swap all sample frames so it reflects
1026     // backward playback
1027 schoenebeck 24
1028 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1029     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1030     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1031 persson 864 : samplestoread;
1032 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1033 schoenebeck 24
1034 persson 864 SetPos(reverseplaybackend);
1035 schoenebeck 24
1036 persson 864 // read samples for backward playback
1037     do {
1038     // if not endless loop check if max. number of loop cycles have been passed
1039     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1040     samplestoloopend = loopEnd - GetPos();
1041     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1042     samplestoreadinloop -= readsamples;
1043     samplestoread -= readsamples;
1044     totalreadsamples += readsamples;
1045     if (readsamples == samplestoloopend) {
1046     pPlaybackState->loop_cycles_left--;
1047     SetPos(loop.LoopStart);
1048     }
1049     } while (samplestoreadinloop && readsamples);
1050 schoenebeck 24
1051 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1052 schoenebeck 24
1053 persson 864 // reverse the sample frames for backward playback
1054     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1055     break;
1056     }
1057 schoenebeck 24
1058 persson 864 default: case loop_type_normal: {
1059     do {
1060     // if not endless loop check if max. number of loop cycles have been passed
1061     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062     samplestoloopend = loopEnd - GetPos();
1063     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1064     samplestoread -= readsamples;
1065     totalreadsamples += readsamples;
1066     if (readsamples == samplestoloopend) {
1067     pPlaybackState->loop_cycles_left--;
1068     SetPos(loop.LoopStart);
1069     }
1070     } while (samplestoread && readsamples);
1071     break;
1072     }
1073 schoenebeck 24 }
1074     }
1075     }
1076    
1077     // read on without looping
1078     if (samplestoread) do {
1079 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1080 schoenebeck 24 samplestoread -= readsamples;
1081     totalreadsamples += readsamples;
1082     } while (readsamples && samplestoread);
1083    
1084     // store current position
1085     pPlaybackState->position = GetPos();
1086    
1087     return totalreadsamples;
1088     }
1089    
1090     /**
1091 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1092     * position into the buffer pointed by \a pBuffer and increments the
1093     * position within the sample. The sample wave stream will be
1094     * decompressed on the fly if using a compressed sample. Use this method
1095     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1096     * thus for disk streaming.
1097     *
1098 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1099     * have to use an external decompression buffer for <b>EACH</b>
1100     * streaming thread to avoid race conditions and crashes!
1101     *
1102 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1103     * (using native endianness). For 24 bit, the buffer will
1104     * contain three bytes per sample, little-endian.
1105     *
1106 schoenebeck 2 * @param pBuffer destination buffer
1107     * @param SampleCount number of sample points to read
1108 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1109 schoenebeck 2 * @returns number of successfully read sample points
1110 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1111 schoenebeck 2 */
1112 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1113 schoenebeck 21 if (SampleCount == 0) return 0;
1114 schoenebeck 317 if (!Compressed) {
1115     if (BitDepth == 24) {
1116 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1117 schoenebeck 317 }
1118 persson 365 else { // 16 bit
1119     // (pCkData->Read does endian correction)
1120     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1121     : pCkData->Read(pBuffer, SampleCount, 2);
1122     }
1123 schoenebeck 317 }
1124 persson 365 else {
1125 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1126 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1127 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1128 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1129     remainingsamples = SampleCount,
1130 persson 365 copysamples, skipsamples,
1131     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1132 schoenebeck 2 this->FrameOffset = 0;
1133    
1134 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1135    
1136     // if decompression buffer too small, then reduce amount of samples to read
1137     if (pDecompressionBuffer->Size < assumedsize) {
1138     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1139     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1140     remainingsamples = SampleCount;
1141     assumedsize = GuessSize(SampleCount);
1142 schoenebeck 2 }
1143    
1144 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1145 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1146 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1147 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1148    
1149 persson 365 while (remainingsamples && remainingbytes) {
1150 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1151     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1152 schoenebeck 2
1153 persson 365 int mode_l = *pSrc++, mode_r = 0;
1154    
1155     if (Channels == 2) {
1156     mode_r = *pSrc++;
1157     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1158     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1159     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1160     if (remainingbytes < framebytes) { // last frame in sample
1161     framesamples = SamplesInLastFrame;
1162     if (mode_l == 4 && (framesamples & 1)) {
1163     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1164     }
1165     else {
1166     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1167     }
1168 schoenebeck 2 }
1169     }
1170 persson 365 else {
1171     framebytes = bytesPerFrame[mode_l] + 1;
1172     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1173     if (remainingbytes < framebytes) {
1174     framesamples = SamplesInLastFrame;
1175     }
1176     }
1177 schoenebeck 2
1178     // determine how many samples in this frame to skip and read
1179 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1180     if (currentframeoffset <= framesamples) {
1181     copysamples = framesamples - currentframeoffset;
1182     skipsamples = currentframeoffset;
1183     }
1184     else {
1185     copysamples = 0;
1186     skipsamples = framesamples;
1187     }
1188 schoenebeck 2 }
1189     else {
1190 persson 365 // This frame has enough data for pBuffer, but not
1191     // all of the frame is needed. Set file position
1192     // to start of this frame for next call to Read.
1193 schoenebeck 2 copysamples = remainingsamples;
1194 persson 365 skipsamples = currentframeoffset;
1195     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1196     this->FrameOffset = currentframeoffset + copysamples;
1197     }
1198     remainingsamples -= copysamples;
1199    
1200     if (remainingbytes > framebytes) {
1201     remainingbytes -= framebytes;
1202     if (remainingsamples == 0 &&
1203     currentframeoffset + copysamples == framesamples) {
1204     // This frame has enough data for pBuffer, and
1205     // all of the frame is needed. Set file
1206     // position to start of next frame for next
1207     // call to Read. FrameOffset is 0.
1208 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1209     }
1210     }
1211 persson 365 else remainingbytes = 0;
1212 schoenebeck 2
1213 persson 365 currentframeoffset -= skipsamples;
1214 schoenebeck 2
1215 persson 365 if (copysamples == 0) {
1216     // skip this frame
1217     pSrc += framebytes - Channels;
1218     }
1219     else {
1220     const unsigned char* const param_l = pSrc;
1221     if (BitDepth == 24) {
1222     if (mode_l != 2) pSrc += 12;
1223 schoenebeck 2
1224 persson 365 if (Channels == 2) { // Stereo
1225     const unsigned char* const param_r = pSrc;
1226     if (mode_r != 2) pSrc += 12;
1227    
1228 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1229 persson 437 skipsamples, copysamples, TruncatedBits);
1230 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1231 persson 437 skipsamples, copysamples, TruncatedBits);
1232 persson 902 pDst24 += copysamples * 6;
1233 schoenebeck 2 }
1234 persson 365 else { // Mono
1235 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1236 persson 437 skipsamples, copysamples, TruncatedBits);
1237 persson 902 pDst24 += copysamples * 3;
1238 schoenebeck 2 }
1239 persson 365 }
1240     else { // 16 bit
1241     if (mode_l) pSrc += 4;
1242 schoenebeck 2
1243 persson 365 int step;
1244     if (Channels == 2) { // Stereo
1245     const unsigned char* const param_r = pSrc;
1246     if (mode_r) pSrc += 4;
1247    
1248     step = (2 - mode_l) + (2 - mode_r);
1249 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1250     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1251 persson 365 skipsamples, copysamples);
1252     pDst += copysamples << 1;
1253 schoenebeck 2 }
1254 persson 365 else { // Mono
1255     step = 2 - mode_l;
1256 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1257 persson 365 pDst += copysamples;
1258 schoenebeck 2 }
1259 persson 365 }
1260     pSrc += nextFrameOffset;
1261     }
1262 schoenebeck 2
1263 persson 365 // reload from disk to local buffer if needed
1264     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1265     assumedsize = GuessSize(remainingsamples);
1266     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1267     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1268 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1269     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1270 schoenebeck 2 }
1271 persson 365 } // while
1272    
1273 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1274 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1275 schoenebeck 2 return (SampleCount - remainingsamples);
1276     }
1277     }
1278    
1279 schoenebeck 809 /** @brief Write sample wave data.
1280     *
1281     * Writes \a SampleCount number of sample points from the buffer pointed
1282     * by \a pBuffer and increments the position within the sample. Use this
1283     * method to directly write the sample data to disk, i.e. if you don't
1284     * want or cannot load the whole sample data into RAM.
1285     *
1286     * You have to Resize() the sample to the desired size and call
1287     * File::Save() <b>before</b> using Write().
1288     *
1289     * Note: there is currently no support for writing compressed samples.
1290     *
1291 persson 1264 * For 16 bit samples, the data in the source buffer should be
1292     * int16_t (using native endianness). For 24 bit, the buffer
1293     * should contain three bytes per sample, little-endian.
1294     *
1295 schoenebeck 809 * @param pBuffer - source buffer
1296     * @param SampleCount - number of sample points to write
1297     * @throws DLS::Exception if current sample size is too small
1298     * @throws gig::Exception if sample is compressed
1299     * @see DLS::LoadSampleData()
1300     */
1301 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1302 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1303 persson 1207
1304     // if this is the first write in this sample, reset the
1305     // checksum calculator
1306 persson 1199 if (pCkData->GetPos() == 0) {
1307 schoenebeck 1381 __resetCRC(crc);
1308 persson 1199 }
1309 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1310 schoenebeck 2912 file_offset_t res;
1311 persson 1264 if (BitDepth == 24) {
1312     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1313     } else { // 16 bit
1314     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1315     : pCkData->Write(pBuffer, SampleCount, 2);
1316     }
1317 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1318 persson 1199
1319 persson 1207 // if this is the last write, update the checksum chunk in the
1320     // file
1321 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1322 schoenebeck 3115 __finalizeCRC(crc);
1323 persson 1199 File* pFile = static_cast<File*>(GetParent());
1324 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1325 persson 1199 }
1326     return res;
1327 schoenebeck 809 }
1328    
1329 schoenebeck 384 /**
1330     * Allocates a decompression buffer for streaming (compressed) samples
1331     * with Sample::Read(). If you are using more than one streaming thread
1332     * in your application you <b>HAVE</b> to create a decompression buffer
1333     * for <b>EACH</b> of your streaming threads and provide it with the
1334     * Sample::Read() call in order to avoid race conditions and crashes.
1335     *
1336     * You should free the memory occupied by the allocated buffer(s) once
1337     * you don't need one of your streaming threads anymore by calling
1338     * DestroyDecompressionBuffer().
1339     *
1340     * @param MaxReadSize - the maximum size (in sample points) you ever
1341     * expect to read with one Read() call
1342     * @returns allocated decompression buffer
1343     * @see DestroyDecompressionBuffer()
1344     */
1345 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1346 schoenebeck 384 buffer_t result;
1347     const double worstCaseHeaderOverhead =
1348     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1349 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1350 schoenebeck 384 result.pStart = new int8_t[result.Size];
1351     result.NullExtensionSize = 0;
1352     return result;
1353     }
1354    
1355     /**
1356     * Free decompression buffer, previously created with
1357     * CreateDecompressionBuffer().
1358     *
1359     * @param DecompressionBuffer - previously allocated decompression
1360     * buffer to free
1361     */
1362     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1363     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1364     delete[] (int8_t*) DecompressionBuffer.pStart;
1365     DecompressionBuffer.pStart = NULL;
1366     DecompressionBuffer.Size = 0;
1367     DecompressionBuffer.NullExtensionSize = 0;
1368     }
1369     }
1370    
1371 schoenebeck 930 /**
1372     * Returns pointer to the Group this Sample belongs to. In the .gig
1373     * format a sample always belongs to one group. If it wasn't explicitly
1374     * assigned to a certain group, it will be automatically assigned to a
1375     * default group.
1376     *
1377     * @returns Sample's Group (never NULL)
1378     */
1379     Group* Sample::GetGroup() const {
1380     return pGroup;
1381     }
1382    
1383 schoenebeck 2985 /**
1384 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1385     * time when this sample's wave form data was modified for the last time
1386     * by calling Write(). This checksum only covers the raw wave form data,
1387     * not any meta informations like i.e. bit depth or loop points. Since
1388     * this method just returns the checksum stored for this sample i.e. when
1389     * the gig file was loaded, this method returns immediately. So it does no
1390     * recalcuation of the checksum with the currently available sample wave
1391     * form data.
1392     *
1393     * @see VerifyWaveData()
1394     */
1395     uint32_t Sample::GetWaveDataCRC32Checksum() {
1396     return crc;
1397     }
1398    
1399     /**
1400 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1401     * Sample's raw wave data is intentionally modified (i.e. by calling
1402     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1403     * is calculated and stored/updated for this sample, along to the sample's
1404     * meta informations.
1405     *
1406     * Now by calling this method the current raw audio wave data is checked
1407     * against the already stored CRC32 check sum in order to check whether the
1408     * sample data had been damaged unintentionally for some reason. Since by
1409     * calling this method always the entire raw audio wave data has to be
1410     * read, verifying all samples this way may take a long time accordingly.
1411     * And that's also the reason why the sample integrity is not checked by
1412     * default whenever a gig file is loaded. So this method must be called
1413     * explicitly to fulfill this task.
1414     *
1415 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1416     * calculated checksum of the current raw wave form data,
1417     * you can get the expected checksum instead by calling
1418     * GetWaveDataCRC32Checksum()
1419 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1420     * @throws Exception if no checksum had been stored to disk for this
1421     * sample yet, or on I/O issues
1422 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1423 schoenebeck 2985 */
1424 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1425 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1426 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1427 schoenebeck 2989 if (pActually) *pActually = crc;
1428     return crc == this->crc;
1429 schoenebeck 2985 }
1430    
1431     uint32_t Sample::CalculateWaveDataChecksum() {
1432     const size_t sz = 20*1024; // 20kB buffer size
1433     std::vector<uint8_t> buffer(sz);
1434     buffer.resize(sz);
1435    
1436     const size_t n = sz / FrameSize;
1437     SetPos(0);
1438     uint32_t crc = 0;
1439     __resetCRC(crc);
1440     while (true) {
1441     file_offset_t nRead = Read(&buffer[0], n);
1442     if (nRead <= 0) break;
1443     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1444     }
1445 schoenebeck 3115 __finalizeCRC(crc);
1446 schoenebeck 2985 return crc;
1447     }
1448    
1449 schoenebeck 2 Sample::~Sample() {
1450     Instances--;
1451 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1452     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1453     InternalDecompressionBuffer.pStart = NULL;
1454     InternalDecompressionBuffer.Size = 0;
1455 schoenebeck 355 }
1456 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1457     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1458     }
1459    
1460    
1461    
1462     // *************** DimensionRegion ***************
1463     // *
1464    
1465 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1466 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1467    
1468 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1469 schoenebeck 16 Instances++;
1470    
1471 schoenebeck 823 pSample = NULL;
1472 schoenebeck 1316 pRegion = pParent;
1473 schoenebeck 823
1474 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1475     else memset(&Crossfade, 0, 4);
1476    
1477 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1478 schoenebeck 2
1479     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1480 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1481 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1482 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1483     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484     _3ewa->ReadInt16(); // unknown
1485     LFO1InternalDepth = _3ewa->ReadUint16();
1486     _3ewa->ReadInt16(); // unknown
1487     LFO3InternalDepth = _3ewa->ReadInt16();
1488     _3ewa->ReadInt16(); // unknown
1489     LFO1ControlDepth = _3ewa->ReadUint16();
1490     _3ewa->ReadInt16(); // unknown
1491     LFO3ControlDepth = _3ewa->ReadInt16();
1492     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1493     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1494     _3ewa->ReadInt16(); // unknown
1495     EG1Sustain = _3ewa->ReadUint16();
1496     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1497     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1498     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1499     EG1ControllerInvert = eg1ctrloptions & 0x01;
1500     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1501     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1502     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1503     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1504     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1505     EG2ControllerInvert = eg2ctrloptions & 0x01;
1506     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1507     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1508     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1509     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1510     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1511     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1512     _3ewa->ReadInt16(); // unknown
1513     EG2Sustain = _3ewa->ReadUint16();
1514     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515     _3ewa->ReadInt16(); // unknown
1516     LFO2ControlDepth = _3ewa->ReadUint16();
1517     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1518     _3ewa->ReadInt16(); // unknown
1519     LFO2InternalDepth = _3ewa->ReadUint16();
1520     int32_t eg1decay2 = _3ewa->ReadInt32();
1521     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1522     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1523     _3ewa->ReadInt16(); // unknown
1524     EG1PreAttack = _3ewa->ReadUint16();
1525     int32_t eg2decay2 = _3ewa->ReadInt32();
1526     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1527     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1528     _3ewa->ReadInt16(); // unknown
1529     EG2PreAttack = _3ewa->ReadUint16();
1530     uint8_t velocityresponse = _3ewa->ReadUint8();
1531     if (velocityresponse < 5) {
1532     VelocityResponseCurve = curve_type_nonlinear;
1533     VelocityResponseDepth = velocityresponse;
1534     } else if (velocityresponse < 10) {
1535     VelocityResponseCurve = curve_type_linear;
1536     VelocityResponseDepth = velocityresponse - 5;
1537     } else if (velocityresponse < 15) {
1538     VelocityResponseCurve = curve_type_special;
1539     VelocityResponseDepth = velocityresponse - 10;
1540     } else {
1541     VelocityResponseCurve = curve_type_unknown;
1542     VelocityResponseDepth = 0;
1543     }
1544     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1545     if (releasevelocityresponse < 5) {
1546     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1547     ReleaseVelocityResponseDepth = releasevelocityresponse;
1548     } else if (releasevelocityresponse < 10) {
1549     ReleaseVelocityResponseCurve = curve_type_linear;
1550     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1551     } else if (releasevelocityresponse < 15) {
1552     ReleaseVelocityResponseCurve = curve_type_special;
1553     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1554     } else {
1555     ReleaseVelocityResponseCurve = curve_type_unknown;
1556     ReleaseVelocityResponseDepth = 0;
1557     }
1558     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1559     AttenuationControllerThreshold = _3ewa->ReadInt8();
1560     _3ewa->ReadInt32(); // unknown
1561     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1562     _3ewa->ReadInt16(); // unknown
1563     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1564     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1565     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1566     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1567     else DimensionBypass = dim_bypass_ctrl_none;
1568     uint8_t pan = _3ewa->ReadUint8();
1569     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1570     SelfMask = _3ewa->ReadInt8() & 0x01;
1571     _3ewa->ReadInt8(); // unknown
1572     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1573     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1574     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1575     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1576     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1577     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1578     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1579     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1580     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1581     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1582     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1583     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1584     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1585     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1586     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1587     : vcf_res_ctrl_none;
1588     uint16_t eg3depth = _3ewa->ReadUint16();
1589     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1590 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1591 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1592     ChannelOffset = _3ewa->ReadUint8() / 4;
1593     uint8_t regoptions = _3ewa->ReadUint8();
1594     MSDecode = regoptions & 0x01; // bit 0
1595     SustainDefeat = regoptions & 0x02; // bit 1
1596     _3ewa->ReadInt16(); // unknown
1597     VelocityUpperLimit = _3ewa->ReadInt8();
1598     _3ewa->ReadInt8(); // unknown
1599     _3ewa->ReadInt16(); // unknown
1600     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1601     _3ewa->ReadInt8(); // unknown
1602     _3ewa->ReadInt8(); // unknown
1603     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1604     uint8_t vcfcutoff = _3ewa->ReadUint8();
1605     VCFEnabled = vcfcutoff & 0x80; // bit 7
1606     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1607     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1608     uint8_t vcfvelscale = _3ewa->ReadUint8();
1609     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1610     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1611     _3ewa->ReadInt8(); // unknown
1612     uint8_t vcfresonance = _3ewa->ReadUint8();
1613     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1614     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1615     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1616     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1617     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1618     uint8_t vcfvelocity = _3ewa->ReadUint8();
1619     VCFVelocityDynamicRange = vcfvelocity % 5;
1620     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1621     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1622     if (VCFType == vcf_type_lowpass) {
1623     if (lfo3ctrl & 0x40) // bit 6
1624     VCFType = vcf_type_lowpassturbo;
1625     }
1626 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1627     _3ewa->Read(DimensionUpperLimits, 1, 8);
1628     } else {
1629     memset(DimensionUpperLimits, 0, 8);
1630     }
1631 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1632     // use default values
1633     LFO3Frequency = 1.0;
1634     EG3Attack = 0.0;
1635     LFO1InternalDepth = 0;
1636     LFO3InternalDepth = 0;
1637     LFO1ControlDepth = 0;
1638     LFO3ControlDepth = 0;
1639     EG1Attack = 0.0;
1640 persson 1218 EG1Decay1 = 0.005;
1641     EG1Sustain = 1000;
1642     EG1Release = 0.3;
1643 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1644     EG1Controller.controller_number = 0;
1645     EG1ControllerInvert = false;
1646     EG1ControllerAttackInfluence = 0;
1647     EG1ControllerDecayInfluence = 0;
1648     EG1ControllerReleaseInfluence = 0;
1649     EG2Controller.type = eg2_ctrl_t::type_none;
1650     EG2Controller.controller_number = 0;
1651     EG2ControllerInvert = false;
1652     EG2ControllerAttackInfluence = 0;
1653     EG2ControllerDecayInfluence = 0;
1654     EG2ControllerReleaseInfluence = 0;
1655     LFO1Frequency = 1.0;
1656     EG2Attack = 0.0;
1657 persson 1218 EG2Decay1 = 0.005;
1658     EG2Sustain = 1000;
1659 schoenebeck 2990 EG2Release = 60;
1660 schoenebeck 809 LFO2ControlDepth = 0;
1661     LFO2Frequency = 1.0;
1662     LFO2InternalDepth = 0;
1663     EG1Decay2 = 0.0;
1664 persson 1218 EG1InfiniteSustain = true;
1665     EG1PreAttack = 0;
1666 schoenebeck 809 EG2Decay2 = 0.0;
1667 persson 1218 EG2InfiniteSustain = true;
1668     EG2PreAttack = 0;
1669 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1670     VelocityResponseDepth = 3;
1671     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1672     ReleaseVelocityResponseDepth = 3;
1673     VelocityResponseCurveScaling = 32;
1674     AttenuationControllerThreshold = 0;
1675     SampleStartOffset = 0;
1676     PitchTrack = true;
1677     DimensionBypass = dim_bypass_ctrl_none;
1678     Pan = 0;
1679     SelfMask = true;
1680     LFO3Controller = lfo3_ctrl_modwheel;
1681     LFO3Sync = false;
1682     InvertAttenuationController = false;
1683     AttenuationController.type = attenuation_ctrl_t::type_none;
1684     AttenuationController.controller_number = 0;
1685     LFO2Controller = lfo2_ctrl_internal;
1686     LFO2FlipPhase = false;
1687     LFO2Sync = false;
1688     LFO1Controller = lfo1_ctrl_internal;
1689     LFO1FlipPhase = false;
1690     LFO1Sync = false;
1691     VCFResonanceController = vcf_res_ctrl_none;
1692     EG3Depth = 0;
1693     ChannelOffset = 0;
1694     MSDecode = false;
1695     SustainDefeat = false;
1696     VelocityUpperLimit = 0;
1697     ReleaseTriggerDecay = 0;
1698     EG1Hold = false;
1699     VCFEnabled = false;
1700     VCFCutoff = 0;
1701     VCFCutoffController = vcf_cutoff_ctrl_none;
1702     VCFCutoffControllerInvert = false;
1703     VCFVelocityScale = 0;
1704     VCFResonance = 0;
1705     VCFResonanceDynamic = false;
1706     VCFKeyboardTracking = false;
1707     VCFKeyboardTrackingBreakpoint = 0;
1708     VCFVelocityDynamicRange = 0x04;
1709     VCFVelocityCurve = curve_type_linear;
1710     VCFType = vcf_type_lowpass;
1711 persson 1247 memset(DimensionUpperLimits, 127, 8);
1712 schoenebeck 2 }
1713 schoenebeck 16
1714 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1715     VelocityResponseDepth,
1716     VelocityResponseCurveScaling);
1717    
1718 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1719     ReleaseVelocityResponseCurve,
1720     ReleaseVelocityResponseDepth
1721     );
1722 persson 613
1723 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1724     VCFVelocityDynamicRange,
1725     VCFVelocityScale,
1726     VCFCutoffController);
1727 persson 613
1728     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1729 persson 858 VelocityTable = 0;
1730 persson 613 }
1731    
1732 persson 1301 /*
1733     * Constructs a DimensionRegion by copying all parameters from
1734     * another DimensionRegion
1735     */
1736     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1737     Instances++;
1738 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1739 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1740     pParentList = _3ewl; // restore the chunk pointer
1741    
1742     // deep copy of owned structures
1743     if (src.VelocityTable) {
1744     VelocityTable = new uint8_t[128];
1745     for (int k = 0 ; k < 128 ; k++)
1746     VelocityTable[k] = src.VelocityTable[k];
1747     }
1748     if (src.pSampleLoops) {
1749     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1750     for (int k = 0 ; k < src.SampleLoops ; k++)
1751     pSampleLoops[k] = src.pSampleLoops[k];
1752     }
1753     }
1754 schoenebeck 2394
1755     /**
1756     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1757     * and assign it to this object.
1758     *
1759     * Note that all sample pointers referenced by @a orig are simply copied as
1760     * memory address. Thus the respective samples are shared, not duplicated!
1761     *
1762     * @param orig - original DimensionRegion object to be copied from
1763     */
1764     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1765 schoenebeck 2482 CopyAssign(orig, NULL);
1766     }
1767    
1768     /**
1769     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1770     * and assign it to this object.
1771     *
1772     * @param orig - original DimensionRegion object to be copied from
1773     * @param mSamples - crosslink map between the foreign file's samples and
1774     * this file's samples
1775     */
1776     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1777 schoenebeck 2394 // delete all allocated data first
1778     if (VelocityTable) delete [] VelocityTable;
1779     if (pSampleLoops) delete [] pSampleLoops;
1780    
1781     // backup parent list pointer
1782     RIFF::List* p = pParentList;
1783    
1784 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1785     gig::Region* pOriginalRegion = pRegion;
1786    
1787 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1788    
1789     *this = *orig; // default memberwise shallow copy of all parameters
1790 schoenebeck 2547
1791     // restore members that shall not be altered
1792 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1793 schoenebeck 2547 pRegion = pOriginalRegion;
1794 schoenebeck 2482
1795 schoenebeck 2547 // only take the raw sample reference reference if the
1796 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1797     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1798     pSample = pOriginalSample;
1799     }
1800    
1801     if (mSamples && mSamples->count(orig->pSample)) {
1802     pSample = mSamples->find(orig->pSample)->second;
1803     }
1804 persson 1301
1805 schoenebeck 2394 // deep copy of owned structures
1806     if (orig->VelocityTable) {
1807     VelocityTable = new uint8_t[128];
1808     for (int k = 0 ; k < 128 ; k++)
1809     VelocityTable[k] = orig->VelocityTable[k];
1810     }
1811     if (orig->pSampleLoops) {
1812     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1813     for (int k = 0 ; k < orig->SampleLoops ; k++)
1814     pSampleLoops[k] = orig->pSampleLoops[k];
1815     }
1816     }
1817    
1818 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1819     SRLZ(VelocityUpperLimit);
1820     SRLZ(EG1PreAttack);
1821     SRLZ(EG1Attack);
1822     SRLZ(EG1Decay1);
1823     SRLZ(EG1Decay2);
1824     SRLZ(EG1InfiniteSustain);
1825     SRLZ(EG1Sustain);
1826     SRLZ(EG1Release);
1827     SRLZ(EG1Hold);
1828     SRLZ(EG1Controller);
1829     SRLZ(EG1ControllerInvert);
1830     SRLZ(EG1ControllerAttackInfluence);
1831     SRLZ(EG1ControllerDecayInfluence);
1832     SRLZ(EG1ControllerReleaseInfluence);
1833     SRLZ(LFO1Frequency);
1834     SRLZ(LFO1InternalDepth);
1835     SRLZ(LFO1ControlDepth);
1836     SRLZ(LFO1Controller);
1837     SRLZ(LFO1FlipPhase);
1838     SRLZ(LFO1Sync);
1839     SRLZ(EG2PreAttack);
1840     SRLZ(EG2Attack);
1841     SRLZ(EG2Decay1);
1842     SRLZ(EG2Decay2);
1843     SRLZ(EG2InfiniteSustain);
1844     SRLZ(EG2Sustain);
1845     SRLZ(EG2Release);
1846     SRLZ(EG2Controller);
1847     SRLZ(EG2ControllerInvert);
1848     SRLZ(EG2ControllerAttackInfluence);
1849     SRLZ(EG2ControllerDecayInfluence);
1850     SRLZ(EG2ControllerReleaseInfluence);
1851     SRLZ(LFO2Frequency);
1852     SRLZ(LFO2InternalDepth);
1853     SRLZ(LFO2ControlDepth);
1854     SRLZ(LFO2Controller);
1855     SRLZ(LFO2FlipPhase);
1856     SRLZ(LFO2Sync);
1857     SRLZ(EG3Attack);
1858     SRLZ(EG3Depth);
1859     SRLZ(LFO3Frequency);
1860     SRLZ(LFO3InternalDepth);
1861     SRLZ(LFO3ControlDepth);
1862     SRLZ(LFO3Controller);
1863     SRLZ(LFO3Sync);
1864     SRLZ(VCFEnabled);
1865     SRLZ(VCFType);
1866     SRLZ(VCFCutoffController);
1867     SRLZ(VCFCutoffControllerInvert);
1868     SRLZ(VCFCutoff);
1869     SRLZ(VCFVelocityCurve);
1870     SRLZ(VCFVelocityScale);
1871     SRLZ(VCFVelocityDynamicRange);
1872     SRLZ(VCFResonance);
1873     SRLZ(VCFResonanceDynamic);
1874     SRLZ(VCFResonanceController);
1875     SRLZ(VCFKeyboardTracking);
1876     SRLZ(VCFKeyboardTrackingBreakpoint);
1877     SRLZ(VelocityResponseCurve);
1878     SRLZ(VelocityResponseDepth);
1879     SRLZ(VelocityResponseCurveScaling);
1880     SRLZ(ReleaseVelocityResponseCurve);
1881     SRLZ(ReleaseVelocityResponseDepth);
1882     SRLZ(ReleaseTriggerDecay);
1883     SRLZ(Crossfade);
1884     SRLZ(PitchTrack);
1885     SRLZ(DimensionBypass);
1886     SRLZ(Pan);
1887     SRLZ(SelfMask);
1888     SRLZ(AttenuationController);
1889     SRLZ(InvertAttenuationController);
1890     SRLZ(AttenuationControllerThreshold);
1891     SRLZ(ChannelOffset);
1892     SRLZ(SustainDefeat);
1893     SRLZ(MSDecode);
1894     //SRLZ(SampleStartOffset);
1895     SRLZ(SampleAttenuation);
1896    
1897     // derived attributes from DLS::Sampler
1898     SRLZ(FineTune);
1899     SRLZ(Gain);
1900     }
1901    
1902 schoenebeck 809 /**
1903 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1904     * which depends on this value.
1905     */
1906     void DimensionRegion::SetGain(int32_t gain) {
1907     DLS::Sampler::SetGain(gain);
1908     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1909     }
1910    
1911     /**
1912 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1913     * have to call File::Save() to make changes persistent.
1914     *
1915     * Usually there is absolutely no need to call this method explicitly.
1916     * It will be called automatically when File::Save() was called.
1917 schoenebeck 2682 *
1918     * @param pProgress - callback function for progress notification
1919 schoenebeck 809 */
1920 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1921 schoenebeck 809 // first update base class's chunk
1922 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1923 schoenebeck 809
1924 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1925     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1926     pData[12] = Crossfade.in_start;
1927     pData[13] = Crossfade.in_end;
1928     pData[14] = Crossfade.out_start;
1929     pData[15] = Crossfade.out_end;
1930    
1931 schoenebeck 809 // make sure '3ewa' chunk exists
1932     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1933 persson 1317 if (!_3ewa) {
1934     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1935     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1936     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1937 persson 1264 }
1938 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1939 schoenebeck 809
1940     // update '3ewa' chunk with DimensionRegion's current settings
1941    
1942 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1943 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1944 schoenebeck 809
1945     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1946 persson 1179 store32(&pData[4], lfo3freq);
1947 schoenebeck 809
1948     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1949 persson 1179 store32(&pData[8], eg3attack);
1950 schoenebeck 809
1951     // next 2 bytes unknown
1952    
1953 persson 1179 store16(&pData[14], LFO1InternalDepth);
1954 schoenebeck 809
1955     // next 2 bytes unknown
1956    
1957 persson 1179 store16(&pData[18], LFO3InternalDepth);
1958 schoenebeck 809
1959     // next 2 bytes unknown
1960    
1961 persson 1179 store16(&pData[22], LFO1ControlDepth);
1962 schoenebeck 809
1963     // next 2 bytes unknown
1964    
1965 persson 1179 store16(&pData[26], LFO3ControlDepth);
1966 schoenebeck 809
1967     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1968 persson 1179 store32(&pData[28], eg1attack);
1969 schoenebeck 809
1970     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1971 persson 1179 store32(&pData[32], eg1decay1);
1972 schoenebeck 809
1973     // next 2 bytes unknown
1974    
1975 persson 1179 store16(&pData[38], EG1Sustain);
1976 schoenebeck 809
1977     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1978 persson 1179 store32(&pData[40], eg1release);
1979 schoenebeck 809
1980     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1981 persson 1179 pData[44] = eg1ctl;
1982 schoenebeck 809
1983     const uint8_t eg1ctrloptions =
1984 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1985 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1986     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1987     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1988 persson 1179 pData[45] = eg1ctrloptions;
1989 schoenebeck 809
1990     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1991 persson 1179 pData[46] = eg2ctl;
1992 schoenebeck 809
1993     const uint8_t eg2ctrloptions =
1994 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1995 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1996     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1997     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1998 persson 1179 pData[47] = eg2ctrloptions;
1999 schoenebeck 809
2000     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2001 persson 1179 store32(&pData[48], lfo1freq);
2002 schoenebeck 809
2003     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2004 persson 1179 store32(&pData[52], eg2attack);
2005 schoenebeck 809
2006     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2007 persson 1179 store32(&pData[56], eg2decay1);
2008 schoenebeck 809
2009     // next 2 bytes unknown
2010    
2011 persson 1179 store16(&pData[62], EG2Sustain);
2012 schoenebeck 809
2013     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2014 persson 1179 store32(&pData[64], eg2release);
2015 schoenebeck 809
2016     // next 2 bytes unknown
2017    
2018 persson 1179 store16(&pData[70], LFO2ControlDepth);
2019 schoenebeck 809
2020     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2021 persson 1179 store32(&pData[72], lfo2freq);
2022 schoenebeck 809
2023     // next 2 bytes unknown
2024    
2025 persson 1179 store16(&pData[78], LFO2InternalDepth);
2026 schoenebeck 809
2027     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2028 persson 1179 store32(&pData[80], eg1decay2);
2029 schoenebeck 809
2030     // next 2 bytes unknown
2031    
2032 persson 1179 store16(&pData[86], EG1PreAttack);
2033 schoenebeck 809
2034     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2035 persson 1179 store32(&pData[88], eg2decay2);
2036 schoenebeck 809
2037     // next 2 bytes unknown
2038    
2039 persson 1179 store16(&pData[94], EG2PreAttack);
2040 schoenebeck 809
2041     {
2042     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2043     uint8_t velocityresponse = VelocityResponseDepth;
2044     switch (VelocityResponseCurve) {
2045     case curve_type_nonlinear:
2046     break;
2047     case curve_type_linear:
2048     velocityresponse += 5;
2049     break;
2050     case curve_type_special:
2051     velocityresponse += 10;
2052     break;
2053     case curve_type_unknown:
2054     default:
2055     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2056     }
2057 persson 1179 pData[96] = velocityresponse;
2058 schoenebeck 809 }
2059    
2060     {
2061     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2062     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2063     switch (ReleaseVelocityResponseCurve) {
2064     case curve_type_nonlinear:
2065     break;
2066     case curve_type_linear:
2067     releasevelocityresponse += 5;
2068     break;
2069     case curve_type_special:
2070     releasevelocityresponse += 10;
2071     break;
2072     case curve_type_unknown:
2073     default:
2074     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2075     }
2076 persson 1179 pData[97] = releasevelocityresponse;
2077 schoenebeck 809 }
2078    
2079 persson 1179 pData[98] = VelocityResponseCurveScaling;
2080 schoenebeck 809
2081 persson 1179 pData[99] = AttenuationControllerThreshold;
2082 schoenebeck 809
2083     // next 4 bytes unknown
2084    
2085 persson 1179 store16(&pData[104], SampleStartOffset);
2086 schoenebeck 809
2087     // next 2 bytes unknown
2088    
2089     {
2090     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2091     switch (DimensionBypass) {
2092     case dim_bypass_ctrl_94:
2093     pitchTrackDimensionBypass |= 0x10;
2094     break;
2095     case dim_bypass_ctrl_95:
2096     pitchTrackDimensionBypass |= 0x20;
2097     break;
2098     case dim_bypass_ctrl_none:
2099     //FIXME: should we set anything here?
2100     break;
2101     default:
2102     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2103     }
2104 persson 1179 pData[108] = pitchTrackDimensionBypass;
2105 schoenebeck 809 }
2106    
2107     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2108 persson 1179 pData[109] = pan;
2109 schoenebeck 809
2110     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2111 persson 1179 pData[110] = selfmask;
2112 schoenebeck 809
2113     // next byte unknown
2114    
2115     {
2116     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2117     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2118     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2119     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2120 persson 1179 pData[112] = lfo3ctrl;
2121 schoenebeck 809 }
2122    
2123     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2124 persson 1179 pData[113] = attenctl;
2125 schoenebeck 809
2126     {
2127     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2128     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2129     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2130     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2131 persson 1179 pData[114] = lfo2ctrl;
2132 schoenebeck 809 }
2133    
2134     {
2135     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2136     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2137     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2138     if (VCFResonanceController != vcf_res_ctrl_none)
2139     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2140 persson 1179 pData[115] = lfo1ctrl;
2141 schoenebeck 809 }
2142    
2143     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2144 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2145 persson 1869 store16(&pData[116], eg3depth);
2146 schoenebeck 809
2147     // next 2 bytes unknown
2148    
2149     const uint8_t channeloffset = ChannelOffset * 4;
2150 persson 1179 pData[120] = channeloffset;
2151 schoenebeck 809
2152     {
2153     uint8_t regoptions = 0;
2154     if (MSDecode) regoptions |= 0x01; // bit 0
2155     if (SustainDefeat) regoptions |= 0x02; // bit 1
2156 persson 1179 pData[121] = regoptions;
2157 schoenebeck 809 }
2158    
2159     // next 2 bytes unknown
2160    
2161 persson 1179 pData[124] = VelocityUpperLimit;
2162 schoenebeck 809
2163     // next 3 bytes unknown
2164    
2165 persson 1179 pData[128] = ReleaseTriggerDecay;
2166 schoenebeck 809
2167     // next 2 bytes unknown
2168    
2169     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2170 persson 1179 pData[131] = eg1hold;
2171 schoenebeck 809
2172 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2173 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2174 persson 1179 pData[132] = vcfcutoff;
2175 schoenebeck 809
2176 persson 1179 pData[133] = VCFCutoffController;
2177 schoenebeck 809
2178 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2179 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2180 persson 1179 pData[134] = vcfvelscale;
2181 schoenebeck 809
2182     // next byte unknown
2183    
2184 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2185 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2186 persson 1179 pData[136] = vcfresonance;
2187 schoenebeck 809
2188 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2189 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2190 persson 1179 pData[137] = vcfbreakpoint;
2191 schoenebeck 809
2192 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2193 schoenebeck 809 VCFVelocityCurve * 5;
2194 persson 1179 pData[138] = vcfvelocity;
2195 schoenebeck 809
2196     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2197 persson 1179 pData[139] = vcftype;
2198 persson 1070
2199     if (chunksize >= 148) {
2200     memcpy(&pData[140], DimensionUpperLimits, 8);
2201     }
2202 schoenebeck 809 }
2203    
2204 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2205     curve_type_t curveType = releaseVelocityResponseCurve;
2206     uint8_t depth = releaseVelocityResponseDepth;
2207     // this models a strange behaviour or bug in GSt: two of the
2208     // velocity response curves for release time are not used even
2209     // if specified, instead another curve is chosen.
2210     if ((curveType == curve_type_nonlinear && depth == 0) ||
2211     (curveType == curve_type_special && depth == 4)) {
2212     curveType = curve_type_nonlinear;
2213     depth = 3;
2214     }
2215     return GetVelocityTable(curveType, depth, 0);
2216     }
2217    
2218     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2219     uint8_t vcfVelocityDynamicRange,
2220     uint8_t vcfVelocityScale,
2221     vcf_cutoff_ctrl_t vcfCutoffController)
2222     {
2223     curve_type_t curveType = vcfVelocityCurve;
2224     uint8_t depth = vcfVelocityDynamicRange;
2225     // even stranger GSt: two of the velocity response curves for
2226     // filter cutoff are not used, instead another special curve
2227     // is chosen. This curve is not used anywhere else.
2228     if ((curveType == curve_type_nonlinear && depth == 0) ||
2229     (curveType == curve_type_special && depth == 4)) {
2230     curveType = curve_type_special;
2231     depth = 5;
2232     }
2233     return GetVelocityTable(curveType, depth,
2234     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2235     ? vcfVelocityScale : 0);
2236     }
2237    
2238 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2239     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2240     {
2241     double* table;
2242     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2243 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2244 persson 613 table = (*pVelocityTables)[tableKey];
2245 schoenebeck 16 }
2246     else {
2247 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2248     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2249 schoenebeck 16 }
2250 persson 613 return table;
2251 schoenebeck 2 }
2252 schoenebeck 55
2253 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2254     return pRegion;
2255     }
2256    
2257 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2258     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2259     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2260     //#pragma GCC diagnostic push
2261     //#pragma GCC diagnostic error "-Wswitch"
2262    
2263 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2264     leverage_ctrl_t decodedcontroller;
2265     switch (EncodedController) {
2266     // special controller
2267     case _lev_ctrl_none:
2268     decodedcontroller.type = leverage_ctrl_t::type_none;
2269     decodedcontroller.controller_number = 0;
2270     break;
2271     case _lev_ctrl_velocity:
2272     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2273     decodedcontroller.controller_number = 0;
2274     break;
2275     case _lev_ctrl_channelaftertouch:
2276     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2277     decodedcontroller.controller_number = 0;
2278     break;
2279 schoenebeck 55
2280 schoenebeck 36 // ordinary MIDI control change controller
2281     case _lev_ctrl_modwheel:
2282     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283     decodedcontroller.controller_number = 1;
2284     break;
2285     case _lev_ctrl_breath:
2286     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287     decodedcontroller.controller_number = 2;
2288     break;
2289     case _lev_ctrl_foot:
2290     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291     decodedcontroller.controller_number = 4;
2292     break;
2293     case _lev_ctrl_effect1:
2294     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295     decodedcontroller.controller_number = 12;
2296     break;
2297     case _lev_ctrl_effect2:
2298     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299     decodedcontroller.controller_number = 13;
2300     break;
2301     case _lev_ctrl_genpurpose1:
2302     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303     decodedcontroller.controller_number = 16;
2304     break;
2305     case _lev_ctrl_genpurpose2:
2306     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307     decodedcontroller.controller_number = 17;
2308     break;
2309     case _lev_ctrl_genpurpose3:
2310     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311     decodedcontroller.controller_number = 18;
2312     break;
2313     case _lev_ctrl_genpurpose4:
2314     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315     decodedcontroller.controller_number = 19;
2316     break;
2317     case _lev_ctrl_portamentotime:
2318     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319     decodedcontroller.controller_number = 5;
2320     break;
2321     case _lev_ctrl_sustainpedal:
2322     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323     decodedcontroller.controller_number = 64;
2324     break;
2325     case _lev_ctrl_portamento:
2326     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327     decodedcontroller.controller_number = 65;
2328     break;
2329     case _lev_ctrl_sostenutopedal:
2330     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331     decodedcontroller.controller_number = 66;
2332     break;
2333     case _lev_ctrl_softpedal:
2334     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335     decodedcontroller.controller_number = 67;
2336     break;
2337     case _lev_ctrl_genpurpose5:
2338     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339     decodedcontroller.controller_number = 80;
2340     break;
2341     case _lev_ctrl_genpurpose6:
2342     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343     decodedcontroller.controller_number = 81;
2344     break;
2345     case _lev_ctrl_genpurpose7:
2346     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347     decodedcontroller.controller_number = 82;
2348     break;
2349     case _lev_ctrl_genpurpose8:
2350     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351     decodedcontroller.controller_number = 83;
2352     break;
2353     case _lev_ctrl_effect1depth:
2354     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355     decodedcontroller.controller_number = 91;
2356     break;
2357     case _lev_ctrl_effect2depth:
2358     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359     decodedcontroller.controller_number = 92;
2360     break;
2361     case _lev_ctrl_effect3depth:
2362     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363     decodedcontroller.controller_number = 93;
2364     break;
2365     case _lev_ctrl_effect4depth:
2366     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367     decodedcontroller.controller_number = 94;
2368     break;
2369     case _lev_ctrl_effect5depth:
2370     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371     decodedcontroller.controller_number = 95;
2372     break;
2373 schoenebeck 55
2374 schoenebeck 2540 // format extension (these controllers are so far only supported by
2375     // LinuxSampler & gigedit) they will *NOT* work with
2376     // Gigasampler/GigaStudio !
2377     case _lev_ctrl_CC3_EXT:
2378     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379     decodedcontroller.controller_number = 3;
2380     break;
2381     case _lev_ctrl_CC6_EXT:
2382     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383     decodedcontroller.controller_number = 6;
2384     break;
2385     case _lev_ctrl_CC7_EXT:
2386     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387     decodedcontroller.controller_number = 7;
2388     break;
2389     case _lev_ctrl_CC8_EXT:
2390     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391     decodedcontroller.controller_number = 8;
2392     break;
2393     case _lev_ctrl_CC9_EXT:
2394     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395     decodedcontroller.controller_number = 9;
2396     break;
2397     case _lev_ctrl_CC10_EXT:
2398     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399     decodedcontroller.controller_number = 10;
2400     break;
2401     case _lev_ctrl_CC11_EXT:
2402     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403     decodedcontroller.controller_number = 11;
2404     break;
2405     case _lev_ctrl_CC14_EXT:
2406     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407     decodedcontroller.controller_number = 14;
2408     break;
2409     case _lev_ctrl_CC15_EXT:
2410     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411     decodedcontroller.controller_number = 15;
2412     break;
2413     case _lev_ctrl_CC20_EXT:
2414     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415     decodedcontroller.controller_number = 20;
2416     break;
2417     case _lev_ctrl_CC21_EXT:
2418     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419     decodedcontroller.controller_number = 21;
2420     break;
2421     case _lev_ctrl_CC22_EXT:
2422     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423     decodedcontroller.controller_number = 22;
2424     break;
2425     case _lev_ctrl_CC23_EXT:
2426     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427     decodedcontroller.controller_number = 23;
2428     break;
2429     case _lev_ctrl_CC24_EXT:
2430     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431     decodedcontroller.controller_number = 24;
2432     break;
2433     case _lev_ctrl_CC25_EXT:
2434     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435     decodedcontroller.controller_number = 25;
2436     break;
2437     case _lev_ctrl_CC26_EXT:
2438     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439     decodedcontroller.controller_number = 26;
2440     break;
2441     case _lev_ctrl_CC27_EXT:
2442     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443     decodedcontroller.controller_number = 27;
2444     break;
2445     case _lev_ctrl_CC28_EXT:
2446     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447     decodedcontroller.controller_number = 28;
2448     break;
2449     case _lev_ctrl_CC29_EXT:
2450     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2451     decodedcontroller.controller_number = 29;
2452     break;
2453     case _lev_ctrl_CC30_EXT:
2454     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2455     decodedcontroller.controller_number = 30;
2456     break;
2457     case _lev_ctrl_CC31_EXT:
2458     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2459     decodedcontroller.controller_number = 31;
2460     break;
2461     case _lev_ctrl_CC68_EXT:
2462     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2463     decodedcontroller.controller_number = 68;
2464     break;
2465     case _lev_ctrl_CC69_EXT:
2466     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2467     decodedcontroller.controller_number = 69;
2468     break;
2469     case _lev_ctrl_CC70_EXT:
2470     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2471     decodedcontroller.controller_number = 70;
2472     break;
2473     case _lev_ctrl_CC71_EXT:
2474     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2475     decodedcontroller.controller_number = 71;
2476     break;
2477     case _lev_ctrl_CC72_EXT:
2478     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2479     decodedcontroller.controller_number = 72;
2480     break;
2481     case _lev_ctrl_CC73_EXT:
2482     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2483     decodedcontroller.controller_number = 73;
2484     break;
2485     case _lev_ctrl_CC74_EXT:
2486     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2487     decodedcontroller.controller_number = 74;
2488     break;
2489     case _lev_ctrl_CC75_EXT:
2490     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2491     decodedcontroller.controller_number = 75;
2492     break;
2493     case _lev_ctrl_CC76_EXT:
2494     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2495     decodedcontroller.controller_number = 76;
2496     break;
2497     case _lev_ctrl_CC77_EXT:
2498     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2499     decodedcontroller.controller_number = 77;
2500     break;
2501     case _lev_ctrl_CC78_EXT:
2502     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2503     decodedcontroller.controller_number = 78;
2504     break;
2505     case _lev_ctrl_CC79_EXT:
2506     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2507     decodedcontroller.controller_number = 79;
2508     break;
2509     case _lev_ctrl_CC84_EXT:
2510     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2511     decodedcontroller.controller_number = 84;
2512     break;
2513     case _lev_ctrl_CC85_EXT:
2514     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2515     decodedcontroller.controller_number = 85;
2516     break;
2517     case _lev_ctrl_CC86_EXT:
2518     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2519     decodedcontroller.controller_number = 86;
2520     break;
2521     case _lev_ctrl_CC87_EXT:
2522     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2523     decodedcontroller.controller_number = 87;
2524     break;
2525     case _lev_ctrl_CC89_EXT:
2526     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2527     decodedcontroller.controller_number = 89;
2528     break;
2529     case _lev_ctrl_CC90_EXT:
2530     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2531     decodedcontroller.controller_number = 90;
2532     break;
2533     case _lev_ctrl_CC96_EXT:
2534     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2535     decodedcontroller.controller_number = 96;
2536     break;
2537     case _lev_ctrl_CC97_EXT:
2538     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2539     decodedcontroller.controller_number = 97;
2540     break;
2541     case _lev_ctrl_CC102_EXT:
2542     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2543     decodedcontroller.controller_number = 102;
2544     break;
2545     case _lev_ctrl_CC103_EXT:
2546     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2547     decodedcontroller.controller_number = 103;
2548     break;
2549     case _lev_ctrl_CC104_EXT:
2550     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2551     decodedcontroller.controller_number = 104;
2552     break;
2553     case _lev_ctrl_CC105_EXT:
2554     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2555     decodedcontroller.controller_number = 105;
2556     break;
2557     case _lev_ctrl_CC106_EXT:
2558     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2559     decodedcontroller.controller_number = 106;
2560     break;
2561     case _lev_ctrl_CC107_EXT:
2562     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2563     decodedcontroller.controller_number = 107;
2564     break;
2565     case _lev_ctrl_CC108_EXT:
2566     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2567     decodedcontroller.controller_number = 108;
2568     break;
2569     case _lev_ctrl_CC109_EXT:
2570     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2571     decodedcontroller.controller_number = 109;
2572     break;
2573     case _lev_ctrl_CC110_EXT:
2574     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2575     decodedcontroller.controller_number = 110;
2576     break;
2577     case _lev_ctrl_CC111_EXT:
2578     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2579     decodedcontroller.controller_number = 111;
2580     break;
2581     case _lev_ctrl_CC112_EXT:
2582     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2583     decodedcontroller.controller_number = 112;
2584     break;
2585     case _lev_ctrl_CC113_EXT:
2586     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2587     decodedcontroller.controller_number = 113;
2588     break;
2589     case _lev_ctrl_CC114_EXT:
2590     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2591     decodedcontroller.controller_number = 114;
2592     break;
2593     case _lev_ctrl_CC115_EXT:
2594     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2595     decodedcontroller.controller_number = 115;
2596     break;
2597     case _lev_ctrl_CC116_EXT:
2598     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2599     decodedcontroller.controller_number = 116;
2600     break;
2601     case _lev_ctrl_CC117_EXT:
2602     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2603     decodedcontroller.controller_number = 117;
2604     break;
2605     case _lev_ctrl_CC118_EXT:
2606     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2607     decodedcontroller.controller_number = 118;
2608     break;
2609     case _lev_ctrl_CC119_EXT:
2610     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2611     decodedcontroller.controller_number = 119;
2612     break;
2613    
2614 schoenebeck 36 // unknown controller type
2615     default:
2616     throw gig::Exception("Unknown leverage controller type.");
2617     }
2618     return decodedcontroller;
2619     }
2620 schoenebeck 2540
2621     // see above (diagnostic push not supported prior GCC 4.6)
2622     //#pragma GCC diagnostic pop
2623 schoenebeck 2
2624 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2625     _lev_ctrl_t encodedcontroller;
2626     switch (DecodedController.type) {
2627     // special controller
2628     case leverage_ctrl_t::type_none:
2629     encodedcontroller = _lev_ctrl_none;
2630     break;
2631     case leverage_ctrl_t::type_velocity:
2632     encodedcontroller = _lev_ctrl_velocity;
2633     break;
2634     case leverage_ctrl_t::type_channelaftertouch:
2635     encodedcontroller = _lev_ctrl_channelaftertouch;
2636     break;
2637    
2638     // ordinary MIDI control change controller
2639     case leverage_ctrl_t::type_controlchange:
2640     switch (DecodedController.controller_number) {
2641     case 1:
2642     encodedcontroller = _lev_ctrl_modwheel;
2643     break;
2644     case 2:
2645     encodedcontroller = _lev_ctrl_breath;
2646     break;
2647     case 4:
2648     encodedcontroller = _lev_ctrl_foot;
2649     break;
2650     case 12:
2651     encodedcontroller = _lev_ctrl_effect1;
2652     break;
2653     case 13:
2654     encodedcontroller = _lev_ctrl_effect2;
2655     break;
2656     case 16:
2657     encodedcontroller = _lev_ctrl_genpurpose1;
2658     break;
2659     case 17:
2660     encodedcontroller = _lev_ctrl_genpurpose2;
2661     break;
2662     case 18:
2663     encodedcontroller = _lev_ctrl_genpurpose3;
2664     break;
2665     case 19:
2666     encodedcontroller = _lev_ctrl_genpurpose4;
2667     break;
2668     case 5:
2669     encodedcontroller = _lev_ctrl_portamentotime;
2670     break;
2671     case 64:
2672     encodedcontroller = _lev_ctrl_sustainpedal;
2673     break;
2674     case 65:
2675     encodedcontroller = _lev_ctrl_portamento;
2676     break;
2677     case 66:
2678     encodedcontroller = _lev_ctrl_sostenutopedal;
2679     break;
2680     case 67:
2681     encodedcontroller = _lev_ctrl_softpedal;
2682     break;
2683     case 80:
2684     encodedcontroller = _lev_ctrl_genpurpose5;
2685     break;
2686     case 81:
2687     encodedcontroller = _lev_ctrl_genpurpose6;
2688     break;
2689     case 82:
2690     encodedcontroller = _lev_ctrl_genpurpose7;
2691     break;
2692     case 83:
2693     encodedcontroller = _lev_ctrl_genpurpose8;
2694     break;
2695     case 91:
2696     encodedcontroller = _lev_ctrl_effect1depth;
2697     break;
2698     case 92:
2699     encodedcontroller = _lev_ctrl_effect2depth;
2700     break;
2701     case 93:
2702     encodedcontroller = _lev_ctrl_effect3depth;
2703     break;
2704     case 94:
2705     encodedcontroller = _lev_ctrl_effect4depth;
2706     break;
2707     case 95:
2708     encodedcontroller = _lev_ctrl_effect5depth;
2709     break;
2710 schoenebeck 2540
2711     // format extension (these controllers are so far only
2712     // supported by LinuxSampler & gigedit) they will *NOT*
2713     // work with Gigasampler/GigaStudio !
2714     case 3:
2715     encodedcontroller = _lev_ctrl_CC3_EXT;
2716     break;
2717     case 6:
2718     encodedcontroller = _lev_ctrl_CC6_EXT;
2719     break;
2720     case 7:
2721     encodedcontroller = _lev_ctrl_CC7_EXT;
2722     break;
2723     case 8:
2724     encodedcontroller = _lev_ctrl_CC8_EXT;
2725     break;
2726     case 9:
2727     encodedcontroller = _lev_ctrl_CC9_EXT;
2728     break;
2729     case 10:
2730     encodedcontroller = _lev_ctrl_CC10_EXT;
2731     break;
2732     case 11:
2733     encodedcontroller = _lev_ctrl_CC11_EXT;
2734     break;
2735     case 14:
2736     encodedcontroller = _lev_ctrl_CC14_EXT;
2737     break;
2738     case 15:
2739     encodedcontroller = _lev_ctrl_CC15_EXT;
2740     break;
2741     case 20:
2742     encodedcontroller = _lev_ctrl_CC20_EXT;
2743     break;
2744     case 21:
2745     encodedcontroller = _lev_ctrl_CC21_EXT;
2746     break;
2747     case 22:
2748     encodedcontroller = _lev_ctrl_CC22_EXT;
2749     break;
2750     case 23:
2751     encodedcontroller = _lev_ctrl_CC23_EXT;
2752     break;
2753     case 24:
2754     encodedcontroller = _lev_ctrl_CC24_EXT;
2755     break;
2756     case 25:
2757     encodedcontroller = _lev_ctrl_CC25_EXT;
2758     break;
2759     case 26:
2760     encodedcontroller = _lev_ctrl_CC26_EXT;
2761     break;
2762     case 27:
2763     encodedcontroller = _lev_ctrl_CC27_EXT;
2764     break;
2765     case 28:
2766     encodedcontroller = _lev_ctrl_CC28_EXT;
2767     break;
2768     case 29:
2769     encodedcontroller = _lev_ctrl_CC29_EXT;
2770     break;
2771     case 30:
2772     encodedcontroller = _lev_ctrl_CC30_EXT;
2773     break;
2774     case 31:
2775     encodedcontroller = _lev_ctrl_CC31_EXT;
2776     break;
2777     case 68:
2778     encodedcontroller = _lev_ctrl_CC68_EXT;
2779     break;
2780     case 69:
2781     encodedcontroller = _lev_ctrl_CC69_EXT;
2782     break;
2783     case 70:
2784     encodedcontroller = _lev_ctrl_CC70_EXT;
2785     break;
2786     case 71:
2787     encodedcontroller = _lev_ctrl_CC71_EXT;
2788     break;
2789     case 72:
2790     encodedcontroller = _lev_ctrl_CC72_EXT;
2791     break;
2792     case 73:
2793     encodedcontroller = _lev_ctrl_CC73_EXT;
2794     break;
2795     case 74:
2796     encodedcontroller = _lev_ctrl_CC74_EXT;
2797     break;
2798     case 75:
2799     encodedcontroller = _lev_ctrl_CC75_EXT;
2800     break;
2801     case 76:
2802     encodedcontroller = _lev_ctrl_CC76_EXT;
2803     break;
2804     case 77:
2805     encodedcontroller = _lev_ctrl_CC77_EXT;
2806     break;
2807     case 78:
2808     encodedcontroller = _lev_ctrl_CC78_EXT;
2809     break;
2810     case 79:
2811     encodedcontroller = _lev_ctrl_CC79_EXT;
2812     break;
2813     case 84:
2814     encodedcontroller = _lev_ctrl_CC84_EXT;
2815     break;
2816     case 85:
2817     encodedcontroller = _lev_ctrl_CC85_EXT;
2818     break;
2819     case 86:
2820     encodedcontroller = _lev_ctrl_CC86_EXT;
2821     break;
2822     case 87:
2823     encodedcontroller = _lev_ctrl_CC87_EXT;
2824     break;
2825     case 89:
2826     encodedcontroller = _lev_ctrl_CC89_EXT;
2827     break;
2828     case 90:
2829     encodedcontroller = _lev_ctrl_CC90_EXT;
2830     break;
2831     case 96:
2832     encodedcontroller = _lev_ctrl_CC96_EXT;
2833     break;
2834     case 97:
2835     encodedcontroller = _lev_ctrl_CC97_EXT;
2836     break;
2837     case 102:
2838     encodedcontroller = _lev_ctrl_CC102_EXT;
2839     break;
2840     case 103:
2841     encodedcontroller = _lev_ctrl_CC103_EXT;
2842     break;
2843     case 104:
2844     encodedcontroller = _lev_ctrl_CC104_EXT;
2845     break;
2846     case 105:
2847     encodedcontroller = _lev_ctrl_CC105_EXT;
2848     break;
2849     case 106:
2850     encodedcontroller = _lev_ctrl_CC106_EXT;
2851     break;
2852     case 107:
2853     encodedcontroller = _lev_ctrl_CC107_EXT;
2854     break;
2855     case 108:
2856     encodedcontroller = _lev_ctrl_CC108_EXT;
2857     break;
2858     case 109:
2859     encodedcontroller = _lev_ctrl_CC109_EXT;
2860     break;
2861     case 110:
2862     encodedcontroller = _lev_ctrl_CC110_EXT;
2863     break;
2864     case 111:
2865     encodedcontroller = _lev_ctrl_CC111_EXT;
2866     break;
2867     case 112:
2868     encodedcontroller = _lev_ctrl_CC112_EXT;
2869     break;
2870     case 113:
2871     encodedcontroller = _lev_ctrl_CC113_EXT;
2872     break;
2873     case 114:
2874     encodedcontroller = _lev_ctrl_CC114_EXT;
2875     break;
2876     case 115:
2877     encodedcontroller = _lev_ctrl_CC115_EXT;
2878     break;
2879     case 116:
2880     encodedcontroller = _lev_ctrl_CC116_EXT;
2881     break;
2882     case 117:
2883     encodedcontroller = _lev_ctrl_CC117_EXT;
2884     break;
2885     case 118:
2886     encodedcontroller = _lev_ctrl_CC118_EXT;
2887     break;
2888     case 119:
2889     encodedcontroller = _lev_ctrl_CC119_EXT;
2890     break;
2891    
2892 schoenebeck 809 default:
2893     throw gig::Exception("leverage controller number is not supported by the gig format");
2894     }
2895 persson 1182 break;
2896 schoenebeck 809 default:
2897     throw gig::Exception("Unknown leverage controller type.");
2898     }
2899     return encodedcontroller;
2900     }
2901    
2902 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2903     Instances--;
2904     if (!Instances) {
2905     // delete the velocity->volume tables
2906     VelocityTableMap::iterator iter;
2907     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2908     double* pTable = iter->second;
2909     if (pTable) delete[] pTable;
2910     }
2911     pVelocityTables->clear();
2912     delete pVelocityTables;
2913     pVelocityTables = NULL;
2914     }
2915 persson 858 if (VelocityTable) delete[] VelocityTable;
2916 schoenebeck 16 }
2917 schoenebeck 2
2918 schoenebeck 16 /**
2919     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2920     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2921     * and VelocityResponseCurveScaling) involved are taken into account to
2922     * calculate the amplitude factor. Use this method when a key was
2923     * triggered to get the volume with which the sample should be played
2924     * back.
2925     *
2926 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2927     * @returns amplitude factor (between 0.0 and 1.0)
2928 schoenebeck 16 */
2929     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2930     return pVelocityAttenuationTable[MIDIKeyVelocity];
2931     }
2932 schoenebeck 2
2933 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2934     return pVelocityReleaseTable[MIDIKeyVelocity];
2935     }
2936    
2937 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2938     return pVelocityCutoffTable[MIDIKeyVelocity];
2939     }
2940    
2941 schoenebeck 1358 /**
2942     * Updates the respective member variable and the lookup table / cache
2943     * that depends on this value.
2944     */
2945     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2946     pVelocityAttenuationTable =
2947     GetVelocityTable(
2948     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2949     );
2950     VelocityResponseCurve = curve;
2951     }
2952    
2953     /**
2954     * Updates the respective member variable and the lookup table / cache
2955     * that depends on this value.
2956     */
2957     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2958     pVelocityAttenuationTable =
2959     GetVelocityTable(
2960     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2961     );
2962     VelocityResponseDepth = depth;
2963     }
2964    
2965     /**
2966     * Updates the respective member variable and the lookup table / cache
2967     * that depends on this value.
2968     */
2969     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2970     pVelocityAttenuationTable =
2971     GetVelocityTable(
2972     VelocityResponseCurve, VelocityResponseDepth, scaling
2973     );
2974     VelocityResponseCurveScaling = scaling;
2975     }
2976    
2977     /**
2978     * Updates the respective member variable and the lookup table / cache
2979     * that depends on this value.
2980     */
2981     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2982     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2983     ReleaseVelocityResponseCurve = curve;
2984     }
2985    
2986     /**
2987     * Updates the respective member variable and the lookup table / cache
2988     * that depends on this value.
2989     */
2990     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2991     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2992     ReleaseVelocityResponseDepth = depth;
2993     }
2994    
2995     /**
2996     * Updates the respective member variable and the lookup table / cache
2997     * that depends on this value.
2998     */
2999     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3000     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3001     VCFCutoffController = controller;
3002     }
3003    
3004     /**
3005     * Updates the respective member variable and the lookup table / cache
3006     * that depends on this value.
3007     */
3008     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3009     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3010     VCFVelocityCurve = curve;
3011     }
3012    
3013     /**
3014     * Updates the respective member variable and the lookup table / cache
3015     * that depends on this value.
3016     */
3017     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3018     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3019     VCFVelocityDynamicRange = range;
3020     }
3021    
3022     /**
3023     * Updates the respective member variable and the lookup table / cache
3024     * that depends on this value.
3025     */
3026     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3027     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3028     VCFVelocityScale = scaling;
3029     }
3030    
3031 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3032 schoenebeck 317
3033 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3034 schoenebeck 16
3035 schoenebeck 308 // linear
3036     const int lin0[] = { 1, 1, 127, 127 };
3037     const int lin1[] = { 1, 21, 127, 127 };
3038     const int lin2[] = { 1, 45, 127, 127 };
3039     const int lin3[] = { 1, 74, 127, 127 };
3040     const int lin4[] = { 1, 127, 127, 127 };
3041 schoenebeck 16
3042 schoenebeck 308 // non-linear
3043     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3044 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3045 schoenebeck 308 127, 127 };
3046     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3047     127, 127 };
3048     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3049     127, 127 };
3050     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3051 schoenebeck 317
3052 schoenebeck 308 // special
3053 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3054 schoenebeck 308 113, 127, 127, 127 };
3055     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3056     118, 127, 127, 127 };
3057 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3058 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3059 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3060 schoenebeck 308 117, 127, 127, 127 };
3061 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3062 schoenebeck 308 127, 127 };
3063 schoenebeck 317
3064 persson 728 // this is only used by the VCF velocity curve
3065     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3066     91, 127, 127, 127 };
3067    
3068 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3069 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3070 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3071 schoenebeck 317
3072 schoenebeck 308 double* const table = new double[128];
3073    
3074     const int* curve = curves[curveType * 5 + depth];
3075     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3076 schoenebeck 317
3077 schoenebeck 308 table[0] = 0;
3078     for (int x = 1 ; x < 128 ; x++) {
3079    
3080     if (x > curve[2]) curve += 2;
3081 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3082 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3083     y = y / 127;
3084    
3085     // Scale up for s > 20, down for s < 20. When
3086     // down-scaling, the curve still ends at 1.0.
3087     if (s < 20 && y >= 0.5)
3088     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3089     else
3090     y = y * (s / 20.0);
3091     if (y > 1) y = 1;
3092    
3093     table[x] = y;
3094     }
3095     return table;
3096     }
3097    
3098    
3099 schoenebeck 2 // *************** Region ***************
3100     // *
3101    
3102     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3103     // Initialization
3104     Dimensions = 0;
3105 schoenebeck 347 for (int i = 0; i < 256; i++) {
3106 schoenebeck 2 pDimensionRegions[i] = NULL;
3107     }
3108 schoenebeck 282 Layers = 1;
3109 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3110     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3111 schoenebeck 2
3112     // Actual Loading
3113    
3114 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3115    
3116 schoenebeck 2 LoadDimensionRegions(rgnList);
3117    
3118     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3119     if (_3lnk) {
3120     DimensionRegions = _3lnk->ReadUint32();
3121 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3122 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3123     uint8_t bits = _3lnk->ReadUint8();
3124 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3125     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3126 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3127 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3128     pDimensionDefinitions[i].dimension = dimension_none;
3129     pDimensionDefinitions[i].bits = 0;
3130     pDimensionDefinitions[i].zones = 0;
3131     pDimensionDefinitions[i].split_type = split_type_bit;
3132     pDimensionDefinitions[i].zone_size = 0;
3133     }
3134     else { // active dimension
3135     pDimensionDefinitions[i].dimension = dimension;
3136     pDimensionDefinitions[i].bits = bits;
3137 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3138 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3139     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3140 schoenebeck 2 Dimensions++;
3141 schoenebeck 282
3142     // if this is a layer dimension, remember the amount of layers
3143     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3144 schoenebeck 2 }
3145 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3146 schoenebeck 2 }
3147 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3148 schoenebeck 2
3149 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3150     // update the VelocityTables in the dimension regions
3151     UpdateVelocityTable();
3152 schoenebeck 2
3153 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3154     if (file->pVersion && file->pVersion->major == 3)
3155     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3156     else
3157     _3lnk->SetPos(44);
3158    
3159 schoenebeck 1524 // load sample references (if auto loading is enabled)
3160     if (file->GetAutoLoad()) {
3161     for (uint i = 0; i < DimensionRegions; i++) {
3162     uint32_t wavepoolindex = _3lnk->ReadUint32();
3163     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3164     }
3165     GetSample(); // load global region sample reference
3166 schoenebeck 2 }
3167 persson 1102 } else {
3168     DimensionRegions = 0;
3169 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3170     pDimensionDefinitions[i].dimension = dimension_none;
3171     pDimensionDefinitions[i].bits = 0;
3172     pDimensionDefinitions[i].zones = 0;
3173     }
3174 schoenebeck 2 }
3175 schoenebeck 823
3176     // make sure there is at least one dimension region
3177     if (!DimensionRegions) {
3178     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3179     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3180     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3181 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3182 schoenebeck 823 DimensionRegions = 1;
3183     }
3184 schoenebeck 2 }
3185    
3186 schoenebeck 809 /**
3187     * Apply Region settings and all its DimensionRegions to the respective
3188     * RIFF chunks. You have to call File::Save() to make changes persistent.
3189     *
3190     * Usually there is absolutely no need to call this method explicitly.
3191     * It will be called automatically when File::Save() was called.
3192     *
3193 schoenebeck 2682 * @param pProgress - callback function for progress notification
3194 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3195     */
3196 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3197 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3198     // but we still have to provide some existing one to not corrupt the
3199     // file, so to avoid the latter we simply always assign the sample of
3200     // the first dimension region of this region
3201     pSample = pDimensionRegions[0]->pSample;
3202    
3203 schoenebeck 809 // first update base class's chunks
3204 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3205 schoenebeck 809
3206     // update dimension region's chunks
3207 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3208 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3209 schoenebeck 823 }
3210 schoenebeck 809
3211 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3212     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3213 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3214     const int iMaxDimensionRegions = version3 ? 256 : 32;
3215 schoenebeck 809
3216     // make sure '3lnk' chunk exists
3217     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3218     if (!_3lnk) {
3219 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3220 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3221 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3222 persson 1192
3223     // move 3prg to last position
3224 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3225 schoenebeck 809 }
3226    
3227     // update dimension definitions in '3lnk' chunk
3228     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3229 persson 1179 store32(&pData[0], DimensionRegions);
3230 persson 1199 int shift = 0;
3231 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3232 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3233     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3234 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3235 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3236 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3237 persson 1199 // next 3 bytes unknown, always zero?
3238    
3239     shift += pDimensionDefinitions[i].bits;
3240 schoenebeck 809 }
3241    
3242     // update wave pool table in '3lnk' chunk
3243 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3244 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3245     int iWaveIndex = -1;
3246     if (i < DimensionRegions) {
3247 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3248     File::SampleList::iterator iter = pFile->pSamples->begin();
3249     File::SampleList::iterator end = pFile->pSamples->end();
3250 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3251 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3252     iWaveIndex = index;
3253     break;
3254     }
3255 schoenebeck 809 }
3256     }
3257 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3258 schoenebeck 809 }
3259     }
3260    
3261 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3262     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3263     if (_3prg) {
3264     int dimensionRegionNr = 0;
3265     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3266     while (_3ewl) {
3267     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3268 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3269 schoenebeck 2 dimensionRegionNr++;
3270     }
3271     _3ewl = _3prg->GetNextSubList();
3272     }
3273     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3274     }
3275     }
3276    
3277 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3278     // update KeyRange struct and make sure regions are in correct order
3279     DLS::Region::SetKeyRange(Low, High);
3280     // update Region key table for fast lookup
3281     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3282     }
3283    
3284 persson 858 void Region::UpdateVelocityTable() {
3285     // get velocity dimension's index
3286     int veldim = -1;
3287     for (int i = 0 ; i < Dimensions ; i++) {
3288     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3289     veldim = i;
3290 schoenebeck 809 break;
3291     }
3292     }
3293 persson 858 if (veldim == -1) return;
3294 schoenebeck 809
3295 persson 858 int step = 1;
3296     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3297     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3298 schoenebeck 809
3299 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3300     int dim[8] = { 0 };
3301     for (int i = 0 ; i < DimensionRegions ; i++) {
3302 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3303 persson 858
3304 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3305 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3306     pDimensionRegions[i]->VelocityUpperLimit) {
3307 persson 858 // create the velocity table
3308     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3309     if (!table) {
3310     table = new uint8_t[128];
3311     pDimensionRegions[i]->VelocityTable = table;
3312     }
3313     int tableidx = 0;
3314     int velocityZone = 0;
3315 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3316     for (int k = i ; k < end ; k += step) {
3317     DimensionRegion *d = pDimensionRegions[k];
3318     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3319     velocityZone++;
3320     }
3321     } else { // gig2
3322     for (int k = i ; k < end ; k += step) {
3323     DimensionRegion *d = pDimensionRegions[k];
3324     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3325     velocityZone++;
3326     }
3327 persson 858 }
3328     } else {
3329     if (pDimensionRegions[i]->VelocityTable) {
3330     delete[] pDimensionRegions[i]->VelocityTable;
3331     pDimensionRegions[i]->VelocityTable = 0;
3332     }
3333 schoenebeck 809 }
3334 persson 858
3335 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3336 persson 858 int j;
3337     int shift = 0;
3338     for (j = 0 ; j < Dimensions ; j++) {
3339     if (j == veldim) i += skipveldim; // skip velocity dimension
3340     else {
3341     dim[j]++;
3342     if (dim[j] < pDimensionDefinitions[j].zones) break;
3343     else {
3344     // skip unused dimension regions
3345     dim[j] = 0;
3346     i += ((1 << pDimensionDefinitions[j].bits) -
3347     pDimensionDefinitions[j].zones) << shift;
3348     }
3349     }
3350     shift += pDimensionDefinitions[j].bits;
3351     }
3352     if (j == Dimensions) break;
3353 schoenebeck 809 }
3354     }
3355    
3356     /** @brief Einstein would have dreamed of it - create a new dimension.
3357     *
3358     * Creates a new dimension with the dimension definition given by
3359     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3360     * There is a hard limit of dimensions and total amount of "bits" all
3361     * dimensions can have. This limit is dependant to what gig file format
3362     * version this file refers to. The gig v2 (and lower) format has a
3363     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3364     * format has a limit of 8.
3365     *
3366     * @param pDimDef - defintion of the new dimension
3367     * @throws gig::Exception if dimension of the same type exists already
3368     * @throws gig::Exception if amount of dimensions or total amount of
3369     * dimension bits limit is violated
3370     */
3371     void Region::AddDimension(dimension_def_t* pDimDef) {
3372 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3373     if (pDimDef->zones < 2)
3374     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3375     if (pDimDef->bits < 1)
3376     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3377     if (pDimDef->dimension == dimension_samplechannel) {
3378     if (pDimDef->zones != 2)
3379     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3380     if (pDimDef->bits != 1)
3381     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3382     }
3383    
3384 schoenebeck 809 // check if max. amount of dimensions reached
3385     File* file = (File*) GetParent()->GetParent();
3386     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3387     if (Dimensions >= iMaxDimensions)
3388     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3389     // check if max. amount of dimension bits reached
3390     int iCurrentBits = 0;
3391     for (int i = 0; i < Dimensions; i++)
3392     iCurrentBits += pDimensionDefinitions[i].bits;
3393     if (iCurrentBits >= iMaxDimensions)
3394     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3395     const int iNewBits = iCurrentBits + pDimDef->bits;
3396     if (iNewBits > iMaxDimensions)
3397     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3398     // check if there's already a dimensions of the same type
3399     for (int i = 0; i < Dimensions; i++)
3400     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3401     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3402    
3403 persson 1301 // pos is where the new dimension should be placed, normally
3404     // last in list, except for the samplechannel dimension which
3405     // has to be first in list
3406     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3407     int bitpos = 0;
3408     for (int i = 0 ; i < pos ; i++)
3409     bitpos += pDimensionDefinitions[i].bits;
3410    
3411     // make room for the new dimension
3412     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3413     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3414     for (int j = Dimensions ; j > pos ; j--) {
3415     pDimensionRegions[i]->DimensionUpperLimits[j] =
3416     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3417     }
3418     }
3419    
3420 schoenebeck 809 // assign definition of new dimension
3421 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3422 schoenebeck 809
3423 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3424 persson 1301 pDimensionDefinitions[pos].split_type =
3425     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3426     pDimensionDefinitions[pos].zone_size =
3427     __resolveZoneSize(pDimensionDefinitions[pos]);
3428 schoenebeck 1113
3429 persson 1301 // create new dimension region(s) for this new dimension, and make
3430     // sure that the dimension regions are placed correctly in both the
3431     // RIFF list and the pDimensionRegions array
3432     RIFF::Chunk* moveTo = NULL;
3433     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3434     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3435     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3436     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3437     }
3438     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3439     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3440     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3441     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3442     // create a new dimension region and copy all parameter values from
3443     // an existing dimension region
3444     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3445     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3446 persson 1247
3447 persson 1301 DimensionRegions++;
3448     }
3449     }
3450     moveTo = pDimensionRegions[i]->pParentList;
3451 schoenebeck 809 }
3452    
3453 persson 1247 // initialize the upper limits for this dimension
3454 persson 1301 int mask = (1 << bitpos) - 1;
3455     for (int z = 0 ; z < pDimDef->zones ; z++) {
3456 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3457 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3458 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3459     (z << bitpos) |
3460     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3461 persson 1247 }
3462     }
3463    
3464 schoenebeck 809 Dimensions++;
3465    
3466     // if this is a layer dimension, update 'Layers' attribute
3467     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3468    
3469 persson 858 UpdateVelocityTable();
3470 schoenebeck 809 }
3471    
3472     /** @brief Delete an existing dimension.
3473     *
3474     * Deletes the dimension given by \a pDimDef and deletes all respective
3475     * dimension regions, that is all dimension regions where the dimension's
3476     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3477     * for example this would delete all dimension regions for the case(s)
3478     * where the sustain pedal is pressed down.
3479     *
3480     * @param pDimDef - dimension to delete
3481     * @throws gig::Exception if given dimension cannot be found
3482     */
3483     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3484     // get dimension's index
3485     int iDimensionNr = -1;
3486     for (int i = 0; i < Dimensions; i++) {
3487     if (&pDimensionDefinitions[i] == pDimDef) {
3488     iDimensionNr = i;
3489     break;
3490     }
3491     }
3492     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3493    
3494     // get amount of bits below the dimension to delete
3495     int iLowerBits = 0;
3496     for (int i = 0; i < iDimensionNr; i++)
3497     iLowerBits += pDimensionDefinitions[i].bits;
3498    
3499     // get amount ot bits above the dimension to delete
3500     int iUpperBits = 0;
3501     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3502     iUpperBits += pDimensionDefinitions[i].bits;
3503    
3504 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3505    
3506 schoenebeck 809 // delete dimension regions which belong to the given dimension
3507     // (that is where the dimension's bit > 0)
3508     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3509     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3510     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3511     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3512     iObsoleteBit << iLowerBits |
3513     iLowerBit;
3514 persson 1247
3515     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3516 schoenebeck 809 delete pDimensionRegions[iToDelete];
3517     pDimensionRegions[iToDelete] = NULL;
3518     DimensionRegions--;
3519     }
3520     }
3521     }
3522    
3523     // defrag pDimensionRegions array
3524     // (that is remove the NULL spaces within the pDimensionRegions array)
3525     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3526     if (!pDimensionRegions[iTo]) {
3527     if (iFrom <= iTo) iFrom = iTo + 1;
3528     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3529     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3530     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3531     pDimensionRegions[iFrom] = NULL;
3532     }
3533     }
3534     }
3535    
3536 persson 1247 // remove the this dimension from the upper limits arrays
3537     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3538     DimensionRegion* d = pDimensionRegions[j];
3539     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3540     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3541     }
3542     d->DimensionUpperLimits[Dimensions - 1] = 127;
3543     }
3544    
3545 schoenebeck 809 // 'remove' dimension definition
3546     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3547     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3548     }
3549     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3550     pDimensionDefinitions[Dimensions - 1].bits = 0;
3551     pDimensionDefinitions[Dimensions - 1].zones = 0;
3552    
3553     Dimensions--;
3554    
3555     // if this was a layer dimension, update 'Layers' attribute
3556     if (pDimDef->dimension == dimension_layer) Layers = 1;
3557     }
3558    
3559 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3560     *
3561     * Instead of deleting an entire dimensions, this method will only delete
3562     * one particular split zone given by @a zone of the Region's dimension
3563     * given by @a type. So this method will simply decrement the amount of
3564     * zones by one of the dimension in question. To be able to do that, the
3565     * respective dimension must exist on this Region and it must have at least
3566     * 3 zones. All DimensionRegion objects associated with the zone will be
3567     * deleted.
3568     *
3569     * @param type - identifies the dimension where a zone shall be deleted
3570     * @param zone - index of the dimension split zone that shall be deleted
3571     * @throws gig::Exception if requested zone could not be deleted
3572     */
3573     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3574     dimension_def_t* oldDef = GetDimensionDefinition(type);
3575     if (!oldDef)
3576     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3577     if (oldDef->zones <= 2)
3578     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3579     if (zone < 0 || zone >= oldDef->zones)
3580     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3581    
3582     const int newZoneSize = oldDef->zones - 1;
3583    
3584     // create a temporary Region which just acts as a temporary copy
3585     // container and will be deleted at the end of this function and will
3586     // also not be visible through the API during this process
3587     gig::Region* tempRgn = NULL;
3588     {
3589     // adding these temporary chunks is probably not even necessary
3590     Instrument* instr = static_cast<Instrument*>(GetParent());
3591     RIFF::List* pCkInstrument = instr->pCkInstrument;
3592     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3593     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3594     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3595     tempRgn = new Region(instr, rgn);
3596     }
3597    
3598     // copy this region's dimensions (with already the dimension split size
3599     // requested by the arguments of this method call) to the temporary
3600     // region, and don't use Region::CopyAssign() here for this task, since
3601     // it would also alter fast lookup helper variables here and there
3602     dimension_def_t newDef;
3603     for (int i = 0; i < Dimensions; ++i) {
3604     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3605     // is this the dimension requested by the method arguments? ...
3606     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3607     def.zones = newZoneSize;
3608     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3609     newDef = def;
3610     }
3611     tempRgn->AddDimension(&def);
3612     }
3613    
3614     // find the dimension index in the tempRegion which is the dimension
3615     // type passed to this method (paranoidly expecting different order)
3616     int tempReducedDimensionIndex = -1;
3617     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3618     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3619     tempReducedDimensionIndex = d;
3620     break;
3621     }
3622     }
3623    
3624     // copy dimension regions from this region to the temporary region
3625     for (int iDst = 0; iDst < 256; ++iDst) {
3626     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3627     if (!dstDimRgn) continue;
3628     std::map<dimension_t,int> dimCase;
3629     bool isValidZone = true;
3630     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3631     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3632     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3633     (iDst >> baseBits) & ((1 << dstBits) - 1);
3634     baseBits += dstBits;
3635     // there are also DimensionRegion objects of unused zones, skip them
3636     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3637     isValidZone = false;
3638     break;
3639     }
3640     }
3641     if (!isValidZone) continue;
3642     // a bit paranoid: cope with the chance that the dimensions would
3643     // have different order in source and destination regions
3644     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3645     if (dimCase[type] >= zone) dimCase[type]++;
3646     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3647     dstDimRgn->CopyAssign(srcDimRgn);
3648     // if this is the upper most zone of the dimension passed to this
3649     // method, then correct (raise) its upper limit to 127
3650     if (newDef.split_type == split_type_normal && isLastZone)
3651     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3652     }
3653    
3654     // now tempRegion's dimensions and DimensionRegions basically reflect
3655     // what we wanted to get for this actual Region here, so we now just
3656     // delete and recreate the dimension in question with the new amount
3657     // zones and then copy back from tempRegion
3658     DeleteDimension(oldDef);
3659     AddDimension(&newDef);
3660     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3661     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3662     if (!srcDimRgn) continue;
3663     std::map<dimension_t,int> dimCase;
3664     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3665     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3666     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3667     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3668     baseBits += srcBits;
3669     }
3670     // a bit paranoid: cope with the chance that the dimensions would
3671     // have different order in source and destination regions
3672     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3673     if (!dstDimRgn) continue;
3674     dstDimRgn->CopyAssign(srcDimRgn);
3675     }
3676    
3677     // delete temporary region
3678     delete tempRgn;
3679 schoenebeck 2557
3680     UpdateVelocityTable();
3681 schoenebeck 2555 }
3682    
3683     /** @brief Divide split zone of a dimension in two (increment zone amount).
3684     *
3685     * This will increment the amount of zones for the dimension (given by
3686     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3687     * in the middle of its zone range in two. So the two zones resulting from
3688     * the zone being splitted, will be an equivalent copy regarding all their
3689     * articulation informations and sample reference. The two zones will only
3690     * differ in their zone's upper limit
3691     * (DimensionRegion::DimensionUpperLimits).
3692     *
3693     * @param type - identifies the dimension where a zone shall be splitted
3694     * @param zone - index of the dimension split zone that shall be splitted
3695     * @throws gig::Exception if requested zone could not be splitted
3696     */
3697     void Region::SplitDimensionZone(dimension_t type, int zone) {
3698     dimension_def_t* oldDef = GetDimensionDefinition(type);
3699     if (!oldDef)
3700     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3701     if (zone < 0 || zone >= oldDef->zones)
3702     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3703    
3704     const int newZoneSize = oldDef->zones + 1;
3705    
3706     // create a temporary Region which just acts as a temporary copy
3707     // container and will be deleted at the end of this function and will
3708     // also not be visible through the API during this process
3709     gig::Region* tempRgn = NULL;
3710     {
3711     // adding these temporary chunks is probably not even necessary
3712     Instrument* instr = static_cast<Instrument*>(GetParent());
3713     RIFF::List* pCkInstrument = instr->pCkInstrument;
3714     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3715     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3716     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3717     tempRgn = new Region(instr, rgn);
3718     }
3719    
3720     // copy this region's dimensions (with already the dimension split size
3721     // requested by the arguments of this method call) to the temporary
3722     // region, and don't use Region::CopyAssign() here for this task, since
3723     // it would also alter fast lookup helper variables here and there
3724     dimension_def_t newDef;
3725     for (int i = 0; i < Dimensions; ++i) {
3726     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3727     // is this the dimension requested by the method arguments? ...
3728     if (def.dimension == type) { // ... if yes, increment zone amount by one
3729     def.zones = newZoneSize;
3730     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3731     newDef = def;
3732     }
3733     tempRgn->AddDimension(&def);
3734     }
3735    
3736     // find the dimension index in the tempRegion which is the dimension
3737     // type passed to this method (paranoidly expecting different order)
3738     int tempIncreasedDimensionIndex = -1;
3739     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3740     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3741     tempIncreasedDimensionIndex = d;
3742     break;
3743     }
3744     }
3745    
3746     // copy dimension regions from this region to the temporary region
3747     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3748     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3749     if (!srcDimRgn) continue;
3750     std::map<dimension_t,int> dimCase;
3751     bool isValidZone = true;
3752     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3753     const int srcBits = pDimensionDefinitions[d].bits;
3754     dimCase[pDimensionDefinitions[d].dimension] =
3755     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3756     // there are also DimensionRegion objects for unused zones, skip them
3757     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3758     isValidZone = false;
3759     break;
3760     }
3761     baseBits += srcBits;
3762     }
3763     if (!isValidZone) continue;
3764     // a bit paranoid: cope with the chance that the dimensions would
3765     // have different order in source and destination regions
3766     if (dimCase[type] > zone) dimCase[type]++;
3767     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3768     dstDimRgn->CopyAssign(srcDimRgn);
3769     // if this is the requested zone to be splitted, then also copy
3770     // the source DimensionRegion to the newly created target zone
3771     // and set the old zones upper limit lower
3772     if (dimCase[type] == zone) {
3773     // lower old zones upper limit
3774     if (newDef.split_type == split_type_normal) {
3775     const int high =
3776     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3777     int low = 0;
3778     if (zone > 0) {
3779     std::map<dimension_t,int> lowerCase = dimCase;
3780     lowerCase[type]--;
3781     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3782     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3783     }
3784     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3785     }
3786     // fill the newly created zone of the divided zone as well
3787     dimCase[type]++;
3788     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3789     dstDimRgn->CopyAssign(srcDimRgn);
3790     }
3791     }
3792    
3793     // now tempRegion's dimensions and DimensionRegions basically reflect
3794     // what we wanted to get for this actual Region here, so we now just
3795     // delete and recreate the dimension in question with the new amount
3796     // zones and then copy back from tempRegion
3797     DeleteDimension(oldDef);
3798     AddDimension(&newDef);
3799     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3800     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3801     if (!srcDimRgn) continue;
3802     std::map<dimension_t,int> dimCase;
3803     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3804     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3805     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3806     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3807     baseBits += srcBits;
3808     }
3809     // a bit paranoid: cope with the chance that the dimensions would
3810     // have different order in source and destination regions
3811     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3812     if (!dstDimRgn) continue;
3813     dstDimRgn->CopyAssign(srcDimRgn);
3814     }
3815    
3816     // delete temporary region
3817     delete tempRgn;
3818 schoenebeck 2557
3819     UpdateVelocityTable();
3820 schoenebeck 2555 }
3821    
3822 schoenebeck 2639 /** @brief Change type of an existing dimension.
3823     *
3824     * Alters the dimension type of a dimension already existing on this
3825     * region. If there is currently no dimension on this Region with type
3826     * @a oldType, then this call with throw an Exception. Likewise there are
3827     * cases where the requested dimension type cannot be performed. For example
3828     * if the new dimension type shall be gig::dimension_samplechannel, and the
3829     * current dimension has more than 2 zones. In such cases an Exception is
3830     * thrown as well.
3831     *
3832     * @param oldType - identifies the existing dimension to be changed
3833     * @param newType - to which dimension type it should be changed to
3834     * @throws gig::Exception if requested change cannot be performed
3835     */
3836     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3837     if (oldType == newType) return;
3838     dimension_def_t* def = GetDimensionDefinition(oldType);
3839     if (!def)
3840     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3841     if (newType == dimension_samplechannel && def->zones != 2)
3842     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3843 schoenebeck 2640 if (GetDimensionDefinition(newType))
3844     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3845     def->dimension = newType;
3846 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3847     }
3848    
3849 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3850     uint8_t bits[8] = {};
3851     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3852     it != DimCase.end(); ++it)
3853     {
3854     for (int d = 0; d < Dimensions; ++d) {
3855     if (pDimensionDefinitions[d].dimension == it->first) {
3856     bits[d] = it->second;
3857     goto nextDimCaseSlice;
3858     }
3859     }
3860     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3861     nextDimCaseSlice:
3862     ; // noop
3863     }
3864     return GetDimensionRegionByBit(bits);
3865     }
3866    
3867 schoenebeck 2547 /**
3868     * Searches in the current Region for a dimension of the given dimension
3869     * type and returns the precise configuration of that dimension in this
3870     * Region.
3871     *
3872     * @param type - dimension type of the sought dimension
3873     * @returns dimension definition or NULL if there is no dimension with
3874     * sought type in this Region.
3875     */
3876     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3877     for (int i = 0; i < Dimensions; ++i)
3878     if (pDimensionDefinitions[i].dimension == type)
3879     return &pDimensionDefinitions[i];
3880     return NULL;
3881     }
3882    
3883 schoenebeck 2 Region::~Region() {
3884 schoenebeck 350 for (int i = 0; i < 256; i++) {
3885 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3886     }
3887     }
3888    
3889     /**
3890     * Use this method in your audio engine to get the appropriate dimension
3891     * region with it's articulation data for the current situation. Just
3892     * call the method with the current MIDI controller values and you'll get
3893     * the DimensionRegion with the appropriate articulation data for the
3894     * current situation (for this Region of course only). To do that you'll
3895     * first have to look which dimensions with which controllers and in
3896     * which order are defined for this Region when you load the .gig file.
3897     * Special cases are e.g. layer or channel dimensions where you just put
3898     * in the index numbers instead of a MIDI controller value (means 0 for
3899     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3900     * etc.).
3901     *
3902 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3903 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3904     * @see pDimensionDefinitions
3905     * @see Dimensions
3906     */
3907 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3908 persson 858 uint8_t bits;
3909     int veldim = -1;
3910 schoenebeck 3053 int velbitpos = 0;
3911 persson 858 int bitpos = 0;
3912     int dimregidx = 0;
3913 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3914 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3915     // the velocity dimension must be handled after the other dimensions
3916     veldim = i;
3917     velbitpos = bitpos;
3918     } else {
3919     switch (pDimensionDefinitions[i].split_type) {
3920     case split_type_normal:
3921 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3922     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3923     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3924     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3925     }
3926     } else {
3927     // gig2: evenly sized zones
3928     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3929     }
3930 persson 858 break;
3931     case split_type_bit: // the value is already the sought dimension bit number
3932     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3933     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3934     break;
3935     }
3936     dimregidx |= bits << bitpos;
3937 schoenebeck 2 }
3938 persson 858 bitpos += pDimensionDefinitions[i].bits;
3939 schoenebeck 2 }
3940 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3941     if (!dimreg) return NULL;
3942 persson 858 if (veldim != -1) {
3943     // (dimreg is now the dimension region for the lowest velocity)
3944 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
3945 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3946 persson 858 else // normal split type
3947 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3948 persson 858
3949 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3950     dimregidx |= (bits & limiter_mask) << velbitpos;
3951     dimreg = pDimensionRegions[dimregidx & 255];
3952 persson 858 }
3953     return dimreg;
3954 schoenebeck 2 }
3955    
3956 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3957     uint8_t bits;
3958     int veldim = -1;
3959 schoenebeck 3053 int velbitpos = 0;
3960 schoenebeck 2599 int bitpos = 0;
3961     int dimregidx = 0;
3962     for (uint i = 0; i < Dimensions; i++) {
3963     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3964     // the velocity dimension must be handled after the other dimensions
3965     veldim = i;
3966     velbitpos = bitpos;
3967     } else {
3968     switch (pDimensionDefinitions[i].split_type) {
3969     case split_type_normal:
3970     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3971     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3972     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3973     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3974     }
3975     } else {
3976     // gig2: evenly sized zones
3977     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3978     }
3979     break;
3980     case split_type_bit: // the value is already the sought dimension bit number
3981     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3982     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3983     break;
3984     }
3985     dimregidx |= bits << bitpos;
3986     }
3987     bitpos += pDimensionDefinitions[i].bits;
3988     }
3989     dimregidx &= 255;
3990     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3991     if (!dimreg) return -1;
3992     if (veldim != -1) {
3993     // (dimreg is now the dimension region for the lowest velocity)
3994     if (dimreg->VelocityTable) // custom defined zone ranges
3995     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3996     else // normal split type
3997     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3998    
3999     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4000     dimregidx |= (bits & limiter_mask) << velbitpos;
4001     dimregidx &= 255;
4002     }
4003     return dimregidx;
4004     }
4005    
4006 schoenebeck 2 /**
4007     * Returns the appropriate DimensionRegion for the given dimension bit
4008     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4009     * instead of calling this method directly!
4010     *
4011 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4012 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4013     * bit numbers
4014     * @see GetDimensionRegionByValue()
4015     */
4016 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4017     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4018     << pDimensionDefinitions[5].bits | DimBits[5])
4019     << pDimensionDefinitions[4].bits | DimBits[4])
4020     << pDimensionDefinitions[3].bits | DimBits[3])
4021     << pDimensionDefinitions[2].bits | DimBits[2])
4022     << pDimensionDefinitions[1].bits | DimBits[1])
4023     << pDimensionDefinitions[0].bits | DimBits[0]];
4024 schoenebeck 2 }
4025    
4026     /**
4027     * Returns pointer address to the Sample referenced with this region.
4028     * This is the global Sample for the entire Region (not sure if this is
4029     * actually used by the Gigasampler engine - I would only use the Sample
4030     * referenced by the appropriate DimensionRegion instead of this sample).
4031     *
4032     * @returns address to Sample or NULL if there is no reference to a
4033     * sample saved in the .gig file
4034     */
4035     Sample* Region::GetSample() {
4036     if (pSample) return static_cast<gig::Sample*>(pSample);
4037     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4038     }
4039    
4040 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4041 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4042 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4043 persson 902 if (!file->pWavePoolTable) return NULL;
4044 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4045     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4046     // use 64 bit wave pool offsets (treating this as large file)
4047 schoenebeck 2912 uint64_t soughtoffset =
4048     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4049     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4050     Sample* sample = file->GetFirstSample(pProgress);
4051     while (sample) {
4052     if (sample->ullWavePoolOffset == soughtoffset)
4053     return static_cast<gig::Sample*>(sample);
4054     sample = file->GetNextSample();
4055     }
4056     } else {
4057 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4058 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4059     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4060     Sample* sample = file->GetFirstSample(pProgress);
4061     while (sample) {
4062     if (sample->ullWavePoolOffset == soughtoffset &&
4063     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4064     sample = file->GetNextSample();
4065     }
4066 schoenebeck 2 }
4067     return NULL;
4068     }
4069 schoenebeck 2394
4070     /**
4071     * Make a (semi) deep copy of the Region object given by @a orig
4072     * and assign it to this object.
4073     *
4074     * Note that all sample pointers referenced by @a orig are simply copied as
4075     * memory address. Thus the respective samples are shared, not duplicated!
4076     *
4077     * @param orig - original Region object to be copied from
4078     */
4079     void Region::CopyAssign(const Region* orig) {
4080 schoenebeck 2482 CopyAssign(orig, NULL);
4081     }
4082    
4083     /**
4084     * Make a (semi) deep copy of the Region object given by @a orig and
4085     * assign it to this object
4086     *
4087     * @param mSamples - crosslink map between the foreign file's samples and
4088     * this file's samples
4089     */
4090     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4091 schoenebeck 2394 // handle base classes
4092     DLS::Region::CopyAssign(orig);
4093    
4094 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4095     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4096     }
4097    
4098 schoenebeck 2394 // handle own member variables
4099     for (int i = Dimensions - 1; i >= 0; --i) {
4100     DeleteDimension(&pDimensionDefinitions[i]);
4101     }
4102     Layers = 0; // just to be sure
4103     for (int i = 0; i < orig->Dimensions; i++) {
4104     // we need to copy the dim definition here, to avoid the compiler
4105     // complaining about const-ness issue
4106     dimension_def_t def = orig->pDimensionDefinitions[i];
4107     AddDimension(&def);
4108     }
4109     for (int i = 0; i < 256; i++) {
4110     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4111     pDimensionRegions[i]->CopyAssign(
4112 schoenebeck 2482 orig->pDimensionRegions[i],
4113     mSamples
4114 schoenebeck 2394 );
4115     }
4116     }
4117     Layers = orig->Layers;
4118     }
4119 schoenebeck 2
4120    
4121 persson 1627 // *************** MidiRule ***************
4122     // *
4123 schoenebeck 2
4124 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4125     _3ewg->SetPos(36);
4126     Triggers = _3ewg->ReadUint8();
4127     _3ewg->SetPos(40);
4128     ControllerNumber = _3ewg->ReadUint8();
4129     _3ewg->SetPos(46);
4130     for (int i = 0 ; i < Triggers ; i++) {
4131     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4132     pTriggers[i].Descending = _3ewg->ReadUint8();
4133     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4134     pTriggers[i].Key = _3ewg->ReadUint8();
4135     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4136     pTriggers[i].Velocity = _3ewg->ReadUint8();
4137     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4138     _3ewg->ReadUint8();
4139     }
4140 persson 1627 }
4141    
4142 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4143     ControllerNumber(0),
4144     Triggers(0) {
4145     }
4146 persson 1627
4147 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4148     pData[32] = 4;
4149     pData[33] = 16;
4150     pData[36] = Triggers;
4151     pData[40] = ControllerNumber;
4152     for (int i = 0 ; i < Triggers ; i++) {
4153     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4154     pData[47 + i * 8] = pTriggers[i].Descending;
4155     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4156     pData[49 + i * 8] = pTriggers[i].Key;
4157     pData[50 + i * 8] = pTriggers[i].NoteOff;
4158     pData[51 + i * 8] = pTriggers[i].Velocity;
4159     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4160     }
4161     }
4162    
4163     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4164     _3ewg->SetPos(36);
4165     LegatoSamples = _3ewg->ReadUint8(); // always 12
4166     _3ewg->SetPos(40);
4167     BypassUseController = _3ewg->ReadUint8();
4168     BypassKey = _3ewg->ReadUint8();
4169     BypassController = _3ewg->ReadUint8();
4170     ThresholdTime = _3ewg->ReadUint16();
4171     _3ewg->ReadInt16();
4172     ReleaseTime = _3ewg->ReadUint16();
4173     _3ewg->ReadInt16();
4174     KeyRange.low = _3ewg->ReadUint8();
4175     KeyRange.high = _3ewg->ReadUint8();
4176     _3ewg->SetPos(64);
4177     ReleaseTriggerKey = _3ewg->ReadUint8();
4178     AltSustain1Key = _3ewg->ReadUint8();
4179     AltSustain2Key = _3ewg->ReadUint8();
4180     }
4181    
4182     MidiRuleLegato::MidiRuleLegato() :
4183     LegatoSamples(12),
4184     BypassUseController(false),
4185     BypassKey(0),
4186     BypassController(1),
4187     ThresholdTime(20),
4188     ReleaseTime(20),
4189     ReleaseTriggerKey(0),
4190     AltSustain1Key(0),
4191     AltSustain2Key(0)
4192     {
4193     KeyRange.low = KeyRange.high = 0;
4194     }
4195    
4196     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4197     pData[32] = 0;
4198     pData[33] = 16;
4199     pData[36] = LegatoSamples;
4200     pData[40] = BypassUseController;
4201     pData[41] = BypassKey;
4202     pData[42] = BypassController;
4203     store16(&pData[43], ThresholdTime);
4204     store16(&pData[47], ReleaseTime);
4205     pData[51] = KeyRange.low;
4206     pData[52] = KeyRange.high;
4207     pData[64] = ReleaseTriggerKey;
4208     pData[65] = AltSustain1Key;
4209     pData[66] = AltSustain2Key;
4210     }
4211    
4212     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4213     _3ewg->SetPos(36);
4214     Articulations = _3ewg->ReadUint8();
4215     int flags = _3ewg->ReadUint8();
4216     Polyphonic = flags & 8;
4217     Chained = flags & 4;
4218     Selector = (flags & 2) ? selector_controller :
4219     (flags & 1) ? selector_key_switch : selector_none;
4220     Patterns = _3ewg->ReadUint8();
4221     _3ewg->ReadUint8(); // chosen row
4222     _3ewg->ReadUint8(); // unknown
4223     _3ewg->ReadUint8(); // unknown
4224     _3ewg->ReadUint8(); // unknown
4225     KeySwitchRange.low = _3ewg->ReadUint8();
4226     KeySwitchRange.high = _3ewg->ReadUint8();
4227     Controller = _3ewg->ReadUint8();
4228     PlayRange.low = _3ewg->ReadUint8();
4229     PlayRange.high = _3ewg->ReadUint8();
4230    
4231     int n = std::min(int(Articulations), 32);
4232     for (int i = 0 ; i < n ; i++) {
4233     _3ewg->ReadString(pArticulations[i], 32);
4234     }
4235     _3ewg->SetPos(1072);
4236     n = std::min(int(Patterns), 32);
4237     for (int i = 0 ; i < n ; i++) {
4238     _3ewg->ReadString(pPatterns[i].Name, 16);
4239     pPatterns[i].Size = _3ewg->ReadUint8();
4240     _3ewg->Read(&pPatterns[i][0], 1, 32);
4241     }
4242     }
4243    
4244     MidiRuleAlternator::MidiRuleAlternator() :
4245     Articulations(0),
4246     Patterns(0),
4247     Selector(selector_none),
4248     Controller(0),
4249     Polyphonic(false),
4250     Chained(false)
4251     {
4252     PlayRange.low = PlayRange.high = 0;
4253     KeySwitchRange.low = KeySwitchRange.high = 0;
4254     }
4255    
4256     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4257     pData[32] = 3;
4258     pData[33] = 16;
4259     pData[36] = Articulations;
4260     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4261     (Selector == selector_controller ? 2 :
4262     (Selector == selector_key_switch ? 1 : 0));
4263     pData[38] = Patterns;
4264    
4265     pData[43] = KeySwitchRange.low;
4266     pData[44] = KeySwitchRange.high;
4267     pData[45] = Controller;
4268     pData[46] = PlayRange.low;
4269     pData[47] = PlayRange.high;
4270    
4271     char* str = reinterpret_cast<char*>(pData);
4272     int pos = 48;
4273     int n = std::min(int(Articulations), 32);
4274     for (int i = 0 ; i < n ; i++, pos += 32) {
4275     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4276     }
4277    
4278     pos = 1072;
4279     n = std::min(int(Patterns), 32);
4280     for (int i = 0 ; i < n ; i++, pos += 49) {
4281     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4282     pData[pos + 16] = pPatterns[i].Size;
4283     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4284     }
4285     }
4286    
4287 schoenebeck 2584 // *************** Script ***************
4288     // *
4289    
4290     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4291     pGroup = group;
4292     pChunk = ckScri;
4293     if (ckScri) { // object is loaded from file ...
4294     // read header
4295     uint32_t headerSize = ckScri->ReadUint32();
4296     Compression = (Compression_t) ckScri->ReadUint32();
4297     Encoding = (Encoding_t) ckScri->ReadUint32();
4298     Language = (Language_t) ckScri->ReadUint32();
4299     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4300     crc = ckScri->ReadUint32();
4301     uint32_t nameSize = ckScri->ReadUint32();
4302     Name.resize(nameSize, ' ');
4303     for (int i = 0; i < nameSize; ++i)
4304     Name[i] = ckScri->ReadUint8();
4305     // to handle potential future extensions of the header
4306 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4307 schoenebeck 2584 // read actual script data
4308 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4309 schoenebeck 2584 data.resize(scriptSize);
4310     for (int i = 0; i < scriptSize; ++i)
4311     data[i] = ckScri->ReadUint8();
4312     } else { // this is a new script object, so just initialize it as such ...
4313     Compression = COMPRESSION_NONE;
4314     Encoding = ENCODING_ASCII;
4315     Language = LANGUAGE_NKSP;
4316     Bypass = false;
4317     crc = 0;
4318     Name = "Unnamed Script";
4319     }
4320     }
4321    
4322     Script::~Script() {
4323     }
4324    
4325     /**
4326     * Returns the current script (i.e. as source code) in text format.
4327     */
4328     String Script::GetScriptAsText() {
4329     String s;
4330     s.resize(data.size(), ' ');
4331     memcpy(&s[0], &data[0], data.size());
4332     return s;
4333     }
4334    
4335     /**
4336     * Replaces the current script with the new script source code text given
4337     * by @a text.
4338     *
4339     * @param text - new script source code
4340     */
4341     void Script::SetScriptAsText(const String& text) {
4342     data.resize(text.size());
4343     memcpy(&data[0], &text[0], text.size());
4344     }
4345    
4346 schoenebeck 2682 /**
4347     * Apply this script to the respective RIFF chunks. You have to call
4348     * File::Save() to make changes persistent.
4349     *
4350     * Usually there is absolutely no need to call this method explicitly.
4351     * It will be called automatically when File::Save() was called.
4352     *
4353     * @param pProgress - callback function for progress notification
4354     */
4355     void Script::UpdateChunks(progress_t* pProgress) {
4356 schoenebeck 2584 // recalculate CRC32 check sum
4357     __resetCRC(crc);
4358     __calculateCRC(&data[0], data.size(), crc);
4359 schoenebeck 3115 __finalizeCRC(crc);
4360 schoenebeck 2584 // make sure chunk exists and has the required size
4361 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4362 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4363     else pChunk->Resize(chunkSize);
4364     // fill the chunk data to be written to disk
4365     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4366     int pos = 0;
4367 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4368 schoenebeck 2584 pos += sizeof(int32_t);
4369     store32(&pData[pos], Compression);
4370     pos += sizeof(int32_t);
4371     store32(&pData[pos], Encoding);
4372     pos += sizeof(int32_t);
4373     store32(&pData[pos], Language);
4374     pos += sizeof(int32_t);
4375     store32(&pData[pos], Bypass ? 1 : 0);
4376     pos += sizeof(int32_t);
4377     store32(&pData[pos], crc);
4378     pos += sizeof(int32_t);
4379 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4380 schoenebeck 2584 pos += sizeof(int32_t);
4381     for (int i = 0; i < Name.size(); ++i, ++pos)
4382     pData[pos] = Name[i];
4383     for (int i = 0; i < data.size(); ++i, ++pos)
4384     pData[pos] = data[i];
4385     }
4386    
4387     /**
4388     * Move this script from its current ScriptGroup to another ScriptGroup
4389     * given by @a pGroup.
4390     *
4391     * @param pGroup - script's new group
4392     */
4393     void Script::SetGroup(ScriptGroup* pGroup) {
4394 persson 2836 if (this->pGroup == pGroup) return;
4395 schoenebeck 2584 if (pChunk)
4396     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4397     this->pGroup = pGroup;
4398     }
4399    
4400 schoenebeck 2601 /**
4401     * Returns the script group this script currently belongs to. Each script
4402     * is a member of exactly one ScriptGroup.
4403     *
4404     * @returns current script group
4405     */
4406     ScriptGroup* Script::GetGroup() const {
4407     return pGroup;
4408     }
4409    
4410 schoenebeck 3117 /**
4411     * Make a (semi) deep copy of the Script object given by @a orig
4412     * and assign it to this object. Note: the ScriptGroup this Script
4413     * object belongs to remains untouched by this call.
4414     *
4415     * @param orig - original Script object to be copied from
4416     */
4417     void Script::CopyAssign(const Script* orig) {
4418     Name = orig->Name;
4419     Compression = orig->Compression;
4420     Encoding = orig->Encoding;
4421     Language = orig->Language;
4422     Bypass = orig->Bypass;
4423     data = orig->data;
4424     }
4425    
4426 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4427     File* pFile = pGroup->pFile;
4428     for (int i = 0; pFile->GetInstrument(i); ++i) {
4429     Instrument* instr = pFile->GetInstrument(i);
4430     instr->RemoveScript(this);
4431     }
4432     }
4433    
4434     // *************** ScriptGroup ***************
4435     // *
4436    
4437     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4438     pFile = file;
4439     pList = lstRTIS;
4440     pScripts = NULL;
4441     if (lstRTIS) {
4442     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4443     ::LoadString(ckName, Name);
4444     } else {
4445     Name = "Default Group";
4446     }
4447     }
4448    
4449     ScriptGroup::~ScriptGroup() {
4450     if (pScripts) {
4451     std::list<Script*>::iterator iter = pScripts->begin();
4452     std::list<Script*>::iterator end = pScripts->end();
4453     while (iter != end) {
4454     delete *iter;
4455     ++iter;
4456     }
4457     delete pScripts;
4458     }
4459     }
4460    
4461 schoenebeck 2682 /**
4462     * Apply this script group to the respective RIFF chunks. You have to call
4463     * File::Save() to make changes persistent.
4464     *
4465     * Usually there is absolutely no need to call this method explicitly.
4466     * It will be called automatically when File::Save() was called.
4467     *
4468     * @param pProgress - callback function for progress notification
4469     */
4470     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4471 schoenebeck 2584 if (pScripts) {
4472     if (!pList)
4473     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4474    
4475     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4476     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4477    
4478     for (std::list<Script*>::iterator it = pScripts->begin();
4479     it != pScripts->end(); ++it)
4480     {
4481 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4482 schoenebeck 2584 }
4483     }
4484     }
4485    
4486     /** @brief Get instrument script.
4487     *
4488     * Returns the real-time instrument script with the given index.
4489     *
4490     * @param index - number of the sought script (0..n)
4491     * @returns sought script or NULL if there's no such script
4492     */
4493     Script* ScriptGroup::GetScript(uint index) {
4494     if (!pScripts) LoadScripts();
4495     std::list<Script*>::iterator it = pScripts->begin();
4496     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4497     if (i == index) return *it;
4498     return NULL;
4499     }
4500    
4501     /** @brief Add new instrument script.
4502     *
4503     * Adds a new real-time instrument script to the file. The script is not
4504     * actually used / executed unless it is referenced by an instrument to be
4505     * used. This is similar to samples, which you can add to a file, without
4506     * an instrument necessarily actually using it.
4507     *
4508     * You have to call Save() to make this persistent to the file.
4509     *
4510     * @return new empty script object
4511     */
4512     Script* ScriptGroup::AddScript() {
4513     if (!pScripts) LoadScripts();
4514     Script* pScript = new Script(this, NULL);
4515     pScripts->push_back(pScript);
4516     return pScript;
4517     }
4518    
4519     /** @brief Delete an instrument script.
4520     *
4521     * This will delete the given real-time instrument script. References of
4522     * instruments that are using that script will be removed accordingly.
4523     *
4524     * You have to call Save() to make this persistent to the file.
4525     *
4526     * @param pScript - script to delete
4527     * @throws gig::Exception if given script could not be found
4528     */
4529     void ScriptGroup::DeleteScript(Script* pScript) {
4530     if (!pScripts) LoadScripts();
4531     std::list<Script*>::iterator iter =
4532     find(pScripts->begin(), pScripts->end(), pScript);
4533     if (iter == pScripts->end())
4534     throw gig::Exception("Could not delete script, could not find given script");
4535     pScripts->erase(iter);
4536     pScript->RemoveAllScriptReferences();
4537     if (pScript->pChunk)
4538     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4539     delete pScript;
4540     }
4541    
4542     void ScriptGroup::LoadScripts() {
4543     if (pScripts) return;
4544     pScripts = new std::list<Script*>;
4545     if (!pList) return;
4546    
4547     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4548     ck = pList->GetNextSubChunk())
4549     {
4550     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4551     pScripts->push_back(new Script(this, ck));
4552     }
4553     }
4554     }
4555    
4556 schoenebeck 2 // *************** Instrument ***************
4557     // *
4558    
4559 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4560 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4561 persson 1180 { CHUNK_ID_INAM, 64 },
4562     { CHUNK_ID_ISFT, 12 },
4563     { 0, 0 }
4564     };
4565 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4566 persson 918
4567 schoenebeck 2 // Initialization
4568     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4569 persson 1182 EffectSend = 0;
4570     Attenuation = 0;
4571     FineTune = 0;
4572 schoenebeck 3112 PitchbendRange = 2;
4573 persson 1182 PianoReleaseMode = false;
4574     DimensionKeyRange.low = 0;
4575     DimensionKeyRange.high = 0;
4576 persson 1678 pMidiRules = new MidiRule*[3];
4577     pMidiRules[0] = NULL;
4578 schoenebeck 2584 pScriptRefs = NULL;
4579 schoenebeck 2
4580     // Loading
4581     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4582     if (lart) {
4583     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4584     if (_3ewg) {
4585     EffectSend = _3ewg->ReadUint16();
4586     Attenuation = _3ewg->ReadInt32();
4587     FineTune = _3ewg->ReadInt16();
4588     PitchbendRange = _3ewg->ReadInt16();
4589     uint8_t dimkeystart = _3ewg->ReadUint8();
4590     PianoReleaseMode = dimkeystart & 0x01;
4591     DimensionKeyRange.low = dimkeystart >> 1;
4592     DimensionKeyRange.high = _3ewg->ReadUint8();
4593 persson 1627
4594     if (_3ewg->GetSize() > 32) {
4595     // read MIDI rules
4596 persson 1678 int i = 0;
4597 persson 1627 _3ewg->SetPos(32);
4598     uint8_t id1 = _3ewg->ReadUint8();
4599     uint8_t id2 = _3ewg->ReadUint8();
4600    
4601 persson 2450 if (id2 == 16) {
4602     if (id1 == 4) {
4603     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4604     } else if (id1 == 0) {
4605     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4606     } else if (id1 == 3) {
4607     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4608     } else {
4609     pMidiRules[i++] = new MidiRuleUnknown;
4610     }
4611 persson 1627 }
4612 persson 2450 else if (id1 != 0 || id2 != 0) {
4613     pMidiRules[i++] = new MidiRuleUnknown;
4614     }
4615 persson 1627 //TODO: all the other types of rules
4616 persson 1678
4617     pMidiRules[i] = NULL;
4618 persson 1627 }
4619 schoenebeck 2 }
4620     }
4621    
4622 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4623     if (!pRegions) pRegions = new RegionList;
4624     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4625     if (lrgn) {
4626     RIFF::List* rgn = lrgn->GetFirstSubList();
4627     while (rgn) {
4628     if (rgn->GetListType() == LIST_TYPE_RGN) {
4629     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4630     pRegions->push_back(new Region(this, rgn));
4631     }
4632     rgn = lrgn->GetNextSubList();
4633 schoenebeck 809 }
4634 schoenebeck 1524 // Creating Region Key Table for fast lookup
4635     UpdateRegionKeyTable();
4636 schoenebeck 2 }
4637     }
4638    
4639 schoenebeck 2584 // own gig format extensions
4640     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4641     if (lst3LS) {
4642     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4643     if (ckSCSL) {
4644 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4645     int slotCount = ckSCSL->ReadUint32();
4646     if (slotCount) {
4647     int slotSize = ckSCSL->ReadUint32();
4648     ckSCSL->SetPos(headerSize); // in case of future header extensions
4649     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4650     for (int i = 0; i < slotCount; ++i) {
4651     _ScriptPooolEntry e;
4652     e.fileOffset = ckSCSL->ReadUint32();
4653     e.bypass = ckSCSL->ReadUint32() & 1;
4654     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4655     scriptPoolFileOffsets.push_back(e);
4656     }
4657 schoenebeck 2584 }
4658     }
4659     }
4660    
4661 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4662     }
4663    
4664     void Instrument::UpdateRegionKeyTable() {
4665 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4666 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4667     RegionList::iterator end = pRegions->end();
4668     for (; iter != end; ++iter) {
4669     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4670     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4671     RegionKeyTable[iKey] = pRegion;
4672 schoenebeck 2 }
4673     }
4674     }
4675    
4676     Instrument::~Instrument() {
4677 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4678     delete pMidiRules[i];
4679     }
4680 persson 1678 delete[] pMidiRules;
4681 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4682 schoenebeck 2 }
4683    
4684     /**
4685 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4686     * You have to call File::Save() to make changes persistent.
4687     *
4688     * Usually there is absolutely no need to call this method explicitly.
4689     * It will be called automatically when File::Save() was called.
4690     *
4691 schoenebeck 2682 * @param pProgress - callback function for progress notification
4692 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4693     */
4694 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4695 schoenebeck 809 // first update base classes' chunks
4696 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4697 schoenebeck 809
4698     // update Regions' chunks
4699 schoenebeck 823 {
4700     RegionList::iterator iter = pRegions->begin();
4701     RegionList::iterator end = pRegions->end();
4702     for (; iter != end; ++iter)
4703 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4704 schoenebeck 823 }
4705 schoenebeck 809
4706     // make sure 'lart' RIFF list chunk exists
4707     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4708     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4709     // make sure '3ewg' RIFF chunk exists
4710     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4711 persson 1264 if (!_3ewg) {
4712     File* pFile = (File*) GetParent();
4713    
4714     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4715     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4716     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4717     memset(_3ewg->LoadChunkData(), 0, size);
4718     }
4719 schoenebeck 809 // update '3ewg' RIFF chunk
4720     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4721 persson 1179 store16(&pData[0], EffectSend);
4722     store32(&pData[2], Attenuation);
4723     store16(&pData[6], FineTune);
4724     store16(&pData[8], PitchbendRange);
4725 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4726 schoenebeck 809 DimensionKeyRange.low << 1;
4727 persson 1179 pData[10] = dimkeystart;
4728     pData[11] = DimensionKeyRange.high;
4729 persson 2450
4730     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4731     pData[32] = 0;
4732     pData[33] = 0;
4733     } else {
4734     for (int i = 0 ; pMidiRules[i] ; i++) {
4735     pMidiRules[i]->UpdateChunks(pData);
4736     }
4737     }
4738 schoenebeck 2584
4739     // own gig format extensions
4740 schoenebeck 2648 if (ScriptSlotCount()) {
4741     // make sure we have converted the original loaded script file
4742     // offsets into valid Script object pointers
4743     LoadScripts();
4744    
4745 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4746     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4747 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4748 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4749     const int slotSize = 2 * sizeof(uint32_t);
4750     const int totalChunkSize = headerSize + slotCount * slotSize;
4751 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4752 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4753     else ckSCSL->Resize(totalChunkSize);
4754 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4755 schoenebeck 2609 int pos = 0;
4756     store32(&pData[pos], headerSize);
4757     pos += sizeof(uint32_t);
4758     store32(&pData[pos], slotCount);
4759     pos += sizeof(uint32_t);
4760     store32(&pData[pos], slotSize);
4761     pos += sizeof(uint32_t);
4762     for (int i = 0; i < slotCount; ++i) {
4763     // arbitrary value, the actual file offset will be updated in
4764     // UpdateScriptFileOffsets() after the file has been resized
4765     int bogusFileOffset = 0;
4766     store32(&pData[pos], bogusFileOffset);
4767 schoenebeck 2584 pos += sizeof(uint32_t);
4768     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4769     pos += sizeof(uint32_t);
4770     }
4771 schoenebeck 2648 } else {
4772     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4773     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4774     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4775 schoenebeck 2584 }
4776 schoenebeck 809 }
4777    
4778 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4779     // own gig format extensions
4780 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4781 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4782     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4783 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4784 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4785     ckSCSL->SetPos(headerSize);
4786     for (int i = 0; i < slotCount; ++i) {
4787 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4788 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4789     (*pScriptRefs)[i].script->pChunk->GetPos() -
4790 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4791     );
4792 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4793     // jump over flags entry (containing the bypass flag)
4794     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4795     }
4796     }
4797     }
4798    
4799 schoenebeck 809 /**
4800 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4801     *
4802     * @param Key MIDI Key number of triggered note / key (0 - 127)
4803     * @returns pointer adress to the appropriate Region or NULL if there
4804     * there is no Region defined for the given \a Key
4805     */
4806     Region* Instrument::GetRegion(unsigned int Key) {
4807 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4808 schoenebeck 2 return RegionKeyTable[Key];
4809 schoenebeck 823
4810 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4811     if (Key <= pRegions[i]->KeyRange.high &&
4812     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4813     }
4814     return NULL;*/
4815     }
4816    
4817     /**
4818     * Returns the first Region of the instrument. You have to call this
4819     * method once before you use GetNextRegion().
4820     *
4821     * @returns pointer address to first region or NULL if there is none
4822     * @see GetNextRegion()
4823     */
4824     Region* Instrument::GetFirstRegion() {
4825 schoenebeck 823 if (!pRegions) return NULL;
4826     RegionsIterator = pRegions->begin();
4827     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4828 schoenebeck 2 }
4829    
4830     /**
4831     * Returns the next Region of the instrument. You have to call
4832     * GetFirstRegion() once before you can use this method. By calling this
4833     * method multiple times it iterates through the available Regions.
4834     *
4835     * @returns pointer address to the next region or NULL if end reached
4836     * @see GetFirstRegion()
4837     */
4838     Region* Instrument::GetNextRegion() {
4839 schoenebeck 823 if (!pRegions) return NULL;
4840     RegionsIterator++;
4841     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4842 schoenebeck 2 }
4843    
4844 schoenebeck 809 Region* Instrument::AddRegion() {
4845     // create new Region object (and its RIFF chunks)
4846     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4847     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4848     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4849     Region* pNewRegion = new Region(this, rgn);
4850 schoenebeck 823 pRegions->push_back(pNewRegion);
4851 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
4852 schoenebeck 809 // update Region key table for fast lookup
4853     UpdateRegionKeyTable();
4854     // done
4855     return pNewRegion;
4856     }
4857 schoenebeck 2
4858 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4859     if (!pRegions) return;
4860 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4861 schoenebeck 809 // update Region key table for fast lookup
4862     UpdateRegionKeyTable();
4863     }
4864 schoenebeck 2
4865 persson 1627 /**
4866 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4867     *
4868     * This method can be used to reorder the sequence of instruments in a
4869     * .gig file. This might be helpful especially on large .gig files which
4870     * contain a large number of instruments within the same .gig file. So
4871     * grouping such instruments to similar ones, can help to keep track of them
4872     * when working with such complex .gig files.
4873     *
4874     * When calling this method, this instrument will be removed from in its
4875     * current position in the instruments list and moved to the requested
4876     * target position provided by @param dst. You may also pass NULL as
4877     * argument to this method, in that case this intrument will be moved to the
4878     * very end of the .gig file's instrument list.
4879     *
4880     * You have to call Save() to make the order change persistent to the .gig
4881     * file.
4882     *
4883     * Currently this method is limited to moving the instrument within the same
4884     * .gig file. Trying to move it to another .gig file by calling this method
4885     * will throw an exception.
4886     *
4887     * @param dst - destination instrument at which this instrument will be
4888     * moved to, or pass NULL for moving to end of list
4889     * @throw gig::Exception if this instrument and target instrument are not
4890     * part of the same file
4891     */
4892     void Instrument::MoveTo(Instrument* dst) {
4893     if (dst && GetParent() != dst->GetParent())
4894     throw Exception(
4895     "gig::Instrument::MoveTo() can only be used for moving within "
4896     "the same gig file."
4897     );
4898    
4899     File* pFile = (File*) GetParent();
4900    
4901     // move this instrument within the instrument list
4902     {
4903 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
4904 schoenebeck 2700
4905 persson 2836 File::InstrumentList::iterator itFrom =
4906 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4907    
4908 persson 2836 File::InstrumentList::iterator itTo =
4909 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4910    
4911     list.splice(itTo, list, itFrom);
4912     }
4913    
4914     // move the instrument's actual list RIFF chunk appropriately
4915     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4916     lstCkInstruments->MoveSubChunk(
4917     this->pCkInstrument,
4918 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4919 schoenebeck 2700 );
4920     }
4921    
4922     /**
4923 persson 1678 * Returns a MIDI rule of the instrument.
4924 persson 1627 *
4925     * The list of MIDI rules, at least in gig v3, always contains at
4926     * most two rules. The second rule can only be the DEF filter
4927     * (which currently isn't supported by libgig).
4928     *
4929 persson 1678 * @param i - MIDI rule number
4930     * @returns pointer address to MIDI rule number i or NULL if there is none
4931 persson 1627 */
4932 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
4933     return pMidiRules[i];
4934 persson 1627 }
4935 persson 2450
4936 schoenebeck 2394 /**
4937 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
4938     *
4939     * @returns the new MIDI rule
4940     */
4941     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4942     delete pMidiRules[0];
4943     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4944     pMidiRules[0] = r;
4945     pMidiRules[1] = 0;
4946     return r;
4947     }
4948    
4949     /**
4950     * Adds the legato MIDI rule to the instrument.
4951     *
4952     * @returns the new MIDI rule
4953     */
4954     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4955     delete pMidiRules[0];
4956     MidiRuleLegato* r = new MidiRuleLegato;
4957     pMidiRules[0] = r;
4958     pMidiRules[1] = 0;
4959     return r;
4960     }
4961    
4962     /**
4963     * Adds the alternator MIDI rule to the instrument.
4964     *
4965     * @returns the new MIDI rule
4966     */
4967     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4968     delete pMidiRules[0];
4969     MidiRuleAlternator* r = new MidiRuleAlternator;
4970     pMidiRules[0] = r;
4971     pMidiRules[1] = 0;
4972     return r;
4973     }
4974    
4975     /**
4976     * Deletes a MIDI rule from the instrument.
4977     *
4978     * @param i - MIDI rule number
4979     */
4980     void Instrument::DeleteMidiRule(int i) {
4981     delete pMidiRules[i];
4982     pMidiRules[i] = 0;
4983     }
4984    
4985 schoenebeck 2584 void Instrument::LoadScripts() {
4986     if (pScriptRefs) return;
4987     pScriptRefs = new std::vector<_ScriptPooolRef>;
4988     if (scriptPoolFileOffsets.empty()) return;
4989     File* pFile = (File*) GetParent();
4990     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4991 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4992 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4993     ScriptGroup* group = pFile->GetScriptGroup(i);
4994     for (uint s = 0; group->GetScript(s); ++s) {
4995     Script* script = group->GetScript(s);
4996     if (script->pChunk) {
4997 schoenebeck 3053 uint32_t offset = uint32_t(
4998     script->pChunk->GetFilePos() -
4999     script->pChunk->GetPos() -
5000     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5001     );
5002 schoenebeck 2609 if (offset == soughtOffset)
5003 schoenebeck 2584 {
5004     _ScriptPooolRef ref;
5005     ref.script = script;
5006     ref.bypass = scriptPoolFileOffsets[k].bypass;
5007     pScriptRefs->push_back(ref);
5008     break;
5009     }
5010     }
5011     }
5012     }
5013     }
5014     // we don't need that anymore
5015     scriptPoolFileOffsets.clear();
5016     }
5017    
5018 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5019 schoenebeck 2584 *
5020 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5021     * @a index.
5022     *
5023     * @note This is an own format extension which did not exist i.e. in the
5024     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5025     * gigedit.
5026     *
5027     * @param index - instrument script slot index
5028     * @returns script or NULL if index is out of bounds
5029     */
5030     Script* Instrument::GetScriptOfSlot(uint index) {
5031     LoadScripts();
5032     if (index >= pScriptRefs->size()) return NULL;
5033     return pScriptRefs->at(index).script;
5034     }
5035    
5036     /** @brief Add new instrument script slot (gig format extension).
5037     *
5038 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5039     * which shall be executed by the sampler for for this instrument. The
5040     * script will be added to the end of the script list of this instrument.
5041     * The positions of the scripts in the Instrument's Script list are
5042     * relevant, because they define in which order they shall be executed by
5043     * the sampler. For this reason it is also legal to add the same script
5044     * twice to an instrument, for example you might have a script called
5045     * "MyFilter" which performs an event filter task, and you might have
5046     * another script called "MyNoteTrigger" which triggers new notes, then you
5047     * might for example have the following list of scripts on the instrument:
5048     *
5049     * 1. Script "MyFilter"
5050     * 2. Script "MyNoteTrigger"
5051     * 3. Script "MyFilter"
5052     *
5053     * Which would make sense, because the 2nd script launched new events, which
5054     * you might need to filter as well.
5055     *
5056     * There are two ways to disable / "bypass" scripts. You can either disable
5057     * a script locally for the respective script slot on an instrument (i.e. by
5058     * passing @c false to the 2nd argument of this method, or by calling
5059     * SetScriptBypassed()). Or you can disable a script globally for all slots
5060     * and all instruments by setting Script::Bypass.
5061     *
5062     * @note This is an own format extension which did not exist i.e. in the
5063     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5064     * gigedit.
5065     *
5066     * @param pScript - script that shall be executed for this instrument
5067     * @param bypass - if enabled, the sampler shall skip executing this
5068     * script (in the respective list position)
5069     * @see SetScriptBypassed()
5070     */
5071     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5072     LoadScripts();
5073     _ScriptPooolRef ref = { pScript, bypass };
5074     pScriptRefs->push_back(ref);
5075     }
5076    
5077     /** @brief Flip two script slots with each other (gig format extension).
5078     *
5079     * Swaps the position of the two given scripts in the Instrument's Script
5080     * list. The positions of the scripts in the Instrument's Script list are
5081     * relevant, because they define in which order they shall be executed by
5082     * the sampler.
5083     *
5084     * @note This is an own format extension which did not exist i.e. in the
5085     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5086     * gigedit.
5087     *
5088     * @param index1 - index of the first script slot to swap
5089     * @param index2 - index of the second script slot to swap
5090     */
5091     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5092     LoadScripts();
5093     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5094     return;
5095     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5096     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5097     (*pScriptRefs)[index2] = tmp;
5098     }
5099    
5100     /** @brief Remove script slot.
5101     *
5102     * Removes the script slot with the given slot index.
5103     *
5104     * @param index - index of script slot to remove
5105     */
5106     void Instrument::RemoveScriptSlot(uint index) {
5107     LoadScripts();
5108     if (index >= pScriptRefs->size()) return;
5109     pScriptRefs->erase( pScriptRefs->begin() + index );
5110     }
5111    
5112     /** @brief Remove reference to given Script (gig format extension).
5113     *
5114     * This will remove all script slots on the instrument which are referencing
5115     * the given script.
5116     *
5117     * @note This is an own format extension which did not exist i.e. in the
5118     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5119     * gigedit.
5120     *
5121     * @param pScript - script reference to remove from this instrument
5122     * @see RemoveScriptSlot()
5123     */
5124     void Instrument::RemoveScript(Script* pScript) {
5125     LoadScripts();
5126 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5127 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5128     pScriptRefs->erase( pScriptRefs->begin() + i );
5129     }
5130     }
5131     }
5132    
5133     /** @brief Instrument's amount of script slots.
5134     *
5135     * This method returns the amount of script slots this instrument currently
5136     * uses.
5137     *
5138     * A script slot is a reference of a real-time instrument script to be
5139     * executed by the sampler. The scripts will be executed by the sampler in
5140     * sequence of the slots. One (same) script may be referenced multiple
5141     * times in different slots.
5142     *
5143     * @note This is an own format extension which did not exist i.e. in the
5144     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5145     * gigedit.
5146     */
5147     uint Instrument::ScriptSlotCount() const {
5148 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5149 schoenebeck 2584 }
5150    
5151     /** @brief Whether script execution shall be skipped.
5152     *
5153     * Defines locally for the Script reference slot in the Instrument's Script
5154     * list, whether the script shall be skipped by the sampler regarding
5155     * execution.
5156     *
5157     * It is also possible to ignore exeuction of the script globally, for all
5158     * slots and for all instruments by setting Script::Bypass.
5159     *
5160     * @note This is an own format extension which did not exist i.e. in the
5161     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5162     * gigedit.
5163     *
5164     * @param index - index of the script slot on this instrument
5165     * @see Script::Bypass
5166     */
5167     bool Instrument::IsScriptSlotBypassed(uint index) {
5168     if (index >= ScriptSlotCount()) return false;
5169     return pScriptRefs ? pScriptRefs->at(index).bypass
5170     : scriptPoolFileOffsets.at(index).bypass;
5171    
5172     }
5173    
5174     /** @brief Defines whether execution shall be skipped.
5175     *
5176     * You can call this method to define locally whether or whether not the
5177     * given script slot shall be executed by the sampler.
5178     *
5179     * @note This is an own format extension which did not exist i.e. in the
5180     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5181     * gigedit.
5182     *
5183     * @param index - script slot index on this instrument
5184     * @param bBypass - if true, the script slot will be skipped by the sampler
5185     * @see Script::Bypass
5186     */
5187     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5188     if (index >= ScriptSlotCount()) return;
5189     if (pScriptRefs)
5190     pScriptRefs->at(index).bypass = bBypass;
5191     else
5192     scriptPoolFileOffsets.at(index).bypass = bBypass;
5193     }
5194    
5195 persson 2450 /**
5196 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5197     * and assign it to this object.
5198     *
5199     * Note that all sample pointers referenced by @a orig are simply copied as
5200     * memory address. Thus the respective samples are shared, not duplicated!
5201     *
5202     * @param orig - original Instrument object to be copied from
5203     */
5204     void Instrument::CopyAssign(const Instrument* orig) {
5205 schoenebeck 2482 CopyAssign(orig, NULL);
5206     }
5207    
5208     /**
5209     * Make a (semi) deep copy of the Instrument object given by @a orig
5210     * and assign it to this object.
5211     *
5212     * @param orig - original Instrument object to be copied from
5213     * @param mSamples - crosslink map between the foreign file's samples and
5214     * this file's samples
5215     */
5216     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5217 schoenebeck 2394 // handle base class
5218     // (without copying DLS region stuff)
5219     DLS::Instrument::CopyAssignCore(orig);
5220    
5221     // handle own member variables
5222     Attenuation = orig->Attenuation;
5223     EffectSend = orig->EffectSend;
5224     FineTune = orig->FineTune;
5225     PitchbendRange = orig->PitchbendRange;
5226     PianoReleaseMode = orig->PianoReleaseMode;
5227     DimensionKeyRange = orig->DimensionKeyRange;
5228 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5229     pScriptRefs = orig->pScriptRefs;
5230 schoenebeck 2394
5231     // free old midi rules
5232     for (int i = 0 ; pMidiRules[i] ; i++) {
5233     delete pMidiRules[i];
5234     }
5235     //TODO: MIDI rule copying
5236     pMidiRules[0] = NULL;
5237    
5238     // delete all old regions
5239     while (Regions) DeleteRegion(GetFirstRegion());
5240     // create new regions and copy them from original
5241     {
5242     RegionList::const_iterator it = orig->pRegions->begin();
5243     for (int i = 0; i < orig->Regions; ++i, ++it) {
5244     Region* dstRgn = AddRegion();
5245     //NOTE: Region does semi-deep copy !
5246     dstRgn->CopyAssign(
5247 schoenebeck 2482 static_cast<gig::Region*>(*it),
5248     mSamples
5249 schoenebeck 2394 );
5250     }
5251     }
5252 schoenebeck 809
5253 schoenebeck 2394 UpdateRegionKeyTable();
5254     }
5255 schoenebeck 809
5256 schoenebeck 2394
5257 schoenebeck 929 // *************** Group ***************
5258     // *
5259    
5260     /** @brief Constructor.
5261     *
5262 schoenebeck 930 * @param file - pointer to the gig::File object
5263     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5264     * NULL if this is a new Group
5265 schoenebeck 929 */
5266 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5267 schoenebeck 929 pFile = file;
5268     pNameChunk = ck3gnm;
5269     ::LoadString(pNameChunk, Name);
5270     }
5271    
5272     Group::~Group() {
5273 schoenebeck 1099 // remove the chunk associated with this group (if any)
5274     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5275 schoenebeck 929 }
5276    
5277     /** @brief Update chunks with current group settings.
5278     *
5279 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5280     * to call File::Save() to make changes persistent.
5281     *
5282     * Usually there is absolutely no need to call this method explicitly.
5283     * It will be called automatically when File::Save() was called.
5284 schoenebeck 2682 *
5285     * @param pProgress - callback function for progress notification
5286 schoenebeck 929 */
5287 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5288 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5289 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5290 persson 1192 if (!_3gri) {
5291     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5292     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5293     }
5294 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5295 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5296 persson 1266
5297     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5298     // v3 has a fixed list of 128 strings, find a free one
5299     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5300     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5301     pNameChunk = ck;
5302     break;
5303     }
5304     }
5305     }
5306    
5307 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5308     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5309     }
5310    
5311 schoenebeck 930 /**
5312     * Returns the first Sample of this Group. You have to call this method
5313     * once before you use GetNextSample().
5314     *
5315     * <b>Notice:</b> this method might block for a long time, in case the
5316     * samples of this .gig file were not scanned yet
5317     *
5318     * @returns pointer address to first Sample or NULL if there is none
5319     * applied to this Group
5320     * @see GetNextSample()
5321     */
5322     Sample* Group::GetFirstSample() {
5323     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5324     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5325     if (pSample->GetGroup() == this) return pSample;
5326     }
5327     return NULL;
5328     }
5329 schoenebeck 929
5330 schoenebeck 930 /**
5331     * Returns the next Sample of the Group. You have to call
5332     * GetFirstSample() once before you can use this method. By calling this
5333     * method multiple times it iterates through the Samples assigned to
5334     * this Group.
5335     *
5336     * @returns pointer address to the next Sample of this Group or NULL if
5337     * end reached
5338     * @see GetFirstSample()
5339     */
5340     Sample* Group::GetNextSample() {
5341     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5342     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5343     if (pSample->GetGroup() == this) return pSample;
5344     }
5345     return NULL;
5346     }
5347 schoenebeck 929
5348 schoenebeck 930 /**
5349     * Move Sample given by \a pSample from another Group to this Group.
5350     */
5351     void Group::AddSample(Sample* pSample) {
5352     pSample->pGroup = this;
5353     }
5354    
5355     /**
5356     * Move all members of this group to another group (preferably the 1st
5357     * one except this). This method is called explicitly by
5358     * File::DeleteGroup() thus when a Group was deleted. This code was
5359     * intentionally not placed in the destructor!
5360     */
5361     void Group::MoveAll() {
5362     // get "that" other group first
5363     Group* pOtherGroup = NULL;
5364     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5365     if (pOtherGroup != this) break;
5366     }
5367     if (!pOtherGroup) throw Exception(
5368     "Could not move samples to another group, since there is no "
5369     "other Group. This is a bug, report it!"
5370     );
5371     // now move all samples of this group to the other group
5372     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5373     pOtherGroup->AddSample(pSample);
5374     }
5375     }
5376    
5377    
5378    
5379 schoenebeck 2 // *************** File ***************
5380     // *
5381    
5382 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5383 persson 1199 const DLS::version_t File::VERSION_2 = {
5384     0, 2, 19980628 & 0xffff, 19980628 >> 16
5385     };
5386    
5387 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5388 persson 1199 const DLS::version_t File::VERSION_3 = {
5389     0, 3, 20030331 & 0xffff, 20030331 >> 16
5390     };
5391    
5392 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5393 persson 1180 { CHUNK_ID_IARL, 256 },
5394     { CHUNK_ID_IART, 128 },
5395     { CHUNK_ID_ICMS, 128 },
5396     { CHUNK_ID_ICMT, 1024 },
5397     { CHUNK_ID_ICOP, 128 },
5398     { CHUNK_ID_ICRD, 128 },
5399     { CHUNK_ID_IENG, 128 },
5400     { CHUNK_ID_IGNR, 128 },
5401     { CHUNK_ID_IKEY, 128 },
5402     { CHUNK_ID_IMED, 128 },
5403     { CHUNK_ID_INAM, 128 },
5404     { CHUNK_ID_IPRD, 128 },
5405     { CHUNK_ID_ISBJ, 128 },
5406     { CHUNK_ID_ISFT, 128 },
5407     { CHUNK_ID_ISRC, 128 },
5408     { CHUNK_ID_ISRF, 128 },
5409     { CHUNK_ID_ITCH, 128 },
5410     { 0, 0 }
5411     };
5412    
5413 schoenebeck 809 File::File() : DLS::File() {
5414 schoenebeck 1524 bAutoLoad = true;
5415 persson 1264 *pVersion = VERSION_3;
5416 schoenebeck 929 pGroups = NULL;
5417 schoenebeck 2584 pScriptGroups = NULL;
5418 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5419 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5420 persson 1192
5421     // add some mandatory chunks to get the file chunks in right
5422     // order (INFO chunk will be moved to first position later)
5423     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5424     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5425 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5426    
5427     GenerateDLSID();
5428 schoenebeck 809 }
5429    
5430 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5431 schoenebeck 1524 bAutoLoad = true;
5432 schoenebeck 929 pGroups = NULL;
5433 schoenebeck 2584 pScriptGroups = NULL;
5434 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5435 schoenebeck 2 }
5436    
5437 schoenebeck 929 File::~File() {
5438     if (pGroups) {
5439     std::list<Group*>::iterator iter = pGroups->begin();
5440     std::list<Group*>::iterator end = pGroups->end();
5441     while (iter != end) {
5442     delete *iter;
5443     ++iter;
5444     }
5445     delete pGroups;
5446     }
5447 schoenebeck 2584 if (pScriptGroups) {
5448     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5449     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5450     while (iter != end) {
5451     delete *iter;
5452     ++iter;
5453     }
5454     delete pScriptGroups;
5455     }
5456 schoenebeck 929 }
5457    
5458 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5459     if (!pSamples) LoadSamples(pProgress);
5460 schoenebeck 2 if (!pSamples) return NULL;
5461     SamplesIterator = pSamples->begin();
5462     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5463     }
5464    
5465     Sample* File::GetNextSample() {
5466     if (!pSamples) return NULL;
5467     SamplesIterator++;
5468     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5469     }
5470 schoenebeck 2482
5471     /**
5472     * Returns Sample object of @a index.
5473     *
5474     * @returns sample object or NULL if index is out of bounds
5475     */
5476     Sample* File::GetSample(uint index) {
5477     if (!pSamples) LoadSamples();
5478     if (!pSamples) return NULL;
5479     DLS::File::SampleList::iterator it = pSamples->begin();
5480     for (int i = 0; i < index; ++i) {
5481     ++it;
5482     if (it == pSamples->end()) return NULL;
5483     }
5484     if (it == pSamples->end()) return NULL;
5485     return static_cast<gig::Sample*>( *it );
5486     }
5487 schoenebeck 2
5488 schoenebeck 809 /** @brief Add a new sample.
5489     *
5490     * This will create a new Sample object for the gig file. You have to
5491     * call Save() to make this persistent to the file.
5492     *
5493     * @returns pointer to new Sample object
5494     */
5495     Sample* File::AddSample() {
5496     if (!pSamples) LoadSamples();
5497     __ensureMandatoryChunksExist();
5498     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5499     // create new Sample object and its respective 'wave' list chunk
5500     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5501     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5502 persson 1192
5503     // add mandatory chunks to get the chunks in right order
5504     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5505     wave->AddSubList(LIST_TYPE_INFO);
5506    
5507 schoenebeck 809 pSamples->push_back(pSample);
5508     return pSample;
5509     }
5510    
5511     /** @brief Delete a sample.
5512     *
5513 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5514     * references to this sample from Regions and DimensionRegions will be
5515     * removed. You have to call Save() to make this persistent to the file.
5516 schoenebeck 809 *
5517     * @param pSample - sample to delete
5518     * @throws gig::Exception if given sample could not be found
5519     */
5520     void File::DeleteSample(Sample* pSample) {
5521 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5522     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5523 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5524 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5525 schoenebeck 809 pSamples->erase(iter);
5526     delete pSample;
5527 persson 1266
5528 persson 1678 SampleList::iterator tmp = SamplesIterator;
5529 persson 1266 // remove all references to the sample
5530     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5531     instrument = GetNextInstrument()) {
5532     for (Region* region = instrument->GetFirstRegion() ; region ;
5533     region = instrument->GetNextRegion()) {
5534    
5535     if (region->GetSample() == pSample) region->SetSample(NULL);
5536    
5537     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5538     gig::DimensionRegion *d = region->pDimensionRegions[i];
5539     if (d->pSample == pSample) d->pSample = NULL;
5540     }
5541     }
5542     }
5543 persson 1678 SamplesIterator = tmp; // restore iterator
5544 schoenebeck 809 }
5545    
5546 schoenebeck 823 void File::LoadSamples() {
5547     LoadSamples(NULL);
5548     }
5549    
5550 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5551 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5552     // to resolve the group they belong to
5553 schoenebeck 1158 if (!pGroups) LoadGroups();
5554 schoenebeck 930
5555 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5556    
5557 persson 666 RIFF::File* file = pRIFF;
5558 schoenebeck 515
5559 persson 666 // just for progress calculation
5560     int iSampleIndex = 0;
5561     int iTotalSamples = WavePoolCount;
5562 schoenebeck 515
5563 persson 666 // check if samples should be loaded from extension files
5564 schoenebeck 2913 // (only for old gig files < 2 GB)
5565 persson 666 int lastFileNo = 0;
5566 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5567 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5568     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5569     }
5570 persson 666 }
5571 schoenebeck 780 String name(pRIFF->GetFileName());
5572 schoenebeck 3053 int nameLen = (int) name.length();
5573 persson 666 char suffix[6];
5574 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5575 schoenebeck 515
5576 persson 666 for (int fileNo = 0 ; ; ) {
5577     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5578     if (wvpl) {
5579 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5580 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5581     while (wave) {
5582     if (wave->GetListType() == LIST_TYPE_WAVE) {
5583     // notify current progress
5584     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5585     __notify_progress(pProgress, subprogress);
5586    
5587 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5588 schoenebeck 2989 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5589 persson 666
5590     iSampleIndex++;
5591     }
5592     wave = wvpl->GetNextSubList();
5593 schoenebeck 2 }
5594 persson 666
5595     if (fileNo == lastFileNo) break;
5596    
5597     // open extension file (*.gx01, *.gx02, ...)
5598     fileNo++;
5599     sprintf(suffix, ".gx%02d", fileNo);
5600     name.replace(nameLen, 5, suffix);
5601     file = new RIFF::File(name);
5602     ExtensionFiles.push_back(file);
5603 schoenebeck 823 } else break;
5604 schoenebeck 2 }
5605 persson 666
5606     __notify_progress(pProgress, 1.0); // notify done
5607 schoenebeck 2 }
5608    
5609     Instrument* File::GetFirstInstrument() {
5610     if (!pInstruments) LoadInstruments();
5611     if (!pInstruments) return NULL;
5612     InstrumentsIterator = pInstruments->begin();
5613 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5614 schoenebeck 2 }
5615    
5616     Instrument* File::GetNextInstrument() {
5617     if (!pInstruments) return NULL;
5618     InstrumentsIterator++;
5619 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5620 schoenebeck 2 }
5621    
5622 schoenebeck 21 /**
5623     * Returns the instrument with the given index.
5624     *
5625 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5626     * @param pProgress - optional: callback function for progress notification
5627 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5628     */
5629 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5630     if (!pInstruments) {
5631     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5632    
5633     // sample loading subtask
5634     progress_t subprogress;
5635     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5636     __notify_progress(&subprogress, 0.0f);
5637 schoenebeck 1524 if (GetAutoLoad())
5638     GetFirstSample(&subprogress); // now force all samples to be loaded
5639 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5640    
5641     // instrument loading subtask
5642     if (pProgress && pProgress->callback) {
5643     subprogress.__range_min = subprogress.__range_max;
5644     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5645     }
5646     __notify_progress(&subprogress, 0.0f);
5647     LoadInstruments(&subprogress);
5648     __notify_progress(&subprogress, 1.0f);
5649     }
5650 schoenebeck 21 if (!pInstruments) return NULL;
5651     InstrumentsIterator = pInstruments->begin();
5652     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5653 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5654 schoenebeck 21 InstrumentsIterator++;
5655     }
5656     return NULL;
5657     }
5658    
5659 schoenebeck 809 /** @brief Add a new instrument definition.
5660     *
5661     * This will create a new Instrument object for the gig file. You have
5662     * to call Save() to make this persistent to the file.
5663     *
5664     * @returns pointer to new Instrument object
5665     */
5666     Instrument* File::AddInstrument() {
5667     if (!pInstruments) LoadInstruments();
5668     __ensureMandatoryChunksExist();
5669     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5670     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5671 persson 1192
5672     // add mandatory chunks to get the chunks in right order
5673     lstInstr->AddSubList(LIST_TYPE_INFO);
5674 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5675 persson 1192
5676 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5677 persson 1209 pInstrument->GenerateDLSID();
5678 persson 1182
5679 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5680    
5681 persson 1182 // this string is needed for the gig to be loadable in GSt:
5682     pInstrument->pInfo->Software = "Endless Wave";
5683    
5684 schoenebeck 809 pInstruments->push_back(pInstrument);
5685     return pInstrument;
5686     }
5687 schoenebeck 2394
5688     /** @brief Add a duplicate of an existing instrument.
5689     *
5690     * Duplicates the instrument definition given by @a orig and adds it
5691     * to this file. This allows in an instrument editor application to
5692     * easily create variations of an instrument, which will be stored in
5693     * the same .gig file, sharing i.e. the same samples.
5694     *
5695     * Note that all sample pointers referenced by @a orig are simply copied as
5696     * memory address. Thus the respective samples are shared, not duplicated!
5697     *
5698     * You have to call Save() to make this persistent to the file.
5699     *
5700     * @param orig - original instrument to be copied
5701     * @returns duplicated copy of the given instrument
5702     */
5703     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5704     Instrument* instr = AddInstrument();
5705     instr->CopyAssign(orig);
5706     return instr;
5707     }
5708 schoenebeck 2482
5709     /** @brief Add content of another existing file.
5710     *
5711     * Duplicates the samples, groups and instruments of the original file
5712     * given by @a pFile and adds them to @c this File. In case @c this File is
5713     * a new one that you haven't saved before, then you have to call
5714     * SetFileName() before calling AddContentOf(), because this method will
5715     * automatically save this file during operation, which is required for
5716     * writing the sample waveform data by disk streaming.
5717     *
5718     * @param pFile - original file whose's content shall be copied from
5719     */
5720     void File::AddContentOf(File* pFile) {
5721     static int iCallCount = -1;
5722     iCallCount++;
5723     std::map<Group*,Group*> mGroups;
5724     std::map<Sample*,Sample*> mSamples;
5725    
5726     // clone sample groups
5727     for (int i = 0; pFile->GetGroup(i); ++i) {
5728     Group* g = AddGroup();
5729     g->Name =
5730     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5731     mGroups[pFile->GetGroup(i)] = g;
5732     }
5733    
5734     // clone samples (not waveform data here yet)
5735     for (int i = 0; pFile->GetSample(i); ++i) {
5736     Sample* s = AddSample();
5737     s->CopyAssignMeta(pFile->GetSample(i));
5738     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5739     mSamples[pFile->GetSample(i)] = s;
5740     }
5741 schoenebeck 3117
5742     // clone script groups and their scripts
5743     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5744     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5745     ScriptGroup* dg = AddScriptGroup();
5746     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5747     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5748     Script* ss = sg->GetScript(iScript);
5749     Script* ds = dg->AddScript();
5750     ds->CopyAssign(ss);
5751     }
5752     }
5753    
5754 schoenebeck 2482 //BUG: For some reason this method only works with this additional
5755     // Save() call in between here.
5756     //
5757     // Important: The correct one of the 2 Save() methods has to be called
5758     // here, depending on whether the file is completely new or has been
5759     // saved to disk already, otherwise it will result in data corruption.
5760     if (pRIFF->IsNew())
5761     Save(GetFileName());
5762     else
5763     Save();
5764    
5765     // clone instruments
5766     // (passing the crosslink table here for the cloned samples)
5767     for (int i = 0; pFile->GetInstrument(i); ++i) {
5768     Instrument* instr = AddInstrument();
5769     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5770     }
5771    
5772     // Mandatory: file needs to be saved to disk at this point, so this
5773     // file has the correct size and data layout for writing the samples'
5774     // waveform data to disk.
5775     Save();
5776    
5777     // clone samples' waveform data
5778     // (using direct read & write disk streaming)
5779     for (int i = 0; pFile->GetSample(i); ++i) {
5780     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5781     }
5782     }
5783 schoenebeck 809
5784     /** @brief Delete an instrument.
5785     *
5786     * This will delete the given Instrument object from the gig file. You
5787     * have to call Save() to make this persistent to the file.
5788     *
5789     * @param pInstrument - instrument to delete
5790 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5791 schoenebeck 809 */
5792     void File::DeleteInstrument(Instrument* pInstrument) {
5793     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5794 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5795 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5796     pInstruments->erase(iter);
5797     delete pInstrument;
5798     }
5799    
5800 schoenebeck 823 void File::LoadInstruments() {
5801     LoadInstruments(NULL);
5802     }
5803    
5804 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5805 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5806 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5807     if (lstInstruments) {
5808 schoenebeck 515 int iInstrumentIndex = 0;
5809 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5810     while (lstInstr) {
5811     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5812 schoenebeck 515 // notify current progress
5813     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5814     __notify_progress(pProgress, localProgress);
5815    
5816     // divide local progress into subprogress for loading current Instrument
5817     progress_t subprogress;
5818     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5819    
5820     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5821    
5822     iInstrumentIndex++;
5823 schoenebeck 2 }
5824     lstInstr = lstInstruments->GetNextSubList();
5825     }
5826 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5827 schoenebeck 2 }
5828     }
5829    
5830 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5831     /// update is done directly to disk, as this method is called
5832     /// after File::Save()
5833 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5834     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5835     if (!_3crc) return;
5836 persson 1207
5837     // get the index of the sample
5838 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5839 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5840    
5841 persson 1207 // write the CRC-32 checksum to disk
5842 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5843 schoenebeck 2985 uint32_t one = 1;
5844     _3crc->WriteUint32(&one); // always 1
5845 persson 1199 _3crc->WriteUint32(&crc);
5846 schoenebeck 2989 }
5847 schoenebeck 2985
5848 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
5849     // get the index of the sample
5850     int iWaveIndex = GetWaveTableIndexOf(pSample);
5851     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5852    
5853     return GetSampleChecksumByIndex(iWaveIndex);
5854 persson 1199 }
5855    
5856 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
5857     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5858    
5859 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5860     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5861     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5862     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5863    
5864     // read the CRC-32 checksum directly from disk
5865 schoenebeck 2989 size_t pos = index * 8;
5866 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
5867     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5868    
5869     uint32_t one = load32(&pData[pos]); // always 1
5870     if (one != 1)
5871 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5872 schoenebeck 2985
5873     return load32(&pData[pos+4]);
5874     }
5875 schoenebeck 2989
5876 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5877     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5878     File::SampleList::iterator iter = pSamples->begin();
5879     File::SampleList::iterator end = pSamples->end();
5880     for (int index = 0; iter != end; ++iter, ++index)
5881     if (*iter == pSample)
5882     return index;
5883     return -1;
5884     }
5885    
5886     /**
5887     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5888     * the CRC32 check sums of all samples' raw wave data.
5889     *
5890     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5891     */
5892     bool File::VerifySampleChecksumTable() {
5893     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5894     if (!_3crc) return false;
5895     if (_3crc->GetNewSize() <= 0) return false;
5896     if (_3crc->GetNewSize() % 8) return false;
5897     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5898     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5899    
5900 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
5901 schoenebeck 2985
5902     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5903     if (!pData) return false;
5904    
5905 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
5906 schoenebeck 2985 uint32_t one = pData[i*2];
5907     if (one != 1) return false;
5908     }
5909    
5910     return true;
5911     }
5912    
5913     /**
5914     * Recalculates CRC32 checksums for all samples and rebuilds this gig
5915     * file's checksum table with those new checksums. This might usually
5916     * just be necessary if the checksum table was damaged.
5917     *
5918     * @e IMPORTANT: The current implementation of this method only works
5919     * with files that have not been modified since it was loaded, because
5920     * it expects that no externally caused file structure changes are
5921     * required!
5922     *
5923     * Due to the expectation above, this method is currently protected
5924     * and actually only used by the command line tool "gigdump" yet.
5925     *
5926     * @returns true if Save() is required to be called after this call,
5927     * false if no further action is required
5928     */
5929     bool File::RebuildSampleChecksumTable() {
5930     // make sure sample chunks were scanned
5931     if (!pSamples) GetFirstSample();
5932    
5933     bool bRequiresSave = false;
5934    
5935     // make sure "3CRC" chunk exists with required size
5936     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5937     if (!_3crc) {
5938     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5939 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
5940     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5941     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5942 schoenebeck 2985 bRequiresSave = true;
5943     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5944     _3crc->Resize(pSamples->size() * 8);
5945     bRequiresSave = true;
5946     }
5947    
5948     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5949     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5950     {
5951     File::SampleList::iterator iter = pSamples->begin();
5952     File::SampleList::iterator end = pSamples->end();
5953     for (; iter != end; ++iter) {
5954     gig::Sample* pSample = (gig::Sample*) *iter;
5955     int index = GetWaveTableIndexOf(pSample);
5956     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5957     pData[index*2] = 1; // always 1
5958     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5959     }
5960     }
5961     } else { // no file structure changes necessary, so directly write to disk and we are done ...
5962     // make sure file is in write mode
5963     pRIFF->SetMode(RIFF::stream_mode_read_write);
5964     {
5965     File::SampleList::iterator iter = pSamples->begin();
5966     File::SampleList::iterator end = pSamples->end();
5967     for (; iter != end; ++iter) {
5968     gig::Sample* pSample = (gig::Sample*) *iter;
5969     int index = GetWaveTableIndexOf(pSample);
5970     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5971 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
5972     SetSampleChecksum(pSample, pSample->crc);
5973 schoenebeck 2985 }
5974     }
5975     }
5976    
5977     return bRequiresSave;
5978     }
5979    
5980 schoenebeck 929 Group* File::GetFirstGroup() {
5981     if (!pGroups) LoadGroups();
5982 schoenebeck 930 // there must always be at least one group
5983 schoenebeck 929 GroupsIterator = pGroups->begin();
5984 schoenebeck 930 return *GroupsIterator;
5985 schoenebeck 929 }
5986 schoenebeck 2
5987 schoenebeck 929 Group* File::GetNextGroup() {
5988     if (!pGroups) return NULL;
5989     ++GroupsIterator;
5990     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5991     }
5992 schoenebeck 2
5993 schoenebeck 929 /**
5994     * Returns the group with the given index.
5995     *
5996     * @param index - number of the sought group (0..n)
5997     * @returns sought group or NULL if there's no such group
5998     */
5999     Group* File::GetGroup(uint index) {
6000     if (!pGroups) LoadGroups();
6001     GroupsIterator = pGroups->begin();
6002     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6003     if (i == index) return *GroupsIterator;
6004     ++GroupsIterator;
6005     }
6006     return NULL;
6007     }
6008    
6009 schoenebeck 2543 /**
6010     * Returns the group with the given group name.
6011     *
6012     * Note: group names don't have to be unique in the gig format! So there
6013     * can be multiple groups with the same name. This method will simply
6014     * return the first group found with the given name.
6015     *
6016     * @param name - name of the sought group
6017     * @returns sought group or NULL if there's no group with that name
6018     */
6019     Group* File::GetGroup(String name) {
6020     if (!pGroups) LoadGroups();
6021     GroupsIterator = pGroups->begin();
6022     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6023     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6024     return NULL;
6025     }
6026    
6027 schoenebeck 929 Group* File::AddGroup() {
6028     if (!pGroups) LoadGroups();
6029 schoenebeck 930 // there must always be at least one group
6030 schoenebeck 929 __ensureMandatoryChunksExist();
6031 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6032 schoenebeck 929 pGroups->push_back(pGroup);
6033     return pGroup;
6034     }
6035    
6036 schoenebeck 1081 /** @brief Delete a group and its samples.
6037     *
6038     * This will delete the given Group object and all the samples that
6039     * belong to this group from the gig file. You have to call Save() to
6040     * make this persistent to the file.
6041     *
6042     * @param pGroup - group to delete
6043     * @throws gig::Exception if given group could not be found
6044     */
6045 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6046 schoenebeck 930 if (!pGroups) LoadGroups();
6047 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6048     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6049 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6050 schoenebeck 1081 // delete all members of this group
6051     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6052     DeleteSample(pSample);
6053     }
6054     // now delete this group object
6055     pGroups->erase(iter);
6056     delete pGroup;
6057     }
6058    
6059     /** @brief Delete a group.
6060     *
6061     * This will delete the given Group object from the gig file. All the
6062     * samples that belong to this group will not be deleted, but instead
6063     * be moved to another group. You have to call Save() to make this
6064     * persistent to the file.
6065     *
6066     * @param pGroup - group to delete
6067     * @throws gig::Exception if given group could not be found
6068     */
6069     void File::DeleteGroupOnly(Group* pGroup) {
6070     if (!pGroups) LoadGroups();
6071     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6072     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6073     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6074 schoenebeck 930 // move all members of this group to another group
6075     pGroup->MoveAll();
6076 schoenebeck 929 pGroups->erase(iter);
6077     delete pGroup;
6078     }
6079    
6080     void File::LoadGroups() {
6081     if (!pGroups) pGroups = new std::list<Group*>;
6082 schoenebeck 930 // try to read defined groups from file
6083 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6084 schoenebeck 930 if (lst3gri) {
6085     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6086     if (lst3gnl) {
6087     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6088     while (ck) {
6089     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6090 persson 1266 if (pVersion && pVersion->major == 3 &&
6091     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6092    
6093 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6094     }
6095     ck = lst3gnl->GetNextSubChunk();
6096 schoenebeck 929 }
6097     }
6098     }
6099 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6100     if (!pGroups->size()) {
6101     Group* pGroup = new Group(this, NULL);
6102     pGroup->Name = "Default Group";
6103     pGroups->push_back(pGroup);
6104     }
6105 schoenebeck 929 }
6106    
6107 schoenebeck 2584 /** @brief Get instrument script group (by index).
6108     *
6109     * Returns the real-time instrument script group with the given index.
6110     *
6111     * @param index - number of the sought group (0..n)
6112     * @returns sought script group or NULL if there's no such group
6113     */
6114     ScriptGroup* File::GetScriptGroup(uint index) {
6115     if (!pScriptGroups) LoadScriptGroups();
6116     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6117     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6118     if (i == index) return *it;
6119     return NULL;
6120     }
6121    
6122     /** @brief Get instrument script group (by name).
6123     *
6124     * Returns the first real-time instrument script group found with the given
6125     * group name. Note that group names may not necessarily be unique.
6126     *
6127     * @param name - name of the sought script group
6128     * @returns sought script group or NULL if there's no such group
6129     */
6130     ScriptGroup* File::GetScriptGroup(const String& name) {
6131     if (!pScriptGroups) LoadScriptGroups();
6132     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6133     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6134     if ((*it)->Name == name) return *it;
6135     return NULL;
6136     }
6137    
6138     /** @brief Add new instrument script group.
6139     *
6140     * Adds a new, empty real-time instrument script group to the file.
6141     *
6142     * You have to call Save() to make this persistent to the file.
6143     *
6144     * @return new empty script group
6145     */
6146     ScriptGroup* File::AddScriptGroup() {
6147     if (!pScriptGroups) LoadScriptGroups();
6148     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6149     pScriptGroups->push_back(pScriptGroup);
6150     return pScriptGroup;
6151     }
6152    
6153     /** @brief Delete an instrument script group.
6154     *
6155     * This will delete the given real-time instrument script group and all its
6156     * instrument scripts it contains. References inside instruments that are
6157     * using the deleted scripts will be removed from the respective instruments
6158     * accordingly.
6159     *
6160     * You have to call Save() to make this persistent to the file.
6161     *
6162     * @param pScriptGroup - script group to delete
6163     * @throws gig::Exception if given script group could not be found
6164     */
6165     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6166     if (!pScriptGroups) LoadScriptGroups();
6167     std::list<ScriptGroup*>::iterator iter =
6168     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6169     if (iter == pScriptGroups->end())
6170     throw gig::Exception("Could not delete script group, could not find given script group");
6171     pScriptGroups->erase(iter);
6172     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6173     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6174     if (pScriptGroup->pList)
6175     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6176     delete pScriptGroup;
6177     }
6178    
6179     void File::LoadScriptGroups() {
6180     if (pScriptGroups) return;
6181     pScriptGroups = new std::list<ScriptGroup*>;
6182     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6183     if (lstLS) {
6184     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6185     lst = lstLS->GetNextSubList())
6186     {
6187     if (lst->GetListType() == LIST_TYPE_RTIS) {
6188     pScriptGroups->push_back(new ScriptGroup(this, lst));
6189     }
6190     }
6191     }
6192     }
6193    
6194 schoenebeck 1098 /**
6195     * Apply all the gig file's current instruments, samples, groups and settings
6196     * to the respective RIFF chunks. You have to call Save() to make changes
6197     * persistent.
6198     *
6199     * Usually there is absolutely no need to call this method explicitly.
6200     * It will be called automatically when File::Save() was called.
6201     *
6202 schoenebeck 2682 * @param pProgress - callback function for progress notification
6203 schoenebeck 1098 * @throws Exception - on errors
6204     */
6205 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6206 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6207 persson 1192
6208 schoenebeck 2584 // update own gig format extension chunks
6209     // (not part of the GigaStudio 4 format)
6210 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6211     if (!lst3LS) {
6212     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6213     }
6214     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6215 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6216     // before the actual wave data
6217 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6218     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6219    
6220 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6221     // because the instruments' script slots will write the file offsets
6222     // of the respective instrument script chunk as reference.
6223     if (pScriptGroups) {
6224 schoenebeck 2912 // Update instrument script (group) chunks.
6225     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6226     it != pScriptGroups->end(); ++it)
6227     {
6228     (*it)->UpdateChunks(pProgress);
6229 schoenebeck 2584 }
6230     }
6231    
6232 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6233     // custom "3LS " chunk again
6234     if (!lst3LS->CountSubChunks()) {
6235     pRIFF->DeleteSubChunk(lst3LS);
6236     lst3LS = NULL;
6237     }
6238    
6239 schoenebeck 1098 // first update base class's chunks
6240 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6241 schoenebeck 929
6242 persson 1199 if (newFile) {
6243 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6244     // is placed first in file
6245 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6246 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6247     if (first != info) {
6248     pRIFF->MoveSubChunk(info, first);
6249     }
6250     }
6251    
6252 schoenebeck 1098 // update group's chunks
6253     if (pGroups) {
6254 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6255     // (before updating the Group chunks)
6256     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6257     if (!_3gri) {
6258     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6259     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6260 schoenebeck 1098 }
6261 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6262     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6263 persson 1266
6264     // v3: make sure the file has 128 3gnm chunks
6265 schoenebeck 2467 // (before updating the Group chunks)
6266 persson 1266 if (pVersion && pVersion->major == 3) {
6267     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6268     for (int i = 0 ; i < 128 ; i++) {
6269     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6270     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6271     }
6272     }
6273 schoenebeck 2467
6274     std::list<Group*>::iterator iter = pGroups->begin();
6275     std::list<Group*>::iterator end = pGroups->end();
6276     for (; iter != end; ++iter) {
6277 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6278 schoenebeck 2467 }
6279 schoenebeck 1098 }
6280 persson 1199
6281     // update einf chunk
6282    
6283     // The einf chunk contains statistics about the gig file, such
6284     // as the number of regions and samples used by each
6285     // instrument. It is divided in equally sized parts, where the
6286     // first part contains information about the whole gig file,
6287     // and the rest of the parts map to each instrument in the
6288     // file.
6289     //
6290     // At the end of each part there is a bit map of each sample
6291     // in the file, where a set bit means that the sample is used
6292     // by the file/instrument.
6293     //
6294     // Note that there are several fields with unknown use. These
6295     // are set to zero.
6296    
6297 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6298 persson 1199 int einfSize = (Instruments + 1) * sublen;
6299    
6300     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6301     if (einf) {
6302     if (einf->GetSize() != einfSize) {
6303     einf->Resize(einfSize);
6304     memset(einf->LoadChunkData(), 0, einfSize);
6305     }
6306     } else if (newFile) {
6307     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6308     }
6309     if (einf) {
6310     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6311    
6312     std::map<gig::Sample*,int> sampleMap;
6313     int sampleIdx = 0;
6314     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6315     sampleMap[pSample] = sampleIdx++;
6316     }
6317    
6318     int totnbusedsamples = 0;
6319     int totnbusedchannels = 0;
6320     int totnbregions = 0;
6321     int totnbdimregions = 0;
6322 persson 1264 int totnbloops = 0;
6323 persson 1199 int instrumentIdx = 0;
6324    
6325     memset(&pData[48], 0, sublen - 48);
6326    
6327     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6328     instrument = GetNextInstrument()) {
6329     int nbusedsamples = 0;
6330     int nbusedchannels = 0;
6331     int nbdimregions = 0;
6332 persson 1264 int nbloops = 0;
6333 persson 1199
6334     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6335    
6336     for (Region* region = instrument->GetFirstRegion() ; region ;
6337     region = instrument->GetNextRegion()) {
6338     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6339     gig::DimensionRegion *d = region->pDimensionRegions[i];
6340     if (d->pSample) {
6341     int sampleIdx = sampleMap[d->pSample];
6342     int byte = 48 + sampleIdx / 8;
6343     int bit = 1 << (sampleIdx & 7);
6344     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6345     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6346     nbusedsamples++;
6347     nbusedchannels += d->pSample->Channels;
6348    
6349     if ((pData[byte] & bit) == 0) {
6350     pData[byte] |= bit;
6351     totnbusedsamples++;
6352     totnbusedchannels += d->pSample->Channels;
6353     }
6354     }
6355     }
6356 persson 1264 if (d->SampleLoops) nbloops++;
6357 persson 1199 }
6358     nbdimregions += region->DimensionRegions;
6359     }
6360     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6361     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6362     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6363     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6364     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6365     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6366     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6367 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6368     // next 8 bytes unknown
6369 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6370 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6371 persson 1199 // next 4 bytes unknown
6372    
6373     totnbregions += instrument->Regions;
6374     totnbdimregions += nbdimregions;
6375 persson 1264 totnbloops += nbloops;
6376 persson 1199 instrumentIdx++;
6377     }
6378     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6379     // store32(&pData[0], sublen);
6380     store32(&pData[4], totnbusedchannels);
6381     store32(&pData[8], totnbusedsamples);
6382     store32(&pData[12], Instruments);
6383     store32(&pData[16], totnbregions);
6384     store32(&pData[20], totnbdimregions);
6385 persson 1264 store32(&pData[24], totnbloops);
6386     // next 8 bytes unknown
6387     // next 4 bytes unknown, not always 0
6388 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6389 persson 1199 // next 4 bytes unknown
6390     }
6391    
6392     // update 3crc chunk
6393    
6394     // The 3crc chunk contains CRC-32 checksums for the
6395 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6396     // chunk here (in RAM) with the old crc values which we read from the
6397     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6398     // member variable). This step is required, because samples might have
6399     // been deleted by the user since the file was opened, which in turn
6400     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6401     // If a sample was conciously modified by the user (that is if
6402     // Sample::Write() was called later on) then Sample::Write() will just
6403     // update the respective individual checksum(s) directly on disk and
6404     // leaves all other sample checksums untouched.
6405 persson 1199
6406 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6407 persson 1199 if (_3crc) {
6408     _3crc->Resize(pSamples->size() * 8);
6409 schoenebeck 2989 } else /*if (newFile)*/ {
6410 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6411 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6412     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6413 persson 1199 }
6414 schoenebeck 2989 { // must be performed in RAM here ...
6415     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6416     if (pData) {
6417     File::SampleList::iterator iter = pSamples->begin();
6418     File::SampleList::iterator end = pSamples->end();
6419     for (int index = 0; iter != end; ++iter, ++index) {
6420     gig::Sample* pSample = (gig::Sample*) *iter;
6421     pData[index*2] = 1; // always 1
6422     pData[index*2+1] = pSample->crc;
6423     }
6424     }
6425     }
6426 schoenebeck 1098 }
6427 schoenebeck 2609
6428     void File::UpdateFileOffsets() {
6429     DLS::File::UpdateFileOffsets();
6430 schoenebeck 929
6431 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6432     instrument = GetNextInstrument())
6433     {
6434     instrument->UpdateScriptFileOffsets();
6435     }
6436     }
6437    
6438 schoenebeck 1524 /**
6439     * Enable / disable automatic loading. By default this properyt is
6440     * enabled and all informations are loaded automatically. However
6441     * loading all Regions, DimensionRegions and especially samples might
6442     * take a long time for large .gig files, and sometimes one might only
6443     * be interested in retrieving very superficial informations like the
6444     * amount of instruments and their names. In this case one might disable
6445     * automatic loading to avoid very slow response times.
6446     *
6447     * @e CAUTION: by disabling this property many pointers (i.e. sample
6448     * references) and informations will have invalid or even undefined
6449     * data! This feature is currently only intended for retrieving very
6450     * superficial informations in a very fast way. Don't use it to retrieve
6451     * details like synthesis informations or even to modify .gig files!
6452     */
6453     void File::SetAutoLoad(bool b) {
6454     bAutoLoad = b;
6455     }
6456 schoenebeck 1098
6457 schoenebeck 1524 /**
6458     * Returns whether automatic loading is enabled.
6459     * @see SetAutoLoad()
6460     */
6461     bool File::GetAutoLoad() {
6462     return bAutoLoad;
6463     }
6464 schoenebeck 1098
6465 schoenebeck 1524
6466    
6467 schoenebeck 2 // *************** Exception ***************
6468     // *
6469    
6470     Exception::Exception(String Message) : DLS::Exception(Message) {
6471     }
6472    
6473     void Exception::PrintMessage() {
6474     std::cout << "gig::Exception: " << Message << std::endl;
6475     }
6476    
6477 schoenebeck 518
6478     // *************** functions ***************
6479     // *
6480    
6481     /**
6482     * Returns the name of this C++ library. This is usually "libgig" of
6483     * course. This call is equivalent to RIFF::libraryName() and
6484     * DLS::libraryName().
6485     */
6486     String libraryName() {
6487     return PACKAGE;
6488     }
6489    
6490     /**
6491     * Returns version of this C++ library. This call is equivalent to
6492     * RIFF::libraryVersion() and DLS::libraryVersion().
6493     */
6494     String libraryVersion() {
6495     return VERSION;
6496     }
6497    
6498 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC