/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3140 - (hide annotations) (download)
Wed May 3 16:19:53 2017 UTC (4 years, 1 month ago) by schoenebeck
File size: 281476 byte(s)
- gig.h: Don't include Serialization.h by default.

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 2 // *************** Sample ***************
345     // *
346    
347 schoenebeck 2922 size_t Sample::Instances = 0;
348 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
349 schoenebeck 2
350 schoenebeck 809 /** @brief Constructor.
351     *
352     * Load an existing sample or create a new one. A 'wave' list chunk must
353     * be given to this constructor. In case the given 'wave' list chunk
354     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355     * format and sample data will be loaded from there, otherwise default
356     * values will be used and those chunks will be created when
357     * File::Save() will be called later on.
358     *
359     * @param pFile - pointer to gig::File where this sample is
360     * located (or will be located)
361     * @param waveList - pointer to 'wave' list chunk which is (or
362     * will be) associated with this sample
363     * @param WavePoolOffset - offset of this sample data from wave pool
364     * ('wvpl') list chunk
365     * @param fileNo - number of an extension file where this sample
366     * is located, 0 otherwise
367 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
368 schoenebeck 809 */
369 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
370     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
371     {
372 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
373 persson 1180 { CHUNK_ID_INAM, 64 },
374     { 0, 0 }
375     };
376 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
377 schoenebeck 2 Instances++;
378 persson 666 FileNo = fileNo;
379 schoenebeck 2
380 schoenebeck 1381 __resetCRC(crc);
381 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
382     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
383     // checksum of the time when the sample was consciously modified by the
384     // user for the last time (by calling Sample::Write() that is).
385     if (index >= 0) { // not a new file ...
386     try {
387     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
388     this->crc = crc;
389     } catch (...) {}
390     }
391 schoenebeck 1381
392 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
393     if (pCk3gix) {
394 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
395 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
396 schoenebeck 809 } else { // '3gix' chunk missing
397 schoenebeck 930 // by default assigned to that mandatory "Default Group"
398     pGroup = pFile->GetGroup(0);
399 schoenebeck 809 }
400 schoenebeck 2
401 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
402     if (pCkSmpl) {
403     Manufacturer = pCkSmpl->ReadInt32();
404     Product = pCkSmpl->ReadInt32();
405     SamplePeriod = pCkSmpl->ReadInt32();
406     MIDIUnityNote = pCkSmpl->ReadInt32();
407     FineTune = pCkSmpl->ReadInt32();
408     pCkSmpl->Read(&SMPTEFormat, 1, 4);
409     SMPTEOffset = pCkSmpl->ReadInt32();
410     Loops = pCkSmpl->ReadInt32();
411     pCkSmpl->ReadInt32(); // manufByt
412     LoopID = pCkSmpl->ReadInt32();
413     pCkSmpl->Read(&LoopType, 1, 4);
414     LoopStart = pCkSmpl->ReadInt32();
415     LoopEnd = pCkSmpl->ReadInt32();
416     LoopFraction = pCkSmpl->ReadInt32();
417     LoopPlayCount = pCkSmpl->ReadInt32();
418     } else { // 'smpl' chunk missing
419     // use default values
420     Manufacturer = 0;
421     Product = 0;
422 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
423 persson 1218 MIDIUnityNote = 60;
424 schoenebeck 809 FineTune = 0;
425 persson 1182 SMPTEFormat = smpte_format_no_offset;
426 schoenebeck 809 SMPTEOffset = 0;
427     Loops = 0;
428     LoopID = 0;
429 persson 1182 LoopType = loop_type_normal;
430 schoenebeck 809 LoopStart = 0;
431     LoopEnd = 0;
432     LoopFraction = 0;
433     LoopPlayCount = 0;
434     }
435 schoenebeck 2
436     FrameTable = NULL;
437     SamplePos = 0;
438     RAMCache.Size = 0;
439     RAMCache.pStart = NULL;
440     RAMCache.NullExtensionSize = 0;
441    
442 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
443    
444 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
445     Compressed = ewav;
446     Dithered = false;
447     TruncatedBits = 0;
448 schoenebeck 2 if (Compressed) {
449 persson 437 uint32_t version = ewav->ReadInt32();
450     if (version == 3 && BitDepth == 24) {
451     Dithered = ewav->ReadInt32();
452     ewav->SetPos(Channels == 2 ? 84 : 64);
453     TruncatedBits = ewav->ReadInt32();
454     }
455 schoenebeck 2 ScanCompressedSample();
456     }
457 schoenebeck 317
458     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
459 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
460     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
461     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
462 schoenebeck 317 }
463 persson 437 FrameOffset = 0; // just for streaming compressed samples
464 schoenebeck 21
465 persson 864 LoopSize = LoopEnd - LoopStart + 1;
466 schoenebeck 2 }
467    
468 schoenebeck 809 /**
469 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
470     * the actual waveform data) and assign it to this object.
471     *
472     * Discussion: copying .gig samples is a bit tricky. It requires three
473     * steps:
474     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
475     * its new sample waveform data size.
476     * 2. Saving the file (done by File::Save()) so that it gains correct size
477     * and layout for writing the actual wave form data directly to disc
478     * in next step.
479     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
480     *
481     * @param orig - original Sample object to be copied from
482     */
483     void Sample::CopyAssignMeta(const Sample* orig) {
484     // handle base classes
485     DLS::Sample::CopyAssignCore(orig);
486    
487     // handle actual own attributes of this class
488     Manufacturer = orig->Manufacturer;
489     Product = orig->Product;
490     SamplePeriod = orig->SamplePeriod;
491     MIDIUnityNote = orig->MIDIUnityNote;
492     FineTune = orig->FineTune;
493     SMPTEFormat = orig->SMPTEFormat;
494     SMPTEOffset = orig->SMPTEOffset;
495     Loops = orig->Loops;
496     LoopID = orig->LoopID;
497     LoopType = orig->LoopType;
498     LoopStart = orig->LoopStart;
499     LoopEnd = orig->LoopEnd;
500     LoopSize = orig->LoopSize;
501     LoopFraction = orig->LoopFraction;
502     LoopPlayCount = orig->LoopPlayCount;
503    
504     // schedule resizing this sample to the given sample's size
505     Resize(orig->GetSize());
506     }
507    
508     /**
509     * Should be called after CopyAssignMeta() and File::Save() sequence.
510     * Read more about it in the discussion of CopyAssignMeta(). This method
511     * copies the actual waveform data by disk streaming.
512     *
513     * @e CAUTION: this method is currently not thread safe! During this
514     * operation the sample must not be used for other purposes by other
515     * threads!
516     *
517     * @param orig - original Sample object to be copied from
518     */
519     void Sample::CopyAssignWave(const Sample* orig) {
520     const int iReadAtOnce = 32*1024;
521     char* buf = new char[iReadAtOnce * orig->FrameSize];
522     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
523 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
524 schoenebeck 2482 pOrig->SetPos(0);
525     SetPos(0);
526 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
527 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
528     {
529     Write(buf, n);
530     }
531     pOrig->SetPos(restorePos);
532     delete [] buf;
533     }
534    
535     /**
536 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
537     * to call File::Save() to make changes persistent.
538     *
539     * Usually there is absolutely no need to call this method explicitly.
540     * It will be called automatically when File::Save() was called.
541     *
542 schoenebeck 2682 * @param pProgress - callback function for progress notification
543 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
544 schoenebeck 809 * was provided yet
545     * @throws gig::Exception if there is any invalid sample setting
546     */
547 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
548 schoenebeck 809 // first update base class's chunks
549 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
550 schoenebeck 809
551     // make sure 'smpl' chunk exists
552     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
553 persson 1182 if (!pCkSmpl) {
554     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
555     memset(pCkSmpl->LoadChunkData(), 0, 60);
556     }
557 schoenebeck 809 // update 'smpl' chunk
558     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
559 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
560 persson 1179 store32(&pData[0], Manufacturer);
561     store32(&pData[4], Product);
562     store32(&pData[8], SamplePeriod);
563     store32(&pData[12], MIDIUnityNote);
564     store32(&pData[16], FineTune);
565     store32(&pData[20], SMPTEFormat);
566     store32(&pData[24], SMPTEOffset);
567     store32(&pData[28], Loops);
568 schoenebeck 809
569     // we skip 'manufByt' for now (4 bytes)
570    
571 persson 1179 store32(&pData[36], LoopID);
572     store32(&pData[40], LoopType);
573     store32(&pData[44], LoopStart);
574     store32(&pData[48], LoopEnd);
575     store32(&pData[52], LoopFraction);
576     store32(&pData[56], LoopPlayCount);
577 schoenebeck 809
578     // make sure '3gix' chunk exists
579     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
580     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
581 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
582 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
583 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
584     if (pFile->pGroups) {
585     std::list<Group*>::iterator iter = pFile->pGroups->begin();
586     std::list<Group*>::iterator end = pFile->pGroups->end();
587 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
588 schoenebeck 929 if (*iter == pGroup) {
589     iSampleGroup = i;
590     break; // found
591     }
592     }
593     }
594 schoenebeck 809 // update '3gix' chunk
595     pData = (uint8_t*) pCk3gix->LoadChunkData();
596 persson 1179 store16(&pData[0], iSampleGroup);
597 schoenebeck 2484
598     // if the library user toggled the "Compressed" attribute from true to
599     // false, then the EWAV chunk associated with compressed samples needs
600     // to be deleted
601     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
602     if (ewav && !Compressed) {
603     pWaveList->DeleteSubChunk(ewav);
604     }
605 schoenebeck 809 }
606    
607 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
608     void Sample::ScanCompressedSample() {
609     //TODO: we have to add some more scans here (e.g. determine compression rate)
610     this->SamplesTotal = 0;
611 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
612 schoenebeck 2
613 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
614 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
615 persson 365
616 schoenebeck 2 // Scanning
617     pCkData->SetPos(0);
618 persson 365 if (Channels == 2) { // Stereo
619     for (int i = 0 ; ; i++) {
620     // for 24 bit samples every 8:th frame offset is
621     // stored, to save some memory
622     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
623    
624     const int mode_l = pCkData->ReadUint8();
625     const int mode_r = pCkData->ReadUint8();
626     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
627 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
628 persson 365
629     if (pCkData->RemainingBytes() <= frameSize) {
630     SamplesInLastFrame =
631     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
632     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
633     SamplesTotal += SamplesInLastFrame;
634 schoenebeck 2 break;
635 persson 365 }
636     SamplesTotal += SamplesPerFrame;
637     pCkData->SetPos(frameSize, RIFF::stream_curpos);
638     }
639     }
640     else { // Mono
641     for (int i = 0 ; ; i++) {
642     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
643    
644     const int mode = pCkData->ReadUint8();
645     if (mode > 5) throw gig::Exception("Unknown compression mode");
646 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
647 persson 365
648     if (pCkData->RemainingBytes() <= frameSize) {
649     SamplesInLastFrame =
650     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
651     SamplesTotal += SamplesInLastFrame;
652 schoenebeck 2 break;
653 persson 365 }
654     SamplesTotal += SamplesPerFrame;
655     pCkData->SetPos(frameSize, RIFF::stream_curpos);
656 schoenebeck 2 }
657     }
658     pCkData->SetPos(0);
659    
660     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
661     if (FrameTable) delete[] FrameTable;
662 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
663     std::list<file_offset_t>::iterator end = frameOffsets.end();
664     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
665 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
666     FrameTable[i] = *iter;
667     }
668     }
669    
670     /**
671     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672     * ReleaseSampleData() to free the memory if you don't need the cached
673     * sample data anymore.
674     *
675     * @returns buffer_t structure with start address and size of the buffer
676     * in bytes
677     * @see ReleaseSampleData(), Read(), SetPos()
678     */
679     buffer_t Sample::LoadSampleData() {
680     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
681     }
682    
683     /**
684     * Reads (uncompresses if needed) and caches the first \a SampleCount
685     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
686     * memory space if you don't need the cached samples anymore. There is no
687     * guarantee that exactly \a SampleCount samples will be cached; this is
688     * not an error. The size will be eventually truncated e.g. to the
689     * beginning of a frame of a compressed sample. This is done for
690     * efficiency reasons while streaming the wave by your sampler engine
691     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
692     * that will be returned to determine the actual cached samples, but note
693     * that the size is given in bytes! You get the number of actually cached
694     * samples by dividing it by the frame size of the sample:
695 schoenebeck 384 * @code
696 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
697     * long cachedsamples = buf.Size / pSample->FrameSize;
698 schoenebeck 384 * @endcode
699 schoenebeck 2 *
700     * @param SampleCount - number of sample points to load into RAM
701     * @returns buffer_t structure with start address and size of
702     * the cached sample data in bytes
703     * @see ReleaseSampleData(), Read(), SetPos()
704     */
705 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
706 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
707     }
708    
709     /**
710     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
711     * ReleaseSampleData() to free the memory if you don't need the cached
712     * sample data anymore.
713     * The method will add \a NullSamplesCount silence samples past the
714     * official buffer end (this won't affect the 'Size' member of the
715     * buffer_t structure, that means 'Size' always reflects the size of the
716     * actual sample data, the buffer might be bigger though). Silence
717     * samples past the official buffer are needed for differential
718     * algorithms that always have to take subsequent samples into account
719     * (resampling/interpolation would be an important example) and avoids
720     * memory access faults in such cases.
721     *
722     * @param NullSamplesCount - number of silence samples the buffer should
723     * be extended past it's data end
724     * @returns buffer_t structure with start address and
725     * size of the buffer in bytes
726     * @see ReleaseSampleData(), Read(), SetPos()
727     */
728     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
729     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
730     }
731    
732     /**
733     * Reads (uncompresses if needed) and caches the first \a SampleCount
734     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
735     * memory space if you don't need the cached samples anymore. There is no
736     * guarantee that exactly \a SampleCount samples will be cached; this is
737     * not an error. The size will be eventually truncated e.g. to the
738     * beginning of a frame of a compressed sample. This is done for
739     * efficiency reasons while streaming the wave by your sampler engine
740     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
741     * that will be returned to determine the actual cached samples, but note
742     * that the size is given in bytes! You get the number of actually cached
743     * samples by dividing it by the frame size of the sample:
744 schoenebeck 384 * @code
745 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
746     * long cachedsamples = buf.Size / pSample->FrameSize;
747 schoenebeck 384 * @endcode
748 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
749     * official buffer end (this won't affect the 'Size' member of the
750     * buffer_t structure, that means 'Size' always reflects the size of the
751     * actual sample data, the buffer might be bigger though). Silence
752     * samples past the official buffer are needed for differential
753     * algorithms that always have to take subsequent samples into account
754     * (resampling/interpolation would be an important example) and avoids
755     * memory access faults in such cases.
756     *
757     * @param SampleCount - number of sample points to load into RAM
758     * @param NullSamplesCount - number of silence samples the buffer should
759     * be extended past it's data end
760     * @returns buffer_t structure with start address and
761     * size of the cached sample data in bytes
762     * @see ReleaseSampleData(), Read(), SetPos()
763     */
764 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
765 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
766     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
767 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
768 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
769 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
770     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
771     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
772     // fill the remaining buffer space with silence samples
773     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
774     return GetCache();
775     }
776    
777     /**
778     * Returns current cached sample points. A buffer_t structure will be
779     * returned which contains address pointer to the begin of the cache and
780     * the size of the cached sample data in bytes. Use
781     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
782     * RAM.
783     *
784     * @returns buffer_t structure with current cached sample points
785     * @see LoadSampleData();
786     */
787     buffer_t Sample::GetCache() {
788     // return a copy of the buffer_t structure
789     buffer_t result;
790     result.Size = this->RAMCache.Size;
791     result.pStart = this->RAMCache.pStart;
792     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
793     return result;
794     }
795    
796     /**
797     * Frees the cached sample from RAM if loaded with
798     * <i>LoadSampleData()</i> previously.
799     *
800     * @see LoadSampleData();
801     */
802     void Sample::ReleaseSampleData() {
803     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
804     RAMCache.pStart = NULL;
805     RAMCache.Size = 0;
806 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
807 schoenebeck 2 }
808    
809 schoenebeck 809 /** @brief Resize sample.
810     *
811     * Resizes the sample's wave form data, that is the actual size of
812     * sample wave data possible to be written for this sample. This call
813     * will return immediately and just schedule the resize operation. You
814     * should call File::Save() to actually perform the resize operation(s)
815     * "physically" to the file. As this can take a while on large files, it
816     * is recommended to call Resize() first on all samples which have to be
817     * resized and finally to call File::Save() to perform all those resize
818     * operations in one rush.
819     *
820     * The actual size (in bytes) is dependant to the current FrameSize
821     * value. You may want to set FrameSize before calling Resize().
822     *
823     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
824     * enlarged samples before calling File::Save() as this might exceed the
825     * current sample's boundary!
826     *
827 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
828     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
829 schoenebeck 809 * other formats will fail!
830     *
831 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
832     * greater than zero)
833 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
834 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
835 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
836     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
837     * DLS::Sample::FormatTag, File::Save()
838     */
839 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
840 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
841 schoenebeck 2922 DLS::Sample::Resize(NewSize);
842 schoenebeck 809 }
843    
844 schoenebeck 2 /**
845     * Sets the position within the sample (in sample points, not in
846     * bytes). Use this method and <i>Read()</i> if you don't want to load
847     * the sample into RAM, thus for disk streaming.
848     *
849     * Although the original Gigasampler engine doesn't allow positioning
850     * within compressed samples, I decided to implement it. Even though
851     * the Gigasampler format doesn't allow to define loops for compressed
852     * samples at the moment, positioning within compressed samples might be
853     * interesting for some sampler engines though. The only drawback about
854     * my decision is that it takes longer to load compressed gig Files on
855     * startup, because it's neccessary to scan the samples for some
856     * mandatory informations. But I think as it doesn't affect the runtime
857     * efficiency, nobody will have a problem with that.
858     *
859     * @param SampleCount number of sample points to jump
860     * @param Whence optional: to which relation \a SampleCount refers
861     * to, if omited <i>RIFF::stream_start</i> is assumed
862     * @returns the new sample position
863     * @see Read()
864     */
865 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
866 schoenebeck 2 if (Compressed) {
867     switch (Whence) {
868     case RIFF::stream_curpos:
869     this->SamplePos += SampleCount;
870     break;
871     case RIFF::stream_end:
872     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
873     break;
874     case RIFF::stream_backward:
875     this->SamplePos -= SampleCount;
876     break;
877     case RIFF::stream_start: default:
878     this->SamplePos = SampleCount;
879     break;
880     }
881     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
882    
883 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
884 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
885     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
886     return this->SamplePos;
887     }
888     else { // not compressed
889 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
890     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
891 schoenebeck 2 return (result == orderedBytes) ? SampleCount
892     : result / this->FrameSize;
893     }
894     }
895    
896     /**
897     * Returns the current position in the sample (in sample points).
898     */
899 schoenebeck 2912 file_offset_t Sample::GetPos() const {
900 schoenebeck 2 if (Compressed) return SamplePos;
901     else return pCkData->GetPos() / FrameSize;
902     }
903    
904     /**
905 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
906     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
907     * the position within the sample respectively, this method honors the
908     * looping informations of the sample (if any). The sample wave stream
909     * will be decompressed on the fly if using a compressed sample. Use this
910     * method if you don't want to load the sample into RAM, thus for disk
911     * streaming. All this methods needs to know to proceed with streaming
912     * for the next time you call this method is stored in \a pPlaybackState.
913     * You have to allocate and initialize the playback_state_t structure by
914     * yourself before you use it to stream a sample:
915 schoenebeck 384 * @code
916     * gig::playback_state_t playbackstate;
917     * playbackstate.position = 0;
918     * playbackstate.reverse = false;
919     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
920     * @endcode
921 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
922     * defined or if the current read position is located within a loop area.
923     * The method already handles such cases by itself.
924     *
925 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
926     * have to use an external decompression buffer for <b>EACH</b>
927     * streaming thread to avoid race conditions and crashes!
928     *
929 schoenebeck 24 * @param pBuffer destination buffer
930     * @param SampleCount number of sample points to read
931     * @param pPlaybackState will be used to store and reload the playback
932     * state for the next ReadAndLoop() call
933 persson 864 * @param pDimRgn dimension region with looping information
934 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
935 schoenebeck 24 * @returns number of successfully read sample points
936 schoenebeck 384 * @see CreateDecompressionBuffer()
937 schoenebeck 24 */
938 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
939 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
940 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
941 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
942    
943     SetPos(pPlaybackState->position); // recover position from the last time
944    
945 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
946 schoenebeck 24
947 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
948     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
949 schoenebeck 24
950 persson 864 if (GetPos() <= loopEnd) {
951     switch (loop.LoopType) {
952 schoenebeck 24
953 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
954     do {
955     // if not endless loop check if max. number of loop cycles have been passed
956     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
957 schoenebeck 24
958 persson 864 if (!pPlaybackState->reverse) { // forward playback
959     do {
960     samplestoloopend = loopEnd - GetPos();
961     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
962     samplestoread -= readsamples;
963     totalreadsamples += readsamples;
964     if (readsamples == samplestoloopend) {
965     pPlaybackState->reverse = true;
966     break;
967     }
968     } while (samplestoread && readsamples);
969     }
970     else { // backward playback
971 schoenebeck 24
972 persson 864 // as we can only read forward from disk, we have to
973     // determine the end position within the loop first,
974     // read forward from that 'end' and finally after
975     // reading, swap all sample frames so it reflects
976     // backward playback
977 schoenebeck 24
978 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
979     file_offset_t loopoffset = GetPos() - loop.LoopStart;
980     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
981     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
982 schoenebeck 24
983 persson 864 SetPos(reverseplaybackend);
984 schoenebeck 24
985 persson 864 // read samples for backward playback
986     do {
987     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
988     samplestoreadinloop -= readsamples;
989     samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     } while (samplestoreadinloop && readsamples);
992 schoenebeck 24
993 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
994    
995     if (reverseplaybackend == loop.LoopStart) {
996     pPlaybackState->loop_cycles_left--;
997     pPlaybackState->reverse = false;
998     }
999    
1000     // reverse the sample frames for backward playback
1001 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1002     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1003 schoenebeck 24 }
1004 persson 864 } while (samplestoread && readsamples);
1005     break;
1006     }
1007 schoenebeck 24
1008 persson 864 case loop_type_backward: { // TODO: not tested yet!
1009     // forward playback (not entered the loop yet)
1010     if (!pPlaybackState->reverse) do {
1011     samplestoloopend = loopEnd - GetPos();
1012     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1013     samplestoread -= readsamples;
1014     totalreadsamples += readsamples;
1015     if (readsamples == samplestoloopend) {
1016     pPlaybackState->reverse = true;
1017     break;
1018     }
1019     } while (samplestoread && readsamples);
1020 schoenebeck 24
1021 persson 864 if (!samplestoread) break;
1022 schoenebeck 24
1023 persson 864 // as we can only read forward from disk, we have to
1024     // determine the end position within the loop first,
1025     // read forward from that 'end' and finally after
1026     // reading, swap all sample frames so it reflects
1027     // backward playback
1028 schoenebeck 24
1029 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1030     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1031     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1032 persson 864 : samplestoread;
1033 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1034 schoenebeck 24
1035 persson 864 SetPos(reverseplaybackend);
1036 schoenebeck 24
1037 persson 864 // read samples for backward playback
1038     do {
1039     // if not endless loop check if max. number of loop cycles have been passed
1040     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1041     samplestoloopend = loopEnd - GetPos();
1042     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1043     samplestoreadinloop -= readsamples;
1044     samplestoread -= readsamples;
1045     totalreadsamples += readsamples;
1046     if (readsamples == samplestoloopend) {
1047     pPlaybackState->loop_cycles_left--;
1048     SetPos(loop.LoopStart);
1049     }
1050     } while (samplestoreadinloop && readsamples);
1051 schoenebeck 24
1052 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1053 schoenebeck 24
1054 persson 864 // reverse the sample frames for backward playback
1055     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1056     break;
1057     }
1058 schoenebeck 24
1059 persson 864 default: case loop_type_normal: {
1060     do {
1061     // if not endless loop check if max. number of loop cycles have been passed
1062     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1063     samplestoloopend = loopEnd - GetPos();
1064     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1065     samplestoread -= readsamples;
1066     totalreadsamples += readsamples;
1067     if (readsamples == samplestoloopend) {
1068     pPlaybackState->loop_cycles_left--;
1069     SetPos(loop.LoopStart);
1070     }
1071     } while (samplestoread && readsamples);
1072     break;
1073     }
1074 schoenebeck 24 }
1075     }
1076     }
1077    
1078     // read on without looping
1079     if (samplestoread) do {
1080 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1081 schoenebeck 24 samplestoread -= readsamples;
1082     totalreadsamples += readsamples;
1083     } while (readsamples && samplestoread);
1084    
1085     // store current position
1086     pPlaybackState->position = GetPos();
1087    
1088     return totalreadsamples;
1089     }
1090    
1091     /**
1092 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1093     * position into the buffer pointed by \a pBuffer and increments the
1094     * position within the sample. The sample wave stream will be
1095     * decompressed on the fly if using a compressed sample. Use this method
1096     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1097     * thus for disk streaming.
1098     *
1099 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1100     * have to use an external decompression buffer for <b>EACH</b>
1101     * streaming thread to avoid race conditions and crashes!
1102     *
1103 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1104     * (using native endianness). For 24 bit, the buffer will
1105     * contain three bytes per sample, little-endian.
1106     *
1107 schoenebeck 2 * @param pBuffer destination buffer
1108     * @param SampleCount number of sample points to read
1109 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1110 schoenebeck 2 * @returns number of successfully read sample points
1111 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1112 schoenebeck 2 */
1113 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1114 schoenebeck 21 if (SampleCount == 0) return 0;
1115 schoenebeck 317 if (!Compressed) {
1116     if (BitDepth == 24) {
1117 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1118 schoenebeck 317 }
1119 persson 365 else { // 16 bit
1120     // (pCkData->Read does endian correction)
1121     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1122     : pCkData->Read(pBuffer, SampleCount, 2);
1123     }
1124 schoenebeck 317 }
1125 persson 365 else {
1126 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1127 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1128 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1129 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1130     remainingsamples = SampleCount,
1131 persson 365 copysamples, skipsamples,
1132     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1133 schoenebeck 2 this->FrameOffset = 0;
1134    
1135 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1136    
1137     // if decompression buffer too small, then reduce amount of samples to read
1138     if (pDecompressionBuffer->Size < assumedsize) {
1139     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1140     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1141     remainingsamples = SampleCount;
1142     assumedsize = GuessSize(SampleCount);
1143 schoenebeck 2 }
1144    
1145 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1146 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1147 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1148 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1149    
1150 persson 365 while (remainingsamples && remainingbytes) {
1151 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1152     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1153 schoenebeck 2
1154 persson 365 int mode_l = *pSrc++, mode_r = 0;
1155    
1156     if (Channels == 2) {
1157     mode_r = *pSrc++;
1158     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1159     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1160     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1161     if (remainingbytes < framebytes) { // last frame in sample
1162     framesamples = SamplesInLastFrame;
1163     if (mode_l == 4 && (framesamples & 1)) {
1164     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1165     }
1166     else {
1167     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1168     }
1169 schoenebeck 2 }
1170     }
1171 persson 365 else {
1172     framebytes = bytesPerFrame[mode_l] + 1;
1173     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1174     if (remainingbytes < framebytes) {
1175     framesamples = SamplesInLastFrame;
1176     }
1177     }
1178 schoenebeck 2
1179     // determine how many samples in this frame to skip and read
1180 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1181     if (currentframeoffset <= framesamples) {
1182     copysamples = framesamples - currentframeoffset;
1183     skipsamples = currentframeoffset;
1184     }
1185     else {
1186     copysamples = 0;
1187     skipsamples = framesamples;
1188     }
1189 schoenebeck 2 }
1190     else {
1191 persson 365 // This frame has enough data for pBuffer, but not
1192     // all of the frame is needed. Set file position
1193     // to start of this frame for next call to Read.
1194 schoenebeck 2 copysamples = remainingsamples;
1195 persson 365 skipsamples = currentframeoffset;
1196     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1197     this->FrameOffset = currentframeoffset + copysamples;
1198     }
1199     remainingsamples -= copysamples;
1200    
1201     if (remainingbytes > framebytes) {
1202     remainingbytes -= framebytes;
1203     if (remainingsamples == 0 &&
1204     currentframeoffset + copysamples == framesamples) {
1205     // This frame has enough data for pBuffer, and
1206     // all of the frame is needed. Set file
1207     // position to start of next frame for next
1208     // call to Read. FrameOffset is 0.
1209 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1210     }
1211     }
1212 persson 365 else remainingbytes = 0;
1213 schoenebeck 2
1214 persson 365 currentframeoffset -= skipsamples;
1215 schoenebeck 2
1216 persson 365 if (copysamples == 0) {
1217     // skip this frame
1218     pSrc += framebytes - Channels;
1219     }
1220     else {
1221     const unsigned char* const param_l = pSrc;
1222     if (BitDepth == 24) {
1223     if (mode_l != 2) pSrc += 12;
1224 schoenebeck 2
1225 persson 365 if (Channels == 2) { // Stereo
1226     const unsigned char* const param_r = pSrc;
1227     if (mode_r != 2) pSrc += 12;
1228    
1229 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1230 persson 437 skipsamples, copysamples, TruncatedBits);
1231 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1232 persson 437 skipsamples, copysamples, TruncatedBits);
1233 persson 902 pDst24 += copysamples * 6;
1234 schoenebeck 2 }
1235 persson 365 else { // Mono
1236 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1237 persson 437 skipsamples, copysamples, TruncatedBits);
1238 persson 902 pDst24 += copysamples * 3;
1239 schoenebeck 2 }
1240 persson 365 }
1241     else { // 16 bit
1242     if (mode_l) pSrc += 4;
1243 schoenebeck 2
1244 persson 365 int step;
1245     if (Channels == 2) { // Stereo
1246     const unsigned char* const param_r = pSrc;
1247     if (mode_r) pSrc += 4;
1248    
1249     step = (2 - mode_l) + (2 - mode_r);
1250 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1251     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1252 persson 365 skipsamples, copysamples);
1253     pDst += copysamples << 1;
1254 schoenebeck 2 }
1255 persson 365 else { // Mono
1256     step = 2 - mode_l;
1257 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1258 persson 365 pDst += copysamples;
1259 schoenebeck 2 }
1260 persson 365 }
1261     pSrc += nextFrameOffset;
1262     }
1263 schoenebeck 2
1264 persson 365 // reload from disk to local buffer if needed
1265     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1266     assumedsize = GuessSize(remainingsamples);
1267     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1268     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1269 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1270     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1271 schoenebeck 2 }
1272 persson 365 } // while
1273    
1274 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1275 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1276 schoenebeck 2 return (SampleCount - remainingsamples);
1277     }
1278     }
1279    
1280 schoenebeck 809 /** @brief Write sample wave data.
1281     *
1282     * Writes \a SampleCount number of sample points from the buffer pointed
1283     * by \a pBuffer and increments the position within the sample. Use this
1284     * method to directly write the sample data to disk, i.e. if you don't
1285     * want or cannot load the whole sample data into RAM.
1286     *
1287     * You have to Resize() the sample to the desired size and call
1288     * File::Save() <b>before</b> using Write().
1289     *
1290     * Note: there is currently no support for writing compressed samples.
1291     *
1292 persson 1264 * For 16 bit samples, the data in the source buffer should be
1293     * int16_t (using native endianness). For 24 bit, the buffer
1294     * should contain three bytes per sample, little-endian.
1295     *
1296 schoenebeck 809 * @param pBuffer - source buffer
1297     * @param SampleCount - number of sample points to write
1298     * @throws DLS::Exception if current sample size is too small
1299     * @throws gig::Exception if sample is compressed
1300     * @see DLS::LoadSampleData()
1301     */
1302 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1303 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1304 persson 1207
1305     // if this is the first write in this sample, reset the
1306     // checksum calculator
1307 persson 1199 if (pCkData->GetPos() == 0) {
1308 schoenebeck 1381 __resetCRC(crc);
1309 persson 1199 }
1310 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1311 schoenebeck 2912 file_offset_t res;
1312 persson 1264 if (BitDepth == 24) {
1313     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1314     } else { // 16 bit
1315     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1316     : pCkData->Write(pBuffer, SampleCount, 2);
1317     }
1318 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1319 persson 1199
1320 persson 1207 // if this is the last write, update the checksum chunk in the
1321     // file
1322 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1323 schoenebeck 3115 __finalizeCRC(crc);
1324 persson 1199 File* pFile = static_cast<File*>(GetParent());
1325 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1326 persson 1199 }
1327     return res;
1328 schoenebeck 809 }
1329    
1330 schoenebeck 384 /**
1331     * Allocates a decompression buffer for streaming (compressed) samples
1332     * with Sample::Read(). If you are using more than one streaming thread
1333     * in your application you <b>HAVE</b> to create a decompression buffer
1334     * for <b>EACH</b> of your streaming threads and provide it with the
1335     * Sample::Read() call in order to avoid race conditions and crashes.
1336     *
1337     * You should free the memory occupied by the allocated buffer(s) once
1338     * you don't need one of your streaming threads anymore by calling
1339     * DestroyDecompressionBuffer().
1340     *
1341     * @param MaxReadSize - the maximum size (in sample points) you ever
1342     * expect to read with one Read() call
1343     * @returns allocated decompression buffer
1344     * @see DestroyDecompressionBuffer()
1345     */
1346 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1347 schoenebeck 384 buffer_t result;
1348     const double worstCaseHeaderOverhead =
1349     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1350 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1351 schoenebeck 384 result.pStart = new int8_t[result.Size];
1352     result.NullExtensionSize = 0;
1353     return result;
1354     }
1355    
1356     /**
1357     * Free decompression buffer, previously created with
1358     * CreateDecompressionBuffer().
1359     *
1360     * @param DecompressionBuffer - previously allocated decompression
1361     * buffer to free
1362     */
1363     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1364     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1365     delete[] (int8_t*) DecompressionBuffer.pStart;
1366     DecompressionBuffer.pStart = NULL;
1367     DecompressionBuffer.Size = 0;
1368     DecompressionBuffer.NullExtensionSize = 0;
1369     }
1370     }
1371    
1372 schoenebeck 930 /**
1373     * Returns pointer to the Group this Sample belongs to. In the .gig
1374     * format a sample always belongs to one group. If it wasn't explicitly
1375     * assigned to a certain group, it will be automatically assigned to a
1376     * default group.
1377     *
1378     * @returns Sample's Group (never NULL)
1379     */
1380     Group* Sample::GetGroup() const {
1381     return pGroup;
1382     }
1383    
1384 schoenebeck 2985 /**
1385 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1386     * time when this sample's wave form data was modified for the last time
1387     * by calling Write(). This checksum only covers the raw wave form data,
1388     * not any meta informations like i.e. bit depth or loop points. Since
1389     * this method just returns the checksum stored for this sample i.e. when
1390     * the gig file was loaded, this method returns immediately. So it does no
1391     * recalcuation of the checksum with the currently available sample wave
1392     * form data.
1393     *
1394     * @see VerifyWaveData()
1395     */
1396     uint32_t Sample::GetWaveDataCRC32Checksum() {
1397     return crc;
1398     }
1399    
1400     /**
1401 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1402     * Sample's raw wave data is intentionally modified (i.e. by calling
1403     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1404     * is calculated and stored/updated for this sample, along to the sample's
1405     * meta informations.
1406     *
1407     * Now by calling this method the current raw audio wave data is checked
1408     * against the already stored CRC32 check sum in order to check whether the
1409     * sample data had been damaged unintentionally for some reason. Since by
1410     * calling this method always the entire raw audio wave data has to be
1411     * read, verifying all samples this way may take a long time accordingly.
1412     * And that's also the reason why the sample integrity is not checked by
1413     * default whenever a gig file is loaded. So this method must be called
1414     * explicitly to fulfill this task.
1415     *
1416 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1417     * calculated checksum of the current raw wave form data,
1418     * you can get the expected checksum instead by calling
1419     * GetWaveDataCRC32Checksum()
1420 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1421     * @throws Exception if no checksum had been stored to disk for this
1422     * sample yet, or on I/O issues
1423 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1424 schoenebeck 2985 */
1425 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1426 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1427 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1428 schoenebeck 2989 if (pActually) *pActually = crc;
1429     return crc == this->crc;
1430 schoenebeck 2985 }
1431    
1432     uint32_t Sample::CalculateWaveDataChecksum() {
1433     const size_t sz = 20*1024; // 20kB buffer size
1434     std::vector<uint8_t> buffer(sz);
1435     buffer.resize(sz);
1436    
1437     const size_t n = sz / FrameSize;
1438     SetPos(0);
1439     uint32_t crc = 0;
1440     __resetCRC(crc);
1441     while (true) {
1442     file_offset_t nRead = Read(&buffer[0], n);
1443     if (nRead <= 0) break;
1444     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1445     }
1446 schoenebeck 3115 __finalizeCRC(crc);
1447 schoenebeck 2985 return crc;
1448     }
1449    
1450 schoenebeck 2 Sample::~Sample() {
1451     Instances--;
1452 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1453     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1454     InternalDecompressionBuffer.pStart = NULL;
1455     InternalDecompressionBuffer.Size = 0;
1456 schoenebeck 355 }
1457 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1458     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1459     }
1460    
1461    
1462    
1463     // *************** DimensionRegion ***************
1464     // *
1465    
1466 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1467 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1468    
1469 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1470 schoenebeck 16 Instances++;
1471    
1472 schoenebeck 823 pSample = NULL;
1473 schoenebeck 1316 pRegion = pParent;
1474 schoenebeck 823
1475 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1476     else memset(&Crossfade, 0, 4);
1477    
1478 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1479 schoenebeck 2
1480     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1481 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1482 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1483 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485     _3ewa->ReadInt16(); // unknown
1486     LFO1InternalDepth = _3ewa->ReadUint16();
1487     _3ewa->ReadInt16(); // unknown
1488     LFO3InternalDepth = _3ewa->ReadInt16();
1489     _3ewa->ReadInt16(); // unknown
1490     LFO1ControlDepth = _3ewa->ReadUint16();
1491     _3ewa->ReadInt16(); // unknown
1492     LFO3ControlDepth = _3ewa->ReadInt16();
1493     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1494     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1495     _3ewa->ReadInt16(); // unknown
1496     EG1Sustain = _3ewa->ReadUint16();
1497     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1498     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1500     EG1ControllerInvert = eg1ctrloptions & 0x01;
1501     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1502     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1503     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1504     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1505     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1506     EG2ControllerInvert = eg2ctrloptions & 0x01;
1507     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1508     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1509     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1510     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1511     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1512     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513     _3ewa->ReadInt16(); // unknown
1514     EG2Sustain = _3ewa->ReadUint16();
1515     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516     _3ewa->ReadInt16(); // unknown
1517     LFO2ControlDepth = _3ewa->ReadUint16();
1518     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519     _3ewa->ReadInt16(); // unknown
1520     LFO2InternalDepth = _3ewa->ReadUint16();
1521     int32_t eg1decay2 = _3ewa->ReadInt32();
1522     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1523     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1524     _3ewa->ReadInt16(); // unknown
1525     EG1PreAttack = _3ewa->ReadUint16();
1526     int32_t eg2decay2 = _3ewa->ReadInt32();
1527     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1528     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1529     _3ewa->ReadInt16(); // unknown
1530     EG2PreAttack = _3ewa->ReadUint16();
1531     uint8_t velocityresponse = _3ewa->ReadUint8();
1532     if (velocityresponse < 5) {
1533     VelocityResponseCurve = curve_type_nonlinear;
1534     VelocityResponseDepth = velocityresponse;
1535     } else if (velocityresponse < 10) {
1536     VelocityResponseCurve = curve_type_linear;
1537     VelocityResponseDepth = velocityresponse - 5;
1538     } else if (velocityresponse < 15) {
1539     VelocityResponseCurve = curve_type_special;
1540     VelocityResponseDepth = velocityresponse - 10;
1541     } else {
1542     VelocityResponseCurve = curve_type_unknown;
1543     VelocityResponseDepth = 0;
1544     }
1545     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1546     if (releasevelocityresponse < 5) {
1547     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1548     ReleaseVelocityResponseDepth = releasevelocityresponse;
1549     } else if (releasevelocityresponse < 10) {
1550     ReleaseVelocityResponseCurve = curve_type_linear;
1551     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1552     } else if (releasevelocityresponse < 15) {
1553     ReleaseVelocityResponseCurve = curve_type_special;
1554     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1555     } else {
1556     ReleaseVelocityResponseCurve = curve_type_unknown;
1557     ReleaseVelocityResponseDepth = 0;
1558     }
1559     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1560     AttenuationControllerThreshold = _3ewa->ReadInt8();
1561     _3ewa->ReadInt32(); // unknown
1562     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1563     _3ewa->ReadInt16(); // unknown
1564     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1565     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1566     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1567     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1568     else DimensionBypass = dim_bypass_ctrl_none;
1569     uint8_t pan = _3ewa->ReadUint8();
1570     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1571     SelfMask = _3ewa->ReadInt8() & 0x01;
1572     _3ewa->ReadInt8(); // unknown
1573     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1574     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1575     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1576     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1577     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1578     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1579     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1580     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1581     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1582     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1583     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1584     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1585     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1586     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1587     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1588     : vcf_res_ctrl_none;
1589     uint16_t eg3depth = _3ewa->ReadUint16();
1590     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1591 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1592 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1593     ChannelOffset = _3ewa->ReadUint8() / 4;
1594     uint8_t regoptions = _3ewa->ReadUint8();
1595     MSDecode = regoptions & 0x01; // bit 0
1596     SustainDefeat = regoptions & 0x02; // bit 1
1597     _3ewa->ReadInt16(); // unknown
1598     VelocityUpperLimit = _3ewa->ReadInt8();
1599     _3ewa->ReadInt8(); // unknown
1600     _3ewa->ReadInt16(); // unknown
1601     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1602     _3ewa->ReadInt8(); // unknown
1603     _3ewa->ReadInt8(); // unknown
1604     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1605     uint8_t vcfcutoff = _3ewa->ReadUint8();
1606     VCFEnabled = vcfcutoff & 0x80; // bit 7
1607     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1608     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1609     uint8_t vcfvelscale = _3ewa->ReadUint8();
1610     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1611     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1612     _3ewa->ReadInt8(); // unknown
1613     uint8_t vcfresonance = _3ewa->ReadUint8();
1614     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1615     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1616     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1617     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1618     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1619     uint8_t vcfvelocity = _3ewa->ReadUint8();
1620     VCFVelocityDynamicRange = vcfvelocity % 5;
1621     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1622     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1623     if (VCFType == vcf_type_lowpass) {
1624     if (lfo3ctrl & 0x40) // bit 6
1625     VCFType = vcf_type_lowpassturbo;
1626     }
1627 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1628     _3ewa->Read(DimensionUpperLimits, 1, 8);
1629     } else {
1630     memset(DimensionUpperLimits, 0, 8);
1631     }
1632 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1633     // use default values
1634     LFO3Frequency = 1.0;
1635     EG3Attack = 0.0;
1636     LFO1InternalDepth = 0;
1637     LFO3InternalDepth = 0;
1638     LFO1ControlDepth = 0;
1639     LFO3ControlDepth = 0;
1640     EG1Attack = 0.0;
1641 persson 1218 EG1Decay1 = 0.005;
1642     EG1Sustain = 1000;
1643     EG1Release = 0.3;
1644 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1645     EG1Controller.controller_number = 0;
1646     EG1ControllerInvert = false;
1647     EG1ControllerAttackInfluence = 0;
1648     EG1ControllerDecayInfluence = 0;
1649     EG1ControllerReleaseInfluence = 0;
1650     EG2Controller.type = eg2_ctrl_t::type_none;
1651     EG2Controller.controller_number = 0;
1652     EG2ControllerInvert = false;
1653     EG2ControllerAttackInfluence = 0;
1654     EG2ControllerDecayInfluence = 0;
1655     EG2ControllerReleaseInfluence = 0;
1656     LFO1Frequency = 1.0;
1657     EG2Attack = 0.0;
1658 persson 1218 EG2Decay1 = 0.005;
1659     EG2Sustain = 1000;
1660 schoenebeck 2990 EG2Release = 60;
1661 schoenebeck 809 LFO2ControlDepth = 0;
1662     LFO2Frequency = 1.0;
1663     LFO2InternalDepth = 0;
1664     EG1Decay2 = 0.0;
1665 persson 1218 EG1InfiniteSustain = true;
1666     EG1PreAttack = 0;
1667 schoenebeck 809 EG2Decay2 = 0.0;
1668 persson 1218 EG2InfiniteSustain = true;
1669     EG2PreAttack = 0;
1670 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1671     VelocityResponseDepth = 3;
1672     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1673     ReleaseVelocityResponseDepth = 3;
1674     VelocityResponseCurveScaling = 32;
1675     AttenuationControllerThreshold = 0;
1676     SampleStartOffset = 0;
1677     PitchTrack = true;
1678     DimensionBypass = dim_bypass_ctrl_none;
1679     Pan = 0;
1680     SelfMask = true;
1681     LFO3Controller = lfo3_ctrl_modwheel;
1682     LFO3Sync = false;
1683     InvertAttenuationController = false;
1684     AttenuationController.type = attenuation_ctrl_t::type_none;
1685     AttenuationController.controller_number = 0;
1686     LFO2Controller = lfo2_ctrl_internal;
1687     LFO2FlipPhase = false;
1688     LFO2Sync = false;
1689     LFO1Controller = lfo1_ctrl_internal;
1690     LFO1FlipPhase = false;
1691     LFO1Sync = false;
1692     VCFResonanceController = vcf_res_ctrl_none;
1693     EG3Depth = 0;
1694     ChannelOffset = 0;
1695     MSDecode = false;
1696     SustainDefeat = false;
1697     VelocityUpperLimit = 0;
1698     ReleaseTriggerDecay = 0;
1699     EG1Hold = false;
1700     VCFEnabled = false;
1701     VCFCutoff = 0;
1702     VCFCutoffController = vcf_cutoff_ctrl_none;
1703     VCFCutoffControllerInvert = false;
1704     VCFVelocityScale = 0;
1705     VCFResonance = 0;
1706     VCFResonanceDynamic = false;
1707     VCFKeyboardTracking = false;
1708     VCFKeyboardTrackingBreakpoint = 0;
1709     VCFVelocityDynamicRange = 0x04;
1710     VCFVelocityCurve = curve_type_linear;
1711     VCFType = vcf_type_lowpass;
1712 persson 1247 memset(DimensionUpperLimits, 127, 8);
1713 schoenebeck 2 }
1714 schoenebeck 16
1715 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1716     VelocityResponseDepth,
1717     VelocityResponseCurveScaling);
1718    
1719 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1720     ReleaseVelocityResponseCurve,
1721     ReleaseVelocityResponseDepth
1722     );
1723 persson 613
1724 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1725     VCFVelocityDynamicRange,
1726     VCFVelocityScale,
1727     VCFCutoffController);
1728 persson 613
1729     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1730 persson 858 VelocityTable = 0;
1731 persson 613 }
1732    
1733 persson 1301 /*
1734     * Constructs a DimensionRegion by copying all parameters from
1735     * another DimensionRegion
1736     */
1737     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1738     Instances++;
1739 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1740 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1741     pParentList = _3ewl; // restore the chunk pointer
1742    
1743     // deep copy of owned structures
1744     if (src.VelocityTable) {
1745     VelocityTable = new uint8_t[128];
1746     for (int k = 0 ; k < 128 ; k++)
1747     VelocityTable[k] = src.VelocityTable[k];
1748     }
1749     if (src.pSampleLoops) {
1750     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1751     for (int k = 0 ; k < src.SampleLoops ; k++)
1752     pSampleLoops[k] = src.pSampleLoops[k];
1753     }
1754     }
1755 schoenebeck 2394
1756     /**
1757     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1758     * and assign it to this object.
1759     *
1760     * Note that all sample pointers referenced by @a orig are simply copied as
1761     * memory address. Thus the respective samples are shared, not duplicated!
1762     *
1763     * @param orig - original DimensionRegion object to be copied from
1764     */
1765     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1766 schoenebeck 2482 CopyAssign(orig, NULL);
1767     }
1768    
1769     /**
1770     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1771     * and assign it to this object.
1772     *
1773     * @param orig - original DimensionRegion object to be copied from
1774     * @param mSamples - crosslink map between the foreign file's samples and
1775     * this file's samples
1776     */
1777     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1778 schoenebeck 2394 // delete all allocated data first
1779     if (VelocityTable) delete [] VelocityTable;
1780     if (pSampleLoops) delete [] pSampleLoops;
1781    
1782     // backup parent list pointer
1783     RIFF::List* p = pParentList;
1784    
1785 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1786     gig::Region* pOriginalRegion = pRegion;
1787    
1788 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1789    
1790     *this = *orig; // default memberwise shallow copy of all parameters
1791 schoenebeck 2547
1792     // restore members that shall not be altered
1793 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1794 schoenebeck 2547 pRegion = pOriginalRegion;
1795 schoenebeck 2482
1796 schoenebeck 2547 // only take the raw sample reference reference if the
1797 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1798     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1799     pSample = pOriginalSample;
1800     }
1801    
1802     if (mSamples && mSamples->count(orig->pSample)) {
1803     pSample = mSamples->find(orig->pSample)->second;
1804     }
1805 persson 1301
1806 schoenebeck 2394 // deep copy of owned structures
1807     if (orig->VelocityTable) {
1808     VelocityTable = new uint8_t[128];
1809     for (int k = 0 ; k < 128 ; k++)
1810     VelocityTable[k] = orig->VelocityTable[k];
1811     }
1812     if (orig->pSampleLoops) {
1813     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1814     for (int k = 0 ; k < orig->SampleLoops ; k++)
1815     pSampleLoops[k] = orig->pSampleLoops[k];
1816     }
1817     }
1818    
1819 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1820     SRLZ(VelocityUpperLimit);
1821     SRLZ(EG1PreAttack);
1822     SRLZ(EG1Attack);
1823     SRLZ(EG1Decay1);
1824     SRLZ(EG1Decay2);
1825     SRLZ(EG1InfiniteSustain);
1826     SRLZ(EG1Sustain);
1827     SRLZ(EG1Release);
1828     SRLZ(EG1Hold);
1829     SRLZ(EG1Controller);
1830     SRLZ(EG1ControllerInvert);
1831     SRLZ(EG1ControllerAttackInfluence);
1832     SRLZ(EG1ControllerDecayInfluence);
1833     SRLZ(EG1ControllerReleaseInfluence);
1834     SRLZ(LFO1Frequency);
1835     SRLZ(LFO1InternalDepth);
1836     SRLZ(LFO1ControlDepth);
1837     SRLZ(LFO1Controller);
1838     SRLZ(LFO1FlipPhase);
1839     SRLZ(LFO1Sync);
1840     SRLZ(EG2PreAttack);
1841     SRLZ(EG2Attack);
1842     SRLZ(EG2Decay1);
1843     SRLZ(EG2Decay2);
1844     SRLZ(EG2InfiniteSustain);
1845     SRLZ(EG2Sustain);
1846     SRLZ(EG2Release);
1847     SRLZ(EG2Controller);
1848     SRLZ(EG2ControllerInvert);
1849     SRLZ(EG2ControllerAttackInfluence);
1850     SRLZ(EG2ControllerDecayInfluence);
1851     SRLZ(EG2ControllerReleaseInfluence);
1852     SRLZ(LFO2Frequency);
1853     SRLZ(LFO2InternalDepth);
1854     SRLZ(LFO2ControlDepth);
1855     SRLZ(LFO2Controller);
1856     SRLZ(LFO2FlipPhase);
1857     SRLZ(LFO2Sync);
1858     SRLZ(EG3Attack);
1859     SRLZ(EG3Depth);
1860     SRLZ(LFO3Frequency);
1861     SRLZ(LFO3InternalDepth);
1862     SRLZ(LFO3ControlDepth);
1863     SRLZ(LFO3Controller);
1864     SRLZ(LFO3Sync);
1865     SRLZ(VCFEnabled);
1866     SRLZ(VCFType);
1867     SRLZ(VCFCutoffController);
1868     SRLZ(VCFCutoffControllerInvert);
1869     SRLZ(VCFCutoff);
1870     SRLZ(VCFVelocityCurve);
1871     SRLZ(VCFVelocityScale);
1872     SRLZ(VCFVelocityDynamicRange);
1873     SRLZ(VCFResonance);
1874     SRLZ(VCFResonanceDynamic);
1875     SRLZ(VCFResonanceController);
1876     SRLZ(VCFKeyboardTracking);
1877     SRLZ(VCFKeyboardTrackingBreakpoint);
1878     SRLZ(VelocityResponseCurve);
1879     SRLZ(VelocityResponseDepth);
1880     SRLZ(VelocityResponseCurveScaling);
1881     SRLZ(ReleaseVelocityResponseCurve);
1882     SRLZ(ReleaseVelocityResponseDepth);
1883     SRLZ(ReleaseTriggerDecay);
1884     SRLZ(Crossfade);
1885     SRLZ(PitchTrack);
1886     SRLZ(DimensionBypass);
1887     SRLZ(Pan);
1888     SRLZ(SelfMask);
1889     SRLZ(AttenuationController);
1890     SRLZ(InvertAttenuationController);
1891     SRLZ(AttenuationControllerThreshold);
1892     SRLZ(ChannelOffset);
1893     SRLZ(SustainDefeat);
1894     SRLZ(MSDecode);
1895     //SRLZ(SampleStartOffset);
1896     SRLZ(SampleAttenuation);
1897    
1898     // derived attributes from DLS::Sampler
1899     SRLZ(FineTune);
1900     SRLZ(Gain);
1901     }
1902    
1903 schoenebeck 809 /**
1904 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1905     * which depends on this value.
1906     */
1907     void DimensionRegion::SetGain(int32_t gain) {
1908     DLS::Sampler::SetGain(gain);
1909     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1910     }
1911    
1912     /**
1913 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1914     * have to call File::Save() to make changes persistent.
1915     *
1916     * Usually there is absolutely no need to call this method explicitly.
1917     * It will be called automatically when File::Save() was called.
1918 schoenebeck 2682 *
1919     * @param pProgress - callback function for progress notification
1920 schoenebeck 809 */
1921 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1922 schoenebeck 809 // first update base class's chunk
1923 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1924 schoenebeck 809
1925 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1926     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1927     pData[12] = Crossfade.in_start;
1928     pData[13] = Crossfade.in_end;
1929     pData[14] = Crossfade.out_start;
1930     pData[15] = Crossfade.out_end;
1931    
1932 schoenebeck 809 // make sure '3ewa' chunk exists
1933     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1934 persson 1317 if (!_3ewa) {
1935     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1936     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1937     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1938 persson 1264 }
1939 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1940 schoenebeck 809
1941     // update '3ewa' chunk with DimensionRegion's current settings
1942    
1943 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1944 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1945 schoenebeck 809
1946     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1947 persson 1179 store32(&pData[4], lfo3freq);
1948 schoenebeck 809
1949     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1950 persson 1179 store32(&pData[8], eg3attack);
1951 schoenebeck 809
1952     // next 2 bytes unknown
1953    
1954 persson 1179 store16(&pData[14], LFO1InternalDepth);
1955 schoenebeck 809
1956     // next 2 bytes unknown
1957    
1958 persson 1179 store16(&pData[18], LFO3InternalDepth);
1959 schoenebeck 809
1960     // next 2 bytes unknown
1961    
1962 persson 1179 store16(&pData[22], LFO1ControlDepth);
1963 schoenebeck 809
1964     // next 2 bytes unknown
1965    
1966 persson 1179 store16(&pData[26], LFO3ControlDepth);
1967 schoenebeck 809
1968     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1969 persson 1179 store32(&pData[28], eg1attack);
1970 schoenebeck 809
1971     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1972 persson 1179 store32(&pData[32], eg1decay1);
1973 schoenebeck 809
1974     // next 2 bytes unknown
1975    
1976 persson 1179 store16(&pData[38], EG1Sustain);
1977 schoenebeck 809
1978     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1979 persson 1179 store32(&pData[40], eg1release);
1980 schoenebeck 809
1981     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1982 persson 1179 pData[44] = eg1ctl;
1983 schoenebeck 809
1984     const uint8_t eg1ctrloptions =
1985 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1986 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1987     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1988     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1989 persson 1179 pData[45] = eg1ctrloptions;
1990 schoenebeck 809
1991     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1992 persson 1179 pData[46] = eg2ctl;
1993 schoenebeck 809
1994     const uint8_t eg2ctrloptions =
1995 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1996 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1997     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1998     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1999 persson 1179 pData[47] = eg2ctrloptions;
2000 schoenebeck 809
2001     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2002 persson 1179 store32(&pData[48], lfo1freq);
2003 schoenebeck 809
2004     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2005 persson 1179 store32(&pData[52], eg2attack);
2006 schoenebeck 809
2007     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2008 persson 1179 store32(&pData[56], eg2decay1);
2009 schoenebeck 809
2010     // next 2 bytes unknown
2011    
2012 persson 1179 store16(&pData[62], EG2Sustain);
2013 schoenebeck 809
2014     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2015 persson 1179 store32(&pData[64], eg2release);
2016 schoenebeck 809
2017     // next 2 bytes unknown
2018    
2019 persson 1179 store16(&pData[70], LFO2ControlDepth);
2020 schoenebeck 809
2021     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2022 persson 1179 store32(&pData[72], lfo2freq);
2023 schoenebeck 809
2024     // next 2 bytes unknown
2025    
2026 persson 1179 store16(&pData[78], LFO2InternalDepth);
2027 schoenebeck 809
2028     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2029 persson 1179 store32(&pData[80], eg1decay2);
2030 schoenebeck 809
2031     // next 2 bytes unknown
2032    
2033 persson 1179 store16(&pData[86], EG1PreAttack);
2034 schoenebeck 809
2035     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2036 persson 1179 store32(&pData[88], eg2decay2);
2037 schoenebeck 809
2038     // next 2 bytes unknown
2039    
2040 persson 1179 store16(&pData[94], EG2PreAttack);
2041 schoenebeck 809
2042     {
2043     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2044     uint8_t velocityresponse = VelocityResponseDepth;
2045     switch (VelocityResponseCurve) {
2046     case curve_type_nonlinear:
2047     break;
2048     case curve_type_linear:
2049     velocityresponse += 5;
2050     break;
2051     case curve_type_special:
2052     velocityresponse += 10;
2053     break;
2054     case curve_type_unknown:
2055     default:
2056     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2057     }
2058 persson 1179 pData[96] = velocityresponse;
2059 schoenebeck 809 }
2060    
2061     {
2062     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2063     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2064     switch (ReleaseVelocityResponseCurve) {
2065     case curve_type_nonlinear:
2066     break;
2067     case curve_type_linear:
2068     releasevelocityresponse += 5;
2069     break;
2070     case curve_type_special:
2071     releasevelocityresponse += 10;
2072     break;
2073     case curve_type_unknown:
2074     default:
2075     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2076     }
2077 persson 1179 pData[97] = releasevelocityresponse;
2078 schoenebeck 809 }
2079    
2080 persson 1179 pData[98] = VelocityResponseCurveScaling;
2081 schoenebeck 809
2082 persson 1179 pData[99] = AttenuationControllerThreshold;
2083 schoenebeck 809
2084     // next 4 bytes unknown
2085    
2086 persson 1179 store16(&pData[104], SampleStartOffset);
2087 schoenebeck 809
2088     // next 2 bytes unknown
2089    
2090     {
2091     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2092     switch (DimensionBypass) {
2093     case dim_bypass_ctrl_94:
2094     pitchTrackDimensionBypass |= 0x10;
2095     break;
2096     case dim_bypass_ctrl_95:
2097     pitchTrackDimensionBypass |= 0x20;
2098     break;
2099     case dim_bypass_ctrl_none:
2100     //FIXME: should we set anything here?
2101     break;
2102     default:
2103     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2104     }
2105 persson 1179 pData[108] = pitchTrackDimensionBypass;
2106 schoenebeck 809 }
2107    
2108     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2109 persson 1179 pData[109] = pan;
2110 schoenebeck 809
2111     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2112 persson 1179 pData[110] = selfmask;
2113 schoenebeck 809
2114     // next byte unknown
2115    
2116     {
2117     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2118     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2119     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2120     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2121 persson 1179 pData[112] = lfo3ctrl;
2122 schoenebeck 809 }
2123    
2124     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2125 persson 1179 pData[113] = attenctl;
2126 schoenebeck 809
2127     {
2128     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2129     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2130     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2131     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2132 persson 1179 pData[114] = lfo2ctrl;
2133 schoenebeck 809 }
2134    
2135     {
2136     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2137     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2138     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2139     if (VCFResonanceController != vcf_res_ctrl_none)
2140     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2141 persson 1179 pData[115] = lfo1ctrl;
2142 schoenebeck 809 }
2143    
2144     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2145 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2146 persson 1869 store16(&pData[116], eg3depth);
2147 schoenebeck 809
2148     // next 2 bytes unknown
2149    
2150     const uint8_t channeloffset = ChannelOffset * 4;
2151 persson 1179 pData[120] = channeloffset;
2152 schoenebeck 809
2153     {
2154     uint8_t regoptions = 0;
2155     if (MSDecode) regoptions |= 0x01; // bit 0
2156     if (SustainDefeat) regoptions |= 0x02; // bit 1
2157 persson 1179 pData[121] = regoptions;
2158 schoenebeck 809 }
2159    
2160     // next 2 bytes unknown
2161    
2162 persson 1179 pData[124] = VelocityUpperLimit;
2163 schoenebeck 809
2164     // next 3 bytes unknown
2165    
2166 persson 1179 pData[128] = ReleaseTriggerDecay;
2167 schoenebeck 809
2168     // next 2 bytes unknown
2169    
2170     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2171 persson 1179 pData[131] = eg1hold;
2172 schoenebeck 809
2173 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2174 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2175 persson 1179 pData[132] = vcfcutoff;
2176 schoenebeck 809
2177 persson 1179 pData[133] = VCFCutoffController;
2178 schoenebeck 809
2179 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2180 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2181 persson 1179 pData[134] = vcfvelscale;
2182 schoenebeck 809
2183     // next byte unknown
2184    
2185 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2186 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2187 persson 1179 pData[136] = vcfresonance;
2188 schoenebeck 809
2189 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2190 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2191 persson 1179 pData[137] = vcfbreakpoint;
2192 schoenebeck 809
2193 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2194 schoenebeck 809 VCFVelocityCurve * 5;
2195 persson 1179 pData[138] = vcfvelocity;
2196 schoenebeck 809
2197     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2198 persson 1179 pData[139] = vcftype;
2199 persson 1070
2200     if (chunksize >= 148) {
2201     memcpy(&pData[140], DimensionUpperLimits, 8);
2202     }
2203 schoenebeck 809 }
2204    
2205 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2206     curve_type_t curveType = releaseVelocityResponseCurve;
2207     uint8_t depth = releaseVelocityResponseDepth;
2208     // this models a strange behaviour or bug in GSt: two of the
2209     // velocity response curves for release time are not used even
2210     // if specified, instead another curve is chosen.
2211     if ((curveType == curve_type_nonlinear && depth == 0) ||
2212     (curveType == curve_type_special && depth == 4)) {
2213     curveType = curve_type_nonlinear;
2214     depth = 3;
2215     }
2216     return GetVelocityTable(curveType, depth, 0);
2217     }
2218    
2219     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2220     uint8_t vcfVelocityDynamicRange,
2221     uint8_t vcfVelocityScale,
2222     vcf_cutoff_ctrl_t vcfCutoffController)
2223     {
2224     curve_type_t curveType = vcfVelocityCurve;
2225     uint8_t depth = vcfVelocityDynamicRange;
2226     // even stranger GSt: two of the velocity response curves for
2227     // filter cutoff are not used, instead another special curve
2228     // is chosen. This curve is not used anywhere else.
2229     if ((curveType == curve_type_nonlinear && depth == 0) ||
2230     (curveType == curve_type_special && depth == 4)) {
2231     curveType = curve_type_special;
2232     depth = 5;
2233     }
2234     return GetVelocityTable(curveType, depth,
2235     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2236     ? vcfVelocityScale : 0);
2237     }
2238    
2239 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2240     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2241     {
2242     double* table;
2243     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2244 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2245 persson 613 table = (*pVelocityTables)[tableKey];
2246 schoenebeck 16 }
2247     else {
2248 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2249     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2250 schoenebeck 16 }
2251 persson 613 return table;
2252 schoenebeck 2 }
2253 schoenebeck 55
2254 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2255     return pRegion;
2256     }
2257    
2258 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2259     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2260     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2261     //#pragma GCC diagnostic push
2262     //#pragma GCC diagnostic error "-Wswitch"
2263    
2264 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2265     leverage_ctrl_t decodedcontroller;
2266     switch (EncodedController) {
2267     // special controller
2268     case _lev_ctrl_none:
2269     decodedcontroller.type = leverage_ctrl_t::type_none;
2270     decodedcontroller.controller_number = 0;
2271     break;
2272     case _lev_ctrl_velocity:
2273     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2274     decodedcontroller.controller_number = 0;
2275     break;
2276     case _lev_ctrl_channelaftertouch:
2277     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2278     decodedcontroller.controller_number = 0;
2279     break;
2280 schoenebeck 55
2281 schoenebeck 36 // ordinary MIDI control change controller
2282     case _lev_ctrl_modwheel:
2283     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2284     decodedcontroller.controller_number = 1;
2285     break;
2286     case _lev_ctrl_breath:
2287     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2288     decodedcontroller.controller_number = 2;
2289     break;
2290     case _lev_ctrl_foot:
2291     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2292     decodedcontroller.controller_number = 4;
2293     break;
2294     case _lev_ctrl_effect1:
2295     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2296     decodedcontroller.controller_number = 12;
2297     break;
2298     case _lev_ctrl_effect2:
2299     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2300     decodedcontroller.controller_number = 13;
2301     break;
2302     case _lev_ctrl_genpurpose1:
2303     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2304     decodedcontroller.controller_number = 16;
2305     break;
2306     case _lev_ctrl_genpurpose2:
2307     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2308     decodedcontroller.controller_number = 17;
2309     break;
2310     case _lev_ctrl_genpurpose3:
2311     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2312     decodedcontroller.controller_number = 18;
2313     break;
2314     case _lev_ctrl_genpurpose4:
2315     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2316     decodedcontroller.controller_number = 19;
2317     break;
2318     case _lev_ctrl_portamentotime:
2319     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2320     decodedcontroller.controller_number = 5;
2321     break;
2322     case _lev_ctrl_sustainpedal:
2323     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2324     decodedcontroller.controller_number = 64;
2325     break;
2326     case _lev_ctrl_portamento:
2327     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2328     decodedcontroller.controller_number = 65;
2329     break;
2330     case _lev_ctrl_sostenutopedal:
2331     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2332     decodedcontroller.controller_number = 66;
2333     break;
2334     case _lev_ctrl_softpedal:
2335     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2336     decodedcontroller.controller_number = 67;
2337     break;
2338     case _lev_ctrl_genpurpose5:
2339     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2340     decodedcontroller.controller_number = 80;
2341     break;
2342     case _lev_ctrl_genpurpose6:
2343     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2344     decodedcontroller.controller_number = 81;
2345     break;
2346     case _lev_ctrl_genpurpose7:
2347     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2348     decodedcontroller.controller_number = 82;
2349     break;
2350     case _lev_ctrl_genpurpose8:
2351     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2352     decodedcontroller.controller_number = 83;
2353     break;
2354     case _lev_ctrl_effect1depth:
2355     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2356     decodedcontroller.controller_number = 91;
2357     break;
2358     case _lev_ctrl_effect2depth:
2359     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2360     decodedcontroller.controller_number = 92;
2361     break;
2362     case _lev_ctrl_effect3depth:
2363     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2364     decodedcontroller.controller_number = 93;
2365     break;
2366     case _lev_ctrl_effect4depth:
2367     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2368     decodedcontroller.controller_number = 94;
2369     break;
2370     case _lev_ctrl_effect5depth:
2371     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2372     decodedcontroller.controller_number = 95;
2373     break;
2374 schoenebeck 55
2375 schoenebeck 2540 // format extension (these controllers are so far only supported by
2376     // LinuxSampler & gigedit) they will *NOT* work with
2377     // Gigasampler/GigaStudio !
2378     case _lev_ctrl_CC3_EXT:
2379     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2380     decodedcontroller.controller_number = 3;
2381     break;
2382     case _lev_ctrl_CC6_EXT:
2383     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2384     decodedcontroller.controller_number = 6;
2385     break;
2386     case _lev_ctrl_CC7_EXT:
2387     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2388     decodedcontroller.controller_number = 7;
2389     break;
2390     case _lev_ctrl_CC8_EXT:
2391     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2392     decodedcontroller.controller_number = 8;
2393     break;
2394     case _lev_ctrl_CC9_EXT:
2395     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2396     decodedcontroller.controller_number = 9;
2397     break;
2398     case _lev_ctrl_CC10_EXT:
2399     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2400     decodedcontroller.controller_number = 10;
2401     break;
2402     case _lev_ctrl_CC11_EXT:
2403     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2404     decodedcontroller.controller_number = 11;
2405     break;
2406     case _lev_ctrl_CC14_EXT: