/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3324 - (hide annotations) (download)
Fri Jul 21 13:05:39 2017 UTC (6 years, 8 months ago) by schoenebeck
File size: 284264 byte(s)
* gig.h/.cpp: Forgot about "decay 2" stage in previous commit.
* Bumped version (4.0.0.svn28).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
417 schoenebeck 809 } else { // '3gix' chunk missing
418 schoenebeck 930 // by default assigned to that mandatory "Default Group"
419     pGroup = pFile->GetGroup(0);
420 schoenebeck 809 }
421 schoenebeck 2
422 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423     if (pCkSmpl) {
424     Manufacturer = pCkSmpl->ReadInt32();
425     Product = pCkSmpl->ReadInt32();
426     SamplePeriod = pCkSmpl->ReadInt32();
427     MIDIUnityNote = pCkSmpl->ReadInt32();
428     FineTune = pCkSmpl->ReadInt32();
429     pCkSmpl->Read(&SMPTEFormat, 1, 4);
430     SMPTEOffset = pCkSmpl->ReadInt32();
431     Loops = pCkSmpl->ReadInt32();
432     pCkSmpl->ReadInt32(); // manufByt
433     LoopID = pCkSmpl->ReadInt32();
434     pCkSmpl->Read(&LoopType, 1, 4);
435     LoopStart = pCkSmpl->ReadInt32();
436     LoopEnd = pCkSmpl->ReadInt32();
437     LoopFraction = pCkSmpl->ReadInt32();
438     LoopPlayCount = pCkSmpl->ReadInt32();
439     } else { // 'smpl' chunk missing
440     // use default values
441     Manufacturer = 0;
442     Product = 0;
443 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 persson 1218 MIDIUnityNote = 60;
445 schoenebeck 809 FineTune = 0;
446 persson 1182 SMPTEFormat = smpte_format_no_offset;
447 schoenebeck 809 SMPTEOffset = 0;
448     Loops = 0;
449     LoopID = 0;
450 persson 1182 LoopType = loop_type_normal;
451 schoenebeck 809 LoopStart = 0;
452     LoopEnd = 0;
453     LoopFraction = 0;
454     LoopPlayCount = 0;
455     }
456 schoenebeck 2
457     FrameTable = NULL;
458     SamplePos = 0;
459     RAMCache.Size = 0;
460     RAMCache.pStart = NULL;
461     RAMCache.NullExtensionSize = 0;
462    
463 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464    
465 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466     Compressed = ewav;
467     Dithered = false;
468     TruncatedBits = 0;
469 schoenebeck 2 if (Compressed) {
470 persson 437 uint32_t version = ewav->ReadInt32();
471     if (version == 3 && BitDepth == 24) {
472     Dithered = ewav->ReadInt32();
473     ewav->SetPos(Channels == 2 ? 84 : 64);
474     TruncatedBits = ewav->ReadInt32();
475     }
476 schoenebeck 2 ScanCompressedSample();
477     }
478 schoenebeck 317
479     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 schoenebeck 317 }
484 persson 437 FrameOffset = 0; // just for streaming compressed samples
485 schoenebeck 21
486 persson 864 LoopSize = LoopEnd - LoopStart + 1;
487 schoenebeck 2 }
488    
489 schoenebeck 809 /**
490 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
491     * the actual waveform data) and assign it to this object.
492     *
493     * Discussion: copying .gig samples is a bit tricky. It requires three
494     * steps:
495     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496     * its new sample waveform data size.
497     * 2. Saving the file (done by File::Save()) so that it gains correct size
498     * and layout for writing the actual wave form data directly to disc
499     * in next step.
500     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501     *
502     * @param orig - original Sample object to be copied from
503     */
504     void Sample::CopyAssignMeta(const Sample* orig) {
505     // handle base classes
506     DLS::Sample::CopyAssignCore(orig);
507    
508     // handle actual own attributes of this class
509     Manufacturer = orig->Manufacturer;
510     Product = orig->Product;
511     SamplePeriod = orig->SamplePeriod;
512     MIDIUnityNote = orig->MIDIUnityNote;
513     FineTune = orig->FineTune;
514     SMPTEFormat = orig->SMPTEFormat;
515     SMPTEOffset = orig->SMPTEOffset;
516     Loops = orig->Loops;
517     LoopID = orig->LoopID;
518     LoopType = orig->LoopType;
519     LoopStart = orig->LoopStart;
520     LoopEnd = orig->LoopEnd;
521     LoopSize = orig->LoopSize;
522     LoopFraction = orig->LoopFraction;
523     LoopPlayCount = orig->LoopPlayCount;
524    
525     // schedule resizing this sample to the given sample's size
526     Resize(orig->GetSize());
527     }
528    
529     /**
530     * Should be called after CopyAssignMeta() and File::Save() sequence.
531     * Read more about it in the discussion of CopyAssignMeta(). This method
532     * copies the actual waveform data by disk streaming.
533     *
534     * @e CAUTION: this method is currently not thread safe! During this
535     * operation the sample must not be used for other purposes by other
536     * threads!
537     *
538     * @param orig - original Sample object to be copied from
539     */
540     void Sample::CopyAssignWave(const Sample* orig) {
541     const int iReadAtOnce = 32*1024;
542     char* buf = new char[iReadAtOnce * orig->FrameSize];
543     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
545 schoenebeck 2482 pOrig->SetPos(0);
546     SetPos(0);
547 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
549     {
550     Write(buf, n);
551     }
552     pOrig->SetPos(restorePos);
553     delete [] buf;
554     }
555    
556     /**
557 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
558     * to call File::Save() to make changes persistent.
559     *
560     * Usually there is absolutely no need to call this method explicitly.
561     * It will be called automatically when File::Save() was called.
562     *
563 schoenebeck 2682 * @param pProgress - callback function for progress notification
564 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 schoenebeck 809 * was provided yet
566     * @throws gig::Exception if there is any invalid sample setting
567     */
568 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
569 schoenebeck 809 // first update base class's chunks
570 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
571 schoenebeck 809
572     // make sure 'smpl' chunk exists
573     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 persson 1182 if (!pCkSmpl) {
575     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576     memset(pCkSmpl->LoadChunkData(), 0, 60);
577     }
578 schoenebeck 809 // update 'smpl' chunk
579     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 persson 1179 store32(&pData[0], Manufacturer);
582     store32(&pData[4], Product);
583     store32(&pData[8], SamplePeriod);
584     store32(&pData[12], MIDIUnityNote);
585     store32(&pData[16], FineTune);
586     store32(&pData[20], SMPTEFormat);
587     store32(&pData[24], SMPTEOffset);
588     store32(&pData[28], Loops);
589 schoenebeck 809
590     // we skip 'manufByt' for now (4 bytes)
591    
592 persson 1179 store32(&pData[36], LoopID);
593     store32(&pData[40], LoopType);
594     store32(&pData[44], LoopStart);
595     store32(&pData[48], LoopEnd);
596     store32(&pData[52], LoopFraction);
597     store32(&pData[56], LoopPlayCount);
598 schoenebeck 809
599     // make sure '3gix' chunk exists
600     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
603 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
605     if (pFile->pGroups) {
606     std::list<Group*>::iterator iter = pFile->pGroups->begin();
607     std::list<Group*>::iterator end = pFile->pGroups->end();
608 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
609 schoenebeck 929 if (*iter == pGroup) {
610     iSampleGroup = i;
611     break; // found
612     }
613     }
614     }
615 schoenebeck 809 // update '3gix' chunk
616     pData = (uint8_t*) pCk3gix->LoadChunkData();
617 persson 1179 store16(&pData[0], iSampleGroup);
618 schoenebeck 2484
619     // if the library user toggled the "Compressed" attribute from true to
620     // false, then the EWAV chunk associated with compressed samples needs
621     // to be deleted
622     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623     if (ewav && !Compressed) {
624     pWaveList->DeleteSubChunk(ewav);
625     }
626 schoenebeck 809 }
627    
628 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629     void Sample::ScanCompressedSample() {
630     //TODO: we have to add some more scans here (e.g. determine compression rate)
631     this->SamplesTotal = 0;
632 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
633 schoenebeck 2
634 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636 persson 365
637 schoenebeck 2 // Scanning
638     pCkData->SetPos(0);
639 persson 365 if (Channels == 2) { // Stereo
640     for (int i = 0 ; ; i++) {
641     // for 24 bit samples every 8:th frame offset is
642     // stored, to save some memory
643     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644    
645     const int mode_l = pCkData->ReadUint8();
646     const int mode_r = pCkData->ReadUint8();
647     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649 persson 365
650     if (pCkData->RemainingBytes() <= frameSize) {
651     SamplesInLastFrame =
652     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654     SamplesTotal += SamplesInLastFrame;
655 schoenebeck 2 break;
656 persson 365 }
657     SamplesTotal += SamplesPerFrame;
658     pCkData->SetPos(frameSize, RIFF::stream_curpos);
659     }
660     }
661     else { // Mono
662     for (int i = 0 ; ; i++) {
663     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664    
665     const int mode = pCkData->ReadUint8();
666     if (mode > 5) throw gig::Exception("Unknown compression mode");
667 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
668 persson 365
669     if (pCkData->RemainingBytes() <= frameSize) {
670     SamplesInLastFrame =
671     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672     SamplesTotal += SamplesInLastFrame;
673 schoenebeck 2 break;
674 persson 365 }
675     SamplesTotal += SamplesPerFrame;
676     pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 schoenebeck 2 }
678     }
679     pCkData->SetPos(0);
680    
681     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682     if (FrameTable) delete[] FrameTable;
683 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
684     std::list<file_offset_t>::iterator end = frameOffsets.end();
685     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
687     FrameTable[i] = *iter;
688     }
689     }
690    
691     /**
692     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693     * ReleaseSampleData() to free the memory if you don't need the cached
694     * sample data anymore.
695     *
696     * @returns buffer_t structure with start address and size of the buffer
697     * in bytes
698     * @see ReleaseSampleData(), Read(), SetPos()
699     */
700     buffer_t Sample::LoadSampleData() {
701     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702     }
703    
704     /**
705     * Reads (uncompresses if needed) and caches the first \a SampleCount
706     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707     * memory space if you don't need the cached samples anymore. There is no
708     * guarantee that exactly \a SampleCount samples will be cached; this is
709     * not an error. The size will be eventually truncated e.g. to the
710     * beginning of a frame of a compressed sample. This is done for
711     * efficiency reasons while streaming the wave by your sampler engine
712     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713     * that will be returned to determine the actual cached samples, but note
714     * that the size is given in bytes! You get the number of actually cached
715     * samples by dividing it by the frame size of the sample:
716 schoenebeck 384 * @code
717 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718     * long cachedsamples = buf.Size / pSample->FrameSize;
719 schoenebeck 384 * @endcode
720 schoenebeck 2 *
721     * @param SampleCount - number of sample points to load into RAM
722     * @returns buffer_t structure with start address and size of
723     * the cached sample data in bytes
724     * @see ReleaseSampleData(), Read(), SetPos()
725     */
726 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728     }
729    
730     /**
731     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732     * ReleaseSampleData() to free the memory if you don't need the cached
733     * sample data anymore.
734     * The method will add \a NullSamplesCount silence samples past the
735     * official buffer end (this won't affect the 'Size' member of the
736     * buffer_t structure, that means 'Size' always reflects the size of the
737     * actual sample data, the buffer might be bigger though). Silence
738     * samples past the official buffer are needed for differential
739     * algorithms that always have to take subsequent samples into account
740     * (resampling/interpolation would be an important example) and avoids
741     * memory access faults in such cases.
742     *
743     * @param NullSamplesCount - number of silence samples the buffer should
744     * be extended past it's data end
745     * @returns buffer_t structure with start address and
746     * size of the buffer in bytes
747     * @see ReleaseSampleData(), Read(), SetPos()
748     */
749     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751     }
752    
753     /**
754     * Reads (uncompresses if needed) and caches the first \a SampleCount
755     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756     * memory space if you don't need the cached samples anymore. There is no
757     * guarantee that exactly \a SampleCount samples will be cached; this is
758     * not an error. The size will be eventually truncated e.g. to the
759     * beginning of a frame of a compressed sample. This is done for
760     * efficiency reasons while streaming the wave by your sampler engine
761     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762     * that will be returned to determine the actual cached samples, but note
763     * that the size is given in bytes! You get the number of actually cached
764     * samples by dividing it by the frame size of the sample:
765 schoenebeck 384 * @code
766 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767     * long cachedsamples = buf.Size / pSample->FrameSize;
768 schoenebeck 384 * @endcode
769 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
770     * official buffer end (this won't affect the 'Size' member of the
771     * buffer_t structure, that means 'Size' always reflects the size of the
772     * actual sample data, the buffer might be bigger though). Silence
773     * samples past the official buffer are needed for differential
774     * algorithms that always have to take subsequent samples into account
775     * (resampling/interpolation would be an important example) and avoids
776     * memory access faults in such cases.
777     *
778     * @param SampleCount - number of sample points to load into RAM
779     * @param NullSamplesCount - number of silence samples the buffer should
780     * be extended past it's data end
781     * @returns buffer_t structure with start address and
782     * size of the cached sample data in bytes
783     * @see ReleaseSampleData(), Read(), SetPos()
784     */
785 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
790 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
791     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793     // fill the remaining buffer space with silence samples
794     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795     return GetCache();
796     }
797    
798     /**
799     * Returns current cached sample points. A buffer_t structure will be
800     * returned which contains address pointer to the begin of the cache and
801     * the size of the cached sample data in bytes. Use
802     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803     * RAM.
804     *
805     * @returns buffer_t structure with current cached sample points
806     * @see LoadSampleData();
807     */
808     buffer_t Sample::GetCache() {
809     // return a copy of the buffer_t structure
810     buffer_t result;
811     result.Size = this->RAMCache.Size;
812     result.pStart = this->RAMCache.pStart;
813     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814     return result;
815     }
816    
817     /**
818     * Frees the cached sample from RAM if loaded with
819     * <i>LoadSampleData()</i> previously.
820     *
821     * @see LoadSampleData();
822     */
823     void Sample::ReleaseSampleData() {
824     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825     RAMCache.pStart = NULL;
826     RAMCache.Size = 0;
827 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
828 schoenebeck 2 }
829    
830 schoenebeck 809 /** @brief Resize sample.
831     *
832     * Resizes the sample's wave form data, that is the actual size of
833     * sample wave data possible to be written for this sample. This call
834     * will return immediately and just schedule the resize operation. You
835     * should call File::Save() to actually perform the resize operation(s)
836     * "physically" to the file. As this can take a while on large files, it
837     * is recommended to call Resize() first on all samples which have to be
838     * resized and finally to call File::Save() to perform all those resize
839     * operations in one rush.
840     *
841     * The actual size (in bytes) is dependant to the current FrameSize
842     * value. You may want to set FrameSize before calling Resize().
843     *
844     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845     * enlarged samples before calling File::Save() as this might exceed the
846     * current sample's boundary!
847     *
848 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 schoenebeck 809 * other formats will fail!
851     *
852 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
853     * greater than zero)
854 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
857     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858     * DLS::Sample::FormatTag, File::Save()
859     */
860 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
861 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 schoenebeck 2922 DLS::Sample::Resize(NewSize);
863 schoenebeck 809 }
864    
865 schoenebeck 2 /**
866     * Sets the position within the sample (in sample points, not in
867     * bytes). Use this method and <i>Read()</i> if you don't want to load
868     * the sample into RAM, thus for disk streaming.
869     *
870     * Although the original Gigasampler engine doesn't allow positioning
871     * within compressed samples, I decided to implement it. Even though
872     * the Gigasampler format doesn't allow to define loops for compressed
873     * samples at the moment, positioning within compressed samples might be
874     * interesting for some sampler engines though. The only drawback about
875     * my decision is that it takes longer to load compressed gig Files on
876     * startup, because it's neccessary to scan the samples for some
877     * mandatory informations. But I think as it doesn't affect the runtime
878     * efficiency, nobody will have a problem with that.
879     *
880     * @param SampleCount number of sample points to jump
881     * @param Whence optional: to which relation \a SampleCount refers
882     * to, if omited <i>RIFF::stream_start</i> is assumed
883     * @returns the new sample position
884     * @see Read()
885     */
886 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 schoenebeck 2 if (Compressed) {
888     switch (Whence) {
889     case RIFF::stream_curpos:
890     this->SamplePos += SampleCount;
891     break;
892     case RIFF::stream_end:
893     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894     break;
895     case RIFF::stream_backward:
896     this->SamplePos -= SampleCount;
897     break;
898     case RIFF::stream_start: default:
899     this->SamplePos = SampleCount;
900     break;
901     }
902     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907     return this->SamplePos;
908     }
909     else { // not compressed
910 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 schoenebeck 2 return (result == orderedBytes) ? SampleCount
913     : result / this->FrameSize;
914     }
915     }
916    
917     /**
918     * Returns the current position in the sample (in sample points).
919     */
920 schoenebeck 2912 file_offset_t Sample::GetPos() const {
921 schoenebeck 2 if (Compressed) return SamplePos;
922     else return pCkData->GetPos() / FrameSize;
923     }
924    
925     /**
926 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
927     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928     * the position within the sample respectively, this method honors the
929     * looping informations of the sample (if any). The sample wave stream
930     * will be decompressed on the fly if using a compressed sample. Use this
931     * method if you don't want to load the sample into RAM, thus for disk
932     * streaming. All this methods needs to know to proceed with streaming
933     * for the next time you call this method is stored in \a pPlaybackState.
934     * You have to allocate and initialize the playback_state_t structure by
935     * yourself before you use it to stream a sample:
936 schoenebeck 384 * @code
937     * gig::playback_state_t playbackstate;
938     * playbackstate.position = 0;
939     * playbackstate.reverse = false;
940     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941     * @endcode
942 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
943     * defined or if the current read position is located within a loop area.
944     * The method already handles such cases by itself.
945     *
946 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
947     * have to use an external decompression buffer for <b>EACH</b>
948     * streaming thread to avoid race conditions and crashes!
949     *
950 schoenebeck 24 * @param pBuffer destination buffer
951     * @param SampleCount number of sample points to read
952     * @param pPlaybackState will be used to store and reload the playback
953     * state for the next ReadAndLoop() call
954 persson 864 * @param pDimRgn dimension region with looping information
955 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 schoenebeck 24 * @returns number of successfully read sample points
957 schoenebeck 384 * @see CreateDecompressionBuffer()
958 schoenebeck 24 */
959 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
963    
964     SetPos(pPlaybackState->position); // recover position from the last time
965    
966 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967 schoenebeck 24
968 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970 schoenebeck 24
971 persson 864 if (GetPos() <= loopEnd) {
972     switch (loop.LoopType) {
973 schoenebeck 24
974 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
975     do {
976     // if not endless loop check if max. number of loop cycles have been passed
977     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978 schoenebeck 24
979 persson 864 if (!pPlaybackState->reverse) { // forward playback
980     do {
981     samplestoloopend = loopEnd - GetPos();
982     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983     samplestoread -= readsamples;
984     totalreadsamples += readsamples;
985     if (readsamples == samplestoloopend) {
986     pPlaybackState->reverse = true;
987     break;
988     }
989     } while (samplestoread && readsamples);
990     }
991     else { // backward playback
992 schoenebeck 24
993 persson 864 // as we can only read forward from disk, we have to
994     // determine the end position within the loop first,
995     // read forward from that 'end' and finally after
996     // reading, swap all sample frames so it reflects
997     // backward playback
998 schoenebeck 24
999 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1000     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003 schoenebeck 24
1004 persson 864 SetPos(reverseplaybackend);
1005 schoenebeck 24
1006 persson 864 // read samples for backward playback
1007     do {
1008     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009     samplestoreadinloop -= readsamples;
1010     samplestoread -= readsamples;
1011     totalreadsamples += readsamples;
1012     } while (samplestoreadinloop && readsamples);
1013 schoenebeck 24
1014 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016     if (reverseplaybackend == loop.LoopStart) {
1017     pPlaybackState->loop_cycles_left--;
1018     pPlaybackState->reverse = false;
1019     }
1020    
1021     // reverse the sample frames for backward playback
1022 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 schoenebeck 24 }
1025 persson 864 } while (samplestoread && readsamples);
1026     break;
1027     }
1028 schoenebeck 24
1029 persson 864 case loop_type_backward: { // TODO: not tested yet!
1030     // forward playback (not entered the loop yet)
1031     if (!pPlaybackState->reverse) do {
1032     samplestoloopend = loopEnd - GetPos();
1033     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034     samplestoread -= readsamples;
1035     totalreadsamples += readsamples;
1036     if (readsamples == samplestoloopend) {
1037     pPlaybackState->reverse = true;
1038     break;
1039     }
1040     } while (samplestoread && readsamples);
1041 schoenebeck 24
1042 persson 864 if (!samplestoread) break;
1043 schoenebeck 24
1044 persson 864 // as we can only read forward from disk, we have to
1045     // determine the end position within the loop first,
1046     // read forward from that 'end' and finally after
1047     // reading, swap all sample frames so it reflects
1048     // backward playback
1049 schoenebeck 24
1050 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1051     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 persson 864 : samplestoread;
1054 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055 schoenebeck 24
1056 persson 864 SetPos(reverseplaybackend);
1057 schoenebeck 24
1058 persson 864 // read samples for backward playback
1059     do {
1060     // if not endless loop check if max. number of loop cycles have been passed
1061     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062     samplestoloopend = loopEnd - GetPos();
1063     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064     samplestoreadinloop -= readsamples;
1065     samplestoread -= readsamples;
1066     totalreadsamples += readsamples;
1067     if (readsamples == samplestoloopend) {
1068     pPlaybackState->loop_cycles_left--;
1069     SetPos(loop.LoopStart);
1070     }
1071     } while (samplestoreadinloop && readsamples);
1072 schoenebeck 24
1073 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1074 schoenebeck 24
1075 persson 864 // reverse the sample frames for backward playback
1076     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077     break;
1078     }
1079 schoenebeck 24
1080 persson 864 default: case loop_type_normal: {
1081     do {
1082     // if not endless loop check if max. number of loop cycles have been passed
1083     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084     samplestoloopend = loopEnd - GetPos();
1085     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086     samplestoread -= readsamples;
1087     totalreadsamples += readsamples;
1088     if (readsamples == samplestoloopend) {
1089     pPlaybackState->loop_cycles_left--;
1090     SetPos(loop.LoopStart);
1091     }
1092     } while (samplestoread && readsamples);
1093     break;
1094     }
1095 schoenebeck 24 }
1096     }
1097     }
1098    
1099     // read on without looping
1100     if (samplestoread) do {
1101 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 schoenebeck 24 samplestoread -= readsamples;
1103     totalreadsamples += readsamples;
1104     } while (readsamples && samplestoread);
1105    
1106     // store current position
1107     pPlaybackState->position = GetPos();
1108    
1109     return totalreadsamples;
1110     }
1111    
1112     /**
1113 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1114     * position into the buffer pointed by \a pBuffer and increments the
1115     * position within the sample. The sample wave stream will be
1116     * decompressed on the fly if using a compressed sample. Use this method
1117     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118     * thus for disk streaming.
1119     *
1120 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1121     * have to use an external decompression buffer for <b>EACH</b>
1122     * streaming thread to avoid race conditions and crashes!
1123     *
1124 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1125     * (using native endianness). For 24 bit, the buffer will
1126     * contain three bytes per sample, little-endian.
1127     *
1128 schoenebeck 2 * @param pBuffer destination buffer
1129     * @param SampleCount number of sample points to read
1130 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 schoenebeck 2 * @returns number of successfully read sample points
1132 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1133 schoenebeck 2 */
1134 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 schoenebeck 21 if (SampleCount == 0) return 0;
1136 schoenebeck 317 if (!Compressed) {
1137     if (BitDepth == 24) {
1138 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 schoenebeck 317 }
1140 persson 365 else { // 16 bit
1141     // (pCkData->Read does endian correction)
1142     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143     : pCkData->Read(pBuffer, SampleCount, 2);
1144     }
1145 schoenebeck 317 }
1146 persson 365 else {
1147 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1149 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1150 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1151     remainingsamples = SampleCount,
1152 persson 365 copysamples, skipsamples,
1153     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 schoenebeck 2 this->FrameOffset = 0;
1155    
1156 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157    
1158     // if decompression buffer too small, then reduce amount of samples to read
1159     if (pDecompressionBuffer->Size < assumedsize) {
1160     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162     remainingsamples = SampleCount;
1163     assumedsize = GuessSize(SampleCount);
1164 schoenebeck 2 }
1165    
1166 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171 persson 365 while (remainingsamples && remainingbytes) {
1172 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1173     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174 schoenebeck 2
1175 persson 365 int mode_l = *pSrc++, mode_r = 0;
1176    
1177     if (Channels == 2) {
1178     mode_r = *pSrc++;
1179     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182     if (remainingbytes < framebytes) { // last frame in sample
1183     framesamples = SamplesInLastFrame;
1184     if (mode_l == 4 && (framesamples & 1)) {
1185     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186     }
1187     else {
1188     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189     }
1190 schoenebeck 2 }
1191     }
1192 persson 365 else {
1193     framebytes = bytesPerFrame[mode_l] + 1;
1194     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195     if (remainingbytes < framebytes) {
1196     framesamples = SamplesInLastFrame;
1197     }
1198     }
1199 schoenebeck 2
1200     // determine how many samples in this frame to skip and read
1201 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1202     if (currentframeoffset <= framesamples) {
1203     copysamples = framesamples - currentframeoffset;
1204     skipsamples = currentframeoffset;
1205     }
1206     else {
1207     copysamples = 0;
1208     skipsamples = framesamples;
1209     }
1210 schoenebeck 2 }
1211     else {
1212 persson 365 // This frame has enough data for pBuffer, but not
1213     // all of the frame is needed. Set file position
1214     // to start of this frame for next call to Read.
1215 schoenebeck 2 copysamples = remainingsamples;
1216 persson 365 skipsamples = currentframeoffset;
1217     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218     this->FrameOffset = currentframeoffset + copysamples;
1219     }
1220     remainingsamples -= copysamples;
1221    
1222     if (remainingbytes > framebytes) {
1223     remainingbytes -= framebytes;
1224     if (remainingsamples == 0 &&
1225     currentframeoffset + copysamples == framesamples) {
1226     // This frame has enough data for pBuffer, and
1227     // all of the frame is needed. Set file
1228     // position to start of next frame for next
1229     // call to Read. FrameOffset is 0.
1230 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231     }
1232     }
1233 persson 365 else remainingbytes = 0;
1234 schoenebeck 2
1235 persson 365 currentframeoffset -= skipsamples;
1236 schoenebeck 2
1237 persson 365 if (copysamples == 0) {
1238     // skip this frame
1239     pSrc += framebytes - Channels;
1240     }
1241     else {
1242     const unsigned char* const param_l = pSrc;
1243     if (BitDepth == 24) {
1244     if (mode_l != 2) pSrc += 12;
1245 schoenebeck 2
1246 persson 365 if (Channels == 2) { // Stereo
1247     const unsigned char* const param_r = pSrc;
1248     if (mode_r != 2) pSrc += 12;
1249    
1250 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 persson 437 skipsamples, copysamples, TruncatedBits);
1252 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 persson 437 skipsamples, copysamples, TruncatedBits);
1254 persson 902 pDst24 += copysamples * 6;
1255 schoenebeck 2 }
1256 persson 365 else { // Mono
1257 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 persson 437 skipsamples, copysamples, TruncatedBits);
1259 persson 902 pDst24 += copysamples * 3;
1260 schoenebeck 2 }
1261 persson 365 }
1262     else { // 16 bit
1263     if (mode_l) pSrc += 4;
1264 schoenebeck 2
1265 persson 365 int step;
1266     if (Channels == 2) { // Stereo
1267     const unsigned char* const param_r = pSrc;
1268     if (mode_r) pSrc += 4;
1269    
1270     step = (2 - mode_l) + (2 - mode_r);
1271 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 persson 365 skipsamples, copysamples);
1274     pDst += copysamples << 1;
1275 schoenebeck 2 }
1276 persson 365 else { // Mono
1277     step = 2 - mode_l;
1278 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 persson 365 pDst += copysamples;
1280 schoenebeck 2 }
1281 persson 365 }
1282     pSrc += nextFrameOffset;
1283     }
1284 schoenebeck 2
1285 persson 365 // reload from disk to local buffer if needed
1286     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287     assumedsize = GuessSize(remainingsamples);
1288     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 schoenebeck 2 }
1293 persson 365 } // while
1294    
1295 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1296 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 schoenebeck 2 return (SampleCount - remainingsamples);
1298     }
1299     }
1300    
1301 schoenebeck 809 /** @brief Write sample wave data.
1302     *
1303     * Writes \a SampleCount number of sample points from the buffer pointed
1304     * by \a pBuffer and increments the position within the sample. Use this
1305     * method to directly write the sample data to disk, i.e. if you don't
1306     * want or cannot load the whole sample data into RAM.
1307     *
1308     * You have to Resize() the sample to the desired size and call
1309     * File::Save() <b>before</b> using Write().
1310     *
1311     * Note: there is currently no support for writing compressed samples.
1312     *
1313 persson 1264 * For 16 bit samples, the data in the source buffer should be
1314     * int16_t (using native endianness). For 24 bit, the buffer
1315     * should contain three bytes per sample, little-endian.
1316     *
1317 schoenebeck 809 * @param pBuffer - source buffer
1318     * @param SampleCount - number of sample points to write
1319     * @throws DLS::Exception if current sample size is too small
1320     * @throws gig::Exception if sample is compressed
1321     * @see DLS::LoadSampleData()
1322     */
1323 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325 persson 1207
1326     // if this is the first write in this sample, reset the
1327     // checksum calculator
1328 persson 1199 if (pCkData->GetPos() == 0) {
1329 schoenebeck 1381 __resetCRC(crc);
1330 persson 1199 }
1331 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 schoenebeck 2912 file_offset_t res;
1333 persson 1264 if (BitDepth == 24) {
1334     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335     } else { // 16 bit
1336     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337     : pCkData->Write(pBuffer, SampleCount, 2);
1338     }
1339 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340 persson 1199
1341 persson 1207 // if this is the last write, update the checksum chunk in the
1342     // file
1343 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 schoenebeck 3115 __finalizeCRC(crc);
1345 persson 1199 File* pFile = static_cast<File*>(GetParent());
1346 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1347 persson 1199 }
1348     return res;
1349 schoenebeck 809 }
1350    
1351 schoenebeck 384 /**
1352     * Allocates a decompression buffer for streaming (compressed) samples
1353     * with Sample::Read(). If you are using more than one streaming thread
1354     * in your application you <b>HAVE</b> to create a decompression buffer
1355     * for <b>EACH</b> of your streaming threads and provide it with the
1356     * Sample::Read() call in order to avoid race conditions and crashes.
1357     *
1358     * You should free the memory occupied by the allocated buffer(s) once
1359     * you don't need one of your streaming threads anymore by calling
1360     * DestroyDecompressionBuffer().
1361     *
1362     * @param MaxReadSize - the maximum size (in sample points) you ever
1363     * expect to read with one Read() call
1364     * @returns allocated decompression buffer
1365     * @see DestroyDecompressionBuffer()
1366     */
1367 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 schoenebeck 384 buffer_t result;
1369     const double worstCaseHeaderOverhead =
1370     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 schoenebeck 384 result.pStart = new int8_t[result.Size];
1373     result.NullExtensionSize = 0;
1374     return result;
1375     }
1376    
1377     /**
1378     * Free decompression buffer, previously created with
1379     * CreateDecompressionBuffer().
1380     *
1381     * @param DecompressionBuffer - previously allocated decompression
1382     * buffer to free
1383     */
1384     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386     delete[] (int8_t*) DecompressionBuffer.pStart;
1387     DecompressionBuffer.pStart = NULL;
1388     DecompressionBuffer.Size = 0;
1389     DecompressionBuffer.NullExtensionSize = 0;
1390     }
1391     }
1392    
1393 schoenebeck 930 /**
1394     * Returns pointer to the Group this Sample belongs to. In the .gig
1395     * format a sample always belongs to one group. If it wasn't explicitly
1396     * assigned to a certain group, it will be automatically assigned to a
1397     * default group.
1398     *
1399     * @returns Sample's Group (never NULL)
1400     */
1401     Group* Sample::GetGroup() const {
1402     return pGroup;
1403     }
1404    
1405 schoenebeck 2985 /**
1406 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407     * time when this sample's wave form data was modified for the last time
1408     * by calling Write(). This checksum only covers the raw wave form data,
1409     * not any meta informations like i.e. bit depth or loop points. Since
1410     * this method just returns the checksum stored for this sample i.e. when
1411     * the gig file was loaded, this method returns immediately. So it does no
1412     * recalcuation of the checksum with the currently available sample wave
1413     * form data.
1414     *
1415     * @see VerifyWaveData()
1416     */
1417     uint32_t Sample::GetWaveDataCRC32Checksum() {
1418     return crc;
1419     }
1420    
1421     /**
1422 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423     * Sample's raw wave data is intentionally modified (i.e. by calling
1424     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425     * is calculated and stored/updated for this sample, along to the sample's
1426     * meta informations.
1427     *
1428     * Now by calling this method the current raw audio wave data is checked
1429     * against the already stored CRC32 check sum in order to check whether the
1430     * sample data had been damaged unintentionally for some reason. Since by
1431     * calling this method always the entire raw audio wave data has to be
1432     * read, verifying all samples this way may take a long time accordingly.
1433     * And that's also the reason why the sample integrity is not checked by
1434     * default whenever a gig file is loaded. So this method must be called
1435     * explicitly to fulfill this task.
1436     *
1437 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1438     * calculated checksum of the current raw wave form data,
1439     * you can get the expected checksum instead by calling
1440     * GetWaveDataCRC32Checksum()
1441 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1442     * @throws Exception if no checksum had been stored to disk for this
1443     * sample yet, or on I/O issues
1444 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1445 schoenebeck 2985 */
1446 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1448 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1449 schoenebeck 2989 if (pActually) *pActually = crc;
1450     return crc == this->crc;
1451 schoenebeck 2985 }
1452    
1453     uint32_t Sample::CalculateWaveDataChecksum() {
1454     const size_t sz = 20*1024; // 20kB buffer size
1455     std::vector<uint8_t> buffer(sz);
1456     buffer.resize(sz);
1457    
1458     const size_t n = sz / FrameSize;
1459     SetPos(0);
1460     uint32_t crc = 0;
1461     __resetCRC(crc);
1462     while (true) {
1463     file_offset_t nRead = Read(&buffer[0], n);
1464     if (nRead <= 0) break;
1465     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466     }
1467 schoenebeck 3115 __finalizeCRC(crc);
1468 schoenebeck 2985 return crc;
1469     }
1470    
1471 schoenebeck 2 Sample::~Sample() {
1472     Instances--;
1473 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1474     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475     InternalDecompressionBuffer.pStart = NULL;
1476     InternalDecompressionBuffer.Size = 0;
1477 schoenebeck 355 }
1478 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1479     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480     }
1481    
1482    
1483    
1484     // *************** DimensionRegion ***************
1485     // *
1486    
1487 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1488 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 schoenebeck 16 Instances++;
1492    
1493 schoenebeck 823 pSample = NULL;
1494 schoenebeck 1316 pRegion = pParent;
1495 schoenebeck 823
1496 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497     else memset(&Crossfade, 0, 4);
1498    
1499 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500 schoenebeck 2
1501     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1503 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506     _3ewa->ReadInt16(); // unknown
1507     LFO1InternalDepth = _3ewa->ReadUint16();
1508     _3ewa->ReadInt16(); // unknown
1509     LFO3InternalDepth = _3ewa->ReadInt16();
1510     _3ewa->ReadInt16(); // unknown
1511     LFO1ControlDepth = _3ewa->ReadUint16();
1512     _3ewa->ReadInt16(); // unknown
1513     LFO3ControlDepth = _3ewa->ReadInt16();
1514     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516     _3ewa->ReadInt16(); // unknown
1517     EG1Sustain = _3ewa->ReadUint16();
1518     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521     EG1ControllerInvert = eg1ctrloptions & 0x01;
1522     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527     EG2ControllerInvert = eg2ctrloptions & 0x01;
1528     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534     _3ewa->ReadInt16(); // unknown
1535     EG2Sustain = _3ewa->ReadUint16();
1536     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537     _3ewa->ReadInt16(); // unknown
1538     LFO2ControlDepth = _3ewa->ReadUint16();
1539     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     _3ewa->ReadInt16(); // unknown
1541     LFO2InternalDepth = _3ewa->ReadUint16();
1542     int32_t eg1decay2 = _3ewa->ReadInt32();
1543     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545     _3ewa->ReadInt16(); // unknown
1546     EG1PreAttack = _3ewa->ReadUint16();
1547     int32_t eg2decay2 = _3ewa->ReadInt32();
1548     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550     _3ewa->ReadInt16(); // unknown
1551     EG2PreAttack = _3ewa->ReadUint16();
1552     uint8_t velocityresponse = _3ewa->ReadUint8();
1553     if (velocityresponse < 5) {
1554     VelocityResponseCurve = curve_type_nonlinear;
1555     VelocityResponseDepth = velocityresponse;
1556     } else if (velocityresponse < 10) {
1557     VelocityResponseCurve = curve_type_linear;
1558     VelocityResponseDepth = velocityresponse - 5;
1559     } else if (velocityresponse < 15) {
1560     VelocityResponseCurve = curve_type_special;
1561     VelocityResponseDepth = velocityresponse - 10;
1562     } else {
1563     VelocityResponseCurve = curve_type_unknown;
1564     VelocityResponseDepth = 0;
1565     }
1566     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567     if (releasevelocityresponse < 5) {
1568     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569     ReleaseVelocityResponseDepth = releasevelocityresponse;
1570     } else if (releasevelocityresponse < 10) {
1571     ReleaseVelocityResponseCurve = curve_type_linear;
1572     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573     } else if (releasevelocityresponse < 15) {
1574     ReleaseVelocityResponseCurve = curve_type_special;
1575     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576     } else {
1577     ReleaseVelocityResponseCurve = curve_type_unknown;
1578     ReleaseVelocityResponseDepth = 0;
1579     }
1580     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581     AttenuationControllerThreshold = _3ewa->ReadInt8();
1582     _3ewa->ReadInt32(); // unknown
1583     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584     _3ewa->ReadInt16(); // unknown
1585     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589     else DimensionBypass = dim_bypass_ctrl_none;
1590     uint8_t pan = _3ewa->ReadUint8();
1591     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592     SelfMask = _3ewa->ReadInt8() & 0x01;
1593     _3ewa->ReadInt8(); // unknown
1594     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609     : vcf_res_ctrl_none;
1610     uint16_t eg3depth = _3ewa->ReadUint16();
1611     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1614     ChannelOffset = _3ewa->ReadUint8() / 4;
1615     uint8_t regoptions = _3ewa->ReadUint8();
1616     MSDecode = regoptions & 0x01; // bit 0
1617     SustainDefeat = regoptions & 0x02; // bit 1
1618     _3ewa->ReadInt16(); // unknown
1619     VelocityUpperLimit = _3ewa->ReadInt8();
1620     _3ewa->ReadInt8(); // unknown
1621     _3ewa->ReadInt16(); // unknown
1622     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623     _3ewa->ReadInt8(); // unknown
1624     _3ewa->ReadInt8(); // unknown
1625     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626     uint8_t vcfcutoff = _3ewa->ReadUint8();
1627     VCFEnabled = vcfcutoff & 0x80; // bit 7
1628     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630     uint8_t vcfvelscale = _3ewa->ReadUint8();
1631     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633     _3ewa->ReadInt8(); // unknown
1634     uint8_t vcfresonance = _3ewa->ReadUint8();
1635     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640     uint8_t vcfvelocity = _3ewa->ReadUint8();
1641     VCFVelocityDynamicRange = vcfvelocity % 5;
1642     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644     if (VCFType == vcf_type_lowpass) {
1645     if (lfo3ctrl & 0x40) // bit 6
1646     VCFType = vcf_type_lowpassturbo;
1647     }
1648 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1649     _3ewa->Read(DimensionUpperLimits, 1, 8);
1650     } else {
1651     memset(DimensionUpperLimits, 0, 8);
1652     }
1653 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1654     // use default values
1655     LFO3Frequency = 1.0;
1656     EG3Attack = 0.0;
1657     LFO1InternalDepth = 0;
1658     LFO3InternalDepth = 0;
1659     LFO1ControlDepth = 0;
1660     LFO3ControlDepth = 0;
1661     EG1Attack = 0.0;
1662 persson 1218 EG1Decay1 = 0.005;
1663     EG1Sustain = 1000;
1664     EG1Release = 0.3;
1665 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1666     EG1Controller.controller_number = 0;
1667     EG1ControllerInvert = false;
1668     EG1ControllerAttackInfluence = 0;
1669     EG1ControllerDecayInfluence = 0;
1670     EG1ControllerReleaseInfluence = 0;
1671     EG2Controller.type = eg2_ctrl_t::type_none;
1672     EG2Controller.controller_number = 0;
1673     EG2ControllerInvert = false;
1674     EG2ControllerAttackInfluence = 0;
1675     EG2ControllerDecayInfluence = 0;
1676     EG2ControllerReleaseInfluence = 0;
1677     LFO1Frequency = 1.0;
1678     EG2Attack = 0.0;
1679 persson 1218 EG2Decay1 = 0.005;
1680     EG2Sustain = 1000;
1681 schoenebeck 2990 EG2Release = 60;
1682 schoenebeck 809 LFO2ControlDepth = 0;
1683     LFO2Frequency = 1.0;
1684     LFO2InternalDepth = 0;
1685     EG1Decay2 = 0.0;
1686 persson 1218 EG1InfiniteSustain = true;
1687     EG1PreAttack = 0;
1688 schoenebeck 809 EG2Decay2 = 0.0;
1689 persson 1218 EG2InfiniteSustain = true;
1690     EG2PreAttack = 0;
1691 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1692     VelocityResponseDepth = 3;
1693     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694     ReleaseVelocityResponseDepth = 3;
1695     VelocityResponseCurveScaling = 32;
1696     AttenuationControllerThreshold = 0;
1697     SampleStartOffset = 0;
1698     PitchTrack = true;
1699     DimensionBypass = dim_bypass_ctrl_none;
1700     Pan = 0;
1701     SelfMask = true;
1702     LFO3Controller = lfo3_ctrl_modwheel;
1703     LFO3Sync = false;
1704     InvertAttenuationController = false;
1705     AttenuationController.type = attenuation_ctrl_t::type_none;
1706     AttenuationController.controller_number = 0;
1707     LFO2Controller = lfo2_ctrl_internal;
1708     LFO2FlipPhase = false;
1709     LFO2Sync = false;
1710     LFO1Controller = lfo1_ctrl_internal;
1711     LFO1FlipPhase = false;
1712     LFO1Sync = false;
1713     VCFResonanceController = vcf_res_ctrl_none;
1714     EG3Depth = 0;
1715     ChannelOffset = 0;
1716     MSDecode = false;
1717     SustainDefeat = false;
1718     VelocityUpperLimit = 0;
1719     ReleaseTriggerDecay = 0;
1720     EG1Hold = false;
1721     VCFEnabled = false;
1722     VCFCutoff = 0;
1723     VCFCutoffController = vcf_cutoff_ctrl_none;
1724     VCFCutoffControllerInvert = false;
1725     VCFVelocityScale = 0;
1726     VCFResonance = 0;
1727     VCFResonanceDynamic = false;
1728     VCFKeyboardTracking = false;
1729     VCFKeyboardTrackingBreakpoint = 0;
1730     VCFVelocityDynamicRange = 0x04;
1731     VCFVelocityCurve = curve_type_linear;
1732     VCFType = vcf_type_lowpass;
1733 persson 1247 memset(DimensionUpperLimits, 127, 8);
1734 schoenebeck 2 }
1735 schoenebeck 3323 // format extension for EG behavior options, these will *NOT* work with
1736     // Gigasampler/GigaStudio !
1737     RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738     if (lsde) {
1739     unsigned char byte = lsde->ReadUint8();
1740     EGOptions.AttackCancel = byte & 1;
1741     EGOptions.AttackHoldCancel = byte & (1 << 1);
1742 schoenebeck 3324 EGOptions.Decay1Cancel = byte & (1 << 2);
1743     EGOptions.Decay2Cancel = byte & (1 << 3);
1744     EGOptions.ReleaseCancel = byte & (1 << 4);
1745 schoenebeck 3323 }
1746 schoenebeck 16
1747 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1748     VelocityResponseDepth,
1749     VelocityResponseCurveScaling);
1750    
1751 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1752     ReleaseVelocityResponseCurve,
1753     ReleaseVelocityResponseDepth
1754     );
1755 persson 613
1756 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1757     VCFVelocityDynamicRange,
1758     VCFVelocityScale,
1759     VCFCutoffController);
1760 persson 613
1761     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1762 persson 858 VelocityTable = 0;
1763 persson 613 }
1764    
1765 persson 1301 /*
1766     * Constructs a DimensionRegion by copying all parameters from
1767     * another DimensionRegion
1768     */
1769     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1770     Instances++;
1771 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1772 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1773     pParentList = _3ewl; // restore the chunk pointer
1774    
1775     // deep copy of owned structures
1776     if (src.VelocityTable) {
1777     VelocityTable = new uint8_t[128];
1778     for (int k = 0 ; k < 128 ; k++)
1779     VelocityTable[k] = src.VelocityTable[k];
1780     }
1781     if (src.pSampleLoops) {
1782     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1783     for (int k = 0 ; k < src.SampleLoops ; k++)
1784     pSampleLoops[k] = src.pSampleLoops[k];
1785     }
1786     }
1787 schoenebeck 2394
1788     /**
1789     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1790     * and assign it to this object.
1791     *
1792     * Note that all sample pointers referenced by @a orig are simply copied as
1793     * memory address. Thus the respective samples are shared, not duplicated!
1794     *
1795     * @param orig - original DimensionRegion object to be copied from
1796     */
1797     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1798 schoenebeck 2482 CopyAssign(orig, NULL);
1799     }
1800    
1801     /**
1802     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1803     * and assign it to this object.
1804     *
1805     * @param orig - original DimensionRegion object to be copied from
1806     * @param mSamples - crosslink map between the foreign file's samples and
1807     * this file's samples
1808     */
1809     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1810 schoenebeck 2394 // delete all allocated data first
1811     if (VelocityTable) delete [] VelocityTable;
1812     if (pSampleLoops) delete [] pSampleLoops;
1813    
1814     // backup parent list pointer
1815     RIFF::List* p = pParentList;
1816    
1817 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1818     gig::Region* pOriginalRegion = pRegion;
1819    
1820 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1821    
1822     *this = *orig; // default memberwise shallow copy of all parameters
1823 schoenebeck 2547
1824     // restore members that shall not be altered
1825 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1826 schoenebeck 2547 pRegion = pOriginalRegion;
1827 schoenebeck 2482
1828 schoenebeck 2547 // only take the raw sample reference reference if the
1829 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1830     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1831     pSample = pOriginalSample;
1832     }
1833    
1834     if (mSamples && mSamples->count(orig->pSample)) {
1835     pSample = mSamples->find(orig->pSample)->second;
1836     }
1837 persson 1301
1838 schoenebeck 2394 // deep copy of owned structures
1839     if (orig->VelocityTable) {
1840     VelocityTable = new uint8_t[128];
1841     for (int k = 0 ; k < 128 ; k++)
1842     VelocityTable[k] = orig->VelocityTable[k];
1843     }
1844     if (orig->pSampleLoops) {
1845     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1846     for (int k = 0 ; k < orig->SampleLoops ; k++)
1847     pSampleLoops[k] = orig->pSampleLoops[k];
1848     }
1849     }
1850    
1851 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1852 schoenebeck 3182 // in case this class will become backward incompatible one day,
1853     // then set a version and minimum version for this class like:
1854     //archive->setVersion(*this, 2);
1855     //archive->setMinVersion(*this, 1);
1856    
1857 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1858     SRLZ(EG1PreAttack);
1859     SRLZ(EG1Attack);
1860     SRLZ(EG1Decay1);
1861     SRLZ(EG1Decay2);
1862     SRLZ(EG1InfiniteSustain);
1863     SRLZ(EG1Sustain);
1864     SRLZ(EG1Release);
1865     SRLZ(EG1Hold);
1866     SRLZ(EG1Controller);
1867     SRLZ(EG1ControllerInvert);
1868     SRLZ(EG1ControllerAttackInfluence);
1869     SRLZ(EG1ControllerDecayInfluence);
1870     SRLZ(EG1ControllerReleaseInfluence);
1871     SRLZ(LFO1Frequency);
1872     SRLZ(LFO1InternalDepth);
1873     SRLZ(LFO1ControlDepth);
1874     SRLZ(LFO1Controller);
1875     SRLZ(LFO1FlipPhase);
1876     SRLZ(LFO1Sync);
1877     SRLZ(EG2PreAttack);
1878     SRLZ(EG2Attack);
1879     SRLZ(EG2Decay1);
1880     SRLZ(EG2Decay2);
1881     SRLZ(EG2InfiniteSustain);
1882     SRLZ(EG2Sustain);
1883     SRLZ(EG2Release);
1884     SRLZ(EG2Controller);
1885     SRLZ(EG2ControllerInvert);
1886     SRLZ(EG2ControllerAttackInfluence);
1887     SRLZ(EG2ControllerDecayInfluence);
1888     SRLZ(EG2ControllerReleaseInfluence);
1889     SRLZ(LFO2Frequency);
1890     SRLZ(LFO2InternalDepth);
1891     SRLZ(LFO2ControlDepth);
1892     SRLZ(LFO2Controller);
1893     SRLZ(LFO2FlipPhase);
1894     SRLZ(LFO2Sync);
1895     SRLZ(EG3Attack);
1896     SRLZ(EG3Depth);
1897     SRLZ(LFO3Frequency);
1898     SRLZ(LFO3InternalDepth);
1899     SRLZ(LFO3ControlDepth);
1900     SRLZ(LFO3Controller);
1901     SRLZ(LFO3Sync);
1902     SRLZ(VCFEnabled);
1903     SRLZ(VCFType);
1904     SRLZ(VCFCutoffController);
1905     SRLZ(VCFCutoffControllerInvert);
1906     SRLZ(VCFCutoff);
1907     SRLZ(VCFVelocityCurve);
1908     SRLZ(VCFVelocityScale);
1909     SRLZ(VCFVelocityDynamicRange);
1910     SRLZ(VCFResonance);
1911     SRLZ(VCFResonanceDynamic);
1912     SRLZ(VCFResonanceController);
1913     SRLZ(VCFKeyboardTracking);
1914     SRLZ(VCFKeyboardTrackingBreakpoint);
1915     SRLZ(VelocityResponseCurve);
1916     SRLZ(VelocityResponseDepth);
1917     SRLZ(VelocityResponseCurveScaling);
1918     SRLZ(ReleaseVelocityResponseCurve);
1919     SRLZ(ReleaseVelocityResponseDepth);
1920     SRLZ(ReleaseTriggerDecay);
1921     SRLZ(Crossfade);
1922     SRLZ(PitchTrack);
1923     SRLZ(DimensionBypass);
1924     SRLZ(Pan);
1925     SRLZ(SelfMask);
1926     SRLZ(AttenuationController);
1927     SRLZ(InvertAttenuationController);
1928     SRLZ(AttenuationControllerThreshold);
1929     SRLZ(ChannelOffset);
1930     SRLZ(SustainDefeat);
1931     SRLZ(MSDecode);
1932     //SRLZ(SampleStartOffset);
1933     SRLZ(SampleAttenuation);
1934 schoenebeck 3323 SRLZ(EGOptions);
1935 schoenebeck 3138
1936     // derived attributes from DLS::Sampler
1937     SRLZ(FineTune);
1938     SRLZ(Gain);
1939     }
1940    
1941 schoenebeck 809 /**
1942 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1943     * which depends on this value.
1944     */
1945     void DimensionRegion::SetGain(int32_t gain) {
1946     DLS::Sampler::SetGain(gain);
1947     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1948     }
1949    
1950     /**
1951 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1952     * have to call File::Save() to make changes persistent.
1953     *
1954     * Usually there is absolutely no need to call this method explicitly.
1955     * It will be called automatically when File::Save() was called.
1956 schoenebeck 2682 *
1957     * @param pProgress - callback function for progress notification
1958 schoenebeck 809 */
1959 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1960 schoenebeck 809 // first update base class's chunk
1961 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1962 schoenebeck 809
1963 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1964     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1965     pData[12] = Crossfade.in_start;
1966     pData[13] = Crossfade.in_end;
1967     pData[14] = Crossfade.out_start;
1968     pData[15] = Crossfade.out_end;
1969    
1970 schoenebeck 809 // make sure '3ewa' chunk exists
1971     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1972 persson 1317 if (!_3ewa) {
1973     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1974     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1975     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1976 persson 1264 }
1977 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1978 schoenebeck 809
1979     // update '3ewa' chunk with DimensionRegion's current settings
1980    
1981 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1982 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1983 schoenebeck 809
1984     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1985 persson 1179 store32(&pData[4], lfo3freq);
1986 schoenebeck 809
1987     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1988 persson 1179 store32(&pData[8], eg3attack);
1989 schoenebeck 809
1990     // next 2 bytes unknown
1991    
1992 persson 1179 store16(&pData[14], LFO1InternalDepth);
1993 schoenebeck 809
1994     // next 2 bytes unknown
1995    
1996 persson 1179 store16(&pData[18], LFO3InternalDepth);
1997 schoenebeck 809
1998     // next 2 bytes unknown
1999    
2000 persson 1179 store16(&pData[22], LFO1ControlDepth);
2001 schoenebeck 809
2002     // next 2 bytes unknown
2003    
2004 persson 1179 store16(&pData[26], LFO3ControlDepth);
2005 schoenebeck 809
2006     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2007 persson 1179 store32(&pData[28], eg1attack);
2008 schoenebeck 809
2009     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2010 persson 1179 store32(&pData[32], eg1decay1);
2011 schoenebeck 809
2012     // next 2 bytes unknown
2013    
2014 persson 1179 store16(&pData[38], EG1Sustain);
2015 schoenebeck 809
2016     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2017 persson 1179 store32(&pData[40], eg1release);
2018 schoenebeck 809
2019     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2020 persson 1179 pData[44] = eg1ctl;
2021 schoenebeck 809
2022     const uint8_t eg1ctrloptions =
2023 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2024 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2025     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2026     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2027 persson 1179 pData[45] = eg1ctrloptions;
2028 schoenebeck 809
2029     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2030 persson 1179 pData[46] = eg2ctl;
2031 schoenebeck 809
2032     const uint8_t eg2ctrloptions =
2033 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2034 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2035     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2036     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2037 persson 1179 pData[47] = eg2ctrloptions;
2038 schoenebeck 809
2039     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2040 persson 1179 store32(&pData[48], lfo1freq);
2041 schoenebeck 809
2042     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2043 persson 1179 store32(&pData[52], eg2attack);
2044 schoenebeck 809
2045     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2046 persson 1179 store32(&pData[56], eg2decay1);
2047 schoenebeck 809
2048     // next 2 bytes unknown
2049    
2050 persson 1179 store16(&pData[62], EG2Sustain);
2051 schoenebeck 809
2052     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2053 persson 1179 store32(&pData[64], eg2release);
2054 schoenebeck 809
2055     // next 2 bytes unknown
2056    
2057 persson 1179 store16(&pData[70], LFO2ControlDepth);
2058 schoenebeck 809
2059     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2060 persson 1179 store32(&pData[72], lfo2freq);
2061 schoenebeck 809
2062     // next 2 bytes unknown
2063    
2064 persson 1179 store16(&pData[78], LFO2InternalDepth);
2065 schoenebeck 809
2066     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2067 persson 1179 store32(&pData[80], eg1decay2);
2068 schoenebeck 809
2069     // next 2 bytes unknown
2070    
2071 persson 1179 store16(&pData[86], EG1PreAttack);
2072 schoenebeck 809
2073     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2074 persson 1179 store32(&pData[88], eg2decay2);
2075 schoenebeck 809
2076     // next 2 bytes unknown
2077    
2078 persson 1179 store16(&pData[94], EG2PreAttack);
2079 schoenebeck 809
2080     {
2081     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2082     uint8_t velocityresponse = VelocityResponseDepth;
2083     switch (VelocityResponseCurve) {
2084     case curve_type_nonlinear:
2085     break;
2086     case curve_type_linear:
2087     velocityresponse += 5;
2088     break;
2089     case curve_type_special:
2090     velocityresponse += 10;
2091     break;
2092     case curve_type_unknown:
2093     default:
2094     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2095     }
2096 persson 1179 pData[96] = velocityresponse;
2097 schoenebeck 809 }
2098    
2099     {
2100     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2101     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2102     switch (ReleaseVelocityResponseCurve) {
2103     case curve_type_nonlinear:
2104     break;
2105     case curve_type_linear:
2106     releasevelocityresponse += 5;
2107     break;
2108     case curve_type_special:
2109     releasevelocityresponse += 10;
2110     break;
2111     case curve_type_unknown:
2112     default:
2113     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2114     }
2115 persson 1179 pData[97] = releasevelocityresponse;
2116 schoenebeck 809 }
2117    
2118 persson 1179 pData[98] = VelocityResponseCurveScaling;
2119 schoenebeck 809
2120 persson 1179 pData[99] = AttenuationControllerThreshold;
2121 schoenebeck 809
2122     // next 4 bytes unknown
2123    
2124 persson 1179 store16(&pData[104], SampleStartOffset);
2125 schoenebeck 809
2126     // next 2 bytes unknown
2127    
2128     {
2129     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2130     switch (DimensionBypass) {
2131     case dim_bypass_ctrl_94:
2132     pitchTrackDimensionBypass |= 0x10;
2133     break;
2134     case dim_bypass_ctrl_95:
2135     pitchTrackDimensionBypass |= 0x20;
2136     break;
2137     case dim_bypass_ctrl_none:
2138     //FIXME: should we set anything here?
2139     break;
2140     default:
2141     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2142     }
2143 persson 1179 pData[108] = pitchTrackDimensionBypass;
2144 schoenebeck 809 }
2145    
2146     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2147 persson 1179 pData[109] = pan;
2148 schoenebeck 809
2149     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2150 persson 1179 pData[110] = selfmask;
2151 schoenebeck 809
2152     // next byte unknown
2153    
2154     {
2155     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2156     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2157     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2158     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2159 persson 1179 pData[112] = lfo3ctrl;
2160 schoenebeck 809 }
2161    
2162     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2163 persson 1179 pData[113] = attenctl;
2164 schoenebeck 809
2165     {
2166     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2167     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2168     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2169     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2170 persson 1179 pData[114] = lfo2ctrl;
2171 schoenebeck 809 }
2172    
2173     {
2174     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2175     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2176     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2177     if (VCFResonanceController != vcf_res_ctrl_none)
2178     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2179 persson 1179 pData[115] = lfo1ctrl;
2180 schoenebeck 809 }
2181    
2182     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2183 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2184 persson 1869 store16(&pData[116], eg3depth);
2185 schoenebeck 809
2186     // next 2 bytes unknown
2187    
2188     const uint8_t channeloffset = ChannelOffset * 4;
2189 persson 1179 pData[120] = channeloffset;
2190 schoenebeck 809
2191     {
2192     uint8_t regoptions = 0;
2193     if (MSDecode) regoptions |= 0x01; // bit 0
2194     if (SustainDefeat) regoptions |= 0x02; // bit 1
2195 persson 1179 pData[121] = regoptions;
2196 schoenebeck 809 }
2197    
2198     // next 2 bytes unknown
2199    
2200 persson 1179 pData[124] = VelocityUpperLimit;
2201 schoenebeck 809
2202     // next 3 bytes unknown
2203    
2204 persson 1179 pData[128] = ReleaseTriggerDecay;
2205 schoenebeck 809
2206     // next 2 bytes unknown
2207    
2208     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2209 persson 1179 pData[131] = eg1hold;
2210 schoenebeck 809
2211 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2212 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2213 persson 1179 pData[132] = vcfcutoff;
2214 schoenebeck 809
2215 persson 1179 pData[133] = VCFCutoffController;
2216 schoenebeck 809
2217 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2218 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2219 persson 1179 pData[134] = vcfvelscale;
2220 schoenebeck 809
2221     // next byte unknown
2222    
2223 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2224 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2225 persson 1179 pData[136] = vcfresonance;
2226 schoenebeck 809
2227 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2228 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2229 persson 1179 pData[137] = vcfbreakpoint;
2230 schoenebeck 809
2231 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2232 schoenebeck 809 VCFVelocityCurve * 5;
2233 persson 1179 pData[138] = vcfvelocity;
2234 schoenebeck 809
2235     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2236 persson 1179 pData[139] = vcftype;
2237 persson 1070
2238     if (chunksize >= 148) {
2239     memcpy(&pData[140], DimensionUpperLimits, 8);
2240     }
2241 schoenebeck 3323
2242     // format extension for EG behavior options, these will *NOT* work with
2243     // Gigasampler/GigaStudio !
2244     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2245     if (!lsde) {
2246     // only add this "LSDE" chunk if the EG options do not match the
2247     // default EG behavior
2248     eg_opt_t defaultOpt;
2249     if (memcmp(&EGOptions, &defaultOpt, sizeof(eg_opt_t))) {
2250     lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 1);
2251     // move LSDE chunk to the end of parent list
2252     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2253     }
2254     }
2255     if (lsde) {
2256     unsigned char* pByte = (unsigned char*) lsde->LoadChunkData();
2257     *pByte =
2258     (EGOptions.AttackCancel ? 1 : 0) |
2259     (EGOptions.AttackHoldCancel ? (1<<1) : 0) |
2260 schoenebeck 3324 (EGOptions.Decay1Cancel ? (1<<2) : 0) |
2261     (EGOptions.Decay2Cancel ? (1<<3) : 0) |
2262     (EGOptions.ReleaseCancel ? (1<<4) : 0);
2263 schoenebeck 3323 }
2264 schoenebeck 809 }
2265    
2266 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2267     curve_type_t curveType = releaseVelocityResponseCurve;
2268     uint8_t depth = releaseVelocityResponseDepth;
2269     // this models a strange behaviour or bug in GSt: two of the
2270     // velocity response curves for release time are not used even
2271     // if specified, instead another curve is chosen.
2272     if ((curveType == curve_type_nonlinear && depth == 0) ||
2273     (curveType == curve_type_special && depth == 4)) {
2274     curveType = curve_type_nonlinear;
2275     depth = 3;
2276     }
2277     return GetVelocityTable(curveType, depth, 0);
2278     }
2279    
2280     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2281     uint8_t vcfVelocityDynamicRange,
2282     uint8_t vcfVelocityScale,
2283     vcf_cutoff_ctrl_t vcfCutoffController)
2284     {
2285     curve_type_t curveType = vcfVelocityCurve;
2286     uint8_t depth = vcfVelocityDynamicRange;
2287     // even stranger GSt: two of the velocity response curves for
2288     // filter cutoff are not used, instead another special curve
2289     // is chosen. This curve is not used anywhere else.
2290     if ((curveType == curve_type_nonlinear && depth == 0) ||
2291     (curveType == curve_type_special && depth == 4)) {
2292     curveType = curve_type_special;
2293     depth = 5;
2294     }
2295     return GetVelocityTable(curveType, depth,
2296     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2297     ? vcfVelocityScale : 0);
2298     }
2299    
2300 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2301     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2302     {
2303     double* table;
2304     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2305 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2306 persson 613 table = (*pVelocityTables)[tableKey];
2307 schoenebeck 16 }
2308     else {
2309 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2310     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2311 schoenebeck 16 }
2312 persson 613 return table;
2313 schoenebeck 2 }
2314 schoenebeck 55
2315 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2316     return pRegion;
2317     }
2318    
2319 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2320     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2321     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2322     //#pragma GCC diagnostic push
2323     //#pragma GCC diagnostic error "-Wswitch"
2324    
2325 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2326     leverage_ctrl_t decodedcontroller;
2327     switch (EncodedController) {
2328     // special controller
2329     case _lev_ctrl_none:
2330     decodedcontroller.type = leverage_ctrl_t::type_none;
2331     decodedcontroller.controller_number = 0;
2332     break;
2333     case _lev_ctrl_velocity:
2334     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2335     decodedcontroller.controller_number = 0;
2336     break;
2337     case _lev_ctrl_channelaftertouch:
2338     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2339     decodedcontroller.controller_number = 0;
2340     break;
2341 schoenebeck 55
2342 schoenebeck 36 // ordinary MIDI control change controller
2343     case _lev_ctrl_modwheel:
2344     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345     decodedcontroller.controller_number = 1;
2346     break;
2347     case _lev_ctrl_breath:
2348     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349     decodedcontroller.controller_number = 2;
2350     break;
2351     case _lev_ctrl_foot:
2352     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353     decodedcontroller.controller_number = 4;
2354     break;
2355     case _lev_ctrl_effect1:
2356     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357     decodedcontroller.controller_number = 12;
2358     break;
2359     case _lev_ctrl_effect2:
2360     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361     decodedcontroller.controller_number = 13;
2362     break;
2363     case _lev_ctrl_genpurpose1:
2364     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365     decodedcontroller.controller_number = 16;
2366     break;
2367     case _lev_ctrl_genpurpose2:
2368     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369     decodedcontroller.controller_number = 17;
2370     break;
2371     case _lev_ctrl_genpurpose3:
2372     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373     decodedcontroller.controller_number = 18;
2374     break;
2375     case _lev_ctrl_genpurpose4:
2376     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377     decodedcontroller.controller_number = 19;
2378     break;
2379     case _lev_ctrl_portamentotime:
2380     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381     decodedcontroller.controller_number = 5;
2382     break;
2383     case _lev_ctrl_sustainpedal:
2384     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385     decodedcontroller.controller_number = 64;
2386     break;
2387     case _lev_ctrl_portamento:
2388     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389     decodedcontroller.controller_number = 65;
2390     break;
2391     case _lev_ctrl_sostenutopedal:
2392     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393     decodedcontroller.controller_number = 66;
2394     break;
2395     case _lev_ctrl_softpedal:
2396     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397     decodedcontroller.controller_number = 67;
2398     break;
2399     case _lev_ctrl_genpurpose5:
2400     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401     decodedcontroller.controller_number = 80;
2402     break;
2403     case _lev_ctrl_genpurpose6:
2404     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405     decodedcontroller.controller_number = 81;
2406     break;
2407     case _lev_ctrl_genpurpose7:
2408     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409     decodedcontroller.controller_number = 82;
2410     break;
2411     case _lev_ctrl_genpurpose8:
2412     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413     decodedcontroller.controller_number = 83;
2414     break;
2415     case _lev_ctrl_effect1depth:
2416     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417     decodedcontroller.controller_number = 91;
2418     break;
2419     case _lev_ctrl_effect2depth:
2420     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421     decodedcontroller.controller_number = 92;
2422     break;
2423     case _lev_ctrl_effect3depth:
2424     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425     decodedcontroller.controller_number = 93;
2426     break;
2427     case _lev_ctrl_effect4depth:
2428     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429     decodedcontroller.controller_number = 94;
2430     break;
2431     case _lev_ctrl_effect5depth:
2432     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433     decodedcontroller.controller_number = 95;
2434     break;
2435 schoenebeck 55
2436 schoenebeck 2540 // format extension (these controllers are so far only supported by
2437     // LinuxSampler & gigedit) they will *NOT* work with
2438     // Gigasampler/GigaStudio !
2439     case _lev_ctrl_CC3_EXT:
2440     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441     decodedcontroller.controller_number = 3;
2442     break;
2443     case _lev_ctrl_CC6_EXT:
2444     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445     decodedcontroller.controller_number = 6;
2446     break;
2447     case _lev_ctrl_CC7_EXT:
2448     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449     decodedcontroller.controller_number = 7;
2450     break;
2451     case _lev_ctrl_CC8_EXT:
2452     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453     decodedcontroller.controller_number = 8;
2454     break;
2455     case _lev_ctrl_CC9_EXT:
2456     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457     decodedcontroller.controller_number = 9;
2458     break;
2459     case _lev_ctrl_CC10_EXT:
2460     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461     decodedcontroller.controller_number = 10;
2462     break;
2463     case _lev_ctrl_CC11_EXT:
2464     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465     decodedcontroller.controller_number = 11;
2466     break;
2467     case _lev_ctrl_CC14_EXT:
2468     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469     decodedcontroller.controller_number = 14;
2470     break;
2471     case _lev_ctrl_CC15_EXT:
2472     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473     decodedcontroller.controller_number = 15;
2474     break;
2475     case _lev_ctrl_CC20_EXT:
2476     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477     decodedcontroller.controller_number = 20;
2478     break;
2479     case _lev_ctrl_CC21_EXT:
2480     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481     decodedcontroller.controller_number = 21;
2482     break;
2483     case _lev_ctrl_CC22_EXT:
2484     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485     decodedcontroller.controller_number = 22;
2486     break;
2487     case _lev_ctrl_CC23_EXT:
2488     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489     decodedcontroller.controller_number = 23;
2490     break;
2491     case _lev_ctrl_CC24_EXT:
2492     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493     decodedcontroller.controller_number = 24;
2494     break;
2495     case _lev_ctrl_CC25_EXT:
2496     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497     decodedcontroller.controller_number = 25;
2498     break;
2499     case _lev_ctrl_CC26_EXT:
2500     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501     decodedcontroller.controller_number = 26;
2502     break;
2503     case _lev_ctrl_CC27_EXT:
2504     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505     decodedcontroller.controller_number = 27;
2506     break;
2507     case _lev_ctrl_CC28_EXT:
2508     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509     decodedcontroller.controller_number = 28;
2510     break;
2511     case _lev_ctrl_CC29_EXT:
2512     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513     decodedcontroller.controller_number = 29;
2514     break;
2515     case _lev_ctrl_CC30_EXT:
2516     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517     decodedcontroller.controller_number = 30;
2518     break;
2519     case _lev_ctrl_CC31_EXT:
2520     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521     decodedcontroller.controller_number = 31;
2522     break;
2523     case _lev_ctrl_CC68_EXT:
2524     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525     decodedcontroller.controller_number = 68;
2526     break;
2527     case _lev_ctrl_CC69_EXT:
2528     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529     decodedcontroller.controller_number = 69;
2530     break;
2531     case _lev_ctrl_CC70_EXT:
2532     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533     decodedcontroller.controller_number = 70;
2534     break;
2535     case _lev_ctrl_CC71_EXT:
2536     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537     decodedcontroller.controller_number = 71;
2538     break;
2539     case _lev_ctrl_CC72_EXT:
2540     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541     decodedcontroller.controller_number = 72;
2542     break;
2543     case _lev_ctrl_CC73_EXT:
2544     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545     decodedcontroller.controller_number = 73;
2546     break;
2547     case _lev_ctrl_CC74_EXT:
2548     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549     decodedcontroller.controller_number = 74;
2550     break;
2551     case _lev_ctrl_CC75_EXT:
2552     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553     decodedcontroller.controller_number = 75;
2554     break;
2555     case _lev_ctrl_CC76_EXT:
2556     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557     decodedcontroller.controller_number = 76;
2558     break;
2559     case _lev_ctrl_CC77_EXT:
2560     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561     decodedcontroller.controller_number = 77;
2562     break;
2563     case _lev_ctrl_CC78_EXT:
2564     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565     decodedcontroller.controller_number = 78;
2566     break;
2567     case _lev_ctrl_CC79_EXT:
2568     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569     decodedcontroller.controller_number = 79;
2570     break;
2571     case _lev_ctrl_CC84_EXT:
2572     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573     decodedcontroller.controller_number = 84;
2574     break;
2575     case _lev_ctrl_CC85_EXT:
2576     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577     decodedcontroller.controller_number = 85;
2578     break;
2579     case _lev_ctrl_CC86_EXT:
2580     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581     decodedcontroller.controller_number = 86;
2582     break;
2583     case _lev_ctrl_CC87_EXT:
2584     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585     decodedcontroller.controller_number = 87;
2586     break;
2587     case _lev_ctrl_CC89_EXT:
2588     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589     decodedcontroller.controller_number = 89;
2590     break;
2591     case _lev_ctrl_CC90_EXT:
2592     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593     decodedcontroller.controller_number = 90;
2594     break;
2595     case _lev_ctrl_CC96_EXT:
2596     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597     decodedcontroller.controller_number = 96;
2598     break;
2599     case _lev_ctrl_CC97_EXT:
2600     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601     decodedcontroller.controller_number = 97;
2602     break;
2603     case _lev_ctrl_CC102_EXT:
2604     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605     decodedcontroller.controller_number = 102;
2606     break;
2607     case _lev_ctrl_CC103_EXT:
2608     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609     decodedcontroller.controller_number = 103;
2610     break;
2611     case _lev_ctrl_CC104_EXT:
2612     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613     decodedcontroller.controller_number = 104;
2614     break;
2615     case _lev_ctrl_CC105_EXT:
2616     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617     decodedcontroller.controller_number = 105;
2618     break;
2619     case _lev_ctrl_CC106_EXT:
2620     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621     decodedcontroller.controller_number = 106;
2622     break;
2623     case _lev_ctrl_CC107_EXT:
2624     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625     decodedcontroller.controller_number = 107;
2626     break;
2627     case _lev_ctrl_CC108_EXT:
2628     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629     decodedcontroller.controller_number = 108;
2630     break;
2631     case _lev_ctrl_CC109_EXT:
2632     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633     decodedcontroller.controller_number = 109;
2634     break;
2635     case _lev_ctrl_CC110_EXT:
2636     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637     decodedcontroller.controller_number = 110;
2638     break;
2639     case _lev_ctrl_CC111_EXT:
2640     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641     decodedcontroller.controller_number = 111;
2642     break;
2643     case _lev_ctrl_CC112_EXT:
2644     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645     decodedcontroller.controller_number = 112;
2646     break;
2647     case _lev_ctrl_CC113_EXT:
2648     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649     decodedcontroller.controller_number = 113;
2650     break;
2651     case _lev_ctrl_CC114_EXT:
2652     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653     decodedcontroller.controller_number = 114;
2654     break;
2655     case _lev_ctrl_CC115_EXT:
2656     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657     decodedcontroller.controller_number = 115;
2658     break;
2659     case _lev_ctrl_CC116_EXT:
2660     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661     decodedcontroller.controller_number = 116;
2662     break;
2663     case _lev_ctrl_CC117_EXT:
2664     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665     decodedcontroller.controller_number = 117;
2666     break;
2667     case _lev_ctrl_CC118_EXT:
2668     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669     decodedcontroller.controller_number = 118;
2670     break;
2671     case _lev_ctrl_CC119_EXT:
2672     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673     decodedcontroller.controller_number = 119;
2674     break;
2675    
2676 schoenebeck 36 // unknown controller type
2677     default:
2678 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2679     decodedcontroller.controller_number = 0;
2680     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2681     break;
2682 schoenebeck 36 }
2683     return decodedcontroller;
2684     }
2685 schoenebeck 2540
2686     // see above (diagnostic push not supported prior GCC 4.6)
2687     //#pragma GCC diagnostic pop
2688 schoenebeck 2
2689 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2690     _lev_ctrl_t encodedcontroller;
2691     switch (DecodedController.type) {
2692     // special controller
2693     case leverage_ctrl_t::type_none:
2694     encodedcontroller = _lev_ctrl_none;
2695     break;
2696     case leverage_ctrl_t::type_velocity:
2697     encodedcontroller = _lev_ctrl_velocity;
2698     break;
2699     case leverage_ctrl_t::type_channelaftertouch:
2700     encodedcontroller = _lev_ctrl_channelaftertouch;
2701     break;
2702    
2703     // ordinary MIDI control change controller
2704     case leverage_ctrl_t::type_controlchange:
2705     switch (DecodedController.controller_number) {
2706     case 1:
2707     encodedcontroller = _lev_ctrl_modwheel;
2708     break;
2709     case 2:
2710     encodedcontroller = _lev_ctrl_breath;
2711     break;
2712     case 4:
2713     encodedcontroller = _lev_ctrl_foot;
2714     break;
2715     case 12:
2716     encodedcontroller = _lev_ctrl_effect1;
2717     break;
2718     case 13:
2719     encodedcontroller = _lev_ctrl_effect2;
2720     break;
2721     case 16:
2722     encodedcontroller = _lev_ctrl_genpurpose1;
2723     break;
2724     case 17:
2725     encodedcontroller = _lev_ctrl_genpurpose2;
2726     break;
2727     case 18:
2728     encodedcontroller = _lev_ctrl_genpurpose3;
2729     break;
2730     case 19:
2731     encodedcontroller = _lev_ctrl_genpurpose4;
2732     break;
2733     case 5:
2734     encodedcontroller = _lev_ctrl_portamentotime;
2735     break;
2736     case 64:
2737     encodedcontroller = _lev_ctrl_sustainpedal;
2738     break;
2739     case 65:
2740     encodedcontroller = _lev_ctrl_portamento;
2741     break;
2742     case 66:
2743     encodedcontroller = _lev_ctrl_sostenutopedal;
2744     break;
2745     case 67:
2746     encodedcontroller = _lev_ctrl_softpedal;
2747     break;
2748     case 80:
2749     encodedcontroller = _lev_ctrl_genpurpose5;
2750     break;
2751     case 81:
2752     encodedcontroller = _lev_ctrl_genpurpose6;
2753     break;
2754     case 82:
2755     encodedcontroller = _lev_ctrl_genpurpose7;
2756     break;
2757     case 83:
2758     encodedcontroller = _lev_ctrl_genpurpose8;
2759     break;
2760     case 91:
2761     encodedcontroller = _lev_ctrl_effect1depth;
2762     break;
2763     case 92:
2764     encodedcontroller = _lev_ctrl_effect2depth;
2765     break;
2766     case 93:
2767     encodedcontroller = _lev_ctrl_effect3depth;
2768     break;
2769     case 94:
2770     encodedcontroller = _lev_ctrl_effect4depth;
2771     break;
2772     case 95:
2773     encodedcontroller = _lev_ctrl_effect5depth;
2774     break;
2775 schoenebeck 2540
2776     // format extension (these controllers are so far only
2777     // supported by LinuxSampler & gigedit) they will *NOT*
2778     // work with Gigasampler/GigaStudio !
2779     case 3:
2780     encodedcontroller = _lev_ctrl_CC3_EXT;
2781     break;
2782     case 6:
2783     encodedcontroller = _lev_ctrl_CC6_EXT;
2784     break;
2785     case 7:
2786     encodedcontroller = _lev_ctrl_CC7_EXT;
2787     break;
2788     case 8:
2789     encodedcontroller = _lev_ctrl_CC8_EXT;
2790     break;
2791     case 9:
2792     encodedcontroller = _lev_ctrl_CC9_EXT;
2793     break;
2794     case 10:
2795     encodedcontroller = _lev_ctrl_CC10_EXT;
2796     break;
2797     case 11:
2798     encodedcontroller = _lev_ctrl_CC11_EXT;
2799     break;
2800     case 14:
2801     encodedcontroller = _lev_ctrl_CC14_EXT;
2802     break;
2803     case 15:
2804     encodedcontroller = _lev_ctrl_CC15_EXT;
2805     break;
2806     case 20:
2807     encodedcontroller = _lev_ctrl_CC20_EXT;
2808     break;
2809     case 21:
2810     encodedcontroller = _lev_ctrl_CC21_EXT;
2811     break;
2812     case 22:
2813     encodedcontroller = _lev_ctrl_CC22_EXT;
2814     break;
2815     case 23:
2816     encodedcontroller = _lev_ctrl_CC23_EXT;
2817     break;
2818     case 24:
2819     encodedcontroller = _lev_ctrl_CC24_EXT;
2820     break;
2821     case 25:
2822     encodedcontroller = _lev_ctrl_CC25_EXT;
2823     break;
2824     case 26:
2825     encodedcontroller = _lev_ctrl_CC26_EXT;
2826     break;
2827     case 27:
2828     encodedcontroller = _lev_ctrl_CC27_EXT;
2829     break;
2830     case 28:
2831     encodedcontroller = _lev_ctrl_CC28_EXT;
2832     break;
2833     case 29:
2834     encodedcontroller = _lev_ctrl_CC29_EXT;
2835     break;
2836     case 30:
2837     encodedcontroller = _lev_ctrl_CC30_EXT;
2838     break;
2839     case 31:
2840     encodedcontroller = _lev_ctrl_CC31_EXT;
2841     break;
2842     case 68:
2843     encodedcontroller = _lev_ctrl_CC68_EXT;
2844     break;
2845     case 69:
2846     encodedcontroller = _lev_ctrl_CC69_EXT;
2847     break;
2848     case 70:
2849     encodedcontroller = _lev_ctrl_CC70_EXT;
2850     break;
2851     case 71:
2852     encodedcontroller = _lev_ctrl_CC71_EXT;
2853     break;
2854     case 72:
2855     encodedcontroller = _lev_ctrl_CC72_EXT;
2856     break;
2857     case 73:
2858     encodedcontroller = _lev_ctrl_CC73_EXT;
2859     break;
2860     case 74:
2861     encodedcontroller = _lev_ctrl_CC74_EXT;
2862     break;
2863     case 75:
2864     encodedcontroller = _lev_ctrl_CC75_EXT;
2865     break;
2866     case 76:
2867     encodedcontroller = _lev_ctrl_CC76_EXT;
2868     break;
2869     case 77:
2870     encodedcontroller = _lev_ctrl_CC77_EXT;
2871     break;
2872     case 78:
2873     encodedcontroller = _lev_ctrl_CC78_EXT;
2874     break;
2875     case 79:
2876     encodedcontroller = _lev_ctrl_CC79_EXT;
2877     break;
2878     case 84:
2879     encodedcontroller = _lev_ctrl_CC84_EXT;
2880     break;
2881     case 85:
2882     encodedcontroller = _lev_ctrl_CC85_EXT;
2883     break;
2884     case 86:
2885     encodedcontroller = _lev_ctrl_CC86_EXT;
2886     break;
2887     case 87:
2888     encodedcontroller = _lev_ctrl_CC87_EXT;
2889     break;
2890     case 89:
2891     encodedcontroller = _lev_ctrl_CC89_EXT;
2892     break;
2893     case 90:
2894     encodedcontroller = _lev_ctrl_CC90_EXT;
2895     break;
2896     case 96:
2897     encodedcontroller = _lev_ctrl_CC96_EXT;
2898     break;
2899     case 97:
2900     encodedcontroller = _lev_ctrl_CC97_EXT;
2901     break;
2902     case 102:
2903     encodedcontroller = _lev_ctrl_CC102_EXT;
2904     break;
2905     case 103:
2906     encodedcontroller = _lev_ctrl_CC103_EXT;
2907     break;
2908     case 104:
2909     encodedcontroller = _lev_ctrl_CC104_EXT;
2910     break;
2911     case 105:
2912     encodedcontroller = _lev_ctrl_CC105_EXT;
2913     break;
2914     case 106:
2915     encodedcontroller = _lev_ctrl_CC106_EXT;
2916     break;
2917     case 107:
2918     encodedcontroller = _lev_ctrl_CC107_EXT;
2919     break;
2920     case 108:
2921     encodedcontroller = _lev_ctrl_CC108_EXT;
2922     break;
2923     case 109:
2924     encodedcontroller = _lev_ctrl_CC109_EXT;
2925     break;
2926     case 110:
2927     encodedcontroller = _lev_ctrl_CC110_EXT;
2928     break;
2929     case 111:
2930     encodedcontroller = _lev_ctrl_CC111_EXT;
2931     break;
2932     case 112:
2933     encodedcontroller = _lev_ctrl_CC112_EXT;
2934     break;
2935     case 113:
2936     encodedcontroller = _lev_ctrl_CC113_EXT;
2937     break;
2938     case 114:
2939     encodedcontroller = _lev_ctrl_CC114_EXT;
2940     break;
2941     case 115:
2942     encodedcontroller = _lev_ctrl_CC115_EXT;
2943     break;
2944     case 116:
2945     encodedcontroller = _lev_ctrl_CC116_EXT;
2946     break;
2947     case 117:
2948     encodedcontroller = _lev_ctrl_CC117_EXT;
2949     break;
2950     case 118:
2951     encodedcontroller = _lev_ctrl_CC118_EXT;
2952     break;
2953     case 119:
2954     encodedcontroller = _lev_ctrl_CC119_EXT;
2955     break;
2956    
2957 schoenebeck 809 default:
2958     throw gig::Exception("leverage controller number is not supported by the gig format");
2959     }
2960 persson 1182 break;
2961 schoenebeck 809 default:
2962     throw gig::Exception("Unknown leverage controller type.");
2963     }
2964     return encodedcontroller;
2965     }
2966    
2967 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2968     Instances--;
2969     if (!Instances) {
2970     // delete the velocity->volume tables
2971     VelocityTableMap::iterator iter;
2972     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2973     double* pTable = iter->second;
2974     if (pTable) delete[] pTable;
2975     }
2976     pVelocityTables->clear();
2977     delete pVelocityTables;
2978     pVelocityTables = NULL;
2979     }
2980 persson 858 if (VelocityTable) delete[] VelocityTable;
2981 schoenebeck 16 }
2982 schoenebeck 2
2983 schoenebeck 16 /**
2984     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2985     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2986     * and VelocityResponseCurveScaling) involved are taken into account to
2987     * calculate the amplitude factor. Use this method when a key was
2988     * triggered to get the volume with which the sample should be played
2989     * back.
2990     *
2991 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2992     * @returns amplitude factor (between 0.0 and 1.0)
2993 schoenebeck 16 */
2994     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2995     return pVelocityAttenuationTable[MIDIKeyVelocity];
2996     }
2997 schoenebeck 2
2998 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2999     return pVelocityReleaseTable[MIDIKeyVelocity];
3000     }
3001    
3002 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3003     return pVelocityCutoffTable[MIDIKeyVelocity];
3004     }
3005    
3006 schoenebeck 1358 /**
3007     * Updates the respective member variable and the lookup table / cache
3008     * that depends on this value.
3009     */
3010     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3011     pVelocityAttenuationTable =
3012     GetVelocityTable(
3013     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3014     );
3015     VelocityResponseCurve = curve;
3016     }
3017    
3018     /**
3019     * Updates the respective member variable and the lookup table / cache
3020     * that depends on this value.
3021     */
3022     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3023     pVelocityAttenuationTable =
3024     GetVelocityTable(
3025     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3026     );
3027     VelocityResponseDepth = depth;
3028     }
3029    
3030     /**
3031     * Updates the respective member variable and the lookup table / cache
3032     * that depends on this value.
3033     */
3034     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3035     pVelocityAttenuationTable =
3036     GetVelocityTable(
3037     VelocityResponseCurve, VelocityResponseDepth, scaling
3038     );
3039     VelocityResponseCurveScaling = scaling;
3040     }
3041    
3042     /**
3043     * Updates the respective member variable and the lookup table / cache
3044     * that depends on this value.
3045     */
3046     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3047     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3048     ReleaseVelocityResponseCurve = curve;
3049     }
3050    
3051     /**
3052     * Updates the respective member variable and the lookup table / cache
3053     * that depends on this value.
3054     */
3055     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3056     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3057     ReleaseVelocityResponseDepth = depth;
3058     }
3059    
3060     /**
3061     * Updates the respective member variable and the lookup table / cache
3062     * that depends on this value.
3063     */
3064     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3065     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3066     VCFCutoffController = controller;
3067     }
3068    
3069     /**
3070     * Updates the respective member variable and the lookup table / cache
3071     * that depends on this value.
3072     */
3073     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3074     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3075     VCFVelocityCurve = curve;
3076     }
3077    
3078     /**
3079     * Updates the respective member variable and the lookup table / cache
3080     * that depends on this value.
3081     */
3082     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3083     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3084     VCFVelocityDynamicRange = range;
3085     }
3086    
3087     /**
3088     * Updates the respective member variable and the lookup table / cache
3089     * that depends on this value.
3090     */
3091     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3092     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3093     VCFVelocityScale = scaling;
3094     }
3095    
3096 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3097 schoenebeck 317
3098 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3099 schoenebeck 16
3100 schoenebeck 308 // linear
3101     const int lin0[] = { 1, 1, 127, 127 };
3102     const int lin1[] = { 1, 21, 127, 127 };
3103     const int lin2[] = { 1, 45, 127, 127 };
3104     const int lin3[] = { 1, 74, 127, 127 };
3105     const int lin4[] = { 1, 127, 127, 127 };
3106 schoenebeck 16
3107 schoenebeck 308 // non-linear
3108     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3109 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3110 schoenebeck 308 127, 127 };
3111     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3112     127, 127 };
3113     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3114     127, 127 };
3115     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3116 schoenebeck 317
3117 schoenebeck 308 // special
3118 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3119 schoenebeck 308 113, 127, 127, 127 };
3120     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3121     118, 127, 127, 127 };
3122 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3123 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3124 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3125 schoenebeck 308 117, 127, 127, 127 };
3126 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3127 schoenebeck 308 127, 127 };
3128 schoenebeck 317
3129 persson 728 // this is only used by the VCF velocity curve
3130     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3131     91, 127, 127, 127 };
3132    
3133 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3134 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3135 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3136 schoenebeck 317
3137 schoenebeck 308 double* const table = new double[128];
3138    
3139     const int* curve = curves[curveType * 5 + depth];
3140     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3141 schoenebeck 317
3142 schoenebeck 308 table[0] = 0;
3143     for (int x = 1 ; x < 128 ; x++) {
3144    
3145     if (x > curve[2]) curve += 2;
3146 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3147 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3148     y = y / 127;
3149    
3150     // Scale up for s > 20, down for s < 20. When
3151     // down-scaling, the curve still ends at 1.0.
3152     if (s < 20 && y >= 0.5)
3153     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3154     else
3155     y = y * (s / 20.0);
3156     if (y > 1) y = 1;
3157    
3158     table[x] = y;
3159     }
3160     return table;
3161     }
3162    
3163    
3164 schoenebeck 2 // *************** Region ***************
3165     // *
3166    
3167     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3168     // Initialization
3169     Dimensions = 0;
3170 schoenebeck 347 for (int i = 0; i < 256; i++) {
3171 schoenebeck 2 pDimensionRegions[i] = NULL;
3172     }
3173 schoenebeck 282 Layers = 1;
3174 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3175     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3176 schoenebeck 2
3177     // Actual Loading
3178    
3179 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3180    
3181 schoenebeck 2 LoadDimensionRegions(rgnList);
3182    
3183     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3184     if (_3lnk) {
3185     DimensionRegions = _3lnk->ReadUint32();
3186 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3187 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3188     uint8_t bits = _3lnk->ReadUint8();
3189 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3190     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3191 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3192 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3193     pDimensionDefinitions[i].dimension = dimension_none;
3194     pDimensionDefinitions[i].bits = 0;
3195     pDimensionDefinitions[i].zones = 0;
3196     pDimensionDefinitions[i].split_type = split_type_bit;
3197     pDimensionDefinitions[i].zone_size = 0;
3198     }
3199     else { // active dimension
3200     pDimensionDefinitions[i].dimension = dimension;
3201     pDimensionDefinitions[i].bits = bits;
3202 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3203 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3204     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3205 schoenebeck 2 Dimensions++;
3206 schoenebeck 282
3207     // if this is a layer dimension, remember the amount of layers
3208     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3209 schoenebeck 2 }
3210 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3211 schoenebeck 2 }
3212 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3213 schoenebeck 2
3214 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3215     // update the VelocityTables in the dimension regions
3216     UpdateVelocityTable();
3217 schoenebeck 2
3218 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3219     if (file->pVersion && file->pVersion->major == 3)
3220     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3221     else
3222     _3lnk->SetPos(44);
3223    
3224 schoenebeck 1524 // load sample references (if auto loading is enabled)
3225     if (file->GetAutoLoad()) {
3226     for (uint i = 0; i < DimensionRegions; i++) {
3227     uint32_t wavepoolindex = _3lnk->ReadUint32();
3228     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3229     }
3230     GetSample(); // load global region sample reference
3231 schoenebeck 2 }
3232 persson 1102 } else {
3233     DimensionRegions = 0;
3234 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3235     pDimensionDefinitions[i].dimension = dimension_none;
3236     pDimensionDefinitions[i].bits = 0;
3237     pDimensionDefinitions[i].zones = 0;
3238     }
3239 schoenebeck 2 }
3240 schoenebeck 823
3241     // make sure there is at least one dimension region
3242     if (!DimensionRegions) {
3243     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3244     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3245     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3246 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3247 schoenebeck 823 DimensionRegions = 1;
3248     }
3249 schoenebeck 2 }
3250    
3251 schoenebeck 809 /**
3252     * Apply Region settings and all its DimensionRegions to the respective
3253     * RIFF chunks. You have to call File::Save() to make changes persistent.
3254     *
3255     * Usually there is absolutely no need to call this method explicitly.
3256     * It will be called automatically when File::Save() was called.
3257     *
3258 schoenebeck 2682 * @param pProgress - callback function for progress notification
3259 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3260     */
3261 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3262 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3263     // but we still have to provide some existing one to not corrupt the
3264     // file, so to avoid the latter we simply always assign the sample of
3265     // the first dimension region of this region
3266     pSample = pDimensionRegions[0]->pSample;
3267    
3268 schoenebeck 809 // first update base class's chunks
3269 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3270 schoenebeck 809
3271     // update dimension region's chunks
3272 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3273 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3274 schoenebeck 823 }
3275 schoenebeck 809
3276 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3277     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3278 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3279     const int iMaxDimensionRegions = version3 ? 256 : 32;
3280 schoenebeck 809
3281     // make sure '3lnk' chunk exists
3282     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3283     if (!_3lnk) {
3284 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3285 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3286 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3287 persson 1192
3288     // move 3prg to last position
3289 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3290 schoenebeck 809 }
3291    
3292     // update dimension definitions in '3lnk' chunk
3293     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3294 persson 1179 store32(&pData[0], DimensionRegions);
3295 persson 1199 int shift = 0;
3296 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3297 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3298     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3299 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3300 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3301 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3302 persson 1199 // next 3 bytes unknown, always zero?
3303    
3304     shift += pDimensionDefinitions[i].bits;
3305 schoenebeck 809 }
3306    
3307     // update wave pool table in '3lnk' chunk
3308 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3309 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3310     int iWaveIndex = -1;
3311     if (i < DimensionRegions) {
3312 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3313     File::SampleList::iterator iter = pFile->pSamples->begin();
3314     File::SampleList::iterator end = pFile->pSamples->end();
3315 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3316 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3317     iWaveIndex = index;
3318     break;
3319     }
3320 schoenebeck 809 }
3321     }
3322 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3323 schoenebeck 809 }
3324     }
3325    
3326 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3327     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3328     if (_3prg) {
3329     int dimensionRegionNr = 0;
3330     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3331     while (_3ewl) {
3332     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3333 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3334 schoenebeck 2 dimensionRegionNr++;
3335     }
3336     _3ewl = _3prg->GetNextSubList();
3337     }
3338     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3339     }
3340     }
3341    
3342 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3343     // update KeyRange struct and make sure regions are in correct order
3344     DLS::Region::SetKeyRange(Low, High);
3345     // update Region key table for fast lookup
3346     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3347     }
3348    
3349 persson 858 void Region::UpdateVelocityTable() {
3350     // get velocity dimension's index
3351     int veldim = -1;
3352     for (int i = 0 ; i < Dimensions ; i++) {
3353     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3354     veldim = i;
3355 schoenebeck 809 break;
3356     }
3357     }
3358 persson 858 if (veldim == -1) return;
3359 schoenebeck 809
3360 persson 858 int step = 1;
3361     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3362     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3363 schoenebeck 809
3364 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3365     int dim[8] = { 0 };
3366     for (int i = 0 ; i < DimensionRegions ; i++) {
3367 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3368 persson 858
3369 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3370 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3371     pDimensionRegions[i]->VelocityUpperLimit) {
3372 persson 858 // create the velocity table
3373     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3374     if (!table) {
3375     table = new uint8_t[128];
3376     pDimensionRegions[i]->VelocityTable = table;
3377     }
3378     int tableidx = 0;
3379     int velocityZone = 0;
3380 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3381     for (int k = i ; k < end ; k += step) {
3382     DimensionRegion *d = pDimensionRegions[k];
3383     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3384     velocityZone++;
3385     }
3386     } else { // gig2
3387     for (int k = i ; k < end ; k += step) {
3388     DimensionRegion *d = pDimensionRegions[k];
3389     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3390     velocityZone++;
3391     }
3392 persson 858 }
3393     } else {
3394     if (pDimensionRegions[i]->VelocityTable) {
3395     delete[] pDimensionRegions[i]->VelocityTable;
3396     pDimensionRegions[i]->VelocityTable = 0;
3397     }
3398 schoenebeck 809 }
3399 persson 858
3400 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3401 persson 858 int j;
3402     int shift = 0;
3403     for (j = 0 ; j < Dimensions ; j++) {
3404     if (j == veldim) i += skipveldim; // skip velocity dimension
3405     else {
3406     dim[j]++;
3407     if (dim[j] < pDimensionDefinitions[j].zones) break;
3408     else {
3409     // skip unused dimension regions
3410     dim[j] = 0;
3411     i += ((1 << pDimensionDefinitions[j].bits) -
3412     pDimensionDefinitions[j].zones) << shift;
3413     }
3414     }
3415     shift += pDimensionDefinitions[j].bits;
3416     }
3417     if (j == Dimensions) break;
3418 schoenebeck 809 }
3419     }
3420    
3421     /** @brief Einstein would have dreamed of it - create a new dimension.
3422     *
3423     * Creates a new dimension with the dimension definition given by
3424     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3425     * There is a hard limit of dimensions and total amount of "bits" all
3426     * dimensions can have. This limit is dependant to what gig file format
3427     * version this file refers to. The gig v2 (and lower) format has a
3428     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3429     * format has a limit of 8.
3430     *
3431     * @param pDimDef - defintion of the new dimension
3432     * @throws gig::Exception if dimension of the same type exists already
3433     * @throws gig::Exception if amount of dimensions or total amount of
3434     * dimension bits limit is violated
3435     */
3436     void Region::AddDimension(dimension_def_t* pDimDef) {
3437 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3438     if (pDimDef->zones < 2)
3439     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3440     if (pDimDef->bits < 1)
3441     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3442     if (pDimDef->dimension == dimension_samplechannel) {
3443     if (pDimDef->zones != 2)
3444     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3445     if (pDimDef->bits != 1)
3446     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3447     }
3448    
3449 schoenebeck 809 // check if max. amount of dimensions reached
3450     File* file = (File*) GetParent()->GetParent();
3451     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3452     if (Dimensions >= iMaxDimensions)
3453     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3454     // check if max. amount of dimension bits reached
3455     int iCurrentBits = 0;
3456     for (int i = 0; i < Dimensions; i++)
3457     iCurrentBits += pDimensionDefinitions[i].bits;
3458     if (iCurrentBits >= iMaxDimensions)
3459     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3460     const int iNewBits = iCurrentBits + pDimDef->bits;
3461     if (iNewBits > iMaxDimensions)
3462     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3463     // check if there's already a dimensions of the same type
3464     for (int i = 0; i < Dimensions; i++)
3465     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3466     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3467    
3468 persson 1301 // pos is where the new dimension should be placed, normally
3469     // last in list, except for the samplechannel dimension which
3470     // has to be first in list
3471     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3472     int bitpos = 0;
3473     for (int i = 0 ; i < pos ; i++)
3474     bitpos += pDimensionDefinitions[i].bits;
3475    
3476     // make room for the new dimension
3477     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3478     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3479     for (int j = Dimensions ; j > pos ; j--) {
3480     pDimensionRegions[i]->DimensionUpperLimits[j] =
3481     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3482     }
3483     }
3484    
3485 schoenebeck 809 // assign definition of new dimension
3486 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3487 schoenebeck 809
3488 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3489 persson 1301 pDimensionDefinitions[pos].split_type =
3490     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3491     pDimensionDefinitions[pos].zone_size =
3492     __resolveZoneSize(pDimensionDefinitions[pos]);
3493 schoenebeck 1113
3494 persson 1301 // create new dimension region(s) for this new dimension, and make
3495     // sure that the dimension regions are placed correctly in both the
3496     // RIFF list and the pDimensionRegions array
3497     RIFF::Chunk* moveTo = NULL;
3498     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3499     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3500     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3501     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3502     }
3503     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3504     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3505     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3506     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3507     // create a new dimension region and copy all parameter values from
3508     // an existing dimension region
3509     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3510     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3511 persson 1247
3512 persson 1301 DimensionRegions++;
3513     }
3514     }
3515     moveTo = pDimensionRegions[i]->pParentList;
3516 schoenebeck 809 }
3517    
3518 persson 1247 // initialize the upper limits for this dimension
3519 persson 1301 int mask = (1 << bitpos) - 1;
3520     for (int z = 0 ; z < pDimDef->zones ; z++) {
3521 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3522 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3523 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3524     (z << bitpos) |
3525     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3526 persson 1247 }
3527     }
3528    
3529 schoenebeck 809 Dimensions++;
3530    
3531     // if this is a layer dimension, update 'Layers' attribute
3532     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3533    
3534 persson 858 UpdateVelocityTable();
3535 schoenebeck 809 }
3536    
3537     /** @brief Delete an existing dimension.
3538     *
3539     * Deletes the dimension given by \a pDimDef and deletes all respective
3540     * dimension regions, that is all dimension regions where the dimension's
3541     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3542     * for example this would delete all dimension regions for the case(s)
3543     * where the sustain pedal is pressed down.
3544     *
3545     * @param pDimDef - dimension to delete
3546     * @throws gig::Exception if given dimension cannot be found
3547     */
3548     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3549     // get dimension's index
3550     int iDimensionNr = -1;
3551     for (int i = 0; i < Dimensions; i++) {
3552     if (&pDimensionDefinitions[i] == pDimDef) {
3553     iDimensionNr = i;
3554     break;
3555     }
3556     }
3557     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3558    
3559     // get amount of bits below the dimension to delete
3560     int iLowerBits = 0;
3561     for (int i = 0; i < iDimensionNr; i++)
3562     iLowerBits += pDimensionDefinitions[i].bits;
3563    
3564     // get amount ot bits above the dimension to delete
3565     int iUpperBits = 0;
3566     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3567     iUpperBits += pDimensionDefinitions[i].bits;
3568    
3569 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3570    
3571 schoenebeck 809 // delete dimension regions which belong to the given dimension
3572     // (that is where the dimension's bit > 0)
3573     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3574     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3575     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3576     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3577     iObsoleteBit << iLowerBits |
3578     iLowerBit;
3579 persson 1247
3580     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3581 schoenebeck 809 delete pDimensionRegions[iToDelete];
3582     pDimensionRegions[iToDelete] = NULL;
3583     DimensionRegions--;
3584     }
3585     }
3586     }
3587    
3588     // defrag pDimensionRegions array
3589     // (that is remove the NULL spaces within the pDimensionRegions array)
3590     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3591     if (!pDimensionRegions[iTo]) {
3592     if (iFrom <= iTo) iFrom = iTo + 1;
3593     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3594     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3595     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3596     pDimensionRegions[iFrom] = NULL;
3597     }
3598     }
3599     }
3600    
3601 persson 1247 // remove the this dimension from the upper limits arrays
3602     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3603     DimensionRegion* d = pDimensionRegions[j];
3604     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3605     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3606     }
3607     d->DimensionUpperLimits[Dimensions - 1] = 127;
3608     }
3609    
3610 schoenebeck 809 // 'remove' dimension definition
3611     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3612     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3613     }
3614     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3615     pDimensionDefinitions[Dimensions - 1].bits = 0;
3616     pDimensionDefinitions[Dimensions - 1].zones = 0;
3617    
3618     Dimensions--;
3619    
3620     // if this was a layer dimension, update 'Layers' attribute
3621     if (pDimDef->dimension == dimension_layer) Layers = 1;
3622     }
3623    
3624 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3625     *
3626     * Instead of deleting an entire dimensions, this method will only delete
3627     * one particular split zone given by @a zone of the Region's dimension
3628     * given by @a type. So this method will simply decrement the amount of
3629     * zones by one of the dimension in question. To be able to do that, the
3630     * respective dimension must exist on this Region and it must have at least
3631     * 3 zones. All DimensionRegion objects associated with the zone will be
3632     * deleted.
3633     *
3634     * @param type - identifies the dimension where a zone shall be deleted
3635     * @param zone - index of the dimension split zone that shall be deleted
3636     * @throws gig::Exception if requested zone could not be deleted
3637     */
3638     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3639     dimension_def_t* oldDef = GetDimensionDefinition(type);
3640     if (!oldDef)
3641     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3642     if (oldDef->zones <= 2)
3643     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3644     if (zone < 0 || zone >= oldDef->zones)
3645     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3646    
3647     const int newZoneSize = oldDef->zones - 1;
3648    
3649     // create a temporary Region which just acts as a temporary copy
3650     // container and will be deleted at the end of this function and will
3651     // also not be visible through the API during this process
3652     gig::Region* tempRgn = NULL;
3653     {
3654     // adding these temporary chunks is probably not even necessary
3655     Instrument* instr = static_cast<Instrument*>(GetParent());
3656     RIFF::List* pCkInstrument = instr->pCkInstrument;
3657     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3658     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3659     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3660     tempRgn = new Region(instr, rgn);
3661     }
3662    
3663     // copy this region's dimensions (with already the dimension split size
3664     // requested by the arguments of this method call) to the temporary
3665     // region, and don't use Region::CopyAssign() here for this task, since
3666     // it would also alter fast lookup helper variables here and there
3667     dimension_def_t newDef;
3668     for (int i = 0; i < Dimensions; ++i) {
3669     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3670     // is this the dimension requested by the method arguments? ...
3671     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3672     def.zones = newZoneSize;
3673     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3674     newDef = def;
3675     }
3676     tempRgn->AddDimension(&def);
3677     }
3678    
3679     // find the dimension index in the tempRegion which is the dimension
3680     // type passed to this method (paranoidly expecting different order)
3681     int tempReducedDimensionIndex = -1;
3682     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3683     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3684     tempReducedDimensionIndex = d;
3685     break;
3686     }
3687     }
3688    
3689     // copy dimension regions from this region to the temporary region
3690     for (int iDst = 0; iDst < 256; ++iDst) {
3691     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3692     if (!dstDimRgn) continue;
3693     std::map<dimension_t,int> dimCase;
3694     bool isValidZone = true;
3695     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3696     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3697     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3698     (iDst >> baseBits) & ((1 << dstBits) - 1);
3699     baseBits += dstBits;
3700     // there are also DimensionRegion objects of unused zones, skip them
3701     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3702     isValidZone = false;
3703     break;
3704     }
3705     }
3706     if (!isValidZone) continue;
3707     // a bit paranoid: cope with the chance that the dimensions would
3708     // have different order in source and destination regions
3709     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3710     if (dimCase[type] >= zone) dimCase[type]++;
3711     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3712     dstDimRgn->CopyAssign(srcDimRgn);
3713     // if this is the upper most zone of the dimension passed to this
3714     // method, then correct (raise) its upper limit to 127
3715     if (newDef.split_type == split_type_normal && isLastZone)
3716     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3717     }
3718    
3719     // now tempRegion's dimensions and DimensionRegions basically reflect
3720     // what we wanted to get for this actual Region here, so we now just
3721     // delete and recreate the dimension in question with the new amount
3722     // zones and then copy back from tempRegion
3723     DeleteDimension(oldDef);
3724     AddDimension(&newDef);
3725     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3726     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3727     if (!srcDimRgn) continue;
3728     std::map<dimension_t,int> dimCase;
3729     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3730     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3731     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3732     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3733     baseBits += srcBits;
3734     }
3735     // a bit paranoid: cope with the chance that the dimensions would
3736     // have different order in source and destination regions
3737     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3738     if (!dstDimRgn) continue;
3739     dstDimRgn->CopyAssign(srcDimRgn);
3740     }
3741    
3742     // delete temporary region
3743     delete tempRgn;
3744 schoenebeck 2557
3745     UpdateVelocityTable();
3746 schoenebeck 2555 }
3747    
3748     /** @brief Divide split zone of a dimension in two (increment zone amount).
3749     *
3750     * This will increment the amount of zones for the dimension (given by
3751     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3752     * in the middle of its zone range in two. So the two zones resulting from
3753     * the zone being splitted, will be an equivalent copy regarding all their
3754     * articulation informations and sample reference. The two zones will only
3755     * differ in their zone's upper limit
3756     * (DimensionRegion::DimensionUpperLimits).
3757     *
3758     * @param type - identifies the dimension where a zone shall be splitted
3759     * @param zone - index of the dimension split zone that shall be splitted
3760     * @throws gig::Exception if requested zone could not be splitted
3761     */
3762     void Region::SplitDimensionZone(dimension_t type, int zone) {
3763     dimension_def_t* oldDef = GetDimensionDefinition(type);
3764     if (!oldDef)
3765     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3766     if (zone < 0 || zone >= oldDef->zones)
3767     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3768    
3769     const int newZoneSize = oldDef->zones + 1;
3770    
3771     // create a temporary Region which just acts as a temporary copy
3772     // container and will be deleted at the end of this function and will
3773     // also not be visible through the API during this process
3774     gig::Region* tempRgn = NULL;
3775     {
3776     // adding these temporary chunks is probably not even necessary
3777     Instrument* instr = static_cast<Instrument*>(GetParent());
3778     RIFF::List* pCkInstrument = instr->pCkInstrument;
3779     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3780     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3781     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3782     tempRgn = new Region(instr, rgn);
3783     }
3784    
3785     // copy this region's dimensions (with already the dimension split size
3786     // requested by the arguments of this method call) to the temporary
3787     // region, and don't use Region::CopyAssign() here for this task, since
3788     // it would also alter fast lookup helper variables here and there
3789     dimension_def_t newDef;
3790     for (int i = 0; i < Dimensions; ++i) {
3791     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3792     // is this the dimension requested by the method arguments? ...
3793     if (def.dimension == type) { // ... if yes, increment zone amount by one
3794     def.zones = newZoneSize;
3795     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3796     newDef = def;
3797     }
3798     tempRgn->AddDimension(&def);
3799     }
3800    
3801     // find the dimension index in the tempRegion which is the dimension
3802     // type passed to this method (paranoidly expecting different order)
3803     int tempIncreasedDimensionIndex = -1;
3804     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3805     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3806     tempIncreasedDimensionIndex = d;
3807     break;
3808     }
3809     }
3810    
3811     // copy dimension regions from this region to the temporary region
3812     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3813     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3814     if (!srcDimRgn) continue;
3815     std::map<dimension_t,int> dimCase;
3816     bool isValidZone = true;
3817     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3818     const int srcBits = pDimensionDefinitions[d].bits;
3819     dimCase[pDimensionDefinitions[d].dimension] =
3820     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3821     // there are also DimensionRegion objects for unused zones, skip them
3822     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3823     isValidZone = false;
3824     break;
3825     }
3826     baseBits += srcBits;
3827     }
3828     if (!isValidZone) continue;
3829     // a bit paranoid: cope with the chance that the dimensions would
3830     // have different order in source and destination regions
3831     if (dimCase[type] > zone) dimCase[type]++;
3832     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3833     dstDimRgn->CopyAssign(srcDimRgn);
3834     // if this is the requested zone to be splitted, then also copy
3835     // the source DimensionRegion to the newly created target zone
3836     // and set the old zones upper limit lower
3837     if (dimCase[type] == zone) {
3838     // lower old zones upper limit
3839     if (newDef.split_type == split_type_normal) {
3840     const int high =
3841     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3842     int low = 0;
3843     if (zone > 0) {
3844     std::map<dimension_t,int> lowerCase = dimCase;
3845     lowerCase[type]--;
3846     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3847     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3848     }
3849     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3850     }
3851     // fill the newly created zone of the divided zone as well
3852     dimCase[type]++;
3853     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3854     dstDimRgn->CopyAssign(srcDimRgn);
3855     }
3856     }
3857    
3858     // now tempRegion's dimensions and DimensionRegions basically reflect
3859     // what we wanted to get for this actual Region here, so we now just
3860     // delete and recreate the dimension in question with the new amount
3861     // zones and then copy back from tempRegion
3862     DeleteDimension(oldDef);
3863     AddDimension(&newDef);
3864     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3865     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3866     if (!srcDimRgn) continue;
3867     std::map<dimension_t,int> dimCase;
3868     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3869     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3870     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3871     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3872     baseBits += srcBits;
3873     }
3874     // a bit paranoid: cope with the chance that the dimensions would
3875     // have different order in source and destination regions
3876     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3877     if (!dstDimRgn) continue;
3878     dstDimRgn->CopyAssign(srcDimRgn);
3879     }
3880    
3881     // delete temporary region
3882     delete tempRgn;
3883 schoenebeck 2557
3884     UpdateVelocityTable();
3885 schoenebeck 2555 }
3886    
3887 schoenebeck 2639 /** @brief Change type of an existing dimension.
3888     *
3889     * Alters the dimension type of a dimension already existing on this
3890     * region. If there is currently no dimension on this Region with type
3891     * @a oldType, then this call with throw an Exception. Likewise there are
3892     * cases where the requested dimension type cannot be performed. For example
3893     * if the new dimension type shall be gig::dimension_samplechannel, and the
3894     * current dimension has more than 2 zones. In such cases an Exception is
3895     * thrown as well.
3896     *
3897     * @param oldType - identifies the existing dimension to be changed
3898     * @param newType - to which dimension type it should be changed to
3899     * @throws gig::Exception if requested change cannot be performed
3900     */
3901     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3902     if (oldType == newType) return;
3903     dimension_def_t* def = GetDimensionDefinition(oldType);
3904     if (!def)
3905     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3906     if (newType == dimension_samplechannel && def->zones != 2)
3907     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3908 schoenebeck 2640 if (GetDimensionDefinition(newType))
3909     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3910     def->dimension = newType;
3911 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3912     }
3913    
3914 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3915     uint8_t bits[8] = {};
3916     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3917     it != DimCase.end(); ++it)
3918     {
3919     for (int d = 0; d < Dimensions; ++d) {
3920     if (pDimensionDefinitions[d].dimension == it->first) {
3921     bits[d] = it->second;
3922     goto nextDimCaseSlice;
3923     }
3924     }
3925     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3926     nextDimCaseSlice:
3927     ; // noop
3928     }
3929     return GetDimensionRegionByBit(bits);
3930     }
3931    
3932 schoenebeck 2547 /**
3933     * Searches in the current Region for a dimension of the given dimension
3934     * type and returns the precise configuration of that dimension in this
3935     * Region.
3936     *
3937     * @param type - dimension type of the sought dimension
3938     * @returns dimension definition or NULL if there is no dimension with
3939     * sought type in this Region.
3940     */
3941     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3942     for (int i = 0; i < Dimensions; ++i)
3943     if (pDimensionDefinitions[i].dimension == type)
3944     return &pDimensionDefinitions[i];
3945     return NULL;
3946     }
3947    
3948 schoenebeck 2 Region::~Region() {
3949 schoenebeck 350 for (int i = 0; i < 256; i++) {
3950 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3951     }
3952     }
3953    
3954     /**
3955     * Use this method in your audio engine to get the appropriate dimension
3956     * region with it's articulation data for the current situation. Just
3957     * call the method with the current MIDI controller values and you'll get
3958     * the DimensionRegion with the appropriate articulation data for the
3959     * current situation (for this Region of course only). To do that you'll
3960     * first have to look which dimensions with which controllers and in
3961     * which order are defined for this Region when you load the .gig file.
3962     * Special cases are e.g. layer or channel dimensions where you just put
3963     * in the index numbers instead of a MIDI controller value (means 0 for
3964     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3965     * etc.).
3966     *
3967 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3968 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3969     * @see pDimensionDefinitions
3970     * @see Dimensions
3971     */
3972 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3973 persson 858 uint8_t bits;
3974     int veldim = -1;
3975 schoenebeck 3053 int velbitpos = 0;
3976 persson 858 int bitpos = 0;
3977     int dimregidx = 0;
3978 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3979 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3980     // the velocity dimension must be handled after the other dimensions
3981     veldim = i;
3982     velbitpos = bitpos;
3983     } else {
3984     switch (pDimensionDefinitions[i].split_type) {
3985     case split_type_normal:
3986 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3987     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3988     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3989     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3990     }
3991     } else {
3992     // gig2: evenly sized zones
3993     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3994     }
3995 persson 858 break;
3996     case split_type_bit: // the value is already the sought dimension bit number
3997     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3998     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3999     break;
4000     }
4001     dimregidx |= bits << bitpos;
4002 schoenebeck 2 }
4003 persson 858 bitpos += pDimensionDefinitions[i].bits;
4004 schoenebeck 2 }
4005 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4006     if (!dimreg) return NULL;
4007 persson 858 if (veldim != -1) {
4008     // (dimreg is now the dimension region for the lowest velocity)
4009 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4010 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4011 persson 858 else // normal split type
4012 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4013 persson 858
4014 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4015     dimregidx |= (bits & limiter_mask) << velbitpos;
4016     dimreg = pDimensionRegions[dimregidx & 255];
4017 persson 858 }
4018     return dimreg;
4019 schoenebeck 2 }
4020    
4021 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4022     uint8_t bits;
4023     int veldim = -1;
4024 schoenebeck 3053 int velbitpos = 0;
4025 schoenebeck 2599 int bitpos = 0;
4026     int dimregidx = 0;
4027     for (uint i = 0; i < Dimensions; i++) {
4028     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4029     // the velocity dimension must be handled after the other dimensions
4030     veldim = i;
4031     velbitpos = bitpos;
4032     } else {
4033     switch (pDimensionDefinitions[i].split_type) {
4034     case split_type_normal:
4035     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4036     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4037     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4038     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4039     }
4040     } else {
4041     // gig2: evenly sized zones
4042     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4043     }
4044     break;
4045     case split_type_bit: // the value is already the sought dimension bit number
4046     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4047     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4048     break;
4049     }
4050     dimregidx |= bits << bitpos;
4051     }
4052     bitpos += pDimensionDefinitions[i].bits;
4053     }
4054     dimregidx &= 255;
4055     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4056     if (!dimreg) return -1;
4057     if (veldim != -1) {
4058     // (dimreg is now the dimension region for the lowest velocity)
4059     if (dimreg->VelocityTable) // custom defined zone ranges
4060     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4061     else // normal split type
4062     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4063    
4064     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4065     dimregidx |= (bits & limiter_mask) << velbitpos;
4066     dimregidx &= 255;
4067     }
4068     return dimregidx;
4069     }
4070    
4071 schoenebeck 2 /**
4072     * Returns the appropriate DimensionRegion for the given dimension bit
4073     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4074     * instead of calling this method directly!
4075     *
4076 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4077 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4078     * bit numbers
4079     * @see GetDimensionRegionByValue()
4080     */
4081 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4082     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4083     << pDimensionDefinitions[5].bits | DimBits[5])
4084     << pDimensionDefinitions[4].bits | DimBits[4])
4085     << pDimensionDefinitions[3].bits | DimBits[3])
4086     << pDimensionDefinitions[2].bits | DimBits[2])
4087     << pDimensionDefinitions[1].bits | DimBits[1])
4088     << pDimensionDefinitions[0].bits | DimBits[0]];
4089 schoenebeck 2 }
4090    
4091     /**
4092     * Returns pointer address to the Sample referenced with this region.
4093     * This is the global Sample for the entire Region (not sure if this is
4094     * actually used by the Gigasampler engine - I would only use the Sample
4095     * referenced by the appropriate DimensionRegion instead of this sample).
4096     *
4097     * @returns address to Sample or NULL if there is no reference to a
4098     * sample saved in the .gig file
4099     */
4100     Sample* Region::GetSample() {
4101     if (pSample) return static_cast<gig::Sample*>(pSample);
4102     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4103     }
4104    
4105 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4106 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4107 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4108 persson 902 if (!file->pWavePoolTable) return NULL;
4109 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4110     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4111     // use 64 bit wave pool offsets (treating this as large file)
4112 schoenebeck 2912 uint64_t soughtoffset =
4113     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4114     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4115     Sample* sample = file->GetFirstSample(pProgress);
4116     while (sample) {
4117     if (sample->ullWavePoolOffset == soughtoffset)
4118     return static_cast<gig::Sample*>(sample);
4119     sample = file->GetNextSample();
4120     }
4121     } else {
4122 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4123 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4124     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4125     Sample* sample = file->GetFirstSample(pProgress);
4126     while (sample) {
4127     if (sample->ullWavePoolOffset == soughtoffset &&
4128     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4129     sample = file->GetNextSample();
4130     }
4131 schoenebeck 2 }
4132     return NULL;
4133     }
4134 schoenebeck 2394
4135     /**
4136     * Make a (semi) deep copy of the Region object given by @a orig
4137     * and assign it to this object.
4138     *
4139     * Note that all sample pointers referenced by @a orig are simply copied as
4140     * memory address. Thus the respective samples are shared, not duplicated!
4141     *
4142     * @param orig - original Region object to be copied from
4143     */
4144     void Region::CopyAssign(const Region* orig) {
4145 schoenebeck 2482 CopyAssign(orig, NULL);
4146     }
4147    
4148     /**
4149     * Make a (semi) deep copy of the Region object given by @a orig and
4150     * assign it to this object
4151     *
4152     * @param mSamples - crosslink map between the foreign file's samples and
4153     * this file's samples
4154     */
4155     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4156 schoenebeck 2394 // handle base classes
4157     DLS::Region::CopyAssign(orig);
4158    
4159 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4160     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4161     }
4162    
4163 schoenebeck 2394 // handle own member variables
4164     for (int i = Dimensions - 1; i >= 0; --i) {
4165     DeleteDimension(&pDimensionDefinitions[i]);
4166     }
4167     Layers = 0; // just to be sure
4168     for (int i = 0; i < orig->Dimensions; i++) {
4169     // we need to copy the dim definition here, to avoid the compiler
4170     // complaining about const-ness issue
4171     dimension_def_t def = orig->pDimensionDefinitions[i];
4172     AddDimension(&def);
4173     }
4174     for (int i = 0; i < 256; i++) {
4175     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4176     pDimensionRegions[i]->CopyAssign(
4177 schoenebeck 2482 orig->pDimensionRegions[i],
4178     mSamples
4179 schoenebeck 2394 );
4180     }
4181     }
4182     Layers = orig->Layers;
4183     }
4184 schoenebeck 2
4185    
4186 persson 1627 // *************** MidiRule ***************
4187     // *
4188 schoenebeck 2
4189 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4190     _3ewg->SetPos(36);
4191     Triggers = _3ewg->ReadUint8();
4192     _3ewg->SetPos(40);
4193     ControllerNumber = _3ewg->ReadUint8();
4194     _3ewg->SetPos(46);
4195     for (int i = 0 ; i < Triggers ; i++) {
4196     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4197     pTriggers[i].Descending = _3ewg->ReadUint8();
4198     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4199     pTriggers[i].Key = _3ewg->ReadUint8();
4200     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4201     pTriggers[i].Velocity = _3ewg->ReadUint8();
4202     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4203     _3ewg->ReadUint8();
4204     }
4205 persson 1627 }
4206    
4207 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4208     ControllerNumber(0),
4209     Triggers(0) {
4210     }
4211 persson 1627
4212 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4213     pData[32] = 4;
4214     pData[33] = 16;
4215     pData[36] = Triggers;
4216     pData[40] = ControllerNumber;
4217     for (int i = 0 ; i < Triggers ; i++) {
4218     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4219     pData[47 + i * 8] = pTriggers[i].Descending;
4220     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4221     pData[49 + i * 8] = pTriggers[i].Key;
4222     pData[50 + i * 8] = pTriggers[i].NoteOff;
4223     pData[51 + i * 8] = pTriggers[i].Velocity;
4224     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4225     }
4226     }
4227    
4228     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4229     _3ewg->SetPos(36);
4230     LegatoSamples = _3ewg->ReadUint8(); // always 12
4231     _3ewg->SetPos(40);
4232     BypassUseController = _3ewg->ReadUint8();
4233     BypassKey = _3ewg->ReadUint8();
4234     BypassController = _3ewg->ReadUint8();
4235     ThresholdTime = _3ewg->ReadUint16();
4236     _3ewg->ReadInt16();
4237     ReleaseTime = _3ewg->ReadUint16();
4238     _3ewg->ReadInt16();
4239     KeyRange.low = _3ewg->ReadUint8();
4240     KeyRange.high = _3ewg->ReadUint8();
4241     _3ewg->SetPos(64);
4242     ReleaseTriggerKey = _3ewg->ReadUint8();
4243     AltSustain1Key = _3ewg->ReadUint8();
4244     AltSustain2Key = _3ewg->ReadUint8();
4245     }
4246    
4247     MidiRuleLegato::MidiRuleLegato() :
4248     LegatoSamples(12),
4249     BypassUseController(false),
4250     BypassKey(0),
4251     BypassController(1),
4252     ThresholdTime(20),
4253     ReleaseTime(20),
4254     ReleaseTriggerKey(0),
4255     AltSustain1Key(0),
4256     AltSustain2Key(0)
4257     {
4258     KeyRange.low = KeyRange.high = 0;
4259     }
4260    
4261     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4262     pData[32] = 0;
4263     pData[33] = 16;
4264     pData[36] = LegatoSamples;
4265     pData[40] = BypassUseController;
4266     pData[41] = BypassKey;
4267     pData[42] = BypassController;
4268     store16(&pData[43], ThresholdTime);
4269     store16(&pData[47], ReleaseTime);
4270     pData[51] = KeyRange.low;
4271     pData[52] = KeyRange.high;
4272     pData[64] = ReleaseTriggerKey;
4273     pData[65] = AltSustain1Key;
4274     pData[66] = AltSustain2Key;
4275     }
4276    
4277     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4278     _3ewg->SetPos(36);
4279     Articulations = _3ewg->ReadUint8();
4280     int flags = _3ewg->ReadUint8();
4281     Polyphonic = flags & 8;
4282     Chained = flags & 4;
4283     Selector = (flags & 2) ? selector_controller :
4284     (flags & 1) ? selector_key_switch : selector_none;
4285     Patterns = _3ewg->ReadUint8();
4286     _3ewg->ReadUint8(); // chosen row
4287     _3ewg->ReadUint8(); // unknown
4288     _3ewg->ReadUint8(); // unknown
4289     _3ewg->ReadUint8(); // unknown
4290     KeySwitchRange.low = _3ewg->ReadUint8();
4291     KeySwitchRange.high = _3ewg->ReadUint8();
4292     Controller = _3ewg->ReadUint8();
4293     PlayRange.low = _3ewg->ReadUint8();
4294     PlayRange.high = _3ewg->ReadUint8();
4295    
4296     int n = std::min(int(Articulations), 32);
4297     for (int i = 0 ; i < n ; i++) {
4298     _3ewg->ReadString(pArticulations[i], 32);
4299     }
4300     _3ewg->SetPos(1072);
4301     n = std::min(int(Patterns), 32);
4302     for (int i = 0 ; i < n ; i++) {
4303     _3ewg->ReadString(pPatterns[i].Name, 16);
4304     pPatterns[i].Size = _3ewg->ReadUint8();
4305     _3ewg->Read(&pPatterns[i][0], 1, 32);
4306     }
4307     }
4308    
4309     MidiRuleAlternator::MidiRuleAlternator() :
4310     Articulations(0),
4311     Patterns(0),
4312     Selector(selector_none),
4313     Controller(0),
4314     Polyphonic(false),
4315     Chained(false)
4316     {
4317     PlayRange.low = PlayRange.high = 0;
4318     KeySwitchRange.low = KeySwitchRange.high = 0;
4319     }
4320    
4321     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4322     pData[32] = 3;
4323     pData[33] = 16;
4324     pData[36] = Articulations;
4325     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4326     (Selector == selector_controller ? 2 :
4327     (Selector == selector_key_switch ? 1 : 0));
4328     pData[38] = Patterns;
4329    
4330     pData[43] = KeySwitchRange.low;
4331     pData[44] = KeySwitchRange.high;
4332     pData[45] = Controller;
4333     pData[46] = PlayRange.low;
4334     pData[47] = PlayRange.high;
4335    
4336     char* str = reinterpret_cast<char*>(pData);
4337     int pos = 48;
4338     int n = std::min(int(Articulations), 32);
4339     for (int i = 0 ; i < n ; i++, pos += 32) {
4340     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4341     }
4342    
4343     pos = 1072;
4344     n = std::min(int(Patterns), 32);
4345     for (int i = 0 ; i < n ; i++, pos += 49) {
4346     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4347     pData[pos + 16] = pPatterns[i].Size;
4348     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4349     }
4350     }
4351    
4352 schoenebeck 2584 // *************** Script ***************
4353     // *
4354    
4355     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4356     pGroup = group;
4357     pChunk = ckScri;
4358     if (ckScri) { // object is loaded from file ...
4359     // read header
4360     uint32_t headerSize = ckScri->ReadUint32();
4361     Compression = (Compression_t) ckScri->ReadUint32();
4362     Encoding = (Encoding_t) ckScri->ReadUint32();
4363     Language = (Language_t) ckScri->ReadUint32();
4364     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4365     crc = ckScri->ReadUint32();
4366     uint32_t nameSize = ckScri->ReadUint32();
4367     Name.resize(nameSize, ' ');
4368     for (int i = 0; i < nameSize; ++i)
4369     Name[i] = ckScri->ReadUint8();
4370     // to handle potential future extensions of the header
4371 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4372 schoenebeck 2584 // read actual script data
4373 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4374 schoenebeck 2584 data.resize(scriptSize);
4375     for (int i = 0; i < scriptSize; ++i)
4376     data[i] = ckScri->ReadUint8();
4377     } else { // this is a new script object, so just initialize it as such ...
4378     Compression = COMPRESSION_NONE;
4379     Encoding = ENCODING_ASCII;
4380     Language = LANGUAGE_NKSP;
4381     Bypass = false;
4382     crc = 0;
4383     Name = "Unnamed Script";
4384     }
4385     }
4386    
4387     Script::~Script() {
4388     }
4389    
4390     /**
4391     * Returns the current script (i.e. as source code) in text format.
4392     */
4393     String Script::GetScriptAsText() {
4394     String s;
4395     s.resize(data.size(), ' ');
4396     memcpy(&s[0], &data[0], data.size());
4397     return s;
4398     }
4399    
4400     /**
4401     * Replaces the current script with the new script source code text given
4402     * by @a text.
4403     *
4404     * @param text - new script source code
4405     */
4406     void Script::SetScriptAsText(const String& text) {
4407     data.resize(text.size());
4408     memcpy(&data[0], &text[0], text.size());
4409     }
4410    
4411 schoenebeck 2682 /**
4412     * Apply this script to the respective RIFF chunks. You have to call
4413     * File::Save() to make changes persistent.
4414     *
4415     * Usually there is absolutely no need to call this method explicitly.
4416     * It will be called automatically when File::Save() was called.
4417     *
4418     * @param pProgress - callback function for progress notification
4419     */
4420     void Script::UpdateChunks(progress_t* pProgress) {
4421 schoenebeck 2584 // recalculate CRC32 check sum
4422     __resetCRC(crc);
4423     __calculateCRC(&data[0], data.size(), crc);
4424 schoenebeck 3115 __finalizeCRC(crc);
4425 schoenebeck 2584 // make sure chunk exists and has the required size
4426 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4427 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4428     else pChunk->Resize(chunkSize);
4429     // fill the chunk data to be written to disk
4430     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4431     int pos = 0;
4432 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4433 schoenebeck 2584 pos += sizeof(int32_t);
4434     store32(&pData[pos], Compression);
4435     pos += sizeof(int32_t);
4436     store32(&pData[pos], Encoding);
4437     pos += sizeof(int32_t);
4438     store32(&pData[pos], Language);
4439     pos += sizeof(int32_t);
4440     store32(&pData[pos], Bypass ? 1 : 0);
4441     pos += sizeof(int32_t);
4442     store32(&pData[pos], crc);
4443     pos += sizeof(int32_t);
4444 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4445 schoenebeck 2584 pos += sizeof(int32_t);
4446     for (int i = 0; i < Name.size(); ++i, ++pos)
4447     pData[pos] = Name[i];
4448     for (int i = 0; i < data.size(); ++i, ++pos)
4449     pData[pos] = data[i];
4450     }
4451    
4452     /**
4453     * Move this script from its current ScriptGroup to another ScriptGroup
4454     * given by @a pGroup.
4455     *
4456     * @param pGroup - script's new group
4457     */
4458     void Script::SetGroup(ScriptGroup* pGroup) {
4459 persson 2836 if (this->pGroup == pGroup) return;
4460 schoenebeck 2584 if (pChunk)
4461     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4462     this->pGroup = pGroup;
4463     }
4464    
4465 schoenebeck 2601 /**
4466     * Returns the script group this script currently belongs to. Each script
4467     * is a member of exactly one ScriptGroup.
4468     *
4469     * @returns current script group
4470     */
4471     ScriptGroup* Script::GetGroup() const {
4472     return pGroup;
4473     }
4474    
4475 schoenebeck 3117 /**
4476     * Make a (semi) deep copy of the Script object given by @a orig
4477     * and assign it to this object. Note: the ScriptGroup this Script
4478     * object belongs to remains untouched by this call.
4479     *
4480     * @param orig - original Script object to be copied from
4481     */
4482     void Script::CopyAssign(const Script* orig) {
4483     Name = orig->Name;
4484     Compression = orig->Compression;
4485     Encoding = orig->Encoding;
4486     Language = orig->Language;
4487     Bypass = orig->Bypass;
4488     data = orig->data;
4489     }
4490    
4491 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4492     File* pFile = pGroup->pFile;
4493     for (int i = 0; pFile->GetInstrument(i); ++i) {
4494     Instrument* instr = pFile->GetInstrument(i);
4495     instr->RemoveScript(this);
4496     }
4497     }
4498    
4499     // *************** ScriptGroup ***************
4500     // *
4501    
4502     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4503     pFile = file;
4504     pList = lstRTIS;
4505     pScripts = NULL;
4506     if (lstRTIS) {
4507     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4508     ::LoadString(ckName, Name);
4509     } else {
4510     Name = "Default Group";
4511     }
4512     }
4513    
4514     ScriptGroup::~ScriptGroup() {
4515     if (pScripts) {
4516     std::list<Script*>::iterator iter = pScripts->begin();
4517     std::list<Script*>::iterator end = pScripts->end();
4518     while (iter != end) {
4519     delete *iter;
4520     ++iter;
4521     }
4522     delete pScripts;
4523     }
4524     }
4525    
4526 schoenebeck 2682 /**
4527     * Apply this script group to the respective RIFF chunks. You have to call
4528     * File::Save() to make changes persistent.
4529     *
4530     * Usually there is absolutely no need to call this method explicitly.
4531     * It will be called automatically when File::Save() was called.
4532     *
4533     * @param pProgress - callback function for progress notification
4534     */
4535     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4536 schoenebeck 2584 if (pScripts) {
4537     if (!pList)
4538     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4539    
4540     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4541     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4542    
4543     for (std::list<Script*>::iterator it = pScripts->begin();
4544     it != pScripts->end(); ++it)
4545     {
4546 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4547 schoenebeck 2584 }
4548     }
4549     }
4550    
4551     /** @brief Get instrument script.
4552     *
4553     * Returns the real-time instrument script with the given index.
4554     *
4555     * @param index - number of the sought script (0..n)
4556     * @returns sought script or NULL if there's no such script
4557     */
4558     Script* ScriptGroup::GetScript(uint index) {
4559     if (!pScripts) LoadScripts();
4560     std::list<Script*>::iterator it = pScripts->begin();
4561     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4562     if (i == index) return *it;
4563     return NULL;
4564     }
4565    
4566     /** @brief Add new instrument script.
4567     *
4568     * Adds a new real-time instrument script to the file. The script is not
4569     * actually used / executed unless it is referenced by an instrument to be
4570     * used. This is similar to samples, which you can add to a file, without
4571     * an instrument necessarily actually using it.
4572     *
4573     * You have to call Save() to make this persistent to the file.
4574     *
4575     * @return new empty script object
4576     */
4577     Script* ScriptGroup::AddScript() {
4578     if (!pScripts) LoadScripts();
4579     Script* pScript = new Script(this, NULL);
4580     pScripts->push_back(pScript);
4581     return pScript;
4582     }
4583    
4584     /** @brief Delete an instrument script.
4585     *
4586     * This will delete the given real-time instrument script. References of
4587     * instruments that are using that script will be removed accordingly.
4588     *
4589     * You have to call Save() to make this persistent to the file.
4590     *
4591     * @param pScript - script to delete
4592     * @throws gig::Exception if given script could not be found
4593     */
4594     void ScriptGroup::DeleteScript(Script* pScript) {
4595     if (!pScripts) LoadScripts();
4596     std::list<Script*>::iterator iter =
4597     find(pScripts->begin(), pScripts->end(), pScript);
4598     if (iter == pScripts->end())
4599     throw gig::Exception("Could not delete script, could not find given script");
4600     pScripts->erase(iter);
4601     pScript->RemoveAllScriptReferences();
4602     if (pScript->pChunk)
4603     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4604     delete pScript;
4605     }
4606    
4607     void ScriptGroup::LoadScripts() {
4608     if (pScripts) return;
4609     pScripts = new std::list<Script*>;
4610     if (!pList) return;
4611    
4612     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4613     ck = pList->GetNextSubChunk())
4614     {
4615     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4616     pScripts->push_back(new Script(this, ck));
4617     }
4618     }
4619     }
4620    
4621 schoenebeck 2 // *************** Instrument ***************
4622     // *
4623    
4624 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4625 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4626 persson 1180 { CHUNK_ID_INAM, 64 },
4627     { CHUNK_ID_ISFT, 12 },
4628     { 0, 0 }
4629     };
4630 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4631 persson 918
4632 schoenebeck 2 // Initialization
4633     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4634 persson 1182 EffectSend = 0;
4635     Attenuation = 0;
4636     FineTune = 0;
4637 schoenebeck 3112 PitchbendRange = 2;
4638 persson 1182 PianoReleaseMode = false;
4639     DimensionKeyRange.low = 0;
4640     DimensionKeyRange.high = 0;
4641 persson 1678 pMidiRules = new MidiRule*[3];
4642     pMidiRules[0] = NULL;
4643 schoenebeck 2584 pScriptRefs = NULL;
4644 schoenebeck 2
4645     // Loading
4646     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4647     if (lart) {
4648     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4649     if (_3ewg) {
4650     EffectSend = _3ewg->ReadUint16();
4651     Attenuation = _3ewg->ReadInt32();
4652     FineTune = _3ewg->ReadInt16();
4653     PitchbendRange = _3ewg->ReadInt16();
4654     uint8_t dimkeystart = _3ewg->ReadUint8();
4655     PianoReleaseMode = dimkeystart & 0x01;
4656     DimensionKeyRange.low = dimkeystart >> 1;
4657     DimensionKeyRange.high = _3ewg->ReadUint8();
4658 persson 1627
4659     if (_3ewg->GetSize() > 32) {
4660     // read MIDI rules
4661 persson 1678 int i = 0;
4662 persson 1627 _3ewg->SetPos(32);
4663     uint8_t id1 = _3ewg->ReadUint8();
4664     uint8_t id2 = _3ewg->ReadUint8();
4665    
4666 persson 2450 if (id2 == 16) {
4667     if (id1 == 4) {
4668     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4669     } else if (id1 == 0) {
4670     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4671     } else if (id1 == 3) {
4672     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4673     } else {
4674     pMidiRules[i++] = new MidiRuleUnknown;
4675     }
4676 persson 1627 }
4677 persson 2450 else if (id1 != 0 || id2 != 0) {
4678     pMidiRules[i++] = new MidiRuleUnknown;
4679     }
4680 persson 1627 //TODO: all the other types of rules
4681 persson 1678
4682     pMidiRules[i] = NULL;
4683 persson 1627 }
4684 schoenebeck 2 }
4685     }
4686    
4687 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4688     if (!pRegions) pRegions = new RegionList;
4689     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4690     if (lrgn) {
4691     RIFF::List* rgn = lrgn->GetFirstSubList();
4692     while (rgn) {
4693     if (rgn->GetListType() == LIST_TYPE_RGN) {
4694     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4695     pRegions->push_back(new Region(this, rgn));
4696     }
4697     rgn = lrgn->GetNextSubList();
4698 schoenebeck 809 }
4699 schoenebeck 1524 // Creating Region Key Table for fast lookup
4700     UpdateRegionKeyTable();
4701 schoenebeck 2 }
4702     }
4703    
4704 schoenebeck 2584 // own gig format extensions
4705     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4706     if (lst3LS) {
4707     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4708     if (ckSCSL) {
4709 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4710     int slotCount = ckSCSL->ReadUint32();
4711     if (slotCount) {
4712     int slotSize = ckSCSL->ReadUint32();
4713     ckSCSL->SetPos(headerSize); // in case of future header extensions
4714     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4715     for (int i = 0; i < slotCount; ++i) {
4716     _ScriptPooolEntry e;
4717     e.fileOffset = ckSCSL->ReadUint32();
4718     e.bypass = ckSCSL->ReadUint32() & 1;
4719     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4720     scriptPoolFileOffsets.push_back(e);
4721     }
4722 schoenebeck 2584 }
4723     }
4724     }
4725    
4726 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4727     }
4728    
4729     void Instrument::UpdateRegionKeyTable() {
4730 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4731 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4732     RegionList::iterator end = pRegions->end();
4733     for (; iter != end; ++iter) {
4734     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4735     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4736     RegionKeyTable[iKey] = pRegion;
4737 schoenebeck 2 }
4738     }
4739     }
4740    
4741     Instrument::~Instrument() {
4742 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4743     delete pMidiRules[i];
4744     }
4745 persson 1678 delete[] pMidiRules;
4746 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4747 schoenebeck 2 }
4748    
4749     /**
4750 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4751     * You have to call File::Save() to make changes persistent.
4752     *
4753     * Usually there is absolutely no need to call this method explicitly.
4754     * It will be called automatically when File::Save() was called.
4755     *
4756 schoenebeck 2682 * @param pProgress - callback function for progress notification
4757 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4758     */
4759 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4760 schoenebeck 809 // first update base classes' chunks
4761 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4762 schoenebeck 809
4763     // update Regions' chunks
4764 schoenebeck 823 {
4765     RegionList::iterator iter = pRegions->begin();
4766     RegionList::iterator end = pRegions->end();
4767     for (; iter != end; ++iter)
4768 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4769 schoenebeck 823 }
4770 schoenebeck 809
4771     // make sure 'lart' RIFF list chunk exists
4772     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4773     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4774     // make sure '3ewg' RIFF chunk exists
4775     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4776 persson 1264 if (!_3ewg) {
4777     File* pFile = (File*) GetParent();
4778    
4779     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4780     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4781     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4782     memset(_3ewg->LoadChunkData(), 0, size);
4783     }
4784 schoenebeck 809 // update '3ewg' RIFF chunk
4785     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4786 persson 1179 store16(&pData[0], EffectSend);
4787     store32(&pData[2], Attenuation);
4788     store16(&pData[6], FineTune);
4789     store16(&pData[8], PitchbendRange);
4790 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4791 schoenebeck 809 DimensionKeyRange.low << 1;
4792 persson 1179 pData[10] = dimkeystart;
4793     pData[11] = DimensionKeyRange.high;
4794 persson 2450
4795     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4796     pData[32] = 0;
4797     pData[33] = 0;
4798     } else {
4799     for (int i = 0 ; pMidiRules[i] ; i++) {
4800     pMidiRules[i]->UpdateChunks(pData);
4801     }
4802     }
4803 schoenebeck 2584
4804     // own gig format extensions
4805 schoenebeck 2648 if (ScriptSlotCount()) {
4806     // make sure we have converted the original loaded script file
4807     // offsets into valid Script object pointers
4808     LoadScripts();
4809    
4810 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4811     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4812 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4813 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4814     const int slotSize = 2 * sizeof(uint32_t);
4815     const int totalChunkSize = headerSize + slotCount * slotSize;
4816 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4817 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4818     else ckSCSL->Resize(totalChunkSize);
4819 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4820 schoenebeck 2609 int pos = 0;
4821     store32(&pData[pos], headerSize);
4822     pos += sizeof(uint32_t);
4823     store32(&pData[pos], slotCount);
4824     pos += sizeof(uint32_t);
4825     store32(&pData[pos], slotSize);
4826     pos += sizeof(uint32_t);
4827     for (int i = 0; i < slotCount; ++i) {
4828     // arbitrary value, the actual file offset will be updated in
4829     // UpdateScriptFileOffsets() after the file has been resized
4830     int bogusFileOffset = 0;
4831     store32(&pData[pos], bogusFileOffset);
4832 schoenebeck 2584 pos += sizeof(uint32_t);
4833     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4834     pos += sizeof(uint32_t);
4835     }
4836 schoenebeck 2648 } else {
4837     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4838     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4839     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4840 schoenebeck 2584 }
4841 schoenebeck 809 }
4842    
4843 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4844     // own gig format extensions
4845 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4846 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4847     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4848 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4849 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4850     ckSCSL->SetPos(headerSize);
4851     for (int i = 0; i < slotCount; ++i) {
4852 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4853 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4854     (*pScriptRefs)[i].script->pChunk->GetPos() -
4855 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4856     );
4857 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4858     // jump over flags entry (containing the bypass flag)
4859     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4860     }
4861     }
4862     }
4863    
4864 schoenebeck 809 /**
4865 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4866     *
4867     * @param Key MIDI Key number of triggered note / key (0 - 127)
4868     * @returns pointer adress to the appropriate Region or NULL if there
4869     * there is no Region defined for the given \a Key
4870     */
4871     Region* Instrument::GetRegion(unsigned int Key) {
4872 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4873 schoenebeck 2 return RegionKeyTable[Key];
4874 schoenebeck 823
4875 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4876     if (Key <= pRegions[i]->KeyRange.high &&
4877     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4878     }
4879     return NULL;*/
4880     }
4881    
4882     /**
4883     * Returns the first Region of the instrument. You have to call this
4884     * method once before you use GetNextRegion().
4885     *
4886     * @returns pointer address to first region or NULL if there is none
4887     * @see GetNextRegion()
4888     */
4889     Region* Instrument::GetFirstRegion() {
4890 schoenebeck 823 if (!pRegions) return NULL;
4891     RegionsIterator = pRegions->begin();
4892     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4893 schoenebeck 2 }
4894    
4895     /**
4896     * Returns the next Region of the instrument. You have to call
4897     * GetFirstRegion() once before you can use this method. By calling this
4898     * method multiple times it iterates through the available Regions.
4899     *
4900     * @returns pointer address to the next region or NULL if end reached
4901     * @see GetFirstRegion()
4902     */
4903     Region* Instrument::GetNextRegion() {
4904 schoenebeck 823 if (!pRegions) return NULL;
4905     RegionsIterator++;
4906     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4907 schoenebeck 2 }
4908    
4909 schoenebeck 809 Region* Instrument::AddRegion() {
4910     // create new Region object (and its RIFF chunks)
4911     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4912     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4913     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4914     Region* pNewRegion = new Region(this, rgn);
4915 schoenebeck 823 pRegions->push_back(pNewRegion);
4916 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
4917 schoenebeck 809 // update Region key table for fast lookup
4918     UpdateRegionKeyTable();
4919     // done
4920     return pNewRegion;
4921     }
4922 schoenebeck 2
4923 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4924     if (!pRegions) return;
4925 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4926 schoenebeck 809 // update Region key table for fast lookup
4927     UpdateRegionKeyTable();
4928     }
4929 schoenebeck 2
4930 persson 1627 /**
4931 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4932     *
4933     * This method can be used to reorder the sequence of instruments in a
4934     * .gig file. This might be helpful especially on large .gig files which
4935     * contain a large number of instruments within the same .gig file. So
4936     * grouping such instruments to similar ones, can help to keep track of them
4937     * when working with such complex .gig files.
4938     *
4939     * When calling this method, this instrument will be removed from in its
4940     * current position in the instruments list and moved to the requested
4941     * target position provided by @param dst. You may also pass NULL as
4942     * argument to this method, in that case this intrument will be moved to the
4943     * very end of the .gig file's instrument list.
4944     *
4945     * You have to call Save() to make the order change persistent to the .gig
4946     * file.
4947     *
4948     * Currently this method is limited to moving the instrument within the same
4949     * .gig file. Trying to move it to another .gig file by calling this method
4950     * will throw an exception.
4951     *
4952     * @param dst - destination instrument at which this instrument will be
4953     * moved to, or pass NULL for moving to end of list
4954     * @throw gig::Exception if this instrument and target instrument are not
4955     * part of the same file
4956     */
4957     void Instrument::MoveTo(Instrument* dst) {
4958     if (dst && GetParent() != dst->GetParent())
4959     throw Exception(
4960     "gig::Instrument::MoveTo() can only be used for moving within "
4961     "the same gig file."
4962     );
4963    
4964     File* pFile = (File*) GetParent();
4965    
4966     // move this instrument within the instrument list
4967     {
4968 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
4969 schoenebeck 2700
4970 persson 2836 File::InstrumentList::iterator itFrom =
4971 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4972    
4973 persson 2836 File::InstrumentList::iterator itTo =
4974 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4975    
4976     list.splice(itTo, list, itFrom);
4977     }
4978    
4979     // move the instrument's actual list RIFF chunk appropriately
4980     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4981     lstCkInstruments->MoveSubChunk(
4982     this->pCkInstrument,
4983 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4984 schoenebeck 2700 );
4985     }
4986    
4987     /**
4988 persson 1678 * Returns a MIDI rule of the instrument.
4989 persson 1627 *
4990     * The list of MIDI rules, at least in gig v3, always contains at
4991     * most two rules. The second rule can only be the DEF filter
4992     * (which currently isn't supported by libgig).
4993     *
4994 persson 1678 * @param i - MIDI rule number
4995     * @returns pointer address to MIDI rule number i or NULL if there is none
4996 persson 1627 */
4997 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
4998     return pMidiRules[i];
4999 persson 1627 }
5000 persson 2450
5001 schoenebeck 2394 /**
5002 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5003     *
5004     * @returns the new MIDI rule
5005     */
5006     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5007     delete pMidiRules[0];
5008     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5009     pMidiRules[0] = r;
5010     pMidiRules[1] = 0;
5011     return r;
5012     }
5013    
5014     /**
5015     * Adds the legato MIDI rule to the instrument.
5016     *
5017     * @returns the new MIDI rule
5018     */
5019     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5020     delete pMidiRules[0];
5021     MidiRuleLegato* r = new MidiRuleLegato;
5022     pMidiRules[0] = r;
5023     pMidiRules[1] = 0;
5024     return r;
5025     }
5026    
5027     /**
5028     * Adds the alternator MIDI rule to the instrument.
5029     *
5030     * @returns the new MIDI rule
5031     */
5032     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5033     delete pMidiRules[0];
5034     MidiRuleAlternator* r = new MidiRuleAlternator;
5035     pMidiRules[0] = r;
5036     pMidiRules[1] = 0;
5037     return r;
5038     }
5039    
5040     /**
5041     * Deletes a MIDI rule from the instrument.
5042     *
5043     * @param i - MIDI rule number
5044     */
5045     void Instrument::DeleteMidiRule(int i) {
5046     delete pMidiRules[i];
5047     pMidiRules[i] = 0;
5048     }
5049    
5050 schoenebeck 2584 void Instrument::LoadScripts() {
5051     if (pScriptRefs) return;
5052     pScriptRefs = new std::vector<_ScriptPooolRef>;
5053     if (scriptPoolFileOffsets.empty()) return;
5054     File* pFile = (File*) GetParent();
5055     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5056 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5057 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5058     ScriptGroup* group = pFile->GetScriptGroup(i);
5059     for (uint s = 0; group->GetScript(s); ++s) {
5060     Script* script = group->GetScript(s);
5061     if (script->pChunk) {
5062 schoenebeck 3053 uint32_t offset = uint32_t(
5063     script->pChunk->GetFilePos() -
5064     script->pChunk->GetPos() -
5065     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5066     );
5067 schoenebeck 2609 if (offset == soughtOffset)
5068 schoenebeck 2584 {
5069     _ScriptPooolRef ref;
5070     ref.script = script;
5071     ref.bypass = scriptPoolFileOffsets[k].bypass;
5072     pScriptRefs->push_back(ref);
5073     break;
5074     }
5075     }
5076     }
5077     }
5078     }
5079     // we don't need that anymore
5080     scriptPoolFileOffsets.clear();
5081     }
5082    
5083 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5084 schoenebeck 2584 *
5085 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5086     * @a index.
5087     *
5088     * @note This is an own format extension which did not exist i.e. in the
5089     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5090     * gigedit.
5091     *
5092     * @param index - instrument script slot index
5093     * @returns script or NULL if index is out of bounds
5094     */
5095     Script* Instrument::GetScriptOfSlot(uint index) {
5096     LoadScripts();
5097     if (index >= pScriptRefs->size()) return NULL;
5098     return pScriptRefs->at(index).script;
5099     }
5100    
5101     /** @brief Add new instrument script slot (gig format extension).
5102     *
5103 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5104     * which shall be executed by the sampler for for this instrument. The
5105     * script will be added to the end of the script list of this instrument.
5106     * The positions of the scripts in the Instrument's Script list are
5107     * relevant, because they define in which order they shall be executed by
5108     * the sampler. For this reason it is also legal to add the same script
5109     * twice to an instrument, for example you might have a script called
5110     * "MyFilter" which performs an event filter task, and you might have
5111     * another script called "MyNoteTrigger" which triggers new notes, then you
5112     * might for example have the following list of scripts on the instrument:
5113     *
5114     * 1. Script "MyFilter"
5115     * 2. Script "MyNoteTrigger"
5116     * 3. Script "MyFilter"
5117     *
5118     * Which would make sense, because the 2nd script launched new events, which
5119     * you might need to filter as well.
5120     *
5121     * There are two ways to disable / "bypass" scripts. You can either disable
5122     * a script locally for the respective script slot on an instrument (i.e. by
5123     * passing @c false to the 2nd argument of this method, or by calling
5124     * SetScriptBypassed()). Or you can disable a script globally for all slots
5125     * and all instruments by setting Script::Bypass.
5126     *
5127     * @note This is an own format extension which did not exist i.e. in the
5128     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5129     * gigedit.
5130     *
5131     * @param pScript - script that shall be executed for this instrument
5132     * @param bypass - if enabled, the sampler shall skip executing this
5133     * script (in the respective list position)
5134     * @see SetScriptBypassed()
5135     */
5136     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5137     LoadScripts();
5138     _ScriptPooolRef ref = { pScript, bypass };
5139     pScriptRefs->push_back(ref);
5140     }
5141    
5142     /** @brief Flip two script slots with each other (gig format extension).
5143     *
5144     * Swaps the position of the two given scripts in the Instrument's Script
5145     * list. The positions of the scripts in the Instrument's Script list are
5146     * relevant, because they define in which order they shall be executed by
5147     * the sampler.
5148     *
5149     * @note This is an own format extension which did not exist i.e. in the
5150     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5151     * gigedit.
5152     *
5153     * @param index1 - index of the first script slot to swap
5154     * @param index2 - index of the second script slot to swap
5155     */
5156     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5157     LoadScripts();
5158     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5159     return;
5160     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5161     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5162     (*pScriptRefs)[index2] = tmp;
5163     }
5164    
5165     /** @brief Remove script slot.
5166     *
5167     * Removes the script slot with the given slot index.
5168     *
5169     * @param index - index of script slot to remove
5170     */
5171     void Instrument::RemoveScriptSlot(uint index) {
5172     LoadScripts();
5173     if (index >= pScriptRefs->size()) return;
5174     pScriptRefs->erase( pScriptRefs->begin() + index );
5175     }
5176    
5177     /** @brief Remove reference to given Script (gig format extension).
5178     *
5179     * This will remove all script slots on the instrument which are referencing
5180     * the given script.
5181     *
5182     * @note This is an own format extension which did not exist i.e. in the
5183     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5184     * gigedit.
5185     *
5186     * @param pScript - script reference to remove from this instrument
5187     * @see RemoveScriptSlot()
5188     */
5189     void Instrument::RemoveScript(Script* pScript) {
5190     LoadScripts();
5191 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5192 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5193     pScriptRefs->erase( pScriptRefs->begin() + i );
5194     }
5195     }
5196     }
5197    
5198     /** @brief Instrument's amount of script slots.
5199     *
5200     * This method returns the amount of script slots this instrument currently
5201     * uses.
5202     *
5203     * A script slot is a reference of a real-time instrument script to be
5204     * executed by the sampler. The scripts will be executed by the sampler in
5205     * sequence of the slots. One (same) script may be referenced multiple
5206     * times in different slots.
5207     *
5208     * @note This is an own format extension which did not exist i.e. in the
5209     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5210     * gigedit.
5211     */
5212     uint Instrument::ScriptSlotCount() const {
5213 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5214 schoenebeck 2584 }
5215    
5216     /** @brief Whether script execution shall be skipped.
5217     *
5218     * Defines locally for the Script reference slot in the Instrument's Script
5219     * list, whether the script shall be skipped by the sampler regarding
5220     * execution.
5221     *
5222     * It is also possible to ignore exeuction of the script globally, for all
5223     * slots and for all instruments by setting Script::Bypass.
5224     *
5225     * @note This is an own format extension which did not exist i.e. in the
5226     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5227     * gigedit.
5228     *
5229     * @param index - index of the script slot on this instrument
5230     * @see Script::Bypass
5231     */
5232     bool Instrument::IsScriptSlotBypassed(uint index) {
5233     if (index >= ScriptSlotCount()) return false;
5234     return pScriptRefs ? pScriptRefs->at(index).bypass
5235     : scriptPoolFileOffsets.at(index).bypass;
5236    
5237     }
5238    
5239     /** @brief Defines whether execution shall be skipped.
5240     *
5241     * You can call this method to define locally whether or whether not the
5242     * given script slot shall be executed by the sampler.
5243     *
5244     * @note This is an own format extension which did not exist i.e. in the
5245     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5246     * gigedit.
5247     *
5248     * @param index - script slot index on this instrument
5249     * @param bBypass - if true, the script slot will be skipped by the sampler
5250     * @see Script::Bypass
5251     */
5252     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5253     if (index >= ScriptSlotCount()) return;
5254     if (pScriptRefs)
5255     pScriptRefs->at(index).bypass = bBypass;
5256     else
5257     scriptPoolFileOffsets.at(index).bypass = bBypass;
5258     }
5259    
5260 persson 2450 /**
5261 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5262     * and assign it to this object.
5263     *
5264     * Note that all sample pointers referenced by @a orig are simply copied as
5265     * memory address. Thus the respective samples are shared, not duplicated!
5266     *
5267     * @param orig - original Instrument object to be copied from
5268     */
5269     void Instrument::CopyAssign(const Instrument* orig) {
5270 schoenebeck 2482 CopyAssign(orig, NULL);
5271     }
5272    
5273     /**
5274     * Make a (semi) deep copy of the Instrument object given by @a orig
5275     * and assign it to this object.
5276     *
5277     * @param orig - original Instrument object to be copied from
5278     * @param mSamples - crosslink map between the foreign file's samples and
5279     * this file's samples
5280     */
5281     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5282 schoenebeck 2394 // handle base class
5283     // (without copying DLS region stuff)
5284     DLS::Instrument::CopyAssignCore(orig);
5285    
5286     // handle own member variables
5287     Attenuation = orig->Attenuation;
5288     EffectSend = orig->EffectSend;
5289     FineTune = orig->FineTune;
5290     PitchbendRange = orig->PitchbendRange;
5291     PianoReleaseMode = orig->PianoReleaseMode;
5292     DimensionKeyRange = orig->DimensionKeyRange;
5293 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5294     pScriptRefs = orig->pScriptRefs;
5295 schoenebeck 2394
5296     // free old midi rules
5297     for (int i = 0 ; pMidiRules[i] ; i++) {
5298     delete pMidiRules[i];
5299     }
5300     //TODO: MIDI rule copying
5301     pMidiRules[0] = NULL;
5302    
5303     // delete all old regions
5304     while (Regions) DeleteRegion(GetFirstRegion());
5305     // create new regions and copy them from original
5306     {
5307     RegionList::const_iterator it = orig->pRegions->begin();
5308     for (int i = 0; i < orig->Regions; ++i, ++it) {
5309     Region* dstRgn = AddRegion();
5310     //NOTE: Region does semi-deep copy !
5311     dstRgn->CopyAssign(
5312 schoenebeck 2482 static_cast<gig::Region*>(*it),
5313     mSamples
5314 schoenebeck 2394 );
5315     }
5316     }
5317 schoenebeck 809
5318 schoenebeck 2394 UpdateRegionKeyTable();
5319     }
5320 schoenebeck 809
5321 schoenebeck 2394
5322 schoenebeck 929 // *************** Group ***************
5323     // *
5324    
5325     /** @brief Constructor.
5326     *
5327 schoenebeck 930 * @param file - pointer to the gig::File object
5328     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5329     * NULL if this is a new Group
5330 schoenebeck 929 */
5331 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5332 schoenebeck 929 pFile = file;
5333     pNameChunk = ck3gnm;
5334     ::LoadString(pNameChunk, Name);
5335     }
5336    
5337     Group::~Group() {
5338 schoenebeck 1099 // remove the chunk associated with this group (if any)
5339     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5340 schoenebeck 929 }
5341    
5342     /** @brief Update chunks with current group settings.
5343     *
5344 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5345     * to call File::Save() to make changes persistent.
5346     *
5347     * Usually there is absolutely no need to call this method explicitly.
5348     * It will be called automatically when File::Save() was called.
5349 schoenebeck 2682 *
5350     * @param pProgress - callback function for progress notification
5351 schoenebeck 929 */
5352 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5353 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5354 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5355 persson 1192 if (!_3gri) {
5356     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5357     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5358     }
5359 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5360 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5361 persson 1266
5362     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5363     // v3 has a fixed list of 128 strings, find a free one
5364     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5365     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5366     pNameChunk = ck;
5367     break;
5368     }
5369     }
5370     }
5371    
5372 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5373     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5374     }
5375    
5376 schoenebeck 930 /**
5377     * Returns the first Sample of this Group. You have to call this method
5378     * once before you use GetNextSample().
5379     *
5380     * <b>Notice:</b> this method might block for a long time, in case the
5381     * samples of this .gig file were not scanned yet
5382     *
5383     * @returns pointer address to first Sample or NULL if there is none
5384     * applied to this Group
5385     * @see GetNextSample()
5386     */
5387     Sample* Group::GetFirstSample() {
5388     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5389     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5390     if (pSample->GetGroup() == this) return pSample;
5391     }
5392     return NULL;
5393     }
5394 schoenebeck 929
5395 schoenebeck 930 /**
5396     * Returns the next Sample of the Group. You have to call
5397     * GetFirstSample() once before you can use this method. By calling this
5398     * method multiple times it iterates through the Samples assigned to
5399     * this Group.
5400     *
5401     * @returns pointer address to the next Sample of this Group or NULL if
5402     * end reached
5403     * @see GetFirstSample()
5404     */
5405     Sample* Group::GetNextSample() {
5406     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5407     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5408     if (pSample->GetGroup() == this) return pSample;
5409     }
5410     return NULL;
5411     }
5412 schoenebeck 929
5413 schoenebeck 930 /**
5414     * Move Sample given by \a pSample from another Group to this Group.
5415     */
5416     void Group::AddSample(Sample* pSample) {
5417     pSample->pGroup = this;
5418     }
5419    
5420     /**
5421     * Move all members of this group to another group (preferably the 1st
5422     * one except this). This method is called explicitly by
5423     * File::DeleteGroup() thus when a Group was deleted. This code was
5424     * intentionally not placed in the destructor!
5425     */
5426     void Group::MoveAll() {
5427     // get "that" other group first
5428     Group* pOtherGroup = NULL;
5429     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5430     if (pOtherGroup != this) break;
5431     }
5432     if (!pOtherGroup) throw Exception(
5433     "Could not move samples to another group, since there is no "
5434     "other Group. This is a bug, report it!"
5435     );
5436     // now move all samples of this group to the other group
5437     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5438     pOtherGroup->AddSample(pSample);
5439     }
5440     }
5441    
5442    
5443    
5444 schoenebeck 2 // *************** File ***************
5445     // *
5446    
5447 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5448 persson 1199 const DLS::version_t File::VERSION_2 = {
5449     0, 2, 19980628 & 0xffff, 19980628 >> 16
5450     };
5451    
5452 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5453 persson 1199 const DLS::version_t File::VERSION_3 = {
5454     0, 3, 20030331 & 0xffff, 20030331 >> 16
5455     };
5456    
5457 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5458 persson 1180 { CHUNK_ID_IARL, 256 },
5459     { CHUNK_ID_IART, 128 },
5460     { CHUNK_ID_ICMS, 128 },
5461     { CHUNK_ID_ICMT, 1024 },
5462     { CHUNK_ID_ICOP, 128 },
5463     { CHUNK_ID_ICRD, 128 },
5464     { CHUNK_ID_IENG, 128 },
5465     { CHUNK_ID_IGNR, 128 },
5466     { CHUNK_ID_IKEY, 128 },
5467     { CHUNK_ID_IMED, 128 },
5468     { CHUNK_ID_INAM, 128 },
5469     { CHUNK_ID_IPRD, 128 },
5470     { CHUNK_ID_ISBJ, 128 },
5471     { CHUNK_ID_ISFT, 128 },
5472     { CHUNK_ID_ISRC, 128 },
5473     { CHUNK_ID_ISRF, 128 },
5474     { CHUNK_ID_ITCH, 128 },
5475     { 0, 0 }
5476     };
5477    
5478 schoenebeck 809 File::File() : DLS::File() {
5479 schoenebeck 1524 bAutoLoad = true;
5480 persson 1264 *pVersion = VERSION_3;
5481 schoenebeck 929 pGroups = NULL;
5482 schoenebeck 2584 pScriptGroups = NULL;
5483 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5484 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5485 persson 1192
5486     // add some mandatory chunks to get the file chunks in right
5487     // order (INFO chunk will be moved to first position later)
5488     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5489     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5490 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5491    
5492     GenerateDLSID();
5493 schoenebeck 809 }
5494    
5495 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5496 schoenebeck 1524 bAutoLoad = true;
5497 schoenebeck 929 pGroups = NULL;
5498 schoenebeck 2584 pScriptGroups = NULL;
5499 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5500 schoenebeck 2 }
5501    
5502 schoenebeck 929 File::~File() {
5503     if (pGroups) {
5504     std::list<Group*>::iterator iter = pGroups->begin();
5505     std::list<Group*>::iterator end = pGroups->end();
5506     while (iter != end) {
5507     delete *iter;
5508     ++iter;
5509     }
5510     delete pGroups;
5511     }
5512 schoenebeck 2584 if (pScriptGroups) {
5513     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5514     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5515     while (iter != end) {
5516     delete *iter;
5517     ++iter;
5518     }
5519     delete pScriptGroups;
5520     }
5521 schoenebeck 929 }
5522    
5523 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5524     if (!pSamples) LoadSamples(pProgress);
5525 schoenebeck 2 if (!pSamples) return NULL;
5526     SamplesIterator = pSamples->begin();
5527     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5528     }
5529    
5530     Sample* File::GetNextSample() {
5531     if (!pSamples) return NULL;
5532     SamplesIterator++;
5533     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5534     }
5535 schoenebeck 2482
5536     /**
5537     * Returns Sample object of @a index.
5538     *
5539     * @returns sample object or NULL if index is out of bounds
5540     */
5541     Sample* File::GetSample(uint index) {
5542     if (!pSamples) LoadSamples();
5543     if (!pSamples) return NULL;
5544     DLS::File::SampleList::iterator it = pSamples->begin();
5545     for (int i = 0; i < index; ++i) {
5546     ++it;
5547     if (it == pSamples->end()) return NULL;
5548     }
5549     if (it == pSamples->end()) return NULL;
5550     return static_cast<gig::Sample*>( *it );
5551     }
5552 schoenebeck 2
5553 schoenebeck 809 /** @brief Add a new sample.
5554     *
5555     * This will create a new Sample object for the gig file. You have to
5556     * call Save() to make this persistent to the file.
5557     *
5558     * @returns pointer to new Sample object
5559     */
5560     Sample* File::AddSample() {
5561     if (!pSamples) LoadSamples();
5562     __ensureMandatoryChunksExist();
5563     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5564     // create new Sample object and its respective 'wave' list chunk
5565     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5566     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5567 persson 1192
5568     // add mandatory chunks to get the chunks in right order
5569     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5570     wave->AddSubList(LIST_TYPE_INFO);
5571    
5572 schoenebeck 809 pSamples->push_back(pSample);
5573     return pSample;
5574     }
5575    
5576     /** @brief Delete a sample.
5577     *
5578 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5579     * references to this sample from Regions and DimensionRegions will be
5580     * removed. You have to call Save() to make this persistent to the file.
5581 schoenebeck 809 *
5582     * @param pSample - sample to delete
5583     * @throws gig::Exception if given sample could not be found
5584     */
5585     void File::DeleteSample(Sample* pSample) {
5586 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5587     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5588 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5589 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5590 schoenebeck 809 pSamples->erase(iter);
5591     delete pSample;
5592 persson 1266
5593 persson 1678 SampleList::iterator tmp = SamplesIterator;
5594 persson 1266 // remove all references to the sample
5595     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5596     instrument = GetNextInstrument()) {
5597     for (Region* region = instrument->GetFirstRegion() ; region ;
5598     region = instrument->GetNextRegion()) {
5599    
5600     if (region->GetSample() == pSample) region->SetSample(NULL);
5601    
5602     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5603     gig::DimensionRegion *d = region->pDimensionRegions[i];
5604     if (d->pSample == pSample) d->pSample = NULL;
5605     }
5606     }
5607     }
5608 persson 1678 SamplesIterator = tmp; // restore iterator
5609 schoenebeck 809 }
5610    
5611 schoenebeck 823 void File::LoadSamples() {
5612     LoadSamples(NULL);
5613     }
5614    
5615 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5616 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5617     // to resolve the group they belong to
5618 schoenebeck 1158 if (!pGroups) LoadGroups();
5619 schoenebeck 930
5620 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5621    
5622 persson 666 RIFF::File* file = pRIFF;
5623 schoenebeck 515
5624 persson 666 // just for progress calculation
5625     int iSampleIndex = 0;
5626     int iTotalSamples = WavePoolCount;
5627 schoenebeck 515
5628 persson 666 // check if samples should be loaded from extension files
5629 schoenebeck 2913 // (only for old gig files < 2 GB)
5630 persson 666 int lastFileNo = 0;
5631 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5632 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5633     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5634     }
5635 persson 666 }
5636 schoenebeck 780 String name(pRIFF->GetFileName());
5637 schoenebeck 3053 int nameLen = (int) name.length();
5638 persson 666 char suffix[6];
5639 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5640 schoenebeck 515
5641 persson 666 for (int fileNo = 0 ; ; ) {
5642     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5643     if (wvpl) {
5644 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5645 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5646     while (wave) {
5647     if (wave->GetListType() == LIST_TYPE_WAVE) {
5648     // notify current progress
5649     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5650     __notify_progress(pProgress, subprogress);
5651    
5652 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5653 schoenebeck 2989 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5654 persson 666
5655     iSampleIndex++;
5656     }
5657     wave = wvpl->GetNextSubList();
5658 schoenebeck 2 }
5659 persson 666
5660     if (fileNo == lastFileNo) break;
5661    
5662     // open extension file (*.gx01, *.gx02, ...)
5663     fileNo++;
5664     sprintf(suffix, ".gx%02d", fileNo);
5665     name.replace(nameLen, 5, suffix);
5666     file = new RIFF::File(name);
5667     ExtensionFiles.push_back(file);
5668 schoenebeck 823 } else break;
5669 schoenebeck 2 }
5670 persson 666
5671     __notify_progress(pProgress, 1.0); // notify done
5672 schoenebeck 2 }
5673    
5674     Instrument* File::GetFirstInstrument() {
5675     if (!pInstruments) LoadInstruments();
5676     if (!pInstruments) return NULL;
5677     InstrumentsIterator = pInstruments->begin();
5678 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5679 schoenebeck 2 }
5680    
5681     Instrument* File::GetNextInstrument() {
5682     if (!pInstruments) return NULL;
5683     InstrumentsIterator++;
5684 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5685 schoenebeck 2 }
5686    
5687 schoenebeck 21 /**
5688     * Returns the instrument with the given index.
5689     *
5690 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5691     * @param pProgress - optional: callback function for progress notification
5692 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5693     */
5694 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5695     if (!pInstruments) {
5696     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5697    
5698     // sample loading subtask
5699     progress_t subprogress;
5700     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5701     __notify_progress(&subprogress, 0.0f);
5702 schoenebeck 1524 if (GetAutoLoad())
5703     GetFirstSample(&subprogress); // now force all samples to be loaded
5704 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5705    
5706     // instrument loading subtask
5707     if (pProgress && pProgress->callback) {
5708     subprogress.__range_min = subprogress.__range_max;
5709     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5710     }
5711     __notify_progress(&subprogress, 0.0f);
5712     LoadInstruments(&subprogress);
5713     __notify_progress(&subprogress, 1.0f);
5714     }
5715 schoenebeck 21 if (!pInstruments) return NULL;
5716     InstrumentsIterator = pInstruments->begin();
5717     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5718 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5719 schoenebeck 21 InstrumentsIterator++;
5720     }
5721     return NULL;
5722     }
5723    
5724 schoenebeck 809 /** @brief Add a new instrument definition.
5725     *
5726     * This will create a new Instrument object for the gig file. You have
5727     * to call Save() to make this persistent to the file.
5728     *
5729     * @returns pointer to new Instrument object
5730     */
5731     Instrument* File::AddInstrument() {
5732     if (!pInstruments) LoadInstruments();
5733     __ensureMandatoryChunksExist();
5734     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5735     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5736 persson 1192
5737     // add mandatory chunks to get the chunks in right order
5738     lstInstr->AddSubList(LIST_TYPE_INFO);
5739 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5740 persson 1192
5741 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5742 persson 1209 pInstrument->GenerateDLSID();
5743 persson 1182
5744 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5745    
5746 persson 1182 // this string is needed for the gig to be loadable in GSt:
5747     pInstrument->pInfo->Software = "Endless Wave";
5748    
5749 schoenebeck 809 pInstruments->push_back(pInstrument);
5750     return pInstrument;
5751     }
5752 schoenebeck 2394
5753     /** @brief Add a duplicate of an existing instrument.
5754     *
5755     * Duplicates the instrument definition given by @a orig and adds it
5756     * to this file. This allows in an instrument editor application to
5757     * easily create variations of an instrument, which will be stored in
5758     * the same .gig file, sharing i.e. the same samples.
5759     *
5760     * Note that all sample pointers referenced by @a orig are simply copied as
5761     * memory address. Thus the respective samples are shared, not duplicated!
5762     *
5763     * You have to call Save() to make this persistent to the file.
5764     *
5765     * @param orig - original instrument to be copied
5766     * @returns duplicated copy of the given instrument
5767     */
5768     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5769     Instrument* instr = AddInstrument();
5770     instr->CopyAssign(orig);
5771     return instr;
5772     }
5773 schoenebeck 2482
5774     /** @brief Add content of another existing file.
5775     *
5776     * Duplicates the samples, groups and instruments of the original file
5777     * given by @a pFile and adds them to @c this File. In case @c this File is
5778     * a new one that you haven't saved before, then you have to call
5779     * SetFileName() before calling AddContentOf(), because this method will
5780     * automatically save this file during operation, which is required for
5781     * writing the sample waveform data by disk streaming.
5782     *
5783     * @param pFile - original file whose's content shall be copied from
5784     */
5785     void File::AddContentOf(File* pFile) {
5786     static int iCallCount = -1;
5787     iCallCount++;
5788     std::map<Group*,Group*> mGroups;
5789     std::map<Sample*,Sample*> mSamples;
5790    
5791     // clone sample groups
5792     for (int i = 0; pFile->GetGroup(i); ++i) {
5793     Group* g = AddGroup();
5794     g->Name =
5795     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5796     mGroups[pFile->GetGroup(i)] = g;
5797     }
5798    
5799     // clone samples (not waveform data here yet)
5800     for (int i = 0; pFile->GetSample(i); ++i) {
5801     Sample* s = AddSample();
5802     s->CopyAssignMeta(pFile->GetSample(i));
5803     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5804     mSamples[pFile->GetSample(i)] = s;
5805     }
5806 schoenebeck 3117
5807     // clone script groups and their scripts
5808     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5809     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5810     ScriptGroup* dg = AddScriptGroup();
5811     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5812     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5813     Script* ss = sg->GetScript(iScript);
5814     Script* ds = dg->AddScript();
5815     ds->CopyAssign(ss);
5816     }
5817     }
5818    
5819 schoenebeck 2482 //BUG: For some reason this method only works with this additional
5820     // Save() call in between here.
5821     //
5822     // Important: The correct one of the 2 Save() methods has to be called
5823     // here, depending on whether the file is completely new or has been
5824     // saved to disk already, otherwise it will result in data corruption.
5825     if (pRIFF->IsNew())
5826     Save(GetFileName());
5827     else
5828     Save();
5829    
5830     // clone instruments
5831     // (passing the crosslink table here for the cloned samples)
5832     for (int i = 0; pFile->GetInstrument(i); ++i) {
5833     Instrument* instr = AddInstrument();
5834     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5835     }
5836    
5837     // Mandatory: file needs to be saved to disk at this point, so this
5838     // file has the correct size and data layout for writing the samples'
5839     // waveform data to disk.
5840     Save();
5841    
5842     // clone samples' waveform data
5843     // (using direct read & write disk streaming)
5844     for (int i = 0; pFile->GetSample(i); ++i) {
5845     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5846     }
5847     }
5848 schoenebeck 809
5849     /** @brief Delete an instrument.
5850     *
5851     * This will delete the given Instrument object from the gig file. You
5852     * have to call Save() to make this persistent to the file.
5853     *
5854     * @param pInstrument - instrument to delete
5855 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5856 schoenebeck 809 */
5857     void File::DeleteInstrument(Instrument* pInstrument) {
5858     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5859 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5860 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5861     pInstruments->erase(iter);
5862     delete pInstrument;
5863     }
5864    
5865 schoenebeck 823 void File::LoadInstruments() {
5866     LoadInstruments(NULL);
5867     }
5868    
5869 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5870 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5871 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5872     if (lstInstruments) {
5873 schoenebeck 515 int iInstrumentIndex = 0;
5874 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5875     while (lstInstr) {
5876     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5877 schoenebeck 515 // notify current progress
5878     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5879     __notify_progress(pProgress, localProgress);
5880    
5881     // divide local progress into subprogress for loading current Instrument
5882     progress_t subprogress;
5883     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5884    
5885     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5886    
5887     iInstrumentIndex++;
5888 schoenebeck 2 }
5889     lstInstr = lstInstruments->GetNextSubList();
5890     }
5891 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5892 schoenebeck 2 }
5893     }
5894    
5895 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5896     /// update is done directly to disk, as this method is called
5897     /// after File::Save()
5898 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5899     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5900     if (!_3crc) return;
5901 persson 1207
5902     // get the index of the sample
5903 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5904 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5905    
5906 persson 1207 // write the CRC-32 checksum to disk
5907 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5908 schoenebeck 2985 uint32_t one = 1;
5909     _3crc->WriteUint32(&one); // always 1
5910 persson 1199 _3crc->WriteUint32(&crc);
5911 schoenebeck 2989 }
5912 schoenebeck 2985
5913 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
5914     // get the index of the sample
5915     int iWaveIndex = GetWaveTableIndexOf(pSample);
5916     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5917    
5918     return GetSampleChecksumByIndex(iWaveIndex);
5919 persson 1199 }
5920    
5921 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
5922     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5923    
5924 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5925     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5926     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5927     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5928    
5929     // read the CRC-32 checksum directly from disk
5930 schoenebeck 2989 size_t pos = index * 8;
5931 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
5932     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5933    
5934     uint32_t one = load32(&pData[pos]); // always 1
5935     if (one != 1)
5936 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5937 schoenebeck 2985
5938     return load32(&pData[pos+4]);
5939     }
5940 schoenebeck 2989
5941 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5942     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5943     File::SampleList::iterator iter = pSamples->begin();
5944     File::SampleList::iterator end = pSamples->end();
5945     for (int index = 0; iter != end; ++iter, ++index)
5946     if (*iter == pSample)
5947     return index;
5948     return -1;
5949     }
5950    
5951     /**
5952     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5953     * the CRC32 check sums of all samples' raw wave data.
5954     *
5955     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5956     */
5957     bool File::VerifySampleChecksumTable() {
5958     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5959     if (!_3crc) return false;
5960     if (_3crc->GetNewSize() <= 0) return false;
5961     if (_3crc->GetNewSize() % 8) return false;
5962     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5963     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5964    
5965 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
5966 schoenebeck 2985
5967     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5968     if (!pData) return false;
5969    
5970 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
5971 schoenebeck 2985 uint32_t one = pData[i*2];
5972     if (one != 1) return false;
5973     }
5974    
5975     return true;
5976     }
5977    
5978     /**
5979     * Recalculates CRC32 checksums for all samples and rebuilds this gig
5980     * file's checksum table with those new checksums. This might usually
5981     * just be necessary if the checksum table was damaged.
5982     *
5983     * @e IMPORTANT: The current implementation of this method only works
5984     * with files that have not been modified since it was loaded, because
5985     * it expects that no externally caused file structure changes are
5986     * required!
5987     *
5988     * Due to the expectation above, this method is currently protected
5989     * and actually only used by the command line tool "gigdump" yet.
5990     *
5991     * @returns true if Save() is required to be called after this call,
5992     * false if no further action is required
5993     */
5994     bool File::RebuildSampleChecksumTable() {
5995     // make sure sample chunks were scanned
5996     if (!pSamples) GetFirstSample();
5997    
5998     bool bRequiresSave = false;
5999    
6000     // make sure "3CRC" chunk exists with required size
6001     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6002     if (!_3crc) {
6003     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6004 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6005     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6006     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6007 schoenebeck 2985 bRequiresSave = true;
6008     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6009     _3crc->Resize(pSamples->size() * 8);
6010     bRequiresSave = true;
6011     }
6012    
6013     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6014     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6015     {
6016     File::SampleList::iterator iter = pSamples->begin();
6017     File::SampleList::iterator end = pSamples->end();
6018     for (; iter != end; ++iter) {
6019     gig::Sample* pSample = (gig::Sample*) *iter;
6020     int index = GetWaveTableIndexOf(pSample);
6021     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6022     pData[index*2] = 1; // always 1
6023     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6024     }
6025     }
6026     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6027     // make sure file is in write mode
6028     pRIFF->SetMode(RIFF::stream_mode_read_write);
6029     {
6030     File::SampleList::iterator iter = pSamples->begin();
6031     File::SampleList::iterator end = pSamples->end();
6032     for (; iter != end; ++iter) {
6033     gig::Sample* pSample = (gig::Sample*) *iter;
6034     int index = GetWaveTableIndexOf(pSample);
6035     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6036 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6037     SetSampleChecksum(pSample, pSample->crc);
6038 schoenebeck 2985 }
6039     }
6040     }
6041    
6042     return bRequiresSave;
6043     }
6044    
6045 schoenebeck 929 Group* File::GetFirstGroup() {
6046     if (!pGroups) LoadGroups();
6047 schoenebeck 930 // there must always be at least one group
6048 schoenebeck 929 GroupsIterator = pGroups->begin();
6049 schoenebeck 930 return *GroupsIterator;
6050 schoenebeck 929 }
6051 schoenebeck 2
6052 schoenebeck 929 Group* File::GetNextGroup() {
6053     if (!pGroups) return NULL;
6054     ++GroupsIterator;
6055     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6056     }
6057 schoenebeck 2
6058 schoenebeck 929 /**
6059     * Returns the group with the given index.
6060     *
6061     * @param index - number of the sought group (0..n)
6062     * @returns sought group or NULL if there's no such group
6063     */
6064     Group* File::GetGroup(uint index) {
6065     if (!pGroups) LoadGroups();
6066     GroupsIterator = pGroups->begin();
6067     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6068     if (i == index) return *GroupsIterator;
6069     ++GroupsIterator;
6070     }
6071     return NULL;
6072     }
6073    
6074 schoenebeck 2543 /**
6075     * Returns the group with the given group name.
6076     *
6077     * Note: group names don't have to be unique in the gig format! So there
6078     * can be multiple groups with the same name. This method will simply
6079     * return the first group found with the given name.
6080     *
6081     * @param name - name of the sought group
6082     * @returns sought group or NULL if there's no group with that name
6083     */
6084     Group* File::GetGroup(String name) {
6085     if (!pGroups) LoadGroups();
6086     GroupsIterator = pGroups->begin();
6087     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6088     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6089     return NULL;
6090     }
6091    
6092 schoenebeck 929 Group* File::AddGroup() {
6093     if (!pGroups) LoadGroups();
6094 schoenebeck 930 // there must always be at least one group
6095 schoenebeck 929 __ensureMandatoryChunksExist();
6096 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6097 schoenebeck 929 pGroups->push_back(pGroup);
6098     return pGroup;
6099     }
6100    
6101 schoenebeck 1081 /** @brief Delete a group and its samples.
6102     *
6103     * This will delete the given Group object and all the samples that
6104     * belong to this group from the gig file. You have to call Save() to
6105     * make this persistent to the file.
6106     *
6107     * @param pGroup - group to delete
6108     * @throws gig::Exception if given group could not be found
6109     */
6110 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6111 schoenebeck 930 if (!pGroups) LoadGroups();
6112 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6113     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6114 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6115 schoenebeck 1081 // delete all members of this group
6116     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6117     DeleteSample(pSample);
6118     }
6119     // now delete this group object
6120     pGroups->erase(iter);
6121     delete pGroup;
6122     }
6123    
6124     /** @brief Delete a group.
6125     *
6126     * This will delete the given Group object from the gig file. All the
6127     * samples that belong to this group will not be deleted, but instead
6128     * be moved to another group. You have to call Save() to make this
6129     * persistent to the file.
6130     *
6131     * @param pGroup - group to delete
6132     * @throws gig::Exception if given group could not be found
6133     */
6134     void File::DeleteGroupOnly(Group* pGroup) {
6135     if (!pGroups) LoadGroups();
6136     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6137     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6138     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6139 schoenebeck 930 // move all members of this group to another group
6140     pGroup->MoveAll();
6141 schoenebeck 929 pGroups->erase(iter);
6142     delete pGroup;
6143     }
6144    
6145     void File::LoadGroups() {
6146     if (!pGroups) pGroups = new std::list<Group*>;
6147 schoenebeck 930 // try to read defined groups from file
6148 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6149 schoenebeck 930 if (lst3gri) {
6150     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6151     if (lst3gnl) {
6152     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6153     while (ck) {
6154     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6155 persson 1266 if (pVersion && pVersion->major == 3 &&
6156     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6157    
6158 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6159     }
6160     ck = lst3gnl->GetNextSubChunk();
6161 schoenebeck 929 }
6162     }
6163     }
6164 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6165     if (!pGroups->size()) {
6166     Group* pGroup = new Group(this, NULL);
6167     pGroup->Name = "Default Group";
6168     pGroups->push_back(pGroup);
6169     }
6170 schoenebeck 929 }
6171    
6172 schoenebeck 2584 /** @brief Get instrument script group (by index).
6173     *
6174     * Returns the real-time instrument script group with the given index.
6175     *
6176     * @param index - number of the sought group (0..n)
6177     * @returns sought script group or NULL if there's no such group
6178     */
6179     ScriptGroup* File::GetScriptGroup(uint index) {
6180     if (!pScriptGroups) LoadScriptGroups();
6181     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6182     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6183     if (i == index) return *it;
6184     return NULL;
6185     }
6186    
6187     /** @brief Get instrument script group (by name).
6188     *
6189     * Returns the first real-time instrument script group found with the given
6190     * group name. Note that group names may not necessarily be unique.
6191     *
6192     * @param name - name of the sought script group
6193     * @returns sought script group or NULL if there's no such group
6194     */
6195     ScriptGroup* File::GetScriptGroup(const String& name) {
6196     if (!pScriptGroups) LoadScriptGroups();
6197     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6198     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6199     if ((*it)->Name == name) return *it;
6200     return NULL;
6201     }
6202    
6203     /** @brief Add new instrument script group.
6204     *
6205     * Adds a new, empty real-time instrument script group to the file.
6206     *
6207     * You have to call Save() to make this persistent to the file.
6208     *
6209     * @return new empty script group
6210     */
6211     ScriptGroup* File::AddScriptGroup() {
6212     if (!pScriptGroups) LoadScriptGroups();
6213     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6214     pScriptGroups->push_back(pScriptGroup);
6215     return pScriptGroup;
6216     }
6217    
6218     /** @brief Delete an instrument script group.
6219     *
6220     * This will delete the given real-time instrument script group and all its
6221     * instrument scripts it contains. References inside instruments that are
6222     * using the deleted scripts will be removed from the respective instruments
6223     * accordingly.
6224     *
6225     * You have to call Save() to make this persistent to the file.
6226     *
6227     * @param pScriptGroup - script group to delete
6228     * @throws gig::Exception if given script group could not be found
6229     */
6230     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6231     if (!pScriptGroups) LoadScriptGroups();
6232     std::list<ScriptGroup*>::iterator iter =
6233     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6234     if (iter == pScriptGroups->end())
6235     throw gig::Exception("Could not delete script group, could not find given script group");
6236     pScriptGroups->erase(iter);
6237     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6238     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6239     if (pScriptGroup->pList)
6240     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6241     delete pScriptGroup;
6242     }
6243    
6244     void File::LoadScriptGroups() {
6245     if (pScriptGroups) return;
6246     pScriptGroups = new std::list<ScriptGroup*>;
6247     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6248     if (lstLS) {
6249     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6250     lst = lstLS->GetNextSubList())
6251     {
6252     if (lst->GetListType() == LIST_TYPE_RTIS) {
6253     pScriptGroups->push_back(new ScriptGroup(this, lst));
6254     }
6255     }
6256     }
6257     }
6258    
6259 schoenebeck 1098 /**
6260     * Apply all the gig file's current instruments, samples, groups and settings
6261     * to the respective RIFF chunks. You have to call Save() to make changes
6262     * persistent.
6263     *
6264     * Usually there is absolutely no need to call this method explicitly.
6265     * It will be called automatically when File::Save() was called.
6266     *
6267 schoenebeck 2682 * @param pProgress - callback function for progress notification
6268 schoenebeck 1098 * @throws Exception - on errors
6269     */
6270 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6271 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6272 persson 1192
6273 schoenebeck 2584 // update own gig format extension chunks
6274     // (not part of the GigaStudio 4 format)
6275 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6276     if (!lst3LS) {
6277     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6278     }
6279     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6280 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6281     // before the actual wave data
6282 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6283     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6284    
6285 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6286     // because the instruments' script slots will write the file offsets
6287     // of the respective instrument script chunk as reference.
6288     if (pScriptGroups) {
6289 schoenebeck 2912 // Update instrument script (group) chunks.
6290     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6291     it != pScriptGroups->end(); ++it)
6292     {
6293     (*it)->UpdateChunks(pProgress);
6294 schoenebeck 2584 }
6295     }
6296    
6297 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6298     // custom "3LS " chunk again
6299     if (!lst3LS->CountSubChunks()) {
6300     pRIFF->DeleteSubChunk(lst3LS);
6301     lst3LS = NULL;
6302     }
6303    
6304 schoenebeck 1098 // first update base class's chunks
6305 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6306 schoenebeck 929
6307 persson 1199 if (newFile) {
6308 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6309     // is placed first in file
6310 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6311 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6312     if (first != info) {
6313     pRIFF->MoveSubChunk(info, first);
6314     }
6315     }
6316    
6317 schoenebeck 1098 // update group's chunks
6318     if (pGroups) {
6319 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6320     // (before updating the Group chunks)
6321     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6322     if (!_3gri) {
6323     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6324     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6325 schoenebeck 1098 }
6326 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6327     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6328 persson 1266
6329     // v3: make sure the file has 128 3gnm chunks
6330 schoenebeck 2467 // (before updating the Group chunks)
6331 persson 1266 if (pVersion && pVersion->major == 3) {
6332     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6333     for (int i = 0 ; i < 128 ; i++) {
6334     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6335     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6336     }
6337     }
6338 schoenebeck 2467
6339     std::list<Group*>::iterator iter = pGroups->begin();
6340     std::list<Group*>::iterator end = pGroups->end();
6341     for (; iter != end; ++iter) {
6342 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6343 schoenebeck 2467 }
6344 schoenebeck 1098 }
6345 persson 1199
6346     // update einf chunk
6347    
6348     // The einf chunk contains statistics about the gig file, such
6349     // as the number of regions and samples used by each
6350     // instrument. It is divided in equally sized parts, where the
6351     // first part contains information about the whole gig file,
6352     // and the rest of the parts map to each instrument in the
6353     // file.
6354     //
6355     // At the end of each part there is a bit map of each sample
6356     // in the file, where a set bit means that the sample is used
6357     // by the file/instrument.
6358     //
6359     // Note that there are several fields with unknown use. These
6360     // are set to zero.
6361    
6362 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6363 persson 1199 int einfSize = (Instruments + 1) * sublen;
6364    
6365     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6366     if (einf) {
6367     if (einf->GetSize() != einfSize) {
6368     einf->Resize(einfSize);
6369     memset(einf->LoadChunkData(), 0, einfSize);
6370     }
6371     } else if (newFile) {
6372     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6373     }
6374     if (einf) {
6375     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6376    
6377     std::map<gig::Sample*,int> sampleMap;
6378     int sampleIdx = 0;
6379     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6380     sampleMap[pSample] = sampleIdx++;
6381     }
6382    
6383     int totnbusedsamples = 0;
6384     int totnbusedchannels = 0;
6385     int totnbregions = 0;
6386     int totnbdimregions = 0;
6387 persson 1264 int totnbloops = 0;
6388 persson 1199 int instrumentIdx = 0;
6389    
6390     memset(&pData[48], 0, sublen - 48);
6391    
6392     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6393     instrument = GetNextInstrument()) {
6394     int nbusedsamples = 0;
6395     int nbusedchannels = 0;
6396     int nbdimregions = 0;
6397 persson 1264 int nbloops = 0;
6398 persson 1199
6399     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6400    
6401     for (Region* region = instrument->GetFirstRegion() ; region ;
6402     region = instrument->GetNextRegion()) {
6403     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6404     gig::DimensionRegion *d = region->pDimensionRegions[i];
6405     if (d->pSample) {
6406     int sampleIdx = sampleMap[d->pSample];
6407     int byte = 48 + sampleIdx / 8;
6408     int bit = 1 << (sampleIdx & 7);
6409     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6410     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6411     nbusedsamples++;
6412     nbusedchannels += d->pSample->Channels;
6413    
6414     if ((pData[byte] & bit) == 0) {
6415     pData[byte] |= bit;
6416     totnbusedsamples++;
6417     totnbusedchannels += d->pSample->Channels;
6418     }
6419     }
6420     }
6421 persson 1264 if (d->SampleLoops) nbloops++;
6422 persson 1199 }
6423     nbdimregions += region->DimensionRegions;
6424     }
6425     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6426     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6427     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6428     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6429     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6430     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6431     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6432 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6433     // next 8 bytes unknown
6434 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6435 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6436 persson 1199 // next 4 bytes unknown
6437    
6438     totnbregions += instrument->Regions;
6439     totnbdimregions += nbdimregions;
6440 persson 1264 totnbloops += nbloops;
6441 persson 1199 instrumentIdx++;
6442     }
6443     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6444     // store32(&pData[0], sublen);
6445     store32(&pData[4], totnbusedchannels);
6446     store32(&pData[8], totnbusedsamples);
6447     store32(&pData[12], Instruments);
6448     store32(&pData[16], totnbregions);
6449     store32(&pData[20], totnbdimregions);
6450 persson 1264 store32(&pData[24], totnbloops);
6451     // next 8 bytes unknown
6452     // next 4 bytes unknown, not always 0
6453 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6454 persson 1199 // next 4 bytes unknown
6455     }
6456    
6457     // update 3crc chunk
6458    
6459     // The 3crc chunk contains CRC-32 checksums for the
6460 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6461     // chunk here (in RAM) with the old crc values which we read from the
6462     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6463     // member variable). This step is required, because samples might have
6464     // been deleted by the user since the file was opened, which in turn
6465     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6466     // If a sample was conciously modified by the user (that is if
6467     // Sample::Write() was called later on) then Sample::Write() will just
6468     // update the respective individual checksum(s) directly on disk and
6469     // leaves all other sample checksums untouched.
6470 persson 1199
6471 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6472 persson 1199 if (_3crc) {
6473     _3crc->Resize(pSamples->size() * 8);
6474 schoenebeck 2989 } else /*if (newFile)*/ {
6475 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6476 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6477     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6478 persson 1199 }
6479 schoenebeck 2989 { // must be performed in RAM here ...
6480     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6481     if (pData) {
6482     File::SampleList::iterator iter = pSamples->begin();
6483     File::SampleList::iterator end = pSamples->end();
6484     for (int index = 0; iter != end; ++iter, ++index) {
6485     gig::Sample* pSample = (gig::Sample*) *iter;
6486     pData[index*2] = 1; // always 1
6487     pData[index*2+1] = pSample->crc;
6488     }
6489     }
6490     }
6491 schoenebeck 1098 }
6492 schoenebeck 2609
6493     void File::UpdateFileOffsets() {
6494     DLS::File::UpdateFileOffsets();
6495 schoenebeck 929
6496 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6497     instrument = GetNextInstrument())
6498     {
6499     instrument->UpdateScriptFileOffsets();
6500     }
6501     }
6502    
6503 schoenebeck 1524 /**
6504     * Enable / disable automatic loading. By default this properyt is
6505     * enabled and all informations are loaded automatically. However
6506     * loading all Regions, DimensionRegions and especially samples might
6507     * take a long time for large .gig files, and sometimes one might only
6508     * be interested in retrieving very superficial informations like the
6509     * amount of instruments and their names. In this case one might disable
6510     * automatic loading to avoid very slow response times.
6511     *
6512     * @e CAUTION: by disabling this property many pointers (i.e. sample
6513     * references) and informations will have invalid or even undefined
6514     * data! This feature is currently only intended for retrieving very
6515     * superficial informations in a very fast way. Don't use it to retrieve
6516     * details like synthesis informations or even to modify .gig files!
6517     */
6518     void File::SetAutoLoad(bool b) {
6519     bAutoLoad = b;
6520     }
6521 schoenebeck 1098
6522 schoenebeck 1524 /**
6523     * Returns whether automatic loading is enabled.
6524     * @see SetAutoLoad()
6525     */
6526     bool File::GetAutoLoad() {
6527     return bAutoLoad;
6528     }
6529 schoenebeck 1098
6530 schoenebeck 1524
6531    
6532 schoenebeck 2 // *************** Exception ***************
6533     // *
6534    
6535 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6536 schoenebeck 2 }
6537    
6538 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6539     va_list arg;
6540     va_start(arg, format);
6541     Message = assemble(format, arg);
6542     va_end(arg);
6543     }
6544    
6545     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6546     Message = assemble(format, arg);
6547     }
6548    
6549 schoenebeck 2 void Exception::PrintMessage() {
6550     std::cout << "gig::Exception: " << Message << std::endl;
6551     }
6552    
6553 schoenebeck 518
6554     // *************** functions ***************
6555     // *
6556    
6557     /**
6558     * Returns the name of this C++ library. This is usually "libgig" of
6559     * course. This call is equivalent to RIFF::libraryName() and
6560     * DLS::libraryName().
6561     */
6562     String libraryName() {
6563     return PACKAGE;
6564     }
6565    
6566     /**
6567     * Returns version of this C++ library. This call is equivalent to
6568     * RIFF::libraryVersion() and DLS::libraryVersion().
6569     */
6570     String libraryVersion() {
6571     return VERSION;
6572     }
6573    
6574 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC