/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3350 - (hide annotations) (download)
Tue Oct 3 17:35:02 2017 UTC (6 years, 5 months ago) by schoenebeck
File size: 285940 byte(s)
* src/gig.cpp: Fixed undefined behavior when loading a gig file with
  invalid wave pool index number (fixes CVE-2017-12954).
* Bumped version (4.0.0.svn33).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
417 schoenebeck 809 } else { // '3gix' chunk missing
418 schoenebeck 930 // by default assigned to that mandatory "Default Group"
419     pGroup = pFile->GetGroup(0);
420 schoenebeck 809 }
421 schoenebeck 2
422 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423     if (pCkSmpl) {
424     Manufacturer = pCkSmpl->ReadInt32();
425     Product = pCkSmpl->ReadInt32();
426     SamplePeriod = pCkSmpl->ReadInt32();
427     MIDIUnityNote = pCkSmpl->ReadInt32();
428     FineTune = pCkSmpl->ReadInt32();
429     pCkSmpl->Read(&SMPTEFormat, 1, 4);
430     SMPTEOffset = pCkSmpl->ReadInt32();
431     Loops = pCkSmpl->ReadInt32();
432     pCkSmpl->ReadInt32(); // manufByt
433     LoopID = pCkSmpl->ReadInt32();
434     pCkSmpl->Read(&LoopType, 1, 4);
435     LoopStart = pCkSmpl->ReadInt32();
436     LoopEnd = pCkSmpl->ReadInt32();
437     LoopFraction = pCkSmpl->ReadInt32();
438     LoopPlayCount = pCkSmpl->ReadInt32();
439     } else { // 'smpl' chunk missing
440     // use default values
441     Manufacturer = 0;
442     Product = 0;
443 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 persson 1218 MIDIUnityNote = 60;
445 schoenebeck 809 FineTune = 0;
446 persson 1182 SMPTEFormat = smpte_format_no_offset;
447 schoenebeck 809 SMPTEOffset = 0;
448     Loops = 0;
449     LoopID = 0;
450 persson 1182 LoopType = loop_type_normal;
451 schoenebeck 809 LoopStart = 0;
452     LoopEnd = 0;
453     LoopFraction = 0;
454     LoopPlayCount = 0;
455     }
456 schoenebeck 2
457     FrameTable = NULL;
458     SamplePos = 0;
459     RAMCache.Size = 0;
460     RAMCache.pStart = NULL;
461     RAMCache.NullExtensionSize = 0;
462    
463 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464    
465 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466     Compressed = ewav;
467     Dithered = false;
468     TruncatedBits = 0;
469 schoenebeck 2 if (Compressed) {
470 persson 437 uint32_t version = ewav->ReadInt32();
471     if (version == 3 && BitDepth == 24) {
472     Dithered = ewav->ReadInt32();
473     ewav->SetPos(Channels == 2 ? 84 : 64);
474     TruncatedBits = ewav->ReadInt32();
475     }
476 schoenebeck 2 ScanCompressedSample();
477     }
478 schoenebeck 317
479     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 schoenebeck 317 }
484 persson 437 FrameOffset = 0; // just for streaming compressed samples
485 schoenebeck 21
486 persson 864 LoopSize = LoopEnd - LoopStart + 1;
487 schoenebeck 2 }
488    
489 schoenebeck 809 /**
490 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
491     * the actual waveform data) and assign it to this object.
492     *
493     * Discussion: copying .gig samples is a bit tricky. It requires three
494     * steps:
495     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496     * its new sample waveform data size.
497     * 2. Saving the file (done by File::Save()) so that it gains correct size
498     * and layout for writing the actual wave form data directly to disc
499     * in next step.
500     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501     *
502     * @param orig - original Sample object to be copied from
503     */
504     void Sample::CopyAssignMeta(const Sample* orig) {
505     // handle base classes
506     DLS::Sample::CopyAssignCore(orig);
507    
508     // handle actual own attributes of this class
509     Manufacturer = orig->Manufacturer;
510     Product = orig->Product;
511     SamplePeriod = orig->SamplePeriod;
512     MIDIUnityNote = orig->MIDIUnityNote;
513     FineTune = orig->FineTune;
514     SMPTEFormat = orig->SMPTEFormat;
515     SMPTEOffset = orig->SMPTEOffset;
516     Loops = orig->Loops;
517     LoopID = orig->LoopID;
518     LoopType = orig->LoopType;
519     LoopStart = orig->LoopStart;
520     LoopEnd = orig->LoopEnd;
521     LoopSize = orig->LoopSize;
522     LoopFraction = orig->LoopFraction;
523     LoopPlayCount = orig->LoopPlayCount;
524    
525     // schedule resizing this sample to the given sample's size
526     Resize(orig->GetSize());
527     }
528    
529     /**
530     * Should be called after CopyAssignMeta() and File::Save() sequence.
531     * Read more about it in the discussion of CopyAssignMeta(). This method
532     * copies the actual waveform data by disk streaming.
533     *
534     * @e CAUTION: this method is currently not thread safe! During this
535     * operation the sample must not be used for other purposes by other
536     * threads!
537     *
538     * @param orig - original Sample object to be copied from
539     */
540     void Sample::CopyAssignWave(const Sample* orig) {
541     const int iReadAtOnce = 32*1024;
542     char* buf = new char[iReadAtOnce * orig->FrameSize];
543     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
545 schoenebeck 2482 pOrig->SetPos(0);
546     SetPos(0);
547 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
549     {
550     Write(buf, n);
551     }
552     pOrig->SetPos(restorePos);
553     delete [] buf;
554     }
555    
556     /**
557 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
558     * to call File::Save() to make changes persistent.
559     *
560     * Usually there is absolutely no need to call this method explicitly.
561     * It will be called automatically when File::Save() was called.
562     *
563 schoenebeck 2682 * @param pProgress - callback function for progress notification
564 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 schoenebeck 809 * was provided yet
566     * @throws gig::Exception if there is any invalid sample setting
567     */
568 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
569 schoenebeck 809 // first update base class's chunks
570 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
571 schoenebeck 809
572     // make sure 'smpl' chunk exists
573     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 persson 1182 if (!pCkSmpl) {
575     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576     memset(pCkSmpl->LoadChunkData(), 0, 60);
577     }
578 schoenebeck 809 // update 'smpl' chunk
579     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 persson 1179 store32(&pData[0], Manufacturer);
582     store32(&pData[4], Product);
583     store32(&pData[8], SamplePeriod);
584     store32(&pData[12], MIDIUnityNote);
585     store32(&pData[16], FineTune);
586     store32(&pData[20], SMPTEFormat);
587     store32(&pData[24], SMPTEOffset);
588     store32(&pData[28], Loops);
589 schoenebeck 809
590     // we skip 'manufByt' for now (4 bytes)
591    
592 persson 1179 store32(&pData[36], LoopID);
593     store32(&pData[40], LoopType);
594     store32(&pData[44], LoopStart);
595     store32(&pData[48], LoopEnd);
596     store32(&pData[52], LoopFraction);
597     store32(&pData[56], LoopPlayCount);
598 schoenebeck 809
599     // make sure '3gix' chunk exists
600     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
603 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
605     if (pFile->pGroups) {
606     std::list<Group*>::iterator iter = pFile->pGroups->begin();
607     std::list<Group*>::iterator end = pFile->pGroups->end();
608 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
609 schoenebeck 929 if (*iter == pGroup) {
610     iSampleGroup = i;
611     break; // found
612     }
613     }
614     }
615 schoenebeck 809 // update '3gix' chunk
616     pData = (uint8_t*) pCk3gix->LoadChunkData();
617 persson 1179 store16(&pData[0], iSampleGroup);
618 schoenebeck 2484
619     // if the library user toggled the "Compressed" attribute from true to
620     // false, then the EWAV chunk associated with compressed samples needs
621     // to be deleted
622     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623     if (ewav && !Compressed) {
624     pWaveList->DeleteSubChunk(ewav);
625     }
626 schoenebeck 809 }
627    
628 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629     void Sample::ScanCompressedSample() {
630     //TODO: we have to add some more scans here (e.g. determine compression rate)
631     this->SamplesTotal = 0;
632 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
633 schoenebeck 2
634 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636 persson 365
637 schoenebeck 2 // Scanning
638     pCkData->SetPos(0);
639 persson 365 if (Channels == 2) { // Stereo
640     for (int i = 0 ; ; i++) {
641     // for 24 bit samples every 8:th frame offset is
642     // stored, to save some memory
643     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644    
645     const int mode_l = pCkData->ReadUint8();
646     const int mode_r = pCkData->ReadUint8();
647     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649 persson 365
650     if (pCkData->RemainingBytes() <= frameSize) {
651     SamplesInLastFrame =
652     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654     SamplesTotal += SamplesInLastFrame;
655 schoenebeck 2 break;
656 persson 365 }
657     SamplesTotal += SamplesPerFrame;
658     pCkData->SetPos(frameSize, RIFF::stream_curpos);
659     }
660     }
661     else { // Mono
662     for (int i = 0 ; ; i++) {
663     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664    
665     const int mode = pCkData->ReadUint8();
666     if (mode > 5) throw gig::Exception("Unknown compression mode");
667 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
668 persson 365
669     if (pCkData->RemainingBytes() <= frameSize) {
670     SamplesInLastFrame =
671     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672     SamplesTotal += SamplesInLastFrame;
673 schoenebeck 2 break;
674 persson 365 }
675     SamplesTotal += SamplesPerFrame;
676     pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 schoenebeck 2 }
678     }
679     pCkData->SetPos(0);
680    
681     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682     if (FrameTable) delete[] FrameTable;
683 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
684     std::list<file_offset_t>::iterator end = frameOffsets.end();
685     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
687     FrameTable[i] = *iter;
688     }
689     }
690    
691     /**
692     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693     * ReleaseSampleData() to free the memory if you don't need the cached
694     * sample data anymore.
695     *
696     * @returns buffer_t structure with start address and size of the buffer
697     * in bytes
698     * @see ReleaseSampleData(), Read(), SetPos()
699     */
700     buffer_t Sample::LoadSampleData() {
701     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702     }
703    
704     /**
705     * Reads (uncompresses if needed) and caches the first \a SampleCount
706     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707     * memory space if you don't need the cached samples anymore. There is no
708     * guarantee that exactly \a SampleCount samples will be cached; this is
709     * not an error. The size will be eventually truncated e.g. to the
710     * beginning of a frame of a compressed sample. This is done for
711     * efficiency reasons while streaming the wave by your sampler engine
712     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713     * that will be returned to determine the actual cached samples, but note
714     * that the size is given in bytes! You get the number of actually cached
715     * samples by dividing it by the frame size of the sample:
716 schoenebeck 384 * @code
717 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718     * long cachedsamples = buf.Size / pSample->FrameSize;
719 schoenebeck 384 * @endcode
720 schoenebeck 2 *
721     * @param SampleCount - number of sample points to load into RAM
722     * @returns buffer_t structure with start address and size of
723     * the cached sample data in bytes
724     * @see ReleaseSampleData(), Read(), SetPos()
725     */
726 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728     }
729    
730     /**
731     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732     * ReleaseSampleData() to free the memory if you don't need the cached
733     * sample data anymore.
734     * The method will add \a NullSamplesCount silence samples past the
735     * official buffer end (this won't affect the 'Size' member of the
736     * buffer_t structure, that means 'Size' always reflects the size of the
737     * actual sample data, the buffer might be bigger though). Silence
738     * samples past the official buffer are needed for differential
739     * algorithms that always have to take subsequent samples into account
740     * (resampling/interpolation would be an important example) and avoids
741     * memory access faults in such cases.
742     *
743     * @param NullSamplesCount - number of silence samples the buffer should
744     * be extended past it's data end
745     * @returns buffer_t structure with start address and
746     * size of the buffer in bytes
747     * @see ReleaseSampleData(), Read(), SetPos()
748     */
749     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751     }
752    
753     /**
754     * Reads (uncompresses if needed) and caches the first \a SampleCount
755     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756     * memory space if you don't need the cached samples anymore. There is no
757     * guarantee that exactly \a SampleCount samples will be cached; this is
758     * not an error. The size will be eventually truncated e.g. to the
759     * beginning of a frame of a compressed sample. This is done for
760     * efficiency reasons while streaming the wave by your sampler engine
761     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762     * that will be returned to determine the actual cached samples, but note
763     * that the size is given in bytes! You get the number of actually cached
764     * samples by dividing it by the frame size of the sample:
765 schoenebeck 384 * @code
766 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767     * long cachedsamples = buf.Size / pSample->FrameSize;
768 schoenebeck 384 * @endcode
769 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
770     * official buffer end (this won't affect the 'Size' member of the
771     * buffer_t structure, that means 'Size' always reflects the size of the
772     * actual sample data, the buffer might be bigger though). Silence
773     * samples past the official buffer are needed for differential
774     * algorithms that always have to take subsequent samples into account
775     * (resampling/interpolation would be an important example) and avoids
776     * memory access faults in such cases.
777     *
778     * @param SampleCount - number of sample points to load into RAM
779     * @param NullSamplesCount - number of silence samples the buffer should
780     * be extended past it's data end
781     * @returns buffer_t structure with start address and
782     * size of the cached sample data in bytes
783     * @see ReleaseSampleData(), Read(), SetPos()
784     */
785 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
790 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
791     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793     // fill the remaining buffer space with silence samples
794     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795     return GetCache();
796     }
797    
798     /**
799     * Returns current cached sample points. A buffer_t structure will be
800     * returned which contains address pointer to the begin of the cache and
801     * the size of the cached sample data in bytes. Use
802     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803     * RAM.
804     *
805     * @returns buffer_t structure with current cached sample points
806     * @see LoadSampleData();
807     */
808     buffer_t Sample::GetCache() {
809     // return a copy of the buffer_t structure
810     buffer_t result;
811     result.Size = this->RAMCache.Size;
812     result.pStart = this->RAMCache.pStart;
813     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814     return result;
815     }
816    
817     /**
818     * Frees the cached sample from RAM if loaded with
819     * <i>LoadSampleData()</i> previously.
820     *
821     * @see LoadSampleData();
822     */
823     void Sample::ReleaseSampleData() {
824     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825     RAMCache.pStart = NULL;
826     RAMCache.Size = 0;
827 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
828 schoenebeck 2 }
829    
830 schoenebeck 809 /** @brief Resize sample.
831     *
832     * Resizes the sample's wave form data, that is the actual size of
833     * sample wave data possible to be written for this sample. This call
834     * will return immediately and just schedule the resize operation. You
835     * should call File::Save() to actually perform the resize operation(s)
836     * "physically" to the file. As this can take a while on large files, it
837     * is recommended to call Resize() first on all samples which have to be
838     * resized and finally to call File::Save() to perform all those resize
839     * operations in one rush.
840     *
841     * The actual size (in bytes) is dependant to the current FrameSize
842     * value. You may want to set FrameSize before calling Resize().
843     *
844     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845     * enlarged samples before calling File::Save() as this might exceed the
846     * current sample's boundary!
847     *
848 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 schoenebeck 809 * other formats will fail!
851     *
852 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
853     * greater than zero)
854 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
857     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858     * DLS::Sample::FormatTag, File::Save()
859     */
860 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
861 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 schoenebeck 2922 DLS::Sample::Resize(NewSize);
863 schoenebeck 809 }
864    
865 schoenebeck 2 /**
866     * Sets the position within the sample (in sample points, not in
867     * bytes). Use this method and <i>Read()</i> if you don't want to load
868     * the sample into RAM, thus for disk streaming.
869     *
870     * Although the original Gigasampler engine doesn't allow positioning
871     * within compressed samples, I decided to implement it. Even though
872     * the Gigasampler format doesn't allow to define loops for compressed
873     * samples at the moment, positioning within compressed samples might be
874     * interesting for some sampler engines though. The only drawback about
875     * my decision is that it takes longer to load compressed gig Files on
876     * startup, because it's neccessary to scan the samples for some
877     * mandatory informations. But I think as it doesn't affect the runtime
878     * efficiency, nobody will have a problem with that.
879     *
880     * @param SampleCount number of sample points to jump
881     * @param Whence optional: to which relation \a SampleCount refers
882     * to, if omited <i>RIFF::stream_start</i> is assumed
883     * @returns the new sample position
884     * @see Read()
885     */
886 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 schoenebeck 2 if (Compressed) {
888     switch (Whence) {
889     case RIFF::stream_curpos:
890     this->SamplePos += SampleCount;
891     break;
892     case RIFF::stream_end:
893     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894     break;
895     case RIFF::stream_backward:
896     this->SamplePos -= SampleCount;
897     break;
898     case RIFF::stream_start: default:
899     this->SamplePos = SampleCount;
900     break;
901     }
902     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907     return this->SamplePos;
908     }
909     else { // not compressed
910 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 schoenebeck 2 return (result == orderedBytes) ? SampleCount
913     : result / this->FrameSize;
914     }
915     }
916    
917     /**
918     * Returns the current position in the sample (in sample points).
919     */
920 schoenebeck 2912 file_offset_t Sample::GetPos() const {
921 schoenebeck 2 if (Compressed) return SamplePos;
922     else return pCkData->GetPos() / FrameSize;
923     }
924    
925     /**
926 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
927     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928     * the position within the sample respectively, this method honors the
929     * looping informations of the sample (if any). The sample wave stream
930     * will be decompressed on the fly if using a compressed sample. Use this
931     * method if you don't want to load the sample into RAM, thus for disk
932     * streaming. All this methods needs to know to proceed with streaming
933     * for the next time you call this method is stored in \a pPlaybackState.
934     * You have to allocate and initialize the playback_state_t structure by
935     * yourself before you use it to stream a sample:
936 schoenebeck 384 * @code
937     * gig::playback_state_t playbackstate;
938     * playbackstate.position = 0;
939     * playbackstate.reverse = false;
940     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941     * @endcode
942 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
943     * defined or if the current read position is located within a loop area.
944     * The method already handles such cases by itself.
945     *
946 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
947     * have to use an external decompression buffer for <b>EACH</b>
948     * streaming thread to avoid race conditions and crashes!
949     *
950 schoenebeck 24 * @param pBuffer destination buffer
951     * @param SampleCount number of sample points to read
952     * @param pPlaybackState will be used to store and reload the playback
953     * state for the next ReadAndLoop() call
954 persson 864 * @param pDimRgn dimension region with looping information
955 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 schoenebeck 24 * @returns number of successfully read sample points
957 schoenebeck 384 * @see CreateDecompressionBuffer()
958 schoenebeck 24 */
959 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
963    
964     SetPos(pPlaybackState->position); // recover position from the last time
965    
966 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967 schoenebeck 24
968 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970 schoenebeck 24
971 persson 864 if (GetPos() <= loopEnd) {
972     switch (loop.LoopType) {
973 schoenebeck 24
974 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
975     do {
976     // if not endless loop check if max. number of loop cycles have been passed
977     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978 schoenebeck 24
979 persson 864 if (!pPlaybackState->reverse) { // forward playback
980     do {
981     samplestoloopend = loopEnd - GetPos();
982     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983     samplestoread -= readsamples;
984     totalreadsamples += readsamples;
985     if (readsamples == samplestoloopend) {
986     pPlaybackState->reverse = true;
987     break;
988     }
989     } while (samplestoread && readsamples);
990     }
991     else { // backward playback
992 schoenebeck 24
993 persson 864 // as we can only read forward from disk, we have to
994     // determine the end position within the loop first,
995     // read forward from that 'end' and finally after
996     // reading, swap all sample frames so it reflects
997     // backward playback
998 schoenebeck 24
999 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1000     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003 schoenebeck 24
1004 persson 864 SetPos(reverseplaybackend);
1005 schoenebeck 24
1006 persson 864 // read samples for backward playback
1007     do {
1008     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009     samplestoreadinloop -= readsamples;
1010     samplestoread -= readsamples;
1011     totalreadsamples += readsamples;
1012     } while (samplestoreadinloop && readsamples);
1013 schoenebeck 24
1014 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016     if (reverseplaybackend == loop.LoopStart) {
1017     pPlaybackState->loop_cycles_left--;
1018     pPlaybackState->reverse = false;
1019     }
1020    
1021     // reverse the sample frames for backward playback
1022 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 schoenebeck 24 }
1025 persson 864 } while (samplestoread && readsamples);
1026     break;
1027     }
1028 schoenebeck 24
1029 persson 864 case loop_type_backward: { // TODO: not tested yet!
1030     // forward playback (not entered the loop yet)
1031     if (!pPlaybackState->reverse) do {
1032     samplestoloopend = loopEnd - GetPos();
1033     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034     samplestoread -= readsamples;
1035     totalreadsamples += readsamples;
1036     if (readsamples == samplestoloopend) {
1037     pPlaybackState->reverse = true;
1038     break;
1039     }
1040     } while (samplestoread && readsamples);
1041 schoenebeck 24
1042 persson 864 if (!samplestoread) break;
1043 schoenebeck 24
1044 persson 864 // as we can only read forward from disk, we have to
1045     // determine the end position within the loop first,
1046     // read forward from that 'end' and finally after
1047     // reading, swap all sample frames so it reflects
1048     // backward playback
1049 schoenebeck 24
1050 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1051     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 persson 864 : samplestoread;
1054 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055 schoenebeck 24
1056 persson 864 SetPos(reverseplaybackend);
1057 schoenebeck 24
1058 persson 864 // read samples for backward playback
1059     do {
1060     // if not endless loop check if max. number of loop cycles have been passed
1061     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062     samplestoloopend = loopEnd - GetPos();
1063     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064     samplestoreadinloop -= readsamples;
1065     samplestoread -= readsamples;
1066     totalreadsamples += readsamples;
1067     if (readsamples == samplestoloopend) {
1068     pPlaybackState->loop_cycles_left--;
1069     SetPos(loop.LoopStart);
1070     }
1071     } while (samplestoreadinloop && readsamples);
1072 schoenebeck 24
1073 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1074 schoenebeck 24
1075 persson 864 // reverse the sample frames for backward playback
1076     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077     break;
1078     }
1079 schoenebeck 24
1080 persson 864 default: case loop_type_normal: {
1081     do {
1082     // if not endless loop check if max. number of loop cycles have been passed
1083     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084     samplestoloopend = loopEnd - GetPos();
1085     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086     samplestoread -= readsamples;
1087     totalreadsamples += readsamples;
1088     if (readsamples == samplestoloopend) {
1089     pPlaybackState->loop_cycles_left--;
1090     SetPos(loop.LoopStart);
1091     }
1092     } while (samplestoread && readsamples);
1093     break;
1094     }
1095 schoenebeck 24 }
1096     }
1097     }
1098    
1099     // read on without looping
1100     if (samplestoread) do {
1101 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 schoenebeck 24 samplestoread -= readsamples;
1103     totalreadsamples += readsamples;
1104     } while (readsamples && samplestoread);
1105    
1106     // store current position
1107     pPlaybackState->position = GetPos();
1108    
1109     return totalreadsamples;
1110     }
1111    
1112     /**
1113 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1114     * position into the buffer pointed by \a pBuffer and increments the
1115     * position within the sample. The sample wave stream will be
1116     * decompressed on the fly if using a compressed sample. Use this method
1117     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118     * thus for disk streaming.
1119     *
1120 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1121     * have to use an external decompression buffer for <b>EACH</b>
1122     * streaming thread to avoid race conditions and crashes!
1123     *
1124 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1125     * (using native endianness). For 24 bit, the buffer will
1126     * contain three bytes per sample, little-endian.
1127     *
1128 schoenebeck 2 * @param pBuffer destination buffer
1129     * @param SampleCount number of sample points to read
1130 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 schoenebeck 2 * @returns number of successfully read sample points
1132 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1133 schoenebeck 2 */
1134 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 schoenebeck 21 if (SampleCount == 0) return 0;
1136 schoenebeck 317 if (!Compressed) {
1137     if (BitDepth == 24) {
1138 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 schoenebeck 317 }
1140 persson 365 else { // 16 bit
1141     // (pCkData->Read does endian correction)
1142     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143     : pCkData->Read(pBuffer, SampleCount, 2);
1144     }
1145 schoenebeck 317 }
1146 persson 365 else {
1147 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1149 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1150 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1151     remainingsamples = SampleCount,
1152 persson 365 copysamples, skipsamples,
1153     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 schoenebeck 2 this->FrameOffset = 0;
1155    
1156 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157    
1158     // if decompression buffer too small, then reduce amount of samples to read
1159     if (pDecompressionBuffer->Size < assumedsize) {
1160     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162     remainingsamples = SampleCount;
1163     assumedsize = GuessSize(SampleCount);
1164 schoenebeck 2 }
1165    
1166 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171 persson 365 while (remainingsamples && remainingbytes) {
1172 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1173     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174 schoenebeck 2
1175 persson 365 int mode_l = *pSrc++, mode_r = 0;
1176    
1177     if (Channels == 2) {
1178     mode_r = *pSrc++;
1179     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182     if (remainingbytes < framebytes) { // last frame in sample
1183     framesamples = SamplesInLastFrame;
1184     if (mode_l == 4 && (framesamples & 1)) {
1185     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186     }
1187     else {
1188     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189     }
1190 schoenebeck 2 }
1191     }
1192 persson 365 else {
1193     framebytes = bytesPerFrame[mode_l] + 1;
1194     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195     if (remainingbytes < framebytes) {
1196     framesamples = SamplesInLastFrame;
1197     }
1198     }
1199 schoenebeck 2
1200     // determine how many samples in this frame to skip and read
1201 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1202     if (currentframeoffset <= framesamples) {
1203     copysamples = framesamples - currentframeoffset;
1204     skipsamples = currentframeoffset;
1205     }
1206     else {
1207     copysamples = 0;
1208     skipsamples = framesamples;
1209     }
1210 schoenebeck 2 }
1211     else {
1212 persson 365 // This frame has enough data for pBuffer, but not
1213     // all of the frame is needed. Set file position
1214     // to start of this frame for next call to Read.
1215 schoenebeck 2 copysamples = remainingsamples;
1216 persson 365 skipsamples = currentframeoffset;
1217     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218     this->FrameOffset = currentframeoffset + copysamples;
1219     }
1220     remainingsamples -= copysamples;
1221    
1222     if (remainingbytes > framebytes) {
1223     remainingbytes -= framebytes;
1224     if (remainingsamples == 0 &&
1225     currentframeoffset + copysamples == framesamples) {
1226     // This frame has enough data for pBuffer, and
1227     // all of the frame is needed. Set file
1228     // position to start of next frame for next
1229     // call to Read. FrameOffset is 0.
1230 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231     }
1232     }
1233 persson 365 else remainingbytes = 0;
1234 schoenebeck 2
1235 persson 365 currentframeoffset -= skipsamples;
1236 schoenebeck 2
1237 persson 365 if (copysamples == 0) {
1238     // skip this frame
1239     pSrc += framebytes - Channels;
1240     }
1241     else {
1242     const unsigned char* const param_l = pSrc;
1243     if (BitDepth == 24) {
1244     if (mode_l != 2) pSrc += 12;
1245 schoenebeck 2
1246 persson 365 if (Channels == 2) { // Stereo
1247     const unsigned char* const param_r = pSrc;
1248     if (mode_r != 2) pSrc += 12;
1249    
1250 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 persson 437 skipsamples, copysamples, TruncatedBits);
1252 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 persson 437 skipsamples, copysamples, TruncatedBits);
1254 persson 902 pDst24 += copysamples * 6;
1255 schoenebeck 2 }
1256 persson 365 else { // Mono
1257 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 persson 437 skipsamples, copysamples, TruncatedBits);
1259 persson 902 pDst24 += copysamples * 3;
1260 schoenebeck 2 }
1261 persson 365 }
1262     else { // 16 bit
1263     if (mode_l) pSrc += 4;
1264 schoenebeck 2
1265 persson 365 int step;
1266     if (Channels == 2) { // Stereo
1267     const unsigned char* const param_r = pSrc;
1268     if (mode_r) pSrc += 4;
1269    
1270     step = (2 - mode_l) + (2 - mode_r);
1271 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 persson 365 skipsamples, copysamples);
1274     pDst += copysamples << 1;
1275 schoenebeck 2 }
1276 persson 365 else { // Mono
1277     step = 2 - mode_l;
1278 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 persson 365 pDst += copysamples;
1280 schoenebeck 2 }
1281 persson 365 }
1282     pSrc += nextFrameOffset;
1283     }
1284 schoenebeck 2
1285 persson 365 // reload from disk to local buffer if needed
1286     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287     assumedsize = GuessSize(remainingsamples);
1288     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 schoenebeck 2 }
1293 persson 365 } // while
1294    
1295 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1296 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 schoenebeck 2 return (SampleCount - remainingsamples);
1298     }
1299     }
1300    
1301 schoenebeck 809 /** @brief Write sample wave data.
1302     *
1303     * Writes \a SampleCount number of sample points from the buffer pointed
1304     * by \a pBuffer and increments the position within the sample. Use this
1305     * method to directly write the sample data to disk, i.e. if you don't
1306     * want or cannot load the whole sample data into RAM.
1307     *
1308     * You have to Resize() the sample to the desired size and call
1309     * File::Save() <b>before</b> using Write().
1310     *
1311     * Note: there is currently no support for writing compressed samples.
1312     *
1313 persson 1264 * For 16 bit samples, the data in the source buffer should be
1314     * int16_t (using native endianness). For 24 bit, the buffer
1315     * should contain three bytes per sample, little-endian.
1316     *
1317 schoenebeck 809 * @param pBuffer - source buffer
1318     * @param SampleCount - number of sample points to write
1319     * @throws DLS::Exception if current sample size is too small
1320     * @throws gig::Exception if sample is compressed
1321     * @see DLS::LoadSampleData()
1322     */
1323 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325 persson 1207
1326     // if this is the first write in this sample, reset the
1327     // checksum calculator
1328 persson 1199 if (pCkData->GetPos() == 0) {
1329 schoenebeck 1381 __resetCRC(crc);
1330 persson 1199 }
1331 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 schoenebeck 2912 file_offset_t res;
1333 persson 1264 if (BitDepth == 24) {
1334     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335     } else { // 16 bit
1336     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337     : pCkData->Write(pBuffer, SampleCount, 2);
1338     }
1339 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340 persson 1199
1341 persson 1207 // if this is the last write, update the checksum chunk in the
1342     // file
1343 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 schoenebeck 3115 __finalizeCRC(crc);
1345 persson 1199 File* pFile = static_cast<File*>(GetParent());
1346 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1347 persson 1199 }
1348     return res;
1349 schoenebeck 809 }
1350    
1351 schoenebeck 384 /**
1352     * Allocates a decompression buffer for streaming (compressed) samples
1353     * with Sample::Read(). If you are using more than one streaming thread
1354     * in your application you <b>HAVE</b> to create a decompression buffer
1355     * for <b>EACH</b> of your streaming threads and provide it with the
1356     * Sample::Read() call in order to avoid race conditions and crashes.
1357     *
1358     * You should free the memory occupied by the allocated buffer(s) once
1359     * you don't need one of your streaming threads anymore by calling
1360     * DestroyDecompressionBuffer().
1361     *
1362     * @param MaxReadSize - the maximum size (in sample points) you ever
1363     * expect to read with one Read() call
1364     * @returns allocated decompression buffer
1365     * @see DestroyDecompressionBuffer()
1366     */
1367 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 schoenebeck 384 buffer_t result;
1369     const double worstCaseHeaderOverhead =
1370     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 schoenebeck 384 result.pStart = new int8_t[result.Size];
1373     result.NullExtensionSize = 0;
1374     return result;
1375     }
1376    
1377     /**
1378     * Free decompression buffer, previously created with
1379     * CreateDecompressionBuffer().
1380     *
1381     * @param DecompressionBuffer - previously allocated decompression
1382     * buffer to free
1383     */
1384     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386     delete[] (int8_t*) DecompressionBuffer.pStart;
1387     DecompressionBuffer.pStart = NULL;
1388     DecompressionBuffer.Size = 0;
1389     DecompressionBuffer.NullExtensionSize = 0;
1390     }
1391     }
1392    
1393 schoenebeck 930 /**
1394     * Returns pointer to the Group this Sample belongs to. In the .gig
1395     * format a sample always belongs to one group. If it wasn't explicitly
1396     * assigned to a certain group, it will be automatically assigned to a
1397     * default group.
1398     *
1399     * @returns Sample's Group (never NULL)
1400     */
1401     Group* Sample::GetGroup() const {
1402     return pGroup;
1403     }
1404    
1405 schoenebeck 2985 /**
1406 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407     * time when this sample's wave form data was modified for the last time
1408     * by calling Write(). This checksum only covers the raw wave form data,
1409     * not any meta informations like i.e. bit depth or loop points. Since
1410     * this method just returns the checksum stored for this sample i.e. when
1411     * the gig file was loaded, this method returns immediately. So it does no
1412     * recalcuation of the checksum with the currently available sample wave
1413     * form data.
1414     *
1415     * @see VerifyWaveData()
1416     */
1417     uint32_t Sample::GetWaveDataCRC32Checksum() {
1418     return crc;
1419     }
1420    
1421     /**
1422 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423     * Sample's raw wave data is intentionally modified (i.e. by calling
1424     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425     * is calculated and stored/updated for this sample, along to the sample's
1426     * meta informations.
1427     *
1428     * Now by calling this method the current raw audio wave data is checked
1429     * against the already stored CRC32 check sum in order to check whether the
1430     * sample data had been damaged unintentionally for some reason. Since by
1431     * calling this method always the entire raw audio wave data has to be
1432     * read, verifying all samples this way may take a long time accordingly.
1433     * And that's also the reason why the sample integrity is not checked by
1434     * default whenever a gig file is loaded. So this method must be called
1435     * explicitly to fulfill this task.
1436     *
1437 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1438     * calculated checksum of the current raw wave form data,
1439     * you can get the expected checksum instead by calling
1440     * GetWaveDataCRC32Checksum()
1441 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1442     * @throws Exception if no checksum had been stored to disk for this
1443     * sample yet, or on I/O issues
1444 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1445 schoenebeck 2985 */
1446 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1448 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1449 schoenebeck 2989 if (pActually) *pActually = crc;
1450     return crc == this->crc;
1451 schoenebeck 2985 }
1452    
1453     uint32_t Sample::CalculateWaveDataChecksum() {
1454     const size_t sz = 20*1024; // 20kB buffer size
1455     std::vector<uint8_t> buffer(sz);
1456     buffer.resize(sz);
1457    
1458     const size_t n = sz / FrameSize;
1459     SetPos(0);
1460     uint32_t crc = 0;
1461     __resetCRC(crc);
1462     while (true) {
1463     file_offset_t nRead = Read(&buffer[0], n);
1464     if (nRead <= 0) break;
1465     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466     }
1467 schoenebeck 3115 __finalizeCRC(crc);
1468 schoenebeck 2985 return crc;
1469     }
1470    
1471 schoenebeck 2 Sample::~Sample() {
1472     Instances--;
1473 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1474     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475     InternalDecompressionBuffer.pStart = NULL;
1476     InternalDecompressionBuffer.Size = 0;
1477 schoenebeck 355 }
1478 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1479     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480     }
1481    
1482    
1483    
1484     // *************** DimensionRegion ***************
1485     // *
1486    
1487 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1488 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 schoenebeck 16 Instances++;
1492    
1493 schoenebeck 823 pSample = NULL;
1494 schoenebeck 1316 pRegion = pParent;
1495 schoenebeck 823
1496 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497     else memset(&Crossfade, 0, 4);
1498    
1499 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500 schoenebeck 2
1501     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1503 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506     _3ewa->ReadInt16(); // unknown
1507     LFO1InternalDepth = _3ewa->ReadUint16();
1508     _3ewa->ReadInt16(); // unknown
1509     LFO3InternalDepth = _3ewa->ReadInt16();
1510     _3ewa->ReadInt16(); // unknown
1511     LFO1ControlDepth = _3ewa->ReadUint16();
1512     _3ewa->ReadInt16(); // unknown
1513     LFO3ControlDepth = _3ewa->ReadInt16();
1514     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516     _3ewa->ReadInt16(); // unknown
1517     EG1Sustain = _3ewa->ReadUint16();
1518     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521     EG1ControllerInvert = eg1ctrloptions & 0x01;
1522     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527     EG2ControllerInvert = eg2ctrloptions & 0x01;
1528     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534     _3ewa->ReadInt16(); // unknown
1535     EG2Sustain = _3ewa->ReadUint16();
1536     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537     _3ewa->ReadInt16(); // unknown
1538     LFO2ControlDepth = _3ewa->ReadUint16();
1539     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     _3ewa->ReadInt16(); // unknown
1541     LFO2InternalDepth = _3ewa->ReadUint16();
1542     int32_t eg1decay2 = _3ewa->ReadInt32();
1543     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545     _3ewa->ReadInt16(); // unknown
1546     EG1PreAttack = _3ewa->ReadUint16();
1547     int32_t eg2decay2 = _3ewa->ReadInt32();
1548     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550     _3ewa->ReadInt16(); // unknown
1551     EG2PreAttack = _3ewa->ReadUint16();
1552     uint8_t velocityresponse = _3ewa->ReadUint8();
1553     if (velocityresponse < 5) {
1554     VelocityResponseCurve = curve_type_nonlinear;
1555     VelocityResponseDepth = velocityresponse;
1556     } else if (velocityresponse < 10) {
1557     VelocityResponseCurve = curve_type_linear;
1558     VelocityResponseDepth = velocityresponse - 5;
1559     } else if (velocityresponse < 15) {
1560     VelocityResponseCurve = curve_type_special;
1561     VelocityResponseDepth = velocityresponse - 10;
1562     } else {
1563     VelocityResponseCurve = curve_type_unknown;
1564     VelocityResponseDepth = 0;
1565     }
1566     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567     if (releasevelocityresponse < 5) {
1568     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569     ReleaseVelocityResponseDepth = releasevelocityresponse;
1570     } else if (releasevelocityresponse < 10) {
1571     ReleaseVelocityResponseCurve = curve_type_linear;
1572     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573     } else if (releasevelocityresponse < 15) {
1574     ReleaseVelocityResponseCurve = curve_type_special;
1575     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576     } else {
1577     ReleaseVelocityResponseCurve = curve_type_unknown;
1578     ReleaseVelocityResponseDepth = 0;
1579     }
1580     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581     AttenuationControllerThreshold = _3ewa->ReadInt8();
1582     _3ewa->ReadInt32(); // unknown
1583     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584     _3ewa->ReadInt16(); // unknown
1585     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589     else DimensionBypass = dim_bypass_ctrl_none;
1590     uint8_t pan = _3ewa->ReadUint8();
1591     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592     SelfMask = _3ewa->ReadInt8() & 0x01;
1593     _3ewa->ReadInt8(); // unknown
1594     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609     : vcf_res_ctrl_none;
1610     uint16_t eg3depth = _3ewa->ReadUint16();
1611     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1614     ChannelOffset = _3ewa->ReadUint8() / 4;
1615     uint8_t regoptions = _3ewa->ReadUint8();
1616     MSDecode = regoptions & 0x01; // bit 0
1617     SustainDefeat = regoptions & 0x02; // bit 1
1618     _3ewa->ReadInt16(); // unknown
1619     VelocityUpperLimit = _3ewa->ReadInt8();
1620     _3ewa->ReadInt8(); // unknown
1621     _3ewa->ReadInt16(); // unknown
1622     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623     _3ewa->ReadInt8(); // unknown
1624     _3ewa->ReadInt8(); // unknown
1625     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626     uint8_t vcfcutoff = _3ewa->ReadUint8();
1627     VCFEnabled = vcfcutoff & 0x80; // bit 7
1628     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630     uint8_t vcfvelscale = _3ewa->ReadUint8();
1631     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633     _3ewa->ReadInt8(); // unknown
1634     uint8_t vcfresonance = _3ewa->ReadUint8();
1635     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640     uint8_t vcfvelocity = _3ewa->ReadUint8();
1641     VCFVelocityDynamicRange = vcfvelocity % 5;
1642     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644     if (VCFType == vcf_type_lowpass) {
1645     if (lfo3ctrl & 0x40) // bit 6
1646     VCFType = vcf_type_lowpassturbo;
1647     }
1648 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1649     _3ewa->Read(DimensionUpperLimits, 1, 8);
1650     } else {
1651     memset(DimensionUpperLimits, 0, 8);
1652     }
1653 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1654     // use default values
1655     LFO3Frequency = 1.0;
1656     EG3Attack = 0.0;
1657     LFO1InternalDepth = 0;
1658     LFO3InternalDepth = 0;
1659     LFO1ControlDepth = 0;
1660     LFO3ControlDepth = 0;
1661     EG1Attack = 0.0;
1662 persson 1218 EG1Decay1 = 0.005;
1663     EG1Sustain = 1000;
1664     EG1Release = 0.3;
1665 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1666     EG1Controller.controller_number = 0;
1667     EG1ControllerInvert = false;
1668     EG1ControllerAttackInfluence = 0;
1669     EG1ControllerDecayInfluence = 0;
1670     EG1ControllerReleaseInfluence = 0;
1671     EG2Controller.type = eg2_ctrl_t::type_none;
1672     EG2Controller.controller_number = 0;
1673     EG2ControllerInvert = false;
1674     EG2ControllerAttackInfluence = 0;
1675     EG2ControllerDecayInfluence = 0;
1676     EG2ControllerReleaseInfluence = 0;
1677     LFO1Frequency = 1.0;
1678     EG2Attack = 0.0;
1679 persson 1218 EG2Decay1 = 0.005;
1680     EG2Sustain = 1000;
1681 schoenebeck 2990 EG2Release = 60;
1682 schoenebeck 809 LFO2ControlDepth = 0;
1683     LFO2Frequency = 1.0;
1684     LFO2InternalDepth = 0;
1685     EG1Decay2 = 0.0;
1686 persson 1218 EG1InfiniteSustain = true;
1687     EG1PreAttack = 0;
1688 schoenebeck 809 EG2Decay2 = 0.0;
1689 persson 1218 EG2InfiniteSustain = true;
1690     EG2PreAttack = 0;
1691 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1692     VelocityResponseDepth = 3;
1693     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694     ReleaseVelocityResponseDepth = 3;
1695     VelocityResponseCurveScaling = 32;
1696     AttenuationControllerThreshold = 0;
1697     SampleStartOffset = 0;
1698     PitchTrack = true;
1699     DimensionBypass = dim_bypass_ctrl_none;
1700     Pan = 0;
1701     SelfMask = true;
1702     LFO3Controller = lfo3_ctrl_modwheel;
1703     LFO3Sync = false;
1704     InvertAttenuationController = false;
1705     AttenuationController.type = attenuation_ctrl_t::type_none;
1706     AttenuationController.controller_number = 0;
1707     LFO2Controller = lfo2_ctrl_internal;
1708     LFO2FlipPhase = false;
1709     LFO2Sync = false;
1710     LFO1Controller = lfo1_ctrl_internal;
1711     LFO1FlipPhase = false;
1712     LFO1Sync = false;
1713     VCFResonanceController = vcf_res_ctrl_none;
1714     EG3Depth = 0;
1715     ChannelOffset = 0;
1716     MSDecode = false;
1717     SustainDefeat = false;
1718     VelocityUpperLimit = 0;
1719     ReleaseTriggerDecay = 0;
1720     EG1Hold = false;
1721     VCFEnabled = false;
1722     VCFCutoff = 0;
1723     VCFCutoffController = vcf_cutoff_ctrl_none;
1724     VCFCutoffControllerInvert = false;
1725     VCFVelocityScale = 0;
1726     VCFResonance = 0;
1727     VCFResonanceDynamic = false;
1728     VCFKeyboardTracking = false;
1729     VCFKeyboardTrackingBreakpoint = 0;
1730     VCFVelocityDynamicRange = 0x04;
1731     VCFVelocityCurve = curve_type_linear;
1732     VCFType = vcf_type_lowpass;
1733 persson 1247 memset(DimensionUpperLimits, 127, 8);
1734 schoenebeck 2 }
1735 schoenebeck 3323 // format extension for EG behavior options, these will *NOT* work with
1736     // Gigasampler/GigaStudio !
1737     RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738     if (lsde) {
1739 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1740     for (int i = 0; i < 2; ++i) {
1741     unsigned char byte = lsde->ReadUint8();
1742     pEGOpts[i]->AttackCancel = byte & 1;
1743     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1744     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1745     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1746     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1747     }
1748 schoenebeck 3323 }
1749 schoenebeck 16
1750 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1751     VelocityResponseDepth,
1752     VelocityResponseCurveScaling);
1753    
1754 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1755     ReleaseVelocityResponseCurve,
1756     ReleaseVelocityResponseDepth
1757     );
1758 persson 613
1759 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1760     VCFVelocityDynamicRange,
1761     VCFVelocityScale,
1762     VCFCutoffController);
1763 persson 613
1764     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765 persson 858 VelocityTable = 0;
1766 persson 613 }
1767    
1768 persson 1301 /*
1769     * Constructs a DimensionRegion by copying all parameters from
1770     * another DimensionRegion
1771     */
1772     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1773     Instances++;
1774 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1775 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1776     pParentList = _3ewl; // restore the chunk pointer
1777    
1778     // deep copy of owned structures
1779     if (src.VelocityTable) {
1780     VelocityTable = new uint8_t[128];
1781     for (int k = 0 ; k < 128 ; k++)
1782     VelocityTable[k] = src.VelocityTable[k];
1783     }
1784     if (src.pSampleLoops) {
1785     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1786     for (int k = 0 ; k < src.SampleLoops ; k++)
1787     pSampleLoops[k] = src.pSampleLoops[k];
1788     }
1789     }
1790 schoenebeck 2394
1791     /**
1792     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1793     * and assign it to this object.
1794     *
1795     * Note that all sample pointers referenced by @a orig are simply copied as
1796     * memory address. Thus the respective samples are shared, not duplicated!
1797     *
1798     * @param orig - original DimensionRegion object to be copied from
1799     */
1800     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1801 schoenebeck 2482 CopyAssign(orig, NULL);
1802     }
1803    
1804     /**
1805     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1806     * and assign it to this object.
1807     *
1808     * @param orig - original DimensionRegion object to be copied from
1809     * @param mSamples - crosslink map between the foreign file's samples and
1810     * this file's samples
1811     */
1812     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1813 schoenebeck 2394 // delete all allocated data first
1814     if (VelocityTable) delete [] VelocityTable;
1815     if (pSampleLoops) delete [] pSampleLoops;
1816    
1817     // backup parent list pointer
1818     RIFF::List* p = pParentList;
1819    
1820 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1821     gig::Region* pOriginalRegion = pRegion;
1822    
1823 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1824    
1825     *this = *orig; // default memberwise shallow copy of all parameters
1826 schoenebeck 2547
1827     // restore members that shall not be altered
1828 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1829 schoenebeck 2547 pRegion = pOriginalRegion;
1830 schoenebeck 2482
1831 schoenebeck 2547 // only take the raw sample reference reference if the
1832 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1833     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1834     pSample = pOriginalSample;
1835     }
1836    
1837     if (mSamples && mSamples->count(orig->pSample)) {
1838     pSample = mSamples->find(orig->pSample)->second;
1839     }
1840 persson 1301
1841 schoenebeck 2394 // deep copy of owned structures
1842     if (orig->VelocityTable) {
1843     VelocityTable = new uint8_t[128];
1844     for (int k = 0 ; k < 128 ; k++)
1845     VelocityTable[k] = orig->VelocityTable[k];
1846     }
1847     if (orig->pSampleLoops) {
1848     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1849     for (int k = 0 ; k < orig->SampleLoops ; k++)
1850     pSampleLoops[k] = orig->pSampleLoops[k];
1851     }
1852     }
1853    
1854 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1855 schoenebeck 3182 // in case this class will become backward incompatible one day,
1856     // then set a version and minimum version for this class like:
1857     //archive->setVersion(*this, 2);
1858     //archive->setMinVersion(*this, 1);
1859    
1860 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1861     SRLZ(EG1PreAttack);
1862     SRLZ(EG1Attack);
1863     SRLZ(EG1Decay1);
1864     SRLZ(EG1Decay2);
1865     SRLZ(EG1InfiniteSustain);
1866     SRLZ(EG1Sustain);
1867     SRLZ(EG1Release);
1868     SRLZ(EG1Hold);
1869     SRLZ(EG1Controller);
1870     SRLZ(EG1ControllerInvert);
1871     SRLZ(EG1ControllerAttackInfluence);
1872     SRLZ(EG1ControllerDecayInfluence);
1873     SRLZ(EG1ControllerReleaseInfluence);
1874     SRLZ(LFO1Frequency);
1875     SRLZ(LFO1InternalDepth);
1876     SRLZ(LFO1ControlDepth);
1877     SRLZ(LFO1Controller);
1878     SRLZ(LFO1FlipPhase);
1879     SRLZ(LFO1Sync);
1880     SRLZ(EG2PreAttack);
1881     SRLZ(EG2Attack);
1882     SRLZ(EG2Decay1);
1883     SRLZ(EG2Decay2);
1884     SRLZ(EG2InfiniteSustain);
1885     SRLZ(EG2Sustain);
1886     SRLZ(EG2Release);
1887     SRLZ(EG2Controller);
1888     SRLZ(EG2ControllerInvert);
1889     SRLZ(EG2ControllerAttackInfluence);
1890     SRLZ(EG2ControllerDecayInfluence);
1891     SRLZ(EG2ControllerReleaseInfluence);
1892     SRLZ(LFO2Frequency);
1893     SRLZ(LFO2InternalDepth);
1894     SRLZ(LFO2ControlDepth);
1895     SRLZ(LFO2Controller);
1896     SRLZ(LFO2FlipPhase);
1897     SRLZ(LFO2Sync);
1898     SRLZ(EG3Attack);
1899     SRLZ(EG3Depth);
1900     SRLZ(LFO3Frequency);
1901     SRLZ(LFO3InternalDepth);
1902     SRLZ(LFO3ControlDepth);
1903     SRLZ(LFO3Controller);
1904     SRLZ(LFO3Sync);
1905     SRLZ(VCFEnabled);
1906     SRLZ(VCFType);
1907     SRLZ(VCFCutoffController);
1908     SRLZ(VCFCutoffControllerInvert);
1909     SRLZ(VCFCutoff);
1910     SRLZ(VCFVelocityCurve);
1911     SRLZ(VCFVelocityScale);
1912     SRLZ(VCFVelocityDynamicRange);
1913     SRLZ(VCFResonance);
1914     SRLZ(VCFResonanceDynamic);
1915     SRLZ(VCFResonanceController);
1916     SRLZ(VCFKeyboardTracking);
1917     SRLZ(VCFKeyboardTrackingBreakpoint);
1918     SRLZ(VelocityResponseCurve);
1919     SRLZ(VelocityResponseDepth);
1920     SRLZ(VelocityResponseCurveScaling);
1921     SRLZ(ReleaseVelocityResponseCurve);
1922     SRLZ(ReleaseVelocityResponseDepth);
1923     SRLZ(ReleaseTriggerDecay);
1924     SRLZ(Crossfade);
1925     SRLZ(PitchTrack);
1926     SRLZ(DimensionBypass);
1927     SRLZ(Pan);
1928     SRLZ(SelfMask);
1929     SRLZ(AttenuationController);
1930     SRLZ(InvertAttenuationController);
1931     SRLZ(AttenuationControllerThreshold);
1932     SRLZ(ChannelOffset);
1933     SRLZ(SustainDefeat);
1934     SRLZ(MSDecode);
1935     //SRLZ(SampleStartOffset);
1936     SRLZ(SampleAttenuation);
1937 schoenebeck 3327 SRLZ(EG1Options);
1938     SRLZ(EG2Options);
1939 schoenebeck 3138
1940     // derived attributes from DLS::Sampler
1941     SRLZ(FineTune);
1942     SRLZ(Gain);
1943     }
1944    
1945 schoenebeck 809 /**
1946 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1947     * which depends on this value.
1948     */
1949     void DimensionRegion::SetGain(int32_t gain) {
1950     DLS::Sampler::SetGain(gain);
1951     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1952     }
1953    
1954     /**
1955 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1956     * have to call File::Save() to make changes persistent.
1957     *
1958     * Usually there is absolutely no need to call this method explicitly.
1959     * It will be called automatically when File::Save() was called.
1960 schoenebeck 2682 *
1961     * @param pProgress - callback function for progress notification
1962 schoenebeck 809 */
1963 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1964 schoenebeck 809 // first update base class's chunk
1965 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1966 schoenebeck 809
1967 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1968     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1969     pData[12] = Crossfade.in_start;
1970     pData[13] = Crossfade.in_end;
1971     pData[14] = Crossfade.out_start;
1972     pData[15] = Crossfade.out_end;
1973    
1974 schoenebeck 809 // make sure '3ewa' chunk exists
1975     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1976 persson 1317 if (!_3ewa) {
1977     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1978     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1979     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1980 persson 1264 }
1981 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1982 schoenebeck 809
1983     // update '3ewa' chunk with DimensionRegion's current settings
1984    
1985 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1986 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1987 schoenebeck 809
1988     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1989 persson 1179 store32(&pData[4], lfo3freq);
1990 schoenebeck 809
1991     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1992 persson 1179 store32(&pData[8], eg3attack);
1993 schoenebeck 809
1994     // next 2 bytes unknown
1995    
1996 persson 1179 store16(&pData[14], LFO1InternalDepth);
1997 schoenebeck 809
1998     // next 2 bytes unknown
1999    
2000 persson 1179 store16(&pData[18], LFO3InternalDepth);
2001 schoenebeck 809
2002     // next 2 bytes unknown
2003    
2004 persson 1179 store16(&pData[22], LFO1ControlDepth);
2005 schoenebeck 809
2006     // next 2 bytes unknown
2007    
2008 persson 1179 store16(&pData[26], LFO3ControlDepth);
2009 schoenebeck 809
2010     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2011 persson 1179 store32(&pData[28], eg1attack);
2012 schoenebeck 809
2013     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2014 persson 1179 store32(&pData[32], eg1decay1);
2015 schoenebeck 809
2016     // next 2 bytes unknown
2017    
2018 persson 1179 store16(&pData[38], EG1Sustain);
2019 schoenebeck 809
2020     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2021 persson 1179 store32(&pData[40], eg1release);
2022 schoenebeck 809
2023     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2024 persson 1179 pData[44] = eg1ctl;
2025 schoenebeck 809
2026     const uint8_t eg1ctrloptions =
2027 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2028 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2029     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2030     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2031 persson 1179 pData[45] = eg1ctrloptions;
2032 schoenebeck 809
2033     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2034 persson 1179 pData[46] = eg2ctl;
2035 schoenebeck 809
2036     const uint8_t eg2ctrloptions =
2037 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2038 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2039     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2040     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2041 persson 1179 pData[47] = eg2ctrloptions;
2042 schoenebeck 809
2043     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2044 persson 1179 store32(&pData[48], lfo1freq);
2045 schoenebeck 809
2046     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2047 persson 1179 store32(&pData[52], eg2attack);
2048 schoenebeck 809
2049     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2050 persson 1179 store32(&pData[56], eg2decay1);
2051 schoenebeck 809
2052     // next 2 bytes unknown
2053    
2054 persson 1179 store16(&pData[62], EG2Sustain);
2055 schoenebeck 809
2056     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2057 persson 1179 store32(&pData[64], eg2release);
2058 schoenebeck 809
2059     // next 2 bytes unknown
2060    
2061 persson 1179 store16(&pData[70], LFO2ControlDepth);
2062 schoenebeck 809
2063     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2064 persson 1179 store32(&pData[72], lfo2freq);
2065 schoenebeck 809
2066     // next 2 bytes unknown
2067    
2068 persson 1179 store16(&pData[78], LFO2InternalDepth);
2069 schoenebeck 809
2070     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2071 persson 1179 store32(&pData[80], eg1decay2);
2072 schoenebeck 809
2073     // next 2 bytes unknown
2074    
2075 persson 1179 store16(&pData[86], EG1PreAttack);
2076 schoenebeck 809
2077     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2078 persson 1179 store32(&pData[88], eg2decay2);
2079 schoenebeck 809
2080     // next 2 bytes unknown
2081    
2082 persson 1179 store16(&pData[94], EG2PreAttack);
2083 schoenebeck 809
2084     {
2085     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2086     uint8_t velocityresponse = VelocityResponseDepth;
2087     switch (VelocityResponseCurve) {
2088     case curve_type_nonlinear:
2089     break;
2090     case curve_type_linear:
2091     velocityresponse += 5;
2092     break;
2093     case curve_type_special:
2094     velocityresponse += 10;
2095     break;
2096     case curve_type_unknown:
2097     default:
2098     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2099     }
2100 persson 1179 pData[96] = velocityresponse;
2101 schoenebeck 809 }
2102    
2103     {
2104     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2105     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2106     switch (ReleaseVelocityResponseCurve) {
2107     case curve_type_nonlinear:
2108     break;
2109     case curve_type_linear:
2110     releasevelocityresponse += 5;
2111     break;
2112     case curve_type_special:
2113     releasevelocityresponse += 10;
2114     break;
2115     case curve_type_unknown:
2116     default:
2117     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2118     }
2119 persson 1179 pData[97] = releasevelocityresponse;
2120 schoenebeck 809 }
2121    
2122 persson 1179 pData[98] = VelocityResponseCurveScaling;
2123 schoenebeck 809
2124 persson 1179 pData[99] = AttenuationControllerThreshold;
2125 schoenebeck 809
2126     // next 4 bytes unknown
2127    
2128 persson 1179 store16(&pData[104], SampleStartOffset);
2129 schoenebeck 809
2130     // next 2 bytes unknown
2131    
2132     {
2133     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2134     switch (DimensionBypass) {
2135     case dim_bypass_ctrl_94:
2136     pitchTrackDimensionBypass |= 0x10;
2137     break;
2138     case dim_bypass_ctrl_95:
2139     pitchTrackDimensionBypass |= 0x20;
2140     break;
2141     case dim_bypass_ctrl_none:
2142     //FIXME: should we set anything here?
2143     break;
2144     default:
2145     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2146     }
2147 persson 1179 pData[108] = pitchTrackDimensionBypass;
2148 schoenebeck 809 }
2149    
2150     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2151 persson 1179 pData[109] = pan;
2152 schoenebeck 809
2153     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2154 persson 1179 pData[110] = selfmask;
2155 schoenebeck 809
2156     // next byte unknown
2157    
2158     {
2159     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2160     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2161     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2162     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2163 persson 1179 pData[112] = lfo3ctrl;
2164 schoenebeck 809 }
2165    
2166     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2167 persson 1179 pData[113] = attenctl;
2168 schoenebeck 809
2169     {
2170     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2171     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2172     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2173     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2174 persson 1179 pData[114] = lfo2ctrl;
2175 schoenebeck 809 }
2176    
2177     {
2178     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2179     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2180     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2181     if (VCFResonanceController != vcf_res_ctrl_none)
2182     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2183 persson 1179 pData[115] = lfo1ctrl;
2184 schoenebeck 809 }
2185    
2186     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2187 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2188 persson 1869 store16(&pData[116], eg3depth);
2189 schoenebeck 809
2190     // next 2 bytes unknown
2191    
2192     const uint8_t channeloffset = ChannelOffset * 4;
2193 persson 1179 pData[120] = channeloffset;
2194 schoenebeck 809
2195     {
2196     uint8_t regoptions = 0;
2197     if (MSDecode) regoptions |= 0x01; // bit 0
2198     if (SustainDefeat) regoptions |= 0x02; // bit 1
2199 persson 1179 pData[121] = regoptions;
2200 schoenebeck 809 }
2201    
2202     // next 2 bytes unknown
2203    
2204 persson 1179 pData[124] = VelocityUpperLimit;
2205 schoenebeck 809
2206     // next 3 bytes unknown
2207    
2208 persson 1179 pData[128] = ReleaseTriggerDecay;
2209 schoenebeck 809
2210     // next 2 bytes unknown
2211    
2212     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2213 persson 1179 pData[131] = eg1hold;
2214 schoenebeck 809
2215 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2216 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2217 persson 1179 pData[132] = vcfcutoff;
2218 schoenebeck 809
2219 persson 1179 pData[133] = VCFCutoffController;
2220 schoenebeck 809
2221 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2222 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2223 persson 1179 pData[134] = vcfvelscale;
2224 schoenebeck 809
2225     // next byte unknown
2226    
2227 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2228 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2229 persson 1179 pData[136] = vcfresonance;
2230 schoenebeck 809
2231 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2232 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2233 persson 1179 pData[137] = vcfbreakpoint;
2234 schoenebeck 809
2235 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2236 schoenebeck 809 VCFVelocityCurve * 5;
2237 persson 1179 pData[138] = vcfvelocity;
2238 schoenebeck 809
2239     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2240 persson 1179 pData[139] = vcftype;
2241 persson 1070
2242     if (chunksize >= 148) {
2243     memcpy(&pData[140], DimensionUpperLimits, 8);
2244     }
2245 schoenebeck 3323
2246     // format extension for EG behavior options, these will *NOT* work with
2247     // Gigasampler/GigaStudio !
2248     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2249     if (!lsde) {
2250     // only add this "LSDE" chunk if the EG options do not match the
2251     // default EG behavior
2252     eg_opt_t defaultOpt;
2253 schoenebeck 3327 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2254     memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)))
2255     {
2256     lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 2);
2257 schoenebeck 3323 // move LSDE chunk to the end of parent list
2258     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2259     }
2260     }
2261     if (lsde) {
2262 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2263     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2264     for (int i = 0; i < 2; ++i) {
2265     pData[i] =
2266     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2267     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2268     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2269     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2270     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2271     }
2272 schoenebeck 3323 }
2273 schoenebeck 809 }
2274    
2275 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2276     curve_type_t curveType = releaseVelocityResponseCurve;
2277     uint8_t depth = releaseVelocityResponseDepth;
2278     // this models a strange behaviour or bug in GSt: two of the
2279     // velocity response curves for release time are not used even
2280     // if specified, instead another curve is chosen.
2281     if ((curveType == curve_type_nonlinear && depth == 0) ||
2282     (curveType == curve_type_special && depth == 4)) {
2283     curveType = curve_type_nonlinear;
2284     depth = 3;
2285     }
2286     return GetVelocityTable(curveType, depth, 0);
2287     }
2288    
2289     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2290     uint8_t vcfVelocityDynamicRange,
2291     uint8_t vcfVelocityScale,
2292     vcf_cutoff_ctrl_t vcfCutoffController)
2293     {
2294     curve_type_t curveType = vcfVelocityCurve;
2295     uint8_t depth = vcfVelocityDynamicRange;
2296     // even stranger GSt: two of the velocity response curves for
2297     // filter cutoff are not used, instead another special curve
2298     // is chosen. This curve is not used anywhere else.
2299     if ((curveType == curve_type_nonlinear && depth == 0) ||
2300     (curveType == curve_type_special && depth == 4)) {
2301     curveType = curve_type_special;
2302     depth = 5;
2303     }
2304     return GetVelocityTable(curveType, depth,
2305     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2306     ? vcfVelocityScale : 0);
2307     }
2308    
2309 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2310     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2311     {
2312 schoenebeck 3349 // sanity check input parameters
2313     // (fallback to some default parameters on ill input)
2314     switch (curveType) {
2315     case curve_type_nonlinear:
2316     case curve_type_linear:
2317     if (depth > 4) {
2318     printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2319     depth = 0;
2320     scaling = 0;
2321     }
2322     break;
2323     case curve_type_special:
2324     if (depth > 5) {
2325     printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2326     depth = 0;
2327     scaling = 0;
2328     }
2329     break;
2330     case curve_type_unknown:
2331     default:
2332     printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2333     curveType = curve_type_linear;
2334     depth = 0;
2335     scaling = 0;
2336     break;
2337     }
2338    
2339 persson 613 double* table;
2340     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2341 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2342 persson 613 table = (*pVelocityTables)[tableKey];
2343 schoenebeck 16 }
2344     else {
2345 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2346     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2347 schoenebeck 16 }
2348 persson 613 return table;
2349 schoenebeck 2 }
2350 schoenebeck 55
2351 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2352     return pRegion;
2353     }
2354    
2355 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2356     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2357     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2358     //#pragma GCC diagnostic push
2359     //#pragma GCC diagnostic error "-Wswitch"
2360    
2361 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2362     leverage_ctrl_t decodedcontroller;
2363     switch (EncodedController) {
2364     // special controller
2365     case _lev_ctrl_none:
2366     decodedcontroller.type = leverage_ctrl_t::type_none;
2367     decodedcontroller.controller_number = 0;
2368     break;
2369     case _lev_ctrl_velocity:
2370     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2371     decodedcontroller.controller_number = 0;
2372     break;
2373     case _lev_ctrl_channelaftertouch:
2374     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2375     decodedcontroller.controller_number = 0;
2376     break;
2377 schoenebeck 55
2378 schoenebeck 36 // ordinary MIDI control change controller
2379     case _lev_ctrl_modwheel:
2380     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381     decodedcontroller.controller_number = 1;
2382     break;
2383     case _lev_ctrl_breath:
2384     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385     decodedcontroller.controller_number = 2;
2386     break;
2387     case _lev_ctrl_foot:
2388     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389     decodedcontroller.controller_number = 4;
2390     break;
2391     case _lev_ctrl_effect1:
2392     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393     decodedcontroller.controller_number = 12;
2394     break;
2395     case _lev_ctrl_effect2:
2396     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397     decodedcontroller.controller_number = 13;
2398     break;
2399     case _lev_ctrl_genpurpose1:
2400     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401     decodedcontroller.controller_number = 16;
2402     break;
2403     case _lev_ctrl_genpurpose2:
2404     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405     decodedcontroller.controller_number = 17;
2406     break;
2407     case _lev_ctrl_genpurpose3:
2408     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409     decodedcontroller.controller_number = 18;
2410     break;
2411     case _lev_ctrl_genpurpose4:
2412     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413     decodedcontroller.controller_number = 19;
2414     break;
2415     case _lev_ctrl_portamentotime:
2416     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417     decodedcontroller.controller_number = 5;
2418     break;
2419     case _lev_ctrl_sustainpedal:
2420     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421     decodedcontroller.controller_number = 64;
2422     break;
2423     case _lev_ctrl_portamento:
2424     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425     decodedcontroller.controller_number = 65;
2426     break;
2427     case _lev_ctrl_sostenutopedal:
2428     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429     decodedcontroller.controller_number = 66;
2430     break;
2431     case _lev_ctrl_softpedal:
2432     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433     decodedcontroller.controller_number = 67;
2434     break;
2435     case _lev_ctrl_genpurpose5:
2436     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437     decodedcontroller.controller_number = 80;
2438     break;
2439     case _lev_ctrl_genpurpose6:
2440     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441     decodedcontroller.controller_number = 81;
2442     break;
2443     case _lev_ctrl_genpurpose7:
2444     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445     decodedcontroller.controller_number = 82;
2446     break;
2447     case _lev_ctrl_genpurpose8:
2448     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449     decodedcontroller.controller_number = 83;
2450     break;
2451     case _lev_ctrl_effect1depth:
2452     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453     decodedcontroller.controller_number = 91;
2454     break;
2455     case _lev_ctrl_effect2depth:
2456     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457     decodedcontroller.controller_number = 92;
2458     break;
2459     case _lev_ctrl_effect3depth:
2460     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461     decodedcontroller.controller_number = 93;
2462     break;
2463     case _lev_ctrl_effect4depth:
2464     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465     decodedcontroller.controller_number = 94;
2466     break;
2467     case _lev_ctrl_effect5depth:
2468     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469     decodedcontroller.controller_number = 95;
2470     break;
2471 schoenebeck 55
2472 schoenebeck 2540 // format extension (these controllers are so far only supported by
2473     // LinuxSampler & gigedit) they will *NOT* work with
2474     // Gigasampler/GigaStudio !
2475     case _lev_ctrl_CC3_EXT:
2476     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477     decodedcontroller.controller_number = 3;
2478     break;
2479     case _lev_ctrl_CC6_EXT:
2480     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481     decodedcontroller.controller_number = 6;
2482     break;
2483     case _lev_ctrl_CC7_EXT:
2484     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485     decodedcontroller.controller_number = 7;
2486     break;
2487     case _lev_ctrl_CC8_EXT:
2488     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489     decodedcontroller.controller_number = 8;
2490     break;
2491     case _lev_ctrl_CC9_EXT:
2492     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493     decodedcontroller.controller_number = 9;
2494     break;
2495     case _lev_ctrl_CC10_EXT:
2496     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497     decodedcontroller.controller_number = 10;
2498     break;
2499     case _lev_ctrl_CC11_EXT:
2500     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501     decodedcontroller.controller_number = 11;
2502     break;
2503     case _lev_ctrl_CC14_EXT:
2504     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505     decodedcontroller.controller_number = 14;
2506     break;
2507     case _lev_ctrl_CC15_EXT:
2508     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509     decodedcontroller.controller_number = 15;
2510     break;
2511     case _lev_ctrl_CC20_EXT:
2512     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513     decodedcontroller.controller_number = 20;
2514     break;
2515     case _lev_ctrl_CC21_EXT:
2516     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517     decodedcontroller.controller_number = 21;
2518     break;
2519     case _lev_ctrl_CC22_EXT:
2520     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521     decodedcontroller.controller_number = 22;
2522     break;
2523     case _lev_ctrl_CC23_EXT:
2524     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525     decodedcontroller.controller_number = 23;
2526     break;
2527     case _lev_ctrl_CC24_EXT:
2528     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529     decodedcontroller.controller_number = 24;
2530     break;
2531     case _lev_ctrl_CC25_EXT:
2532     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533     decodedcontroller.controller_number = 25;
2534     break;
2535     case _lev_ctrl_CC26_EXT:
2536     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537     decodedcontroller.controller_number = 26;
2538     break;
2539     case _lev_ctrl_CC27_EXT:
2540     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541     decodedcontroller.controller_number = 27;
2542     break;
2543     case _lev_ctrl_CC28_EXT:
2544     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545     decodedcontroller.controller_number = 28;
2546     break;
2547     case _lev_ctrl_CC29_EXT:
2548     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549     decodedcontroller.controller_number = 29;
2550     break;
2551     case _lev_ctrl_CC30_EXT:
2552     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553     decodedcontroller.controller_number = 30;
2554     break;
2555     case _lev_ctrl_CC31_EXT:
2556     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557     decodedcontroller.controller_number = 31;
2558     break;
2559     case _lev_ctrl_CC68_EXT:
2560     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561     decodedcontroller.controller_number = 68;
2562     break;
2563     case _lev_ctrl_CC69_EXT:
2564     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565     decodedcontroller.controller_number = 69;
2566     break;
2567     case _lev_ctrl_CC70_EXT:
2568     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569     decodedcontroller.controller_number = 70;
2570     break;
2571     case _lev_ctrl_CC71_EXT:
2572     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573     decodedcontroller.controller_number = 71;
2574     break;
2575     case _lev_ctrl_CC72_EXT:
2576     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577     decodedcontroller.controller_number = 72;
2578     break;
2579     case _lev_ctrl_CC73_EXT:
2580     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581     decodedcontroller.controller_number = 73;
2582     break;
2583     case _lev_ctrl_CC74_EXT:
2584     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585     decodedcontroller.controller_number = 74;
2586     break;
2587     case _lev_ctrl_CC75_EXT:
2588     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589     decodedcontroller.controller_number = 75;
2590     break;
2591     case _lev_ctrl_CC76_EXT:
2592     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593     decodedcontroller.controller_number = 76;
2594     break;
2595     case _lev_ctrl_CC77_EXT:
2596     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597     decodedcontroller.controller_number = 77;
2598     break;
2599     case _lev_ctrl_CC78_EXT:
2600     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601     decodedcontroller.controller_number = 78;
2602     break;
2603     case _lev_ctrl_CC79_EXT:
2604     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605     decodedcontroller.controller_number = 79;
2606     break;
2607     case _lev_ctrl_CC84_EXT:
2608     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609     decodedcontroller.controller_number = 84;
2610     break;
2611     case _lev_ctrl_CC85_EXT:
2612     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613     decodedcontroller.controller_number = 85;
2614     break;
2615     case _lev_ctrl_CC86_EXT:
2616     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617     decodedcontroller.controller_number = 86;
2618     break;
2619     case _lev_ctrl_CC87_EXT:
2620     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621     decodedcontroller.controller_number = 87;
2622     break;
2623     case _lev_ctrl_CC89_EXT:
2624     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625     decodedcontroller.controller_number = 89;
2626     break;
2627     case _lev_ctrl_CC90_EXT:
2628     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629     decodedcontroller.controller_number = 90;
2630     break;
2631     case _lev_ctrl_CC96_EXT:
2632     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633     decodedcontroller.controller_number = 96;
2634     break;
2635     case _lev_ctrl_CC97_EXT:
2636     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637     decodedcontroller.controller_number = 97;
2638     break;
2639     case _lev_ctrl_CC102_EXT:
2640     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641     decodedcontroller.controller_number = 102;
2642     break;
2643     case _lev_ctrl_CC103_EXT:
2644     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645     decodedcontroller.controller_number = 103;
2646     break;
2647     case _lev_ctrl_CC104_EXT:
2648     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649     decodedcontroller.controller_number = 104;
2650     break;
2651     case _lev_ctrl_CC105_EXT:
2652     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653     decodedcontroller.controller_number = 105;
2654     break;
2655     case _lev_ctrl_CC106_EXT:
2656     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657     decodedcontroller.controller_number = 106;
2658     break;
2659     case _lev_ctrl_CC107_EXT:
2660     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661     decodedcontroller.controller_number = 107;
2662     break;
2663     case _lev_ctrl_CC108_EXT:
2664     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665     decodedcontroller.controller_number = 108;
2666     break;
2667     case _lev_ctrl_CC109_EXT:
2668     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669     decodedcontroller.controller_number = 109;
2670     break;
2671     case _lev_ctrl_CC110_EXT:
2672     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673     decodedcontroller.controller_number = 110;
2674     break;
2675     case _lev_ctrl_CC111_EXT:
2676     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677     decodedcontroller.controller_number = 111;
2678     break;
2679     case _lev_ctrl_CC112_EXT:
2680     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681     decodedcontroller.controller_number = 112;
2682     break;
2683     case _lev_ctrl_CC113_EXT:
2684     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685     decodedcontroller.controller_number = 113;
2686     break;
2687     case _lev_ctrl_CC114_EXT:
2688     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689     decodedcontroller.controller_number = 114;
2690     break;
2691     case _lev_ctrl_CC115_EXT:
2692     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693     decodedcontroller.controller_number = 115;
2694     break;
2695     case _lev_ctrl_CC116_EXT:
2696     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697     decodedcontroller.controller_number = 116;
2698     break;
2699     case _lev_ctrl_CC117_EXT:
2700     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701     decodedcontroller.controller_number = 117;
2702     break;
2703     case _lev_ctrl_CC118_EXT:
2704     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705     decodedcontroller.controller_number = 118;
2706     break;
2707     case _lev_ctrl_CC119_EXT:
2708     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709     decodedcontroller.controller_number = 119;
2710     break;
2711    
2712 schoenebeck 36 // unknown controller type
2713     default:
2714 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2715     decodedcontroller.controller_number = 0;
2716     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2717     break;
2718 schoenebeck 36 }
2719     return decodedcontroller;
2720     }
2721 schoenebeck 2540
2722     // see above (diagnostic push not supported prior GCC 4.6)
2723     //#pragma GCC diagnostic pop
2724 schoenebeck 2
2725 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2726     _lev_ctrl_t encodedcontroller;
2727     switch (DecodedController.type) {
2728     // special controller
2729     case leverage_ctrl_t::type_none:
2730     encodedcontroller = _lev_ctrl_none;
2731     break;
2732     case leverage_ctrl_t::type_velocity:
2733     encodedcontroller = _lev_ctrl_velocity;
2734     break;
2735     case leverage_ctrl_t::type_channelaftertouch:
2736     encodedcontroller = _lev_ctrl_channelaftertouch;
2737     break;
2738    
2739     // ordinary MIDI control change controller
2740     case leverage_ctrl_t::type_controlchange:
2741     switch (DecodedController.controller_number) {
2742     case 1:
2743     encodedcontroller = _lev_ctrl_modwheel;
2744     break;
2745     case 2:
2746     encodedcontroller = _lev_ctrl_breath;
2747     break;
2748     case 4:
2749     encodedcontroller = _lev_ctrl_foot;
2750     break;
2751     case 12:
2752     encodedcontroller = _lev_ctrl_effect1;
2753     break;
2754     case 13:
2755     encodedcontroller = _lev_ctrl_effect2;
2756     break;
2757     case 16:
2758     encodedcontroller = _lev_ctrl_genpurpose1;
2759     break;
2760     case 17:
2761     encodedcontroller = _lev_ctrl_genpurpose2;
2762     break;
2763     case 18:
2764     encodedcontroller = _lev_ctrl_genpurpose3;
2765     break;
2766     case 19:
2767     encodedcontroller = _lev_ctrl_genpurpose4;
2768     break;
2769     case 5:
2770     encodedcontroller = _lev_ctrl_portamentotime;
2771     break;
2772     case 64:
2773     encodedcontroller = _lev_ctrl_sustainpedal;
2774     break;
2775     case 65:
2776     encodedcontroller = _lev_ctrl_portamento;
2777     break;
2778     case 66:
2779     encodedcontroller = _lev_ctrl_sostenutopedal;
2780     break;
2781     case 67:
2782     encodedcontroller = _lev_ctrl_softpedal;
2783     break;
2784     case 80:
2785     encodedcontroller = _lev_ctrl_genpurpose5;
2786     break;
2787     case 81:
2788     encodedcontroller = _lev_ctrl_genpurpose6;
2789     break;
2790     case 82:
2791     encodedcontroller = _lev_ctrl_genpurpose7;
2792     break;
2793     case 83:
2794     encodedcontroller = _lev_ctrl_genpurpose8;
2795     break;
2796     case 91:
2797     encodedcontroller = _lev_ctrl_effect1depth;
2798     break;
2799     case 92:
2800     encodedcontroller = _lev_ctrl_effect2depth;
2801     break;
2802     case 93:
2803     encodedcontroller = _lev_ctrl_effect3depth;
2804     break;
2805     case 94:
2806     encodedcontroller = _lev_ctrl_effect4depth;
2807     break;
2808     case 95:
2809     encodedcontroller = _lev_ctrl_effect5depth;
2810     break;
2811 schoenebeck 2540
2812     // format extension (these controllers are so far only
2813     // supported by LinuxSampler & gigedit) they will *NOT*
2814     // work with Gigasampler/GigaStudio !
2815     case 3:
2816     encodedcontroller = _lev_ctrl_CC3_EXT;
2817     break;
2818     case 6:
2819     encodedcontroller = _lev_ctrl_CC6_EXT;
2820     break;
2821     case 7:
2822     encodedcontroller = _lev_ctrl_CC7_EXT;
2823     break;
2824     case 8:
2825     encodedcontroller = _lev_ctrl_CC8_EXT;
2826     break;
2827     case 9:
2828     encodedcontroller = _lev_ctrl_CC9_EXT;
2829     break;
2830     case 10:
2831     encodedcontroller = _lev_ctrl_CC10_EXT;
2832     break;
2833     case 11:
2834     encodedcontroller = _lev_ctrl_CC11_EXT;
2835     break;
2836     case 14:
2837     encodedcontroller = _lev_ctrl_CC14_EXT;
2838     break;
2839     case 15:
2840     encodedcontroller = _lev_ctrl_CC15_EXT;
2841     break;
2842     case 20:
2843     encodedcontroller = _lev_ctrl_CC20_EXT;
2844     break;
2845     case 21:
2846     encodedcontroller = _lev_ctrl_CC21_EXT;
2847     break;
2848     case 22:
2849     encodedcontroller = _lev_ctrl_CC22_EXT;
2850     break;
2851     case 23:
2852     encodedcontroller = _lev_ctrl_CC23_EXT;
2853     break;
2854     case 24:
2855     encodedcontroller = _lev_ctrl_CC24_EXT;
2856     break;
2857     case 25:
2858     encodedcontroller = _lev_ctrl_CC25_EXT;
2859     break;
2860     case 26:
2861     encodedcontroller = _lev_ctrl_CC26_EXT;
2862     break;
2863     case 27:
2864     encodedcontroller = _lev_ctrl_CC27_EXT;
2865     break;
2866     case 28:
2867     encodedcontroller = _lev_ctrl_CC28_EXT;
2868     break;
2869     case 29:
2870     encodedcontroller = _lev_ctrl_CC29_EXT;
2871     break;
2872     case 30:
2873     encodedcontroller = _lev_ctrl_CC30_EXT;
2874     break;
2875     case 31:
2876     encodedcontroller = _lev_ctrl_CC31_EXT;
2877     break;
2878     case 68:
2879     encodedcontroller = _lev_ctrl_CC68_EXT;
2880     break;
2881     case 69:
2882     encodedcontroller = _lev_ctrl_CC69_EXT;
2883     break;
2884     case 70:
2885     encodedcontroller = _lev_ctrl_CC70_EXT;
2886     break;
2887     case 71:
2888     encodedcontroller = _lev_ctrl_CC71_EXT;
2889     break;
2890     case 72:
2891     encodedcontroller = _lev_ctrl_CC72_EXT;
2892     break;
2893     case 73:
2894     encodedcontroller = _lev_ctrl_CC73_EXT;
2895     break;
2896     case 74:
2897     encodedcontroller = _lev_ctrl_CC74_EXT;
2898     break;
2899     case 75:
2900     encodedcontroller = _lev_ctrl_CC75_EXT;
2901     break;
2902     case 76:
2903     encodedcontroller = _lev_ctrl_CC76_EXT;
2904     break;
2905     case 77:
2906     encodedcontroller = _lev_ctrl_CC77_EXT;
2907     break;
2908     case 78:
2909     encodedcontroller = _lev_ctrl_CC78_EXT;
2910     break;
2911     case 79:
2912     encodedcontroller = _lev_ctrl_CC79_EXT;
2913     break;
2914     case 84:
2915     encodedcontroller = _lev_ctrl_CC84_EXT;
2916     break;
2917     case 85:
2918     encodedcontroller = _lev_ctrl_CC85_EXT;
2919     break;
2920     case 86:
2921     encodedcontroller = _lev_ctrl_CC86_EXT;
2922     break;
2923     case 87:
2924     encodedcontroller = _lev_ctrl_CC87_EXT;
2925     break;
2926     case 89:
2927     encodedcontroller = _lev_ctrl_CC89_EXT;
2928     break;
2929     case 90:
2930     encodedcontroller = _lev_ctrl_CC90_EXT;
2931     break;
2932     case 96:
2933     encodedcontroller = _lev_ctrl_CC96_EXT;
2934     break;
2935     case 97:
2936     encodedcontroller = _lev_ctrl_CC97_EXT;
2937     break;
2938     case 102:
2939     encodedcontroller = _lev_ctrl_CC102_EXT;
2940     break;
2941     case 103:
2942     encodedcontroller = _lev_ctrl_CC103_EXT;
2943     break;
2944     case 104:
2945     encodedcontroller = _lev_ctrl_CC104_EXT;
2946     break;
2947     case 105:
2948     encodedcontroller = _lev_ctrl_CC105_EXT;
2949     break;
2950     case 106:
2951     encodedcontroller = _lev_ctrl_CC106_EXT;
2952     break;
2953     case 107:
2954     encodedcontroller = _lev_ctrl_CC107_EXT;
2955     break;
2956     case 108:
2957     encodedcontroller = _lev_ctrl_CC108_EXT;
2958     break;
2959     case 109:
2960     encodedcontroller = _lev_ctrl_CC109_EXT;
2961     break;
2962     case 110:
2963     encodedcontroller = _lev_ctrl_CC110_EXT;
2964     break;
2965     case 111:
2966     encodedcontroller = _lev_ctrl_CC111_EXT;
2967     break;
2968     case 112:
2969     encodedcontroller = _lev_ctrl_CC112_EXT;
2970     break;
2971     case 113:
2972     encodedcontroller = _lev_ctrl_CC113_EXT;
2973     break;
2974     case 114:
2975     encodedcontroller = _lev_ctrl_CC114_EXT;
2976     break;
2977     case 115:
2978     encodedcontroller = _lev_ctrl_CC115_EXT;
2979     break;
2980     case 116:
2981     encodedcontroller = _lev_ctrl_CC116_EXT;
2982     break;
2983     case 117:
2984     encodedcontroller = _lev_ctrl_CC117_EXT;
2985     break;
2986     case 118:
2987     encodedcontroller = _lev_ctrl_CC118_EXT;
2988     break;
2989     case 119:
2990     encodedcontroller = _lev_ctrl_CC119_EXT;
2991     break;
2992    
2993 schoenebeck 809 default:
2994     throw gig::Exception("leverage controller number is not supported by the gig format");
2995     }
2996 persson 1182 break;
2997 schoenebeck 809 default:
2998     throw gig::Exception("Unknown leverage controller type.");
2999     }
3000     return encodedcontroller;
3001     }
3002    
3003 schoenebeck 16 DimensionRegion::~DimensionRegion() {
3004     Instances--;
3005     if (!Instances) {
3006     // delete the velocity->volume tables
3007     VelocityTableMap::iterator iter;
3008     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3009     double* pTable = iter->second;
3010     if (pTable) delete[] pTable;
3011     }
3012     pVelocityTables->clear();
3013     delete pVelocityTables;
3014     pVelocityTables = NULL;
3015     }
3016 persson 858 if (VelocityTable) delete[] VelocityTable;
3017 schoenebeck 16 }
3018 schoenebeck 2
3019 schoenebeck 16 /**
3020     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3021     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3022     * and VelocityResponseCurveScaling) involved are taken into account to
3023     * calculate the amplitude factor. Use this method when a key was
3024     * triggered to get the volume with which the sample should be played
3025     * back.
3026     *
3027 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3028     * @returns amplitude factor (between 0.0 and 1.0)
3029 schoenebeck 16 */
3030     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3031     return pVelocityAttenuationTable[MIDIKeyVelocity];
3032     }
3033 schoenebeck 2
3034 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3035     return pVelocityReleaseTable[MIDIKeyVelocity];
3036     }
3037    
3038 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3039     return pVelocityCutoffTable[MIDIKeyVelocity];
3040     }
3041    
3042 schoenebeck 1358 /**
3043     * Updates the respective member variable and the lookup table / cache
3044     * that depends on this value.
3045     */
3046     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3047     pVelocityAttenuationTable =
3048     GetVelocityTable(
3049     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3050     );
3051     VelocityResponseCurve = curve;
3052     }
3053    
3054     /**
3055     * Updates the respective member variable and the lookup table / cache
3056     * that depends on this value.
3057     */
3058     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3059     pVelocityAttenuationTable =
3060     GetVelocityTable(
3061     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3062     );
3063     VelocityResponseDepth = depth;
3064     }
3065    
3066     /**
3067     * Updates the respective member variable and the lookup table / cache
3068     * that depends on this value.
3069     */
3070     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3071     pVelocityAttenuationTable =
3072     GetVelocityTable(
3073     VelocityResponseCurve, VelocityResponseDepth, scaling
3074     );
3075     VelocityResponseCurveScaling = scaling;
3076     }
3077    
3078     /**
3079     * Updates the respective member variable and the lookup table / cache
3080     * that depends on this value.
3081     */
3082     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3083     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3084     ReleaseVelocityResponseCurve = curve;
3085     }
3086    
3087     /**
3088     * Updates the respective member variable and the lookup table / cache
3089     * that depends on this value.
3090     */
3091     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3092     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3093     ReleaseVelocityResponseDepth = depth;
3094     }
3095    
3096     /**
3097     * Updates the respective member variable and the lookup table / cache
3098     * that depends on this value.
3099     */
3100     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3101     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3102     VCFCutoffController = controller;
3103     }
3104    
3105     /**
3106     * Updates the respective member variable and the lookup table / cache
3107     * that depends on this value.
3108     */
3109     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3110     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3111     VCFVelocityCurve = curve;
3112     }
3113    
3114     /**
3115     * Updates the respective member variable and the lookup table / cache
3116     * that depends on this value.
3117     */
3118     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3119     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3120     VCFVelocityDynamicRange = range;
3121     }
3122    
3123     /**
3124     * Updates the respective member variable and the lookup table / cache
3125     * that depends on this value.
3126     */
3127     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3128     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3129     VCFVelocityScale = scaling;
3130     }
3131    
3132 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3133 schoenebeck 317
3134 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3135 schoenebeck 16
3136 schoenebeck 308 // linear
3137     const int lin0[] = { 1, 1, 127, 127 };
3138     const int lin1[] = { 1, 21, 127, 127 };
3139     const int lin2[] = { 1, 45, 127, 127 };
3140     const int lin3[] = { 1, 74, 127, 127 };
3141     const int lin4[] = { 1, 127, 127, 127 };
3142 schoenebeck 16
3143 schoenebeck 308 // non-linear
3144     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3145 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3146 schoenebeck 308 127, 127 };
3147     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3148     127, 127 };
3149     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3150     127, 127 };
3151     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3152 schoenebeck 317
3153 schoenebeck 308 // special
3154 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3155 schoenebeck 308 113, 127, 127, 127 };
3156     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3157     118, 127, 127, 127 };
3158 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3159 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3160 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3161 schoenebeck 308 117, 127, 127, 127 };
3162 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3163 schoenebeck 308 127, 127 };
3164 schoenebeck 317
3165 persson 728 // this is only used by the VCF velocity curve
3166     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3167     91, 127, 127, 127 };
3168    
3169 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3170 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3171 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3172 schoenebeck 317
3173 schoenebeck 308 double* const table = new double[128];
3174    
3175     const int* curve = curves[curveType * 5 + depth];
3176     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3177 schoenebeck 317
3178 schoenebeck 308 table[0] = 0;
3179     for (int x = 1 ; x < 128 ; x++) {
3180    
3181     if (x > curve[2]) curve += 2;
3182 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3183 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3184     y = y / 127;
3185    
3186     // Scale up for s > 20, down for s < 20. When
3187     // down-scaling, the curve still ends at 1.0.
3188     if (s < 20 && y >= 0.5)
3189     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3190     else
3191     y = y * (s / 20.0);
3192     if (y > 1) y = 1;
3193    
3194     table[x] = y;
3195     }
3196     return table;
3197     }
3198    
3199    
3200 schoenebeck 2 // *************** Region ***************
3201     // *
3202    
3203     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3204     // Initialization
3205     Dimensions = 0;
3206 schoenebeck 347 for (int i = 0; i < 256; i++) {
3207 schoenebeck 2 pDimensionRegions[i] = NULL;
3208     }
3209 schoenebeck 282 Layers = 1;
3210 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3211     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3212 schoenebeck 2
3213     // Actual Loading
3214    
3215 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3216    
3217 schoenebeck 2 LoadDimensionRegions(rgnList);
3218    
3219     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3220     if (_3lnk) {
3221     DimensionRegions = _3lnk->ReadUint32();
3222 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3223 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3224     uint8_t bits = _3lnk->ReadUint8();
3225 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3226     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3227 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3228 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3229     pDimensionDefinitions[i].dimension = dimension_none;
3230     pDimensionDefinitions[i].bits = 0;
3231     pDimensionDefinitions[i].zones = 0;
3232     pDimensionDefinitions[i].split_type = split_type_bit;
3233     pDimensionDefinitions[i].zone_size = 0;
3234     }
3235     else { // active dimension
3236     pDimensionDefinitions[i].dimension = dimension;
3237     pDimensionDefinitions[i].bits = bits;
3238 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3239 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3240     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3241 schoenebeck 2 Dimensions++;
3242 schoenebeck 282
3243     // if this is a layer dimension, remember the amount of layers
3244     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3245 schoenebeck 2 }
3246 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3247 schoenebeck 2 }
3248 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3249 schoenebeck 2
3250 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3251     // update the VelocityTables in the dimension regions
3252     UpdateVelocityTable();
3253 schoenebeck 2
3254 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3255     if (file->pVersion && file->pVersion->major == 3)
3256     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3257     else
3258     _3lnk->SetPos(44);
3259    
3260 schoenebeck 1524 // load sample references (if auto loading is enabled)
3261     if (file->GetAutoLoad()) {
3262     for (uint i = 0; i < DimensionRegions; i++) {
3263     uint32_t wavepoolindex = _3lnk->ReadUint32();
3264 schoenebeck 3348 if (file->pWavePoolTable && pDimensionRegions[i])
3265     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3266 schoenebeck 1524 }
3267     GetSample(); // load global region sample reference
3268 schoenebeck 2 }
3269 persson 1102 } else {
3270     DimensionRegions = 0;
3271 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3272     pDimensionDefinitions[i].dimension = dimension_none;
3273     pDimensionDefinitions[i].bits = 0;
3274     pDimensionDefinitions[i].zones = 0;
3275     }
3276 schoenebeck 2 }
3277 schoenebeck 823
3278     // make sure there is at least one dimension region
3279     if (!DimensionRegions) {
3280     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3281     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3282     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3283 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3284 schoenebeck 823 DimensionRegions = 1;
3285     }
3286 schoenebeck 2 }
3287    
3288 schoenebeck 809 /**
3289     * Apply Region settings and all its DimensionRegions to the respective
3290     * RIFF chunks. You have to call File::Save() to make changes persistent.
3291     *
3292     * Usually there is absolutely no need to call this method explicitly.
3293     * It will be called automatically when File::Save() was called.
3294     *
3295 schoenebeck 2682 * @param pProgress - callback function for progress notification
3296 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3297     */
3298 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3299 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3300     // but we still have to provide some existing one to not corrupt the
3301     // file, so to avoid the latter we simply always assign the sample of
3302     // the first dimension region of this region
3303     pSample = pDimensionRegions[0]->pSample;
3304    
3305 schoenebeck 809 // first update base class's chunks
3306 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3307 schoenebeck 809
3308     // update dimension region's chunks
3309 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3310 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3311 schoenebeck 823 }
3312 schoenebeck 809
3313 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3314     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3315 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3316     const int iMaxDimensionRegions = version3 ? 256 : 32;
3317 schoenebeck 809
3318     // make sure '3lnk' chunk exists
3319     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3320     if (!_3lnk) {
3321 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3322 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3323 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3324 persson 1192
3325     // move 3prg to last position
3326 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3327 schoenebeck 809 }
3328    
3329     // update dimension definitions in '3lnk' chunk
3330     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3331 persson 1179 store32(&pData[0], DimensionRegions);
3332 persson 1199 int shift = 0;
3333 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3334 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3335     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3336 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3337 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3338 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3339 persson 1199 // next 3 bytes unknown, always zero?
3340    
3341     shift += pDimensionDefinitions[i].bits;
3342 schoenebeck 809 }
3343    
3344     // update wave pool table in '3lnk' chunk
3345 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3346 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3347     int iWaveIndex = -1;
3348     if (i < DimensionRegions) {
3349 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3350     File::SampleList::iterator iter = pFile->pSamples->begin();
3351     File::SampleList::iterator end = pFile->pSamples->end();
3352 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3353 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3354     iWaveIndex = index;
3355     break;
3356     }
3357 schoenebeck 809 }
3358     }
3359 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3360 schoenebeck 809 }
3361     }
3362    
3363 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3364     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3365     if (_3prg) {
3366     int dimensionRegionNr = 0;
3367     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3368     while (_3ewl) {
3369     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3370 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3371 schoenebeck 2 dimensionRegionNr++;
3372     }
3373     _3ewl = _3prg->GetNextSubList();
3374     }
3375     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3376     }
3377     }
3378    
3379 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3380     // update KeyRange struct and make sure regions are in correct order
3381     DLS::Region::SetKeyRange(Low, High);
3382     // update Region key table for fast lookup
3383     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3384     }
3385    
3386 persson 858 void Region::UpdateVelocityTable() {
3387     // get velocity dimension's index
3388     int veldim = -1;
3389     for (int i = 0 ; i < Dimensions ; i++) {
3390     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3391     veldim = i;
3392 schoenebeck 809 break;
3393     }
3394     }
3395 persson 858 if (veldim == -1) return;
3396 schoenebeck 809
3397 persson 858 int step = 1;
3398     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3399     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3400 schoenebeck 809
3401 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3402     int dim[8] = { 0 };
3403     for (int i = 0 ; i < DimensionRegions ; i++) {
3404 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3405 persson 858
3406 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3407 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3408     pDimensionRegions[i]->VelocityUpperLimit) {
3409 persson 858 // create the velocity table
3410     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3411     if (!table) {
3412     table = new uint8_t[128];
3413     pDimensionRegions[i]->VelocityTable = table;
3414     }
3415     int tableidx = 0;
3416     int velocityZone = 0;
3417 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3418     for (int k = i ; k < end ; k += step) {
3419     DimensionRegion *d = pDimensionRegions[k];
3420     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3421     velocityZone++;
3422     }
3423     } else { // gig2
3424     for (int k = i ; k < end ; k += step) {
3425     DimensionRegion *d = pDimensionRegions[k];
3426     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3427     velocityZone++;
3428     }
3429 persson 858 }
3430     } else {
3431     if (pDimensionRegions[i]->VelocityTable) {
3432     delete[] pDimensionRegions[i]->VelocityTable;
3433     pDimensionRegions[i]->VelocityTable = 0;
3434     }
3435 schoenebeck 809 }
3436 persson 858
3437 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3438 persson 858 int j;
3439     int shift = 0;
3440     for (j = 0 ; j < Dimensions ; j++) {
3441     if (j == veldim) i += skipveldim; // skip velocity dimension
3442     else {
3443     dim[j]++;
3444     if (dim[j] < pDimensionDefinitions[j].zones) break;
3445     else {
3446     // skip unused dimension regions
3447     dim[j] = 0;
3448     i += ((1 << pDimensionDefinitions[j].bits) -
3449     pDimensionDefinitions[j].zones) << shift;
3450     }
3451     }
3452     shift += pDimensionDefinitions[j].bits;
3453     }
3454     if (j == Dimensions) break;
3455 schoenebeck 809 }
3456     }
3457    
3458     /** @brief Einstein would have dreamed of it - create a new dimension.
3459     *
3460     * Creates a new dimension with the dimension definition given by
3461     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3462     * There is a hard limit of dimensions and total amount of "bits" all
3463     * dimensions can have. This limit is dependant to what gig file format
3464     * version this file refers to. The gig v2 (and lower) format has a
3465     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3466     * format has a limit of 8.
3467     *
3468     * @param pDimDef - defintion of the new dimension
3469     * @throws gig::Exception if dimension of the same type exists already
3470     * @throws gig::Exception if amount of dimensions or total amount of
3471     * dimension bits limit is violated
3472     */
3473     void Region::AddDimension(dimension_def_t* pDimDef) {
3474 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3475     if (pDimDef->zones < 2)
3476     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3477     if (pDimDef->bits < 1)
3478     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3479     if (pDimDef->dimension == dimension_samplechannel) {
3480     if (pDimDef->zones != 2)
3481     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3482     if (pDimDef->bits != 1)
3483     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3484     }
3485    
3486 schoenebeck 809 // check if max. amount of dimensions reached
3487     File* file = (File*) GetParent()->GetParent();
3488     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3489     if (Dimensions >= iMaxDimensions)
3490     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3491     // check if max. amount of dimension bits reached
3492     int iCurrentBits = 0;
3493     for (int i = 0; i < Dimensions; i++)
3494     iCurrentBits += pDimensionDefinitions[i].bits;
3495     if (iCurrentBits >= iMaxDimensions)
3496     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3497     const int iNewBits = iCurrentBits + pDimDef->bits;
3498     if (iNewBits > iMaxDimensions)
3499     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3500     // check if there's already a dimensions of the same type
3501     for (int i = 0; i < Dimensions; i++)
3502     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3503     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3504    
3505 persson 1301 // pos is where the new dimension should be placed, normally
3506     // last in list, except for the samplechannel dimension which
3507     // has to be first in list
3508     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3509     int bitpos = 0;
3510     for (int i = 0 ; i < pos ; i++)
3511     bitpos += pDimensionDefinitions[i].bits;
3512    
3513     // make room for the new dimension
3514     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3515     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3516     for (int j = Dimensions ; j > pos ; j--) {
3517     pDimensionRegions[i]->DimensionUpperLimits[j] =
3518     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3519     }
3520     }
3521    
3522 schoenebeck 809 // assign definition of new dimension
3523 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3524 schoenebeck 809
3525 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3526 persson 1301 pDimensionDefinitions[pos].split_type =
3527     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3528     pDimensionDefinitions[pos].zone_size =
3529     __resolveZoneSize(pDimensionDefinitions[pos]);
3530 schoenebeck 1113
3531 persson 1301 // create new dimension region(s) for this new dimension, and make
3532     // sure that the dimension regions are placed correctly in both the
3533     // RIFF list and the pDimensionRegions array
3534     RIFF::Chunk* moveTo = NULL;
3535     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3536     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3537     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3538     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3539     }
3540     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3541     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3542     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3543     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3544     // create a new dimension region and copy all parameter values from
3545     // an existing dimension region
3546     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3547     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3548 persson 1247
3549 persson 1301 DimensionRegions++;
3550     }
3551     }
3552     moveTo = pDimensionRegions[i]->pParentList;
3553 schoenebeck 809 }
3554    
3555 persson 1247 // initialize the upper limits for this dimension
3556 persson 1301 int mask = (1 << bitpos) - 1;
3557     for (int z = 0 ; z < pDimDef->zones ; z++) {
3558 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3559 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3560 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3561     (z << bitpos) |
3562     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3563 persson 1247 }
3564     }
3565    
3566 schoenebeck 809 Dimensions++;
3567    
3568     // if this is a layer dimension, update 'Layers' attribute
3569     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3570    
3571 persson 858 UpdateVelocityTable();
3572 schoenebeck 809 }
3573    
3574     /** @brief Delete an existing dimension.
3575     *
3576     * Deletes the dimension given by \a pDimDef and deletes all respective
3577     * dimension regions, that is all dimension regions where the dimension's
3578     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3579     * for example this would delete all dimension regions for the case(s)
3580     * where the sustain pedal is pressed down.
3581     *
3582     * @param pDimDef - dimension to delete
3583     * @throws gig::Exception if given dimension cannot be found
3584     */
3585     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3586     // get dimension's index
3587     int iDimensionNr = -1;
3588     for (int i = 0; i < Dimensions; i++) {
3589     if (&pDimensionDefinitions[i] == pDimDef) {
3590     iDimensionNr = i;
3591     break;
3592     }
3593     }
3594     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3595    
3596     // get amount of bits below the dimension to delete
3597     int iLowerBits = 0;
3598     for (int i = 0; i < iDimensionNr; i++)
3599     iLowerBits += pDimensionDefinitions[i].bits;
3600    
3601     // get amount ot bits above the dimension to delete
3602     int iUpperBits = 0;
3603     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3604     iUpperBits += pDimensionDefinitions[i].bits;
3605    
3606 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3607    
3608 schoenebeck 809 // delete dimension regions which belong to the given dimension
3609     // (that is where the dimension's bit > 0)
3610     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3611     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3612     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3613     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3614     iObsoleteBit << iLowerBits |
3615     iLowerBit;
3616 persson 1247
3617     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3618 schoenebeck 809 delete pDimensionRegions[iToDelete];
3619     pDimensionRegions[iToDelete] = NULL;
3620     DimensionRegions--;
3621     }
3622     }
3623     }
3624    
3625     // defrag pDimensionRegions array
3626     // (that is remove the NULL spaces within the pDimensionRegions array)
3627     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3628     if (!pDimensionRegions[iTo]) {
3629     if (iFrom <= iTo) iFrom = iTo + 1;
3630     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3631     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3632     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3633     pDimensionRegions[iFrom] = NULL;
3634     }
3635     }
3636     }
3637    
3638 persson 1247 // remove the this dimension from the upper limits arrays
3639     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3640     DimensionRegion* d = pDimensionRegions[j];
3641     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3642     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3643     }
3644     d->DimensionUpperLimits[Dimensions - 1] = 127;
3645     }
3646    
3647 schoenebeck 809 // 'remove' dimension definition
3648     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3649     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3650     }
3651     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3652     pDimensionDefinitions[Dimensions - 1].bits = 0;
3653     pDimensionDefinitions[Dimensions - 1].zones = 0;
3654    
3655     Dimensions--;
3656    
3657     // if this was a layer dimension, update 'Layers' attribute
3658     if (pDimDef->dimension == dimension_layer) Layers = 1;
3659     }
3660    
3661 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3662     *
3663     * Instead of deleting an entire dimensions, this method will only delete
3664     * one particular split zone given by @a zone of the Region's dimension
3665     * given by @a type. So this method will simply decrement the amount of
3666     * zones by one of the dimension in question. To be able to do that, the
3667     * respective dimension must exist on this Region and it must have at least
3668     * 3 zones. All DimensionRegion objects associated with the zone will be
3669     * deleted.
3670     *
3671     * @param type - identifies the dimension where a zone shall be deleted
3672     * @param zone - index of the dimension split zone that shall be deleted
3673     * @throws gig::Exception if requested zone could not be deleted
3674     */
3675     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3676     dimension_def_t* oldDef = GetDimensionDefinition(type);
3677     if (!oldDef)
3678     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3679     if (oldDef->zones <= 2)
3680     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3681     if (zone < 0 || zone >= oldDef->zones)
3682     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3683    
3684     const int newZoneSize = oldDef->zones - 1;
3685    
3686     // create a temporary Region which just acts as a temporary copy
3687     // container and will be deleted at the end of this function and will
3688     // also not be visible through the API during this process
3689     gig::Region* tempRgn = NULL;
3690     {
3691     // adding these temporary chunks is probably not even necessary
3692     Instrument* instr = static_cast<Instrument*>(GetParent());
3693     RIFF::List* pCkInstrument = instr->pCkInstrument;
3694     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3695     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3696     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3697     tempRgn = new Region(instr, rgn);
3698     }
3699    
3700     // copy this region's dimensions (with already the dimension split size
3701     // requested by the arguments of this method call) to the temporary
3702     // region, and don't use Region::CopyAssign() here for this task, since
3703     // it would also alter fast lookup helper variables here and there
3704     dimension_def_t newDef;
3705     for (int i = 0; i < Dimensions; ++i) {
3706     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3707     // is this the dimension requested by the method arguments? ...
3708     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3709     def.zones = newZoneSize;
3710     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3711     newDef = def;
3712     }
3713     tempRgn->AddDimension(&def);
3714     }
3715    
3716     // find the dimension index in the tempRegion which is the dimension
3717     // type passed to this method (paranoidly expecting different order)
3718     int tempReducedDimensionIndex = -1;
3719     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3720     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3721     tempReducedDimensionIndex = d;
3722     break;
3723     }
3724     }
3725    
3726     // copy dimension regions from this region to the temporary region
3727     for (int iDst = 0; iDst < 256; ++iDst) {
3728     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3729     if (!dstDimRgn) continue;
3730     std::map<dimension_t,int> dimCase;
3731     bool isValidZone = true;
3732     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3733     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3734     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3735     (iDst >> baseBits) & ((1 << dstBits) - 1);
3736     baseBits += dstBits;
3737     // there are also DimensionRegion objects of unused zones, skip them
3738     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3739     isValidZone = false;
3740     break;
3741     }
3742     }
3743     if (!isValidZone) continue;
3744     // a bit paranoid: cope with the chance that the dimensions would
3745     // have different order in source and destination regions
3746     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3747     if (dimCase[type] >= zone) dimCase[type]++;
3748     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3749     dstDimRgn->CopyAssign(srcDimRgn);
3750     // if this is the upper most zone of the dimension passed to this
3751     // method, then correct (raise) its upper limit to 127
3752     if (newDef.split_type == split_type_normal && isLastZone)
3753     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3754     }
3755    
3756     // now tempRegion's dimensions and DimensionRegions basically reflect
3757     // what we wanted to get for this actual Region here, so we now just
3758     // delete and recreate the dimension in question with the new amount
3759     // zones and then copy back from tempRegion
3760     DeleteDimension(oldDef);
3761     AddDimension(&newDef);
3762     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3763     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3764     if (!srcDimRgn) continue;
3765     std::map<dimension_t,int> dimCase;
3766     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3767     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3768     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3769     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3770     baseBits += srcBits;
3771     }
3772     // a bit paranoid: cope with the chance that the dimensions would
3773     // have different order in source and destination regions
3774     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3775     if (!dstDimRgn) continue;
3776     dstDimRgn->CopyAssign(srcDimRgn);
3777     }
3778    
3779     // delete temporary region
3780     delete tempRgn;
3781 schoenebeck 2557
3782     UpdateVelocityTable();
3783 schoenebeck 2555 }
3784    
3785     /** @brief Divide split zone of a dimension in two (increment zone amount).
3786     *
3787     * This will increment the amount of zones for the dimension (given by
3788     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3789     * in the middle of its zone range in two. So the two zones resulting from
3790     * the zone being splitted, will be an equivalent copy regarding all their
3791     * articulation informations and sample reference. The two zones will only
3792     * differ in their zone's upper limit
3793     * (DimensionRegion::DimensionUpperLimits).
3794     *
3795     * @param type - identifies the dimension where a zone shall be splitted
3796     * @param zone - index of the dimension split zone that shall be splitted
3797     * @throws gig::Exception if requested zone could not be splitted
3798     */
3799     void Region::SplitDimensionZone(dimension_t type, int zone) {
3800     dimension_def_t* oldDef = GetDimensionDefinition(type);
3801     if (!oldDef)
3802     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3803     if (zone < 0 || zone >= oldDef->zones)
3804     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3805    
3806     const int newZoneSize = oldDef->zones + 1;
3807    
3808     // create a temporary Region which just acts as a temporary copy
3809     // container and will be deleted at the end of this function and will
3810     // also not be visible through the API during this process
3811     gig::Region* tempRgn = NULL;
3812     {
3813     // adding these temporary chunks is probably not even necessary
3814     Instrument* instr = static_cast<Instrument*>(GetParent());
3815     RIFF::List* pCkInstrument = instr->pCkInstrument;
3816     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3817     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3818     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3819     tempRgn = new Region(instr, rgn);
3820     }
3821    
3822     // copy this region's dimensions (with already the dimension split size
3823     // requested by the arguments of this method call) to the temporary
3824     // region, and don't use Region::CopyAssign() here for this task, since
3825     // it would also alter fast lookup helper variables here and there
3826     dimension_def_t newDef;
3827     for (int i = 0; i < Dimensions; ++i) {
3828     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3829     // is this the dimension requested by the method arguments? ...
3830     if (def.dimension == type) { // ... if yes, increment zone amount by one
3831     def.zones = newZoneSize;
3832     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3833     newDef = def;
3834     }
3835     tempRgn->AddDimension(&def);
3836     }
3837    
3838     // find the dimension index in the tempRegion which is the dimension
3839     // type passed to this method (paranoidly expecting different order)
3840     int tempIncreasedDimensionIndex = -1;
3841     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3842     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3843     tempIncreasedDimensionIndex = d;
3844     break;
3845     }
3846     }
3847    
3848     // copy dimension regions from this region to the temporary region
3849     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3850     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3851     if (!srcDimRgn) continue;
3852     std::map<dimension_t,int> dimCase;
3853     bool isValidZone = true;
3854     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3855     const int srcBits = pDimensionDefinitions[d].bits;
3856     dimCase[pDimensionDefinitions[d].dimension] =
3857     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3858     // there are also DimensionRegion objects for unused zones, skip them
3859     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3860     isValidZone = false;
3861     break;
3862     }
3863     baseBits += srcBits;
3864     }
3865     if (!isValidZone) continue;
3866     // a bit paranoid: cope with the chance that the dimensions would
3867     // have different order in source and destination regions
3868     if (dimCase[type] > zone) dimCase[type]++;
3869     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3870     dstDimRgn->CopyAssign(srcDimRgn);
3871     // if this is the requested zone to be splitted, then also copy
3872     // the source DimensionRegion to the newly created target zone
3873     // and set the old zones upper limit lower
3874     if (dimCase[type] == zone) {
3875     // lower old zones upper limit
3876     if (newDef.split_type == split_type_normal) {
3877     const int high =
3878     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3879     int low = 0;
3880     if (zone > 0) {
3881     std::map<dimension_t,int> lowerCase = dimCase;
3882     lowerCase[type]--;
3883     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3884     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3885     }
3886     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3887     }
3888     // fill the newly created zone of the divided zone as well
3889     dimCase[type]++;
3890     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3891     dstDimRgn->CopyAssign(srcDimRgn);
3892     }
3893     }
3894    
3895     // now tempRegion's dimensions and DimensionRegions basically reflect
3896     // what we wanted to get for this actual Region here, so we now just
3897     // delete and recreate the dimension in question with the new amount
3898     // zones and then copy back from tempRegion
3899     DeleteDimension(oldDef);
3900     AddDimension(&newDef);
3901     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3902     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3903     if (!srcDimRgn) continue;
3904     std::map<dimension_t,int> dimCase;
3905     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3906     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3907     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3908     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3909     baseBits += srcBits;
3910     }
3911     // a bit paranoid: cope with the chance that the dimensions would
3912     // have different order in source and destination regions
3913     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3914     if (!dstDimRgn) continue;
3915     dstDimRgn->CopyAssign(srcDimRgn);
3916     }
3917    
3918     // delete temporary region
3919     delete tempRgn;
3920 schoenebeck 2557
3921     UpdateVelocityTable();
3922 schoenebeck 2555 }
3923    
3924 schoenebeck 2639 /** @brief Change type of an existing dimension.
3925     *
3926     * Alters the dimension type of a dimension already existing on this
3927     * region. If there is currently no dimension on this Region with type
3928     * @a oldType, then this call with throw an Exception. Likewise there are
3929     * cases where the requested dimension type cannot be performed. For example
3930     * if the new dimension type shall be gig::dimension_samplechannel, and the
3931     * current dimension has more than 2 zones. In such cases an Exception is
3932     * thrown as well.
3933     *
3934     * @param oldType - identifies the existing dimension to be changed
3935     * @param newType - to which dimension type it should be changed to
3936     * @throws gig::Exception if requested change cannot be performed
3937     */
3938     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3939     if (oldType == newType) return;
3940     dimension_def_t* def = GetDimensionDefinition(oldType);
3941     if (!def)
3942     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3943     if (newType == dimension_samplechannel && def->zones != 2)
3944     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3945 schoenebeck 2640 if (GetDimensionDefinition(newType))
3946     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3947     def->dimension = newType;
3948 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3949     }
3950    
3951 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3952     uint8_t bits[8] = {};
3953     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3954     it != DimCase.end(); ++it)
3955     {
3956     for (int d = 0; d < Dimensions; ++d) {
3957     if (pDimensionDefinitions[d].dimension == it->first) {
3958     bits[d] = it->second;
3959     goto nextDimCaseSlice;
3960     }
3961     }
3962     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3963     nextDimCaseSlice:
3964     ; // noop
3965     }
3966     return GetDimensionRegionByBit(bits);
3967     }
3968    
3969 schoenebeck 2547 /**
3970     * Searches in the current Region for a dimension of the given dimension
3971     * type and returns the precise configuration of that dimension in this
3972     * Region.
3973     *
3974     * @param type - dimension type of the sought dimension
3975     * @returns dimension definition or NULL if there is no dimension with
3976     * sought type in this Region.
3977     */
3978     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3979     for (int i = 0; i < Dimensions; ++i)
3980     if (pDimensionDefinitions[i].dimension == type)
3981     return &pDimensionDefinitions[i];
3982     return NULL;
3983     }
3984    
3985 schoenebeck 2 Region::~Region() {
3986 schoenebeck 350 for (int i = 0; i < 256; i++) {
3987 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3988     }
3989     }
3990    
3991     /**
3992     * Use this method in your audio engine to get the appropriate dimension
3993     * region with it's articulation data for the current situation. Just
3994     * call the method with the current MIDI controller values and you'll get
3995     * the DimensionRegion with the appropriate articulation data for the
3996     * current situation (for this Region of course only). To do that you'll
3997     * first have to look which dimensions with which controllers and in
3998     * which order are defined for this Region when you load the .gig file.
3999     * Special cases are e.g. layer or channel dimensions where you just put
4000     * in the index numbers instead of a MIDI controller value (means 0 for
4001     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4002     * etc.).
4003     *
4004 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4005 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
4006     * @see pDimensionDefinitions
4007     * @see Dimensions
4008     */
4009 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4010 persson 858 uint8_t bits;
4011     int veldim = -1;
4012 schoenebeck 3053 int velbitpos = 0;
4013 persson 858 int bitpos = 0;
4014     int dimregidx = 0;
4015 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
4016 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4017     // the velocity dimension must be handled after the other dimensions
4018     veldim = i;
4019     velbitpos = bitpos;
4020     } else {
4021     switch (pDimensionDefinitions[i].split_type) {
4022     case split_type_normal:
4023 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4024     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4025     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4026     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4027     }
4028     } else {
4029     // gig2: evenly sized zones
4030     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4031     }
4032 persson 858 break;
4033     case split_type_bit: // the value is already the sought dimension bit number
4034     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4035     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4036     break;
4037     }
4038     dimregidx |= bits << bitpos;
4039 schoenebeck 2 }
4040 persson 858 bitpos += pDimensionDefinitions[i].bits;
4041 schoenebeck 2 }
4042 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4043     if (!dimreg) return NULL;
4044 persson 858 if (veldim != -1) {
4045     // (dimreg is now the dimension region for the lowest velocity)
4046 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4047 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4048 persson 858 else // normal split type
4049 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4050 persson 858
4051 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4052     dimregidx |= (bits & limiter_mask) << velbitpos;
4053     dimreg = pDimensionRegions[dimregidx & 255];
4054 persson 858 }
4055     return dimreg;
4056 schoenebeck 2 }
4057    
4058 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4059     uint8_t bits;
4060     int veldim = -1;
4061 schoenebeck 3053 int velbitpos = 0;
4062 schoenebeck 2599 int bitpos = 0;
4063     int dimregidx = 0;
4064     for (uint i = 0; i < Dimensions; i++) {
4065     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4066     // the velocity dimension must be handled after the other dimensions
4067     veldim = i;
4068     velbitpos = bitpos;
4069     } else {
4070     switch (pDimensionDefinitions[i].split_type) {
4071     case split_type_normal:
4072     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4073     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4074     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4075     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4076     }
4077     } else {
4078     // gig2: evenly sized zones
4079     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4080     }
4081     break;
4082     case split_type_bit: // the value is already the sought dimension bit number
4083     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4084     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4085     break;
4086     }
4087     dimregidx |= bits << bitpos;
4088     }
4089     bitpos += pDimensionDefinitions[i].bits;
4090     }
4091     dimregidx &= 255;
4092     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4093     if (!dimreg) return -1;
4094     if (veldim != -1) {
4095     // (dimreg is now the dimension region for the lowest velocity)
4096     if (dimreg->VelocityTable) // custom defined zone ranges
4097     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4098     else // normal split type
4099     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4100    
4101     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4102     dimregidx |= (bits & limiter_mask) << velbitpos;
4103     dimregidx &= 255;
4104     }
4105     return dimregidx;
4106     }
4107    
4108 schoenebeck 2 /**
4109     * Returns the appropriate DimensionRegion for the given dimension bit
4110     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4111     * instead of calling this method directly!
4112     *
4113 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4114 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4115     * bit numbers
4116     * @see GetDimensionRegionByValue()
4117     */
4118 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4119     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4120     << pDimensionDefinitions[5].bits | DimBits[5])
4121     << pDimensionDefinitions[4].bits | DimBits[4])
4122     << pDimensionDefinitions[3].bits | DimBits[3])
4123     << pDimensionDefinitions[2].bits | DimBits[2])
4124     << pDimensionDefinitions[1].bits | DimBits[1])
4125     << pDimensionDefinitions[0].bits | DimBits[0]];
4126 schoenebeck 2 }
4127    
4128     /**
4129     * Returns pointer address to the Sample referenced with this region.
4130     * This is the global Sample for the entire Region (not sure if this is
4131     * actually used by the Gigasampler engine - I would only use the Sample
4132     * referenced by the appropriate DimensionRegion instead of this sample).
4133     *
4134     * @returns address to Sample or NULL if there is no reference to a
4135     * sample saved in the .gig file
4136     */
4137     Sample* Region::GetSample() {
4138     if (pSample) return static_cast<gig::Sample*>(pSample);
4139     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4140     }
4141    
4142 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4143 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4144 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4145 persson 902 if (!file->pWavePoolTable) return NULL;
4146 schoenebeck 3350 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4147 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4148     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4149     // use 64 bit wave pool offsets (treating this as large file)
4150 schoenebeck 2912 uint64_t soughtoffset =
4151     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4152     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4153     Sample* sample = file->GetFirstSample(pProgress);
4154     while (sample) {
4155     if (sample->ullWavePoolOffset == soughtoffset)
4156     return static_cast<gig::Sample*>(sample);
4157     sample = file->GetNextSample();
4158     }
4159     } else {
4160 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4161 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4162     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4163     Sample* sample = file->GetFirstSample(pProgress);
4164     while (sample) {
4165     if (sample->ullWavePoolOffset == soughtoffset &&
4166     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4167     sample = file->GetNextSample();
4168     }
4169 schoenebeck 2 }
4170     return NULL;
4171     }
4172 schoenebeck 2394
4173     /**
4174     * Make a (semi) deep copy of the Region object given by @a orig
4175     * and assign it to this object.
4176     *
4177     * Note that all sample pointers referenced by @a orig are simply copied as
4178     * memory address. Thus the respective samples are shared, not duplicated!
4179     *
4180     * @param orig - original Region object to be copied from
4181     */
4182     void Region::CopyAssign(const Region* orig) {
4183 schoenebeck 2482 CopyAssign(orig, NULL);
4184     }
4185    
4186     /**
4187     * Make a (semi) deep copy of the Region object given by @a orig and
4188     * assign it to this object
4189     *
4190     * @param mSamples - crosslink map between the foreign file's samples and
4191     * this file's samples
4192     */
4193     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4194 schoenebeck 2394 // handle base classes
4195     DLS::Region::CopyAssign(orig);
4196    
4197 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4198     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4199     }
4200    
4201 schoenebeck 2394 // handle own member variables
4202     for (int i = Dimensions - 1; i >= 0; --i) {
4203     DeleteDimension(&pDimensionDefinitions[i]);
4204     }
4205     Layers = 0; // just to be sure
4206     for (int i = 0; i < orig->Dimensions; i++) {
4207     // we need to copy the dim definition here, to avoid the compiler
4208     // complaining about const-ness issue
4209     dimension_def_t def = orig->pDimensionDefinitions[i];
4210     AddDimension(&def);
4211     }
4212     for (int i = 0; i < 256; i++) {
4213     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4214     pDimensionRegions[i]->CopyAssign(
4215 schoenebeck 2482 orig->pDimensionRegions[i],
4216     mSamples
4217 schoenebeck 2394 );
4218     }
4219     }
4220     Layers = orig->Layers;
4221     }
4222 schoenebeck 2
4223    
4224 persson 1627 // *************** MidiRule ***************
4225     // *
4226 schoenebeck 2
4227 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4228     _3ewg->SetPos(36);
4229     Triggers = _3ewg->ReadUint8();
4230     _3ewg->SetPos(40);
4231     ControllerNumber = _3ewg->ReadUint8();
4232     _3ewg->SetPos(46);
4233     for (int i = 0 ; i < Triggers ; i++) {
4234     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4235     pTriggers[i].Descending = _3ewg->ReadUint8();
4236     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4237     pTriggers[i].Key = _3ewg->ReadUint8();
4238     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4239     pTriggers[i].Velocity = _3ewg->ReadUint8();
4240     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4241     _3ewg->ReadUint8();
4242     }
4243 persson 1627 }
4244    
4245 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4246     ControllerNumber(0),
4247     Triggers(0) {
4248     }
4249 persson 1627
4250 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4251     pData[32] = 4;
4252     pData[33] = 16;
4253     pData[36] = Triggers;
4254     pData[40] = ControllerNumber;
4255     for (int i = 0 ; i < Triggers ; i++) {
4256     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4257     pData[47 + i * 8] = pTriggers[i].Descending;
4258     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4259     pData[49 + i * 8] = pTriggers[i].Key;
4260     pData[50 + i * 8] = pTriggers[i].NoteOff;
4261     pData[51 + i * 8] = pTriggers[i].Velocity;
4262     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4263     }
4264     }
4265    
4266     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4267     _3ewg->SetPos(36);
4268     LegatoSamples = _3ewg->ReadUint8(); // always 12
4269     _3ewg->SetPos(40);
4270     BypassUseController = _3ewg->ReadUint8();
4271     BypassKey = _3ewg->ReadUint8();
4272     BypassController = _3ewg->ReadUint8();
4273     ThresholdTime = _3ewg->ReadUint16();
4274     _3ewg->ReadInt16();
4275     ReleaseTime = _3ewg->ReadUint16();
4276     _3ewg->ReadInt16();
4277     KeyRange.low = _3ewg->ReadUint8();
4278     KeyRange.high = _3ewg->ReadUint8();
4279     _3ewg->SetPos(64);
4280     ReleaseTriggerKey = _3ewg->ReadUint8();
4281     AltSustain1Key = _3ewg->ReadUint8();
4282     AltSustain2Key = _3ewg->ReadUint8();
4283     }
4284    
4285     MidiRuleLegato::MidiRuleLegato() :
4286     LegatoSamples(12),
4287     BypassUseController(false),
4288     BypassKey(0),
4289     BypassController(1),
4290     ThresholdTime(20),
4291     ReleaseTime(20),
4292     ReleaseTriggerKey(0),
4293     AltSustain1Key(0),
4294     AltSustain2Key(0)
4295     {
4296     KeyRange.low = KeyRange.high = 0;
4297     }
4298    
4299     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4300     pData[32] = 0;
4301     pData[33] = 16;
4302     pData[36] = LegatoSamples;
4303     pData[40] = BypassUseController;
4304     pData[41] = BypassKey;
4305     pData[42] = BypassController;
4306     store16(&pData[43], ThresholdTime);
4307     store16(&pData[47], ReleaseTime);
4308     pData[51] = KeyRange.low;
4309     pData[52] = KeyRange.high;
4310     pData[64] = ReleaseTriggerKey;
4311     pData[65] = AltSustain1Key;
4312     pData[66] = AltSustain2Key;
4313     }
4314    
4315     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4316     _3ewg->SetPos(36);
4317     Articulations = _3ewg->ReadUint8();
4318     int flags = _3ewg->ReadUint8();
4319     Polyphonic = flags & 8;
4320     Chained = flags & 4;
4321     Selector = (flags & 2) ? selector_controller :
4322     (flags & 1) ? selector_key_switch : selector_none;
4323     Patterns = _3ewg->ReadUint8();
4324     _3ewg->ReadUint8(); // chosen row
4325     _3ewg->ReadUint8(); // unknown
4326     _3ewg->ReadUint8(); // unknown
4327     _3ewg->ReadUint8(); // unknown
4328     KeySwitchRange.low = _3ewg->ReadUint8();
4329     KeySwitchRange.high = _3ewg->ReadUint8();
4330     Controller = _3ewg->ReadUint8();
4331     PlayRange.low = _3ewg->ReadUint8();
4332     PlayRange.high = _3ewg->ReadUint8();
4333    
4334     int n = std::min(int(Articulations), 32);
4335     for (int i = 0 ; i < n ; i++) {
4336     _3ewg->ReadString(pArticulations[i], 32);
4337     }
4338     _3ewg->SetPos(1072);
4339     n = std::min(int(Patterns), 32);
4340     for (int i = 0 ; i < n ; i++) {
4341     _3ewg->ReadString(pPatterns[i].Name, 16);
4342     pPatterns[i].Size = _3ewg->ReadUint8();
4343     _3ewg->Read(&pPatterns[i][0], 1, 32);
4344     }
4345     }
4346    
4347     MidiRuleAlternator::MidiRuleAlternator() :
4348     Articulations(0),
4349     Patterns(0),
4350     Selector(selector_none),
4351     Controller(0),
4352     Polyphonic(false),
4353     Chained(false)
4354     {
4355     PlayRange.low = PlayRange.high = 0;
4356     KeySwitchRange.low = KeySwitchRange.high = 0;
4357     }
4358    
4359     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4360     pData[32] = 3;
4361     pData[33] = 16;
4362     pData[36] = Articulations;
4363     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4364     (Selector == selector_controller ? 2 :
4365     (Selector == selector_key_switch ? 1 : 0));
4366     pData[38] = Patterns;
4367    
4368     pData[43] = KeySwitchRange.low;
4369     pData[44] = KeySwitchRange.high;
4370     pData[45] = Controller;
4371     pData[46] = PlayRange.low;
4372     pData[47] = PlayRange.high;
4373    
4374     char* str = reinterpret_cast<char*>(pData);
4375     int pos = 48;
4376     int n = std::min(int(Articulations), 32);
4377     for (int i = 0 ; i < n ; i++, pos += 32) {
4378     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4379     }
4380    
4381     pos = 1072;
4382     n = std::min(int(Patterns), 32);
4383     for (int i = 0 ; i < n ; i++, pos += 49) {
4384     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4385     pData[pos + 16] = pPatterns[i].Size;
4386     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4387     }
4388     }
4389    
4390 schoenebeck 2584 // *************** Script ***************
4391     // *
4392    
4393     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4394     pGroup = group;
4395     pChunk = ckScri;
4396     if (ckScri) { // object is loaded from file ...
4397     // read header
4398     uint32_t headerSize = ckScri->ReadUint32();
4399     Compression = (Compression_t) ckScri->ReadUint32();
4400     Encoding = (Encoding_t) ckScri->ReadUint32();
4401     Language = (Language_t) ckScri->ReadUint32();
4402     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4403     crc = ckScri->ReadUint32();
4404     uint32_t nameSize = ckScri->ReadUint32();
4405     Name.resize(nameSize, ' ');
4406     for (int i = 0; i < nameSize; ++i)
4407     Name[i] = ckScri->ReadUint8();
4408     // to handle potential future extensions of the header
4409 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4410 schoenebeck 2584 // read actual script data
4411 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4412 schoenebeck 2584 data.resize(scriptSize);
4413     for (int i = 0; i < scriptSize; ++i)
4414     data[i] = ckScri->ReadUint8();
4415     } else { // this is a new script object, so just initialize it as such ...
4416     Compression = COMPRESSION_NONE;
4417     Encoding = ENCODING_ASCII;
4418     Language = LANGUAGE_NKSP;
4419     Bypass = false;
4420     crc = 0;
4421     Name = "Unnamed Script";
4422     }
4423     }
4424    
4425     Script::~Script() {
4426     }
4427    
4428     /**
4429     * Returns the current script (i.e. as source code) in text format.
4430     */
4431     String Script::GetScriptAsText() {
4432     String s;
4433     s.resize(data.size(), ' ');
4434     memcpy(&s[0], &data[0], data.size());
4435     return s;
4436     }
4437    
4438     /**
4439     * Replaces the current script with the new script source code text given
4440     * by @a text.
4441     *
4442     * @param text - new script source code
4443     */
4444     void Script::SetScriptAsText(const String& text) {
4445     data.resize(text.size());
4446     memcpy(&data[0], &text[0], text.size());
4447     }
4448    
4449 schoenebeck 2682 /**
4450     * Apply this script to the respective RIFF chunks. You have to call
4451     * File::Save() to make changes persistent.
4452     *
4453     * Usually there is absolutely no need to call this method explicitly.
4454     * It will be called automatically when File::Save() was called.
4455     *
4456     * @param pProgress - callback function for progress notification
4457     */
4458     void Script::UpdateChunks(progress_t* pProgress) {
4459 schoenebeck 2584 // recalculate CRC32 check sum
4460     __resetCRC(crc);
4461     __calculateCRC(&data[0], data.size(), crc);
4462 schoenebeck 3115 __finalizeCRC(crc);
4463 schoenebeck 2584 // make sure chunk exists and has the required size
4464 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4465 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4466     else pChunk->Resize(chunkSize);
4467     // fill the chunk data to be written to disk
4468     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4469     int pos = 0;
4470 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4471 schoenebeck 2584 pos += sizeof(int32_t);
4472     store32(&pData[pos], Compression);
4473     pos += sizeof(int32_t);
4474     store32(&pData[pos], Encoding);
4475     pos += sizeof(int32_t);
4476     store32(&pData[pos], Language);
4477     pos += sizeof(int32_t);
4478     store32(&pData[pos], Bypass ? 1 : 0);
4479     pos += sizeof(int32_t);
4480     store32(&pData[pos], crc);
4481     pos += sizeof(int32_t);
4482 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4483 schoenebeck 2584 pos += sizeof(int32_t);
4484     for (int i = 0; i < Name.size(); ++i, ++pos)
4485     pData[pos] = Name[i];
4486     for (int i = 0; i < data.size(); ++i, ++pos)
4487     pData[pos] = data[i];
4488     }
4489    
4490     /**
4491     * Move this script from its current ScriptGroup to another ScriptGroup
4492     * given by @a pGroup.
4493     *
4494     * @param pGroup - script's new group
4495     */
4496     void Script::SetGroup(ScriptGroup* pGroup) {
4497 persson 2836 if (this->pGroup == pGroup) return;
4498 schoenebeck 2584 if (pChunk)
4499     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4500     this->pGroup = pGroup;
4501     }
4502    
4503 schoenebeck 2601 /**
4504     * Returns the script group this script currently belongs to. Each script
4505     * is a member of exactly one ScriptGroup.
4506     *
4507     * @returns current script group
4508     */
4509     ScriptGroup* Script::GetGroup() const {
4510     return pGroup;
4511     }
4512    
4513 schoenebeck 3117 /**
4514     * Make a (semi) deep copy of the Script object given by @a orig
4515     * and assign it to this object. Note: the ScriptGroup this Script
4516     * object belongs to remains untouched by this call.
4517     *
4518     * @param orig - original Script object to be copied from
4519     */
4520     void Script::CopyAssign(const Script* orig) {
4521     Name = orig->Name;
4522     Compression = orig->Compression;
4523     Encoding = orig->Encoding;
4524     Language = orig->Language;
4525     Bypass = orig->Bypass;
4526     data = orig->data;
4527     }
4528    
4529 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4530     File* pFile = pGroup->pFile;
4531     for (int i = 0; pFile->GetInstrument(i); ++i) {
4532     Instrument* instr = pFile->GetInstrument(i);
4533     instr->RemoveScript(this);
4534     }
4535     }
4536    
4537     // *************** ScriptGroup ***************
4538     // *
4539    
4540     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4541     pFile = file;
4542     pList = lstRTIS;
4543     pScripts = NULL;
4544     if (lstRTIS) {
4545     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4546     ::LoadString(ckName, Name);
4547     } else {
4548     Name = "Default Group";
4549     }
4550     }
4551    
4552     ScriptGroup::~ScriptGroup() {
4553     if (pScripts) {
4554     std::list<Script*>::iterator iter = pScripts->begin();
4555     std::list<Script*>::iterator end = pScripts->end();
4556     while (iter != end) {
4557     delete *iter;
4558     ++iter;
4559     }
4560     delete pScripts;
4561     }
4562     }
4563    
4564 schoenebeck 2682 /**
4565     * Apply this script group to the respective RIFF chunks. You have to call
4566     * File::Save() to make changes persistent.
4567     *
4568     * Usually there is absolutely no need to call this method explicitly.
4569     * It will be called automatically when File::Save() was called.
4570     *
4571     * @param pProgress - callback function for progress notification
4572     */
4573     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4574 schoenebeck 2584 if (pScripts) {
4575     if (!pList)
4576     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4577    
4578     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4579     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4580    
4581     for (std::list<Script*>::iterator it = pScripts->begin();
4582     it != pScripts->end(); ++it)
4583     {
4584 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4585 schoenebeck 2584 }
4586     }
4587     }
4588    
4589     /** @brief Get instrument script.
4590     *
4591     * Returns the real-time instrument script with the given index.
4592     *
4593     * @param index - number of the sought script (0..n)
4594     * @returns sought script or NULL if there's no such script
4595     */
4596     Script* ScriptGroup::GetScript(uint index) {
4597     if (!pScripts) LoadScripts();
4598     std::list<Script*>::iterator it = pScripts->begin();
4599     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4600     if (i == index) return *it;
4601     return NULL;
4602     }
4603    
4604     /** @brief Add new instrument script.
4605     *
4606     * Adds a new real-time instrument script to the file. The script is not
4607     * actually used / executed unless it is referenced by an instrument to be
4608     * used. This is similar to samples, which you can add to a file, without
4609     * an instrument necessarily actually using it.
4610     *
4611     * You have to call Save() to make this persistent to the file.
4612     *
4613     * @return new empty script object
4614     */
4615     Script* ScriptGroup::AddScript() {
4616     if (!pScripts) LoadScripts();
4617     Script* pScript = new Script(this, NULL);
4618     pScripts->push_back(pScript);
4619     return pScript;
4620     }
4621    
4622     /** @brief Delete an instrument script.
4623     *
4624     * This will delete the given real-time instrument script. References of
4625     * instruments that are using that script will be removed accordingly.
4626     *
4627     * You have to call Save() to make this persistent to the file.
4628     *
4629     * @param pScript - script to delete
4630     * @throws gig::Exception if given script could not be found
4631     */
4632     void ScriptGroup::DeleteScript(Script* pScript) {
4633     if (!pScripts) LoadScripts();
4634     std::list<Script*>::iterator iter =
4635     find(pScripts->begin(), pScripts->end(), pScript);
4636     if (iter == pScripts->end())
4637     throw gig::Exception("Could not delete script, could not find given script");
4638     pScripts->erase(iter);
4639     pScript->RemoveAllScriptReferences();
4640     if (pScript->pChunk)
4641     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4642     delete pScript;
4643     }
4644    
4645     void ScriptGroup::LoadScripts() {
4646     if (pScripts) return;
4647     pScripts = new std::list<Script*>;
4648     if (!pList) return;
4649    
4650     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4651     ck = pList->GetNextSubChunk())
4652     {
4653     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4654     pScripts->push_back(new Script(this, ck));
4655     }
4656     }
4657     }
4658    
4659 schoenebeck 2 // *************** Instrument ***************
4660     // *
4661    
4662 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4663 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4664 persson 1180 { CHUNK_ID_INAM, 64 },
4665     { CHUNK_ID_ISFT, 12 },
4666     { 0, 0 }
4667     };
4668 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4669 persson 918
4670 schoenebeck 2 // Initialization
4671     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4672 persson 1182 EffectSend = 0;
4673     Attenuation = 0;
4674     FineTune = 0;
4675 schoenebeck 3112 PitchbendRange = 2;
4676 persson 1182 PianoReleaseMode = false;
4677     DimensionKeyRange.low = 0;
4678     DimensionKeyRange.high = 0;
4679 persson 1678 pMidiRules = new MidiRule*[3];
4680     pMidiRules[0] = NULL;
4681 schoenebeck 2584 pScriptRefs = NULL;
4682 schoenebeck 2
4683     // Loading
4684     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4685     if (lart) {
4686     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4687     if (_3ewg) {
4688     EffectSend = _3ewg->ReadUint16();
4689     Attenuation = _3ewg->ReadInt32();
4690     FineTune = _3ewg->ReadInt16();
4691     PitchbendRange = _3ewg->ReadInt16();
4692     uint8_t dimkeystart = _3ewg->ReadUint8();
4693     PianoReleaseMode = dimkeystart & 0x01;
4694     DimensionKeyRange.low = dimkeystart >> 1;
4695     DimensionKeyRange.high = _3ewg->ReadUint8();
4696 persson 1627
4697     if (_3ewg->GetSize() > 32) {
4698     // read MIDI rules
4699 persson 1678 int i = 0;
4700 persson 1627 _3ewg->SetPos(32);
4701     uint8_t id1 = _3ewg->ReadUint8();
4702     uint8_t id2 = _3ewg->ReadUint8();
4703    
4704 persson 2450 if (id2 == 16) {
4705     if (id1 == 4) {
4706     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4707     } else if (id1 == 0) {
4708     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4709     } else if (id1 == 3) {
4710     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4711     } else {
4712     pMidiRules[i++] = new MidiRuleUnknown;
4713     }
4714 persson 1627 }
4715 persson 2450 else if (id1 != 0 || id2 != 0) {
4716     pMidiRules[i++] = new MidiRuleUnknown;
4717     }
4718 persson 1627 //TODO: all the other types of rules
4719 persson 1678
4720     pMidiRules[i] = NULL;
4721 persson 1627 }
4722 schoenebeck 2 }
4723     }
4724    
4725 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4726     if (!pRegions) pRegions = new RegionList;
4727     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4728     if (lrgn) {
4729     RIFF::List* rgn = lrgn->GetFirstSubList();
4730     while (rgn) {
4731     if (rgn->GetListType() == LIST_TYPE_RGN) {
4732     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4733     pRegions->push_back(new Region(this, rgn));
4734     }
4735     rgn = lrgn->GetNextSubList();
4736 schoenebeck 809 }
4737 schoenebeck 1524 // Creating Region Key Table for fast lookup
4738     UpdateRegionKeyTable();
4739 schoenebeck 2 }
4740     }
4741    
4742 schoenebeck 2584 // own gig format extensions
4743     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4744     if (lst3LS) {
4745     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4746     if (ckSCSL) {
4747 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4748     int slotCount = ckSCSL->ReadUint32();
4749     if (slotCount) {
4750     int slotSize = ckSCSL->ReadUint32();
4751     ckSCSL->SetPos(headerSize); // in case of future header extensions
4752     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4753     for (int i = 0; i < slotCount; ++i) {
4754     _ScriptPooolEntry e;
4755     e.fileOffset = ckSCSL->ReadUint32();
4756     e.bypass = ckSCSL->ReadUint32() & 1;
4757     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4758     scriptPoolFileOffsets.push_back(e);
4759     }
4760 schoenebeck 2584 }
4761     }
4762     }
4763    
4764 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4765     }
4766    
4767     void Instrument::UpdateRegionKeyTable() {
4768 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4769 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4770     RegionList::iterator end = pRegions->end();
4771     for (; iter != end; ++iter) {
4772     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4773 schoenebeck 3348 const int low = std::max(int(pRegion->KeyRange.low), 0);
4774     const int high = std::min(int(pRegion->KeyRange.high), 127);
4775     for (int iKey = low; iKey <= high; iKey++) {
4776 schoenebeck 823 RegionKeyTable[iKey] = pRegion;
4777 schoenebeck 2 }
4778     }
4779     }
4780    
4781     Instrument::~Instrument() {
4782 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4783     delete pMidiRules[i];
4784     }
4785 persson 1678 delete[] pMidiRules;
4786 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4787 schoenebeck 2 }
4788    
4789     /**
4790 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4791     * You have to call File::Save() to make changes persistent.
4792     *
4793     * Usually there is absolutely no need to call this method explicitly.
4794     * It will be called automatically when File::Save() was called.
4795     *
4796 schoenebeck 2682 * @param pProgress - callback function for progress notification
4797 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4798     */
4799 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4800 schoenebeck 809 // first update base classes' chunks
4801 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4802 schoenebeck 809
4803     // update Regions' chunks
4804 schoenebeck 823 {
4805     RegionList::iterator iter = pRegions->begin();
4806     RegionList::iterator end = pRegions->end();
4807     for (; iter != end; ++iter)
4808 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4809 schoenebeck 823 }
4810 schoenebeck 809
4811     // make sure 'lart' RIFF list chunk exists
4812     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4813     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4814     // make sure '3ewg' RIFF chunk exists
4815     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4816 persson 1264 if (!_3ewg) {
4817     File* pFile = (File*) GetParent();
4818    
4819     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4820     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4821     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4822     memset(_3ewg->LoadChunkData(), 0, size);
4823     }
4824 schoenebeck 809 // update '3ewg' RIFF chunk
4825     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4826 persson 1179 store16(&pData[0], EffectSend);
4827     store32(&pData[2], Attenuation);
4828     store16(&pData[6], FineTune);
4829     store16(&pData[8], PitchbendRange);
4830 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4831 schoenebeck 809 DimensionKeyRange.low << 1;
4832 persson 1179 pData[10] = dimkeystart;
4833     pData[11] = DimensionKeyRange.high;
4834 persson 2450
4835     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4836     pData[32] = 0;
4837     pData[33] = 0;
4838     } else {
4839     for (int i = 0 ; pMidiRules[i] ; i++) {
4840     pMidiRules[i]->UpdateChunks(pData);
4841     }
4842     }
4843 schoenebeck 2584
4844     // own gig format extensions
4845 schoenebeck 2648 if (ScriptSlotCount()) {
4846     // make sure we have converted the original loaded script file
4847     // offsets into valid Script object pointers
4848     LoadScripts();
4849    
4850 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4851     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4852 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4853 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4854     const int slotSize = 2 * sizeof(uint32_t);
4855     const int totalChunkSize = headerSize + slotCount * slotSize;
4856 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4857 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4858     else ckSCSL->Resize(totalChunkSize);
4859 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4860 schoenebeck 2609 int pos = 0;
4861     store32(&pData[pos], headerSize);
4862     pos += sizeof(uint32_t);
4863     store32(&pData[pos], slotCount);
4864     pos += sizeof(uint32_t);
4865     store32(&pData[pos], slotSize);
4866     pos += sizeof(uint32_t);
4867     for (int i = 0; i < slotCount; ++i) {
4868     // arbitrary value, the actual file offset will be updated in
4869     // UpdateScriptFileOffsets() after the file has been resized
4870     int bogusFileOffset = 0;
4871     store32(&pData[pos], bogusFileOffset);
4872 schoenebeck 2584 pos += sizeof(uint32_t);
4873     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4874     pos += sizeof(uint32_t);
4875     }
4876 schoenebeck 2648 } else {
4877     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4878     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4879     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4880 schoenebeck 2584 }
4881 schoenebeck 809 }
4882    
4883 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4884     // own gig format extensions
4885 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4886 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4887     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4888 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4889 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4890     ckSCSL->SetPos(headerSize);
4891     for (int i = 0; i < slotCount; ++i) {
4892 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4893 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4894     (*pScriptRefs)[i].script->pChunk->GetPos() -
4895 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4896     );
4897 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4898     // jump over flags entry (containing the bypass flag)
4899     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4900     }
4901     }
4902     }
4903    
4904 schoenebeck 809 /**
4905 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4906     *
4907     * @param Key MIDI Key number of triggered note / key (0 - 127)
4908     * @returns pointer adress to the appropriate Region or NULL if there
4909     * there is no Region defined for the given \a Key
4910     */
4911     Region* Instrument::GetRegion(unsigned int Key) {
4912 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4913 schoenebeck 2 return RegionKeyTable[Key];
4914 schoenebeck 823
4915 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4916     if (Key <= pRegions[i]->KeyRange.high &&
4917     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4918     }
4919     return NULL;*/
4920     }
4921    
4922     /**
4923     * Returns the first Region of the instrument. You have to call this
4924     * method once before you use GetNextRegion().
4925     *
4926     * @returns pointer address to first region or NULL if there is none
4927     * @see GetNextRegion()
4928     */
4929     Region* Instrument::GetFirstRegion() {
4930 schoenebeck 823 if (!pRegions) return NULL;
4931     RegionsIterator = pRegions->begin();
4932     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4933 schoenebeck 2 }
4934    
4935     /**
4936     * Returns the next Region of the instrument. You have to call
4937     * GetFirstRegion() once before you can use this method. By calling this
4938     * method multiple times it iterates through the available Regions.
4939     *
4940     * @returns pointer address to the next region or NULL if end reached
4941     * @see GetFirstRegion()
4942     */
4943     Region* Instrument::GetNextRegion() {
4944 schoenebeck 823 if (!pRegions) return NULL;
4945     RegionsIterator++;
4946     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4947 schoenebeck 2 }
4948    
4949 schoenebeck 809 Region* Instrument::AddRegion() {
4950     // create new Region object (and its RIFF chunks)
4951     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4952     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4953     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4954     Region* pNewRegion = new Region(this, rgn);
4955 schoenebeck 823 pRegions->push_back(pNewRegion);
4956 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
4957 schoenebeck 809 // update Region key table for fast lookup
4958     UpdateRegionKeyTable();
4959     // done
4960     return pNewRegion;
4961     }
4962 schoenebeck 2
4963 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4964     if (!pRegions) return;
4965 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4966 schoenebeck 809 // update Region key table for fast lookup
4967     UpdateRegionKeyTable();
4968     }
4969 schoenebeck 2
4970 persson 1627 /**
4971 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4972     *
4973     * This method can be used to reorder the sequence of instruments in a
4974     * .gig file. This might be helpful especially on large .gig files which
4975     * contain a large number of instruments within the same .gig file. So
4976     * grouping such instruments to similar ones, can help to keep track of them
4977     * when working with such complex .gig files.
4978     *
4979     * When calling this method, this instrument will be removed from in its
4980     * current position in the instruments list and moved to the requested
4981     * target position provided by @param dst. You may also pass NULL as
4982     * argument to this method, in that case this intrument will be moved to the
4983     * very end of the .gig file's instrument list.
4984     *
4985     * You have to call Save() to make the order change persistent to the .gig
4986     * file.
4987     *
4988     * Currently this method is limited to moving the instrument within the same
4989     * .gig file. Trying to move it to another .gig file by calling this method
4990     * will throw an exception.
4991     *
4992     * @param dst - destination instrument at which this instrument will be
4993     * moved to, or pass NULL for moving to end of list
4994     * @throw gig::Exception if this instrument and target instrument are not
4995     * part of the same file
4996     */
4997     void Instrument::MoveTo(Instrument* dst) {
4998     if (dst && GetParent() != dst->GetParent())
4999     throw Exception(
5000     "gig::Instrument::MoveTo() can only be used for moving within "
5001     "the same gig file."
5002     );
5003    
5004     File* pFile = (File*) GetParent();
5005    
5006     // move this instrument within the instrument list
5007     {
5008 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
5009 schoenebeck 2700
5010 persson 2836 File::InstrumentList::iterator itFrom =
5011 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5012    
5013 persson 2836 File::InstrumentList::iterator itTo =
5014 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5015    
5016     list.splice(itTo, list, itFrom);
5017     }
5018    
5019     // move the instrument's actual list RIFF chunk appropriately
5020     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5021     lstCkInstruments->MoveSubChunk(
5022     this->pCkInstrument,
5023 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5024 schoenebeck 2700 );
5025     }
5026    
5027     /**
5028 persson 1678 * Returns a MIDI rule of the instrument.
5029 persson 1627 *
5030     * The list of MIDI rules, at least in gig v3, always contains at
5031     * most two rules. The second rule can only be the DEF filter
5032     * (which currently isn't supported by libgig).
5033     *
5034 persson 1678 * @param i - MIDI rule number
5035     * @returns pointer address to MIDI rule number i or NULL if there is none
5036 persson 1627 */
5037 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
5038     return pMidiRules[i];
5039 persson 1627 }
5040 persson 2450
5041 schoenebeck 2394 /**
5042 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5043     *
5044     * @returns the new MIDI rule
5045     */
5046     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5047     delete pMidiRules[0];
5048     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5049     pMidiRules[0] = r;
5050     pMidiRules[1] = 0;
5051     return r;
5052     }
5053    
5054     /**
5055     * Adds the legato MIDI rule to the instrument.
5056     *
5057     * @returns the new MIDI rule
5058     */
5059     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5060     delete pMidiRules[0];
5061     MidiRuleLegato* r = new MidiRuleLegato;
5062     pMidiRules[0] = r;
5063     pMidiRules[1] = 0;
5064     return r;
5065     }
5066    
5067     /**
5068     * Adds the alternator MIDI rule to the instrument.
5069     *
5070     * @returns the new MIDI rule
5071     */
5072     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5073     delete pMidiRules[0];
5074     MidiRuleAlternator* r = new MidiRuleAlternator;
5075     pMidiRules[0] = r;
5076     pMidiRules[1] = 0;
5077     return r;
5078     }
5079    
5080     /**
5081     * Deletes a MIDI rule from the instrument.
5082     *
5083     * @param i - MIDI rule number
5084     */
5085     void Instrument::DeleteMidiRule(int i) {
5086     delete pMidiRules[i];
5087     pMidiRules[i] = 0;
5088     }
5089    
5090 schoenebeck 2584 void Instrument::LoadScripts() {
5091     if (pScriptRefs) return;
5092     pScriptRefs = new std::vector<_ScriptPooolRef>;
5093     if (scriptPoolFileOffsets.empty()) return;
5094     File* pFile = (File*) GetParent();
5095     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5096 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5097 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5098     ScriptGroup* group = pFile->GetScriptGroup(i);
5099     for (uint s = 0; group->GetScript(s); ++s) {
5100     Script* script = group->GetScript(s);
5101     if (script->pChunk) {
5102 schoenebeck 3053 uint32_t offset = uint32_t(
5103     script->pChunk->GetFilePos() -
5104     script->pChunk->GetPos() -
5105     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5106     );
5107 schoenebeck 2609 if (offset == soughtOffset)
5108 schoenebeck 2584 {
5109     _ScriptPooolRef ref;
5110     ref.script = script;
5111     ref.bypass = scriptPoolFileOffsets[k].bypass;
5112     pScriptRefs->push_back(ref);
5113     break;
5114     }
5115     }
5116     }
5117     }
5118     }
5119     // we don't need that anymore
5120     scriptPoolFileOffsets.clear();
5121     }
5122    
5123 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5124 schoenebeck 2584 *
5125 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5126     * @a index.
5127     *
5128     * @note This is an own format extension which did not exist i.e. in the
5129     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5130     * gigedit.
5131     *
5132     * @param index - instrument script slot index
5133     * @returns script or NULL if index is out of bounds
5134     */
5135     Script* Instrument::GetScriptOfSlot(uint index) {
5136     LoadScripts();
5137     if (index >= pScriptRefs->size()) return NULL;
5138     return pScriptRefs->at(index).script;
5139     }
5140    
5141     /** @brief Add new instrument script slot (gig format extension).
5142     *
5143 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5144     * which shall be executed by the sampler for for this instrument. The
5145     * script will be added to the end of the script list of this instrument.
5146     * The positions of the scripts in the Instrument's Script list are
5147     * relevant, because they define in which order they shall be executed by
5148     * the sampler. For this reason it is also legal to add the same script
5149     * twice to an instrument, for example you might have a script called
5150     * "MyFilter" which performs an event filter task, and you might have
5151     * another script called "MyNoteTrigger" which triggers new notes, then you
5152     * might for example have the following list of scripts on the instrument:
5153     *
5154     * 1. Script "MyFilter"
5155     * 2. Script "MyNoteTrigger"
5156     * 3. Script "MyFilter"
5157     *
5158     * Which would make sense, because the 2nd script launched new events, which
5159     * you might need to filter as well.
5160     *
5161     * There are two ways to disable / "bypass" scripts. You can either disable
5162     * a script locally for the respective script slot on an instrument (i.e. by
5163     * passing @c false to the 2nd argument of this method, or by calling
5164     * SetScriptBypassed()). Or you can disable a script globally for all slots
5165     * and all instruments by setting Script::Bypass.
5166     *
5167     * @note This is an own format extension which did not exist i.e. in the
5168     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5169     * gigedit.
5170     *
5171     * @param pScript - script that shall be executed for this instrument
5172     * @param bypass - if enabled, the sampler shall skip executing this
5173     * script (in the respective list position)
5174     * @see SetScriptBypassed()
5175     */
5176     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5177     LoadScripts();
5178     _ScriptPooolRef ref = { pScript, bypass };
5179     pScriptRefs->push_back(ref);
5180     }
5181    
5182     /** @brief Flip two script slots with each other (gig format extension).
5183     *
5184     * Swaps the position of the two given scripts in the Instrument's Script
5185     * list. The positions of the scripts in the Instrument's Script list are
5186     * relevant, because they define in which order they shall be executed by
5187     * the sampler.
5188     *
5189     * @note This is an own format extension which did not exist i.e. in the
5190     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5191     * gigedit.
5192     *
5193     * @param index1 - index of the first script slot to swap
5194     * @param index2 - index of the second script slot to swap
5195     */
5196     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5197     LoadScripts();
5198     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5199     return;
5200     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5201     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5202     (*pScriptRefs)[index2] = tmp;
5203     }
5204    
5205     /** @brief Remove script slot.
5206     *
5207     * Removes the script slot with the given slot index.
5208     *
5209     * @param index - index of script slot to remove
5210     */
5211     void Instrument::RemoveScriptSlot(uint index) {
5212     LoadScripts();
5213     if (index >= pScriptRefs->size()) return;
5214     pScriptRefs->erase( pScriptRefs->begin() + index );
5215     }
5216    
5217     /** @brief Remove reference to given Script (gig format extension).
5218     *
5219     * This will remove all script slots on the instrument which are referencing
5220     * the given script.
5221     *
5222     * @note This is an own format extension which did not exist i.e. in the
5223     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5224     * gigedit.
5225     *
5226     * @param pScript - script reference to remove from this instrument
5227     * @see RemoveScriptSlot()
5228     */
5229     void Instrument::RemoveScript(Script* pScript) {
5230     LoadScripts();
5231 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5232 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5233     pScriptRefs->erase( pScriptRefs->begin() + i );
5234     }
5235     }
5236     }
5237    
5238     /** @brief Instrument's amount of script slots.
5239     *
5240     * This method returns the amount of script slots this instrument currently
5241     * uses.
5242     *
5243     * A script slot is a reference of a real-time instrument script to be
5244     * executed by the sampler. The scripts will be executed by the sampler in
5245     * sequence of the slots. One (same) script may be referenced multiple
5246     * times in different slots.
5247     *
5248     * @note This is an own format extension which did not exist i.e. in the
5249     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5250     * gigedit.
5251     */
5252     uint Instrument::ScriptSlotCount() const {
5253 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5254 schoenebeck 2584 }
5255    
5256     /** @brief Whether script execution shall be skipped.
5257     *
5258     * Defines locally for the Script reference slot in the Instrument's Script
5259     * list, whether the script shall be skipped by the sampler regarding
5260     * execution.
5261     *
5262     * It is also possible to ignore exeuction of the script globally, for all
5263     * slots and for all instruments by setting Script::Bypass.
5264     *
5265     * @note This is an own format extension which did not exist i.e. in the
5266     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5267     * gigedit.
5268     *
5269     * @param index - index of the script slot on this instrument
5270     * @see Script::Bypass
5271     */
5272     bool Instrument::IsScriptSlotBypassed(uint index) {
5273     if (index >= ScriptSlotCount()) return false;
5274     return pScriptRefs ? pScriptRefs->at(index).bypass
5275     : scriptPoolFileOffsets.at(index).bypass;
5276    
5277     }
5278    
5279     /** @brief Defines whether execution shall be skipped.
5280     *
5281     * You can call this method to define locally whether or whether not the
5282     * given script slot shall be executed by the sampler.
5283     *
5284     * @note This is an own format extension which did not exist i.e. in the
5285     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5286     * gigedit.
5287     *
5288     * @param index - script slot index on this instrument
5289     * @param bBypass - if true, the script slot will be skipped by the sampler
5290     * @see Script::Bypass
5291     */
5292     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5293     if (index >= ScriptSlotCount()) return;
5294     if (pScriptRefs)
5295     pScriptRefs->at(index).bypass = bBypass;
5296     else
5297     scriptPoolFileOffsets.at(index).bypass = bBypass;
5298     }
5299    
5300 persson 2450 /**
5301 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5302     * and assign it to this object.
5303     *
5304     * Note that all sample pointers referenced by @a orig are simply copied as
5305     * memory address. Thus the respective samples are shared, not duplicated!
5306     *
5307     * @param orig - original Instrument object to be copied from
5308     */
5309     void Instrument::CopyAssign(const Instrument* orig) {
5310 schoenebeck 2482 CopyAssign(orig, NULL);
5311     }
5312    
5313     /**
5314     * Make a (semi) deep copy of the Instrument object given by @a orig
5315     * and assign it to this object.
5316     *
5317     * @param orig - original Instrument object to be copied from
5318     * @param mSamples - crosslink map between the foreign file's samples and
5319     * this file's samples
5320     */
5321     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5322 schoenebeck 2394 // handle base class
5323     // (without copying DLS region stuff)
5324     DLS::Instrument::CopyAssignCore(orig);
5325    
5326     // handle own member variables
5327     Attenuation = orig->Attenuation;
5328     EffectSend = orig->EffectSend;
5329     FineTune = orig->FineTune;
5330     PitchbendRange = orig->PitchbendRange;
5331     PianoReleaseMode = orig->PianoReleaseMode;
5332     DimensionKeyRange = orig->DimensionKeyRange;
5333 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5334     pScriptRefs = orig->pScriptRefs;
5335 schoenebeck 2394
5336     // free old midi rules
5337     for (int i = 0 ; pMidiRules[i] ; i++) {
5338     delete pMidiRules[i];
5339     }
5340     //TODO: MIDI rule copying
5341     pMidiRules[0] = NULL;
5342    
5343     // delete all old regions
5344     while (Regions) DeleteRegion(GetFirstRegion());
5345     // create new regions and copy them from original
5346     {
5347     RegionList::const_iterator it = orig->pRegions->begin();
5348     for (int i = 0; i < orig->Regions; ++i, ++it) {
5349     Region* dstRgn = AddRegion();
5350     //NOTE: Region does semi-deep copy !
5351     dstRgn->CopyAssign(
5352 schoenebeck 2482 static_cast<gig::Region*>(*it),
5353     mSamples
5354 schoenebeck 2394 );
5355     }
5356     }
5357 schoenebeck 809
5358 schoenebeck 2394 UpdateRegionKeyTable();
5359     }
5360 schoenebeck 809
5361 schoenebeck 2394
5362 schoenebeck 929 // *************** Group ***************
5363     // *
5364    
5365     /** @brief Constructor.
5366     *
5367 schoenebeck 930 * @param file - pointer to the gig::File object
5368     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5369     * NULL if this is a new Group
5370 schoenebeck 929 */
5371 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5372 schoenebeck 929 pFile = file;
5373     pNameChunk = ck3gnm;
5374     ::LoadString(pNameChunk, Name);
5375     }
5376    
5377     Group::~Group() {
5378 schoenebeck 1099 // remove the chunk associated with this group (if any)
5379     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5380 schoenebeck 929 }
5381    
5382     /** @brief Update chunks with current group settings.
5383     *
5384 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5385     * to call File::Save() to make changes persistent.
5386     *
5387     * Usually there is absolutely no need to call this method explicitly.
5388     * It will be called automatically when File::Save() was called.
5389 schoenebeck 2682 *
5390     * @param pProgress - callback function for progress notification
5391 schoenebeck 929 */
5392 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5393 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5394 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5395 persson 1192 if (!_3gri) {
5396     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5397     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5398     }
5399 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5400 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5401 persson 1266
5402     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5403     // v3 has a fixed list of 128 strings, find a free one
5404     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5405     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5406     pNameChunk = ck;
5407     break;
5408     }
5409     }
5410     }
5411    
5412 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5413     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5414     }
5415    
5416 schoenebeck 930 /**
5417     * Returns the first Sample of this Group. You have to call this method
5418     * once before you use GetNextSample().
5419     *
5420     * <b>Notice:</b> this method might block for a long time, in case the
5421     * samples of this .gig file were not scanned yet
5422     *
5423     * @returns pointer address to first Sample or NULL if there is none
5424     * applied to this Group
5425     * @see GetNextSample()
5426     */
5427     Sample* Group::GetFirstSample() {
5428     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5429     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5430     if (pSample->GetGroup() == this) return pSample;
5431     }
5432     return NULL;
5433     }
5434 schoenebeck 929
5435 schoenebeck 930 /**
5436     * Returns the next Sample of the Group. You have to call
5437     * GetFirstSample() once before you can use this method. By calling this
5438     * method multiple times it iterates through the Samples assigned to
5439     * this Group.
5440     *
5441     * @returns pointer address to the next Sample of this Group or NULL if
5442     * end reached
5443     * @see GetFirstSample()
5444     */
5445     Sample* Group::GetNextSample() {
5446     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5447     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5448     if (pSample->GetGroup() == this) return pSample;
5449     }
5450     return NULL;
5451     }
5452 schoenebeck 929
5453 schoenebeck 930 /**
5454     * Move Sample given by \a pSample from another Group to this Group.
5455     */
5456     void Group::AddSample(Sample* pSample) {
5457     pSample->pGroup = this;
5458     }
5459    
5460     /**
5461     * Move all members of this group to another group (preferably the 1st
5462     * one except this). This method is called explicitly by
5463     * File::DeleteGroup() thus when a Group was deleted. This code was
5464     * intentionally not placed in the destructor!
5465     */
5466     void Group::MoveAll() {
5467     // get "that" other group first
5468     Group* pOtherGroup = NULL;
5469     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5470     if (pOtherGroup != this) break;
5471     }
5472     if (!pOtherGroup) throw Exception(
5473     "Could not move samples to another group, since there is no "
5474     "other Group. This is a bug, report it!"
5475     );
5476     // now move all samples of this group to the other group
5477     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5478     pOtherGroup->AddSample(pSample);
5479     }
5480     }
5481    
5482    
5483    
5484 schoenebeck 2 // *************** File ***************
5485     // *
5486    
5487 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5488 persson 1199 const DLS::version_t File::VERSION_2 = {
5489     0, 2, 19980628 & 0xffff, 19980628 >> 16
5490     };
5491    
5492 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5493 persson 1199 const DLS::version_t File::VERSION_3 = {
5494     0, 3, 20030331 & 0xffff, 20030331 >> 16
5495     };
5496    
5497 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5498 persson 1180 { CHUNK_ID_IARL, 256 },
5499     { CHUNK_ID_IART, 128 },
5500     { CHUNK_ID_ICMS, 128 },
5501     { CHUNK_ID_ICMT, 1024 },
5502     { CHUNK_ID_ICOP, 128 },
5503     { CHUNK_ID_ICRD, 128 },
5504     { CHUNK_ID_IENG, 128 },
5505     { CHUNK_ID_IGNR, 128 },
5506     { CHUNK_ID_IKEY, 128 },
5507     { CHUNK_ID_IMED, 128 },
5508     { CHUNK_ID_INAM, 128 },
5509     { CHUNK_ID_IPRD, 128 },
5510     { CHUNK_ID_ISBJ, 128 },
5511     { CHUNK_ID_ISFT, 128 },
5512     { CHUNK_ID_ISRC, 128 },
5513     { CHUNK_ID_ISRF, 128 },
5514     { CHUNK_ID_ITCH, 128 },
5515     { 0, 0 }
5516     };
5517    
5518 schoenebeck 809 File::File() : DLS::File() {
5519 schoenebeck 1524 bAutoLoad = true;
5520 persson 1264 *pVersion = VERSION_3;
5521 schoenebeck 929 pGroups = NULL;
5522 schoenebeck 2584 pScriptGroups = NULL;
5523 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5524 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5525 persson 1192
5526     // add some mandatory chunks to get the file chunks in right
5527     // order (INFO chunk will be moved to first position later)
5528     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5529     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5530 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5531    
5532     GenerateDLSID();
5533 schoenebeck 809 }
5534    
5535 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5536 schoenebeck 1524 bAutoLoad = true;
5537 schoenebeck 929 pGroups = NULL;
5538 schoenebeck 2584 pScriptGroups = NULL;
5539 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5540 schoenebeck 2 }
5541    
5542 schoenebeck 929 File::~File() {
5543     if (pGroups) {
5544     std::list<Group*>::iterator iter = pGroups->begin();
5545     std::list<Group*>::iterator end = pGroups->end();
5546     while (iter != end) {
5547     delete *iter;
5548     ++iter;
5549     }
5550     delete pGroups;
5551     }
5552 schoenebeck 2584 if (pScriptGroups) {
5553     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5554     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5555     while (iter != end) {
5556     delete *iter;
5557     ++iter;
5558     }
5559     delete pScriptGroups;
5560     }
5561 schoenebeck 929 }
5562    
5563 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5564     if (!pSamples) LoadSamples(pProgress);
5565 schoenebeck 2 if (!pSamples) return NULL;
5566     SamplesIterator = pSamples->begin();
5567     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5568     }
5569    
5570     Sample* File::GetNextSample() {
5571     if (!pSamples) return NULL;
5572     SamplesIterator++;
5573     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5574     }
5575 schoenebeck 2482
5576     /**
5577     * Returns Sample object of @a index.
5578     *
5579     * @returns sample object or NULL if index is out of bounds
5580     */
5581     Sample* File::GetSample(uint index) {
5582     if (!pSamples) LoadSamples();
5583     if (!pSamples) return NULL;
5584     DLS::File::SampleList::iterator it = pSamples->begin();
5585     for (int i = 0; i < index; ++i) {
5586     ++it;
5587     if (it == pSamples->end()) return NULL;
5588     }
5589     if (it == pSamples->end()) return NULL;
5590     return static_cast<gig::Sample*>( *it );
5591     }
5592 schoenebeck 2
5593 schoenebeck 809 /** @brief Add a new sample.
5594     *
5595     * This will create a new Sample object for the gig file. You have to
5596     * call Save() to make this persistent to the file.
5597     *
5598     * @returns pointer to new Sample object
5599     */
5600     Sample* File::AddSample() {
5601     if (!pSamples) LoadSamples();
5602     __ensureMandatoryChunksExist();
5603     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5604     // create new Sample object and its respective 'wave' list chunk
5605     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5606     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5607 persson 1192
5608     // add mandatory chunks to get the chunks in right order
5609     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5610     wave->AddSubList(LIST_TYPE_INFO);
5611    
5612 schoenebeck 809 pSamples->push_back(pSample);
5613     return pSample;
5614     }
5615    
5616     /** @brief Delete a sample.
5617     *
5618 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5619     * references to this sample from Regions and DimensionRegions will be
5620     * removed. You have to call Save() to make this persistent to the file.
5621 schoenebeck 809 *
5622     * @param pSample - sample to delete
5623     * @throws gig::Exception if given sample could not be found
5624     */
5625     void File::DeleteSample(Sample* pSample) {
5626 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5627     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5628 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5629 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5630 schoenebeck 809 pSamples->erase(iter);
5631     delete pSample;
5632 persson 1266
5633 persson 1678 SampleList::iterator tmp = SamplesIterator;
5634 persson 1266 // remove all references to the sample
5635     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5636     instrument = GetNextInstrument()) {
5637     for (Region* region = instrument->GetFirstRegion() ; region ;
5638     region = instrument->GetNextRegion()) {
5639    
5640     if (region->GetSample() == pSample) region->SetSample(NULL);
5641    
5642     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5643     gig::DimensionRegion *d = region->pDimensionRegions[i];
5644     if (d->pSample == pSample) d->pSample = NULL;
5645     }
5646     }
5647     }
5648 persson 1678 SamplesIterator = tmp; // restore iterator
5649 schoenebeck 809 }
5650    
5651 schoenebeck 823 void File::LoadSamples() {
5652     LoadSamples(NULL);
5653     }
5654    
5655 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5656 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5657     // to resolve the group they belong to
5658 schoenebeck 1158 if (!pGroups) LoadGroups();
5659 schoenebeck 930
5660 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5661    
5662 persson 666 RIFF::File* file = pRIFF;
5663 schoenebeck 515
5664 persson 666 // just for progress calculation
5665     int iSampleIndex = 0;
5666     int iTotalSamples = WavePoolCount;
5667 schoenebeck 515
5668 persson 666 // check if samples should be loaded from extension files
5669 schoenebeck 2913 // (only for old gig files < 2 GB)
5670 persson 666 int lastFileNo = 0;
5671 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5672 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5673     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5674     }
5675 persson 666 }
5676 schoenebeck 780 String name(pRIFF->GetFileName());
5677 schoenebeck 3053 int nameLen = (int) name.length();
5678 persson 666 char suffix[6];
5679 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5680 schoenebeck 515
5681 persson 666 for (int fileNo = 0 ; ; ) {
5682     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5683     if (wvpl) {
5684 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5685 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5686     while (wave) {
5687     if (wave->GetListType() == LIST_TYPE_WAVE) {
5688     // notify current progress
5689     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5690     __notify_progress(pProgress, subprogress);
5691    
5692 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5693 schoenebeck 2989 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5694 persson 666
5695     iSampleIndex++;
5696     }
5697     wave = wvpl->GetNextSubList();
5698 schoenebeck 2 }
5699 persson 666
5700     if (fileNo == lastFileNo) break;
5701    
5702     // open extension file (*.gx01, *.gx02, ...)
5703     fileNo++;
5704     sprintf(suffix, ".gx%02d", fileNo);
5705     name.replace(nameLen, 5, suffix);
5706     file = new RIFF::File(name);
5707     ExtensionFiles.push_back(file);
5708 schoenebeck 823 } else break;
5709 schoenebeck 2 }
5710 persson 666
5711     __notify_progress(pProgress, 1.0); // notify done
5712 schoenebeck 2 }
5713    
5714     Instrument* File::GetFirstInstrument() {
5715     if (!pInstruments) LoadInstruments();
5716     if (!pInstruments) return NULL;
5717     InstrumentsIterator = pInstruments->begin();
5718 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5719 schoenebeck 2 }
5720    
5721     Instrument* File::GetNextInstrument() {
5722     if (!pInstruments) return NULL;
5723     InstrumentsIterator++;
5724 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5725 schoenebeck 2 }
5726    
5727 schoenebeck 21 /**
5728     * Returns the instrument with the given index.
5729     *
5730 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5731     * @param pProgress - optional: callback function for progress notification
5732 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5733     */
5734 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5735     if (!pInstruments) {
5736     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5737    
5738     // sample loading subtask
5739     progress_t subprogress;
5740     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5741     __notify_progress(&subprogress, 0.0f);
5742 schoenebeck 1524 if (GetAutoLoad())
5743     GetFirstSample(&subprogress); // now force all samples to be loaded
5744 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5745    
5746     // instrument loading subtask
5747     if (pProgress && pProgress->callback) {
5748     subprogress.__range_min = subprogress.__range_max;
5749     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5750     }
5751     __notify_progress(&subprogress, 0.0f);
5752     LoadInstruments(&subprogress);
5753     __notify_progress(&subprogress, 1.0f);
5754     }
5755 schoenebeck 21 if (!pInstruments) return NULL;
5756     InstrumentsIterator = pInstruments->begin();
5757     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5758 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5759 schoenebeck 21 InstrumentsIterator++;
5760     }
5761     return NULL;
5762     }
5763    
5764 schoenebeck 809 /** @brief Add a new instrument definition.
5765     *
5766     * This will create a new Instrument object for the gig file. You have
5767     * to call Save() to make this persistent to the file.
5768     *
5769     * @returns pointer to new Instrument object
5770     */
5771     Instrument* File::AddInstrument() {
5772     if (!pInstruments) LoadInstruments();
5773     __ensureMandatoryChunksExist();
5774     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5775     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5776 persson 1192
5777     // add mandatory chunks to get the chunks in right order
5778     lstInstr->AddSubList(LIST_TYPE_INFO);
5779 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5780 persson 1192
5781 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5782 persson 1209 pInstrument->GenerateDLSID();
5783 persson 1182
5784 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5785    
5786 persson 1182 // this string is needed for the gig to be loadable in GSt:
5787     pInstrument->pInfo->Software = "Endless Wave";
5788    
5789 schoenebeck 809 pInstruments->push_back(pInstrument);
5790     return pInstrument;
5791     }
5792 schoenebeck 2394
5793     /** @brief Add a duplicate of an existing instrument.
5794     *
5795     * Duplicates the instrument definition given by @a orig and adds it
5796     * to this file. This allows in an instrument editor application to
5797     * easily create variations of an instrument, which will be stored in
5798     * the same .gig file, sharing i.e. the same samples.
5799     *
5800     * Note that all sample pointers referenced by @a orig are simply copied as
5801     * memory address. Thus the respective samples are shared, not duplicated!
5802     *
5803     * You have to call Save() to make this persistent to the file.
5804     *
5805     * @param orig - original instrument to be copied
5806     * @returns duplicated copy of the given instrument
5807     */
5808     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5809     Instrument* instr = AddInstrument();
5810     instr->CopyAssign(orig);
5811     return instr;
5812     }
5813 schoenebeck 2482
5814     /** @brief Add content of another existing file.
5815     *
5816     * Duplicates the samples, groups and instruments of the original file
5817     * given by @a pFile and adds them to @c this File. In case @c this File is
5818     * a new one that you haven't saved before, then you have to call
5819     * SetFileName() before calling AddContentOf(), because this method will
5820     * automatically save this file during operation, which is required for
5821     * writing the sample waveform data by disk streaming.
5822     *
5823     * @param pFile - original file whose's content shall be copied from
5824     */
5825     void File::AddContentOf(File* pFile) {
5826     static int iCallCount = -1;
5827     iCallCount++;
5828     std::map<Group*,Group*> mGroups;
5829     std::map<Sample*,Sample*> mSamples;
5830    
5831     // clone sample groups
5832     for (int i = 0; pFile->GetGroup(i); ++i) {
5833     Group* g = AddGroup();
5834     g->Name =
5835     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5836     mGroups[pFile->GetGroup(i)] = g;
5837     }
5838    
5839     // clone samples (not waveform data here yet)
5840     for (int i = 0; pFile->GetSample(i); ++i) {
5841     Sample* s = AddSample();
5842     s->CopyAssignMeta(pFile->GetSample(i));
5843     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5844     mSamples[pFile->GetSample(i)] = s;
5845     }
5846 schoenebeck 3117
5847     // clone script groups and their scripts
5848     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5849     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5850     ScriptGroup* dg = AddScriptGroup();
5851     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5852     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5853     Script* ss = sg->GetScript(iScript);
5854     Script* ds = dg->AddScript();
5855     ds->CopyAssign(ss);
5856     }
5857     }
5858    
5859 schoenebeck 2482 //BUG: For some reason this method only works with this additional
5860     // Save() call in between here.
5861     //
5862     // Important: The correct one of the 2 Save() methods has to be called
5863     // here, depending on whether the file is completely new or has been
5864     // saved to disk already, otherwise it will result in data corruption.
5865     if (pRIFF->IsNew())
5866     Save(GetFileName());
5867     else
5868     Save();
5869    
5870     // clone instruments
5871     // (passing the crosslink table here for the cloned samples)
5872     for (int i = 0; pFile->GetInstrument(i); ++i) {
5873     Instrument* instr = AddInstrument();
5874     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5875     }
5876    
5877     // Mandatory: file needs to be saved to disk at this point, so this
5878     // file has the correct size and data layout for writing the samples'
5879     // waveform data to disk.
5880     Save();
5881    
5882     // clone samples' waveform data
5883     // (using direct read & write disk streaming)
5884     for (int i = 0; pFile->GetSample(i); ++i) {
5885     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5886     }
5887     }
5888 schoenebeck 809
5889     /** @brief Delete an instrument.
5890     *
5891     * This will delete the given Instrument object from the gig file. You
5892     * have to call Save() to make this persistent to the file.
5893     *
5894     * @param pInstrument - instrument to delete
5895 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5896 schoenebeck 809 */
5897     void File::DeleteInstrument(Instrument* pInstrument) {
5898     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5899 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5900 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5901     pInstruments->erase(iter);
5902     delete pInstrument;
5903     }
5904    
5905 schoenebeck 823 void File::LoadInstruments() {
5906     LoadInstruments(NULL);
5907     }
5908    
5909 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5910 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5911 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5912     if (lstInstruments) {
5913 schoenebeck 515 int iInstrumentIndex = 0;
5914 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5915     while (lstInstr) {
5916     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5917 schoenebeck 515 // notify current progress
5918     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5919     __notify_progress(pProgress, localProgress);
5920    
5921     // divide local progress into subprogress for loading current Instrument
5922     progress_t subprogress;
5923     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5924    
5925     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5926    
5927     iInstrumentIndex++;
5928 schoenebeck 2 }
5929     lstInstr = lstInstruments->GetNextSubList();
5930     }
5931 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5932 schoenebeck 2 }
5933     }
5934    
5935 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5936     /// update is done directly to disk, as this method is called
5937     /// after File::Save()
5938 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5939     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5940     if (!_3crc) return;
5941 persson 1207
5942     // get the index of the sample
5943 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5944 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5945    
5946 persson 1207 // write the CRC-32 checksum to disk
5947 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5948 schoenebeck 2985 uint32_t one = 1;
5949     _3crc->WriteUint32(&one); // always 1
5950 persson 1199 _3crc->WriteUint32(&crc);
5951 schoenebeck 2989 }
5952 schoenebeck 2985
5953 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
5954     // get the index of the sample
5955     int iWaveIndex = GetWaveTableIndexOf(pSample);
5956     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5957    
5958     return GetSampleChecksumByIndex(iWaveIndex);
5959 persson 1199 }
5960    
5961 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
5962     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5963    
5964 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5965     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5966     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5967     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5968    
5969     // read the CRC-32 checksum directly from disk
5970 schoenebeck 2989 size_t pos = index * 8;
5971 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
5972     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5973    
5974     uint32_t one = load32(&pData[pos]); // always 1
5975     if (one != 1)
5976 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5977 schoenebeck 2985
5978     return load32(&pData[pos+4]);
5979     }
5980 schoenebeck 2989
5981 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5982     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5983     File::SampleList::iterator iter = pSamples->begin();
5984     File::SampleList::iterator end = pSamples->end();
5985     for (int index = 0; iter != end; ++iter, ++index)
5986     if (*iter == pSample)
5987     return index;
5988     return -1;
5989     }
5990    
5991     /**
5992     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5993     * the CRC32 check sums of all samples' raw wave data.
5994     *
5995     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5996     */
5997     bool File::VerifySampleChecksumTable() {
5998     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5999     if (!_3crc) return false;
6000     if (_3crc->GetNewSize() <= 0) return false;
6001     if (_3crc->GetNewSize() % 8) return false;
6002     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6003     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6004    
6005 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
6006 schoenebeck 2985
6007     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6008     if (!pData) return false;
6009    
6010 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
6011 schoenebeck 2985 uint32_t one = pData[i*2];
6012     if (one != 1) return false;
6013     }
6014    
6015     return true;
6016     }
6017    
6018     /**
6019     * Recalculates CRC32 checksums for all samples and rebuilds this gig
6020     * file's checksum table with those new checksums. This might usually
6021     * just be necessary if the checksum table was damaged.
6022     *
6023     * @e IMPORTANT: The current implementation of this method only works
6024     * with files that have not been modified since it was loaded, because
6025     * it expects that no externally caused file structure changes are
6026     * required!
6027     *
6028     * Due to the expectation above, this method is currently protected
6029     * and actually only used by the command line tool "gigdump" yet.
6030     *
6031     * @returns true if Save() is required to be called after this call,
6032     * false if no further action is required
6033     */
6034     bool File::RebuildSampleChecksumTable() {
6035     // make sure sample chunks were scanned
6036     if (!pSamples) GetFirstSample();
6037    
6038     bool bRequiresSave = false;
6039    
6040     // make sure "3CRC" chunk exists with required size
6041     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6042     if (!_3crc) {
6043     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6044 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6045     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6046     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6047 schoenebeck 2985 bRequiresSave = true;
6048     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6049     _3crc->Resize(pSamples->size() * 8);
6050     bRequiresSave = true;
6051     }
6052    
6053     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6054     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6055     {
6056     File::SampleList::iterator iter = pSamples->begin();
6057     File::SampleList::iterator end = pSamples->end();
6058     for (; iter != end; ++iter) {
6059     gig::Sample* pSample = (gig::Sample*) *iter;
6060     int index = GetWaveTableIndexOf(pSample);
6061     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6062     pData[index*2] = 1; // always 1
6063     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6064     }
6065     }
6066     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6067     // make sure file is in write mode
6068     pRIFF->SetMode(RIFF::stream_mode_read_write);
6069     {
6070     File::SampleList::iterator iter = pSamples->begin();
6071     File::SampleList::iterator end = pSamples->end();
6072     for (; iter != end; ++iter) {
6073     gig::Sample* pSample = (gig::Sample*) *iter;
6074     int index = GetWaveTableIndexOf(pSample);
6075     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6076 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6077     SetSampleChecksum(pSample, pSample->crc);
6078 schoenebeck 2985 }
6079     }
6080     }
6081    
6082     return bRequiresSave;
6083     }
6084    
6085 schoenebeck 929 Group* File::GetFirstGroup() {
6086     if (!pGroups) LoadGroups();
6087 schoenebeck 930 // there must always be at least one group
6088 schoenebeck 929 GroupsIterator = pGroups->begin();
6089 schoenebeck 930 return *GroupsIterator;
6090 schoenebeck 929 }
6091 schoenebeck 2
6092 schoenebeck 929 Group* File::GetNextGroup() {
6093     if (!pGroups) return NULL;
6094     ++GroupsIterator;
6095     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6096     }
6097 schoenebeck 2
6098 schoenebeck 929 /**
6099     * Returns the group with the given index.
6100     *
6101     * @param index - number of the sought group (0..n)
6102     * @returns sought group or NULL if there's no such group
6103     */
6104     Group* File::GetGroup(uint index) {
6105     if (!pGroups) LoadGroups();
6106     GroupsIterator = pGroups->begin();
6107     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6108     if (i == index) return *GroupsIterator;
6109     ++GroupsIterator;
6110     }
6111     return NULL;
6112     }
6113    
6114 schoenebeck 2543 /**
6115     * Returns the group with the given group name.
6116     *
6117     * Note: group names don't have to be unique in the gig format! So there
6118     * can be multiple groups with the same name. This method will simply
6119     * return the first group found with the given name.
6120     *
6121     * @param name - name of the sought group
6122     * @returns sought group or NULL if there's no group with that name
6123     */
6124     Group* File::GetGroup(String name) {
6125     if (!pGroups) LoadGroups();
6126     GroupsIterator = pGroups->begin();
6127     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6128     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6129     return NULL;
6130     }
6131    
6132 schoenebeck 929 Group* File::AddGroup() {
6133     if (!pGroups) LoadGroups();
6134 schoenebeck 930 // there must always be at least one group
6135 schoenebeck 929 __ensureMandatoryChunksExist();
6136 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6137 schoenebeck 929 pGroups->push_back(pGroup);
6138     return pGroup;
6139     }
6140    
6141 schoenebeck 1081 /** @brief Delete a group and its samples.
6142     *
6143     * This will delete the given Group object and all the samples that
6144     * belong to this group from the gig file. You have to call Save() to
6145     * make this persistent to the file.
6146     *
6147     * @param pGroup - group to delete
6148     * @throws gig::Exception if given group could not be found
6149     */
6150 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6151 schoenebeck 930 if (!pGroups) LoadGroups();
6152 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6153     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6154 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6155 schoenebeck 1081 // delete all members of this group
6156     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6157     DeleteSample(pSample);
6158     }
6159     // now delete this group object
6160     pGroups->erase(iter);
6161     delete pGroup;
6162     }
6163    
6164     /** @brief Delete a group.
6165     *
6166     * This will delete the given Group object from the gig file. All the
6167     * samples that belong to this group will not be deleted, but instead
6168     * be moved to another group. You have to call Save() to make this
6169     * persistent to the file.
6170     *
6171     * @param pGroup - group to delete
6172     * @throws gig::Exception if given group could not be found
6173     */
6174     void File::DeleteGroupOnly(Group* pGroup) {
6175     if (!pGroups) LoadGroups();
6176     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6177     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6178     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6179 schoenebeck 930 // move all members of this group to another group
6180     pGroup->MoveAll();
6181 schoenebeck 929 pGroups->erase(iter);
6182     delete pGroup;
6183     }
6184    
6185     void File::LoadGroups() {
6186     if (!pGroups) pGroups = new std::list<Group*>;
6187 schoenebeck 930 // try to read defined groups from file
6188 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6189 schoenebeck 930 if (lst3gri) {
6190     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6191     if (lst3gnl) {
6192     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6193     while (ck) {
6194     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6195 persson 1266 if (pVersion && pVersion->major == 3 &&
6196     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6197    
6198 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6199     }
6200     ck = lst3gnl->GetNextSubChunk();
6201 schoenebeck 929 }
6202     }
6203     }
6204 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6205     if (!pGroups->size()) {
6206     Group* pGroup = new Group(this, NULL);
6207     pGroup->Name = "Default Group";
6208     pGroups->push_back(pGroup);
6209     }
6210 schoenebeck 929 }
6211    
6212 schoenebeck 2584 /** @brief Get instrument script group (by index).
6213     *
6214     * Returns the real-time instrument script group with the given index.
6215     *
6216     * @param index - number of the sought group (0..n)
6217     * @returns sought script group or NULL if there's no such group
6218     */
6219     ScriptGroup* File::GetScriptGroup(uint index) {
6220     if (!pScriptGroups) LoadScriptGroups();
6221     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6222     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6223     if (i == index) return *it;
6224     return NULL;
6225     }
6226    
6227     /** @brief Get instrument script group (by name).
6228     *
6229     * Returns the first real-time instrument script group found with the given
6230     * group name. Note that group names may not necessarily be unique.
6231     *
6232     * @param name - name of the sought script group
6233     * @returns sought script group or NULL if there's no such group
6234     */
6235     ScriptGroup* File::GetScriptGroup(const String& name) {
6236     if (!pScriptGroups) LoadScriptGroups();
6237     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6238     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6239     if ((*it)->Name == name) return *it;
6240     return NULL;
6241     }
6242    
6243     /** @brief Add new instrument script group.
6244     *
6245     * Adds a new, empty real-time instrument script group to the file.
6246     *
6247     * You have to call Save() to make this persistent to the file.
6248     *
6249     * @return new empty script group
6250     */
6251     ScriptGroup* File::AddScriptGroup() {
6252     if (!pScriptGroups) LoadScriptGroups();
6253     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6254     pScriptGroups->push_back(pScriptGroup);
6255     return pScriptGroup;
6256     }
6257    
6258     /** @brief Delete an instrument script group.
6259     *
6260     * This will delete the given real-time instrument script group and all its
6261     * instrument scripts it contains. References inside instruments that are
6262     * using the deleted scripts will be removed from the respective instruments
6263     * accordingly.
6264     *
6265     * You have to call Save() to make this persistent to the file.
6266     *
6267     * @param pScriptGroup - script group to delete
6268     * @throws gig::Exception if given script group could not be found
6269     */
6270     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6271     if (!pScriptGroups) LoadScriptGroups();
6272     std::list<ScriptGroup*>::iterator iter =
6273     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6274     if (iter == pScriptGroups->end())
6275     throw gig::Exception("Could not delete script group, could not find given script group");
6276     pScriptGroups->erase(iter);
6277     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6278     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6279     if (pScriptGroup->pList)
6280     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6281     delete pScriptGroup;
6282     }
6283    
6284     void File::LoadScriptGroups() {
6285     if (pScriptGroups) return;
6286     pScriptGroups = new std::list<ScriptGroup*>;
6287     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6288     if (lstLS) {
6289     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6290     lst = lstLS->GetNextSubList())
6291     {
6292     if (lst->GetListType() == LIST_TYPE_RTIS) {
6293     pScriptGroups->push_back(new ScriptGroup(this, lst));
6294     }
6295     }
6296     }
6297     }
6298    
6299 schoenebeck 1098 /**
6300     * Apply all the gig file's current instruments, samples, groups and settings
6301     * to the respective RIFF chunks. You have to call Save() to make changes
6302     * persistent.
6303     *
6304     * Usually there is absolutely no need to call this method explicitly.
6305     * It will be called automatically when File::Save() was called.
6306     *
6307 schoenebeck 2682 * @param pProgress - callback function for progress notification
6308 schoenebeck 1098 * @throws Exception - on errors
6309     */
6310 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6311 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6312 persson 1192
6313 schoenebeck 2584 // update own gig format extension chunks
6314     // (not part of the GigaStudio 4 format)
6315 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6316     if (!lst3LS) {
6317     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6318     }
6319     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6320 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6321     // before the actual wave data
6322 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6323     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6324    
6325 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6326     // because the instruments' script slots will write the file offsets
6327     // of the respective instrument script chunk as reference.
6328     if (pScriptGroups) {
6329 schoenebeck 2912 // Update instrument script (group) chunks.
6330     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6331     it != pScriptGroups->end(); ++it)
6332     {
6333     (*it)->UpdateChunks(pProgress);
6334 schoenebeck 2584 }
6335     }
6336    
6337 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6338     // custom "3LS " chunk again
6339     if (!lst3LS->CountSubChunks()) {
6340     pRIFF->DeleteSubChunk(lst3LS);
6341     lst3LS = NULL;
6342     }
6343    
6344 schoenebeck 1098 // first update base class's chunks
6345 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6346 schoenebeck 929
6347 persson 1199 if (newFile) {
6348 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6349     // is placed first in file
6350 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6351 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6352     if (first != info) {
6353     pRIFF->MoveSubChunk(info, first);
6354     }
6355     }
6356    
6357 schoenebeck 1098 // update group's chunks
6358     if (pGroups) {
6359 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6360     // (before updating the Group chunks)
6361     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6362     if (!_3gri) {
6363     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6364     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6365 schoenebeck 1098 }
6366 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6367     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6368 persson 1266
6369     // v3: make sure the file has 128 3gnm chunks
6370 schoenebeck 2467 // (before updating the Group chunks)
6371 persson 1266 if (pVersion && pVersion->major == 3) {
6372     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6373     for (int i = 0 ; i < 128 ; i++) {
6374     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6375     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6376     }
6377     }
6378 schoenebeck 2467
6379     std::list<Group*>::iterator iter = pGroups->begin();
6380     std::list<Group*>::iterator end = pGroups->end();
6381     for (; iter != end; ++iter) {
6382 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6383 schoenebeck 2467 }
6384 schoenebeck 1098 }
6385 persson 1199
6386     // update einf chunk
6387    
6388     // The einf chunk contains statistics about the gig file, such
6389     // as the number of regions and samples used by each
6390     // instrument. It is divided in equally sized parts, where the
6391     // first part contains information about the whole gig file,
6392     // and the rest of the parts map to each instrument in the
6393     // file.
6394     //
6395     // At the end of each part there is a bit map of each sample
6396     // in the file, where a set bit means that the sample is used
6397     // by the file/instrument.
6398     //
6399     // Note that there are several fields with unknown use. These
6400     // are set to zero.
6401    
6402 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6403 persson 1199 int einfSize = (Instruments + 1) * sublen;
6404    
6405     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6406     if (einf) {
6407     if (einf->GetSize() != einfSize) {
6408     einf->Resize(einfSize);
6409     memset(einf->LoadChunkData(), 0, einfSize);
6410     }
6411     } else if (newFile) {
6412     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6413     }
6414     if (einf) {
6415     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6416    
6417     std::map<gig::Sample*,int> sampleMap;
6418     int sampleIdx = 0;
6419     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6420     sampleMap[pSample] = sampleIdx++;
6421     }
6422    
6423     int totnbusedsamples = 0;
6424     int totnbusedchannels = 0;
6425     int totnbregions = 0;
6426     int totnbdimregions = 0;
6427 persson 1264 int totnbloops = 0;
6428 persson 1199 int instrumentIdx = 0;
6429    
6430     memset(&pData[48], 0, sublen - 48);
6431    
6432     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6433     instrument = GetNextInstrument()) {
6434     int nbusedsamples = 0;
6435     int nbusedchannels = 0;
6436     int nbdimregions = 0;
6437 persson 1264 int nbloops = 0;
6438 persson 1199
6439     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6440    
6441     for (Region* region = instrument->GetFirstRegion() ; region ;
6442     region = instrument->GetNextRegion()) {
6443     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6444     gig::DimensionRegion *d = region->pDimensionRegions[i];
6445     if (d->pSample) {
6446     int sampleIdx = sampleMap[d->pSample];
6447     int byte = 48 + sampleIdx / 8;
6448     int bit = 1 << (sampleIdx & 7);
6449     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6450     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6451     nbusedsamples++;
6452     nbusedchannels += d->pSample->Channels;
6453    
6454     if ((pData[byte] & bit) == 0) {
6455     pData[byte] |= bit;
6456     totnbusedsamples++;
6457     totnbusedchannels += d->pSample->Channels;
6458     }
6459     }
6460     }
6461 persson 1264 if (d->SampleLoops) nbloops++;
6462 persson 1199 }
6463     nbdimregions += region->DimensionRegions;
6464     }
6465     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6466     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6467     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6468     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6469     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6470     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6471     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6472 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6473     // next 8 bytes unknown
6474 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6475 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6476 persson 1199 // next 4 bytes unknown
6477    
6478     totnbregions += instrument->Regions;
6479     totnbdimregions += nbdimregions;
6480 persson 1264 totnbloops += nbloops;
6481 persson 1199 instrumentIdx++;
6482     }
6483     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6484     // store32(&pData[0], sublen);
6485     store32(&pData[4], totnbusedchannels);
6486     store32(&pData[8], totnbusedsamples);
6487     store32(&pData[12], Instruments);
6488     store32(&pData[16], totnbregions);
6489     store32(&pData[20], totnbdimregions);
6490 persson 1264 store32(&pData[24], totnbloops);
6491     // next 8 bytes unknown
6492     // next 4 bytes unknown, not always 0
6493 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6494 persson 1199 // next 4 bytes unknown
6495     }
6496    
6497     // update 3crc chunk
6498    
6499     // The 3crc chunk contains CRC-32 checksums for the
6500 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6501     // chunk here (in RAM) with the old crc values which we read from the
6502     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6503     // member variable). This step is required, because samples might have
6504     // been deleted by the user since the file was opened, which in turn
6505     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6506     // If a sample was conciously modified by the user (that is if
6507     // Sample::Write() was called later on) then Sample::Write() will just
6508     // update the respective individual checksum(s) directly on disk and
6509     // leaves all other sample checksums untouched.
6510 persson 1199
6511 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6512 persson 1199 if (_3crc) {
6513     _3crc->Resize(pSamples->size() * 8);
6514 schoenebeck 2989 } else /*if (newFile)*/ {
6515 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6516 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6517     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6518 persson 1199 }
6519 schoenebeck 2989 { // must be performed in RAM here ...
6520     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6521     if (pData) {
6522     File::SampleList::iterator iter = pSamples->begin();
6523     File::SampleList::iterator end = pSamples->end();
6524     for (int index = 0; iter != end; ++iter, ++index) {
6525     gig::Sample* pSample = (gig::Sample*) *iter;
6526     pData[index*2] = 1; // always 1
6527     pData[index*2+1] = pSample->crc;
6528     }
6529     }
6530     }
6531 schoenebeck 1098 }
6532 schoenebeck 2609
6533     void File::UpdateFileOffsets() {
6534     DLS::File::UpdateFileOffsets();
6535 schoenebeck 929
6536 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6537     instrument = GetNextInstrument())
6538     {
6539     instrument->UpdateScriptFileOffsets();
6540     }
6541     }
6542    
6543 schoenebeck 1524 /**
6544     * Enable / disable automatic loading. By default this properyt is
6545     * enabled and all informations are loaded automatically. However
6546     * loading all Regions, DimensionRegions and especially samples might
6547     * take a long time for large .gig files, and sometimes one might only
6548     * be interested in retrieving very superficial informations like the
6549     * amount of instruments and their names. In this case one might disable
6550     * automatic loading to avoid very slow response times.
6551     *
6552     * @e CAUTION: by disabling this property many pointers (i.e. sample
6553     * references) and informations will have invalid or even undefined
6554     * data! This feature is currently only intended for retrieving very
6555     * superficial informations in a very fast way. Don't use it to retrieve
6556     * details like synthesis informations or even to modify .gig files!
6557     */
6558     void File::SetAutoLoad(bool b) {
6559     bAutoLoad = b;
6560     }
6561 schoenebeck 1098
6562 schoenebeck 1524 /**
6563     * Returns whether automatic loading is enabled.
6564     * @see SetAutoLoad()
6565     */
6566     bool File::GetAutoLoad() {
6567     return bAutoLoad;
6568     }
6569 schoenebeck 1098
6570 schoenebeck 1524
6571    
6572 schoenebeck 2 // *************** Exception ***************
6573     // *
6574    
6575 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6576 schoenebeck 2 }
6577    
6578 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6579     va_list arg;
6580     va_start(arg, format);
6581     Message = assemble(format, arg);
6582     va_end(arg);
6583     }
6584    
6585     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6586     Message = assemble(format, arg);
6587     }
6588    
6589 schoenebeck 2 void Exception::PrintMessage() {
6590     std::cout << "gig::Exception: " << Message << std::endl;
6591     }
6592    
6593 schoenebeck 518
6594     // *************** functions ***************
6595     // *
6596    
6597     /**
6598     * Returns the name of this C++ library. This is usually "libgig" of
6599     * course. This call is equivalent to RIFF::libraryName() and
6600     * DLS::libraryName().
6601     */
6602     String libraryName() {
6603     return PACKAGE;
6604     }
6605    
6606     /**
6607     * Returns version of this C++ library. This call is equivalent to
6608     * RIFF::libraryVersion() and DLS::libraryVersion().
6609     */
6610     String libraryVersion() {
6611     return VERSION;
6612     }
6613    
6614 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC