/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3348 - (hide annotations) (download)
Tue Oct 3 15:05:45 2017 UTC (6 years, 6 months ago) by schoenebeck
File size: 284841 byte(s)
* Fixed CVE-2017-12950, CVE-2017-12952, CVE-2017-12953
  (original patch by Paul Brossier, slightly modified).
* Bumped version (4.0.0.svn31).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
417 schoenebeck 809 } else { // '3gix' chunk missing
418 schoenebeck 930 // by default assigned to that mandatory "Default Group"
419     pGroup = pFile->GetGroup(0);
420 schoenebeck 809 }
421 schoenebeck 2
422 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423     if (pCkSmpl) {
424     Manufacturer = pCkSmpl->ReadInt32();
425     Product = pCkSmpl->ReadInt32();
426     SamplePeriod = pCkSmpl->ReadInt32();
427     MIDIUnityNote = pCkSmpl->ReadInt32();
428     FineTune = pCkSmpl->ReadInt32();
429     pCkSmpl->Read(&SMPTEFormat, 1, 4);
430     SMPTEOffset = pCkSmpl->ReadInt32();
431     Loops = pCkSmpl->ReadInt32();
432     pCkSmpl->ReadInt32(); // manufByt
433     LoopID = pCkSmpl->ReadInt32();
434     pCkSmpl->Read(&LoopType, 1, 4);
435     LoopStart = pCkSmpl->ReadInt32();
436     LoopEnd = pCkSmpl->ReadInt32();
437     LoopFraction = pCkSmpl->ReadInt32();
438     LoopPlayCount = pCkSmpl->ReadInt32();
439     } else { // 'smpl' chunk missing
440     // use default values
441     Manufacturer = 0;
442     Product = 0;
443 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 persson 1218 MIDIUnityNote = 60;
445 schoenebeck 809 FineTune = 0;
446 persson 1182 SMPTEFormat = smpte_format_no_offset;
447 schoenebeck 809 SMPTEOffset = 0;
448     Loops = 0;
449     LoopID = 0;
450 persson 1182 LoopType = loop_type_normal;
451 schoenebeck 809 LoopStart = 0;
452     LoopEnd = 0;
453     LoopFraction = 0;
454     LoopPlayCount = 0;
455     }
456 schoenebeck 2
457     FrameTable = NULL;
458     SamplePos = 0;
459     RAMCache.Size = 0;
460     RAMCache.pStart = NULL;
461     RAMCache.NullExtensionSize = 0;
462    
463 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464    
465 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466     Compressed = ewav;
467     Dithered = false;
468     TruncatedBits = 0;
469 schoenebeck 2 if (Compressed) {
470 persson 437 uint32_t version = ewav->ReadInt32();
471     if (version == 3 && BitDepth == 24) {
472     Dithered = ewav->ReadInt32();
473     ewav->SetPos(Channels == 2 ? 84 : 64);
474     TruncatedBits = ewav->ReadInt32();
475     }
476 schoenebeck 2 ScanCompressedSample();
477     }
478 schoenebeck 317
479     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 schoenebeck 317 }
484 persson 437 FrameOffset = 0; // just for streaming compressed samples
485 schoenebeck 21
486 persson 864 LoopSize = LoopEnd - LoopStart + 1;
487 schoenebeck 2 }
488    
489 schoenebeck 809 /**
490 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
491     * the actual waveform data) and assign it to this object.
492     *
493     * Discussion: copying .gig samples is a bit tricky. It requires three
494     * steps:
495     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496     * its new sample waveform data size.
497     * 2. Saving the file (done by File::Save()) so that it gains correct size
498     * and layout for writing the actual wave form data directly to disc
499     * in next step.
500     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501     *
502     * @param orig - original Sample object to be copied from
503     */
504     void Sample::CopyAssignMeta(const Sample* orig) {
505     // handle base classes
506     DLS::Sample::CopyAssignCore(orig);
507    
508     // handle actual own attributes of this class
509     Manufacturer = orig->Manufacturer;
510     Product = orig->Product;
511     SamplePeriod = orig->SamplePeriod;
512     MIDIUnityNote = orig->MIDIUnityNote;
513     FineTune = orig->FineTune;
514     SMPTEFormat = orig->SMPTEFormat;
515     SMPTEOffset = orig->SMPTEOffset;
516     Loops = orig->Loops;
517     LoopID = orig->LoopID;
518     LoopType = orig->LoopType;
519     LoopStart = orig->LoopStart;
520     LoopEnd = orig->LoopEnd;
521     LoopSize = orig->LoopSize;
522     LoopFraction = orig->LoopFraction;
523     LoopPlayCount = orig->LoopPlayCount;
524    
525     // schedule resizing this sample to the given sample's size
526     Resize(orig->GetSize());
527     }
528    
529     /**
530     * Should be called after CopyAssignMeta() and File::Save() sequence.
531     * Read more about it in the discussion of CopyAssignMeta(). This method
532     * copies the actual waveform data by disk streaming.
533     *
534     * @e CAUTION: this method is currently not thread safe! During this
535     * operation the sample must not be used for other purposes by other
536     * threads!
537     *
538     * @param orig - original Sample object to be copied from
539     */
540     void Sample::CopyAssignWave(const Sample* orig) {
541     const int iReadAtOnce = 32*1024;
542     char* buf = new char[iReadAtOnce * orig->FrameSize];
543     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
545 schoenebeck 2482 pOrig->SetPos(0);
546     SetPos(0);
547 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
549     {
550     Write(buf, n);
551     }
552     pOrig->SetPos(restorePos);
553     delete [] buf;
554     }
555    
556     /**
557 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
558     * to call File::Save() to make changes persistent.
559     *
560     * Usually there is absolutely no need to call this method explicitly.
561     * It will be called automatically when File::Save() was called.
562     *
563 schoenebeck 2682 * @param pProgress - callback function for progress notification
564 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 schoenebeck 809 * was provided yet
566     * @throws gig::Exception if there is any invalid sample setting
567     */
568 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
569 schoenebeck 809 // first update base class's chunks
570 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
571 schoenebeck 809
572     // make sure 'smpl' chunk exists
573     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 persson 1182 if (!pCkSmpl) {
575     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576     memset(pCkSmpl->LoadChunkData(), 0, 60);
577     }
578 schoenebeck 809 // update 'smpl' chunk
579     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 persson 1179 store32(&pData[0], Manufacturer);
582     store32(&pData[4], Product);
583     store32(&pData[8], SamplePeriod);
584     store32(&pData[12], MIDIUnityNote);
585     store32(&pData[16], FineTune);
586     store32(&pData[20], SMPTEFormat);
587     store32(&pData[24], SMPTEOffset);
588     store32(&pData[28], Loops);
589 schoenebeck 809
590     // we skip 'manufByt' for now (4 bytes)
591    
592 persson 1179 store32(&pData[36], LoopID);
593     store32(&pData[40], LoopType);
594     store32(&pData[44], LoopStart);
595     store32(&pData[48], LoopEnd);
596     store32(&pData[52], LoopFraction);
597     store32(&pData[56], LoopPlayCount);
598 schoenebeck 809
599     // make sure '3gix' chunk exists
600     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
603 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
605     if (pFile->pGroups) {
606     std::list<Group*>::iterator iter = pFile->pGroups->begin();
607     std::list<Group*>::iterator end = pFile->pGroups->end();
608 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
609 schoenebeck 929 if (*iter == pGroup) {
610     iSampleGroup = i;
611     break; // found
612     }
613     }
614     }
615 schoenebeck 809 // update '3gix' chunk
616     pData = (uint8_t*) pCk3gix->LoadChunkData();
617 persson 1179 store16(&pData[0], iSampleGroup);
618 schoenebeck 2484
619     // if the library user toggled the "Compressed" attribute from true to
620     // false, then the EWAV chunk associated with compressed samples needs
621     // to be deleted
622     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623     if (ewav && !Compressed) {
624     pWaveList->DeleteSubChunk(ewav);
625     }
626 schoenebeck 809 }
627    
628 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629     void Sample::ScanCompressedSample() {
630     //TODO: we have to add some more scans here (e.g. determine compression rate)
631     this->SamplesTotal = 0;
632 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
633 schoenebeck 2
634 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636 persson 365
637 schoenebeck 2 // Scanning
638     pCkData->SetPos(0);
639 persson 365 if (Channels == 2) { // Stereo
640     for (int i = 0 ; ; i++) {
641     // for 24 bit samples every 8:th frame offset is
642     // stored, to save some memory
643     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644    
645     const int mode_l = pCkData->ReadUint8();
646     const int mode_r = pCkData->ReadUint8();
647     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649 persson 365
650     if (pCkData->RemainingBytes() <= frameSize) {
651     SamplesInLastFrame =
652     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654     SamplesTotal += SamplesInLastFrame;
655 schoenebeck 2 break;
656 persson 365 }
657     SamplesTotal += SamplesPerFrame;
658     pCkData->SetPos(frameSize, RIFF::stream_curpos);
659     }
660     }
661     else { // Mono
662     for (int i = 0 ; ; i++) {
663     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664    
665     const int mode = pCkData->ReadUint8();
666     if (mode > 5) throw gig::Exception("Unknown compression mode");
667 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
668 persson 365
669     if (pCkData->RemainingBytes() <= frameSize) {
670     SamplesInLastFrame =
671     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672     SamplesTotal += SamplesInLastFrame;
673 schoenebeck 2 break;
674 persson 365 }
675     SamplesTotal += SamplesPerFrame;
676     pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 schoenebeck 2 }
678     }
679     pCkData->SetPos(0);
680    
681     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682     if (FrameTable) delete[] FrameTable;
683 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
684     std::list<file_offset_t>::iterator end = frameOffsets.end();
685     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
687     FrameTable[i] = *iter;
688     }
689     }
690    
691     /**
692     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693     * ReleaseSampleData() to free the memory if you don't need the cached
694     * sample data anymore.
695     *
696     * @returns buffer_t structure with start address and size of the buffer
697     * in bytes
698     * @see ReleaseSampleData(), Read(), SetPos()
699     */
700     buffer_t Sample::LoadSampleData() {
701     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702     }
703    
704     /**
705     * Reads (uncompresses if needed) and caches the first \a SampleCount
706     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707     * memory space if you don't need the cached samples anymore. There is no
708     * guarantee that exactly \a SampleCount samples will be cached; this is
709     * not an error. The size will be eventually truncated e.g. to the
710     * beginning of a frame of a compressed sample. This is done for
711     * efficiency reasons while streaming the wave by your sampler engine
712     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713     * that will be returned to determine the actual cached samples, but note
714     * that the size is given in bytes! You get the number of actually cached
715     * samples by dividing it by the frame size of the sample:
716 schoenebeck 384 * @code
717 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718     * long cachedsamples = buf.Size / pSample->FrameSize;
719 schoenebeck 384 * @endcode
720 schoenebeck 2 *
721     * @param SampleCount - number of sample points to load into RAM
722     * @returns buffer_t structure with start address and size of
723     * the cached sample data in bytes
724     * @see ReleaseSampleData(), Read(), SetPos()
725     */
726 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728     }
729    
730     /**
731     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732     * ReleaseSampleData() to free the memory if you don't need the cached
733     * sample data anymore.
734     * The method will add \a NullSamplesCount silence samples past the
735     * official buffer end (this won't affect the 'Size' member of the
736     * buffer_t structure, that means 'Size' always reflects the size of the
737     * actual sample data, the buffer might be bigger though). Silence
738     * samples past the official buffer are needed for differential
739     * algorithms that always have to take subsequent samples into account
740     * (resampling/interpolation would be an important example) and avoids
741     * memory access faults in such cases.
742     *
743     * @param NullSamplesCount - number of silence samples the buffer should
744     * be extended past it's data end
745     * @returns buffer_t structure with start address and
746     * size of the buffer in bytes
747     * @see ReleaseSampleData(), Read(), SetPos()
748     */
749     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751     }
752    
753     /**
754     * Reads (uncompresses if needed) and caches the first \a SampleCount
755     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756     * memory space if you don't need the cached samples anymore. There is no
757     * guarantee that exactly \a SampleCount samples will be cached; this is
758     * not an error. The size will be eventually truncated e.g. to the
759     * beginning of a frame of a compressed sample. This is done for
760     * efficiency reasons while streaming the wave by your sampler engine
761     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762     * that will be returned to determine the actual cached samples, but note
763     * that the size is given in bytes! You get the number of actually cached
764     * samples by dividing it by the frame size of the sample:
765 schoenebeck 384 * @code
766 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767     * long cachedsamples = buf.Size / pSample->FrameSize;
768 schoenebeck 384 * @endcode
769 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
770     * official buffer end (this won't affect the 'Size' member of the
771     * buffer_t structure, that means 'Size' always reflects the size of the
772     * actual sample data, the buffer might be bigger though). Silence
773     * samples past the official buffer are needed for differential
774     * algorithms that always have to take subsequent samples into account
775     * (resampling/interpolation would be an important example) and avoids
776     * memory access faults in such cases.
777     *
778     * @param SampleCount - number of sample points to load into RAM
779     * @param NullSamplesCount - number of silence samples the buffer should
780     * be extended past it's data end
781     * @returns buffer_t structure with start address and
782     * size of the cached sample data in bytes
783     * @see ReleaseSampleData(), Read(), SetPos()
784     */
785 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
790 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
791     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793     // fill the remaining buffer space with silence samples
794     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795     return GetCache();
796     }
797    
798     /**
799     * Returns current cached sample points. A buffer_t structure will be
800     * returned which contains address pointer to the begin of the cache and
801     * the size of the cached sample data in bytes. Use
802     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803     * RAM.
804     *
805     * @returns buffer_t structure with current cached sample points
806     * @see LoadSampleData();
807     */
808     buffer_t Sample::GetCache() {
809     // return a copy of the buffer_t structure
810     buffer_t result;
811     result.Size = this->RAMCache.Size;
812     result.pStart = this->RAMCache.pStart;
813     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814     return result;
815     }
816    
817     /**
818     * Frees the cached sample from RAM if loaded with
819     * <i>LoadSampleData()</i> previously.
820     *
821     * @see LoadSampleData();
822     */
823     void Sample::ReleaseSampleData() {
824     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825     RAMCache.pStart = NULL;
826     RAMCache.Size = 0;
827 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
828 schoenebeck 2 }
829    
830 schoenebeck 809 /** @brief Resize sample.
831     *
832     * Resizes the sample's wave form data, that is the actual size of
833     * sample wave data possible to be written for this sample. This call
834     * will return immediately and just schedule the resize operation. You
835     * should call File::Save() to actually perform the resize operation(s)
836     * "physically" to the file. As this can take a while on large files, it
837     * is recommended to call Resize() first on all samples which have to be
838     * resized and finally to call File::Save() to perform all those resize
839     * operations in one rush.
840     *
841     * The actual size (in bytes) is dependant to the current FrameSize
842     * value. You may want to set FrameSize before calling Resize().
843     *
844     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845     * enlarged samples before calling File::Save() as this might exceed the
846     * current sample's boundary!
847     *
848 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 schoenebeck 809 * other formats will fail!
851     *
852 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
853     * greater than zero)
854 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
857     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858     * DLS::Sample::FormatTag, File::Save()
859     */
860 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
861 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 schoenebeck 2922 DLS::Sample::Resize(NewSize);
863 schoenebeck 809 }
864    
865 schoenebeck 2 /**
866     * Sets the position within the sample (in sample points, not in
867     * bytes). Use this method and <i>Read()</i> if you don't want to load
868     * the sample into RAM, thus for disk streaming.
869     *
870     * Although the original Gigasampler engine doesn't allow positioning
871     * within compressed samples, I decided to implement it. Even though
872     * the Gigasampler format doesn't allow to define loops for compressed
873     * samples at the moment, positioning within compressed samples might be
874     * interesting for some sampler engines though. The only drawback about
875     * my decision is that it takes longer to load compressed gig Files on
876     * startup, because it's neccessary to scan the samples for some
877     * mandatory informations. But I think as it doesn't affect the runtime
878     * efficiency, nobody will have a problem with that.
879     *
880     * @param SampleCount number of sample points to jump
881     * @param Whence optional: to which relation \a SampleCount refers
882     * to, if omited <i>RIFF::stream_start</i> is assumed
883     * @returns the new sample position
884     * @see Read()
885     */
886 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 schoenebeck 2 if (Compressed) {
888     switch (Whence) {
889     case RIFF::stream_curpos:
890     this->SamplePos += SampleCount;
891     break;
892     case RIFF::stream_end:
893     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894     break;
895     case RIFF::stream_backward:
896     this->SamplePos -= SampleCount;
897     break;
898     case RIFF::stream_start: default:
899     this->SamplePos = SampleCount;
900     break;
901     }
902     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907     return this->SamplePos;
908     }
909     else { // not compressed
910 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 schoenebeck 2 return (result == orderedBytes) ? SampleCount
913     : result / this->FrameSize;
914     }
915     }
916    
917     /**
918     * Returns the current position in the sample (in sample points).
919     */
920 schoenebeck 2912 file_offset_t Sample::GetPos() const {
921 schoenebeck 2 if (Compressed) return SamplePos;
922     else return pCkData->GetPos() / FrameSize;
923     }
924    
925     /**
926 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
927     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928     * the position within the sample respectively, this method honors the
929     * looping informations of the sample (if any). The sample wave stream
930     * will be decompressed on the fly if using a compressed sample. Use this
931     * method if you don't want to load the sample into RAM, thus for disk
932     * streaming. All this methods needs to know to proceed with streaming
933     * for the next time you call this method is stored in \a pPlaybackState.
934     * You have to allocate and initialize the playback_state_t structure by
935     * yourself before you use it to stream a sample:
936 schoenebeck 384 * @code
937     * gig::playback_state_t playbackstate;
938     * playbackstate.position = 0;
939     * playbackstate.reverse = false;
940     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941     * @endcode
942 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
943     * defined or if the current read position is located within a loop area.
944     * The method already handles such cases by itself.
945     *
946 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
947     * have to use an external decompression buffer for <b>EACH</b>
948     * streaming thread to avoid race conditions and crashes!
949     *
950 schoenebeck 24 * @param pBuffer destination buffer
951     * @param SampleCount number of sample points to read
952     * @param pPlaybackState will be used to store and reload the playback
953     * state for the next ReadAndLoop() call
954 persson 864 * @param pDimRgn dimension region with looping information
955 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 schoenebeck 24 * @returns number of successfully read sample points
957 schoenebeck 384 * @see CreateDecompressionBuffer()
958 schoenebeck 24 */
959 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
963    
964     SetPos(pPlaybackState->position); // recover position from the last time
965    
966 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967 schoenebeck 24
968 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970 schoenebeck 24
971 persson 864 if (GetPos() <= loopEnd) {
972     switch (loop.LoopType) {
973 schoenebeck 24
974 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
975     do {
976     // if not endless loop check if max. number of loop cycles have been passed
977     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978 schoenebeck 24
979 persson 864 if (!pPlaybackState->reverse) { // forward playback
980     do {
981     samplestoloopend = loopEnd - GetPos();
982     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983     samplestoread -= readsamples;
984     totalreadsamples += readsamples;
985     if (readsamples == samplestoloopend) {
986     pPlaybackState->reverse = true;
987     break;
988     }
989     } while (samplestoread && readsamples);
990     }
991     else { // backward playback
992 schoenebeck 24
993 persson 864 // as we can only read forward from disk, we have to
994     // determine the end position within the loop first,
995     // read forward from that 'end' and finally after
996     // reading, swap all sample frames so it reflects
997     // backward playback
998 schoenebeck 24
999 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1000     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003 schoenebeck 24
1004 persson 864 SetPos(reverseplaybackend);
1005 schoenebeck 24
1006 persson 864 // read samples for backward playback
1007     do {
1008     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009     samplestoreadinloop -= readsamples;
1010     samplestoread -= readsamples;
1011     totalreadsamples += readsamples;
1012     } while (samplestoreadinloop && readsamples);
1013 schoenebeck 24
1014 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016     if (reverseplaybackend == loop.LoopStart) {
1017     pPlaybackState->loop_cycles_left--;
1018     pPlaybackState->reverse = false;
1019     }
1020    
1021     // reverse the sample frames for backward playback
1022 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 schoenebeck 24 }
1025 persson 864 } while (samplestoread && readsamples);
1026     break;
1027     }
1028 schoenebeck 24
1029 persson 864 case loop_type_backward: { // TODO: not tested yet!
1030     // forward playback (not entered the loop yet)
1031     if (!pPlaybackState->reverse) do {
1032     samplestoloopend = loopEnd - GetPos();
1033     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034     samplestoread -= readsamples;
1035     totalreadsamples += readsamples;
1036     if (readsamples == samplestoloopend) {
1037     pPlaybackState->reverse = true;
1038     break;
1039     }
1040     } while (samplestoread && readsamples);
1041 schoenebeck 24
1042 persson 864 if (!samplestoread) break;
1043 schoenebeck 24
1044 persson 864 // as we can only read forward from disk, we have to
1045     // determine the end position within the loop first,
1046     // read forward from that 'end' and finally after
1047     // reading, swap all sample frames so it reflects
1048     // backward playback
1049 schoenebeck 24
1050 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1051     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 persson 864 : samplestoread;
1054 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055 schoenebeck 24
1056 persson 864 SetPos(reverseplaybackend);
1057 schoenebeck 24
1058 persson 864 // read samples for backward playback
1059     do {
1060     // if not endless loop check if max. number of loop cycles have been passed
1061     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062     samplestoloopend = loopEnd - GetPos();
1063     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064     samplestoreadinloop -= readsamples;
1065     samplestoread -= readsamples;
1066     totalreadsamples += readsamples;
1067     if (readsamples == samplestoloopend) {
1068     pPlaybackState->loop_cycles_left--;
1069     SetPos(loop.LoopStart);
1070     }
1071     } while (samplestoreadinloop && readsamples);
1072 schoenebeck 24
1073 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1074 schoenebeck 24
1075 persson 864 // reverse the sample frames for backward playback
1076     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077     break;
1078     }
1079 schoenebeck 24
1080 persson 864 default: case loop_type_normal: {
1081     do {
1082     // if not endless loop check if max. number of loop cycles have been passed
1083     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084     samplestoloopend = loopEnd - GetPos();
1085     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086     samplestoread -= readsamples;
1087     totalreadsamples += readsamples;
1088     if (readsamples == samplestoloopend) {
1089     pPlaybackState->loop_cycles_left--;
1090     SetPos(loop.LoopStart);
1091     }
1092     } while (samplestoread && readsamples);
1093     break;
1094     }
1095 schoenebeck 24 }
1096     }
1097     }
1098    
1099     // read on without looping
1100     if (samplestoread) do {
1101 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 schoenebeck 24 samplestoread -= readsamples;
1103     totalreadsamples += readsamples;
1104     } while (readsamples && samplestoread);
1105    
1106     // store current position
1107     pPlaybackState->position = GetPos();
1108    
1109     return totalreadsamples;
1110     }
1111    
1112     /**
1113 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1114     * position into the buffer pointed by \a pBuffer and increments the
1115     * position within the sample. The sample wave stream will be
1116     * decompressed on the fly if using a compressed sample. Use this method
1117     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118     * thus for disk streaming.
1119     *
1120 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1121     * have to use an external decompression buffer for <b>EACH</b>
1122     * streaming thread to avoid race conditions and crashes!
1123     *
1124 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1125     * (using native endianness). For 24 bit, the buffer will
1126     * contain three bytes per sample, little-endian.
1127     *
1128 schoenebeck 2 * @param pBuffer destination buffer
1129     * @param SampleCount number of sample points to read
1130 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 schoenebeck 2 * @returns number of successfully read sample points
1132 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1133 schoenebeck 2 */
1134 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 schoenebeck 21 if (SampleCount == 0) return 0;
1136 schoenebeck 317 if (!Compressed) {
1137     if (BitDepth == 24) {
1138 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 schoenebeck 317 }
1140 persson 365 else { // 16 bit
1141     // (pCkData->Read does endian correction)
1142     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143     : pCkData->Read(pBuffer, SampleCount, 2);
1144     }
1145 schoenebeck 317 }
1146 persson 365 else {
1147 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1149 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1150 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1151     remainingsamples = SampleCount,
1152 persson 365 copysamples, skipsamples,
1153     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 schoenebeck 2 this->FrameOffset = 0;
1155    
1156 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157    
1158     // if decompression buffer too small, then reduce amount of samples to read
1159     if (pDecompressionBuffer->Size < assumedsize) {
1160     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162     remainingsamples = SampleCount;
1163     assumedsize = GuessSize(SampleCount);
1164 schoenebeck 2 }
1165    
1166 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171 persson 365 while (remainingsamples && remainingbytes) {
1172 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1173     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174 schoenebeck 2
1175 persson 365 int mode_l = *pSrc++, mode_r = 0;
1176    
1177     if (Channels == 2) {
1178     mode_r = *pSrc++;
1179     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182     if (remainingbytes < framebytes) { // last frame in sample
1183     framesamples = SamplesInLastFrame;
1184     if (mode_l == 4 && (framesamples & 1)) {
1185     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186     }
1187     else {
1188     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189     }
1190 schoenebeck 2 }
1191     }
1192 persson 365 else {
1193     framebytes = bytesPerFrame[mode_l] + 1;
1194     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195     if (remainingbytes < framebytes) {
1196     framesamples = SamplesInLastFrame;
1197     }
1198     }
1199 schoenebeck 2
1200     // determine how many samples in this frame to skip and read
1201 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1202     if (currentframeoffset <= framesamples) {
1203     copysamples = framesamples - currentframeoffset;
1204     skipsamples = currentframeoffset;
1205     }
1206     else {
1207     copysamples = 0;
1208     skipsamples = framesamples;
1209     }
1210 schoenebeck 2 }
1211     else {
1212 persson 365 // This frame has enough data for pBuffer, but not
1213     // all of the frame is needed. Set file position
1214     // to start of this frame for next call to Read.
1215 schoenebeck 2 copysamples = remainingsamples;
1216 persson 365 skipsamples = currentframeoffset;
1217     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218     this->FrameOffset = currentframeoffset + copysamples;
1219     }
1220     remainingsamples -= copysamples;
1221    
1222     if (remainingbytes > framebytes) {
1223     remainingbytes -= framebytes;
1224     if (remainingsamples == 0 &&
1225     currentframeoffset + copysamples == framesamples) {
1226     // This frame has enough data for pBuffer, and
1227     // all of the frame is needed. Set file
1228     // position to start of next frame for next
1229     // call to Read. FrameOffset is 0.
1230 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231     }
1232     }
1233 persson 365 else remainingbytes = 0;
1234 schoenebeck 2
1235 persson 365 currentframeoffset -= skipsamples;
1236 schoenebeck 2
1237 persson 365 if (copysamples == 0) {
1238     // skip this frame
1239     pSrc += framebytes - Channels;
1240     }
1241     else {
1242     const unsigned char* const param_l = pSrc;
1243     if (BitDepth == 24) {
1244     if (mode_l != 2) pSrc += 12;
1245 schoenebeck 2
1246 persson 365 if (Channels == 2) { // Stereo
1247     const unsigned char* const param_r = pSrc;
1248     if (mode_r != 2) pSrc += 12;
1249    
1250 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 persson 437 skipsamples, copysamples, TruncatedBits);
1252 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 persson 437 skipsamples, copysamples, TruncatedBits);
1254 persson 902 pDst24 += copysamples * 6;
1255 schoenebeck 2 }
1256 persson 365 else { // Mono
1257 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 persson 437 skipsamples, copysamples, TruncatedBits);
1259 persson 902 pDst24 += copysamples * 3;
1260 schoenebeck 2 }
1261 persson 365 }
1262     else { // 16 bit
1263     if (mode_l) pSrc += 4;
1264 schoenebeck 2
1265 persson 365 int step;
1266     if (Channels == 2) { // Stereo
1267     const unsigned char* const param_r = pSrc;
1268     if (mode_r) pSrc += 4;
1269    
1270     step = (2 - mode_l) + (2 - mode_r);
1271 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 persson 365 skipsamples, copysamples);
1274     pDst += copysamples << 1;
1275 schoenebeck 2 }
1276 persson 365 else { // Mono
1277     step = 2 - mode_l;
1278 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 persson 365 pDst += copysamples;
1280 schoenebeck 2 }
1281 persson 365 }
1282     pSrc += nextFrameOffset;
1283     }
1284 schoenebeck 2
1285 persson 365 // reload from disk to local buffer if needed
1286     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287     assumedsize = GuessSize(remainingsamples);
1288     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 schoenebeck 2 }
1293 persson 365 } // while
1294    
1295 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1296 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 schoenebeck 2 return (SampleCount - remainingsamples);
1298     }
1299     }
1300    
1301 schoenebeck 809 /** @brief Write sample wave data.
1302     *
1303     * Writes \a SampleCount number of sample points from the buffer pointed
1304     * by \a pBuffer and increments the position within the sample. Use this
1305     * method to directly write the sample data to disk, i.e. if you don't
1306     * want or cannot load the whole sample data into RAM.
1307     *
1308     * You have to Resize() the sample to the desired size and call
1309     * File::Save() <b>before</b> using Write().
1310     *
1311     * Note: there is currently no support for writing compressed samples.
1312     *
1313 persson 1264 * For 16 bit samples, the data in the source buffer should be
1314     * int16_t (using native endianness). For 24 bit, the buffer
1315     * should contain three bytes per sample, little-endian.
1316     *
1317 schoenebeck 809 * @param pBuffer - source buffer
1318     * @param SampleCount - number of sample points to write
1319     * @throws DLS::Exception if current sample size is too small
1320     * @throws gig::Exception if sample is compressed
1321     * @see DLS::LoadSampleData()
1322     */
1323 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325 persson 1207
1326     // if this is the first write in this sample, reset the
1327     // checksum calculator
1328 persson 1199 if (pCkData->GetPos() == 0) {
1329 schoenebeck 1381 __resetCRC(crc);
1330 persson 1199 }
1331 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 schoenebeck 2912 file_offset_t res;
1333 persson 1264 if (BitDepth == 24) {
1334     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335     } else { // 16 bit
1336     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337     : pCkData->Write(pBuffer, SampleCount, 2);
1338     }
1339 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340 persson 1199
1341 persson 1207 // if this is the last write, update the checksum chunk in the
1342     // file
1343 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 schoenebeck 3115 __finalizeCRC(crc);
1345 persson 1199 File* pFile = static_cast<File*>(GetParent());
1346 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1347 persson 1199 }
1348     return res;
1349 schoenebeck 809 }
1350    
1351 schoenebeck 384 /**
1352     * Allocates a decompression buffer for streaming (compressed) samples
1353     * with Sample::Read(). If you are using more than one streaming thread
1354     * in your application you <b>HAVE</b> to create a decompression buffer
1355     * for <b>EACH</b> of your streaming threads and provide it with the
1356     * Sample::Read() call in order to avoid race conditions and crashes.
1357     *
1358     * You should free the memory occupied by the allocated buffer(s) once
1359     * you don't need one of your streaming threads anymore by calling
1360     * DestroyDecompressionBuffer().
1361     *
1362     * @param MaxReadSize - the maximum size (in sample points) you ever
1363     * expect to read with one Read() call
1364     * @returns allocated decompression buffer
1365     * @see DestroyDecompressionBuffer()
1366     */
1367 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 schoenebeck 384 buffer_t result;
1369     const double worstCaseHeaderOverhead =
1370     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 schoenebeck 384 result.pStart = new int8_t[result.Size];
1373     result.NullExtensionSize = 0;
1374     return result;
1375     }
1376    
1377     /**
1378     * Free decompression buffer, previously created with
1379     * CreateDecompressionBuffer().
1380     *
1381     * @param DecompressionBuffer - previously allocated decompression
1382     * buffer to free
1383     */
1384     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386     delete[] (int8_t*) DecompressionBuffer.pStart;
1387     DecompressionBuffer.pStart = NULL;
1388     DecompressionBuffer.Size = 0;
1389     DecompressionBuffer.NullExtensionSize = 0;
1390     }
1391     }
1392    
1393 schoenebeck 930 /**
1394     * Returns pointer to the Group this Sample belongs to. In the .gig
1395     * format a sample always belongs to one group. If it wasn't explicitly
1396     * assigned to a certain group, it will be automatically assigned to a
1397     * default group.
1398     *
1399     * @returns Sample's Group (never NULL)
1400     */
1401     Group* Sample::GetGroup() const {
1402     return pGroup;
1403     }
1404    
1405 schoenebeck 2985 /**
1406 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407     * time when this sample's wave form data was modified for the last time
1408     * by calling Write(). This checksum only covers the raw wave form data,
1409     * not any meta informations like i.e. bit depth or loop points. Since
1410     * this method just returns the checksum stored for this sample i.e. when
1411     * the gig file was loaded, this method returns immediately. So it does no
1412     * recalcuation of the checksum with the currently available sample wave
1413     * form data.
1414     *
1415     * @see VerifyWaveData()
1416     */
1417     uint32_t Sample::GetWaveDataCRC32Checksum() {
1418     return crc;
1419     }
1420    
1421     /**
1422 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423     * Sample's raw wave data is intentionally modified (i.e. by calling
1424     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425     * is calculated and stored/updated for this sample, along to the sample's
1426     * meta informations.
1427     *
1428     * Now by calling this method the current raw audio wave data is checked
1429     * against the already stored CRC32 check sum in order to check whether the
1430     * sample data had been damaged unintentionally for some reason. Since by
1431     * calling this method always the entire raw audio wave data has to be
1432     * read, verifying all samples this way may take a long time accordingly.
1433     * And that's also the reason why the sample integrity is not checked by
1434     * default whenever a gig file is loaded. So this method must be called
1435     * explicitly to fulfill this task.
1436     *
1437 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1438     * calculated checksum of the current raw wave form data,
1439     * you can get the expected checksum instead by calling
1440     * GetWaveDataCRC32Checksum()
1441 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1442     * @throws Exception if no checksum had been stored to disk for this
1443     * sample yet, or on I/O issues
1444 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1445 schoenebeck 2985 */
1446 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1448 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1449 schoenebeck 2989 if (pActually) *pActually = crc;
1450     return crc == this->crc;
1451 schoenebeck 2985 }
1452    
1453     uint32_t Sample::CalculateWaveDataChecksum() {
1454     const size_t sz = 20*1024; // 20kB buffer size
1455     std::vector<uint8_t> buffer(sz);
1456     buffer.resize(sz);
1457    
1458     const size_t n = sz / FrameSize;
1459     SetPos(0);
1460     uint32_t crc = 0;
1461     __resetCRC(crc);
1462     while (true) {
1463     file_offset_t nRead = Read(&buffer[0], n);
1464     if (nRead <= 0) break;
1465     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466     }
1467 schoenebeck 3115 __finalizeCRC(crc);
1468 schoenebeck 2985 return crc;
1469     }
1470    
1471 schoenebeck 2 Sample::~Sample() {
1472     Instances--;
1473 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1474     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475     InternalDecompressionBuffer.pStart = NULL;
1476     InternalDecompressionBuffer.Size = 0;
1477 schoenebeck 355 }
1478 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1479     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480     }
1481    
1482    
1483    
1484     // *************** DimensionRegion ***************
1485     // *
1486    
1487 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1488 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 schoenebeck 16 Instances++;
1492    
1493 schoenebeck 823 pSample = NULL;
1494 schoenebeck 1316 pRegion = pParent;
1495 schoenebeck 823
1496 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497     else memset(&Crossfade, 0, 4);
1498    
1499 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500 schoenebeck 2
1501     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1503 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506     _3ewa->ReadInt16(); // unknown
1507     LFO1InternalDepth = _3ewa->ReadUint16();
1508     _3ewa->ReadInt16(); // unknown
1509     LFO3InternalDepth = _3ewa->ReadInt16();
1510     _3ewa->ReadInt16(); // unknown
1511     LFO1ControlDepth = _3ewa->ReadUint16();
1512     _3ewa->ReadInt16(); // unknown
1513     LFO3ControlDepth = _3ewa->ReadInt16();
1514     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516     _3ewa->ReadInt16(); // unknown
1517     EG1Sustain = _3ewa->ReadUint16();
1518     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521     EG1ControllerInvert = eg1ctrloptions & 0x01;
1522     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527     EG2ControllerInvert = eg2ctrloptions & 0x01;
1528     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534     _3ewa->ReadInt16(); // unknown
1535     EG2Sustain = _3ewa->ReadUint16();
1536     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537     _3ewa->ReadInt16(); // unknown
1538     LFO2ControlDepth = _3ewa->ReadUint16();
1539     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     _3ewa->ReadInt16(); // unknown
1541     LFO2InternalDepth = _3ewa->ReadUint16();
1542     int32_t eg1decay2 = _3ewa->ReadInt32();
1543     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545     _3ewa->ReadInt16(); // unknown
1546     EG1PreAttack = _3ewa->ReadUint16();
1547     int32_t eg2decay2 = _3ewa->ReadInt32();
1548     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550     _3ewa->ReadInt16(); // unknown
1551     EG2PreAttack = _3ewa->ReadUint16();
1552     uint8_t velocityresponse = _3ewa->ReadUint8();
1553     if (velocityresponse < 5) {
1554     VelocityResponseCurve = curve_type_nonlinear;
1555     VelocityResponseDepth = velocityresponse;
1556     } else if (velocityresponse < 10) {
1557     VelocityResponseCurve = curve_type_linear;
1558     VelocityResponseDepth = velocityresponse - 5;
1559     } else if (velocityresponse < 15) {
1560     VelocityResponseCurve = curve_type_special;
1561     VelocityResponseDepth = velocityresponse - 10;
1562     } else {
1563     VelocityResponseCurve = curve_type_unknown;
1564     VelocityResponseDepth = 0;
1565     }
1566     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567     if (releasevelocityresponse < 5) {
1568     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569     ReleaseVelocityResponseDepth = releasevelocityresponse;
1570     } else if (releasevelocityresponse < 10) {
1571     ReleaseVelocityResponseCurve = curve_type_linear;
1572     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573     } else if (releasevelocityresponse < 15) {
1574     ReleaseVelocityResponseCurve = curve_type_special;
1575     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576     } else {
1577     ReleaseVelocityResponseCurve = curve_type_unknown;
1578     ReleaseVelocityResponseDepth = 0;
1579     }
1580     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581     AttenuationControllerThreshold = _3ewa->ReadInt8();
1582     _3ewa->ReadInt32(); // unknown
1583     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584     _3ewa->ReadInt16(); // unknown
1585     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589     else DimensionBypass = dim_bypass_ctrl_none;
1590     uint8_t pan = _3ewa->ReadUint8();
1591     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592     SelfMask = _3ewa->ReadInt8() & 0x01;
1593     _3ewa->ReadInt8(); // unknown
1594     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609     : vcf_res_ctrl_none;
1610     uint16_t eg3depth = _3ewa->ReadUint16();
1611     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1614     ChannelOffset = _3ewa->ReadUint8() / 4;
1615     uint8_t regoptions = _3ewa->ReadUint8();
1616     MSDecode = regoptions & 0x01; // bit 0
1617     SustainDefeat = regoptions & 0x02; // bit 1
1618     _3ewa->ReadInt16(); // unknown
1619     VelocityUpperLimit = _3ewa->ReadInt8();
1620     _3ewa->ReadInt8(); // unknown
1621     _3ewa->ReadInt16(); // unknown
1622     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623     _3ewa->ReadInt8(); // unknown
1624     _3ewa->ReadInt8(); // unknown
1625     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626     uint8_t vcfcutoff = _3ewa->ReadUint8();
1627     VCFEnabled = vcfcutoff & 0x80; // bit 7
1628     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630     uint8_t vcfvelscale = _3ewa->ReadUint8();
1631     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633     _3ewa->ReadInt8(); // unknown
1634     uint8_t vcfresonance = _3ewa->ReadUint8();
1635     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640     uint8_t vcfvelocity = _3ewa->ReadUint8();
1641     VCFVelocityDynamicRange = vcfvelocity % 5;
1642     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644     if (VCFType == vcf_type_lowpass) {
1645     if (lfo3ctrl & 0x40) // bit 6
1646     VCFType = vcf_type_lowpassturbo;
1647     }
1648 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1649     _3ewa->Read(DimensionUpperLimits, 1, 8);
1650     } else {
1651     memset(DimensionUpperLimits, 0, 8);
1652     }
1653 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1654     // use default values
1655     LFO3Frequency = 1.0;
1656     EG3Attack = 0.0;
1657     LFO1InternalDepth = 0;
1658     LFO3InternalDepth = 0;
1659     LFO1ControlDepth = 0;
1660     LFO3ControlDepth = 0;
1661     EG1Attack = 0.0;
1662 persson 1218 EG1Decay1 = 0.005;
1663     EG1Sustain = 1000;
1664     EG1Release = 0.3;
1665 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1666     EG1Controller.controller_number = 0;
1667     EG1ControllerInvert = false;
1668     EG1ControllerAttackInfluence = 0;
1669     EG1ControllerDecayInfluence = 0;
1670     EG1ControllerReleaseInfluence = 0;
1671     EG2Controller.type = eg2_ctrl_t::type_none;
1672     EG2Controller.controller_number = 0;
1673     EG2ControllerInvert = false;
1674     EG2ControllerAttackInfluence = 0;
1675     EG2ControllerDecayInfluence = 0;
1676     EG2ControllerReleaseInfluence = 0;
1677     LFO1Frequency = 1.0;
1678     EG2Attack = 0.0;
1679 persson 1218 EG2Decay1 = 0.005;
1680     EG2Sustain = 1000;
1681 schoenebeck 2990 EG2Release = 60;
1682 schoenebeck 809 LFO2ControlDepth = 0;
1683     LFO2Frequency = 1.0;
1684     LFO2InternalDepth = 0;
1685     EG1Decay2 = 0.0;
1686 persson 1218 EG1InfiniteSustain = true;
1687     EG1PreAttack = 0;
1688 schoenebeck 809 EG2Decay2 = 0.0;
1689 persson 1218 EG2InfiniteSustain = true;
1690     EG2PreAttack = 0;
1691 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1692     VelocityResponseDepth = 3;
1693     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694     ReleaseVelocityResponseDepth = 3;
1695     VelocityResponseCurveScaling = 32;
1696     AttenuationControllerThreshold = 0;
1697     SampleStartOffset = 0;
1698     PitchTrack = true;
1699     DimensionBypass = dim_bypass_ctrl_none;
1700     Pan = 0;
1701     SelfMask = true;
1702     LFO3Controller = lfo3_ctrl_modwheel;
1703     LFO3Sync = false;
1704     InvertAttenuationController = false;
1705     AttenuationController.type = attenuation_ctrl_t::type_none;
1706     AttenuationController.controller_number = 0;
1707     LFO2Controller = lfo2_ctrl_internal;
1708     LFO2FlipPhase = false;
1709     LFO2Sync = false;
1710     LFO1Controller = lfo1_ctrl_internal;
1711     LFO1FlipPhase = false;
1712     LFO1Sync = false;
1713     VCFResonanceController = vcf_res_ctrl_none;
1714     EG3Depth = 0;
1715     ChannelOffset = 0;
1716     MSDecode = false;
1717     SustainDefeat = false;
1718     VelocityUpperLimit = 0;
1719     ReleaseTriggerDecay = 0;
1720     EG1Hold = false;
1721     VCFEnabled = false;
1722     VCFCutoff = 0;
1723     VCFCutoffController = vcf_cutoff_ctrl_none;
1724     VCFCutoffControllerInvert = false;
1725     VCFVelocityScale = 0;
1726     VCFResonance = 0;
1727     VCFResonanceDynamic = false;
1728     VCFKeyboardTracking = false;
1729     VCFKeyboardTrackingBreakpoint = 0;
1730     VCFVelocityDynamicRange = 0x04;
1731     VCFVelocityCurve = curve_type_linear;
1732     VCFType = vcf_type_lowpass;
1733 persson 1247 memset(DimensionUpperLimits, 127, 8);
1734 schoenebeck 2 }
1735 schoenebeck 3323 // format extension for EG behavior options, these will *NOT* work with
1736     // Gigasampler/GigaStudio !
1737     RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738     if (lsde) {
1739 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1740     for (int i = 0; i < 2; ++i) {
1741     unsigned char byte = lsde->ReadUint8();
1742     pEGOpts[i]->AttackCancel = byte & 1;
1743     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1744     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1745     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1746     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1747     }
1748 schoenebeck 3323 }
1749 schoenebeck 16
1750 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1751     VelocityResponseDepth,
1752     VelocityResponseCurveScaling);
1753    
1754 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1755     ReleaseVelocityResponseCurve,
1756     ReleaseVelocityResponseDepth
1757     );
1758 persson 613
1759 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1760     VCFVelocityDynamicRange,
1761     VCFVelocityScale,
1762     VCFCutoffController);
1763 persson 613
1764     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765 persson 858 VelocityTable = 0;
1766 persson 613 }
1767    
1768 persson 1301 /*
1769     * Constructs a DimensionRegion by copying all parameters from
1770     * another DimensionRegion
1771     */
1772     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1773     Instances++;
1774 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1775 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1776     pParentList = _3ewl; // restore the chunk pointer
1777    
1778     // deep copy of owned structures
1779     if (src.VelocityTable) {
1780     VelocityTable = new uint8_t[128];
1781     for (int k = 0 ; k < 128 ; k++)
1782     VelocityTable[k] = src.VelocityTable[k];
1783     }
1784     if (src.pSampleLoops) {
1785     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1786     for (int k = 0 ; k < src.SampleLoops ; k++)
1787     pSampleLoops[k] = src.pSampleLoops[k];
1788     }
1789     }
1790 schoenebeck 2394
1791     /**
1792     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1793     * and assign it to this object.
1794     *
1795     * Note that all sample pointers referenced by @a orig are simply copied as
1796     * memory address. Thus the respective samples are shared, not duplicated!
1797     *
1798     * @param orig - original DimensionRegion object to be copied from
1799     */
1800     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1801 schoenebeck 2482 CopyAssign(orig, NULL);
1802     }
1803    
1804     /**
1805     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1806     * and assign it to this object.
1807     *
1808     * @param orig - original DimensionRegion object to be copied from
1809     * @param mSamples - crosslink map between the foreign file's samples and
1810     * this file's samples
1811     */
1812     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1813 schoenebeck 2394 // delete all allocated data first
1814     if (VelocityTable) delete [] VelocityTable;
1815     if (pSampleLoops) delete [] pSampleLoops;
1816    
1817     // backup parent list pointer
1818     RIFF::List* p = pParentList;
1819    
1820 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1821     gig::Region* pOriginalRegion = pRegion;
1822    
1823 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1824    
1825     *this = *orig; // default memberwise shallow copy of all parameters
1826 schoenebeck 2547
1827     // restore members that shall not be altered
1828 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1829 schoenebeck 2547 pRegion = pOriginalRegion;
1830 schoenebeck 2482
1831 schoenebeck 2547 // only take the raw sample reference reference if the
1832 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1833     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1834     pSample = pOriginalSample;
1835     }
1836    
1837     if (mSamples && mSamples->count(orig->pSample)) {
1838     pSample = mSamples->find(orig->pSample)->second;
1839     }
1840 persson 1301
1841 schoenebeck 2394 // deep copy of owned structures
1842     if (orig->VelocityTable) {
1843     VelocityTable = new uint8_t[128];
1844     for (int k = 0 ; k < 128 ; k++)
1845     VelocityTable[k] = orig->VelocityTable[k];
1846     }
1847     if (orig->pSampleLoops) {
1848     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1849     for (int k = 0 ; k < orig->SampleLoops ; k++)
1850     pSampleLoops[k] = orig->pSampleLoops[k];
1851     }
1852     }
1853    
1854 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1855 schoenebeck 3182 // in case this class will become backward incompatible one day,
1856     // then set a version and minimum version for this class like:
1857     //archive->setVersion(*this, 2);
1858     //archive->setMinVersion(*this, 1);
1859    
1860 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1861     SRLZ(EG1PreAttack);
1862     SRLZ(EG1Attack);
1863     SRLZ(EG1Decay1);
1864     SRLZ(EG1Decay2);
1865     SRLZ(EG1InfiniteSustain);
1866     SRLZ(EG1Sustain);
1867     SRLZ(EG1Release);
1868     SRLZ(EG1Hold);
1869     SRLZ(EG1Controller);
1870     SRLZ(EG1ControllerInvert);
1871     SRLZ(EG1ControllerAttackInfluence);
1872     SRLZ(EG1ControllerDecayInfluence);
1873     SRLZ(EG1ControllerReleaseInfluence);
1874     SRLZ(LFO1Frequency);
1875     SRLZ(LFO1InternalDepth);
1876     SRLZ(LFO1ControlDepth);
1877     SRLZ(LFO1Controller);
1878     SRLZ(LFO1FlipPhase);
1879     SRLZ(LFO1Sync);
1880     SRLZ(EG2PreAttack);
1881     SRLZ(EG2Attack);
1882     SRLZ(EG2Decay1);
1883     SRLZ(EG2Decay2);
1884     SRLZ(EG2InfiniteSustain);
1885     SRLZ(EG2Sustain);
1886     SRLZ(EG2Release);
1887     SRLZ(EG2Controller);
1888     SRLZ(EG2ControllerInvert);
1889     SRLZ(EG2ControllerAttackInfluence);
1890     SRLZ(EG2ControllerDecayInfluence);
1891     SRLZ(EG2ControllerReleaseInfluence);
1892     SRLZ(LFO2Frequency);
1893     SRLZ(LFO2InternalDepth);
1894     SRLZ(LFO2ControlDepth);
1895     SRLZ(LFO2Controller);
1896     SRLZ(LFO2FlipPhase);
1897     SRLZ(LFO2Sync);
1898     SRLZ(EG3Attack);
1899     SRLZ(EG3Depth);
1900     SRLZ(LFO3Frequency);
1901     SRLZ(LFO3InternalDepth);
1902     SRLZ(LFO3ControlDepth);
1903     SRLZ(LFO3Controller);
1904     SRLZ(LFO3Sync);
1905     SRLZ(VCFEnabled);
1906     SRLZ(VCFType);
1907     SRLZ(VCFCutoffController);
1908     SRLZ(VCFCutoffControllerInvert);
1909     SRLZ(VCFCutoff);
1910     SRLZ(VCFVelocityCurve);
1911     SRLZ(VCFVelocityScale);
1912     SRLZ(VCFVelocityDynamicRange);
1913     SRLZ(VCFResonance);
1914     SRLZ(VCFResonanceDynamic);
1915     SRLZ(VCFResonanceController);
1916     SRLZ(VCFKeyboardTracking);
1917     SRLZ(VCFKeyboardTrackingBreakpoint);
1918     SRLZ(VelocityResponseCurve);
1919     SRLZ(VelocityResponseDepth);
1920     SRLZ(VelocityResponseCurveScaling);
1921     SRLZ(ReleaseVelocityResponseCurve);
1922     SRLZ(ReleaseVelocityResponseDepth);
1923     SRLZ(ReleaseTriggerDecay);
1924     SRLZ(Crossfade);
1925     SRLZ(PitchTrack);
1926     SRLZ(DimensionBypass);
1927     SRLZ(Pan);
1928     SRLZ(SelfMask);
1929     SRLZ(AttenuationController);
1930     SRLZ(InvertAttenuationController);
1931     SRLZ(AttenuationControllerThreshold);
1932     SRLZ(ChannelOffset);
1933     SRLZ(SustainDefeat);
1934     SRLZ(MSDecode);
1935     //SRLZ(SampleStartOffset);
1936     SRLZ(SampleAttenuation);
1937 schoenebeck 3327 SRLZ(EG1Options);
1938     SRLZ(EG2Options);
1939 schoenebeck 3138
1940     // derived attributes from DLS::Sampler
1941     SRLZ(FineTune);
1942     SRLZ(Gain);
1943     }
1944    
1945 schoenebeck 809 /**
1946 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1947     * which depends on this value.
1948     */
1949     void DimensionRegion::SetGain(int32_t gain) {
1950     DLS::Sampler::SetGain(gain);
1951     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1952     }
1953    
1954     /**
1955 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1956     * have to call File::Save() to make changes persistent.
1957     *
1958     * Usually there is absolutely no need to call this method explicitly.
1959     * It will be called automatically when File::Save() was called.
1960 schoenebeck 2682 *
1961     * @param pProgress - callback function for progress notification
1962 schoenebeck 809 */
1963 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1964 schoenebeck 809 // first update base class's chunk
1965 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1966 schoenebeck 809
1967 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1968     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1969     pData[12] = Crossfade.in_start;
1970     pData[13] = Crossfade.in_end;
1971     pData[14] = Crossfade.out_start;
1972     pData[15] = Crossfade.out_end;
1973    
1974 schoenebeck 809 // make sure '3ewa' chunk exists
1975     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1976 persson 1317 if (!_3ewa) {
1977     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1978     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1979     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1980 persson 1264 }
1981 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1982 schoenebeck 809
1983     // update '3ewa' chunk with DimensionRegion's current settings
1984    
1985 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1986 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1987 schoenebeck 809
1988     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1989 persson 1179 store32(&pData[4], lfo3freq);
1990 schoenebeck 809
1991     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1992 persson 1179 store32(&pData[8], eg3attack);
1993 schoenebeck 809
1994     // next 2 bytes unknown
1995    
1996 persson 1179 store16(&pData[14], LFO1InternalDepth);
1997 schoenebeck 809
1998     // next 2 bytes unknown
1999    
2000 persson 1179 store16(&pData[18], LFO3InternalDepth);
2001 schoenebeck 809
2002     // next 2 bytes unknown
2003    
2004 persson 1179 store16(&pData[22], LFO1ControlDepth);
2005 schoenebeck 809
2006     // next 2 bytes unknown
2007    
2008 persson 1179 store16(&pData[26], LFO3ControlDepth);
2009 schoenebeck 809
2010     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2011 persson 1179 store32(&pData[28], eg1attack);
2012 schoenebeck 809
2013     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2014 persson 1179 store32(&pData[32], eg1decay1);
2015 schoenebeck 809
2016     // next 2 bytes unknown
2017    
2018 persson 1179 store16(&pData[38], EG1Sustain);
2019 schoenebeck 809
2020     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2021 persson 1179 store32(&pData[40], eg1release);
2022 schoenebeck 809
2023     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2024 persson 1179 pData[44] = eg1ctl;
2025 schoenebeck 809
2026     const uint8_t eg1ctrloptions =
2027 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2028 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2029     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2030     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2031 persson 1179 pData[45] = eg1ctrloptions;
2032 schoenebeck 809
2033     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2034 persson 1179 pData[46] = eg2ctl;
2035 schoenebeck 809
2036     const uint8_t eg2ctrloptions =
2037 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2038 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2039     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2040     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2041 persson 1179 pData[47] = eg2ctrloptions;
2042 schoenebeck 809
2043     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2044 persson 1179 store32(&pData[48], lfo1freq);
2045 schoenebeck 809
2046     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2047 persson 1179 store32(&pData[52], eg2attack);
2048 schoenebeck 809
2049     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2050 persson 1179 store32(&pData[56], eg2decay1);
2051 schoenebeck 809
2052     // next 2 bytes unknown
2053    
2054 persson 1179 store16(&pData[62], EG2Sustain);
2055 schoenebeck 809
2056     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2057 persson 1179 store32(&pData[64], eg2release);
2058 schoenebeck 809
2059     // next 2 bytes unknown
2060    
2061 persson 1179 store16(&pData[70], LFO2ControlDepth);
2062 schoenebeck 809
2063     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2064 persson 1179 store32(&pData[72], lfo2freq);
2065 schoenebeck 809
2066     // next 2 bytes unknown
2067    
2068 persson 1179 store16(&pData[78], LFO2InternalDepth);
2069 schoenebeck 809
2070     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2071 persson 1179 store32(&pData[80], eg1decay2);
2072 schoenebeck 809
2073     // next 2 bytes unknown
2074    
2075 persson 1179 store16(&pData[86], EG1PreAttack);
2076 schoenebeck 809
2077     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2078 persson 1179 store32(&pData[88], eg2decay2);
2079 schoenebeck 809
2080     // next 2 bytes unknown
2081    
2082 persson 1179 store16(&pData[94], EG2PreAttack);
2083 schoenebeck 809
2084     {
2085     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2086     uint8_t velocityresponse = VelocityResponseDepth;
2087     switch (VelocityResponseCurve) {
2088     case curve_type_nonlinear:
2089     break;
2090     case curve_type_linear:
2091     velocityresponse += 5;
2092     break;
2093     case curve_type_special:
2094     velocityresponse += 10;
2095     break;
2096     case curve_type_unknown:
2097     default:
2098     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2099     }
2100 persson 1179 pData[96] = velocityresponse;
2101 schoenebeck 809 }
2102    
2103     {
2104     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2105     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2106     switch (ReleaseVelocityResponseCurve) {
2107     case curve_type_nonlinear:
2108     break;
2109     case curve_type_linear:
2110     releasevelocityresponse += 5;
2111     break;
2112     case curve_type_special:
2113     releasevelocityresponse += 10;
2114     break;
2115     case curve_type_unknown:
2116     default:
2117     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2118     }
2119 persson 1179 pData[97] = releasevelocityresponse;
2120 schoenebeck 809 }
2121    
2122 persson 1179 pData[98] = VelocityResponseCurveScaling;
2123 schoenebeck 809
2124 persson 1179 pData[99] = AttenuationControllerThreshold;
2125 schoenebeck 809
2126     // next 4 bytes unknown
2127    
2128 persson 1179 store16(&pData[104], SampleStartOffset);
2129 schoenebeck 809
2130     // next 2 bytes unknown
2131    
2132     {
2133     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2134     switch (DimensionBypass) {
2135     case dim_bypass_ctrl_94:
2136     pitchTrackDimensionBypass |= 0x10;
2137     break;
2138     case dim_bypass_ctrl_95:
2139     pitchTrackDimensionBypass |= 0x20;
2140     break;
2141     case dim_bypass_ctrl_none:
2142     //FIXME: should we set anything here?
2143     break;
2144     default:
2145     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2146     }
2147 persson 1179 pData[108] = pitchTrackDimensionBypass;
2148 schoenebeck 809 }
2149    
2150     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2151 persson 1179 pData[109] = pan;
2152 schoenebeck 809
2153     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2154 persson 1179 pData[110] = selfmask;
2155 schoenebeck 809
2156     // next byte unknown
2157    
2158     {
2159     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2160     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2161     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2162     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2163 persson 1179 pData[112] = lfo3ctrl;
2164 schoenebeck 809 }
2165    
2166     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2167 persson 1179 pData[113] = attenctl;
2168 schoenebeck 809
2169     {
2170     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2171     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2172     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2173     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2174 persson 1179 pData[114] = lfo2ctrl;
2175 schoenebeck 809 }
2176    
2177     {
2178     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2179     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2180     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2181     if (VCFResonanceController != vcf_res_ctrl_none)
2182     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2183 persson 1179 pData[115] = lfo1ctrl;
2184 schoenebeck 809 }
2185    
2186     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2187 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2188 persson 1869 store16(&pData[116], eg3depth);
2189 schoenebeck 809
2190     // next 2 bytes unknown
2191    
2192     const uint8_t channeloffset = ChannelOffset * 4;
2193 persson 1179 pData[120] = channeloffset;
2194 schoenebeck 809
2195     {
2196     uint8_t regoptions = 0;
2197     if (MSDecode) regoptions |= 0x01; // bit 0
2198     if (SustainDefeat) regoptions |= 0x02; // bit 1
2199 persson 1179 pData[121] = regoptions;
2200 schoenebeck 809 }
2201    
2202     // next 2 bytes unknown
2203    
2204 persson 1179 pData[124] = VelocityUpperLimit;
2205 schoenebeck 809
2206     // next 3 bytes unknown
2207    
2208 persson 1179 pData[128] = ReleaseTriggerDecay;
2209 schoenebeck 809
2210     // next 2 bytes unknown
2211    
2212     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2213 persson 1179 pData[131] = eg1hold;
2214 schoenebeck 809
2215 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2216 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2217 persson 1179 pData[132] = vcfcutoff;
2218 schoenebeck 809
2219 persson 1179 pData[133] = VCFCutoffController;
2220 schoenebeck 809
2221 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2222 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2223 persson 1179 pData[134] = vcfvelscale;
2224 schoenebeck 809
2225     // next byte unknown
2226    
2227 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2228 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2229 persson 1179 pData[136] = vcfresonance;
2230 schoenebeck 809
2231 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2232 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2233 persson 1179 pData[137] = vcfbreakpoint;
2234 schoenebeck 809
2235 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2236 schoenebeck 809 VCFVelocityCurve * 5;
2237 persson 1179 pData[138] = vcfvelocity;
2238 schoenebeck 809
2239     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2240 persson 1179 pData[139] = vcftype;
2241 persson 1070
2242     if (chunksize >= 148) {
2243     memcpy(&pData[140], DimensionUpperLimits, 8);
2244     }
2245 schoenebeck 3323
2246     // format extension for EG behavior options, these will *NOT* work with
2247     // Gigasampler/GigaStudio !
2248     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2249     if (!lsde) {
2250     // only add this "LSDE" chunk if the EG options do not match the
2251     // default EG behavior
2252     eg_opt_t defaultOpt;
2253 schoenebeck 3327 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2254     memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)))
2255     {
2256     lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 2);
2257 schoenebeck 3323 // move LSDE chunk to the end of parent list
2258     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2259     }
2260     }
2261     if (lsde) {
2262 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2263     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2264     for (int i = 0; i < 2; ++i) {
2265     pData[i] =
2266     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2267     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2268     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2269     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2270     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2271     }
2272 schoenebeck 3323 }
2273 schoenebeck 809 }
2274    
2275 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2276     curve_type_t curveType = releaseVelocityResponseCurve;
2277     uint8_t depth = releaseVelocityResponseDepth;
2278     // this models a strange behaviour or bug in GSt: two of the
2279     // velocity response curves for release time are not used even
2280     // if specified, instead another curve is chosen.
2281     if ((curveType == curve_type_nonlinear && depth == 0) ||
2282     (curveType == curve_type_special && depth == 4)) {
2283     curveType = curve_type_nonlinear;
2284     depth = 3;
2285     }
2286     return GetVelocityTable(curveType, depth, 0);
2287     }
2288    
2289     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2290     uint8_t vcfVelocityDynamicRange,
2291     uint8_t vcfVelocityScale,
2292     vcf_cutoff_ctrl_t vcfCutoffController)
2293     {
2294     curve_type_t curveType = vcfVelocityCurve;
2295     uint8_t depth = vcfVelocityDynamicRange;
2296     // even stranger GSt: two of the velocity response curves for
2297     // filter cutoff are not used, instead another special curve
2298     // is chosen. This curve is not used anywhere else.
2299     if ((curveType == curve_type_nonlinear && depth == 0) ||
2300     (curveType == curve_type_special && depth == 4)) {
2301     curveType = curve_type_special;
2302     depth = 5;
2303     }
2304     return GetVelocityTable(curveType, depth,
2305     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2306     ? vcfVelocityScale : 0);
2307     }
2308    
2309 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2310     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2311     {
2312     double* table;
2313     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2314 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2315 persson 613 table = (*pVelocityTables)[tableKey];
2316 schoenebeck 16 }
2317     else {
2318 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2319     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2320 schoenebeck 16 }
2321 persson 613 return table;
2322 schoenebeck 2 }
2323 schoenebeck 55
2324 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2325     return pRegion;
2326     }
2327    
2328 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2329     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2330     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2331     //#pragma GCC diagnostic push
2332     //#pragma GCC diagnostic error "-Wswitch"
2333    
2334 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2335     leverage_ctrl_t decodedcontroller;
2336     switch (EncodedController) {
2337     // special controller
2338     case _lev_ctrl_none:
2339     decodedcontroller.type = leverage_ctrl_t::type_none;
2340     decodedcontroller.controller_number = 0;
2341     break;
2342     case _lev_ctrl_velocity:
2343     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2344     decodedcontroller.controller_number = 0;
2345     break;
2346     case _lev_ctrl_channelaftertouch:
2347     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2348     decodedcontroller.controller_number = 0;
2349     break;
2350 schoenebeck 55
2351 schoenebeck 36 // ordinary MIDI control change controller
2352     case _lev_ctrl_modwheel:
2353     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354     decodedcontroller.controller_number = 1;
2355     break;
2356     case _lev_ctrl_breath:
2357     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358     decodedcontroller.controller_number = 2;
2359     break;
2360     case _lev_ctrl_foot:
2361     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362     decodedcontroller.controller_number = 4;
2363     break;
2364     case _lev_ctrl_effect1:
2365     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366     decodedcontroller.controller_number = 12;
2367     break;
2368     case _lev_ctrl_effect2:
2369     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370     decodedcontroller.controller_number = 13;
2371     break;
2372     case _lev_ctrl_genpurpose1:
2373     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374     decodedcontroller.controller_number = 16;
2375     break;
2376     case _lev_ctrl_genpurpose2:
2377     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378     decodedcontroller.controller_number = 17;
2379     break;
2380     case _lev_ctrl_genpurpose3:
2381     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382     decodedcontroller.controller_number = 18;
2383     break;
2384     case _lev_ctrl_genpurpose4:
2385     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386     decodedcontroller.controller_number = 19;
2387     break;
2388     case _lev_ctrl_portamentotime:
2389     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390     decodedcontroller.controller_number = 5;
2391     break;
2392     case _lev_ctrl_sustainpedal:
2393     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394     decodedcontroller.controller_number = 64;
2395     break;
2396     case _lev_ctrl_portamento:
2397     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398     decodedcontroller.controller_number = 65;
2399     break;
2400     case _lev_ctrl_sostenutopedal:
2401     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402     decodedcontroller.controller_number = 66;
2403     break;
2404     case _lev_ctrl_softpedal:
2405     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406     decodedcontroller.controller_number = 67;
2407     break;
2408     case _lev_ctrl_genpurpose5:
2409     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410     decodedcontroller.controller_number = 80;
2411     break;
2412     case _lev_ctrl_genpurpose6:
2413     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414     decodedcontroller.controller_number = 81;
2415     break;
2416     case _lev_ctrl_genpurpose7:
2417     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418     decodedcontroller.controller_number = 82;
2419     break;
2420     case _lev_ctrl_genpurpose8:
2421     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422     decodedcontroller.controller_number = 83;
2423     break;
2424     case _lev_ctrl_effect1depth:
2425     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2426     decodedcontroller.controller_number = 91;
2427     break;
2428     case _lev_ctrl_effect2depth:
2429     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2430     decodedcontroller.controller_number = 92;
2431     break;
2432     case _lev_ctrl_effect3depth:
2433     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2434     decodedcontroller.controller_number = 93;
2435     break;
2436     case _lev_ctrl_effect4depth:
2437     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2438     decodedcontroller.controller_number = 94;
2439     break;
2440     case _lev_ctrl_effect5depth:
2441     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2442     decodedcontroller.controller_number = 95;
2443     break;
2444 schoenebeck 55
2445 schoenebeck 2540 // format extension (these controllers are so far only supported by
2446     // LinuxSampler & gigedit) they will *NOT* work with
2447     // Gigasampler/GigaStudio !
2448     case _lev_ctrl_CC3_EXT:
2449     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450     decodedcontroller.controller_number = 3;
2451     break;
2452     case _lev_ctrl_CC6_EXT:
2453     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454     decodedcontroller.controller_number = 6;
2455     break;
2456     case _lev_ctrl_CC7_EXT:
2457     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458     decodedcontroller.controller_number = 7;
2459     break;
2460     case _lev_ctrl_CC8_EXT:
2461     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462     decodedcontroller.controller_number = 8;
2463     break;
2464     case _lev_ctrl_CC9_EXT:
2465     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466     decodedcontroller.controller_number = 9;
2467     break;
2468     case _lev_ctrl_CC10_EXT:
2469     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470     decodedcontroller.controller_number = 10;
2471     break;
2472     case _lev_ctrl_CC11_EXT:
2473     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474     decodedcontroller.controller_number = 11;
2475     break;
2476     case _lev_ctrl_CC14_EXT:
2477     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478     decodedcontroller.controller_number = 14;
2479     break;
2480     case _lev_ctrl_CC15_EXT:
2481     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482     decodedcontroller.controller_number = 15;
2483     break;
2484     case _lev_ctrl_CC20_EXT:
2485     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486     decodedcontroller.controller_number = 20;
2487     break;
2488     case _lev_ctrl_CC21_EXT:
2489     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490     decodedcontroller.controller_number = 21;
2491     break;
2492     case _lev_ctrl_CC22_EXT:
2493     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494     decodedcontroller.controller_number = 22;
2495     break;
2496     case _lev_ctrl_CC23_EXT:
2497     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498     decodedcontroller.controller_number = 23;
2499     break;
2500     case _lev_ctrl_CC24_EXT:
2501     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502     decodedcontroller.controller_number = 24;
2503     break;
2504     case _lev_ctrl_CC25_EXT:
2505     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2506     decodedcontroller.controller_number = 25;
2507     break;
2508     case _lev_ctrl_CC26_EXT:
2509     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2510     decodedcontroller.controller_number = 26;
2511     break;
2512     case _lev_ctrl_CC27_EXT:
2513     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2514     decodedcontroller.controller_number = 27;
2515     break;
2516     case _lev_ctrl_CC28_EXT:
2517     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2518     decodedcontroller.controller_number = 28;
2519     break;
2520     case _lev_ctrl_CC29_EXT:
2521     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2522     decodedcontroller.controller_number = 29;
2523     break;
2524     case _lev_ctrl_CC30_EXT:
2525     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2526     decodedcontroller.controller_number = 30;
2527     break;
2528     case _lev_ctrl_CC31_EXT:
2529     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2530     decodedcontroller.controller_number = 31;
2531     break;
2532     case _lev_ctrl_CC68_EXT:
2533     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2534     decodedcontroller.controller_number = 68;
2535     break;
2536     case _lev_ctrl_CC69_EXT:
2537     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2538     decodedcontroller.controller_number = 69;
2539     break;
2540     case _lev_ctrl_CC70_EXT:
2541     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2542     decodedcontroller.controller_number = 70;
2543     break;
2544     case _lev_ctrl_CC71_EXT:
2545     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2546     decodedcontroller.controller_number = 71;
2547     break;
2548     case _lev_ctrl_CC72_EXT:
2549     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2550     decodedcontroller.controller_number = 72;
2551     break;
2552     case _lev_ctrl_CC73_EXT:
2553     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2554     decodedcontroller.controller_number = 73;
2555     break;
2556     case _lev_ctrl_CC74_EXT:
2557     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2558     decodedcontroller.controller_number = 74;
2559     break;
2560     case _lev_ctrl_CC75_EXT:
2561     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2562     decodedcontroller.controller_number = 75;
2563     break;
2564     case _lev_ctrl_CC76_EXT:
2565     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2566     decodedcontroller.controller_number = 76;
2567     break;
2568     case _lev_ctrl_CC77_EXT:
2569     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2570     decodedcontroller.controller_number = 77;
2571     break;
2572     case _lev_ctrl_CC78_EXT:
2573     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2574     decodedcontroller.controller_number = 78;
2575     break;
2576     case _lev_ctrl_CC79_EXT:
2577     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2578     decodedcontroller.controller_number = 79;
2579     break;
2580     case _lev_ctrl_CC84_EXT:
2581     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2582     decodedcontroller.controller_number = 84;
2583     break;
2584     case _lev_ctrl_CC85_EXT:
2585     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2586     decodedcontroller.controller_number = 85;
2587     break;
2588     case _lev_ctrl_CC86_EXT:
2589     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2590     decodedcontroller.controller_number = 86;
2591     break;
2592     case _lev_ctrl_CC87_EXT:
2593     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2594     decodedcontroller.controller_number = 87;
2595     break;
2596     case _lev_ctrl_CC89_EXT:
2597     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2598     decodedcontroller.controller_number = 89;
2599     break;
2600     case _lev_ctrl_CC90_EXT:
2601     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2602     decodedcontroller.controller_number = 90;
2603     break;
2604     case _lev_ctrl_CC96_EXT:
2605     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2606     decodedcontroller.controller_number = 96;
2607     break;
2608     case _lev_ctrl_CC97_EXT:
2609     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2610     decodedcontroller.controller_number = 97;
2611     break;
2612     case _lev_ctrl_CC102_EXT:
2613     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2614     decodedcontroller.controller_number = 102;
2615     break;
2616     case _lev_ctrl_CC103_EXT:
2617     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2618     decodedcontroller.controller_number = 103;
2619     break;
2620     case _lev_ctrl_CC104_EXT:
2621     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2622     decodedcontroller.controller_number = 104;
2623     break;
2624     case _lev_ctrl_CC105_EXT:
2625     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2626     decodedcontroller.controller_number = 105;
2627     break;
2628     case _lev_ctrl_CC106_EXT:
2629     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2630     decodedcontroller.controller_number = 106;
2631     break;
2632     case _lev_ctrl_CC107_EXT:
2633     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2634     decodedcontroller.controller_number = 107;
2635     break;
2636     case _lev_ctrl_CC108_EXT:
2637     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2638     decodedcontroller.controller_number = 108;
2639     break;
2640     case _lev_ctrl_CC109_EXT:
2641     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2642     decodedcontroller.controller_number = 109;
2643     break;
2644     case _lev_ctrl_CC110_EXT:
2645     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2646     decodedcontroller.controller_number = 110;
2647     break;
2648     case _lev_ctrl_CC111_EXT:
2649     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2650     decodedcontroller.controller_number = 111;
2651     break;
2652     case _lev_ctrl_CC112_EXT:
2653     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2654     decodedcontroller.controller_number = 112;
2655     break;
2656     case _lev_ctrl_CC113_EXT:
2657     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2658     decodedcontroller.controller_number = 113;
2659     break;
2660     case _lev_ctrl_CC114_EXT:
2661     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2662     decodedcontroller.controller_number = 114;
2663     break;
2664     case _lev_ctrl_CC115_EXT:
2665     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2666     decodedcontroller.controller_number = 115;
2667     break;
2668     case _lev_ctrl_CC116_EXT:
2669     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2670     decodedcontroller.controller_number = 116;
2671     break;
2672     case _lev_ctrl_CC117_EXT:
2673     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2674     decodedcontroller.controller_number = 117;
2675     break;
2676     case _lev_ctrl_CC118_EXT:
2677     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2678     decodedcontroller.controller_number = 118;
2679     break;
2680     case _lev_ctrl_CC119_EXT:
2681     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2682     decodedcontroller.controller_number = 119;
2683     break;
2684    
2685 schoenebeck 36 // unknown controller type
2686     default:
2687 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2688     decodedcontroller.controller_number = 0;
2689     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2690     break;
2691 schoenebeck 36 }
2692     return decodedcontroller;
2693     }
2694 schoenebeck 2540
2695     // see above (diagnostic push not supported prior GCC 4.6)
2696     //#pragma GCC diagnostic pop
2697 schoenebeck 2
2698 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2699     _lev_ctrl_t encodedcontroller;
2700     switch (DecodedController.type) {
2701     // special controller
2702     case leverage_ctrl_t::type_none:
2703     encodedcontroller = _lev_ctrl_none;
2704     break;
2705     case leverage_ctrl_t::type_velocity:
2706     encodedcontroller = _lev_ctrl_velocity;
2707     break;
2708     case leverage_ctrl_t::type_channelaftertouch:
2709     encodedcontroller = _lev_ctrl_channelaftertouch;
2710     break;
2711    
2712     // ordinary MIDI control change controller
2713     case leverage_ctrl_t::type_controlchange:
2714     switch (DecodedController.controller_number) {
2715     case 1:
2716     encodedcontroller = _lev_ctrl_modwheel;
2717     break;
2718     case 2:
2719     encodedcontroller = _lev_ctrl_breath;
2720     break;
2721     case 4:
2722     encodedcontroller = _lev_ctrl_foot;
2723     break;
2724     case 12:
2725     encodedcontroller = _lev_ctrl_effect1;
2726     break;
2727     case 13:
2728     encodedcontroller = _lev_ctrl_effect2;
2729     break;
2730     case 16:
2731     encodedcontroller = _lev_ctrl_genpurpose1;
2732     break;
2733     case 17:
2734     encodedcontroller = _lev_ctrl_genpurpose2;
2735     break;
2736     case 18:
2737     encodedcontroller = _lev_ctrl_genpurpose3;
2738     break;
2739     case 19:
2740     encodedcontroller = _lev_ctrl_genpurpose4;
2741     break;
2742     case 5:
2743     encodedcontroller = _lev_ctrl_portamentotime;
2744     break;
2745     case 64:
2746     encodedcontroller = _lev_ctrl_sustainpedal;
2747     break;
2748     case 65:
2749     encodedcontroller = _lev_ctrl_portamento;
2750     break;
2751     case 66:
2752     encodedcontroller = _lev_ctrl_sostenutopedal;
2753     break;
2754     case 67:
2755     encodedcontroller = _lev_ctrl_softpedal;
2756     break;
2757     case 80:
2758     encodedcontroller = _lev_ctrl_genpurpose5;
2759     break;
2760     case 81:
2761     encodedcontroller = _lev_ctrl_genpurpose6;
2762     break;
2763     case 82:
2764     encodedcontroller = _lev_ctrl_genpurpose7;
2765     break;
2766     case 83:
2767     encodedcontroller = _lev_ctrl_genpurpose8;
2768     break;
2769     case 91:
2770     encodedcontroller = _lev_ctrl_effect1depth;
2771     break;
2772     case 92:
2773     encodedcontroller = _lev_ctrl_effect2depth;
2774     break;
2775     case 93:
2776     encodedcontroller = _lev_ctrl_effect3depth;
2777     break;
2778     case 94:
2779     encodedcontroller = _lev_ctrl_effect4depth;
2780     break;
2781     case 95:
2782     encodedcontroller = _lev_ctrl_effect5depth;
2783     break;
2784 schoenebeck 2540
2785     // format extension (these controllers are so far only
2786     // supported by LinuxSampler & gigedit) they will *NOT*
2787     // work with Gigasampler/GigaStudio !
2788     case 3:
2789     encodedcontroller = _lev_ctrl_CC3_EXT;
2790     break;
2791     case 6:
2792     encodedcontroller = _lev_ctrl_CC6_EXT;
2793     break;
2794     case 7:
2795     encodedcontroller = _lev_ctrl_CC7_EXT;
2796     break;
2797     case 8:
2798     encodedcontroller = _lev_ctrl_CC8_EXT;
2799     break;
2800     case 9:
2801     encodedcontroller = _lev_ctrl_CC9_EXT;
2802     break;
2803     case 10:
2804     encodedcontroller = _lev_ctrl_CC10_EXT;
2805     break;
2806     case 11:
2807     encodedcontroller = _lev_ctrl_CC11_EXT;
2808     break;
2809     case 14:
2810     encodedcontroller = _lev_ctrl_CC14_EXT;
2811     break;
2812     case 15:
2813     encodedcontroller = _lev_ctrl_CC15_EXT;
2814     break;
2815     case 20:
2816     encodedcontroller = _lev_ctrl_CC20_EXT;
2817     break;
2818     case 21:
2819     encodedcontroller = _lev_ctrl_CC21_EXT;
2820     break;
2821     case 22:
2822     encodedcontroller = _lev_ctrl_CC22_EXT;
2823     break;
2824     case 23:
2825     encodedcontroller = _lev_ctrl_CC23_EXT;
2826     break;
2827     case 24:
2828     encodedcontroller = _lev_ctrl_CC24_EXT;
2829     break;
2830     case 25:
2831     encodedcontroller = _lev_ctrl_CC25_EXT;
2832     break;
2833     case 26:
2834     encodedcontroller = _lev_ctrl_CC26_EXT;
2835     break;
2836     case 27:
2837     encodedcontroller = _lev_ctrl_CC27_EXT;
2838     break;
2839     case 28:
2840     encodedcontroller = _lev_ctrl_CC28_EXT;
2841     break;
2842     case 29:
2843     encodedcontroller = _lev_ctrl_CC29_EXT;
2844     break;
2845     case 30:
2846     encodedcontroller = _lev_ctrl_CC30_EXT;
2847     break;
2848     case 31:
2849     encodedcontroller = _lev_ctrl_CC31_EXT;
2850     break;
2851     case 68:
2852     encodedcontroller = _lev_ctrl_CC68_EXT;
2853     break;
2854     case 69:
2855     encodedcontroller = _lev_ctrl_CC69_EXT;
2856     break;
2857     case 70:
2858     encodedcontroller = _lev_ctrl_CC70_EXT;
2859     break;
2860     case 71:
2861     encodedcontroller = _lev_ctrl_CC71_EXT;
2862     break;
2863     case 72:
2864     encodedcontroller = _lev_ctrl_CC72_EXT;
2865     break;
2866     case 73:
2867     encodedcontroller = _lev_ctrl_CC73_EXT;
2868     break;
2869     case 74:
2870     encodedcontroller = _lev_ctrl_CC74_EXT;
2871     break;
2872     case 75:
2873     encodedcontroller = _lev_ctrl_CC75_EXT;
2874     break;
2875     case 76:
2876     encodedcontroller = _lev_ctrl_CC76_EXT;
2877     break;
2878     case 77:
2879     encodedcontroller = _lev_ctrl_CC77_EXT;
2880     break;
2881     case 78:
2882     encodedcontroller = _lev_ctrl_CC78_EXT;
2883     break;
2884     case 79:
2885     encodedcontroller = _lev_ctrl_CC79_EXT;
2886     break;
2887     case 84:
2888     encodedcontroller = _lev_ctrl_CC84_EXT;
2889     break;
2890     case 85:
2891     encodedcontroller = _lev_ctrl_CC85_EXT;
2892     break;
2893     case 86:
2894     encodedcontroller = _lev_ctrl_CC86_EXT;
2895     break;
2896     case 87:
2897     encodedcontroller = _lev_ctrl_CC87_EXT;
2898     break;
2899     case 89:
2900     encodedcontroller = _lev_ctrl_CC89_EXT;
2901     break;
2902     case 90:
2903     encodedcontroller = _lev_ctrl_CC90_EXT;
2904     break;
2905     case 96:
2906     encodedcontroller = _lev_ctrl_CC96_EXT;
2907     break;
2908     case 97:
2909     encodedcontroller = _lev_ctrl_CC97_EXT;
2910     break;
2911     case 102:
2912     encodedcontroller = _lev_ctrl_CC102_EXT;
2913     break;
2914     case 103:
2915     encodedcontroller = _lev_ctrl_CC103_EXT;
2916     break;
2917     case 104:
2918     encodedcontroller = _lev_ctrl_CC104_EXT;
2919     break;
2920     case 105:
2921     encodedcontroller = _lev_ctrl_CC105_EXT;
2922     break;
2923     case 106:
2924     encodedcontroller = _lev_ctrl_CC106_EXT;
2925     break;
2926     case 107:
2927     encodedcontroller = _lev_ctrl_CC107_EXT;
2928     break;
2929     case 108:
2930     encodedcontroller = _lev_ctrl_CC108_EXT;
2931     break;
2932     case 109:
2933     encodedcontroller = _lev_ctrl_CC109_EXT;
2934     break;
2935     case 110:
2936     encodedcontroller = _lev_ctrl_CC110_EXT;
2937     break;
2938     case 111:
2939     encodedcontroller = _lev_ctrl_CC111_EXT;
2940     break;
2941     case 112:
2942     encodedcontroller = _lev_ctrl_CC112_EXT;
2943     break;
2944     case 113:
2945     encodedcontroller = _lev_ctrl_CC113_EXT;
2946     break;
2947     case 114:
2948     encodedcontroller = _lev_ctrl_CC114_EXT;
2949     break;
2950     case 115:
2951     encodedcontroller = _lev_ctrl_CC115_EXT;
2952     break;
2953     case 116:
2954     encodedcontroller = _lev_ctrl_CC116_EXT;
2955     break;
2956     case 117:
2957     encodedcontroller = _lev_ctrl_CC117_EXT;
2958     break;
2959     case 118:
2960     encodedcontroller = _lev_ctrl_CC118_EXT;
2961     break;
2962     case 119:
2963     encodedcontroller = _lev_ctrl_CC119_EXT;
2964     break;
2965    
2966 schoenebeck 809 default:
2967     throw gig::Exception("leverage controller number is not supported by the gig format");
2968     }
2969 persson 1182 break;
2970 schoenebeck 809 default:
2971     throw gig::Exception("Unknown leverage controller type.");
2972     }
2973     return encodedcontroller;
2974     }
2975    
2976 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2977     Instances--;
2978     if (!Instances) {
2979     // delete the velocity->volume tables
2980     VelocityTableMap::iterator iter;
2981     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2982     double* pTable = iter->second;
2983     if (pTable) delete[] pTable;
2984     }
2985     pVelocityTables->clear();
2986     delete pVelocityTables;
2987     pVelocityTables = NULL;
2988     }
2989 persson 858 if (VelocityTable) delete[] VelocityTable;
2990 schoenebeck 16 }
2991 schoenebeck 2
2992 schoenebeck 16 /**
2993     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2994     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2995     * and VelocityResponseCurveScaling) involved are taken into account to
2996     * calculate the amplitude factor. Use this method when a key was
2997     * triggered to get the volume with which the sample should be played
2998     * back.
2999     *
3000 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3001     * @returns amplitude factor (between 0.0 and 1.0)
3002 schoenebeck 16 */
3003     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3004     return pVelocityAttenuationTable[MIDIKeyVelocity];
3005     }
3006 schoenebeck 2
3007 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3008     return pVelocityReleaseTable[MIDIKeyVelocity];
3009     }
3010    
3011 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3012     return pVelocityCutoffTable[MIDIKeyVelocity];
3013     }
3014    
3015 schoenebeck 1358 /**
3016     * Updates the respective member variable and the lookup table / cache
3017     * that depends on this value.
3018     */
3019     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3020     pVelocityAttenuationTable =
3021     GetVelocityTable(
3022     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3023     );
3024     VelocityResponseCurve = curve;
3025     }
3026    
3027     /**
3028     * Updates the respective member variable and the lookup table / cache
3029     * that depends on this value.
3030     */
3031     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3032     pVelocityAttenuationTable =
3033     GetVelocityTable(
3034     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3035     );
3036     VelocityResponseDepth = depth;
3037     }
3038    
3039     /**
3040     * Updates the respective member variable and the lookup table / cache
3041     * that depends on this value.
3042     */
3043     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3044     pVelocityAttenuationTable =
3045     GetVelocityTable(
3046     VelocityResponseCurve, VelocityResponseDepth, scaling
3047     );
3048     VelocityResponseCurveScaling = scaling;
3049     }
3050    
3051     /**
3052     * Updates the respective member variable and the lookup table / cache
3053     * that depends on this value.
3054     */
3055     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3056     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3057     ReleaseVelocityResponseCurve = curve;
3058     }
3059    
3060     /**
3061     * Updates the respective member variable and the lookup table / cache
3062     * that depends on this value.
3063     */
3064     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3065     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3066     ReleaseVelocityResponseDepth = depth;
3067     }
3068    
3069     /**
3070     * Updates the respective member variable and the lookup table / cache
3071     * that depends on this value.
3072     */
3073     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3074     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3075     VCFCutoffController = controller;
3076     }
3077    
3078     /**
3079     * Updates the respective member variable and the lookup table / cache
3080     * that depends on this value.
3081     */
3082     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3083     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3084     VCFVelocityCurve = curve;
3085     }
3086    
3087     /**
3088     * Updates the respective member variable and the lookup table / cache
3089     * that depends on this value.
3090     */
3091     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3092     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3093     VCFVelocityDynamicRange = range;
3094     }
3095    
3096     /**
3097     * Updates the respective member variable and the lookup table / cache
3098     * that depends on this value.
3099     */
3100     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3101     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3102     VCFVelocityScale = scaling;
3103     }
3104    
3105 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3106 schoenebeck 317
3107 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3108 schoenebeck 16
3109 schoenebeck 308 // linear
3110     const int lin0[] = { 1, 1, 127, 127 };
3111     const int lin1[] = { 1, 21, 127, 127 };
3112     const int lin2[] = { 1, 45, 127, 127 };
3113     const int lin3[] = { 1, 74, 127, 127 };
3114     const int lin4[] = { 1, 127, 127, 127 };
3115 schoenebeck 16
3116 schoenebeck 308 // non-linear
3117     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3118 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3119 schoenebeck 308 127, 127 };
3120     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3121     127, 127 };
3122     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3123     127, 127 };
3124     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3125 schoenebeck 317
3126 schoenebeck 308 // special
3127 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3128 schoenebeck 308 113, 127, 127, 127 };
3129     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3130     118, 127, 127, 127 };
3131 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3132 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3133 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3134 schoenebeck 308 117, 127, 127, 127 };
3135 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3136 schoenebeck 308 127, 127 };
3137 schoenebeck 317
3138 persson 728 // this is only used by the VCF velocity curve
3139     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3140     91, 127, 127, 127 };
3141    
3142 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3143 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3144 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3145 schoenebeck 317
3146 schoenebeck 308 double* const table = new double[128];
3147    
3148     const int* curve = curves[curveType * 5 + depth];
3149     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3150 schoenebeck 317
3151 schoenebeck 308 table[0] = 0;
3152     for (int x = 1 ; x < 128 ; x++) {
3153    
3154     if (x > curve[2]) curve += 2;
3155 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3156 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3157     y = y / 127;
3158    
3159     // Scale up for s > 20, down for s < 20. When
3160     // down-scaling, the curve still ends at 1.0.
3161     if (s < 20 && y >= 0.5)
3162     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3163     else
3164     y = y * (s / 20.0);
3165     if (y > 1) y = 1;
3166    
3167     table[x] = y;
3168     }
3169     return table;
3170     }
3171    
3172    
3173 schoenebeck 2 // *************** Region ***************
3174     // *
3175    
3176     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3177     // Initialization
3178     Dimensions = 0;
3179 schoenebeck 347 for (int i = 0; i < 256; i++) {
3180 schoenebeck 2 pDimensionRegions[i] = NULL;
3181     }
3182 schoenebeck 282 Layers = 1;
3183 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3184     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3185 schoenebeck 2
3186     // Actual Loading
3187    
3188 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3189    
3190 schoenebeck 2 LoadDimensionRegions(rgnList);
3191    
3192     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3193     if (_3lnk) {
3194     DimensionRegions = _3lnk->ReadUint32();
3195 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3196 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3197     uint8_t bits = _3lnk->ReadUint8();
3198 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3199     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3200 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3201 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3202     pDimensionDefinitions[i].dimension = dimension_none;
3203     pDimensionDefinitions[i].bits = 0;
3204     pDimensionDefinitions[i].zones = 0;
3205     pDimensionDefinitions[i].split_type = split_type_bit;
3206     pDimensionDefinitions[i].zone_size = 0;
3207     }
3208     else { // active dimension
3209     pDimensionDefinitions[i].dimension = dimension;
3210     pDimensionDefinitions[i].bits = bits;
3211 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3212 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3213     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3214 schoenebeck 2 Dimensions++;
3215 schoenebeck 282
3216     // if this is a layer dimension, remember the amount of layers
3217     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3218 schoenebeck 2 }
3219 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3220 schoenebeck 2 }
3221 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3222 schoenebeck 2
3223 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3224     // update the VelocityTables in the dimension regions
3225     UpdateVelocityTable();
3226 schoenebeck 2
3227 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3228     if (file->pVersion && file->pVersion->major == 3)
3229     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3230     else
3231     _3lnk->SetPos(44);
3232    
3233 schoenebeck 1524 // load sample references (if auto loading is enabled)
3234     if (file->GetAutoLoad()) {
3235     for (uint i = 0; i < DimensionRegions; i++) {
3236     uint32_t wavepoolindex = _3lnk->ReadUint32();
3237 schoenebeck 3348 if (file->pWavePoolTable && pDimensionRegions[i])
3238     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3239 schoenebeck 1524 }
3240     GetSample(); // load global region sample reference
3241 schoenebeck 2 }
3242 persson 1102 } else {
3243     DimensionRegions = 0;
3244 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3245     pDimensionDefinitions[i].dimension = dimension_none;
3246     pDimensionDefinitions[i].bits = 0;
3247     pDimensionDefinitions[i].zones = 0;
3248     }
3249 schoenebeck 2 }
3250 schoenebeck 823
3251     // make sure there is at least one dimension region
3252     if (!DimensionRegions) {
3253     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3254     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3255     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3256 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3257 schoenebeck 823 DimensionRegions = 1;
3258     }
3259 schoenebeck 2 }
3260    
3261 schoenebeck 809 /**
3262     * Apply Region settings and all its DimensionRegions to the respective
3263     * RIFF chunks. You have to call File::Save() to make changes persistent.
3264     *
3265     * Usually there is absolutely no need to call this method explicitly.
3266     * It will be called automatically when File::Save() was called.
3267     *
3268 schoenebeck 2682 * @param pProgress - callback function for progress notification
3269 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3270     */
3271 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3272 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3273     // but we still have to provide some existing one to not corrupt the
3274     // file, so to avoid the latter we simply always assign the sample of
3275     // the first dimension region of this region
3276     pSample = pDimensionRegions[0]->pSample;
3277    
3278 schoenebeck 809 // first update base class's chunks
3279 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3280 schoenebeck 809
3281     // update dimension region's chunks
3282 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3283 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3284 schoenebeck 823 }
3285 schoenebeck 809
3286 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3287     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3288 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3289     const int iMaxDimensionRegions = version3 ? 256 : 32;
3290 schoenebeck 809
3291     // make sure '3lnk' chunk exists
3292     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3293     if (!_3lnk) {
3294 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3295 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3296 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3297 persson 1192
3298     // move 3prg to last position
3299 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3300 schoenebeck 809 }
3301    
3302     // update dimension definitions in '3lnk' chunk
3303     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3304 persson 1179 store32(&pData[0], DimensionRegions);
3305 persson 1199 int shift = 0;
3306 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3307 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3308     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3309 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3310 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3311 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3312 persson 1199 // next 3 bytes unknown, always zero?
3313    
3314     shift += pDimensionDefinitions[i].bits;
3315 schoenebeck 809 }
3316    
3317     // update wave pool table in '3lnk' chunk
3318 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3319 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3320     int iWaveIndex = -1;
3321     if (i < DimensionRegions) {
3322 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3323     File::SampleList::iterator iter = pFile->pSamples->begin();
3324     File::SampleList::iterator end = pFile->pSamples->end();
3325 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3326 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3327     iWaveIndex = index;
3328     break;
3329     }
3330 schoenebeck 809 }
3331     }
3332 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3333 schoenebeck 809 }
3334     }
3335    
3336 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3337     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3338     if (_3prg) {
3339     int dimensionRegionNr = 0;
3340     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3341     while (_3ewl) {
3342     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3343 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3344 schoenebeck 2 dimensionRegionNr++;
3345     }
3346     _3ewl = _3prg->GetNextSubList();
3347     }
3348     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3349     }
3350     }
3351    
3352 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3353     // update KeyRange struct and make sure regions are in correct order
3354     DLS::Region::SetKeyRange(Low, High);
3355     // update Region key table for fast lookup
3356     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3357     }
3358    
3359 persson 858 void Region::UpdateVelocityTable() {
3360     // get velocity dimension's index
3361     int veldim = -1;
3362     for (int i = 0 ; i < Dimensions ; i++) {
3363     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3364     veldim = i;
3365 schoenebeck 809 break;
3366     }
3367     }
3368 persson 858 if (veldim == -1) return;
3369 schoenebeck 809
3370 persson 858 int step = 1;
3371     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3372     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3373 schoenebeck 809
3374 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3375     int dim[8] = { 0 };
3376     for (int i = 0 ; i < DimensionRegions ; i++) {
3377 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3378 persson 858
3379 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3380 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3381     pDimensionRegions[i]->VelocityUpperLimit) {
3382 persson 858 // create the velocity table
3383     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3384     if (!table) {
3385     table = new uint8_t[128];
3386     pDimensionRegions[i]->VelocityTable = table;
3387     }
3388     int tableidx = 0;
3389     int velocityZone = 0;
3390 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3391     for (int k = i ; k < end ; k += step) {
3392     DimensionRegion *d = pDimensionRegions[k];
3393     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3394     velocityZone++;
3395     }
3396     } else { // gig2
3397     for (int k = i ; k < end ; k += step) {
3398     DimensionRegion *d = pDimensionRegions[k];
3399     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3400     velocityZone++;
3401     }
3402 persson 858 }
3403     } else {
3404     if (pDimensionRegions[i]->VelocityTable) {
3405     delete[] pDimensionRegions[i]->VelocityTable;
3406     pDimensionRegions[i]->VelocityTable = 0;
3407     }
3408 schoenebeck 809 }
3409 persson 858
3410 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3411 persson 858 int j;
3412     int shift = 0;
3413     for (j = 0 ; j < Dimensions ; j++) {
3414     if (j == veldim) i += skipveldim; // skip velocity dimension
3415     else {
3416     dim[j]++;
3417     if (dim[j] < pDimensionDefinitions[j].zones) break;
3418     else {
3419     // skip unused dimension regions
3420     dim[j] = 0;
3421     i += ((1 << pDimensionDefinitions[j].bits) -
3422     pDimensionDefinitions[j].zones) << shift;
3423     }
3424     }
3425     shift += pDimensionDefinitions[j].bits;
3426     }
3427     if (j == Dimensions) break;
3428 schoenebeck 809 }
3429     }
3430    
3431     /** @brief Einstein would have dreamed of it - create a new dimension.
3432     *
3433     * Creates a new dimension with the dimension definition given by
3434     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3435     * There is a hard limit of dimensions and total amount of "bits" all
3436     * dimensions can have. This limit is dependant to what gig file format
3437     * version this file refers to. The gig v2 (and lower) format has a
3438     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3439     * format has a limit of 8.
3440     *
3441     * @param pDimDef - defintion of the new dimension
3442     * @throws gig::Exception if dimension of the same type exists already
3443     * @throws gig::Exception if amount of dimensions or total amount of
3444     * dimension bits limit is violated
3445     */
3446     void Region::AddDimension(dimension_def_t* pDimDef) {
3447 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3448     if (pDimDef->zones < 2)
3449     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3450     if (pDimDef->bits < 1)
3451     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3452     if (pDimDef->dimension == dimension_samplechannel) {
3453     if (pDimDef->zones != 2)
3454     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3455     if (pDimDef->bits != 1)
3456     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3457     }
3458    
3459 schoenebeck 809 // check if max. amount of dimensions reached
3460     File* file = (File*) GetParent()->GetParent();
3461     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3462     if (Dimensions >= iMaxDimensions)
3463     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3464     // check if max. amount of dimension bits reached
3465     int iCurrentBits = 0;
3466     for (int i = 0; i < Dimensions; i++)
3467     iCurrentBits += pDimensionDefinitions[i].bits;
3468     if (iCurrentBits >= iMaxDimensions)
3469     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3470     const int iNewBits = iCurrentBits + pDimDef->bits;
3471     if (iNewBits > iMaxDimensions)
3472     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3473     // check if there's already a dimensions of the same type
3474     for (int i = 0; i < Dimensions; i++)
3475     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3476     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3477    
3478 persson 1301 // pos is where the new dimension should be placed, normally
3479     // last in list, except for the samplechannel dimension which
3480     // has to be first in list
3481     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3482     int bitpos = 0;
3483     for (int i = 0 ; i < pos ; i++)
3484     bitpos += pDimensionDefinitions[i].bits;
3485    
3486     // make room for the new dimension
3487     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3488     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3489     for (int j = Dimensions ; j > pos ; j--) {
3490     pDimensionRegions[i]->DimensionUpperLimits[j] =
3491     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3492     }
3493     }
3494    
3495 schoenebeck 809 // assign definition of new dimension
3496 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3497 schoenebeck 809
3498 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3499 persson 1301 pDimensionDefinitions[pos].split_type =
3500     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3501     pDimensionDefinitions[pos].zone_size =
3502     __resolveZoneSize(pDimensionDefinitions[pos]);
3503 schoenebeck 1113
3504 persson 1301 // create new dimension region(s) for this new dimension, and make
3505     // sure that the dimension regions are placed correctly in both the
3506     // RIFF list and the pDimensionRegions array
3507     RIFF::Chunk* moveTo = NULL;
3508     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3509     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3510     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3511     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3512     }
3513     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3514     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3515     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3516     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3517     // create a new dimension region and copy all parameter values from
3518     // an existing dimension region
3519     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3520     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3521 persson 1247
3522 persson 1301 DimensionRegions++;
3523     }
3524     }
3525     moveTo = pDimensionRegions[i]->pParentList;
3526 schoenebeck 809 }
3527    
3528 persson 1247 // initialize the upper limits for this dimension
3529 persson 1301 int mask = (1 << bitpos) - 1;
3530     for (int z = 0 ; z < pDimDef->zones ; z++) {
3531 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3532 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3533 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3534     (z << bitpos) |
3535     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3536 persson 1247 }
3537     }
3538    
3539 schoenebeck 809 Dimensions++;
3540    
3541     // if this is a layer dimension, update 'Layers' attribute
3542     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3543    
3544 persson 858 UpdateVelocityTable();
3545 schoenebeck 809 }
3546    
3547     /** @brief Delete an existing dimension.
3548     *
3549     * Deletes the dimension given by \a pDimDef and deletes all respective
3550     * dimension regions, that is all dimension regions where the dimension's
3551     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3552     * for example this would delete all dimension regions for the case(s)
3553     * where the sustain pedal is pressed down.
3554     *
3555     * @param pDimDef - dimension to delete
3556     * @throws gig::Exception if given dimension cannot be found
3557     */
3558     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3559     // get dimension's index
3560     int iDimensionNr = -1;
3561     for (int i = 0; i < Dimensions; i++) {
3562     if (&pDimensionDefinitions[i] == pDimDef) {
3563     iDimensionNr = i;
3564     break;
3565     }
3566     }
3567     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3568    
3569     // get amount of bits below the dimension to delete
3570     int iLowerBits = 0;
3571     for (int i = 0; i < iDimensionNr; i++)
3572     iLowerBits += pDimensionDefinitions[i].bits;
3573    
3574     // get amount ot bits above the dimension to delete
3575     int iUpperBits = 0;
3576     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3577     iUpperBits += pDimensionDefinitions[i].bits;
3578    
3579 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3580    
3581 schoenebeck 809 // delete dimension regions which belong to the given dimension
3582     // (that is where the dimension's bit > 0)
3583     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3584     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3585     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3586     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3587     iObsoleteBit << iLowerBits |
3588     iLowerBit;
3589 persson 1247
3590     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3591 schoenebeck 809 delete pDimensionRegions[iToDelete];
3592     pDimensionRegions[iToDelete] = NULL;
3593     DimensionRegions--;
3594     }
3595     }
3596     }
3597    
3598     // defrag pDimensionRegions array
3599     // (that is remove the NULL spaces within the pDimensionRegions array)
3600     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3601     if (!pDimensionRegions[iTo]) {
3602     if (iFrom <= iTo) iFrom = iTo + 1;
3603     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3604     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3605     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3606     pDimensionRegions[iFrom] = NULL;
3607     }
3608     }
3609     }
3610    
3611 persson 1247 // remove the this dimension from the upper limits arrays
3612     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3613     DimensionRegion* d = pDimensionRegions[j];
3614     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3615     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3616     }
3617     d->DimensionUpperLimits[Dimensions - 1] = 127;
3618     }
3619    
3620 schoenebeck 809 // 'remove' dimension definition
3621     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3622     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3623     }
3624     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3625     pDimensionDefinitions[Dimensions - 1].bits = 0;
3626     pDimensionDefinitions[Dimensions - 1].zones = 0;
3627    
3628     Dimensions--;
3629    
3630     // if this was a layer dimension, update 'Layers' attribute
3631     if (pDimDef->dimension == dimension_layer) Layers = 1;
3632     }
3633    
3634 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3635     *
3636     * Instead of deleting an entire dimensions, this method will only delete
3637     * one particular split zone given by @a zone of the Region's dimension
3638     * given by @a type. So this method will simply decrement the amount of
3639     * zones by one of the dimension in question. To be able to do that, the
3640     * respective dimension must exist on this Region and it must have at least
3641     * 3 zones. All DimensionRegion objects associated with the zone will be
3642     * deleted.
3643     *
3644     * @param type - identifies the dimension where a zone shall be deleted
3645     * @param zone - index of the dimension split zone that shall be deleted
3646     * @throws gig::Exception if requested zone could not be deleted
3647     */
3648     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3649     dimension_def_t* oldDef = GetDimensionDefinition(type);
3650     if (!oldDef)
3651     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3652     if (oldDef->zones <= 2)
3653     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3654     if (zone < 0 || zone >= oldDef->zones)
3655     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3656    
3657     const int newZoneSize = oldDef->zones - 1;
3658    
3659     // create a temporary Region which just acts as a temporary copy
3660     // container and will be deleted at the end of this function and will
3661     // also not be visible through the API during this process
3662     gig::Region* tempRgn = NULL;
3663     {
3664     // adding these temporary chunks is probably not even necessary
3665     Instrument* instr = static_cast<Instrument*>(GetParent());
3666     RIFF::List* pCkInstrument = instr->pCkInstrument;
3667     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3668     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3669     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3670     tempRgn = new Region(instr, rgn);
3671     }
3672    
3673     // copy this region's dimensions (with already the dimension split size
3674     // requested by the arguments of this method call) to the temporary
3675     // region, and don't use Region::CopyAssign() here for this task, since
3676     // it would also alter fast lookup helper variables here and there
3677     dimension_def_t newDef;
3678     for (int i = 0; i < Dimensions; ++i) {
3679     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3680     // is this the dimension requested by the method arguments? ...
3681     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3682     def.zones = newZoneSize;
3683     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3684     newDef = def;
3685     }
3686     tempRgn->AddDimension(&def);
3687     }
3688    
3689     // find the dimension index in the tempRegion which is the dimension
3690     // type passed to this method (paranoidly expecting different order)
3691     int tempReducedDimensionIndex = -1;
3692     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3693     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3694     tempReducedDimensionIndex = d;
3695     break;
3696     }
3697     }
3698    
3699     // copy dimension regions from this region to the temporary region
3700     for (int iDst = 0; iDst < 256; ++iDst) {
3701     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3702     if (!dstDimRgn) continue;
3703     std::map<dimension_t,int> dimCase;
3704     bool isValidZone = true;
3705     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3706     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3707     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3708     (iDst >> baseBits) & ((1 << dstBits) - 1);
3709     baseBits += dstBits;
3710     // there are also DimensionRegion objects of unused zones, skip them
3711     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3712     isValidZone = false;
3713     break;
3714     }
3715     }
3716     if (!isValidZone) continue;
3717     // a bit paranoid: cope with the chance that the dimensions would
3718     // have different order in source and destination regions
3719     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3720     if (dimCase[type] >= zone) dimCase[type]++;
3721     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3722     dstDimRgn->CopyAssign(srcDimRgn);
3723     // if this is the upper most zone of the dimension passed to this
3724     // method, then correct (raise) its upper limit to 127
3725     if (newDef.split_type == split_type_normal && isLastZone)
3726     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3727     }
3728    
3729     // now tempRegion's dimensions and DimensionRegions basically reflect
3730     // what we wanted to get for this actual Region here, so we now just
3731     // delete and recreate the dimension in question with the new amount
3732     // zones and then copy back from tempRegion
3733     DeleteDimension(oldDef);
3734     AddDimension(&newDef);
3735     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3736     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3737     if (!srcDimRgn) continue;
3738     std::map<dimension_t,int> dimCase;
3739     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3740     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3741     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3742     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3743     baseBits += srcBits;
3744     }
3745     // a bit paranoid: cope with the chance that the dimensions would
3746     // have different order in source and destination regions
3747     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3748     if (!dstDimRgn) continue;
3749     dstDimRgn->CopyAssign(srcDimRgn);
3750     }
3751    
3752     // delete temporary region
3753     delete tempRgn;
3754 schoenebeck 2557
3755     UpdateVelocityTable();
3756 schoenebeck 2555 }
3757    
3758     /** @brief Divide split zone of a dimension in two (increment zone amount).
3759     *
3760     * This will increment the amount of zones for the dimension (given by
3761     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3762     * in the middle of its zone range in two. So the two zones resulting from
3763     * the zone being splitted, will be an equivalent copy regarding all their
3764     * articulation informations and sample reference. The two zones will only
3765     * differ in their zone's upper limit
3766     * (DimensionRegion::DimensionUpperLimits).
3767     *
3768     * @param type - identifies the dimension where a zone shall be splitted
3769     * @param zone - index of the dimension split zone that shall be splitted
3770     * @throws gig::Exception if requested zone could not be splitted
3771     */
3772     void Region::SplitDimensionZone(dimension_t type, int zone) {
3773     dimension_def_t* oldDef = GetDimensionDefinition(type);
3774     if (!oldDef)
3775     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3776     if (zone < 0 || zone >= oldDef->zones)
3777     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3778    
3779     const int newZoneSize = oldDef->zones + 1;
3780    
3781     // create a temporary Region which just acts as a temporary copy
3782     // container and will be deleted at the end of this function and will
3783     // also not be visible through the API during this process
3784     gig::Region* tempRgn = NULL;
3785     {
3786     // adding these temporary chunks is probably not even necessary
3787     Instrument* instr = static_cast<Instrument*>(GetParent());
3788     RIFF::List* pCkInstrument = instr->pCkInstrument;
3789     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3790     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3791     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3792     tempRgn = new Region(instr, rgn);
3793     }
3794    
3795     // copy this region's dimensions (with already the dimension split size
3796     // requested by the arguments of this method call) to the temporary
3797     // region, and don't use Region::CopyAssign() here for this task, since
3798     // it would also alter fast lookup helper variables here and there
3799     dimension_def_t newDef;
3800     for (int i = 0; i < Dimensions; ++i) {
3801     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3802     // is this the dimension requested by the method arguments? ...
3803     if (def.dimension == type) { // ... if yes, increment zone amount by one
3804     def.zones = newZoneSize;
3805     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3806     newDef = def;
3807     }
3808     tempRgn->AddDimension(&def);
3809     }
3810    
3811     // find the dimension index in the tempRegion which is the dimension
3812     // type passed to this method (paranoidly expecting different order)
3813     int tempIncreasedDimensionIndex = -1;
3814     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3815     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3816     tempIncreasedDimensionIndex = d;
3817     break;
3818     }
3819     }
3820    
3821     // copy dimension regions from this region to the temporary region
3822     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3823     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3824     if (!srcDimRgn) continue;
3825     std::map<dimension_t,int> dimCase;
3826     bool isValidZone = true;
3827     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3828     const int srcBits = pDimensionDefinitions[d].bits;
3829     dimCase[pDimensionDefinitions[d].dimension] =
3830     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3831     // there are also DimensionRegion objects for unused zones, skip them
3832     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3833     isValidZone = false;
3834     break;
3835     }
3836     baseBits += srcBits;
3837     }
3838     if (!isValidZone) continue;
3839     // a bit paranoid: cope with the chance that the dimensions would
3840     // have different order in source and destination regions
3841     if (dimCase[type] > zone) dimCase[type]++;
3842     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3843     dstDimRgn->CopyAssign(srcDimRgn);
3844     // if this is the requested zone to be splitted, then also copy
3845     // the source DimensionRegion to the newly created target zone
3846     // and set the old zones upper limit lower
3847     if (dimCase[type] == zone) {
3848     // lower old zones upper limit
3849     if (newDef.split_type == split_type_normal) {
3850     const int high =
3851     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3852     int low = 0;
3853     if (zone > 0) {
3854     std::map<dimension_t,int> lowerCase = dimCase;
3855     lowerCase[type]--;
3856     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3857     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3858     }
3859     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3860     }
3861     // fill the newly created zone of the divided zone as well
3862     dimCase[type]++;
3863     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3864     dstDimRgn->CopyAssign(srcDimRgn);
3865     }
3866     }
3867    
3868     // now tempRegion's dimensions and DimensionRegions basically reflect
3869     // what we wanted to get for this actual Region here, so we now just
3870     // delete and recreate the dimension in question with the new amount
3871     // zones and then copy back from tempRegion
3872     DeleteDimension(oldDef);
3873     AddDimension(&newDef);
3874     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3875     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3876     if (!srcDimRgn) continue;
3877     std::map<dimension_t,int> dimCase;
3878     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3879     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3880     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3881     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3882     baseBits += srcBits;
3883     }
3884     // a bit paranoid: cope with the chance that the dimensions would
3885     // have different order in source and destination regions
3886     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3887     if (!dstDimRgn) continue;
3888     dstDimRgn->CopyAssign(srcDimRgn);
3889     }
3890    
3891     // delete temporary region
3892     delete tempRgn;
3893 schoenebeck 2557
3894     UpdateVelocityTable();
3895 schoenebeck 2555 }
3896    
3897 schoenebeck 2639 /** @brief Change type of an existing dimension.
3898     *
3899     * Alters the dimension type of a dimension already existing on this
3900     * region. If there is currently no dimension on this Region with type
3901     * @a oldType, then this call with throw an Exception. Likewise there are
3902     * cases where the requested dimension type cannot be performed. For example
3903     * if the new dimension type shall be gig::dimension_samplechannel, and the
3904     * current dimension has more than 2 zones. In such cases an Exception is
3905     * thrown as well.
3906     *
3907     * @param oldType - identifies the existing dimension to be changed
3908     * @param newType - to which dimension type it should be changed to
3909     * @throws gig::Exception if requested change cannot be performed
3910     */
3911     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3912     if (oldType == newType) return;
3913     dimension_def_t* def = GetDimensionDefinition(oldType);
3914     if (!def)
3915     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3916     if (newType == dimension_samplechannel && def->zones != 2)
3917     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3918 schoenebeck 2640 if (GetDimensionDefinition(newType))
3919     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3920     def->dimension = newType;
3921 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3922     }
3923    
3924 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3925     uint8_t bits[8] = {};
3926     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3927     it != DimCase.end(); ++it)
3928     {
3929     for (int d = 0; d < Dimensions; ++d) {
3930     if (pDimensionDefinitions[d].dimension == it->first) {
3931     bits[d] = it->second;
3932     goto nextDimCaseSlice;
3933     }
3934     }
3935     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3936     nextDimCaseSlice:
3937     ; // noop
3938     }
3939     return GetDimensionRegionByBit(bits);
3940     }
3941    
3942 schoenebeck 2547 /**
3943     * Searches in the current Region for a dimension of the given dimension
3944     * type and returns the precise configuration of that dimension in this
3945     * Region.
3946     *
3947     * @param type - dimension type of the sought dimension
3948     * @returns dimension definition or NULL if there is no dimension with
3949     * sought type in this Region.
3950     */
3951     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3952     for (int i = 0; i < Dimensions; ++i)
3953     if (pDimensionDefinitions[i].dimension == type)
3954     return &pDimensionDefinitions[i];
3955     return NULL;
3956     }
3957    
3958 schoenebeck 2 Region::~Region() {
3959 schoenebeck 350 for (int i = 0; i < 256; i++) {
3960 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3961     }
3962     }
3963    
3964     /**
3965     * Use this method in your audio engine to get the appropriate dimension
3966     * region with it's articulation data for the current situation. Just
3967     * call the method with the current MIDI controller values and you'll get
3968     * the DimensionRegion with the appropriate articulation data for the
3969     * current situation (for this Region of course only). To do that you'll
3970     * first have to look which dimensions with which controllers and in
3971     * which order are defined for this Region when you load the .gig file.
3972     * Special cases are e.g. layer or channel dimensions where you just put
3973     * in the index numbers instead of a MIDI controller value (means 0 for
3974     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3975     * etc.).
3976     *
3977 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3978 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3979     * @see pDimensionDefinitions
3980     * @see Dimensions
3981     */
3982 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3983 persson 858 uint8_t bits;
3984     int veldim = -1;
3985 schoenebeck 3053 int velbitpos = 0;
3986 persson 858 int bitpos = 0;
3987     int dimregidx = 0;
3988 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3989 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3990     // the velocity dimension must be handled after the other dimensions
3991     veldim = i;
3992     velbitpos = bitpos;
3993     } else {
3994     switch (pDimensionDefinitions[i].split_type) {
3995     case split_type_normal:
3996 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3997     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3998     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3999     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4000     }
4001     } else {
4002     // gig2: evenly sized zones
4003     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4004     }
4005 persson 858 break;
4006     case split_type_bit: // the value is already the sought dimension bit number
4007     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4008     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4009     break;
4010     }
4011     dimregidx |= bits << bitpos;
4012 schoenebeck 2 }
4013 persson 858 bitpos += pDimensionDefinitions[i].bits;
4014 schoenebeck 2 }
4015 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4016     if (!dimreg) return NULL;
4017 persson 858 if (veldim != -1) {
4018     // (dimreg is now the dimension region for the lowest velocity)
4019 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4020 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4021 persson 858 else // normal split type
4022 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4023 persson 858
4024 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4025     dimregidx |= (bits & limiter_mask) << velbitpos;
4026     dimreg = pDimensionRegions[dimregidx & 255];
4027 persson 858 }
4028     return dimreg;
4029 schoenebeck 2 }
4030    
4031 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4032     uint8_t bits;
4033     int veldim = -1;
4034 schoenebeck 3053 int velbitpos = 0;
4035 schoenebeck 2599 int bitpos = 0;
4036     int dimregidx = 0;
4037     for (uint i = 0; i < Dimensions; i++) {
4038     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4039     // the velocity dimension must be handled after the other dimensions
4040     veldim = i;
4041     velbitpos = bitpos;
4042     } else {
4043     switch (pDimensionDefinitions[i].split_type) {
4044     case split_type_normal:
4045     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4046     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4047     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4048     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4049     }
4050     } else {
4051     // gig2: evenly sized zones
4052     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4053     }
4054     break;
4055     case split_type_bit: // the value is already the sought dimension bit number
4056     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4057     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4058     break;
4059     }
4060     dimregidx |= bits << bitpos;
4061     }
4062     bitpos += pDimensionDefinitions[i].bits;
4063     }
4064     dimregidx &= 255;
4065     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4066     if (!dimreg) return -1;
4067     if (veldim != -1) {
4068     // (dimreg is now the dimension region for the lowest velocity)
4069     if (dimreg->VelocityTable) // custom defined zone ranges
4070     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4071     else // normal split type
4072     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4073    
4074     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4075     dimregidx |= (bits & limiter_mask) << velbitpos;
4076     dimregidx &= 255;
4077     }
4078     return dimregidx;
4079     }
4080    
4081 schoenebeck 2 /**
4082     * Returns the appropriate DimensionRegion for the given dimension bit
4083     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4084     * instead of calling this method directly!
4085     *
4086 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4087 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4088     * bit numbers
4089     * @see GetDimensionRegionByValue()
4090     */
4091 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4092     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4093     << pDimensionDefinitions[5].bits | DimBits[5])
4094     << pDimensionDefinitions[4].bits | DimBits[4])
4095     << pDimensionDefinitions[3].bits | DimBits[3])
4096     << pDimensionDefinitions[2].bits | DimBits[2])
4097     << pDimensionDefinitions[1].bits | DimBits[1])
4098     << pDimensionDefinitions[0].bits | DimBits[0]];
4099 schoenebeck 2 }
4100    
4101     /**
4102     * Returns pointer address to the Sample referenced with this region.
4103     * This is the global Sample for the entire Region (not sure if this is
4104     * actually used by the Gigasampler engine - I would only use the Sample
4105     * referenced by the appropriate DimensionRegion instead of this sample).
4106     *
4107     * @returns address to Sample or NULL if there is no reference to a
4108     * sample saved in the .gig file
4109     */
4110     Sample* Region::GetSample() {
4111     if (pSample) return static_cast<gig::Sample*>(pSample);
4112     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4113     }
4114    
4115 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4116 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4117 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4118 persson 902 if (!file->pWavePoolTable) return NULL;
4119 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4120     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4121     // use 64 bit wave pool offsets (treating this as large file)
4122 schoenebeck 2912 uint64_t soughtoffset =
4123     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4124     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4125     Sample* sample = file->GetFirstSample(pProgress);
4126     while (sample) {
4127     if (sample->ullWavePoolOffset == soughtoffset)
4128     return static_cast<gig::Sample*>(sample);
4129     sample = file->GetNextSample();
4130     }
4131     } else {
4132 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4133 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4134     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4135     Sample* sample = file->GetFirstSample(pProgress);
4136     while (sample) {
4137     if (sample->ullWavePoolOffset == soughtoffset &&
4138     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4139     sample = file->GetNextSample();
4140     }
4141 schoenebeck 2 }
4142     return NULL;
4143     }
4144 schoenebeck 2394
4145     /**
4146     * Make a (semi) deep copy of the Region object given by @a orig
4147     * and assign it to this object.
4148     *
4149     * Note that all sample pointers referenced by @a orig are simply copied as
4150     * memory address. Thus the respective samples are shared, not duplicated!
4151     *
4152     * @param orig - original Region object to be copied from
4153     */
4154     void Region::CopyAssign(const Region* orig) {
4155 schoenebeck 2482 CopyAssign(orig, NULL);
4156     }
4157    
4158     /**
4159     * Make a (semi) deep copy of the Region object given by @a orig and
4160     * assign it to this object
4161     *
4162     * @param mSamples - crosslink map between the foreign file's samples and
4163     * this file's samples
4164     */
4165     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4166 schoenebeck 2394 // handle base classes
4167     DLS::Region::CopyAssign(orig);
4168    
4169 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4170     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4171     }
4172    
4173 schoenebeck 2394 // handle own member variables
4174     for (int i = Dimensions - 1; i >= 0; --i) {
4175     DeleteDimension(&pDimensionDefinitions[i]);
4176     }
4177     Layers = 0; // just to be sure
4178     for (int i = 0; i < orig->Dimensions; i++) {
4179     // we need to copy the dim definition here, to avoid the compiler
4180     // complaining about const-ness issue
4181     dimension_def_t def = orig->pDimensionDefinitions[i];
4182     AddDimension(&def);
4183     }
4184     for (int i = 0; i < 256; i++) {
4185     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4186     pDimensionRegions[i]->CopyAssign(
4187 schoenebeck 2482 orig->pDimensionRegions[i],
4188     mSamples
4189 schoenebeck 2394 );
4190     }
4191     }
4192     Layers = orig->Layers;
4193     }
4194 schoenebeck 2
4195    
4196 persson 1627 // *************** MidiRule ***************
4197     // *
4198 schoenebeck 2
4199 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4200     _3ewg->SetPos(36);
4201     Triggers = _3ewg->ReadUint8();
4202     _3ewg->SetPos(40);
4203     ControllerNumber = _3ewg->ReadUint8();
4204     _3ewg->SetPos(46);
4205     for (int i = 0 ; i < Triggers ; i++) {
4206     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4207     pTriggers[i].Descending = _3ewg->ReadUint8();
4208     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4209     pTriggers[i].Key = _3ewg->ReadUint8();
4210     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4211     pTriggers[i].Velocity = _3ewg->ReadUint8();
4212     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4213     _3ewg->ReadUint8();
4214     }
4215 persson 1627 }
4216    
4217 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4218     ControllerNumber(0),
4219     Triggers(0) {
4220     }
4221 persson 1627
4222 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4223     pData[32] = 4;
4224     pData[33] = 16;
4225     pData[36] = Triggers;
4226     pData[40] = ControllerNumber;
4227     for (int i = 0 ; i < Triggers ; i++) {
4228     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4229     pData[47 + i * 8] = pTriggers[i].Descending;
4230     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4231     pData[49 + i * 8] = pTriggers[i].Key;
4232     pData[50 + i * 8] = pTriggers[i].NoteOff;
4233     pData[51 + i * 8] = pTriggers[i].Velocity;
4234     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4235     }
4236     }
4237    
4238     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4239     _3ewg->SetPos(36);
4240     LegatoSamples = _3ewg->ReadUint8(); // always 12
4241     _3ewg->SetPos(40);
4242     BypassUseController = _3ewg->ReadUint8();
4243     BypassKey = _3ewg->ReadUint8();
4244     BypassController = _3ewg->ReadUint8();
4245     ThresholdTime = _3ewg->ReadUint16();
4246     _3ewg->ReadInt16();
4247     ReleaseTime = _3ewg->ReadUint16();
4248     _3ewg->ReadInt16();
4249     KeyRange.low = _3ewg->ReadUint8();
4250     KeyRange.high = _3ewg->ReadUint8();
4251     _3ewg->SetPos(64);
4252     ReleaseTriggerKey = _3ewg->ReadUint8();
4253     AltSustain1Key = _3ewg->ReadUint8();
4254     AltSustain2Key = _3ewg->ReadUint8();
4255     }
4256    
4257     MidiRuleLegato::MidiRuleLegato() :
4258     LegatoSamples(12),
4259     BypassUseController(false),
4260     BypassKey(0),
4261     BypassController(1),
4262     ThresholdTime(20),
4263     ReleaseTime(20),
4264     ReleaseTriggerKey(0),
4265     AltSustain1Key(0),
4266     AltSustain2Key(0)
4267     {
4268     KeyRange.low = KeyRange.high = 0;
4269     }
4270    
4271     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4272     pData[32] = 0;
4273     pData[33] = 16;
4274     pData[36] = LegatoSamples;
4275     pData[40] = BypassUseController;
4276     pData[41] = BypassKey;
4277     pData[42] = BypassController;
4278     store16(&pData[43], ThresholdTime);
4279     store16(&pData[47], ReleaseTime);
4280     pData[51] = KeyRange.low;
4281     pData[52] = KeyRange.high;
4282     pData[64] = ReleaseTriggerKey;
4283     pData[65] = AltSustain1Key;
4284     pData[66] = AltSustain2Key;
4285     }
4286    
4287     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4288     _3ewg->SetPos(36);
4289     Articulations = _3ewg->ReadUint8();
4290     int flags = _3ewg->ReadUint8();
4291     Polyphonic = flags & 8;
4292     Chained = flags & 4;
4293     Selector = (flags & 2) ? selector_controller :
4294     (flags & 1) ? selector_key_switch : selector_none;
4295     Patterns = _3ewg->ReadUint8();
4296     _3ewg->ReadUint8(); // chosen row
4297     _3ewg->ReadUint8(); // unknown
4298     _3ewg->ReadUint8(); // unknown
4299     _3ewg->ReadUint8(); // unknown
4300     KeySwitchRange.low = _3ewg->ReadUint8();
4301     KeySwitchRange.high = _3ewg->ReadUint8();
4302     Controller = _3ewg->ReadUint8();
4303     PlayRange.low = _3ewg->ReadUint8();
4304     PlayRange.high = _3ewg->ReadUint8();
4305    
4306     int n = std::min(int(Articulations), 32);
4307     for (int i = 0 ; i < n ; i++) {
4308     _3ewg->ReadString(pArticulations[i], 32);
4309     }
4310     _3ewg->SetPos(1072);
4311     n = std::min(int(Patterns), 32);
4312     for (int i = 0 ; i < n ; i++) {
4313     _3ewg->ReadString(pPatterns[i].Name, 16);
4314     pPatterns[i].Size = _3ewg->ReadUint8();
4315     _3ewg->Read(&pPatterns[i][0], 1, 32);
4316     }
4317     }
4318    
4319     MidiRuleAlternator::MidiRuleAlternator() :
4320     Articulations(0),
4321     Patterns(0),
4322     Selector(selector_none),
4323     Controller(0),
4324     Polyphonic(false),
4325     Chained(false)
4326     {
4327     PlayRange.low = PlayRange.high = 0;
4328     KeySwitchRange.low = KeySwitchRange.high = 0;
4329     }
4330    
4331     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4332     pData[32] = 3;
4333     pData[33] = 16;
4334     pData[36] = Articulations;
4335     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4336     (Selector == selector_controller ? 2 :
4337     (Selector == selector_key_switch ? 1 : 0));
4338     pData[38] = Patterns;
4339    
4340     pData[43] = KeySwitchRange.low;
4341     pData[44] = KeySwitchRange.high;
4342     pData[45] = Controller;
4343     pData[46] = PlayRange.low;
4344     pData[47] = PlayRange.high;
4345    
4346     char* str = reinterpret_cast<char*>(pData);
4347     int pos = 48;
4348     int n = std::min(int(Articulations), 32);
4349     for (int i = 0 ; i < n ; i++, pos += 32) {
4350     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4351     }
4352    
4353     pos = 1072;
4354     n = std::min(int(Patterns), 32);
4355     for (int i = 0 ; i < n ; i++, pos += 49) {
4356     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4357     pData[pos + 16] = pPatterns[i].Size;
4358     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4359     }
4360     }
4361    
4362 schoenebeck 2584 // *************** Script ***************
4363     // *
4364    
4365     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4366     pGroup = group;
4367     pChunk = ckScri;
4368     if (ckScri) { // object is loaded from file ...
4369     // read header
4370     uint32_t headerSize = ckScri->ReadUint32();
4371     Compression = (Compression_t) ckScri->ReadUint32();
4372     Encoding = (Encoding_t) ckScri->ReadUint32();
4373     Language = (Language_t) ckScri->ReadUint32();
4374     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4375     crc = ckScri->ReadUint32();
4376     uint32_t nameSize = ckScri->ReadUint32();
4377     Name.resize(nameSize, ' ');
4378     for (int i = 0; i < nameSize; ++i)
4379     Name[i] = ckScri->ReadUint8();
4380     // to handle potential future extensions of the header
4381 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4382 schoenebeck 2584 // read actual script data
4383 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4384 schoenebeck 2584 data.resize(scriptSize);
4385     for (int i = 0; i < scriptSize; ++i)
4386     data[i] = ckScri->ReadUint8();
4387     } else { // this is a new script object, so just initialize it as such ...
4388     Compression = COMPRESSION_NONE;
4389     Encoding = ENCODING_ASCII;
4390     Language = LANGUAGE_NKSP;
4391     Bypass = false;
4392     crc = 0;
4393     Name = "Unnamed Script";
4394     }
4395     }
4396    
4397     Script::~Script() {
4398     }
4399    
4400     /**
4401     * Returns the current script (i.e. as source code) in text format.
4402     */
4403     String Script::GetScriptAsText() {
4404     String s;
4405     s.resize(data.size(), ' ');
4406     memcpy(&s[0], &data[0], data.size());
4407     return s;
4408     }
4409    
4410     /**
4411     * Replaces the current script with the new script source code text given
4412     * by @a text.
4413     *
4414     * @param text - new script source code
4415     */
4416     void Script::SetScriptAsText(const String& text) {
4417     data.resize(text.size());
4418     memcpy(&data[0], &text[0], text.size());
4419     }
4420    
4421 schoenebeck 2682 /**
4422     * Apply this script to the respective RIFF chunks. You have to call
4423     * File::Save() to make changes persistent.
4424     *
4425     * Usually there is absolutely no need to call this method explicitly.
4426     * It will be called automatically when File::Save() was called.
4427     *
4428     * @param pProgress - callback function for progress notification
4429     */
4430     void Script::UpdateChunks(progress_t* pProgress) {
4431 schoenebeck 2584 // recalculate CRC32 check sum
4432     __resetCRC(crc);
4433     __calculateCRC(&data[0], data.size(), crc);
4434 schoenebeck 3115 __finalizeCRC(crc);
4435 schoenebeck 2584 // make sure chunk exists and has the required size
4436 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4437 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4438     else pChunk->Resize(chunkSize);
4439     // fill the chunk data to be written to disk
4440     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4441     int pos = 0;
4442 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4443 schoenebeck 2584 pos += sizeof(int32_t);
4444     store32(&pData[pos], Compression);
4445     pos += sizeof(int32_t);
4446     store32(&pData[pos], Encoding);
4447     pos += sizeof(int32_t);
4448     store32(&pData[pos], Language);
4449     pos += sizeof(int32_t);
4450     store32(&pData[pos], Bypass ? 1 : 0);
4451     pos += sizeof(int32_t);
4452     store32(&pData[pos], crc);
4453     pos += sizeof(int32_t);
4454 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4455 schoenebeck 2584 pos += sizeof(int32_t);
4456     for (int i = 0; i < Name.size(); ++i, ++pos)
4457     pData[pos] = Name[i];
4458     for (int i = 0; i < data.size(); ++i, ++pos)
4459     pData[pos] = data[i];
4460     }
4461    
4462     /**
4463     * Move this script from its current ScriptGroup to another ScriptGroup
4464     * given by @a pGroup.
4465     *
4466     * @param pGroup - script's new group
4467     */
4468     void Script::SetGroup(ScriptGroup* pGroup) {
4469 persson 2836 if (this->pGroup == pGroup) return;
4470 schoenebeck 2584 if (pChunk)
4471     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4472     this->pGroup = pGroup;
4473     }
4474    
4475 schoenebeck 2601 /**
4476     * Returns the script group this script currently belongs to. Each script
4477     * is a member of exactly one ScriptGroup.
4478     *
4479     * @returns current script group
4480     */
4481     ScriptGroup* Script::GetGroup() const {
4482     return pGroup;
4483     }
4484    
4485 schoenebeck 3117 /**
4486     * Make a (semi) deep copy of the Script object given by @a orig
4487     * and assign it to this object. Note: the ScriptGroup this Script
4488     * object belongs to remains untouched by this call.
4489     *
4490     * @param orig - original Script object to be copied from
4491     */
4492     void Script::CopyAssign(const Script* orig) {
4493     Name = orig->Name;
4494     Compression = orig->Compression;
4495     Encoding = orig->Encoding;
4496     Language = orig->Language;
4497     Bypass = orig->Bypass;
4498     data = orig->data;
4499     }
4500    
4501 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4502     File* pFile = pGroup->pFile;
4503     for (int i = 0; pFile->GetInstrument(i); ++i) {
4504     Instrument* instr = pFile->GetInstrument(i);
4505     instr->RemoveScript(this);
4506     }
4507     }
4508    
4509     // *************** ScriptGroup ***************
4510     // *
4511    
4512     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4513     pFile = file;
4514     pList = lstRTIS;
4515     pScripts = NULL;
4516     if (lstRTIS) {
4517     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4518     ::LoadString(ckName, Name);
4519     } else {
4520     Name = "Default Group";
4521     }
4522     }
4523    
4524     ScriptGroup::~ScriptGroup() {
4525     if (pScripts) {
4526     std::list<Script*>::iterator iter = pScripts->begin();
4527     std::list<Script*>::iterator end = pScripts->end();
4528     while (iter != end) {
4529     delete *iter;
4530     ++iter;
4531     }
4532     delete pScripts;
4533     }
4534     }
4535    
4536 schoenebeck 2682 /**
4537     * Apply this script group to the respective RIFF chunks. You have to call
4538     * File::Save() to make changes persistent.
4539     *
4540     * Usually there is absolutely no need to call this method explicitly.
4541     * It will be called automatically when File::Save() was called.
4542     *
4543     * @param pProgress - callback function for progress notification
4544     */
4545     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4546 schoenebeck 2584 if (pScripts) {
4547     if (!pList)
4548     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4549    
4550     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4551     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4552    
4553     for (std::list<Script*>::iterator it = pScripts->begin();
4554     it != pScripts->end(); ++it)
4555     {
4556 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4557 schoenebeck 2584 }
4558     }
4559     }
4560    
4561     /** @brief Get instrument script.
4562     *
4563     * Returns the real-time instrument script with the given index.
4564     *
4565     * @param index - number of the sought script (0..n)
4566     * @returns sought script or NULL if there's no such script
4567     */
4568     Script* ScriptGroup::GetScript(uint index) {
4569     if (!pScripts) LoadScripts();
4570     std::list<Script*>::iterator it = pScripts->begin();
4571     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4572     if (i == index) return *it;
4573     return NULL;
4574     }
4575    
4576     /** @brief Add new instrument script.
4577     *
4578     * Adds a new real-time instrument script to the file. The script is not
4579     * actually used / executed unless it is referenced by an instrument to be
4580     * used. This is similar to samples, which you can add to a file, without
4581     * an instrument necessarily actually using it.
4582     *
4583     * You have to call Save() to make this persistent to the file.
4584     *
4585     * @return new empty script object
4586     */
4587     Script* ScriptGroup::AddScript() {
4588     if (!pScripts) LoadScripts();
4589     Script* pScript = new Script(this, NULL);
4590     pScripts->push_back(pScript);
4591     return pScript;
4592     }
4593    
4594     /** @brief Delete an instrument script.
4595     *
4596     * This will delete the given real-time instrument script. References of
4597     * instruments that are using that script will be removed accordingly.
4598     *
4599     * You have to call Save() to make this persistent to the file.
4600     *
4601     * @param pScript - script to delete
4602     * @throws gig::Exception if given script could not be found
4603     */
4604     void ScriptGroup::DeleteScript(Script* pScript) {
4605     if (!pScripts) LoadScripts();
4606     std::list<Script*>::iterator iter =
4607     find(pScripts->begin(), pScripts->end(), pScript);
4608     if (iter == pScripts->end())
4609     throw gig::Exception("Could not delete script, could not find given script");
4610     pScripts->erase(iter);
4611     pScript->RemoveAllScriptReferences();
4612     if (pScript->pChunk)
4613     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4614     delete pScript;
4615     }
4616    
4617     void ScriptGroup::LoadScripts() {
4618     if (pScripts) return;
4619     pScripts = new std::list<Script*>;
4620     if (!pList) return;
4621    
4622     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4623     ck = pList->GetNextSubChunk())
4624     {
4625     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4626     pScripts->push_back(new Script(this, ck));
4627     }
4628     }
4629     }
4630    
4631 schoenebeck 2 // *************** Instrument ***************
4632     // *
4633    
4634 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4635 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4636 persson 1180 { CHUNK_ID_INAM, 64 },
4637     { CHUNK_ID_ISFT, 12 },
4638     { 0, 0 }
4639     };
4640 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4641 persson 918
4642 schoenebeck 2 // Initialization
4643     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4644 persson 1182 EffectSend = 0;
4645     Attenuation = 0;
4646     FineTune = 0;
4647 schoenebeck 3112 PitchbendRange = 2;
4648 persson 1182 PianoReleaseMode = false;
4649     DimensionKeyRange.low = 0;
4650     DimensionKeyRange.high = 0;
4651 persson 1678 pMidiRules = new MidiRule*[3];
4652     pMidiRules[0] = NULL;
4653 schoenebeck 2584 pScriptRefs = NULL;
4654 schoenebeck 2
4655     // Loading
4656     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4657     if (lart) {
4658     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4659     if (_3ewg) {
4660     EffectSend = _3ewg->ReadUint16();
4661     Attenuation = _3ewg->ReadInt32();
4662     FineTune = _3ewg->ReadInt16();
4663     PitchbendRange = _3ewg->ReadInt16();
4664     uint8_t dimkeystart = _3ewg->ReadUint8();
4665     PianoReleaseMode = dimkeystart & 0x01;
4666     DimensionKeyRange.low = dimkeystart >> 1;
4667     DimensionKeyRange.high = _3ewg->ReadUint8();
4668 persson 1627
4669     if (_3ewg->GetSize() > 32) {
4670     // read MIDI rules
4671 persson 1678 int i = 0;
4672 persson 1627 _3ewg->SetPos(32);
4673     uint8_t id1 = _3ewg->ReadUint8();
4674     uint8_t id2 = _3ewg->ReadUint8();
4675    
4676 persson 2450 if (id2 == 16) {
4677     if (id1 == 4) {
4678     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4679     } else if (id1 == 0) {
4680     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4681     } else if (id1 == 3) {
4682     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4683     } else {
4684     pMidiRules[i++] = new MidiRuleUnknown;
4685     }
4686 persson 1627 }
4687 persson 2450 else if (id1 != 0 || id2 != 0) {
4688     pMidiRules[i++] = new MidiRuleUnknown;
4689     }
4690 persson 1627 //TODO: all the other types of rules
4691 persson 1678
4692     pMidiRules[i] = NULL;
4693 persson 1627 }
4694 schoenebeck 2 }
4695     }
4696    
4697 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4698     if (!pRegions) pRegions = new RegionList;
4699     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4700     if (lrgn) {
4701     RIFF::List* rgn = lrgn->GetFirstSubList();
4702     while (rgn) {
4703     if (rgn->GetListType() == LIST_TYPE_RGN) {
4704     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4705     pRegions->push_back(new Region(this, rgn));
4706     }
4707     rgn = lrgn->GetNextSubList();
4708 schoenebeck 809 }
4709 schoenebeck 1524 // Creating Region Key Table for fast lookup
4710     UpdateRegionKeyTable();
4711 schoenebeck 2 }
4712     }
4713    
4714 schoenebeck 2584 // own gig format extensions
4715     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4716     if (lst3LS) {
4717     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4718     if (ckSCSL) {
4719 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4720     int slotCount = ckSCSL->ReadUint32();
4721     if (slotCount) {
4722     int slotSize = ckSCSL->ReadUint32();
4723     ckSCSL->SetPos(headerSize); // in case of future header extensions
4724     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4725     for (int i = 0; i < slotCount; ++i) {
4726     _ScriptPooolEntry e;
4727     e.fileOffset = ckSCSL->ReadUint32();
4728     e.bypass = ckSCSL->ReadUint32() & 1;
4729     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4730     scriptPoolFileOffsets.push_back(e);
4731     }
4732 schoenebeck 2584 }
4733     }
4734     }
4735    
4736 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4737     }
4738    
4739     void Instrument::UpdateRegionKeyTable() {
4740 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4741 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4742     RegionList::iterator end = pRegions->end();
4743     for (; iter != end; ++iter) {
4744     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4745 schoenebeck 3348 const int low = std::max(int(pRegion->KeyRange.low), 0);
4746     const int high = std::min(int(pRegion->KeyRange.high), 127);
4747     for (int iKey = low; iKey <= high; iKey++) {
4748 schoenebeck 823 RegionKeyTable[iKey] = pRegion;
4749 schoenebeck 2 }
4750     }
4751     }
4752    
4753     Instrument::~Instrument() {
4754 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4755     delete pMidiRules[i];
4756     }
4757 persson 1678 delete[] pMidiRules;
4758 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4759 schoenebeck 2 }
4760    
4761     /**
4762 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4763     * You have to call File::Save() to make changes persistent.
4764     *
4765     * Usually there is absolutely no need to call this method explicitly.
4766     * It will be called automatically when File::Save() was called.
4767     *
4768 schoenebeck 2682 * @param pProgress - callback function for progress notification
4769 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4770     */
4771 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4772 schoenebeck 809 // first update base classes' chunks
4773 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4774 schoenebeck 809
4775     // update Regions' chunks
4776 schoenebeck 823 {
4777     RegionList::iterator iter = pRegions->begin();
4778     RegionList::iterator end = pRegions->end();
4779     for (; iter != end; ++iter)
4780 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4781 schoenebeck 823 }
4782 schoenebeck 809
4783     // make sure 'lart' RIFF list chunk exists
4784     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4785     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4786     // make sure '3ewg' RIFF chunk exists
4787     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4788 persson 1264 if (!_3ewg) {
4789     File* pFile = (File*) GetParent();
4790    
4791     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4792     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4793     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4794     memset(_3ewg->LoadChunkData(), 0, size);
4795     }
4796 schoenebeck 809 // update '3ewg' RIFF chunk
4797     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4798 persson 1179 store16(&pData[0], EffectSend);
4799     store32(&pData[2], Attenuation);
4800     store16(&pData[6], FineTune);
4801     store16(&pData[8], PitchbendRange);
4802 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4803 schoenebeck 809 DimensionKeyRange.low << 1;
4804 persson 1179 pData[10] = dimkeystart;
4805     pData[11] = DimensionKeyRange.high;
4806 persson 2450
4807     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4808     pData[32] = 0;
4809     pData[33] = 0;
4810     } else {
4811     for (int i = 0 ; pMidiRules[i] ; i++) {
4812     pMidiRules[i]->UpdateChunks(pData);
4813     }
4814     }
4815 schoenebeck 2584
4816     // own gig format extensions
4817 schoenebeck 2648 if (ScriptSlotCount()) {
4818     // make sure we have converted the original loaded script file
4819     // offsets into valid Script object pointers
4820     LoadScripts();
4821    
4822 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4823     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4824 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4825 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4826     const int slotSize = 2 * sizeof(uint32_t);
4827     const int totalChunkSize = headerSize + slotCount * slotSize;
4828 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4829 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4830     else ckSCSL->Resize(totalChunkSize);
4831 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4832 schoenebeck 2609 int pos = 0;
4833     store32(&pData[pos], headerSize);
4834     pos += sizeof(uint32_t);
4835     store32(&pData[pos], slotCount);
4836     pos += sizeof(uint32_t);
4837     store32(&pData[pos], slotSize);
4838     pos += sizeof(uint32_t);
4839     for (int i = 0; i < slotCount; ++i) {
4840     // arbitrary value, the actual file offset will be updated in
4841     // UpdateScriptFileOffsets() after the file has been resized
4842     int bogusFileOffset = 0;
4843     store32(&pData[pos], bogusFileOffset);
4844 schoenebeck 2584 pos += sizeof(uint32_t);
4845     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4846     pos += sizeof(uint32_t);
4847     }
4848 schoenebeck 2648 } else {
4849     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4850     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4851     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4852 schoenebeck 2584 }
4853 schoenebeck 809 }
4854    
4855 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4856     // own gig format extensions
4857 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4858 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4859     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4860 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4861 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4862     ckSCSL->SetPos(headerSize);
4863     for (int i = 0; i < slotCount; ++i) {
4864 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4865 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4866     (*pScriptRefs)[i].script->pChunk->GetPos() -
4867 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4868     );
4869 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4870     // jump over flags entry (containing the bypass flag)
4871     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4872     }
4873     }
4874     }
4875    
4876 schoenebeck 809 /**
4877 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4878     *
4879     * @param Key MIDI Key number of triggered note / key (0 - 127)
4880     * @returns pointer adress to the appropriate Region or NULL if there
4881     * there is no Region defined for the given \a Key
4882     */
4883     Region* Instrument::GetRegion(unsigned int Key) {
4884 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4885 schoenebeck 2 return RegionKeyTable[Key];
4886 schoenebeck 823
4887 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4888     if (Key <= pRegions[i]->KeyRange.high &&
4889     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4890     }
4891     return NULL;*/
4892     }
4893    
4894     /**
4895     * Returns the first Region of the instrument. You have to call this
4896     * method once before you use GetNextRegion().
4897     *
4898     * @returns pointer address to first region or NULL if there is none
4899     * @see GetNextRegion()
4900     */
4901     Region* Instrument::GetFirstRegion() {
4902 schoenebeck 823 if (!pRegions) return NULL;
4903     RegionsIterator = pRegions->begin();
4904     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4905 schoenebeck 2 }
4906    
4907     /**
4908     * Returns the next Region of the instrument. You have to call
4909     * GetFirstRegion() once before you can use this method. By calling this
4910     * method multiple times it iterates through the available Regions.
4911     *
4912     * @returns pointer address to the next region or NULL if end reached
4913     * @see GetFirstRegion()
4914     */
4915     Region* Instrument::GetNextRegion() {
4916 schoenebeck 823 if (!pRegions) return NULL;
4917     RegionsIterator++;
4918     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4919 schoenebeck 2 }
4920    
4921 schoenebeck 809 Region* Instrument::AddRegion() {
4922     // create new Region object (and its RIFF chunks)
4923     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4924     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4925     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4926     Region* pNewRegion = new Region(this, rgn);
4927 schoenebeck 823 pRegions->push_back(pNewRegion);
4928 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
4929 schoenebeck 809 // update Region key table for fast lookup
4930     UpdateRegionKeyTable();
4931     // done
4932     return pNewRegion;
4933     }
4934 schoenebeck 2
4935 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4936     if (!pRegions) return;
4937 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4938 schoenebeck 809 // update Region key table for fast lookup
4939     UpdateRegionKeyTable();
4940     }
4941 schoenebeck 2
4942 persson 1627 /**
4943 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4944     *
4945     * This method can be used to reorder the sequence of instruments in a
4946     * .gig file. This might be helpful especially on large .gig files which
4947     * contain a large number of instruments within the same .gig file. So
4948     * grouping such instruments to similar ones, can help to keep track of them
4949     * when working with such complex .gig files.
4950     *
4951     * When calling this method, this instrument will be removed from in its
4952     * current position in the instruments list and moved to the requested
4953     * target position provided by @param dst. You may also pass NULL as
4954     * argument to this method, in that case this intrument will be moved to the
4955     * very end of the .gig file's instrument list.
4956     *
4957     * You have to call Save() to make the order change persistent to the .gig
4958     * file.
4959     *
4960     * Currently this method is limited to moving the instrument within the same
4961     * .gig file. Trying to move it to another .gig file by calling this method
4962     * will throw an exception.
4963     *
4964     * @param dst - destination instrument at which this instrument will be
4965     * moved to, or pass NULL for moving to end of list
4966     * @throw gig::Exception if this instrument and target instrument are not
4967     * part of the same file
4968     */
4969     void Instrument::MoveTo(Instrument* dst) {
4970     if (dst && GetParent() != dst->GetParent())
4971     throw Exception(
4972     "gig::Instrument::MoveTo() can only be used for moving within "
4973     "the same gig file."
4974     );
4975    
4976     File* pFile = (File*) GetParent();
4977    
4978     // move this instrument within the instrument list
4979     {
4980 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
4981 schoenebeck 2700
4982 persson 2836 File::InstrumentList::iterator itFrom =
4983 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4984    
4985 persson 2836 File::InstrumentList::iterator itTo =
4986 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4987    
4988     list.splice(itTo, list, itFrom);
4989     }
4990    
4991     // move the instrument's actual list RIFF chunk appropriately
4992     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4993     lstCkInstruments->MoveSubChunk(
4994     this->pCkInstrument,
4995 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4996 schoenebeck 2700 );
4997     }
4998    
4999     /**
5000 persson 1678 * Returns a MIDI rule of the instrument.
5001 persson 1627 *
5002     * The list of MIDI rules, at least in gig v3, always contains at
5003     * most two rules. The second rule can only be the DEF filter
5004     * (which currently isn't supported by libgig).
5005     *
5006 persson 1678 * @param i - MIDI rule number
5007     * @returns pointer address to MIDI rule number i or NULL if there is none
5008 persson 1627 */
5009 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
5010     return pMidiRules[i];
5011 persson 1627 }
5012 persson 2450
5013 schoenebeck 2394 /**
5014 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5015     *
5016     * @returns the new MIDI rule
5017     */
5018     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5019     delete pMidiRules[0];
5020     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5021     pMidiRules[0] = r;
5022     pMidiRules[1] = 0;
5023     return r;
5024     }
5025    
5026     /**
5027     * Adds the legato MIDI rule to the instrument.
5028     *
5029     * @returns the new MIDI rule
5030     */
5031     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5032     delete pMidiRules[0];
5033     MidiRuleLegato* r = new MidiRuleLegato;
5034     pMidiRules[0] = r;
5035     pMidiRules[1] = 0;
5036     return r;
5037     }
5038    
5039     /**
5040     * Adds the alternator MIDI rule to the instrument.
5041     *
5042     * @returns the new MIDI rule
5043     */
5044     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5045     delete pMidiRules[0];
5046     MidiRuleAlternator* r = new MidiRuleAlternator;
5047     pMidiRules[0] = r;
5048     pMidiRules[1] = 0;
5049     return r;
5050     }
5051    
5052     /**
5053     * Deletes a MIDI rule from the instrument.
5054     *
5055     * @param i - MIDI rule number
5056     */
5057     void Instrument::DeleteMidiRule(int i) {
5058     delete pMidiRules[i];
5059     pMidiRules[i] = 0;
5060     }
5061    
5062 schoenebeck 2584 void Instrument::LoadScripts() {
5063     if (pScriptRefs) return;
5064     pScriptRefs = new std::vector<_ScriptPooolRef>;
5065     if (scriptPoolFileOffsets.empty()) return;
5066     File* pFile = (File*) GetParent();
5067     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5068 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5069 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5070     ScriptGroup* group = pFile->GetScriptGroup(i);
5071     for (uint s = 0; group->GetScript(s); ++s) {
5072     Script* script = group->GetScript(s);
5073     if (script->pChunk) {
5074 schoenebeck 3053 uint32_t offset = uint32_t(
5075     script->pChunk->GetFilePos() -
5076     script->pChunk->GetPos() -
5077     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5078     );
5079 schoenebeck 2609 if (offset == soughtOffset)
5080 schoenebeck 2584 {
5081     _ScriptPooolRef ref;
5082     ref.script = script;
5083     ref.bypass = scriptPoolFileOffsets[k].bypass;
5084     pScriptRefs->push_back(ref);
5085     break;
5086     }
5087     }
5088     }
5089     }
5090     }
5091     // we don't need that anymore
5092     scriptPoolFileOffsets.clear();
5093     }
5094    
5095 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5096 schoenebeck 2584 *
5097 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5098     * @a index.
5099     *
5100     * @note This is an own format extension which did not exist i.e. in the
5101     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5102     * gigedit.
5103     *
5104     * @param index - instrument script slot index
5105     * @returns script or NULL if index is out of bounds
5106     */
5107     Script* Instrument::GetScriptOfSlot(uint index) {
5108     LoadScripts();
5109     if (index >= pScriptRefs->size()) return NULL;
5110     return pScriptRefs->at(index).script;
5111     }
5112    
5113     /** @brief Add new instrument script slot (gig format extension).
5114     *
5115 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5116     * which shall be executed by the sampler for for this instrument. The
5117     * script will be added to the end of the script list of this instrument.
5118     * The positions of the scripts in the Instrument's Script list are
5119     * relevant, because they define in which order they shall be executed by
5120     * the sampler. For this reason it is also legal to add the same script
5121     * twice to an instrument, for example you might have a script called
5122     * "MyFilter" which performs an event filter task, and you might have
5123     * another script called "MyNoteTrigger" which triggers new notes, then you
5124     * might for example have the following list of scripts on the instrument:
5125     *
5126     * 1. Script "MyFilter"
5127     * 2. Script "MyNoteTrigger"
5128     * 3. Script "MyFilter"
5129     *
5130     * Which would make sense, because the 2nd script launched new events, which
5131     * you might need to filter as well.
5132     *
5133     * There are two ways to disable / "bypass" scripts. You can either disable
5134     * a script locally for the respective script slot on an instrument (i.e. by
5135     * passing @c false to the 2nd argument of this method, or by calling
5136     * SetScriptBypassed()). Or you can disable a script globally for all slots
5137     * and all instruments by setting Script::Bypass.
5138     *
5139     * @note This is an own format extension which did not exist i.e. in the
5140     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5141     * gigedit.
5142     *
5143     * @param pScript - script that shall be executed for this instrument
5144     * @param bypass - if enabled, the sampler shall skip executing this
5145     * script (in the respective list position)
5146     * @see SetScriptBypassed()
5147     */
5148     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5149     LoadScripts();
5150     _ScriptPooolRef ref = { pScript, bypass };
5151     pScriptRefs->push_back(ref);
5152     }
5153    
5154     /** @brief Flip two script slots with each other (gig format extension).
5155     *
5156     * Swaps the position of the two given scripts in the Instrument's Script
5157     * list. The positions of the scripts in the Instrument's Script list are
5158     * relevant, because they define in which order they shall be executed by
5159     * the sampler.
5160     *
5161     * @note This is an own format extension which did not exist i.e. in the
5162     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5163     * gigedit.
5164     *
5165     * @param index1 - index of the first script slot to swap
5166     * @param index2 - index of the second script slot to swap
5167     */
5168     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5169     LoadScripts();
5170     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5171     return;
5172     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5173     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5174     (*pScriptRefs)[index2] = tmp;
5175     }
5176    
5177     /** @brief Remove script slot.
5178     *
5179     * Removes the script slot with the given slot index.
5180     *
5181     * @param index - index of script slot to remove
5182     */
5183     void Instrument::RemoveScriptSlot(uint index) {
5184     LoadScripts();
5185     if (index >= pScriptRefs->size()) return;
5186     pScriptRefs->erase( pScriptRefs->begin() + index );
5187     }
5188    
5189     /** @brief Remove reference to given Script (gig format extension).
5190     *
5191     * This will remove all script slots on the instrument which are referencing
5192     * the given script.
5193     *
5194     * @note This is an own format extension which did not exist i.e. in the
5195     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5196     * gigedit.
5197     *
5198     * @param pScript - script reference to remove from this instrument
5199     * @see RemoveScriptSlot()
5200     */
5201     void Instrument::RemoveScript(Script* pScript) {
5202     LoadScripts();
5203 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5204 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5205     pScriptRefs->erase( pScriptRefs->begin() + i );
5206     }
5207     }
5208     }
5209    
5210     /** @brief Instrument's amount of script slots.
5211     *
5212     * This method returns the amount of script slots this instrument currently
5213     * uses.
5214     *
5215     * A script slot is a reference of a real-time instrument script to be
5216     * executed by the sampler. The scripts will be executed by the sampler in
5217     * sequence of the slots. One (same) script may be referenced multiple
5218     * times in different slots.
5219     *
5220     * @note This is an own format extension which did not exist i.e. in the
5221     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5222     * gigedit.
5223     */
5224     uint Instrument::ScriptSlotCount() const {
5225 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5226 schoenebeck 2584 }
5227    
5228     /** @brief Whether script execution shall be skipped.
5229     *
5230     * Defines locally for the Script reference slot in the Instrument's Script
5231     * list, whether the script shall be skipped by the sampler regarding
5232     * execution.
5233     *
5234     * It is also possible to ignore exeuction of the script globally, for all
5235     * slots and for all instruments by setting Script::Bypass.
5236     *
5237     * @note This is an own format extension which did not exist i.e. in the
5238     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5239     * gigedit.
5240     *
5241     * @param index - index of the script slot on this instrument
5242     * @see Script::Bypass
5243     */
5244     bool Instrument::IsScriptSlotBypassed(uint index) {
5245     if (index >= ScriptSlotCount()) return false;
5246     return pScriptRefs ? pScriptRefs->at(index).bypass
5247     : scriptPoolFileOffsets.at(index).bypass;
5248    
5249     }
5250    
5251     /** @brief Defines whether execution shall be skipped.
5252     *
5253     * You can call this method to define locally whether or whether not the
5254     * given script slot shall be executed by the sampler.
5255     *
5256     * @note This is an own format extension which did not exist i.e. in the
5257     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5258     * gigedit.
5259     *
5260     * @param index - script slot index on this instrument
5261     * @param bBypass - if true, the script slot will be skipped by the sampler
5262     * @see Script::Bypass
5263     */
5264     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5265     if (index >= ScriptSlotCount()) return;
5266     if (pScriptRefs)
5267     pScriptRefs->at(index).bypass = bBypass;
5268     else
5269     scriptPoolFileOffsets.at(index).bypass = bBypass;
5270     }
5271    
5272 persson 2450 /**
5273 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5274     * and assign it to this object.
5275     *
5276     * Note that all sample pointers referenced by @a orig are simply copied as
5277     * memory address. Thus the respective samples are shared, not duplicated!
5278     *
5279     * @param orig - original Instrument object to be copied from
5280     */
5281     void Instrument::CopyAssign(const Instrument* orig) {
5282 schoenebeck 2482 CopyAssign(orig, NULL);
5283     }
5284    
5285     /**
5286     * Make a (semi) deep copy of the Instrument object given by @a orig
5287     * and assign it to this object.
5288     *
5289     * @param orig - original Instrument object to be copied from
5290     * @param mSamples - crosslink map between the foreign file's samples and
5291     * this file's samples
5292     */
5293     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5294 schoenebeck 2394 // handle base class
5295     // (without copying DLS region stuff)
5296     DLS::Instrument::CopyAssignCore(orig);
5297    
5298     // handle own member variables
5299     Attenuation = orig->Attenuation;
5300     EffectSend = orig->EffectSend;
5301     FineTune = orig->FineTune;
5302     PitchbendRange = orig->PitchbendRange;
5303     PianoReleaseMode = orig->PianoReleaseMode;
5304     DimensionKeyRange = orig->DimensionKeyRange;
5305 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5306     pScriptRefs = orig->pScriptRefs;
5307 schoenebeck 2394
5308     // free old midi rules
5309     for (int i = 0 ; pMidiRules[i] ; i++) {
5310     delete pMidiRules[i];
5311     }
5312     //TODO: MIDI rule copying
5313     pMidiRules[0] = NULL;
5314    
5315     // delete all old regions
5316     while (Regions) DeleteRegion(GetFirstRegion());
5317     // create new regions and copy them from original
5318     {
5319     RegionList::const_iterator it = orig->pRegions->begin();
5320     for (int i = 0; i < orig->Regions; ++i, ++it) {
5321     Region* dstRgn = AddRegion();
5322     //NOTE: Region does semi-deep copy !
5323     dstRgn->CopyAssign(
5324 schoenebeck 2482 static_cast<gig::Region*>(*it),
5325     mSamples
5326 schoenebeck 2394 );
5327     }
5328     }
5329 schoenebeck 809
5330 schoenebeck 2394 UpdateRegionKeyTable();
5331     }
5332 schoenebeck 809
5333 schoenebeck 2394
5334 schoenebeck 929 // *************** Group ***************
5335     // *
5336    
5337     /** @brief Constructor.
5338     *
5339 schoenebeck 930 * @param file - pointer to the gig::File object
5340     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5341     * NULL if this is a new Group
5342 schoenebeck 929 */
5343 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5344 schoenebeck 929 pFile = file;
5345     pNameChunk = ck3gnm;
5346     ::LoadString(pNameChunk, Name);
5347     }
5348    
5349     Group::~Group() {
5350 schoenebeck 1099 // remove the chunk associated with this group (if any)
5351     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5352 schoenebeck 929 }
5353    
5354     /** @brief Update chunks with current group settings.
5355     *
5356 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5357     * to call File::Save() to make changes persistent.
5358     *
5359     * Usually there is absolutely no need to call this method explicitly.
5360     * It will be called automatically when File::Save() was called.
5361 schoenebeck 2682 *
5362     * @param pProgress - callback function for progress notification
5363 schoenebeck 929 */
5364 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5365 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5366 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5367 persson 1192 if (!_3gri) {
5368     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5369     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5370     }
5371 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5372 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5373 persson 1266
5374     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5375     // v3 has a fixed list of 128 strings, find a free one
5376     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5377     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5378     pNameChunk = ck;
5379     break;
5380     }
5381     }
5382     }
5383    
5384 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5385     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5386     }
5387    
5388 schoenebeck 930 /**
5389     * Returns the first Sample of this Group. You have to call this method
5390     * once before you use GetNextSample().
5391     *
5392     * <b>Notice:</b> this method might block for a long time, in case the
5393     * samples of this .gig file were not scanned yet
5394     *
5395     * @returns pointer address to first Sample or NULL if there is none
5396     * applied to this Group
5397     * @see GetNextSample()
5398     */
5399     Sample* Group::GetFirstSample() {
5400     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5401     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5402     if (pSample->GetGroup() == this) return pSample;
5403     }
5404     return NULL;
5405     }
5406 schoenebeck 929
5407 schoenebeck 930 /**
5408     * Returns the next Sample of the Group. You have to call
5409     * GetFirstSample() once before you can use this method. By calling this
5410     * method multiple times it iterates through the Samples assigned to
5411     * this Group.
5412     *
5413     * @returns pointer address to the next Sample of this Group or NULL if
5414     * end reached
5415     * @see GetFirstSample()
5416     */
5417     Sample* Group::GetNextSample() {
5418     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5419     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5420     if (pSample->GetGroup() == this) return pSample;
5421     }
5422     return NULL;
5423     }
5424 schoenebeck 929
5425 schoenebeck 930 /**
5426     * Move Sample given by \a pSample from another Group to this Group.
5427     */
5428     void Group::AddSample(Sample* pSample) {
5429     pSample->pGroup = this;
5430     }
5431    
5432     /**
5433     * Move all members of this group to another group (preferably the 1st
5434     * one except this). This method is called explicitly by
5435     * File::DeleteGroup() thus when a Group was deleted. This code was
5436     * intentionally not placed in the destructor!
5437     */
5438     void Group::MoveAll() {
5439     // get "that" other group first
5440     Group* pOtherGroup = NULL;
5441     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5442     if (pOtherGroup != this) break;
5443     }
5444     if (!pOtherGroup) throw Exception(
5445     "Could not move samples to another group, since there is no "
5446     "other Group. This is a bug, report it!"
5447     );
5448     // now move all samples of this group to the other group
5449     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5450     pOtherGroup->AddSample(pSample);
5451     }
5452     }
5453    
5454    
5455    
5456 schoenebeck 2 // *************** File ***************
5457     // *
5458    
5459 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5460 persson 1199 const DLS::version_t File::VERSION_2 = {
5461     0, 2, 19980628 & 0xffff, 19980628 >> 16
5462     };
5463    
5464 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5465 persson 1199 const DLS::version_t File::VERSION_3 = {
5466     0, 3, 20030331 & 0xffff, 20030331 >> 16
5467     };
5468    
5469 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5470 persson 1180 { CHUNK_ID_IARL, 256 },
5471     { CHUNK_ID_IART, 128 },
5472     { CHUNK_ID_ICMS, 128 },
5473     { CHUNK_ID_ICMT, 1024 },
5474     { CHUNK_ID_ICOP, 128 },
5475     { CHUNK_ID_ICRD, 128 },
5476     { CHUNK_ID_IENG, 128 },
5477     { CHUNK_ID_IGNR, 128 },
5478     { CHUNK_ID_IKEY, 128 },
5479     { CHUNK_ID_IMED, 128 },
5480     { CHUNK_ID_INAM, 128 },
5481     { CHUNK_ID_IPRD, 128 },
5482     { CHUNK_ID_ISBJ, 128 },
5483     { CHUNK_ID_ISFT, 128 },
5484     { CHUNK_ID_ISRC, 128 },
5485     { CHUNK_ID_ISRF, 128 },
5486     { CHUNK_ID_ITCH, 128 },
5487     { 0, 0 }
5488     };
5489    
5490 schoenebeck 809 File::File() : DLS::File() {
5491 schoenebeck 1524 bAutoLoad = true;
5492 persson 1264 *pVersion = VERSION_3;
5493 schoenebeck 929 pGroups = NULL;
5494 schoenebeck 2584 pScriptGroups = NULL;
5495 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5496 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5497 persson 1192
5498     // add some mandatory chunks to get the file chunks in right
5499     // order (INFO chunk will be moved to first position later)
5500     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5501     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5502 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5503    
5504     GenerateDLSID();
5505 schoenebeck 809 }
5506    
5507 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5508 schoenebeck 1524 bAutoLoad = true;
5509 schoenebeck 929 pGroups = NULL;
5510 schoenebeck 2584 pScriptGroups = NULL;
5511 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5512 schoenebeck 2 }
5513    
5514 schoenebeck 929 File::~File() {
5515     if (pGroups) {
5516     std::list<Group*>::iterator iter = pGroups->begin();
5517     std::list<Group*>::iterator end = pGroups->end();
5518     while (iter != end) {
5519     delete *iter;
5520     ++iter;
5521     }
5522     delete pGroups;
5523     }
5524 schoenebeck 2584 if (pScriptGroups) {
5525     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5526     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5527     while (iter != end) {
5528     delete *iter;
5529     ++iter;
5530     }
5531     delete pScriptGroups;
5532     }
5533 schoenebeck 929 }
5534    
5535 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5536     if (!pSamples) LoadSamples(pProgress);
5537 schoenebeck 2 if (!pSamples) return NULL;
5538     SamplesIterator = pSamples->begin();
5539     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5540     }
5541    
5542     Sample* File::GetNextSample() {
5543     if (!pSamples) return NULL;
5544     SamplesIterator++;
5545     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5546     }
5547 schoenebeck 2482
5548     /**
5549     * Returns Sample object of @a index.
5550     *
5551     * @returns sample object or NULL if index is out of bounds
5552     */
5553     Sample* File::GetSample(uint index) {
5554     if (!pSamples) LoadSamples();
5555     if (!pSamples) return NULL;
5556     DLS::File::SampleList::iterator it = pSamples->begin();
5557     for (int i = 0; i < index; ++i) {
5558     ++it;
5559     if (it == pSamples->end()) return NULL;
5560     }
5561     if (it == pSamples->end()) return NULL;
5562     return static_cast<gig::Sample*>( *it );
5563     }
5564 schoenebeck 2
5565 schoenebeck 809 /** @brief Add a new sample.
5566     *
5567     * This will create a new Sample object for the gig file. You have to
5568     * call Save() to make this persistent to the file.
5569     *
5570     * @returns pointer to new Sample object
5571     */
5572     Sample* File::AddSample() {
5573     if (!pSamples) LoadSamples();
5574     __ensureMandatoryChunksExist();
5575     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5576     // create new Sample object and its respective 'wave' list chunk
5577     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5578     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5579 persson 1192
5580     // add mandatory chunks to get the chunks in right order
5581     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5582     wave->AddSubList(LIST_TYPE_INFO);
5583    
5584 schoenebeck 809 pSamples->push_back(pSample);
5585     return pSample;
5586     }
5587    
5588     /** @brief Delete a sample.
5589     *
5590 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5591     * references to this sample from Regions and DimensionRegions will be
5592     * removed. You have to call Save() to make this persistent to the file.
5593 schoenebeck 809 *
5594     * @param pSample - sample to delete
5595     * @throws gig::Exception if given sample could not be found
5596     */
5597     void File::DeleteSample(Sample* pSample) {
5598 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5599     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5600 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5601 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5602 schoenebeck 809 pSamples->erase(iter);
5603     delete pSample;
5604 persson 1266
5605 persson 1678 SampleList::iterator tmp = SamplesIterator;
5606 persson 1266 // remove all references to the sample
5607     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5608     instrument = GetNextInstrument()) {
5609     for (Region* region = instrument->GetFirstRegion() ; region ;
5610     region = instrument->GetNextRegion()) {
5611    
5612     if (region->GetSample() == pSample) region->SetSample(NULL);
5613    
5614     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5615     gig::DimensionRegion *d = region->pDimensionRegions[i];
5616     if (d->pSample == pSample) d->pSample = NULL;
5617     }
5618     }
5619     }
5620 persson 1678 SamplesIterator = tmp; // restore iterator
5621 schoenebeck 809 }
5622    
5623 schoenebeck 823 void File::LoadSamples() {
5624     LoadSamples(NULL);
5625     }
5626    
5627 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5628 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5629     // to resolve the group they belong to
5630 schoenebeck 1158 if (!pGroups) LoadGroups();
5631 schoenebeck 930
5632 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5633    
5634 persson 666 RIFF::File* file = pRIFF;
5635 schoenebeck 515
5636 persson 666 // just for progress calculation
5637     int iSampleIndex = 0;
5638     int iTotalSamples = WavePoolCount;
5639 schoenebeck 515
5640 persson 666 // check if samples should be loaded from extension files
5641 schoenebeck 2913 // (only for old gig files < 2 GB)
5642 persson 666 int lastFileNo = 0;
5643 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5644 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5645     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5646     }
5647 persson 666 }
5648 schoenebeck 780 String name(pRIFF->GetFileName());
5649 schoenebeck 3053 int nameLen = (int) name.length();
5650 persson 666 char suffix[6];
5651 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5652 schoenebeck 515
5653 persson 666 for (int fileNo = 0 ; ; ) {
5654     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5655     if (wvpl) {
5656 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5657 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5658     while (wave) {
5659     if (wave->GetListType() == LIST_TYPE_WAVE) {
5660     // notify current progress
5661     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5662     __notify_progress(pProgress, subprogress);
5663    
5664 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5665 schoenebeck 2989 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5666 persson 666
5667     iSampleIndex++;
5668     }
5669     wave = wvpl->GetNextSubList();
5670 schoenebeck 2 }
5671 persson 666
5672     if (fileNo == lastFileNo) break;
5673    
5674     // open extension file (*.gx01, *.gx02, ...)
5675     fileNo++;
5676     sprintf(suffix, ".gx%02d", fileNo);
5677     name.replace(nameLen, 5, suffix);
5678     file = new RIFF::File(name);
5679     ExtensionFiles.push_back(file);
5680 schoenebeck 823 } else break;
5681 schoenebeck 2 }
5682 persson 666
5683     __notify_progress(pProgress, 1.0); // notify done
5684 schoenebeck 2 }
5685    
5686     Instrument* File::GetFirstInstrument() {
5687     if (!pInstruments) LoadInstruments();
5688     if (!pInstruments) return NULL;
5689     InstrumentsIterator = pInstruments->begin();
5690 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5691 schoenebeck 2 }
5692    
5693     Instrument* File::GetNextInstrument() {
5694     if (!pInstruments) return NULL;
5695     InstrumentsIterator++;
5696 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5697 schoenebeck 2 }
5698    
5699 schoenebeck 21 /**
5700     * Returns the instrument with the given index.
5701     *
5702 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5703     * @param pProgress - optional: callback function for progress notification
5704 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5705     */
5706 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5707     if (!pInstruments) {
5708     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5709    
5710     // sample loading subtask
5711     progress_t subprogress;
5712     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5713     __notify_progress(&subprogress, 0.0f);
5714 schoenebeck 1524 if (GetAutoLoad())
5715     GetFirstSample(&subprogress); // now force all samples to be loaded
5716 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5717    
5718     // instrument loading subtask
5719     if (pProgress && pProgress->callback) {
5720     subprogress.__range_min = subprogress.__range_max;
5721     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5722     }
5723     __notify_progress(&subprogress, 0.0f);
5724     LoadInstruments(&subprogress);
5725     __notify_progress(&subprogress, 1.0f);
5726     }
5727 schoenebeck 21 if (!pInstruments) return NULL;
5728     InstrumentsIterator = pInstruments->begin();
5729     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5730 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5731 schoenebeck 21 InstrumentsIterator++;
5732     }
5733     return NULL;
5734     }
5735    
5736 schoenebeck 809 /** @brief Add a new instrument definition.
5737     *
5738     * This will create a new Instrument object for the gig file. You have
5739     * to call Save() to make this persistent to the file.
5740     *
5741     * @returns pointer to new Instrument object
5742     */
5743     Instrument* File::AddInstrument() {
5744     if (!pInstruments) LoadInstruments();
5745     __ensureMandatoryChunksExist();
5746     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5747     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5748 persson 1192
5749     // add mandatory chunks to get the chunks in right order
5750     lstInstr->AddSubList(LIST_TYPE_INFO);
5751 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5752 persson 1192
5753 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5754 persson 1209 pInstrument->GenerateDLSID();
5755 persson 1182
5756 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5757    
5758 persson 1182 // this string is needed for the gig to be loadable in GSt:
5759     pInstrument->pInfo->Software = "Endless Wave";
5760    
5761 schoenebeck 809 pInstruments->push_back(pInstrument);
5762     return pInstrument;
5763     }
5764 schoenebeck 2394
5765     /** @brief Add a duplicate of an existing instrument.
5766     *
5767     * Duplicates the instrument definition given by @a orig and adds it
5768     * to this file. This allows in an instrument editor application to
5769     * easily create variations of an instrument, which will be stored in
5770     * the same .gig file, sharing i.e. the same samples.
5771     *
5772     * Note that all sample pointers referenced by @a orig are simply copied as
5773     * memory address. Thus the respective samples are shared, not duplicated!
5774     *
5775     * You have to call Save() to make this persistent to the file.
5776     *
5777     * @param orig - original instrument to be copied
5778     * @returns duplicated copy of the given instrument
5779     */
5780     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5781     Instrument* instr = AddInstrument();
5782     instr->CopyAssign(orig);
5783     return instr;
5784     }
5785 schoenebeck 2482
5786     /** @brief Add content of another existing file.
5787     *
5788     * Duplicates the samples, groups and instruments of the original file
5789     * given by @a pFile and adds them to @c this File. In case @c this File is
5790     * a new one that you haven't saved before, then you have to call
5791     * SetFileName() before calling AddContentOf(), because this method will
5792     * automatically save this file during operation, which is required for
5793     * writing the sample waveform data by disk streaming.
5794     *
5795     * @param pFile - original file whose's content shall be copied from
5796     */
5797     void File::AddContentOf(File* pFile) {
5798     static int iCallCount = -1;
5799     iCallCount++;
5800     std::map<Group*,Group*> mGroups;
5801     std::map<Sample*,Sample*> mSamples;
5802    
5803     // clone sample groups
5804     for (int i = 0; pFile->GetGroup(i); ++i) {
5805     Group* g = AddGroup();
5806     g->Name =
5807     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5808     mGroups[pFile->GetGroup(i)] = g;
5809     }
5810    
5811     // clone samples (not waveform data here yet)
5812     for (int i = 0; pFile->GetSample(i); ++i) {
5813     Sample* s = AddSample();
5814     s->CopyAssignMeta(pFile->GetSample(i));
5815     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5816     mSamples[pFile->GetSample(i)] = s;
5817     }
5818 schoenebeck 3117
5819     // clone script groups and their scripts
5820     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5821     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5822     ScriptGroup* dg = AddScriptGroup();
5823     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5824     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5825     Script* ss = sg->GetScript(iScript);
5826     Script* ds = dg->AddScript();
5827     ds->CopyAssign(ss);
5828     }
5829     }
5830    
5831 schoenebeck 2482 //BUG: For some reason this method only works with this additional
5832     // Save() call in between here.
5833     //
5834     // Important: The correct one of the 2 Save() methods has to be called
5835     // here, depending on whether the file is completely new or has been
5836     // saved to disk already, otherwise it will result in data corruption.
5837     if (pRIFF->IsNew())
5838     Save(GetFileName());
5839     else
5840     Save();
5841    
5842     // clone instruments
5843     // (passing the crosslink table here for the cloned samples)
5844     for (int i = 0; pFile->GetInstrument(i); ++i) {
5845     Instrument* instr = AddInstrument();
5846     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5847     }
5848    
5849     // Mandatory: file needs to be saved to disk at this point, so this
5850     // file has the correct size and data layout for writing the samples'
5851     // waveform data to disk.
5852     Save();
5853    
5854     // clone samples' waveform data
5855     // (using direct read & write disk streaming)
5856     for (int i = 0; pFile->GetSample(i); ++i) {
5857     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5858     }
5859     }
5860 schoenebeck 809
5861     /** @brief Delete an instrument.
5862     *
5863     * This will delete the given Instrument object from the gig file. You
5864     * have to call Save() to make this persistent to the file.
5865     *
5866     * @param pInstrument - instrument to delete
5867 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5868 schoenebeck 809 */
5869     void File::DeleteInstrument(Instrument* pInstrument) {
5870     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5871 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5872 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5873     pInstruments->erase(iter);
5874     delete pInstrument;
5875     }
5876    
5877 schoenebeck 823 void File::LoadInstruments() {
5878     LoadInstruments(NULL);
5879     }
5880    
5881 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5882 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5883 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5884     if (lstInstruments) {
5885 schoenebeck 515 int iInstrumentIndex = 0;
5886 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5887     while (lstInstr) {
5888     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5889 schoenebeck 515 // notify current progress
5890     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5891     __notify_progress(pProgress, localProgress);
5892    
5893     // divide local progress into subprogress for loading current Instrument
5894     progress_t subprogress;
5895     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5896    
5897     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5898    
5899     iInstrumentIndex++;
5900 schoenebeck 2 }
5901     lstInstr = lstInstruments->GetNextSubList();
5902     }
5903 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5904 schoenebeck 2 }
5905     }
5906    
5907 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5908     /// update is done directly to disk, as this method is called
5909     /// after File::Save()
5910 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5911     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5912     if (!_3crc) return;
5913 persson 1207
5914     // get the index of the sample
5915 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5916 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5917    
5918 persson 1207 // write the CRC-32 checksum to disk
5919 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5920 schoenebeck 2985 uint32_t one = 1;
5921     _3crc->WriteUint32(&one); // always 1
5922 persson 1199 _3crc->WriteUint32(&crc);
5923 schoenebeck 2989 }
5924 schoenebeck 2985
5925 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
5926     // get the index of the sample
5927     int iWaveIndex = GetWaveTableIndexOf(pSample);
5928     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5929    
5930     return GetSampleChecksumByIndex(iWaveIndex);
5931 persson 1199 }
5932    
5933 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
5934     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5935    
5936 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5937     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5938     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5939     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5940    
5941     // read the CRC-32 checksum directly from disk
5942 schoenebeck 2989 size_t pos = index * 8;
5943 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
5944     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5945    
5946     uint32_t one = load32(&pData[pos]); // always 1
5947     if (one != 1)
5948 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5949 schoenebeck 2985
5950     return load32(&pData[pos+4]);
5951     }
5952 schoenebeck 2989
5953 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5954     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5955     File::SampleList::iterator iter = pSamples->begin();
5956     File::SampleList::iterator end = pSamples->end();
5957     for (int index = 0; iter != end; ++iter, ++index)
5958     if (*iter == pSample)
5959     return index;
5960     return -1;
5961     }
5962    
5963     /**
5964     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5965     * the CRC32 check sums of all samples' raw wave data.
5966     *
5967     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5968     */
5969     bool File::VerifySampleChecksumTable() {
5970     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5971     if (!_3crc) return false;
5972     if (_3crc->GetNewSize() <= 0) return false;
5973     if (_3crc->GetNewSize() % 8) return false;
5974     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5975     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5976    
5977 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
5978 schoenebeck 2985
5979     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5980     if (!pData) return false;
5981    
5982 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
5983 schoenebeck 2985 uint32_t one = pData[i*2];
5984     if (one != 1) return false;
5985     }
5986    
5987     return true;
5988     }
5989    
5990     /**
5991     * Recalculates CRC32 checksums for all samples and rebuilds this gig
5992     * file's checksum table with those new checksums. This might usually
5993     * just be necessary if the checksum table was damaged.
5994     *
5995     * @e IMPORTANT: The current implementation of this method only works
5996     * with files that have not been modified since it was loaded, because
5997     * it expects that no externally caused file structure changes are
5998     * required!
5999     *
6000     * Due to the expectation above, this method is currently protected
6001     * and actually only used by the command line tool "gigdump" yet.
6002     *
6003     * @returns true if Save() is required to be called after this call,
6004     * false if no further action is required
6005     */
6006     bool File::RebuildSampleChecksumTable() {
6007     // make sure sample chunks were scanned
6008     if (!pSamples) GetFirstSample();
6009    
6010     bool bRequiresSave = false;
6011    
6012     // make sure "3CRC" chunk exists with required size
6013     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6014     if (!_3crc) {
6015     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6016 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6017     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6018     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6019 schoenebeck 2985 bRequiresSave = true;
6020     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6021     _3crc->Resize(pSamples->size() * 8);
6022     bRequiresSave = true;
6023     }
6024    
6025     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6026     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6027     {
6028     File::SampleList::iterator iter = pSamples->begin();
6029     File::SampleList::iterator end = pSamples->end();
6030     for (; iter != end; ++iter) {
6031     gig::Sample* pSample = (gig::Sample*) *iter;
6032     int index = GetWaveTableIndexOf(pSample);
6033     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6034     pData[index*2] = 1; // always 1
6035     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6036     }
6037     }
6038     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6039     // make sure file is in write mode
6040     pRIFF->SetMode(RIFF::stream_mode_read_write);
6041     {
6042     File::SampleList::iterator iter = pSamples->begin();
6043     File::SampleList::iterator end = pSamples->end();
6044     for (; iter != end; ++iter) {
6045     gig::Sample* pSample = (gig::Sample*) *iter;
6046     int index = GetWaveTableIndexOf(pSample);
6047     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6048 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6049     SetSampleChecksum(pSample, pSample->crc);
6050 schoenebeck 2985 }
6051     }
6052     }
6053    
6054     return bRequiresSave;
6055     }
6056    
6057 schoenebeck 929 Group* File::GetFirstGroup() {
6058     if (!pGroups) LoadGroups();
6059 schoenebeck 930 // there must always be at least one group
6060 schoenebeck 929 GroupsIterator = pGroups->begin();
6061 schoenebeck 930 return *GroupsIterator;
6062 schoenebeck 929 }
6063 schoenebeck 2
6064 schoenebeck 929 Group* File::GetNextGroup() {
6065     if (!pGroups) return NULL;
6066     ++GroupsIterator;
6067     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6068     }
6069 schoenebeck 2
6070 schoenebeck 929 /**
6071     * Returns the group with the given index.
6072     *
6073     * @param index - number of the sought group (0..n)
6074     * @returns sought group or NULL if there's no such group
6075     */
6076     Group* File::GetGroup(uint index) {
6077     if (!pGroups) LoadGroups();
6078     GroupsIterator = pGroups->begin();
6079     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6080     if (i == index) return *GroupsIterator;
6081     ++GroupsIterator;
6082     }
6083     return NULL;
6084     }
6085    
6086 schoenebeck 2543 /**
6087     * Returns the group with the given group name.
6088     *
6089     * Note: group names don't have to be unique in the gig format! So there
6090     * can be multiple groups with the same name. This method will simply
6091     * return the first group found with the given name.
6092     *
6093     * @param name - name of the sought group
6094     * @returns sought group or NULL if there's no group with that name
6095     */
6096     Group* File::GetGroup(String name) {
6097     if (!pGroups) LoadGroups();
6098     GroupsIterator = pGroups->begin();
6099     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6100     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6101     return NULL;
6102     }
6103    
6104 schoenebeck 929 Group* File::AddGroup() {
6105     if (!pGroups) LoadGroups();
6106 schoenebeck 930 // there must always be at least one group
6107 schoenebeck 929 __ensureMandatoryChunksExist();
6108 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6109 schoenebeck 929 pGroups->push_back(pGroup);
6110     return pGroup;
6111     }
6112    
6113 schoenebeck 1081 /** @brief Delete a group and its samples.
6114     *
6115     * This will delete the given Group object and all the samples that
6116     * belong to this group from the gig file. You have to call Save() to
6117     * make this persistent to the file.
6118     *
6119     * @param pGroup - group to delete
6120     * @throws gig::Exception if given group could not be found
6121     */
6122 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6123 schoenebeck 930 if (!pGroups) LoadGroups();
6124 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6125     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6126 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6127 schoenebeck 1081 // delete all members of this group
6128     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6129     DeleteSample(pSample);
6130     }
6131     // now delete this group object
6132     pGroups->erase(iter);
6133     delete pGroup;
6134     }
6135    
6136     /** @brief Delete a group.
6137     *
6138     * This will delete the given Group object from the gig file. All the
6139     * samples that belong to this group will not be deleted, but instead
6140     * be moved to another group. You have to call Save() to make this
6141     * persistent to the file.
6142     *
6143     * @param pGroup - group to delete
6144     * @throws gig::Exception if given group could not be found
6145     */
6146     void File::DeleteGroupOnly(Group* pGroup) {
6147     if (!pGroups) LoadGroups();
6148     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6149     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6150     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6151 schoenebeck 930 // move all members of this group to another group
6152     pGroup->MoveAll();
6153 schoenebeck 929 pGroups->erase(iter);
6154     delete pGroup;
6155     }
6156    
6157     void File::LoadGroups() {
6158     if (!pGroups) pGroups = new std::list<Group*>;
6159 schoenebeck 930 // try to read defined groups from file
6160 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6161 schoenebeck 930 if (lst3gri) {
6162     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6163     if (lst3gnl) {
6164     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6165     while (ck) {
6166     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6167 persson 1266 if (pVersion && pVersion->major == 3 &&
6168     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6169    
6170 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6171     }
6172     ck = lst3gnl->GetNextSubChunk();
6173 schoenebeck 929 }
6174     }
6175     }
6176 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6177     if (!pGroups->size()) {
6178     Group* pGroup = new Group(this, NULL);
6179     pGroup->Name = "Default Group";
6180     pGroups->push_back(pGroup);
6181     }
6182 schoenebeck 929 }
6183    
6184 schoenebeck 2584 /** @brief Get instrument script group (by index).
6185     *
6186     * Returns the real-time instrument script group with the given index.
6187     *
6188     * @param index - number of the sought group (0..n)
6189     * @returns sought script group or NULL if there's no such group
6190     */
6191     ScriptGroup* File::GetScriptGroup(uint index) {
6192     if (!pScriptGroups) LoadScriptGroups();
6193     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6194     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6195     if (i == index) return *it;
6196     return NULL;
6197     }
6198    
6199     /** @brief Get instrument script group (by name).
6200     *
6201     * Returns the first real-time instrument script group found with the given
6202     * group name. Note that group names may not necessarily be unique.
6203     *
6204     * @param name - name of the sought script group
6205     * @returns sought script group or NULL if there's no such group
6206     */
6207     ScriptGroup* File::GetScriptGroup(const String& name) {
6208     if (!pScriptGroups) LoadScriptGroups();
6209     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6210     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6211     if ((*it)->Name == name) return *it;
6212     return NULL;
6213     }
6214    
6215     /** @brief Add new instrument script group.
6216     *
6217     * Adds a new, empty real-time instrument script group to the file.
6218     *
6219     * You have to call Save() to make this persistent to the file.
6220     *
6221     * @return new empty script group
6222     */
6223     ScriptGroup* File::AddScriptGroup() {
6224     if (!pScriptGroups) LoadScriptGroups();
6225     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6226     pScriptGroups->push_back(pScriptGroup);
6227     return pScriptGroup;
6228     }
6229    
6230     /** @brief Delete an instrument script group.
6231     *
6232     * This will delete the given real-time instrument script group and all its
6233     * instrument scripts it contains. References inside instruments that are
6234     * using the deleted scripts will be removed from the respective instruments
6235     * accordingly.
6236     *
6237     * You have to call Save() to make this persistent to the file.
6238     *
6239     * @param pScriptGroup - script group to delete
6240     * @throws gig::Exception if given script group could not be found
6241     */
6242     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6243     if (!pScriptGroups) LoadScriptGroups();
6244     std::list<ScriptGroup*>::iterator iter =
6245     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6246     if (iter == pScriptGroups->end())
6247     throw gig::Exception("Could not delete script group, could not find given script group");
6248     pScriptGroups->erase(iter);
6249     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6250     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6251     if (pScriptGroup->pList)
6252     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6253     delete pScriptGroup;
6254     }
6255    
6256     void File::LoadScriptGroups() {
6257     if (pScriptGroups) return;
6258     pScriptGroups = new std::list<ScriptGroup*>;
6259     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6260     if (lstLS) {
6261     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6262     lst = lstLS->GetNextSubList())
6263     {
6264     if (lst->GetListType() == LIST_TYPE_RTIS) {
6265     pScriptGroups->push_back(new ScriptGroup(this, lst));
6266     }
6267     }
6268     }
6269     }
6270    
6271 schoenebeck 1098 /**
6272     * Apply all the gig file's current instruments, samples, groups and settings
6273     * to the respective RIFF chunks. You have to call Save() to make changes
6274     * persistent.
6275     *
6276     * Usually there is absolutely no need to call this method explicitly.
6277     * It will be called automatically when File::Save() was called.
6278     *
6279 schoenebeck 2682 * @param pProgress - callback function for progress notification
6280 schoenebeck 1098 * @throws Exception - on errors
6281     */
6282 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6283 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6284 persson 1192
6285 schoenebeck 2584 // update own gig format extension chunks
6286     // (not part of the GigaStudio 4 format)
6287 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6288     if (!lst3LS) {
6289     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6290     }
6291     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6292 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6293     // before the actual wave data
6294 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6295     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6296    
6297 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6298     // because the instruments' script slots will write the file offsets
6299     // of the respective instrument script chunk as reference.
6300     if (pScriptGroups) {
6301 schoenebeck 2912 // Update instrument script (group) chunks.
6302     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6303     it != pScriptGroups->end(); ++it)
6304     {
6305     (*it)->UpdateChunks(pProgress);
6306 schoenebeck 2584 }
6307     }
6308    
6309 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6310     // custom "3LS " chunk again
6311     if (!lst3LS->CountSubChunks()) {
6312     pRIFF->DeleteSubChunk(lst3LS);
6313     lst3LS = NULL;
6314     }
6315    
6316 schoenebeck 1098 // first update base class's chunks
6317 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6318 schoenebeck 929
6319 persson 1199 if (newFile) {
6320 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6321     // is placed first in file
6322 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6323 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6324     if (first != info) {
6325     pRIFF->MoveSubChunk(info, first);
6326     }
6327     }
6328    
6329 schoenebeck 1098 // update group's chunks
6330     if (pGroups) {
6331 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6332     // (before updating the Group chunks)
6333     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6334     if (!_3gri) {
6335     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6336     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6337 schoenebeck 1098 }
6338 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6339     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6340 persson 1266
6341     // v3: make sure the file has 128 3gnm chunks
6342 schoenebeck 2467 // (before updating the Group chunks)
6343 persson 1266 if (pVersion && pVersion->major == 3) {
6344     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6345     for (int i = 0 ; i < 128 ; i++) {
6346     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6347     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6348     }
6349     }
6350 schoenebeck 2467
6351     std::list<Group*>::iterator iter = pGroups->begin();
6352     std::list<Group*>::iterator end = pGroups->end();
6353     for (; iter != end; ++iter) {
6354 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6355 schoenebeck 2467 }
6356 schoenebeck 1098 }
6357 persson 1199
6358     // update einf chunk
6359    
6360     // The einf chunk contains statistics about the gig file, such
6361     // as the number of regions and samples used by each
6362     // instrument. It is divided in equally sized parts, where the
6363     // first part contains information about the whole gig file,
6364     // and the rest of the parts map to each instrument in the
6365     // file.
6366     //
6367     // At the end of each part there is a bit map of each sample
6368     // in the file, where a set bit means that the sample is used
6369     // by the file/instrument.
6370     //
6371     // Note that there are several fields with unknown use. These
6372     // are set to zero.
6373    
6374 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6375 persson 1199 int einfSize = (Instruments + 1) * sublen;
6376    
6377     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6378     if (einf) {
6379     if (einf->GetSize() != einfSize) {
6380     einf->Resize(einfSize);
6381     memset(einf->LoadChunkData(), 0, einfSize);
6382     }
6383     } else if (newFile) {
6384     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6385     }
6386     if (einf) {
6387     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6388    
6389     std::map<gig::Sample*,int> sampleMap;
6390     int sampleIdx = 0;
6391     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6392     sampleMap[pSample] = sampleIdx++;
6393     }
6394    
6395     int totnbusedsamples = 0;
6396     int totnbusedchannels = 0;
6397     int totnbregions = 0;
6398     int totnbdimregions = 0;
6399 persson 1264 int totnbloops = 0;
6400 persson 1199 int instrumentIdx = 0;
6401    
6402     memset(&pData[48], 0, sublen - 48);
6403    
6404     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6405     instrument = GetNextInstrument()) {
6406     int nbusedsamples = 0;
6407     int nbusedchannels = 0;
6408     int nbdimregions = 0;
6409 persson 1264 int nbloops = 0;
6410 persson 1199
6411     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6412    
6413     for (Region* region = instrument->GetFirstRegion() ; region ;
6414     region = instrument->GetNextRegion()) {
6415     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6416     gig::DimensionRegion *d = region->pDimensionRegions[i];
6417     if (d->pSample) {
6418     int sampleIdx = sampleMap[d->pSample];
6419     int byte = 48 + sampleIdx / 8;
6420     int bit = 1 << (sampleIdx & 7);
6421     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6422     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6423     nbusedsamples++;
6424     nbusedchannels += d->pSample->Channels;
6425    
6426     if ((pData[byte] & bit) == 0) {
6427     pData[byte] |= bit;
6428     totnbusedsamples++;
6429     totnbusedchannels += d->pSample->Channels;
6430     }
6431     }
6432     }
6433 persson 1264 if (d->SampleLoops) nbloops++;
6434 persson 1199 }
6435     nbdimregions += region->DimensionRegions;
6436     }
6437     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6438     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6439     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6440     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6441     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6442     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6443     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6444 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6445     // next 8 bytes unknown
6446 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6447 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6448 persson 1199 // next 4 bytes unknown
6449    
6450     totnbregions += instrument->Regions;
6451     totnbdimregions += nbdimregions;
6452 persson 1264 totnbloops += nbloops;
6453 persson 1199 instrumentIdx++;
6454     }
6455     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6456     // store32(&pData[0], sublen);
6457     store32(&pData[4], totnbusedchannels);
6458     store32(&pData[8], totnbusedsamples);
6459     store32(&pData[12], Instruments);
6460     store32(&pData[16], totnbregions);
6461     store32(&pData[20], totnbdimregions);
6462 persson 1264 store32(&pData[24], totnbloops);
6463     // next 8 bytes unknown
6464     // next 4 bytes unknown, not always 0
6465 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6466 persson 1199 // next 4 bytes unknown
6467     }
6468    
6469     // update 3crc chunk
6470    
6471     // The 3crc chunk contains CRC-32 checksums for the
6472 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6473     // chunk here (in RAM) with the old crc values which we read from the
6474     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6475     // member variable). This step is required, because samples might have
6476     // been deleted by the user since the file was opened, which in turn
6477     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6478     // If a sample was conciously modified by the user (that is if
6479     // Sample::Write() was called later on) then Sample::Write() will just
6480     // update the respective individual checksum(s) directly on disk and
6481     // leaves all other sample checksums untouched.
6482 persson 1199
6483 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6484 persson 1199 if (_3crc) {
6485     _3crc->Resize(pSamples->size() * 8);
6486 schoenebeck 2989 } else /*if (newFile)*/ {
6487 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6488 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6489     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6490 persson 1199 }
6491 schoenebeck 2989 { // must be performed in RAM here ...
6492     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6493     if (pData) {
6494     File::SampleList::iterator iter = pSamples->begin();
6495     File::SampleList::iterator end = pSamples->end();
6496     for (int index = 0; iter != end; ++iter, ++index) {
6497     gig::Sample* pSample = (gig::Sample*) *iter;
6498     pData[index*2] = 1; // always 1
6499     pData[index*2+1] = pSample->crc;
6500     }
6501     }
6502     }
6503 schoenebeck 1098 }
6504 schoenebeck 2609
6505     void File::UpdateFileOffsets() {
6506     DLS::File::UpdateFileOffsets();
6507 schoenebeck 929
6508 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6509     instrument = GetNextInstrument())
6510     {
6511     instrument->UpdateScriptFileOffsets();
6512     }
6513     }
6514    
6515 schoenebeck 1524 /**
6516     * Enable / disable automatic loading. By default this properyt is
6517     * enabled and all informations are loaded automatically. However
6518     * loading all Regions, DimensionRegions and especially samples might
6519     * take a long time for large .gig files, and sometimes one might only
6520     * be interested in retrieving very superficial informations like the
6521     * amount of instruments and their names. In this case one might disable
6522     * automatic loading to avoid very slow response times.
6523     *
6524     * @e CAUTION: by disabling this property many pointers (i.e. sample
6525     * references) and informations will have invalid or even undefined
6526     * data! This feature is currently only intended for retrieving very
6527     * superficial informations in a very fast way. Don't use it to retrieve
6528     * details like synthesis informations or even to modify .gig files!
6529     */
6530     void File::SetAutoLoad(bool b) {
6531     bAutoLoad = b;
6532     }
6533 schoenebeck 1098
6534 schoenebeck 1524 /**
6535     * Returns whether automatic loading is enabled.
6536     * @see SetAutoLoad()
6537     */
6538     bool File::GetAutoLoad() {
6539     return bAutoLoad;
6540     }
6541 schoenebeck 1098
6542 schoenebeck 1524
6543    
6544 schoenebeck 2 // *************** Exception ***************
6545     // *
6546    
6547 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6548 schoenebeck 2 }
6549    
6550 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6551     va_list arg;
6552     va_start(arg, format);
6553     Message = assemble(format, arg);
6554     va_end(arg);
6555     }
6556    
6557     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6558     Message = assemble(format, arg);
6559     }
6560    
6561 schoenebeck 2 void Exception::PrintMessage() {
6562     std::cout << "gig::Exception: " << Message << std::endl;
6563     }
6564    
6565 schoenebeck 518
6566     // *************** functions ***************
6567     // *
6568    
6569     /**
6570     * Returns the name of this C++ library. This is usually "libgig" of
6571     * course. This call is equivalent to RIFF::libraryName() and
6572     * DLS::libraryName().
6573     */
6574     String libraryName() {
6575     return PACKAGE;
6576     }
6577    
6578     /**
6579     * Returns version of this C++ library. This call is equivalent to
6580     * RIFF::libraryVersion() and DLS::libraryVersion().
6581     */
6582     String libraryVersion() {
6583     return VERSION;
6584     }
6585    
6586 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC