/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3442 - (hide annotations) (download)
Sat Dec 22 18:59:29 2018 UTC (5 years, 3 months ago) by schoenebeck
File size: 288000 byte(s)
* GIG FORMAT EXTENSION: Added attribute
  DimensionRegion::SustainReleaseTrigger which allows to define whether
  a sustain pedal up event shall cause a release trigger sample to be
  played (default: don't play release trigger sample by sustain pedal).
* Bumped version (4.1.0.svn7).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3414 * Copyright (C) 2003-2018 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
417 schoenebeck 809 } else { // '3gix' chunk missing
418 schoenebeck 930 // by default assigned to that mandatory "Default Group"
419     pGroup = pFile->GetGroup(0);
420 schoenebeck 809 }
421 schoenebeck 2
422 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423     if (pCkSmpl) {
424     Manufacturer = pCkSmpl->ReadInt32();
425     Product = pCkSmpl->ReadInt32();
426     SamplePeriod = pCkSmpl->ReadInt32();
427     MIDIUnityNote = pCkSmpl->ReadInt32();
428     FineTune = pCkSmpl->ReadInt32();
429     pCkSmpl->Read(&SMPTEFormat, 1, 4);
430     SMPTEOffset = pCkSmpl->ReadInt32();
431     Loops = pCkSmpl->ReadInt32();
432     pCkSmpl->ReadInt32(); // manufByt
433     LoopID = pCkSmpl->ReadInt32();
434     pCkSmpl->Read(&LoopType, 1, 4);
435     LoopStart = pCkSmpl->ReadInt32();
436     LoopEnd = pCkSmpl->ReadInt32();
437     LoopFraction = pCkSmpl->ReadInt32();
438     LoopPlayCount = pCkSmpl->ReadInt32();
439     } else { // 'smpl' chunk missing
440     // use default values
441     Manufacturer = 0;
442     Product = 0;
443 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 persson 1218 MIDIUnityNote = 60;
445 schoenebeck 809 FineTune = 0;
446 persson 1182 SMPTEFormat = smpte_format_no_offset;
447 schoenebeck 809 SMPTEOffset = 0;
448     Loops = 0;
449     LoopID = 0;
450 persson 1182 LoopType = loop_type_normal;
451 schoenebeck 809 LoopStart = 0;
452     LoopEnd = 0;
453     LoopFraction = 0;
454     LoopPlayCount = 0;
455     }
456 schoenebeck 2
457     FrameTable = NULL;
458     SamplePos = 0;
459     RAMCache.Size = 0;
460     RAMCache.pStart = NULL;
461     RAMCache.NullExtensionSize = 0;
462    
463 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464    
465 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466     Compressed = ewav;
467     Dithered = false;
468     TruncatedBits = 0;
469 schoenebeck 2 if (Compressed) {
470 persson 437 uint32_t version = ewav->ReadInt32();
471 schoenebeck 3440 if (version > 2 && BitDepth == 24) {
472 persson 437 Dithered = ewav->ReadInt32();
473     ewav->SetPos(Channels == 2 ? 84 : 64);
474     TruncatedBits = ewav->ReadInt32();
475     }
476 schoenebeck 2 ScanCompressedSample();
477     }
478 schoenebeck 317
479     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 schoenebeck 317 }
484 persson 437 FrameOffset = 0; // just for streaming compressed samples
485 schoenebeck 21
486 persson 864 LoopSize = LoopEnd - LoopStart + 1;
487 schoenebeck 2 }
488    
489 schoenebeck 809 /**
490 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
491     * the actual waveform data) and assign it to this object.
492     *
493     * Discussion: copying .gig samples is a bit tricky. It requires three
494     * steps:
495     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496     * its new sample waveform data size.
497     * 2. Saving the file (done by File::Save()) so that it gains correct size
498     * and layout for writing the actual wave form data directly to disc
499     * in next step.
500     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501     *
502     * @param orig - original Sample object to be copied from
503     */
504     void Sample::CopyAssignMeta(const Sample* orig) {
505     // handle base classes
506     DLS::Sample::CopyAssignCore(orig);
507    
508     // handle actual own attributes of this class
509     Manufacturer = orig->Manufacturer;
510     Product = orig->Product;
511     SamplePeriod = orig->SamplePeriod;
512     MIDIUnityNote = orig->MIDIUnityNote;
513     FineTune = orig->FineTune;
514     SMPTEFormat = orig->SMPTEFormat;
515     SMPTEOffset = orig->SMPTEOffset;
516     Loops = orig->Loops;
517     LoopID = orig->LoopID;
518     LoopType = orig->LoopType;
519     LoopStart = orig->LoopStart;
520     LoopEnd = orig->LoopEnd;
521     LoopSize = orig->LoopSize;
522     LoopFraction = orig->LoopFraction;
523     LoopPlayCount = orig->LoopPlayCount;
524    
525     // schedule resizing this sample to the given sample's size
526     Resize(orig->GetSize());
527     }
528    
529     /**
530     * Should be called after CopyAssignMeta() and File::Save() sequence.
531     * Read more about it in the discussion of CopyAssignMeta(). This method
532     * copies the actual waveform data by disk streaming.
533     *
534     * @e CAUTION: this method is currently not thread safe! During this
535     * operation the sample must not be used for other purposes by other
536     * threads!
537     *
538     * @param orig - original Sample object to be copied from
539     */
540     void Sample::CopyAssignWave(const Sample* orig) {
541     const int iReadAtOnce = 32*1024;
542     char* buf = new char[iReadAtOnce * orig->FrameSize];
543     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
545 schoenebeck 2482 pOrig->SetPos(0);
546     SetPos(0);
547 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
549     {
550     Write(buf, n);
551     }
552     pOrig->SetPos(restorePos);
553     delete [] buf;
554     }
555    
556     /**
557 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
558     * to call File::Save() to make changes persistent.
559     *
560     * Usually there is absolutely no need to call this method explicitly.
561     * It will be called automatically when File::Save() was called.
562     *
563 schoenebeck 2682 * @param pProgress - callback function for progress notification
564 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 schoenebeck 809 * was provided yet
566     * @throws gig::Exception if there is any invalid sample setting
567     */
568 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
569 schoenebeck 809 // first update base class's chunks
570 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
571 schoenebeck 809
572     // make sure 'smpl' chunk exists
573     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 persson 1182 if (!pCkSmpl) {
575     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576     memset(pCkSmpl->LoadChunkData(), 0, 60);
577     }
578 schoenebeck 809 // update 'smpl' chunk
579     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 persson 1179 store32(&pData[0], Manufacturer);
582     store32(&pData[4], Product);
583     store32(&pData[8], SamplePeriod);
584     store32(&pData[12], MIDIUnityNote);
585     store32(&pData[16], FineTune);
586     store32(&pData[20], SMPTEFormat);
587     store32(&pData[24], SMPTEOffset);
588     store32(&pData[28], Loops);
589 schoenebeck 809
590     // we skip 'manufByt' for now (4 bytes)
591    
592 persson 1179 store32(&pData[36], LoopID);
593     store32(&pData[40], LoopType);
594     store32(&pData[44], LoopStart);
595     store32(&pData[48], LoopEnd);
596     store32(&pData[52], LoopFraction);
597     store32(&pData[56], LoopPlayCount);
598 schoenebeck 809
599     // make sure '3gix' chunk exists
600     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
603 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
605     if (pFile->pGroups) {
606     std::list<Group*>::iterator iter = pFile->pGroups->begin();
607     std::list<Group*>::iterator end = pFile->pGroups->end();
608 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
609 schoenebeck 929 if (*iter == pGroup) {
610     iSampleGroup = i;
611     break; // found
612     }
613     }
614     }
615 schoenebeck 809 // update '3gix' chunk
616     pData = (uint8_t*) pCk3gix->LoadChunkData();
617 persson 1179 store16(&pData[0], iSampleGroup);
618 schoenebeck 2484
619     // if the library user toggled the "Compressed" attribute from true to
620     // false, then the EWAV chunk associated with compressed samples needs
621     // to be deleted
622     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623     if (ewav && !Compressed) {
624     pWaveList->DeleteSubChunk(ewav);
625     }
626 schoenebeck 809 }
627    
628 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629     void Sample::ScanCompressedSample() {
630     //TODO: we have to add some more scans here (e.g. determine compression rate)
631     this->SamplesTotal = 0;
632 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
633 schoenebeck 2
634 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636 persson 365
637 schoenebeck 2 // Scanning
638     pCkData->SetPos(0);
639 persson 365 if (Channels == 2) { // Stereo
640     for (int i = 0 ; ; i++) {
641     // for 24 bit samples every 8:th frame offset is
642     // stored, to save some memory
643     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644    
645     const int mode_l = pCkData->ReadUint8();
646     const int mode_r = pCkData->ReadUint8();
647     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649 persson 365
650     if (pCkData->RemainingBytes() <= frameSize) {
651     SamplesInLastFrame =
652     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654     SamplesTotal += SamplesInLastFrame;
655 schoenebeck 2 break;
656 persson 365 }
657     SamplesTotal += SamplesPerFrame;
658     pCkData->SetPos(frameSize, RIFF::stream_curpos);
659     }
660     }
661     else { // Mono
662     for (int i = 0 ; ; i++) {
663     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664    
665     const int mode = pCkData->ReadUint8();
666     if (mode > 5) throw gig::Exception("Unknown compression mode");
667 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
668 persson 365
669     if (pCkData->RemainingBytes() <= frameSize) {
670     SamplesInLastFrame =
671     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672     SamplesTotal += SamplesInLastFrame;
673 schoenebeck 2 break;
674 persson 365 }
675     SamplesTotal += SamplesPerFrame;
676     pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 schoenebeck 2 }
678     }
679     pCkData->SetPos(0);
680    
681     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682     if (FrameTable) delete[] FrameTable;
683 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
684     std::list<file_offset_t>::iterator end = frameOffsets.end();
685     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
687     FrameTable[i] = *iter;
688     }
689     }
690    
691     /**
692     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693     * ReleaseSampleData() to free the memory if you don't need the cached
694     * sample data anymore.
695     *
696     * @returns buffer_t structure with start address and size of the buffer
697     * in bytes
698     * @see ReleaseSampleData(), Read(), SetPos()
699     */
700     buffer_t Sample::LoadSampleData() {
701     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702     }
703    
704     /**
705     * Reads (uncompresses if needed) and caches the first \a SampleCount
706     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707     * memory space if you don't need the cached samples anymore. There is no
708     * guarantee that exactly \a SampleCount samples will be cached; this is
709     * not an error. The size will be eventually truncated e.g. to the
710     * beginning of a frame of a compressed sample. This is done for
711     * efficiency reasons while streaming the wave by your sampler engine
712     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713     * that will be returned to determine the actual cached samples, but note
714     * that the size is given in bytes! You get the number of actually cached
715     * samples by dividing it by the frame size of the sample:
716 schoenebeck 384 * @code
717 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718     * long cachedsamples = buf.Size / pSample->FrameSize;
719 schoenebeck 384 * @endcode
720 schoenebeck 2 *
721     * @param SampleCount - number of sample points to load into RAM
722     * @returns buffer_t structure with start address and size of
723     * the cached sample data in bytes
724     * @see ReleaseSampleData(), Read(), SetPos()
725     */
726 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728     }
729    
730     /**
731     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732     * ReleaseSampleData() to free the memory if you don't need the cached
733     * sample data anymore.
734     * The method will add \a NullSamplesCount silence samples past the
735     * official buffer end (this won't affect the 'Size' member of the
736     * buffer_t structure, that means 'Size' always reflects the size of the
737     * actual sample data, the buffer might be bigger though). Silence
738     * samples past the official buffer are needed for differential
739     * algorithms that always have to take subsequent samples into account
740     * (resampling/interpolation would be an important example) and avoids
741     * memory access faults in such cases.
742     *
743     * @param NullSamplesCount - number of silence samples the buffer should
744     * be extended past it's data end
745     * @returns buffer_t structure with start address and
746     * size of the buffer in bytes
747     * @see ReleaseSampleData(), Read(), SetPos()
748     */
749     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751     }
752    
753     /**
754     * Reads (uncompresses if needed) and caches the first \a SampleCount
755     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756     * memory space if you don't need the cached samples anymore. There is no
757     * guarantee that exactly \a SampleCount samples will be cached; this is
758     * not an error. The size will be eventually truncated e.g. to the
759     * beginning of a frame of a compressed sample. This is done for
760     * efficiency reasons while streaming the wave by your sampler engine
761     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762     * that will be returned to determine the actual cached samples, but note
763     * that the size is given in bytes! You get the number of actually cached
764     * samples by dividing it by the frame size of the sample:
765 schoenebeck 384 * @code
766 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767     * long cachedsamples = buf.Size / pSample->FrameSize;
768 schoenebeck 384 * @endcode
769 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
770     * official buffer end (this won't affect the 'Size' member of the
771     * buffer_t structure, that means 'Size' always reflects the size of the
772     * actual sample data, the buffer might be bigger though). Silence
773     * samples past the official buffer are needed for differential
774     * algorithms that always have to take subsequent samples into account
775     * (resampling/interpolation would be an important example) and avoids
776     * memory access faults in such cases.
777     *
778     * @param SampleCount - number of sample points to load into RAM
779     * @param NullSamplesCount - number of silence samples the buffer should
780     * be extended past it's data end
781     * @returns buffer_t structure with start address and
782     * size of the cached sample data in bytes
783     * @see ReleaseSampleData(), Read(), SetPos()
784     */
785 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
790 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
791     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793     // fill the remaining buffer space with silence samples
794     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795     return GetCache();
796     }
797    
798     /**
799     * Returns current cached sample points. A buffer_t structure will be
800     * returned which contains address pointer to the begin of the cache and
801     * the size of the cached sample data in bytes. Use
802     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803     * RAM.
804     *
805     * @returns buffer_t structure with current cached sample points
806     * @see LoadSampleData();
807     */
808     buffer_t Sample::GetCache() {
809     // return a copy of the buffer_t structure
810     buffer_t result;
811     result.Size = this->RAMCache.Size;
812     result.pStart = this->RAMCache.pStart;
813     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814     return result;
815     }
816    
817     /**
818     * Frees the cached sample from RAM if loaded with
819     * <i>LoadSampleData()</i> previously.
820     *
821     * @see LoadSampleData();
822     */
823     void Sample::ReleaseSampleData() {
824     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825     RAMCache.pStart = NULL;
826     RAMCache.Size = 0;
827 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
828 schoenebeck 2 }
829    
830 schoenebeck 809 /** @brief Resize sample.
831     *
832     * Resizes the sample's wave form data, that is the actual size of
833     * sample wave data possible to be written for this sample. This call
834     * will return immediately and just schedule the resize operation. You
835     * should call File::Save() to actually perform the resize operation(s)
836     * "physically" to the file. As this can take a while on large files, it
837     * is recommended to call Resize() first on all samples which have to be
838     * resized and finally to call File::Save() to perform all those resize
839     * operations in one rush.
840     *
841     * The actual size (in bytes) is dependant to the current FrameSize
842     * value. You may want to set FrameSize before calling Resize().
843     *
844     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845     * enlarged samples before calling File::Save() as this might exceed the
846     * current sample's boundary!
847     *
848 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 schoenebeck 809 * other formats will fail!
851     *
852 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
853     * greater than zero)
854 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
857     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858     * DLS::Sample::FormatTag, File::Save()
859     */
860 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
861 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 schoenebeck 2922 DLS::Sample::Resize(NewSize);
863 schoenebeck 809 }
864    
865 schoenebeck 2 /**
866     * Sets the position within the sample (in sample points, not in
867     * bytes). Use this method and <i>Read()</i> if you don't want to load
868     * the sample into RAM, thus for disk streaming.
869     *
870     * Although the original Gigasampler engine doesn't allow positioning
871     * within compressed samples, I decided to implement it. Even though
872     * the Gigasampler format doesn't allow to define loops for compressed
873     * samples at the moment, positioning within compressed samples might be
874     * interesting for some sampler engines though. The only drawback about
875     * my decision is that it takes longer to load compressed gig Files on
876     * startup, because it's neccessary to scan the samples for some
877     * mandatory informations. But I think as it doesn't affect the runtime
878     * efficiency, nobody will have a problem with that.
879     *
880     * @param SampleCount number of sample points to jump
881     * @param Whence optional: to which relation \a SampleCount refers
882     * to, if omited <i>RIFF::stream_start</i> is assumed
883     * @returns the new sample position
884     * @see Read()
885     */
886 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 schoenebeck 2 if (Compressed) {
888     switch (Whence) {
889     case RIFF::stream_curpos:
890     this->SamplePos += SampleCount;
891     break;
892     case RIFF::stream_end:
893     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894     break;
895     case RIFF::stream_backward:
896     this->SamplePos -= SampleCount;
897     break;
898     case RIFF::stream_start: default:
899     this->SamplePos = SampleCount;
900     break;
901     }
902     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907     return this->SamplePos;
908     }
909     else { // not compressed
910 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 schoenebeck 2 return (result == orderedBytes) ? SampleCount
913     : result / this->FrameSize;
914     }
915     }
916    
917     /**
918     * Returns the current position in the sample (in sample points).
919     */
920 schoenebeck 2912 file_offset_t Sample::GetPos() const {
921 schoenebeck 2 if (Compressed) return SamplePos;
922     else return pCkData->GetPos() / FrameSize;
923     }
924    
925     /**
926 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
927     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928     * the position within the sample respectively, this method honors the
929     * looping informations of the sample (if any). The sample wave stream
930     * will be decompressed on the fly if using a compressed sample. Use this
931     * method if you don't want to load the sample into RAM, thus for disk
932     * streaming. All this methods needs to know to proceed with streaming
933     * for the next time you call this method is stored in \a pPlaybackState.
934     * You have to allocate and initialize the playback_state_t structure by
935     * yourself before you use it to stream a sample:
936 schoenebeck 384 * @code
937     * gig::playback_state_t playbackstate;
938     * playbackstate.position = 0;
939     * playbackstate.reverse = false;
940     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941     * @endcode
942 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
943     * defined or if the current read position is located within a loop area.
944     * The method already handles such cases by itself.
945     *
946 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
947     * have to use an external decompression buffer for <b>EACH</b>
948     * streaming thread to avoid race conditions and crashes!
949     *
950 schoenebeck 24 * @param pBuffer destination buffer
951     * @param SampleCount number of sample points to read
952     * @param pPlaybackState will be used to store and reload the playback
953     * state for the next ReadAndLoop() call
954 persson 864 * @param pDimRgn dimension region with looping information
955 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 schoenebeck 24 * @returns number of successfully read sample points
957 schoenebeck 384 * @see CreateDecompressionBuffer()
958 schoenebeck 24 */
959 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
963    
964     SetPos(pPlaybackState->position); // recover position from the last time
965    
966 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967 schoenebeck 24
968 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970 schoenebeck 24
971 persson 864 if (GetPos() <= loopEnd) {
972     switch (loop.LoopType) {
973 schoenebeck 24
974 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
975     do {
976     // if not endless loop check if max. number of loop cycles have been passed
977     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978 schoenebeck 24
979 persson 864 if (!pPlaybackState->reverse) { // forward playback
980     do {
981     samplestoloopend = loopEnd - GetPos();
982     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983     samplestoread -= readsamples;
984     totalreadsamples += readsamples;
985     if (readsamples == samplestoloopend) {
986     pPlaybackState->reverse = true;
987     break;
988     }
989     } while (samplestoread && readsamples);
990     }
991     else { // backward playback
992 schoenebeck 24
993 persson 864 // as we can only read forward from disk, we have to
994     // determine the end position within the loop first,
995     // read forward from that 'end' and finally after
996     // reading, swap all sample frames so it reflects
997     // backward playback
998 schoenebeck 24
999 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1000     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003 schoenebeck 24
1004 persson 864 SetPos(reverseplaybackend);
1005 schoenebeck 24
1006 persson 864 // read samples for backward playback
1007     do {
1008     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009     samplestoreadinloop -= readsamples;
1010     samplestoread -= readsamples;
1011     totalreadsamples += readsamples;
1012     } while (samplestoreadinloop && readsamples);
1013 schoenebeck 24
1014 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016     if (reverseplaybackend == loop.LoopStart) {
1017     pPlaybackState->loop_cycles_left--;
1018     pPlaybackState->reverse = false;
1019     }
1020    
1021     // reverse the sample frames for backward playback
1022 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 schoenebeck 24 }
1025 persson 864 } while (samplestoread && readsamples);
1026     break;
1027     }
1028 schoenebeck 24
1029 persson 864 case loop_type_backward: { // TODO: not tested yet!
1030     // forward playback (not entered the loop yet)
1031     if (!pPlaybackState->reverse) do {
1032     samplestoloopend = loopEnd - GetPos();
1033     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034     samplestoread -= readsamples;
1035     totalreadsamples += readsamples;
1036     if (readsamples == samplestoloopend) {
1037     pPlaybackState->reverse = true;
1038     break;
1039     }
1040     } while (samplestoread && readsamples);
1041 schoenebeck 24
1042 persson 864 if (!samplestoread) break;
1043 schoenebeck 24
1044 persson 864 // as we can only read forward from disk, we have to
1045     // determine the end position within the loop first,
1046     // read forward from that 'end' and finally after
1047     // reading, swap all sample frames so it reflects
1048     // backward playback
1049 schoenebeck 24
1050 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1051     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 persson 864 : samplestoread;
1054 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055 schoenebeck 24
1056 persson 864 SetPos(reverseplaybackend);
1057 schoenebeck 24
1058 persson 864 // read samples for backward playback
1059     do {
1060     // if not endless loop check if max. number of loop cycles have been passed
1061     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062     samplestoloopend = loopEnd - GetPos();
1063     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064     samplestoreadinloop -= readsamples;
1065     samplestoread -= readsamples;
1066     totalreadsamples += readsamples;
1067     if (readsamples == samplestoloopend) {
1068     pPlaybackState->loop_cycles_left--;
1069     SetPos(loop.LoopStart);
1070     }
1071     } while (samplestoreadinloop && readsamples);
1072 schoenebeck 24
1073 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1074 schoenebeck 24
1075 persson 864 // reverse the sample frames for backward playback
1076     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077     break;
1078     }
1079 schoenebeck 24
1080 persson 864 default: case loop_type_normal: {
1081     do {
1082     // if not endless loop check if max. number of loop cycles have been passed
1083     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084     samplestoloopend = loopEnd - GetPos();
1085     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086     samplestoread -= readsamples;
1087     totalreadsamples += readsamples;
1088     if (readsamples == samplestoloopend) {
1089     pPlaybackState->loop_cycles_left--;
1090     SetPos(loop.LoopStart);
1091     }
1092     } while (samplestoread && readsamples);
1093     break;
1094     }
1095 schoenebeck 24 }
1096     }
1097     }
1098    
1099     // read on without looping
1100     if (samplestoread) do {
1101 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 schoenebeck 24 samplestoread -= readsamples;
1103     totalreadsamples += readsamples;
1104     } while (readsamples && samplestoread);
1105    
1106     // store current position
1107     pPlaybackState->position = GetPos();
1108    
1109     return totalreadsamples;
1110     }
1111    
1112     /**
1113 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1114     * position into the buffer pointed by \a pBuffer and increments the
1115     * position within the sample. The sample wave stream will be
1116     * decompressed on the fly if using a compressed sample. Use this method
1117     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118     * thus for disk streaming.
1119     *
1120 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1121     * have to use an external decompression buffer for <b>EACH</b>
1122     * streaming thread to avoid race conditions and crashes!
1123     *
1124 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1125     * (using native endianness). For 24 bit, the buffer will
1126     * contain three bytes per sample, little-endian.
1127     *
1128 schoenebeck 2 * @param pBuffer destination buffer
1129     * @param SampleCount number of sample points to read
1130 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 schoenebeck 2 * @returns number of successfully read sample points
1132 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1133 schoenebeck 2 */
1134 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 schoenebeck 21 if (SampleCount == 0) return 0;
1136 schoenebeck 317 if (!Compressed) {
1137     if (BitDepth == 24) {
1138 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 schoenebeck 317 }
1140 persson 365 else { // 16 bit
1141     // (pCkData->Read does endian correction)
1142     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143     : pCkData->Read(pBuffer, SampleCount, 2);
1144     }
1145 schoenebeck 317 }
1146 persson 365 else {
1147 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1149 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1150 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1151     remainingsamples = SampleCount,
1152 persson 365 copysamples, skipsamples,
1153     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 schoenebeck 2 this->FrameOffset = 0;
1155    
1156 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157    
1158     // if decompression buffer too small, then reduce amount of samples to read
1159     if (pDecompressionBuffer->Size < assumedsize) {
1160     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162     remainingsamples = SampleCount;
1163     assumedsize = GuessSize(SampleCount);
1164 schoenebeck 2 }
1165    
1166 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171 persson 365 while (remainingsamples && remainingbytes) {
1172 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1173     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174 schoenebeck 2
1175 persson 365 int mode_l = *pSrc++, mode_r = 0;
1176    
1177     if (Channels == 2) {
1178     mode_r = *pSrc++;
1179     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182     if (remainingbytes < framebytes) { // last frame in sample
1183     framesamples = SamplesInLastFrame;
1184     if (mode_l == 4 && (framesamples & 1)) {
1185     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186     }
1187     else {
1188     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189     }
1190 schoenebeck 2 }
1191     }
1192 persson 365 else {
1193     framebytes = bytesPerFrame[mode_l] + 1;
1194     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195     if (remainingbytes < framebytes) {
1196     framesamples = SamplesInLastFrame;
1197     }
1198     }
1199 schoenebeck 2
1200     // determine how many samples in this frame to skip and read
1201 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1202     if (currentframeoffset <= framesamples) {
1203     copysamples = framesamples - currentframeoffset;
1204     skipsamples = currentframeoffset;
1205     }
1206     else {
1207     copysamples = 0;
1208     skipsamples = framesamples;
1209     }
1210 schoenebeck 2 }
1211     else {
1212 persson 365 // This frame has enough data for pBuffer, but not
1213     // all of the frame is needed. Set file position
1214     // to start of this frame for next call to Read.
1215 schoenebeck 2 copysamples = remainingsamples;
1216 persson 365 skipsamples = currentframeoffset;
1217     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218     this->FrameOffset = currentframeoffset + copysamples;
1219     }
1220     remainingsamples -= copysamples;
1221    
1222     if (remainingbytes > framebytes) {
1223     remainingbytes -= framebytes;
1224     if (remainingsamples == 0 &&
1225     currentframeoffset + copysamples == framesamples) {
1226     // This frame has enough data for pBuffer, and
1227     // all of the frame is needed. Set file
1228     // position to start of next frame for next
1229     // call to Read. FrameOffset is 0.
1230 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231     }
1232     }
1233 persson 365 else remainingbytes = 0;
1234 schoenebeck 2
1235 persson 365 currentframeoffset -= skipsamples;
1236 schoenebeck 2
1237 persson 365 if (copysamples == 0) {
1238     // skip this frame
1239     pSrc += framebytes - Channels;
1240     }
1241     else {
1242     const unsigned char* const param_l = pSrc;
1243     if (BitDepth == 24) {
1244     if (mode_l != 2) pSrc += 12;
1245 schoenebeck 2
1246 persson 365 if (Channels == 2) { // Stereo
1247     const unsigned char* const param_r = pSrc;
1248     if (mode_r != 2) pSrc += 12;
1249    
1250 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 persson 437 skipsamples, copysamples, TruncatedBits);
1252 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 persson 437 skipsamples, copysamples, TruncatedBits);
1254 persson 902 pDst24 += copysamples * 6;
1255 schoenebeck 2 }
1256 persson 365 else { // Mono
1257 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 persson 437 skipsamples, copysamples, TruncatedBits);
1259 persson 902 pDst24 += copysamples * 3;
1260 schoenebeck 2 }
1261 persson 365 }
1262     else { // 16 bit
1263     if (mode_l) pSrc += 4;
1264 schoenebeck 2
1265 persson 365 int step;
1266     if (Channels == 2) { // Stereo
1267     const unsigned char* const param_r = pSrc;
1268     if (mode_r) pSrc += 4;
1269    
1270     step = (2 - mode_l) + (2 - mode_r);
1271 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 persson 365 skipsamples, copysamples);
1274     pDst += copysamples << 1;
1275 schoenebeck 2 }
1276 persson 365 else { // Mono
1277     step = 2 - mode_l;
1278 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 persson 365 pDst += copysamples;
1280 schoenebeck 2 }
1281 persson 365 }
1282     pSrc += nextFrameOffset;
1283     }
1284 schoenebeck 2
1285 persson 365 // reload from disk to local buffer if needed
1286     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287     assumedsize = GuessSize(remainingsamples);
1288     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 schoenebeck 2 }
1293 persson 365 } // while
1294    
1295 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1296 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 schoenebeck 2 return (SampleCount - remainingsamples);
1298     }
1299     }
1300    
1301 schoenebeck 809 /** @brief Write sample wave data.
1302     *
1303     * Writes \a SampleCount number of sample points from the buffer pointed
1304     * by \a pBuffer and increments the position within the sample. Use this
1305     * method to directly write the sample data to disk, i.e. if you don't
1306     * want or cannot load the whole sample data into RAM.
1307     *
1308     * You have to Resize() the sample to the desired size and call
1309     * File::Save() <b>before</b> using Write().
1310     *
1311     * Note: there is currently no support for writing compressed samples.
1312     *
1313 persson 1264 * For 16 bit samples, the data in the source buffer should be
1314     * int16_t (using native endianness). For 24 bit, the buffer
1315     * should contain three bytes per sample, little-endian.
1316     *
1317 schoenebeck 809 * @param pBuffer - source buffer
1318     * @param SampleCount - number of sample points to write
1319     * @throws DLS::Exception if current sample size is too small
1320     * @throws gig::Exception if sample is compressed
1321     * @see DLS::LoadSampleData()
1322     */
1323 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325 persson 1207
1326     // if this is the first write in this sample, reset the
1327     // checksum calculator
1328 persson 1199 if (pCkData->GetPos() == 0) {
1329 schoenebeck 1381 __resetCRC(crc);
1330 persson 1199 }
1331 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 schoenebeck 2912 file_offset_t res;
1333 persson 1264 if (BitDepth == 24) {
1334     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335     } else { // 16 bit
1336     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337     : pCkData->Write(pBuffer, SampleCount, 2);
1338     }
1339 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340 persson 1199
1341 persson 1207 // if this is the last write, update the checksum chunk in the
1342     // file
1343 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 schoenebeck 3115 __finalizeCRC(crc);
1345 persson 1199 File* pFile = static_cast<File*>(GetParent());
1346 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1347 persson 1199 }
1348     return res;
1349 schoenebeck 809 }
1350    
1351 schoenebeck 384 /**
1352     * Allocates a decompression buffer for streaming (compressed) samples
1353     * with Sample::Read(). If you are using more than one streaming thread
1354     * in your application you <b>HAVE</b> to create a decompression buffer
1355     * for <b>EACH</b> of your streaming threads and provide it with the
1356     * Sample::Read() call in order to avoid race conditions and crashes.
1357     *
1358     * You should free the memory occupied by the allocated buffer(s) once
1359     * you don't need one of your streaming threads anymore by calling
1360     * DestroyDecompressionBuffer().
1361     *
1362     * @param MaxReadSize - the maximum size (in sample points) you ever
1363     * expect to read with one Read() call
1364     * @returns allocated decompression buffer
1365     * @see DestroyDecompressionBuffer()
1366     */
1367 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 schoenebeck 384 buffer_t result;
1369     const double worstCaseHeaderOverhead =
1370     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 schoenebeck 384 result.pStart = new int8_t[result.Size];
1373     result.NullExtensionSize = 0;
1374     return result;
1375     }
1376    
1377     /**
1378     * Free decompression buffer, previously created with
1379     * CreateDecompressionBuffer().
1380     *
1381     * @param DecompressionBuffer - previously allocated decompression
1382     * buffer to free
1383     */
1384     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386     delete[] (int8_t*) DecompressionBuffer.pStart;
1387     DecompressionBuffer.pStart = NULL;
1388     DecompressionBuffer.Size = 0;
1389     DecompressionBuffer.NullExtensionSize = 0;
1390     }
1391     }
1392    
1393 schoenebeck 930 /**
1394     * Returns pointer to the Group this Sample belongs to. In the .gig
1395     * format a sample always belongs to one group. If it wasn't explicitly
1396     * assigned to a certain group, it will be automatically assigned to a
1397     * default group.
1398     *
1399     * @returns Sample's Group (never NULL)
1400     */
1401     Group* Sample::GetGroup() const {
1402     return pGroup;
1403     }
1404    
1405 schoenebeck 2985 /**
1406 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407     * time when this sample's wave form data was modified for the last time
1408     * by calling Write(). This checksum only covers the raw wave form data,
1409     * not any meta informations like i.e. bit depth or loop points. Since
1410     * this method just returns the checksum stored for this sample i.e. when
1411     * the gig file was loaded, this method returns immediately. So it does no
1412     * recalcuation of the checksum with the currently available sample wave
1413     * form data.
1414     *
1415     * @see VerifyWaveData()
1416     */
1417     uint32_t Sample::GetWaveDataCRC32Checksum() {
1418     return crc;
1419     }
1420    
1421     /**
1422 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423     * Sample's raw wave data is intentionally modified (i.e. by calling
1424     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425     * is calculated and stored/updated for this sample, along to the sample's
1426     * meta informations.
1427     *
1428     * Now by calling this method the current raw audio wave data is checked
1429     * against the already stored CRC32 check sum in order to check whether the
1430     * sample data had been damaged unintentionally for some reason. Since by
1431     * calling this method always the entire raw audio wave data has to be
1432     * read, verifying all samples this way may take a long time accordingly.
1433     * And that's also the reason why the sample integrity is not checked by
1434     * default whenever a gig file is loaded. So this method must be called
1435     * explicitly to fulfill this task.
1436     *
1437 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1438     * calculated checksum of the current raw wave form data,
1439     * you can get the expected checksum instead by calling
1440     * GetWaveDataCRC32Checksum()
1441 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1442     * @throws Exception if no checksum had been stored to disk for this
1443     * sample yet, or on I/O issues
1444 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1445 schoenebeck 2985 */
1446 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1448 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1449 schoenebeck 2989 if (pActually) *pActually = crc;
1450     return crc == this->crc;
1451 schoenebeck 2985 }
1452    
1453     uint32_t Sample::CalculateWaveDataChecksum() {
1454     const size_t sz = 20*1024; // 20kB buffer size
1455     std::vector<uint8_t> buffer(sz);
1456     buffer.resize(sz);
1457    
1458     const size_t n = sz / FrameSize;
1459     SetPos(0);
1460     uint32_t crc = 0;
1461     __resetCRC(crc);
1462     while (true) {
1463     file_offset_t nRead = Read(&buffer[0], n);
1464     if (nRead <= 0) break;
1465     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466     }
1467 schoenebeck 3115 __finalizeCRC(crc);
1468 schoenebeck 2985 return crc;
1469     }
1470    
1471 schoenebeck 2 Sample::~Sample() {
1472     Instances--;
1473 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1474     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475     InternalDecompressionBuffer.pStart = NULL;
1476     InternalDecompressionBuffer.Size = 0;
1477 schoenebeck 355 }
1478 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1479     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480     }
1481    
1482    
1483    
1484     // *************** DimensionRegion ***************
1485     // *
1486    
1487 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1488 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 schoenebeck 16 Instances++;
1492    
1493 schoenebeck 823 pSample = NULL;
1494 schoenebeck 1316 pRegion = pParent;
1495 schoenebeck 823
1496 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497     else memset(&Crossfade, 0, 4);
1498    
1499 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500 schoenebeck 2
1501     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1503 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506     _3ewa->ReadInt16(); // unknown
1507     LFO1InternalDepth = _3ewa->ReadUint16();
1508     _3ewa->ReadInt16(); // unknown
1509     LFO3InternalDepth = _3ewa->ReadInt16();
1510     _3ewa->ReadInt16(); // unknown
1511     LFO1ControlDepth = _3ewa->ReadUint16();
1512     _3ewa->ReadInt16(); // unknown
1513     LFO3ControlDepth = _3ewa->ReadInt16();
1514     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516     _3ewa->ReadInt16(); // unknown
1517     EG1Sustain = _3ewa->ReadUint16();
1518     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521     EG1ControllerInvert = eg1ctrloptions & 0x01;
1522     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527     EG2ControllerInvert = eg2ctrloptions & 0x01;
1528     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534     _3ewa->ReadInt16(); // unknown
1535     EG2Sustain = _3ewa->ReadUint16();
1536     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537     _3ewa->ReadInt16(); // unknown
1538     LFO2ControlDepth = _3ewa->ReadUint16();
1539     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     _3ewa->ReadInt16(); // unknown
1541     LFO2InternalDepth = _3ewa->ReadUint16();
1542     int32_t eg1decay2 = _3ewa->ReadInt32();
1543     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545     _3ewa->ReadInt16(); // unknown
1546     EG1PreAttack = _3ewa->ReadUint16();
1547     int32_t eg2decay2 = _3ewa->ReadInt32();
1548     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550     _3ewa->ReadInt16(); // unknown
1551     EG2PreAttack = _3ewa->ReadUint16();
1552     uint8_t velocityresponse = _3ewa->ReadUint8();
1553     if (velocityresponse < 5) {
1554     VelocityResponseCurve = curve_type_nonlinear;
1555     VelocityResponseDepth = velocityresponse;
1556     } else if (velocityresponse < 10) {
1557     VelocityResponseCurve = curve_type_linear;
1558     VelocityResponseDepth = velocityresponse - 5;
1559     } else if (velocityresponse < 15) {
1560     VelocityResponseCurve = curve_type_special;
1561     VelocityResponseDepth = velocityresponse - 10;
1562     } else {
1563     VelocityResponseCurve = curve_type_unknown;
1564     VelocityResponseDepth = 0;
1565     }
1566     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567     if (releasevelocityresponse < 5) {
1568     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569     ReleaseVelocityResponseDepth = releasevelocityresponse;
1570     } else if (releasevelocityresponse < 10) {
1571     ReleaseVelocityResponseCurve = curve_type_linear;
1572     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573     } else if (releasevelocityresponse < 15) {
1574     ReleaseVelocityResponseCurve = curve_type_special;
1575     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576     } else {
1577     ReleaseVelocityResponseCurve = curve_type_unknown;
1578     ReleaseVelocityResponseDepth = 0;
1579     }
1580     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581     AttenuationControllerThreshold = _3ewa->ReadInt8();
1582     _3ewa->ReadInt32(); // unknown
1583     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584     _3ewa->ReadInt16(); // unknown
1585     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589     else DimensionBypass = dim_bypass_ctrl_none;
1590     uint8_t pan = _3ewa->ReadUint8();
1591     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592     SelfMask = _3ewa->ReadInt8() & 0x01;
1593     _3ewa->ReadInt8(); // unknown
1594     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609     : vcf_res_ctrl_none;
1610     uint16_t eg3depth = _3ewa->ReadUint16();
1611     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1614     ChannelOffset = _3ewa->ReadUint8() / 4;
1615     uint8_t regoptions = _3ewa->ReadUint8();
1616     MSDecode = regoptions & 0x01; // bit 0
1617     SustainDefeat = regoptions & 0x02; // bit 1
1618     _3ewa->ReadInt16(); // unknown
1619     VelocityUpperLimit = _3ewa->ReadInt8();
1620     _3ewa->ReadInt8(); // unknown
1621     _3ewa->ReadInt16(); // unknown
1622     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623     _3ewa->ReadInt8(); // unknown
1624     _3ewa->ReadInt8(); // unknown
1625     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626     uint8_t vcfcutoff = _3ewa->ReadUint8();
1627     VCFEnabled = vcfcutoff & 0x80; // bit 7
1628     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630     uint8_t vcfvelscale = _3ewa->ReadUint8();
1631     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633     _3ewa->ReadInt8(); // unknown
1634     uint8_t vcfresonance = _3ewa->ReadUint8();
1635     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640     uint8_t vcfvelocity = _3ewa->ReadUint8();
1641     VCFVelocityDynamicRange = vcfvelocity % 5;
1642     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644     if (VCFType == vcf_type_lowpass) {
1645     if (lfo3ctrl & 0x40) // bit 6
1646     VCFType = vcf_type_lowpassturbo;
1647     }
1648 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1649     _3ewa->Read(DimensionUpperLimits, 1, 8);
1650     } else {
1651     memset(DimensionUpperLimits, 0, 8);
1652     }
1653 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1654     // use default values
1655     LFO3Frequency = 1.0;
1656     EG3Attack = 0.0;
1657     LFO1InternalDepth = 0;
1658     LFO3InternalDepth = 0;
1659     LFO1ControlDepth = 0;
1660     LFO3ControlDepth = 0;
1661     EG1Attack = 0.0;
1662 persson 1218 EG1Decay1 = 0.005;
1663     EG1Sustain = 1000;
1664     EG1Release = 0.3;
1665 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1666     EG1Controller.controller_number = 0;
1667     EG1ControllerInvert = false;
1668     EG1ControllerAttackInfluence = 0;
1669     EG1ControllerDecayInfluence = 0;
1670     EG1ControllerReleaseInfluence = 0;
1671     EG2Controller.type = eg2_ctrl_t::type_none;
1672     EG2Controller.controller_number = 0;
1673     EG2ControllerInvert = false;
1674     EG2ControllerAttackInfluence = 0;
1675     EG2ControllerDecayInfluence = 0;
1676     EG2ControllerReleaseInfluence = 0;
1677     LFO1Frequency = 1.0;
1678     EG2Attack = 0.0;
1679 persson 1218 EG2Decay1 = 0.005;
1680     EG2Sustain = 1000;
1681 schoenebeck 2990 EG2Release = 60;
1682 schoenebeck 809 LFO2ControlDepth = 0;
1683     LFO2Frequency = 1.0;
1684     LFO2InternalDepth = 0;
1685     EG1Decay2 = 0.0;
1686 persson 1218 EG1InfiniteSustain = true;
1687     EG1PreAttack = 0;
1688 schoenebeck 809 EG2Decay2 = 0.0;
1689 persson 1218 EG2InfiniteSustain = true;
1690     EG2PreAttack = 0;
1691 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1692     VelocityResponseDepth = 3;
1693     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694     ReleaseVelocityResponseDepth = 3;
1695     VelocityResponseCurveScaling = 32;
1696     AttenuationControllerThreshold = 0;
1697     SampleStartOffset = 0;
1698     PitchTrack = true;
1699     DimensionBypass = dim_bypass_ctrl_none;
1700     Pan = 0;
1701     SelfMask = true;
1702     LFO3Controller = lfo3_ctrl_modwheel;
1703     LFO3Sync = false;
1704     InvertAttenuationController = false;
1705     AttenuationController.type = attenuation_ctrl_t::type_none;
1706     AttenuationController.controller_number = 0;
1707     LFO2Controller = lfo2_ctrl_internal;
1708     LFO2FlipPhase = false;
1709     LFO2Sync = false;
1710     LFO1Controller = lfo1_ctrl_internal;
1711     LFO1FlipPhase = false;
1712     LFO1Sync = false;
1713     VCFResonanceController = vcf_res_ctrl_none;
1714     EG3Depth = 0;
1715     ChannelOffset = 0;
1716     MSDecode = false;
1717     SustainDefeat = false;
1718     VelocityUpperLimit = 0;
1719     ReleaseTriggerDecay = 0;
1720     EG1Hold = false;
1721     VCFEnabled = false;
1722     VCFCutoff = 0;
1723     VCFCutoffController = vcf_cutoff_ctrl_none;
1724     VCFCutoffControllerInvert = false;
1725     VCFVelocityScale = 0;
1726     VCFResonance = 0;
1727     VCFResonanceDynamic = false;
1728     VCFKeyboardTracking = false;
1729     VCFKeyboardTrackingBreakpoint = 0;
1730     VCFVelocityDynamicRange = 0x04;
1731     VCFVelocityCurve = curve_type_linear;
1732     VCFType = vcf_type_lowpass;
1733 persson 1247 memset(DimensionUpperLimits, 127, 8);
1734 schoenebeck 2 }
1735 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1736 schoenebeck 3323 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1737 schoenebeck 3442 if (lsde) { // format extension for EG behavior options
1738 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1739 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1740 schoenebeck 3327 unsigned char byte = lsde->ReadUint8();
1741     pEGOpts[i]->AttackCancel = byte & 1;
1742     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1743     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1744     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1745     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1746     }
1747 schoenebeck 3323 }
1748 schoenebeck 3442 // format extension for sustain pedal up effect on release trigger samples
1749     if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1750     lsde->SetPos(3);
1751     SustainReleaseTrigger = static_cast<sust_rel_trg_t>(lsde->ReadUint8());
1752     } else SustainReleaseTrigger = sust_rel_trg_none;
1753 schoenebeck 16
1754 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1755     VelocityResponseDepth,
1756     VelocityResponseCurveScaling);
1757    
1758 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1759     ReleaseVelocityResponseCurve,
1760     ReleaseVelocityResponseDepth
1761     );
1762 persson 613
1763 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1764     VCFVelocityDynamicRange,
1765     VCFVelocityScale,
1766     VCFCutoffController);
1767 persson 613
1768     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1769 persson 858 VelocityTable = 0;
1770 persson 613 }
1771    
1772 persson 1301 /*
1773     * Constructs a DimensionRegion by copying all parameters from
1774     * another DimensionRegion
1775     */
1776     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1777     Instances++;
1778 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1779 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1780     pParentList = _3ewl; // restore the chunk pointer
1781    
1782     // deep copy of owned structures
1783     if (src.VelocityTable) {
1784     VelocityTable = new uint8_t[128];
1785     for (int k = 0 ; k < 128 ; k++)
1786     VelocityTable[k] = src.VelocityTable[k];
1787     }
1788     if (src.pSampleLoops) {
1789     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1790     for (int k = 0 ; k < src.SampleLoops ; k++)
1791     pSampleLoops[k] = src.pSampleLoops[k];
1792     }
1793     }
1794 schoenebeck 2394
1795     /**
1796     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1797     * and assign it to this object.
1798     *
1799     * Note that all sample pointers referenced by @a orig are simply copied as
1800     * memory address. Thus the respective samples are shared, not duplicated!
1801     *
1802     * @param orig - original DimensionRegion object to be copied from
1803     */
1804     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1805 schoenebeck 2482 CopyAssign(orig, NULL);
1806     }
1807    
1808     /**
1809     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1810     * and assign it to this object.
1811     *
1812     * @param orig - original DimensionRegion object to be copied from
1813     * @param mSamples - crosslink map between the foreign file's samples and
1814     * this file's samples
1815     */
1816     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1817 schoenebeck 2394 // delete all allocated data first
1818     if (VelocityTable) delete [] VelocityTable;
1819     if (pSampleLoops) delete [] pSampleLoops;
1820    
1821     // backup parent list pointer
1822     RIFF::List* p = pParentList;
1823    
1824 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1825     gig::Region* pOriginalRegion = pRegion;
1826    
1827 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1828    
1829     *this = *orig; // default memberwise shallow copy of all parameters
1830 schoenebeck 2547
1831     // restore members that shall not be altered
1832 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1833 schoenebeck 2547 pRegion = pOriginalRegion;
1834 schoenebeck 2482
1835 schoenebeck 2547 // only take the raw sample reference reference if the
1836 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1837     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1838     pSample = pOriginalSample;
1839     }
1840    
1841     if (mSamples && mSamples->count(orig->pSample)) {
1842     pSample = mSamples->find(orig->pSample)->second;
1843     }
1844 persson 1301
1845 schoenebeck 2394 // deep copy of owned structures
1846     if (orig->VelocityTable) {
1847     VelocityTable = new uint8_t[128];
1848     for (int k = 0 ; k < 128 ; k++)
1849     VelocityTable[k] = orig->VelocityTable[k];
1850     }
1851     if (orig->pSampleLoops) {
1852     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1853     for (int k = 0 ; k < orig->SampleLoops ; k++)
1854     pSampleLoops[k] = orig->pSampleLoops[k];
1855     }
1856     }
1857    
1858 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1859 schoenebeck 3182 // in case this class will become backward incompatible one day,
1860     // then set a version and minimum version for this class like:
1861     //archive->setVersion(*this, 2);
1862     //archive->setMinVersion(*this, 1);
1863    
1864 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1865     SRLZ(EG1PreAttack);
1866     SRLZ(EG1Attack);
1867     SRLZ(EG1Decay1);
1868     SRLZ(EG1Decay2);
1869     SRLZ(EG1InfiniteSustain);
1870     SRLZ(EG1Sustain);
1871     SRLZ(EG1Release);
1872     SRLZ(EG1Hold);
1873     SRLZ(EG1Controller);
1874     SRLZ(EG1ControllerInvert);
1875     SRLZ(EG1ControllerAttackInfluence);
1876     SRLZ(EG1ControllerDecayInfluence);
1877     SRLZ(EG1ControllerReleaseInfluence);
1878     SRLZ(LFO1Frequency);
1879     SRLZ(LFO1InternalDepth);
1880     SRLZ(LFO1ControlDepth);
1881     SRLZ(LFO1Controller);
1882     SRLZ(LFO1FlipPhase);
1883     SRLZ(LFO1Sync);
1884     SRLZ(EG2PreAttack);
1885     SRLZ(EG2Attack);
1886     SRLZ(EG2Decay1);
1887     SRLZ(EG2Decay2);
1888     SRLZ(EG2InfiniteSustain);
1889     SRLZ(EG2Sustain);
1890     SRLZ(EG2Release);
1891     SRLZ(EG2Controller);
1892     SRLZ(EG2ControllerInvert);
1893     SRLZ(EG2ControllerAttackInfluence);
1894     SRLZ(EG2ControllerDecayInfluence);
1895     SRLZ(EG2ControllerReleaseInfluence);
1896     SRLZ(LFO2Frequency);
1897     SRLZ(LFO2InternalDepth);
1898     SRLZ(LFO2ControlDepth);
1899     SRLZ(LFO2Controller);
1900     SRLZ(LFO2FlipPhase);
1901     SRLZ(LFO2Sync);
1902     SRLZ(EG3Attack);
1903     SRLZ(EG3Depth);
1904     SRLZ(LFO3Frequency);
1905     SRLZ(LFO3InternalDepth);
1906     SRLZ(LFO3ControlDepth);
1907     SRLZ(LFO3Controller);
1908     SRLZ(LFO3Sync);
1909     SRLZ(VCFEnabled);
1910     SRLZ(VCFType);
1911     SRLZ(VCFCutoffController);
1912     SRLZ(VCFCutoffControllerInvert);
1913     SRLZ(VCFCutoff);
1914     SRLZ(VCFVelocityCurve);
1915     SRLZ(VCFVelocityScale);
1916     SRLZ(VCFVelocityDynamicRange);
1917     SRLZ(VCFResonance);
1918     SRLZ(VCFResonanceDynamic);
1919     SRLZ(VCFResonanceController);
1920     SRLZ(VCFKeyboardTracking);
1921     SRLZ(VCFKeyboardTrackingBreakpoint);
1922     SRLZ(VelocityResponseCurve);
1923     SRLZ(VelocityResponseDepth);
1924     SRLZ(VelocityResponseCurveScaling);
1925     SRLZ(ReleaseVelocityResponseCurve);
1926     SRLZ(ReleaseVelocityResponseDepth);
1927     SRLZ(ReleaseTriggerDecay);
1928     SRLZ(Crossfade);
1929     SRLZ(PitchTrack);
1930     SRLZ(DimensionBypass);
1931     SRLZ(Pan);
1932     SRLZ(SelfMask);
1933     SRLZ(AttenuationController);
1934     SRLZ(InvertAttenuationController);
1935     SRLZ(AttenuationControllerThreshold);
1936     SRLZ(ChannelOffset);
1937     SRLZ(SustainDefeat);
1938     SRLZ(MSDecode);
1939     //SRLZ(SampleStartOffset);
1940     SRLZ(SampleAttenuation);
1941 schoenebeck 3327 SRLZ(EG1Options);
1942     SRLZ(EG2Options);
1943 schoenebeck 3442 SRLZ(SustainReleaseTrigger);
1944 schoenebeck 3138
1945     // derived attributes from DLS::Sampler
1946     SRLZ(FineTune);
1947     SRLZ(Gain);
1948     }
1949    
1950 schoenebeck 809 /**
1951 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1952     * which depends on this value.
1953     */
1954     void DimensionRegion::SetGain(int32_t gain) {
1955     DLS::Sampler::SetGain(gain);
1956     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1957     }
1958    
1959     /**
1960 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1961     * have to call File::Save() to make changes persistent.
1962     *
1963     * Usually there is absolutely no need to call this method explicitly.
1964     * It will be called automatically when File::Save() was called.
1965 schoenebeck 2682 *
1966     * @param pProgress - callback function for progress notification
1967 schoenebeck 809 */
1968 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1969 schoenebeck 809 // first update base class's chunk
1970 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1971 schoenebeck 809
1972 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1973     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1974     pData[12] = Crossfade.in_start;
1975     pData[13] = Crossfade.in_end;
1976     pData[14] = Crossfade.out_start;
1977     pData[15] = Crossfade.out_end;
1978    
1979 schoenebeck 809 // make sure '3ewa' chunk exists
1980     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1981 persson 1317 if (!_3ewa) {
1982     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1983 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
1984     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
1985 persson 1264 }
1986 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1987 schoenebeck 809
1988     // update '3ewa' chunk with DimensionRegion's current settings
1989    
1990 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1991 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1992 schoenebeck 809
1993     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1994 persson 1179 store32(&pData[4], lfo3freq);
1995 schoenebeck 809
1996     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1997 persson 1179 store32(&pData[8], eg3attack);
1998 schoenebeck 809
1999     // next 2 bytes unknown
2000    
2001 persson 1179 store16(&pData[14], LFO1InternalDepth);
2002 schoenebeck 809
2003     // next 2 bytes unknown
2004    
2005 persson 1179 store16(&pData[18], LFO3InternalDepth);
2006 schoenebeck 809
2007     // next 2 bytes unknown
2008    
2009 persson 1179 store16(&pData[22], LFO1ControlDepth);
2010 schoenebeck 809
2011     // next 2 bytes unknown
2012    
2013 persson 1179 store16(&pData[26], LFO3ControlDepth);
2014 schoenebeck 809
2015     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2016 persson 1179 store32(&pData[28], eg1attack);
2017 schoenebeck 809
2018     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2019 persson 1179 store32(&pData[32], eg1decay1);
2020 schoenebeck 809
2021     // next 2 bytes unknown
2022    
2023 persson 1179 store16(&pData[38], EG1Sustain);
2024 schoenebeck 809
2025     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2026 persson 1179 store32(&pData[40], eg1release);
2027 schoenebeck 809
2028     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2029 persson 1179 pData[44] = eg1ctl;
2030 schoenebeck 809
2031     const uint8_t eg1ctrloptions =
2032 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2033 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2034     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2035     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2036 persson 1179 pData[45] = eg1ctrloptions;
2037 schoenebeck 809
2038     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2039 persson 1179 pData[46] = eg2ctl;
2040 schoenebeck 809
2041     const uint8_t eg2ctrloptions =
2042 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2043 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2044     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2045     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2046 persson 1179 pData[47] = eg2ctrloptions;
2047 schoenebeck 809
2048     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2049 persson 1179 store32(&pData[48], lfo1freq);
2050 schoenebeck 809
2051     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2052 persson 1179 store32(&pData[52], eg2attack);
2053 schoenebeck 809
2054     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2055 persson 1179 store32(&pData[56], eg2decay1);
2056 schoenebeck 809
2057     // next 2 bytes unknown
2058    
2059 persson 1179 store16(&pData[62], EG2Sustain);
2060 schoenebeck 809
2061     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2062 persson 1179 store32(&pData[64], eg2release);
2063 schoenebeck 809
2064     // next 2 bytes unknown
2065    
2066 persson 1179 store16(&pData[70], LFO2ControlDepth);
2067 schoenebeck 809
2068     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2069 persson 1179 store32(&pData[72], lfo2freq);
2070 schoenebeck 809
2071     // next 2 bytes unknown
2072    
2073 persson 1179 store16(&pData[78], LFO2InternalDepth);
2074 schoenebeck 809
2075     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2076 persson 1179 store32(&pData[80], eg1decay2);
2077 schoenebeck 809
2078     // next 2 bytes unknown
2079    
2080 persson 1179 store16(&pData[86], EG1PreAttack);
2081 schoenebeck 809
2082     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2083 persson 1179 store32(&pData[88], eg2decay2);
2084 schoenebeck 809
2085     // next 2 bytes unknown
2086    
2087 persson 1179 store16(&pData[94], EG2PreAttack);
2088 schoenebeck 809
2089     {
2090     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2091     uint8_t velocityresponse = VelocityResponseDepth;
2092     switch (VelocityResponseCurve) {
2093     case curve_type_nonlinear:
2094     break;
2095     case curve_type_linear:
2096     velocityresponse += 5;
2097     break;
2098     case curve_type_special:
2099     velocityresponse += 10;
2100     break;
2101     case curve_type_unknown:
2102     default:
2103     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2104     }
2105 persson 1179 pData[96] = velocityresponse;
2106 schoenebeck 809 }
2107    
2108     {
2109     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2110     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2111     switch (ReleaseVelocityResponseCurve) {
2112     case curve_type_nonlinear:
2113     break;
2114     case curve_type_linear:
2115     releasevelocityresponse += 5;
2116     break;
2117     case curve_type_special:
2118     releasevelocityresponse += 10;
2119     break;
2120     case curve_type_unknown:
2121     default:
2122     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2123     }
2124 persson 1179 pData[97] = releasevelocityresponse;
2125 schoenebeck 809 }
2126    
2127 persson 1179 pData[98] = VelocityResponseCurveScaling;
2128 schoenebeck 809
2129 persson 1179 pData[99] = AttenuationControllerThreshold;
2130 schoenebeck 809
2131     // next 4 bytes unknown
2132    
2133 persson 1179 store16(&pData[104], SampleStartOffset);
2134 schoenebeck 809
2135     // next 2 bytes unknown
2136    
2137     {
2138     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2139     switch (DimensionBypass) {
2140     case dim_bypass_ctrl_94:
2141     pitchTrackDimensionBypass |= 0x10;
2142     break;
2143     case dim_bypass_ctrl_95:
2144     pitchTrackDimensionBypass |= 0x20;
2145     break;
2146     case dim_bypass_ctrl_none:
2147     //FIXME: should we set anything here?
2148     break;
2149     default:
2150     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2151     }
2152 persson 1179 pData[108] = pitchTrackDimensionBypass;
2153 schoenebeck 809 }
2154    
2155     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2156 persson 1179 pData[109] = pan;
2157 schoenebeck 809
2158     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2159 persson 1179 pData[110] = selfmask;
2160 schoenebeck 809
2161     // next byte unknown
2162    
2163     {
2164     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2165     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2166     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2167     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2168 persson 1179 pData[112] = lfo3ctrl;
2169 schoenebeck 809 }
2170    
2171     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2172 persson 1179 pData[113] = attenctl;
2173 schoenebeck 809
2174     {
2175     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2176     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2177     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2178     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2179 persson 1179 pData[114] = lfo2ctrl;
2180 schoenebeck 809 }
2181    
2182     {
2183     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2184     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2185     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2186     if (VCFResonanceController != vcf_res_ctrl_none)
2187     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2188 persson 1179 pData[115] = lfo1ctrl;
2189 schoenebeck 809 }
2190    
2191     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2192 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2193 persson 1869 store16(&pData[116], eg3depth);
2194 schoenebeck 809
2195     // next 2 bytes unknown
2196    
2197     const uint8_t channeloffset = ChannelOffset * 4;
2198 persson 1179 pData[120] = channeloffset;
2199 schoenebeck 809
2200     {
2201     uint8_t regoptions = 0;
2202     if (MSDecode) regoptions |= 0x01; // bit 0
2203     if (SustainDefeat) regoptions |= 0x02; // bit 1
2204 persson 1179 pData[121] = regoptions;
2205 schoenebeck 809 }
2206    
2207     // next 2 bytes unknown
2208    
2209 persson 1179 pData[124] = VelocityUpperLimit;
2210 schoenebeck 809
2211     // next 3 bytes unknown
2212    
2213 persson 1179 pData[128] = ReleaseTriggerDecay;
2214 schoenebeck 809
2215     // next 2 bytes unknown
2216    
2217     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2218 persson 1179 pData[131] = eg1hold;
2219 schoenebeck 809
2220 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2221 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2222 persson 1179 pData[132] = vcfcutoff;
2223 schoenebeck 809
2224 persson 1179 pData[133] = VCFCutoffController;
2225 schoenebeck 809
2226 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2227 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2228 persson 1179 pData[134] = vcfvelscale;
2229 schoenebeck 809
2230     // next byte unknown
2231    
2232 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2233 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2234 persson 1179 pData[136] = vcfresonance;
2235 schoenebeck 809
2236 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2237 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2238 persson 1179 pData[137] = vcfbreakpoint;
2239 schoenebeck 809
2240 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2241 schoenebeck 809 VCFVelocityCurve * 5;
2242 persson 1179 pData[138] = vcfvelocity;
2243 schoenebeck 809
2244     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2245 persson 1179 pData[139] = vcftype;
2246 persson 1070
2247     if (chunksize >= 148) {
2248     memcpy(&pData[140], DimensionUpperLimits, 8);
2249     }
2250 schoenebeck 3323
2251 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with
2252 schoenebeck 3323 // Gigasampler/GigaStudio !
2253     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2254 schoenebeck 3442 const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2255 schoenebeck 3323 if (!lsde) {
2256 schoenebeck 3442 // only add this "LSDE" chunk if either EG options or sustain
2257     // release trigger option deviate from their default behaviour
2258 schoenebeck 3323 eg_opt_t defaultOpt;
2259 schoenebeck 3327 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2260 schoenebeck 3442 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2261     SustainReleaseTrigger)
2262 schoenebeck 3327 {
2263 schoenebeck 3442 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2264 schoenebeck 3323 // move LSDE chunk to the end of parent list
2265     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2266     }
2267     }
2268     if (lsde) {
2269 schoenebeck 3442 if (lsde->GetNewSize() < lsdeSize)
2270     lsde->Resize(lsdeSize);
2271     // format extension for EG behavior options
2272 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2273     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2274 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2275 schoenebeck 3327 pData[i] =
2276     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2277     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2278     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2279     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2280     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2281     }
2282 schoenebeck 3442 // format extension for effect of sustain pedal up event on release trigger samples
2283     pData[3] = static_cast<uint8_t>(SustainReleaseTrigger);
2284 schoenebeck 3323 }
2285 schoenebeck 809 }
2286    
2287 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2288     curve_type_t curveType = releaseVelocityResponseCurve;
2289     uint8_t depth = releaseVelocityResponseDepth;
2290     // this models a strange behaviour or bug in GSt: two of the
2291     // velocity response curves for release time are not used even
2292     // if specified, instead another curve is chosen.
2293     if ((curveType == curve_type_nonlinear && depth == 0) ||
2294     (curveType == curve_type_special && depth == 4)) {
2295     curveType = curve_type_nonlinear;
2296     depth = 3;
2297     }
2298     return GetVelocityTable(curveType, depth, 0);
2299     }
2300    
2301     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2302     uint8_t vcfVelocityDynamicRange,
2303     uint8_t vcfVelocityScale,
2304     vcf_cutoff_ctrl_t vcfCutoffController)
2305     {
2306     curve_type_t curveType = vcfVelocityCurve;
2307     uint8_t depth = vcfVelocityDynamicRange;
2308     // even stranger GSt: two of the velocity response curves for
2309     // filter cutoff are not used, instead another special curve
2310     // is chosen. This curve is not used anywhere else.
2311     if ((curveType == curve_type_nonlinear && depth == 0) ||
2312     (curveType == curve_type_special && depth == 4)) {
2313     curveType = curve_type_special;
2314     depth = 5;
2315     }
2316     return GetVelocityTable(curveType, depth,
2317     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2318     ? vcfVelocityScale : 0);
2319     }
2320    
2321 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2322     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2323     {
2324 schoenebeck 3349 // sanity check input parameters
2325     // (fallback to some default parameters on ill input)
2326     switch (curveType) {
2327     case curve_type_nonlinear:
2328     case curve_type_linear:
2329     if (depth > 4) {
2330     printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2331     depth = 0;
2332     scaling = 0;
2333     }
2334     break;
2335     case curve_type_special:
2336     if (depth > 5) {
2337     printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2338     depth = 0;
2339     scaling = 0;
2340     }
2341     break;
2342     case curve_type_unknown:
2343     default:
2344     printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2345     curveType = curve_type_linear;
2346     depth = 0;
2347     scaling = 0;
2348     break;
2349     }
2350    
2351 persson 613 double* table;
2352     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2353 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2354 persson 613 table = (*pVelocityTables)[tableKey];
2355 schoenebeck 16 }
2356     else {
2357 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2358     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2359 schoenebeck 16 }
2360 persson 613 return table;
2361 schoenebeck 2 }
2362 schoenebeck 55
2363 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2364     return pRegion;
2365     }
2366    
2367 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2368     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2369     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2370     //#pragma GCC diagnostic push
2371     //#pragma GCC diagnostic error "-Wswitch"
2372    
2373 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2374     leverage_ctrl_t decodedcontroller;
2375     switch (EncodedController) {
2376     // special controller
2377     case _lev_ctrl_none:
2378     decodedcontroller.type = leverage_ctrl_t::type_none;
2379     decodedcontroller.controller_number = 0;
2380     break;
2381     case _lev_ctrl_velocity:
2382     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2383     decodedcontroller.controller_number = 0;
2384     break;
2385     case _lev_ctrl_channelaftertouch:
2386     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2387     decodedcontroller.controller_number = 0;
2388     break;
2389 schoenebeck 55
2390 schoenebeck 36 // ordinary MIDI control change controller
2391     case _lev_ctrl_modwheel:
2392     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393     decodedcontroller.controller_number = 1;
2394     break;
2395     case _lev_ctrl_breath:
2396     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397     decodedcontroller.controller_number = 2;
2398     break;
2399     case _lev_ctrl_foot:
2400     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401     decodedcontroller.controller_number = 4;
2402     break;
2403     case _lev_ctrl_effect1:
2404     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405     decodedcontroller.controller_number = 12;
2406     break;
2407     case _lev_ctrl_effect2:
2408     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409     decodedcontroller.controller_number = 13;
2410     break;
2411     case _lev_ctrl_genpurpose1:
2412     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413     decodedcontroller.controller_number = 16;
2414     break;
2415     case _lev_ctrl_genpurpose2:
2416     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417     decodedcontroller.controller_number = 17;
2418     break;
2419     case _lev_ctrl_genpurpose3:
2420     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421     decodedcontroller.controller_number = 18;
2422     break;
2423     case _lev_ctrl_genpurpose4:
2424     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425     decodedcontroller.controller_number = 19;
2426     break;
2427     case _lev_ctrl_portamentotime:
2428     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429     decodedcontroller.controller_number = 5;
2430     break;
2431     case _lev_ctrl_sustainpedal:
2432     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433     decodedcontroller.controller_number = 64;
2434     break;
2435     case _lev_ctrl_portamento:
2436     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437     decodedcontroller.controller_number = 65;
2438     break;
2439     case _lev_ctrl_sostenutopedal:
2440     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441     decodedcontroller.controller_number = 66;
2442     break;
2443     case _lev_ctrl_softpedal:
2444     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445     decodedcontroller.controller_number = 67;
2446     break;
2447     case _lev_ctrl_genpurpose5:
2448     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449     decodedcontroller.controller_number = 80;
2450     break;
2451     case _lev_ctrl_genpurpose6:
2452     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453     decodedcontroller.controller_number = 81;
2454     break;
2455     case _lev_ctrl_genpurpose7:
2456     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457     decodedcontroller.controller_number = 82;
2458     break;
2459     case _lev_ctrl_genpurpose8:
2460     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461     decodedcontroller.controller_number = 83;
2462     break;
2463     case _lev_ctrl_effect1depth:
2464     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465     decodedcontroller.controller_number = 91;
2466     break;
2467     case _lev_ctrl_effect2depth:
2468     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469     decodedcontroller.controller_number = 92;
2470     break;
2471     case _lev_ctrl_effect3depth:
2472     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473     decodedcontroller.controller_number = 93;
2474     break;
2475     case _lev_ctrl_effect4depth:
2476     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477     decodedcontroller.controller_number = 94;
2478     break;
2479     case _lev_ctrl_effect5depth:
2480     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481     decodedcontroller.controller_number = 95;
2482     break;
2483 schoenebeck 55
2484 schoenebeck 2540 // format extension (these controllers are so far only supported by
2485     // LinuxSampler & gigedit) they will *NOT* work with
2486     // Gigasampler/GigaStudio !
2487     case _lev_ctrl_CC3_EXT:
2488     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489     decodedcontroller.controller_number = 3;
2490     break;
2491     case _lev_ctrl_CC6_EXT:
2492     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493     decodedcontroller.controller_number = 6;
2494     break;
2495     case _lev_ctrl_CC7_EXT:
2496     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497     decodedcontroller.controller_number = 7;
2498     break;
2499     case _lev_ctrl_CC8_EXT:
2500     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501     decodedcontroller.controller_number = 8;
2502     break;
2503     case _lev_ctrl_CC9_EXT:
2504     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505     decodedcontroller.controller_number = 9;
2506     break;
2507     case _lev_ctrl_CC10_EXT:
2508     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509     decodedcontroller.controller_number = 10;
2510     break;
2511     case _lev_ctrl_CC11_EXT:
2512     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513     decodedcontroller.controller_number = 11;
2514     break;
2515     case _lev_ctrl_CC14_EXT:
2516     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517     decodedcontroller.controller_number = 14;
2518     break;
2519     case _lev_ctrl_CC15_EXT:
2520     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521     decodedcontroller.controller_number = 15;
2522     break;
2523     case _lev_ctrl_CC20_EXT:
2524     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525     decodedcontroller.controller_number = 20;
2526     break;
2527     case _lev_ctrl_CC21_EXT:
2528     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529     decodedcontroller.controller_number = 21;
2530     break;
2531     case _lev_ctrl_CC22_EXT:
2532     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533     decodedcontroller.controller_number = 22;
2534     break;
2535     case _lev_ctrl_CC23_EXT:
2536     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537     decodedcontroller.controller_number = 23;
2538     break;
2539     case _lev_ctrl_CC24_EXT:
2540     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541     decodedcontroller.controller_number = 24;
2542     break;
2543     case _lev_ctrl_CC25_EXT:
2544     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545     decodedcontroller.controller_number = 25;
2546     break;
2547     case _lev_ctrl_CC26_EXT:
2548     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549     decodedcontroller.controller_number = 26;
2550     break;
2551     case _lev_ctrl_CC27_EXT:
2552     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553     decodedcontroller.controller_number = 27;
2554     break;
2555     case _lev_ctrl_CC28_EXT:
2556     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557     decodedcontroller.controller_number = 28;
2558     break;
2559     case _lev_ctrl_CC29_EXT:
2560     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561     decodedcontroller.controller_number = 29;
2562     break;
2563     case _lev_ctrl_CC30_EXT:
2564     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565     decodedcontroller.controller_number = 30;
2566     break;
2567     case _lev_ctrl_CC31_EXT:
2568     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569     decodedcontroller.controller_number = 31;
2570     break;
2571     case _lev_ctrl_CC68_EXT:
2572     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573     decodedcontroller.controller_number = 68;
2574     break;
2575     case _lev_ctrl_CC69_EXT:
2576     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577     decodedcontroller.controller_number = 69;
2578     break;
2579     case _lev_ctrl_CC70_EXT:
2580     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581     decodedcontroller.controller_number = 70;
2582     break;
2583     case _lev_ctrl_CC71_EXT:
2584     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585     decodedcontroller.controller_number = 71;
2586     break;
2587     case _lev_ctrl_CC72_EXT:
2588     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589     decodedcontroller.controller_number = 72;
2590     break;
2591     case _lev_ctrl_CC73_EXT:
2592     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593     decodedcontroller.controller_number = 73;
2594     break;
2595     case _lev_ctrl_CC74_EXT:
2596     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597     decodedcontroller.controller_number = 74;
2598     break;
2599     case _lev_ctrl_CC75_EXT:
2600     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601     decodedcontroller.controller_number = 75;
2602     break;
2603     case _lev_ctrl_CC76_EXT:
2604     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605     decodedcontroller.controller_number = 76;
2606     break;
2607     case _lev_ctrl_CC77_EXT:
2608     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609     decodedcontroller.controller_number = 77;
2610     break;
2611     case _lev_ctrl_CC78_EXT:
2612     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613     decodedcontroller.controller_number = 78;
2614     break;
2615     case _lev_ctrl_CC79_EXT:
2616     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617     decodedcontroller.controller_number = 79;
2618     break;
2619     case _lev_ctrl_CC84_EXT:
2620     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621     decodedcontroller.controller_number = 84;
2622     break;
2623     case _lev_ctrl_CC85_EXT:
2624     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625     decodedcontroller.controller_number = 85;
2626     break;
2627     case _lev_ctrl_CC86_EXT:
2628     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629     decodedcontroller.controller_number = 86;
2630     break;
2631     case _lev_ctrl_CC87_EXT:
2632     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633     decodedcontroller.controller_number = 87;
2634     break;
2635     case _lev_ctrl_CC89_EXT:
2636     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637     decodedcontroller.controller_number = 89;
2638     break;
2639     case _lev_ctrl_CC90_EXT:
2640     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641     decodedcontroller.controller_number = 90;
2642     break;
2643     case _lev_ctrl_CC96_EXT:
2644     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645     decodedcontroller.controller_number = 96;
2646     break;
2647     case _lev_ctrl_CC97_EXT:
2648     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649     decodedcontroller.controller_number = 97;
2650     break;
2651     case _lev_ctrl_CC102_EXT:
2652     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653     decodedcontroller.controller_number = 102;
2654     break;
2655     case _lev_ctrl_CC103_EXT:
2656     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657     decodedcontroller.controller_number = 103;
2658     break;
2659     case _lev_ctrl_CC104_EXT:
2660     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661     decodedcontroller.controller_number = 104;
2662     break;
2663     case _lev_ctrl_CC105_EXT:
2664     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665     decodedcontroller.controller_number = 105;
2666     break;
2667     case _lev_ctrl_CC106_EXT:
2668     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669     decodedcontroller.controller_number = 106;
2670     break;
2671     case _lev_ctrl_CC107_EXT:
2672     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673     decodedcontroller.controller_number = 107;
2674     break;
2675     case _lev_ctrl_CC108_EXT:
2676     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677     decodedcontroller.controller_number = 108;
2678     break;
2679     case _lev_ctrl_CC109_EXT:
2680     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681     decodedcontroller.controller_number = 109;
2682     break;
2683     case _lev_ctrl_CC110_EXT:
2684     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685     decodedcontroller.controller_number = 110;
2686     break;
2687     case _lev_ctrl_CC111_EXT:
2688     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689     decodedcontroller.controller_number = 111;
2690     break;
2691     case _lev_ctrl_CC112_EXT:
2692     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693     decodedcontroller.controller_number = 112;
2694     break;
2695     case _lev_ctrl_CC113_EXT:
2696     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697     decodedcontroller.controller_number = 113;
2698     break;
2699     case _lev_ctrl_CC114_EXT:
2700     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701     decodedcontroller.controller_number = 114;
2702     break;
2703     case _lev_ctrl_CC115_EXT:
2704     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705     decodedcontroller.controller_number = 115;
2706     break;
2707     case _lev_ctrl_CC116_EXT:
2708     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709     decodedcontroller.controller_number = 116;
2710     break;
2711     case _lev_ctrl_CC117_EXT:
2712     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2713     decodedcontroller.controller_number = 117;
2714     break;
2715     case _lev_ctrl_CC118_EXT:
2716     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2717     decodedcontroller.controller_number = 118;
2718     break;
2719     case _lev_ctrl_CC119_EXT:
2720     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2721     decodedcontroller.controller_number = 119;
2722     break;
2723    
2724 schoenebeck 36 // unknown controller type
2725     default:
2726 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2727     decodedcontroller.controller_number = 0;
2728     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2729     break;
2730 schoenebeck 36 }
2731     return decodedcontroller;
2732     }
2733 schoenebeck 2540
2734     // see above (diagnostic push not supported prior GCC 4.6)
2735     //#pragma GCC diagnostic pop
2736 schoenebeck 2
2737 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2738     _lev_ctrl_t encodedcontroller;
2739     switch (DecodedController.type) {
2740     // special controller
2741     case leverage_ctrl_t::type_none:
2742     encodedcontroller = _lev_ctrl_none;
2743     break;
2744     case leverage_ctrl_t::type_velocity:
2745     encodedcontroller = _lev_ctrl_velocity;
2746     break;
2747     case leverage_ctrl_t::type_channelaftertouch:
2748     encodedcontroller = _lev_ctrl_channelaftertouch;
2749     break;
2750    
2751     // ordinary MIDI control change controller
2752     case leverage_ctrl_t::type_controlchange:
2753     switch (DecodedController.controller_number) {
2754     case 1:
2755     encodedcontroller = _lev_ctrl_modwheel;
2756     break;
2757     case 2:
2758     encodedcontroller = _lev_ctrl_breath;
2759     break;
2760     case 4:
2761     encodedcontroller = _lev_ctrl_foot;
2762     break;
2763     case 12:
2764     encodedcontroller = _lev_ctrl_effect1;
2765     break;
2766     case 13:
2767     encodedcontroller = _lev_ctrl_effect2;
2768     break;
2769     case 16:
2770     encodedcontroller = _lev_ctrl_genpurpose1;
2771     break;
2772     case 17:
2773     encodedcontroller = _lev_ctrl_genpurpose2;
2774     break;
2775     case 18:
2776     encodedcontroller = _lev_ctrl_genpurpose3;
2777     break;
2778     case 19:
2779     encodedcontroller = _lev_ctrl_genpurpose4;
2780     break;
2781     case 5:
2782     encodedcontroller = _lev_ctrl_portamentotime;
2783     break;
2784     case 64:
2785     encodedcontroller = _lev_ctrl_sustainpedal;
2786     break;
2787     case 65:
2788     encodedcontroller = _lev_ctrl_portamento;
2789     break;
2790     case 66:
2791     encodedcontroller = _lev_ctrl_sostenutopedal;
2792     break;
2793     case 67:
2794     encodedcontroller = _lev_ctrl_softpedal;
2795     break;
2796     case 80:
2797     encodedcontroller = _lev_ctrl_genpurpose5;
2798     break;
2799     case 81:
2800     encodedcontroller = _lev_ctrl_genpurpose6;
2801     break;
2802     case 82:
2803     encodedcontroller = _lev_ctrl_genpurpose7;
2804     break;
2805     case 83:
2806     encodedcontroller = _lev_ctrl_genpurpose8;
2807     break;
2808     case 91:
2809     encodedcontroller = _lev_ctrl_effect1depth;
2810     break;
2811     case 92:
2812     encodedcontroller = _lev_ctrl_effect2depth;
2813     break;
2814     case 93:
2815     encodedcontroller = _lev_ctrl_effect3depth;
2816     break;
2817     case 94:
2818     encodedcontroller = _lev_ctrl_effect4depth;
2819     break;
2820     case 95:
2821     encodedcontroller = _lev_ctrl_effect5depth;
2822     break;
2823 schoenebeck 2540
2824     // format extension (these controllers are so far only
2825     // supported by LinuxSampler & gigedit) they will *NOT*
2826     // work with Gigasampler/GigaStudio !
2827     case 3:
2828     encodedcontroller = _lev_ctrl_CC3_EXT;
2829     break;
2830     case 6:
2831     encodedcontroller = _lev_ctrl_CC6_EXT;
2832     break;
2833     case 7:
2834     encodedcontroller = _lev_ctrl_CC7_EXT;
2835     break;
2836     case 8:
2837     encodedcontroller = _lev_ctrl_CC8_EXT;
2838     break;
2839     case 9:
2840     encodedcontroller = _lev_ctrl_CC9_EXT;
2841     break;
2842     case 10:
2843     encodedcontroller = _lev_ctrl_CC10_EXT;
2844     break;
2845     case 11:
2846     encodedcontroller = _lev_ctrl_CC11_EXT;
2847     break;
2848     case 14:
2849     encodedcontroller = _lev_ctrl_CC14_EXT;
2850     break;
2851     case 15:
2852     encodedcontroller = _lev_ctrl_CC15_EXT;
2853     break;
2854     case 20:
2855     encodedcontroller = _lev_ctrl_CC20_EXT;
2856     break;
2857     case 21:
2858     encodedcontroller = _lev_ctrl_CC21_EXT;
2859     break;
2860     case 22:
2861     encodedcontroller = _lev_ctrl_CC22_EXT;
2862     break;
2863     case 23:
2864     encodedcontroller = _lev_ctrl_CC23_EXT;
2865     break;
2866     case 24:
2867     encodedcontroller = _lev_ctrl_CC24_EXT;
2868     break;
2869     case 25:
2870     encodedcontroller = _lev_ctrl_CC25_EXT;
2871     break;
2872     case 26:
2873     encodedcontroller = _lev_ctrl_CC26_EXT;
2874     break;
2875     case 27:
2876     encodedcontroller = _lev_ctrl_CC27_EXT;
2877     break;
2878     case 28:
2879     encodedcontroller = _lev_ctrl_CC28_EXT;
2880     break;
2881     case 29:
2882     encodedcontroller = _lev_ctrl_CC29_EXT;
2883     break;
2884     case 30:
2885     encodedcontroller = _lev_ctrl_CC30_EXT;
2886     break;
2887     case 31:
2888     encodedcontroller = _lev_ctrl_CC31_EXT;
2889     break;
2890     case 68:
2891     encodedcontroller = _lev_ctrl_CC68_EXT;
2892     break;
2893     case 69:
2894     encodedcontroller = _lev_ctrl_CC69_EXT;
2895     break;
2896     case 70:
2897     encodedcontroller = _lev_ctrl_CC70_EXT;
2898     break;
2899     case 71:
2900     encodedcontroller = _lev_ctrl_CC71_EXT;
2901     break;
2902     case 72:
2903     encodedcontroller = _lev_ctrl_CC72_EXT;
2904     break;
2905     case 73:
2906     encodedcontroller = _lev_ctrl_CC73_EXT;
2907     break;
2908     case 74:
2909     encodedcontroller = _lev_ctrl_CC74_EXT;
2910     break;
2911     case 75:
2912     encodedcontroller = _lev_ctrl_CC75_EXT;
2913     break;
2914     case 76:
2915     encodedcontroller = _lev_ctrl_CC76_EXT;
2916     break;
2917     case 77:
2918     encodedcontroller = _lev_ctrl_CC77_EXT;
2919     break;
2920     case 78:
2921     encodedcontroller = _lev_ctrl_CC78_EXT;
2922     break;
2923     case 79:
2924     encodedcontroller = _lev_ctrl_CC79_EXT;
2925     break;
2926     case 84:
2927     encodedcontroller = _lev_ctrl_CC84_EXT;
2928     break;
2929     case 85:
2930     encodedcontroller = _lev_ctrl_CC85_EXT;
2931     break;
2932     case 86:
2933     encodedcontroller = _lev_ctrl_CC86_EXT;
2934     break;
2935     case 87:
2936     encodedcontroller = _lev_ctrl_CC87_EXT;
2937     break;
2938     case 89:
2939     encodedcontroller = _lev_ctrl_CC89_EXT;
2940     break;
2941     case 90:
2942     encodedcontroller = _lev_ctrl_CC90_EXT;
2943     break;
2944     case 96:
2945     encodedcontroller = _lev_ctrl_CC96_EXT;
2946     break;
2947     case 97:
2948     encodedcontroller = _lev_ctrl_CC97_EXT;
2949     break;
2950     case 102:
2951     encodedcontroller = _lev_ctrl_CC102_EXT;
2952     break;
2953     case 103:
2954     encodedcontroller = _lev_ctrl_CC103_EXT;
2955     break;
2956     case 104:
2957     encodedcontroller = _lev_ctrl_CC104_EXT;
2958     break;
2959     case 105:
2960     encodedcontroller = _lev_ctrl_CC105_EXT;
2961     break;
2962     case 106:
2963     encodedcontroller = _lev_ctrl_CC106_EXT;
2964     break;
2965     case 107:
2966     encodedcontroller = _lev_ctrl_CC107_EXT;
2967     break;
2968     case 108:
2969     encodedcontroller = _lev_ctrl_CC108_EXT;
2970     break;
2971     case 109:
2972     encodedcontroller = _lev_ctrl_CC109_EXT;
2973     break;
2974     case 110:
2975     encodedcontroller = _lev_ctrl_CC110_EXT;
2976     break;
2977     case 111:
2978     encodedcontroller = _lev_ctrl_CC111_EXT;
2979     break;
2980     case 112:
2981     encodedcontroller = _lev_ctrl_CC112_EXT;
2982     break;
2983     case 113:
2984     encodedcontroller = _lev_ctrl_CC113_EXT;
2985     break;
2986     case 114:
2987     encodedcontroller = _lev_ctrl_CC114_EXT;
2988     break;
2989     case 115:
2990     encodedcontroller = _lev_ctrl_CC115_EXT;
2991     break;
2992     case 116:
2993     encodedcontroller = _lev_ctrl_CC116_EXT;
2994     break;
2995     case 117:
2996     encodedcontroller = _lev_ctrl_CC117_EXT;
2997     break;
2998     case 118:
2999     encodedcontroller = _lev_ctrl_CC118_EXT;
3000     break;
3001     case 119:
3002     encodedcontroller = _lev_ctrl_CC119_EXT;
3003     break;
3004    
3005 schoenebeck 809 default:
3006     throw gig::Exception("leverage controller number is not supported by the gig format");
3007     }
3008 persson 1182 break;
3009 schoenebeck 809 default:
3010     throw gig::Exception("Unknown leverage controller type.");
3011     }
3012     return encodedcontroller;
3013     }
3014    
3015 schoenebeck 16 DimensionRegion::~DimensionRegion() {
3016     Instances--;
3017     if (!Instances) {
3018     // delete the velocity->volume tables
3019     VelocityTableMap::iterator iter;
3020     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3021     double* pTable = iter->second;
3022     if (pTable) delete[] pTable;
3023     }
3024     pVelocityTables->clear();
3025     delete pVelocityTables;
3026     pVelocityTables = NULL;
3027     }
3028 persson 858 if (VelocityTable) delete[] VelocityTable;
3029 schoenebeck 16 }
3030 schoenebeck 2
3031 schoenebeck 16 /**
3032     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3033     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3034     * and VelocityResponseCurveScaling) involved are taken into account to
3035     * calculate the amplitude factor. Use this method when a key was
3036     * triggered to get the volume with which the sample should be played
3037     * back.
3038     *
3039 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3040     * @returns amplitude factor (between 0.0 and 1.0)
3041 schoenebeck 16 */
3042     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3043     return pVelocityAttenuationTable[MIDIKeyVelocity];
3044     }
3045 schoenebeck 2
3046 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3047     return pVelocityReleaseTable[MIDIKeyVelocity];
3048     }
3049    
3050 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3051     return pVelocityCutoffTable[MIDIKeyVelocity];
3052     }
3053    
3054 schoenebeck 1358 /**
3055     * Updates the respective member variable and the lookup table / cache
3056     * that depends on this value.
3057     */
3058     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3059     pVelocityAttenuationTable =
3060     GetVelocityTable(
3061     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3062     );
3063     VelocityResponseCurve = curve;
3064     }
3065    
3066     /**
3067     * Updates the respective member variable and the lookup table / cache
3068     * that depends on this value.
3069     */
3070     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3071     pVelocityAttenuationTable =
3072     GetVelocityTable(
3073     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3074     );
3075     VelocityResponseDepth = depth;
3076     }
3077    
3078     /**
3079     * Updates the respective member variable and the lookup table / cache
3080     * that depends on this value.
3081     */
3082     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3083     pVelocityAttenuationTable =
3084     GetVelocityTable(
3085     VelocityResponseCurve, VelocityResponseDepth, scaling
3086     );
3087     VelocityResponseCurveScaling = scaling;
3088     }
3089    
3090     /**
3091     * Updates the respective member variable and the lookup table / cache
3092     * that depends on this value.
3093     */
3094     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3095     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3096     ReleaseVelocityResponseCurve = curve;
3097     }
3098    
3099     /**
3100     * Updates the respective member variable and the lookup table / cache
3101     * that depends on this value.
3102     */
3103     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3104     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3105     ReleaseVelocityResponseDepth = depth;
3106     }
3107    
3108     /**
3109     * Updates the respective member variable and the lookup table / cache
3110     * that depends on this value.
3111     */
3112     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3113     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3114     VCFCutoffController = controller;
3115     }
3116    
3117     /**
3118     * Updates the respective member variable and the lookup table / cache
3119     * that depends on this value.
3120     */
3121     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3122     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3123     VCFVelocityCurve = curve;
3124     }
3125    
3126     /**
3127     * Updates the respective member variable and the lookup table / cache
3128     * that depends on this value.
3129     */
3130     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3131     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3132     VCFVelocityDynamicRange = range;
3133     }
3134    
3135     /**
3136     * Updates the respective member variable and the lookup table / cache
3137     * that depends on this value.
3138     */
3139     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3140     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3141     VCFVelocityScale = scaling;
3142     }
3143    
3144 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3145 schoenebeck 317
3146 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3147 schoenebeck 16
3148 schoenebeck 308 // linear
3149     const int lin0[] = { 1, 1, 127, 127 };
3150     const int lin1[] = { 1, 21, 127, 127 };
3151     const int lin2[] = { 1, 45, 127, 127 };
3152     const int lin3[] = { 1, 74, 127, 127 };
3153     const int lin4[] = { 1, 127, 127, 127 };
3154 schoenebeck 16
3155 schoenebeck 308 // non-linear
3156     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3157 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3158 schoenebeck 308 127, 127 };
3159     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3160     127, 127 };
3161     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3162     127, 127 };
3163     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3164 schoenebeck 317
3165 schoenebeck 308 // special
3166 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3167 schoenebeck 308 113, 127, 127, 127 };
3168     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3169     118, 127, 127, 127 };
3170 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3171 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3172 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3173 schoenebeck 308 117, 127, 127, 127 };
3174 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3175 schoenebeck 308 127, 127 };
3176 schoenebeck 317
3177 persson 728 // this is only used by the VCF velocity curve
3178     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3179     91, 127, 127, 127 };
3180    
3181 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3182 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3183 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3184 schoenebeck 317
3185 schoenebeck 308 double* const table = new double[128];
3186    
3187     const int* curve = curves[curveType * 5 + depth];
3188     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3189 schoenebeck 317
3190 schoenebeck 308 table[0] = 0;
3191     for (int x = 1 ; x < 128 ; x++) {
3192    
3193     if (x > curve[2]) curve += 2;
3194 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3195 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3196     y = y / 127;
3197    
3198     // Scale up for s > 20, down for s < 20. When
3199     // down-scaling, the curve still ends at 1.0.
3200     if (s < 20 && y >= 0.5)
3201     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3202     else
3203     y = y * (s / 20.0);
3204     if (y > 1) y = 1;
3205    
3206     table[x] = y;
3207     }
3208     return table;
3209     }
3210    
3211    
3212 schoenebeck 2 // *************** Region ***************
3213     // *
3214    
3215     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3216     // Initialization
3217     Dimensions = 0;
3218 schoenebeck 347 for (int i = 0; i < 256; i++) {
3219 schoenebeck 2 pDimensionRegions[i] = NULL;
3220     }
3221 schoenebeck 282 Layers = 1;
3222 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3223 schoenebeck 3440 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3224 schoenebeck 2
3225     // Actual Loading
3226    
3227 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3228    
3229 schoenebeck 2 LoadDimensionRegions(rgnList);
3230    
3231     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3232     if (_3lnk) {
3233     DimensionRegions = _3lnk->ReadUint32();
3234 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3235 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3236     uint8_t bits = _3lnk->ReadUint8();
3237 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3238     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3239 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3240 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3241     pDimensionDefinitions[i].dimension = dimension_none;
3242     pDimensionDefinitions[i].bits = 0;
3243     pDimensionDefinitions[i].zones = 0;
3244     pDimensionDefinitions[i].split_type = split_type_bit;
3245     pDimensionDefinitions[i].zone_size = 0;
3246     }
3247     else { // active dimension
3248     pDimensionDefinitions[i].dimension = dimension;
3249     pDimensionDefinitions[i].bits = bits;
3250 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3251 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3252     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3253 schoenebeck 2 Dimensions++;
3254 schoenebeck 282
3255     // if this is a layer dimension, remember the amount of layers
3256     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3257 schoenebeck 2 }
3258 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3259 schoenebeck 2 }
3260 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3261 schoenebeck 2
3262 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3263     // update the VelocityTables in the dimension regions
3264     UpdateVelocityTable();
3265 schoenebeck 2
3266 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3267 schoenebeck 3440 if (file->pVersion && file->pVersion->major > 2)
3268 schoenebeck 317 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3269     else
3270     _3lnk->SetPos(44);
3271    
3272 schoenebeck 1524 // load sample references (if auto loading is enabled)
3273     if (file->GetAutoLoad()) {
3274     for (uint i = 0; i < DimensionRegions; i++) {
3275     uint32_t wavepoolindex = _3lnk->ReadUint32();
3276 schoenebeck 3348 if (file->pWavePoolTable && pDimensionRegions[i])
3277     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3278 schoenebeck 1524 }
3279     GetSample(); // load global region sample reference
3280 schoenebeck 2 }
3281 persson 1102 } else {
3282     DimensionRegions = 0;
3283 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3284     pDimensionDefinitions[i].dimension = dimension_none;
3285     pDimensionDefinitions[i].bits = 0;
3286     pDimensionDefinitions[i].zones = 0;
3287     }
3288 schoenebeck 2 }
3289 schoenebeck 823
3290     // make sure there is at least one dimension region
3291     if (!DimensionRegions) {
3292     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3293     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3294     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3295 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3296 schoenebeck 823 DimensionRegions = 1;
3297     }
3298 schoenebeck 2 }
3299    
3300 schoenebeck 809 /**
3301     * Apply Region settings and all its DimensionRegions to the respective
3302     * RIFF chunks. You have to call File::Save() to make changes persistent.
3303     *
3304     * Usually there is absolutely no need to call this method explicitly.
3305     * It will be called automatically when File::Save() was called.
3306     *
3307 schoenebeck 2682 * @param pProgress - callback function for progress notification
3308 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3309     */
3310 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3311 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3312     // but we still have to provide some existing one to not corrupt the
3313     // file, so to avoid the latter we simply always assign the sample of
3314     // the first dimension region of this region
3315     pSample = pDimensionRegions[0]->pSample;
3316    
3317 schoenebeck 809 // first update base class's chunks
3318 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3319 schoenebeck 809
3320     // update dimension region's chunks
3321 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3322 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3323 schoenebeck 823 }
3324 schoenebeck 809
3325 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3326 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3327     const int iMaxDimensions = versiongt2 ? 8 : 5;
3328     const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3329 schoenebeck 809
3330     // make sure '3lnk' chunk exists
3331     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3332     if (!_3lnk) {
3333 schoenebeck 3440 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3334 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3335 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3336 persson 1192
3337     // move 3prg to last position
3338 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3339 schoenebeck 809 }
3340    
3341     // update dimension definitions in '3lnk' chunk
3342     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3343 persson 1179 store32(&pData[0], DimensionRegions);
3344 persson 1199 int shift = 0;
3345 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3346 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3347     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3348 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3349 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3350 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3351 persson 1199 // next 3 bytes unknown, always zero?
3352    
3353     shift += pDimensionDefinitions[i].bits;
3354 schoenebeck 809 }
3355    
3356     // update wave pool table in '3lnk' chunk
3357 schoenebeck 3440 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3358 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3359     int iWaveIndex = -1;
3360     if (i < DimensionRegions) {
3361 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3362     File::SampleList::iterator iter = pFile->pSamples->begin();
3363     File::SampleList::iterator end = pFile->pSamples->end();
3364 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3365 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3366     iWaveIndex = index;
3367     break;
3368     }
3369 schoenebeck 809 }
3370     }
3371 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3372 schoenebeck 809 }
3373     }
3374    
3375 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3376     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3377     if (_3prg) {
3378     int dimensionRegionNr = 0;
3379     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3380     while (_3ewl) {
3381     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3382 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3383 schoenebeck 2 dimensionRegionNr++;
3384     }
3385     _3ewl = _3prg->GetNextSubList();
3386     }
3387     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3388     }
3389     }
3390    
3391 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3392     // update KeyRange struct and make sure regions are in correct order
3393     DLS::Region::SetKeyRange(Low, High);
3394     // update Region key table for fast lookup
3395     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3396     }
3397    
3398 persson 858 void Region::UpdateVelocityTable() {
3399     // get velocity dimension's index
3400     int veldim = -1;
3401     for (int i = 0 ; i < Dimensions ; i++) {
3402     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3403     veldim = i;
3404 schoenebeck 809 break;
3405     }
3406     }
3407 persson 858 if (veldim == -1) return;
3408 schoenebeck 809
3409 persson 858 int step = 1;
3410     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3411     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3412 schoenebeck 809
3413 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3414     int dim[8] = { 0 };
3415     for (int i = 0 ; i < DimensionRegions ; i++) {
3416 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3417 persson 858
3418 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3419 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3420     pDimensionRegions[i]->VelocityUpperLimit) {
3421 persson 858 // create the velocity table
3422     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3423     if (!table) {
3424     table = new uint8_t[128];
3425     pDimensionRegions[i]->VelocityTable = table;
3426     }
3427     int tableidx = 0;
3428     int velocityZone = 0;
3429 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3430     for (int k = i ; k < end ; k += step) {
3431     DimensionRegion *d = pDimensionRegions[k];
3432     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3433     velocityZone++;
3434     }
3435     } else { // gig2
3436     for (int k = i ; k < end ; k += step) {
3437     DimensionRegion *d = pDimensionRegions[k];
3438     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3439     velocityZone++;
3440     }
3441 persson 858 }
3442     } else {
3443     if (pDimensionRegions[i]->VelocityTable) {
3444     delete[] pDimensionRegions[i]->VelocityTable;
3445     pDimensionRegions[i]->VelocityTable = 0;
3446     }
3447 schoenebeck 809 }
3448 persson 858
3449 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3450 persson 858 int j;
3451     int shift = 0;
3452     for (j = 0 ; j < Dimensions ; j++) {
3453     if (j == veldim) i += skipveldim; // skip velocity dimension
3454     else {
3455     dim[j]++;
3456     if (dim[j] < pDimensionDefinitions[j].zones) break;
3457     else {
3458     // skip unused dimension regions
3459     dim[j] = 0;
3460     i += ((1 << pDimensionDefinitions[j].bits) -
3461     pDimensionDefinitions[j].zones) << shift;
3462     }
3463     }
3464     shift += pDimensionDefinitions[j].bits;
3465     }
3466     if (j == Dimensions) break;
3467 schoenebeck 809 }
3468     }
3469    
3470     /** @brief Einstein would have dreamed of it - create a new dimension.
3471     *
3472     * Creates a new dimension with the dimension definition given by
3473     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3474     * There is a hard limit of dimensions and total amount of "bits" all
3475     * dimensions can have. This limit is dependant to what gig file format
3476     * version this file refers to. The gig v2 (and lower) format has a
3477     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3478     * format has a limit of 8.
3479     *
3480     * @param pDimDef - defintion of the new dimension
3481     * @throws gig::Exception if dimension of the same type exists already
3482     * @throws gig::Exception if amount of dimensions or total amount of
3483     * dimension bits limit is violated
3484     */
3485     void Region::AddDimension(dimension_def_t* pDimDef) {
3486 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3487     if (pDimDef->zones < 2)
3488     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3489     if (pDimDef->bits < 1)
3490     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3491     if (pDimDef->dimension == dimension_samplechannel) {
3492     if (pDimDef->zones != 2)
3493     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3494     if (pDimDef->bits != 1)
3495     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3496     }
3497    
3498 schoenebeck 809 // check if max. amount of dimensions reached
3499     File* file = (File*) GetParent()->GetParent();
3500 schoenebeck 3440 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3501 schoenebeck 809 if (Dimensions >= iMaxDimensions)
3502     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3503     // check if max. amount of dimension bits reached
3504     int iCurrentBits = 0;
3505     for (int i = 0; i < Dimensions; i++)
3506     iCurrentBits += pDimensionDefinitions[i].bits;
3507     if (iCurrentBits >= iMaxDimensions)
3508     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3509     const int iNewBits = iCurrentBits + pDimDef->bits;
3510     if (iNewBits > iMaxDimensions)
3511     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3512     // check if there's already a dimensions of the same type
3513     for (int i = 0; i < Dimensions; i++)
3514     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3515     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3516    
3517 persson 1301 // pos is where the new dimension should be placed, normally
3518     // last in list, except for the samplechannel dimension which
3519     // has to be first in list
3520     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3521     int bitpos = 0;
3522     for (int i = 0 ; i < pos ; i++)
3523     bitpos += pDimensionDefinitions[i].bits;
3524    
3525     // make room for the new dimension
3526     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3527     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3528     for (int j = Dimensions ; j > pos ; j--) {
3529     pDimensionRegions[i]->DimensionUpperLimits[j] =
3530     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3531     }
3532     }
3533    
3534 schoenebeck 809 // assign definition of new dimension
3535 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3536 schoenebeck 809
3537 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3538 persson 1301 pDimensionDefinitions[pos].split_type =
3539     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3540     pDimensionDefinitions[pos].zone_size =
3541     __resolveZoneSize(pDimensionDefinitions[pos]);
3542 schoenebeck 1113
3543 persson 1301 // create new dimension region(s) for this new dimension, and make
3544     // sure that the dimension regions are placed correctly in both the
3545     // RIFF list and the pDimensionRegions array
3546     RIFF::Chunk* moveTo = NULL;
3547     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3548     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3549     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3550     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3551     }
3552     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3553     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3554     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3555     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3556     // create a new dimension region and copy all parameter values from
3557     // an existing dimension region
3558     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3559     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3560 persson 1247
3561 persson 1301 DimensionRegions++;
3562     }
3563     }
3564     moveTo = pDimensionRegions[i]->pParentList;
3565 schoenebeck 809 }
3566    
3567 persson 1247 // initialize the upper limits for this dimension
3568 persson 1301 int mask = (1 << bitpos) - 1;
3569     for (int z = 0 ; z < pDimDef->zones ; z++) {
3570 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3571 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3572 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3573     (z << bitpos) |
3574     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3575 persson 1247 }
3576     }
3577    
3578 schoenebeck 809 Dimensions++;
3579    
3580     // if this is a layer dimension, update 'Layers' attribute
3581     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3582    
3583 persson 858 UpdateVelocityTable();
3584 schoenebeck 809 }
3585    
3586     /** @brief Delete an existing dimension.
3587     *
3588     * Deletes the dimension given by \a pDimDef and deletes all respective
3589     * dimension regions, that is all dimension regions where the dimension's
3590     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3591     * for example this would delete all dimension regions for the case(s)
3592     * where the sustain pedal is pressed down.
3593     *
3594     * @param pDimDef - dimension to delete
3595     * @throws gig::Exception if given dimension cannot be found
3596     */
3597     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3598     // get dimension's index
3599     int iDimensionNr = -1;
3600     for (int i = 0; i < Dimensions; i++) {
3601     if (&pDimensionDefinitions[i] == pDimDef) {
3602     iDimensionNr = i;
3603     break;
3604     }
3605     }
3606     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3607    
3608     // get amount of bits below the dimension to delete
3609     int iLowerBits = 0;
3610     for (int i = 0; i < iDimensionNr; i++)
3611     iLowerBits += pDimensionDefinitions[i].bits;
3612    
3613     // get amount ot bits above the dimension to delete
3614     int iUpperBits = 0;
3615     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3616     iUpperBits += pDimensionDefinitions[i].bits;
3617    
3618 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3619    
3620 schoenebeck 809 // delete dimension regions which belong to the given dimension
3621     // (that is where the dimension's bit > 0)
3622     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3623     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3624     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3625     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3626     iObsoleteBit << iLowerBits |
3627     iLowerBit;
3628 persson 1247
3629     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3630 schoenebeck 809 delete pDimensionRegions[iToDelete];
3631     pDimensionRegions[iToDelete] = NULL;
3632     DimensionRegions--;
3633     }
3634     }
3635     }
3636    
3637     // defrag pDimensionRegions array
3638     // (that is remove the NULL spaces within the pDimensionRegions array)
3639     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3640     if (!pDimensionRegions[iTo]) {
3641     if (iFrom <= iTo) iFrom = iTo + 1;
3642     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3643     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3644     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3645     pDimensionRegions[iFrom] = NULL;
3646     }
3647     }
3648     }
3649    
3650 persson 1247 // remove the this dimension from the upper limits arrays
3651     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3652     DimensionRegion* d = pDimensionRegions[j];
3653     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3654     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3655     }
3656     d->DimensionUpperLimits[Dimensions - 1] = 127;
3657     }
3658    
3659 schoenebeck 809 // 'remove' dimension definition
3660     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3661     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3662     }
3663     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3664     pDimensionDefinitions[Dimensions - 1].bits = 0;
3665     pDimensionDefinitions[Dimensions - 1].zones = 0;
3666    
3667     Dimensions--;
3668    
3669     // if this was a layer dimension, update 'Layers' attribute
3670     if (pDimDef->dimension == dimension_layer) Layers = 1;
3671     }
3672    
3673 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3674     *
3675     * Instead of deleting an entire dimensions, this method will only delete
3676     * one particular split zone given by @a zone of the Region's dimension
3677     * given by @a type. So this method will simply decrement the amount of
3678     * zones by one of the dimension in question. To be able to do that, the
3679     * respective dimension must exist on this Region and it must have at least
3680     * 3 zones. All DimensionRegion objects associated with the zone will be
3681     * deleted.
3682     *
3683     * @param type - identifies the dimension where a zone shall be deleted
3684     * @param zone - index of the dimension split zone that shall be deleted
3685     * @throws gig::Exception if requested zone could not be deleted
3686     */
3687     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3688     dimension_def_t* oldDef = GetDimensionDefinition(type);
3689     if (!oldDef)
3690     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3691     if (oldDef->zones <= 2)
3692     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3693     if (zone < 0 || zone >= oldDef->zones)
3694     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3695    
3696     const int newZoneSize = oldDef->zones - 1;
3697    
3698     // create a temporary Region which just acts as a temporary copy
3699     // container and will be deleted at the end of this function and will
3700     // also not be visible through the API during this process
3701     gig::Region* tempRgn = NULL;
3702     {
3703     // adding these temporary chunks is probably not even necessary
3704     Instrument* instr = static_cast<Instrument*>(GetParent());
3705     RIFF::List* pCkInstrument = instr->pCkInstrument;
3706     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3707     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3708     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3709     tempRgn = new Region(instr, rgn);
3710     }
3711    
3712     // copy this region's dimensions (with already the dimension split size
3713     // requested by the arguments of this method call) to the temporary
3714     // region, and don't use Region::CopyAssign() here for this task, since
3715     // it would also alter fast lookup helper variables here and there
3716     dimension_def_t newDef;
3717     for (int i = 0; i < Dimensions; ++i) {
3718     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3719     // is this the dimension requested by the method arguments? ...
3720     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3721     def.zones = newZoneSize;
3722     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3723     newDef = def;
3724     }
3725     tempRgn->AddDimension(&def);
3726     }
3727    
3728     // find the dimension index in the tempRegion which is the dimension
3729     // type passed to this method (paranoidly expecting different order)
3730     int tempReducedDimensionIndex = -1;
3731     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3732     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3733     tempReducedDimensionIndex = d;
3734     break;
3735     }
3736     }
3737    
3738     // copy dimension regions from this region to the temporary region
3739     for (int iDst = 0; iDst < 256; ++iDst) {
3740     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3741     if (!dstDimRgn) continue;
3742     std::map<dimension_t,int> dimCase;
3743     bool isValidZone = true;
3744     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3745     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3746     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3747     (iDst >> baseBits) & ((1 << dstBits) - 1);
3748     baseBits += dstBits;
3749     // there are also DimensionRegion objects of unused zones, skip them
3750     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3751     isValidZone = false;
3752     break;
3753     }
3754     }
3755     if (!isValidZone) continue;
3756     // a bit paranoid: cope with the chance that the dimensions would
3757     // have different order in source and destination regions
3758     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3759     if (dimCase[type] >= zone) dimCase[type]++;
3760     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3761     dstDimRgn->CopyAssign(srcDimRgn);
3762     // if this is the upper most zone of the dimension passed to this
3763     // method, then correct (raise) its upper limit to 127
3764     if (newDef.split_type == split_type_normal && isLastZone)
3765     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3766     }
3767    
3768     // now tempRegion's dimensions and DimensionRegions basically reflect
3769     // what we wanted to get for this actual Region here, so we now just
3770     // delete and recreate the dimension in question with the new amount
3771     // zones and then copy back from tempRegion
3772     DeleteDimension(oldDef);
3773     AddDimension(&newDef);
3774     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3775     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3776     if (!srcDimRgn) continue;
3777     std::map<dimension_t,int> dimCase;
3778     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3779     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3780     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3781     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3782     baseBits += srcBits;
3783     }
3784     // a bit paranoid: cope with the chance that the dimensions would
3785     // have different order in source and destination regions
3786     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3787     if (!dstDimRgn) continue;
3788     dstDimRgn->CopyAssign(srcDimRgn);
3789     }
3790    
3791     // delete temporary region
3792     delete tempRgn;
3793 schoenebeck 2557
3794     UpdateVelocityTable();
3795 schoenebeck 2555 }
3796    
3797     /** @brief Divide split zone of a dimension in two (increment zone amount).
3798     *
3799     * This will increment the amount of zones for the dimension (given by
3800     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3801     * in the middle of its zone range in two. So the two zones resulting from
3802     * the zone being splitted, will be an equivalent copy regarding all their
3803     * articulation informations and sample reference. The two zones will only
3804     * differ in their zone's upper limit
3805     * (DimensionRegion::DimensionUpperLimits).
3806     *
3807     * @param type - identifies the dimension where a zone shall be splitted
3808     * @param zone - index of the dimension split zone that shall be splitted
3809     * @throws gig::Exception if requested zone could not be splitted
3810     */
3811     void Region::SplitDimensionZone(dimension_t type, int zone) {
3812     dimension_def_t* oldDef = GetDimensionDefinition(type);
3813     if (!oldDef)
3814     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3815     if (zone < 0 || zone >= oldDef->zones)
3816     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3817    
3818     const int newZoneSize = oldDef->zones + 1;
3819    
3820     // create a temporary Region which just acts as a temporary copy
3821     // container and will be deleted at the end of this function and will
3822     // also not be visible through the API during this process
3823     gig::Region* tempRgn = NULL;
3824     {
3825     // adding these temporary chunks is probably not even necessary
3826     Instrument* instr = static_cast<Instrument*>(GetParent());
3827     RIFF::List* pCkInstrument = instr->pCkInstrument;
3828     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3829     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3830     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3831     tempRgn = new Region(instr, rgn);
3832     }
3833    
3834     // copy this region's dimensions (with already the dimension split size
3835     // requested by the arguments of this method call) to the temporary
3836     // region, and don't use Region::CopyAssign() here for this task, since
3837     // it would also alter fast lookup helper variables here and there
3838     dimension_def_t newDef;
3839     for (int i = 0; i < Dimensions; ++i) {
3840     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3841     // is this the dimension requested by the method arguments? ...
3842     if (def.dimension == type) { // ... if yes, increment zone amount by one
3843     def.zones = newZoneSize;
3844     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3845     newDef = def;
3846     }
3847     tempRgn->AddDimension(&def);
3848     }
3849    
3850     // find the dimension index in the tempRegion which is the dimension
3851     // type passed to this method (paranoidly expecting different order)
3852     int tempIncreasedDimensionIndex = -1;
3853     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3854     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3855     tempIncreasedDimensionIndex = d;
3856     break;
3857     }
3858     }
3859    
3860     // copy dimension regions from this region to the temporary region
3861     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3862     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3863     if (!srcDimRgn) continue;
3864     std::map<dimension_t,int> dimCase;
3865     bool isValidZone = true;
3866     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3867     const int srcBits = pDimensionDefinitions[d].bits;
3868     dimCase[pDimensionDefinitions[d].dimension] =
3869     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3870     // there are also DimensionRegion objects for unused zones, skip them
3871     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3872     isValidZone = false;
3873     break;
3874     }
3875     baseBits += srcBits;
3876     }
3877     if (!isValidZone) continue;
3878     // a bit paranoid: cope with the chance that the dimensions would
3879     // have different order in source and destination regions
3880     if (dimCase[type] > zone) dimCase[type]++;
3881     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3882     dstDimRgn->CopyAssign(srcDimRgn);
3883     // if this is the requested zone to be splitted, then also copy
3884     // the source DimensionRegion to the newly created target zone
3885     // and set the old zones upper limit lower
3886     if (dimCase[type] == zone) {
3887     // lower old zones upper limit
3888     if (newDef.split_type == split_type_normal) {
3889     const int high =
3890     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3891     int low = 0;
3892     if (zone > 0) {
3893     std::map<dimension_t,int> lowerCase = dimCase;
3894     lowerCase[type]--;
3895     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3896     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3897     }
3898     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3899     }
3900     // fill the newly created zone of the divided zone as well
3901     dimCase[type]++;
3902     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3903     dstDimRgn->CopyAssign(srcDimRgn);
3904     }
3905     }
3906    
3907     // now tempRegion's dimensions and DimensionRegions basically reflect
3908     // what we wanted to get for this actual Region here, so we now just
3909     // delete and recreate the dimension in question with the new amount
3910     // zones and then copy back from tempRegion
3911     DeleteDimension(oldDef);
3912     AddDimension(&newDef);
3913     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3914     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3915     if (!srcDimRgn) continue;
3916     std::map<dimension_t,int> dimCase;
3917     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3918     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3919     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3920     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3921     baseBits += srcBits;
3922     }
3923     // a bit paranoid: cope with the chance that the dimensions would
3924     // have different order in source and destination regions
3925     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3926     if (!dstDimRgn) continue;
3927     dstDimRgn->CopyAssign(srcDimRgn);
3928     }
3929    
3930     // delete temporary region
3931     delete tempRgn;
3932 schoenebeck 2557
3933     UpdateVelocityTable();
3934 schoenebeck 2555 }
3935    
3936 schoenebeck 2639 /** @brief Change type of an existing dimension.
3937     *
3938     * Alters the dimension type of a dimension already existing on this
3939     * region. If there is currently no dimension on this Region with type
3940     * @a oldType, then this call with throw an Exception. Likewise there are
3941     * cases where the requested dimension type cannot be performed. For example
3942     * if the new dimension type shall be gig::dimension_samplechannel, and the
3943     * current dimension has more than 2 zones. In such cases an Exception is
3944     * thrown as well.
3945     *
3946     * @param oldType - identifies the existing dimension to be changed
3947     * @param newType - to which dimension type it should be changed to
3948     * @throws gig::Exception if requested change cannot be performed
3949     */
3950     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3951     if (oldType == newType) return;
3952     dimension_def_t* def = GetDimensionDefinition(oldType);
3953     if (!def)
3954     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3955     if (newType == dimension_samplechannel && def->zones != 2)
3956     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3957 schoenebeck 2640 if (GetDimensionDefinition(newType))
3958     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3959     def->dimension = newType;
3960 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3961     }
3962    
3963 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3964     uint8_t bits[8] = {};
3965     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3966     it != DimCase.end(); ++it)
3967     {
3968     for (int d = 0; d < Dimensions; ++d) {
3969     if (pDimensionDefinitions[d].dimension == it->first) {
3970     bits[d] = it->second;
3971     goto nextDimCaseSlice;
3972     }
3973     }
3974     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3975     nextDimCaseSlice:
3976     ; // noop
3977     }
3978     return GetDimensionRegionByBit(bits);
3979     }
3980    
3981 schoenebeck 2547 /**
3982     * Searches in the current Region for a dimension of the given dimension
3983     * type and returns the precise configuration of that dimension in this
3984     * Region.
3985     *
3986     * @param type - dimension type of the sought dimension
3987     * @returns dimension definition or NULL if there is no dimension with
3988     * sought type in this Region.
3989     */
3990     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3991     for (int i = 0; i < Dimensions; ++i)
3992     if (pDimensionDefinitions[i].dimension == type)
3993     return &pDimensionDefinitions[i];
3994     return NULL;
3995     }
3996    
3997 schoenebeck 2 Region::~Region() {
3998 schoenebeck 350 for (int i = 0; i < 256; i++) {
3999 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4000     }
4001     }
4002    
4003     /**
4004     * Use this method in your audio engine to get the appropriate dimension
4005     * region with it's articulation data for the current situation. Just
4006     * call the method with the current MIDI controller values and you'll get
4007     * the DimensionRegion with the appropriate articulation data for the
4008     * current situation (for this Region of course only). To do that you'll
4009     * first have to look which dimensions with which controllers and in
4010     * which order are defined for this Region when you load the .gig file.
4011     * Special cases are e.g. layer or channel dimensions where you just put
4012     * in the index numbers instead of a MIDI controller value (means 0 for
4013     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4014     * etc.).
4015     *
4016 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4017 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
4018     * @see pDimensionDefinitions
4019     * @see Dimensions
4020     */
4021 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4022 persson 858 uint8_t bits;
4023     int veldim = -1;
4024 schoenebeck 3053 int velbitpos = 0;
4025 persson 858 int bitpos = 0;
4026     int dimregidx = 0;
4027 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
4028 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4029     // the velocity dimension must be handled after the other dimensions
4030     veldim = i;
4031     velbitpos = bitpos;
4032     } else {
4033     switch (pDimensionDefinitions[i].split_type) {
4034     case split_type_normal:
4035 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4036     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4037     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4038     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4039     }
4040     } else {
4041     // gig2: evenly sized zones
4042     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4043     }
4044 persson 858 break;
4045     case split_type_bit: // the value is already the sought dimension bit number
4046     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4047     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4048     break;
4049     }
4050     dimregidx |= bits << bitpos;
4051 schoenebeck 2 }
4052 persson 858 bitpos += pDimensionDefinitions[i].bits;
4053 schoenebeck 2 }
4054 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4055     if (!dimreg) return NULL;
4056 persson 858 if (veldim != -1) {
4057     // (dimreg is now the dimension region for the lowest velocity)
4058 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4059 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4060 persson 858 else // normal split type
4061 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4062 persson 858
4063 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4064     dimregidx |= (bits & limiter_mask) << velbitpos;
4065     dimreg = pDimensionRegions[dimregidx & 255];
4066 persson 858 }
4067     return dimreg;
4068 schoenebeck 2 }
4069    
4070 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4071     uint8_t bits;
4072     int veldim = -1;
4073 schoenebeck 3053 int velbitpos = 0;
4074 schoenebeck 2599 int bitpos = 0;
4075     int dimregidx = 0;
4076     for (uint i = 0; i < Dimensions; i++) {
4077     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4078     // the velocity dimension must be handled after the other dimensions
4079     veldim = i;
4080     velbitpos = bitpos;
4081     } else {
4082     switch (pDimensionDefinitions[i].split_type) {
4083     case split_type_normal:
4084     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4085     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4086     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4087     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4088     }
4089     } else {
4090     // gig2: evenly sized zones
4091     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4092     }
4093     break;
4094     case split_type_bit: // the value is already the sought dimension bit number
4095     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4096     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4097     break;
4098     }
4099     dimregidx |= bits << bitpos;
4100     }
4101     bitpos += pDimensionDefinitions[i].bits;
4102     }
4103     dimregidx &= 255;
4104     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4105     if (!dimreg) return -1;
4106     if (veldim != -1) {
4107     // (dimreg is now the dimension region for the lowest velocity)
4108     if (dimreg->VelocityTable) // custom defined zone ranges
4109     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4110     else // normal split type
4111     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4112    
4113     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4114     dimregidx |= (bits & limiter_mask) << velbitpos;
4115     dimregidx &= 255;
4116     }
4117     return dimregidx;
4118     }
4119    
4120 schoenebeck 2 /**
4121     * Returns the appropriate DimensionRegion for the given dimension bit
4122     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4123     * instead of calling this method directly!
4124     *
4125 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4126 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4127     * bit numbers
4128     * @see GetDimensionRegionByValue()
4129     */
4130 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4131     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4132     << pDimensionDefinitions[5].bits | DimBits[5])
4133     << pDimensionDefinitions[4].bits | DimBits[4])
4134     << pDimensionDefinitions[3].bits | DimBits[3])
4135     << pDimensionDefinitions[2].bits | DimBits[2])
4136     << pDimensionDefinitions[1].bits | DimBits[1])
4137     << pDimensionDefinitions[0].bits | DimBits[0]];
4138 schoenebeck 2 }
4139    
4140     /**
4141     * Returns pointer address to the Sample referenced with this region.
4142     * This is the global Sample for the entire Region (not sure if this is
4143     * actually used by the Gigasampler engine - I would only use the Sample
4144     * referenced by the appropriate DimensionRegion instead of this sample).
4145     *
4146     * @returns address to Sample or NULL if there is no reference to a
4147     * sample saved in the .gig file
4148     */
4149     Sample* Region::GetSample() {
4150     if (pSample) return static_cast<gig::Sample*>(pSample);
4151     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4152     }
4153    
4154 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4155 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4156 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4157 persson 902 if (!file->pWavePoolTable) return NULL;
4158 schoenebeck 3350 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4159 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4160     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4161     // use 64 bit wave pool offsets (treating this as large file)
4162 schoenebeck 2912 uint64_t soughtoffset =
4163     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4164     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4165     Sample* sample = file->GetFirstSample(pProgress);
4166     while (sample) {
4167     if (sample->ullWavePoolOffset == soughtoffset)
4168     return static_cast<gig::Sample*>(sample);
4169     sample = file->GetNextSample();
4170     }
4171     } else {
4172 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4173 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4174     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4175     Sample* sample = file->GetFirstSample(pProgress);
4176     while (sample) {
4177     if (sample->ullWavePoolOffset == soughtoffset &&
4178     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4179     sample = file->GetNextSample();
4180     }
4181 schoenebeck 2 }
4182     return NULL;
4183     }
4184 schoenebeck 2394
4185     /**
4186     * Make a (semi) deep copy of the Region object given by @a orig
4187     * and assign it to this object.
4188     *
4189     * Note that all sample pointers referenced by @a orig are simply copied as
4190     * memory address. Thus the respective samples are shared, not duplicated!
4191     *
4192     * @param orig - original Region object to be copied from
4193     */
4194     void Region::CopyAssign(const Region* orig) {
4195 schoenebeck 2482 CopyAssign(orig, NULL);
4196     }
4197    
4198     /**
4199     * Make a (semi) deep copy of the Region object given by @a orig and
4200     * assign it to this object
4201     *
4202     * @param mSamples - crosslink map between the foreign file's samples and
4203     * this file's samples
4204     */
4205     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4206 schoenebeck 2394 // handle base classes
4207     DLS::Region::CopyAssign(orig);
4208    
4209 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4210     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4211     }
4212    
4213 schoenebeck 2394 // handle own member variables
4214     for (int i = Dimensions - 1; i >= 0; --i) {
4215     DeleteDimension(&pDimensionDefinitions[i]);
4216     }
4217     Layers = 0; // just to be sure
4218     for (int i = 0; i < orig->Dimensions; i++) {
4219     // we need to copy the dim definition here, to avoid the compiler
4220     // complaining about const-ness issue
4221     dimension_def_t def = orig->pDimensionDefinitions[i];
4222     AddDimension(&def);
4223     }
4224     for (int i = 0; i < 256; i++) {
4225     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4226     pDimensionRegions[i]->CopyAssign(
4227 schoenebeck 2482 orig->pDimensionRegions[i],
4228     mSamples
4229 schoenebeck 2394 );
4230     }
4231     }
4232     Layers = orig->Layers;
4233     }
4234 schoenebeck 2
4235    
4236 persson 1627 // *************** MidiRule ***************
4237     // *
4238 schoenebeck 2
4239 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4240     _3ewg->SetPos(36);
4241     Triggers = _3ewg->ReadUint8();
4242     _3ewg->SetPos(40);
4243     ControllerNumber = _3ewg->ReadUint8();
4244     _3ewg->SetPos(46);
4245     for (int i = 0 ; i < Triggers ; i++) {
4246     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4247     pTriggers[i].Descending = _3ewg->ReadUint8();
4248     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4249     pTriggers[i].Key = _3ewg->ReadUint8();
4250     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4251     pTriggers[i].Velocity = _3ewg->ReadUint8();
4252     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4253     _3ewg->ReadUint8();
4254     }
4255 persson 1627 }
4256    
4257 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4258     ControllerNumber(0),
4259     Triggers(0) {
4260     }
4261 persson 1627
4262 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4263     pData[32] = 4;
4264     pData[33] = 16;
4265     pData[36] = Triggers;
4266     pData[40] = ControllerNumber;
4267     for (int i = 0 ; i < Triggers ; i++) {
4268     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4269     pData[47 + i * 8] = pTriggers[i].Descending;
4270     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4271     pData[49 + i * 8] = pTriggers[i].Key;
4272     pData[50 + i * 8] = pTriggers[i].NoteOff;
4273     pData[51 + i * 8] = pTriggers[i].Velocity;
4274     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4275     }
4276     }
4277    
4278     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4279     _3ewg->SetPos(36);
4280     LegatoSamples = _3ewg->ReadUint8(); // always 12
4281     _3ewg->SetPos(40);
4282     BypassUseController = _3ewg->ReadUint8();
4283     BypassKey = _3ewg->ReadUint8();
4284     BypassController = _3ewg->ReadUint8();
4285     ThresholdTime = _3ewg->ReadUint16();
4286     _3ewg->ReadInt16();
4287     ReleaseTime = _3ewg->ReadUint16();
4288     _3ewg->ReadInt16();
4289     KeyRange.low = _3ewg->ReadUint8();
4290     KeyRange.high = _3ewg->ReadUint8();
4291     _3ewg->SetPos(64);
4292     ReleaseTriggerKey = _3ewg->ReadUint8();
4293     AltSustain1Key = _3ewg->ReadUint8();
4294     AltSustain2Key = _3ewg->ReadUint8();
4295     }
4296    
4297     MidiRuleLegato::MidiRuleLegato() :
4298     LegatoSamples(12),
4299     BypassUseController(false),
4300     BypassKey(0),
4301     BypassController(1),
4302     ThresholdTime(20),
4303     ReleaseTime(20),
4304     ReleaseTriggerKey(0),
4305     AltSustain1Key(0),
4306     AltSustain2Key(0)
4307     {
4308     KeyRange.low = KeyRange.high = 0;
4309     }
4310    
4311     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4312     pData[32] = 0;
4313     pData[33] = 16;
4314     pData[36] = LegatoSamples;
4315     pData[40] = BypassUseController;
4316     pData[41] = BypassKey;
4317     pData[42] = BypassController;
4318     store16(&pData[43], ThresholdTime);
4319     store16(&pData[47], ReleaseTime);
4320     pData[51] = KeyRange.low;
4321     pData[52] = KeyRange.high;
4322     pData[64] = ReleaseTriggerKey;
4323     pData[65] = AltSustain1Key;
4324     pData[66] = AltSustain2Key;
4325     }
4326    
4327     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4328     _3ewg->SetPos(36);
4329     Articulations = _3ewg->ReadUint8();
4330     int flags = _3ewg->ReadUint8();
4331     Polyphonic = flags & 8;
4332     Chained = flags & 4;
4333     Selector = (flags & 2) ? selector_controller :
4334     (flags & 1) ? selector_key_switch : selector_none;
4335     Patterns = _3ewg->ReadUint8();
4336     _3ewg->ReadUint8(); // chosen row
4337     _3ewg->ReadUint8(); // unknown
4338     _3ewg->ReadUint8(); // unknown
4339     _3ewg->ReadUint8(); // unknown
4340     KeySwitchRange.low = _3ewg->ReadUint8();
4341     KeySwitchRange.high = _3ewg->ReadUint8();
4342     Controller = _3ewg->ReadUint8();
4343     PlayRange.low = _3ewg->ReadUint8();
4344     PlayRange.high = _3ewg->ReadUint8();
4345    
4346     int n = std::min(int(Articulations), 32);
4347     for (int i = 0 ; i < n ; i++) {
4348     _3ewg->ReadString(pArticulations[i], 32);
4349     }
4350     _3ewg->SetPos(1072);
4351     n = std::min(int(Patterns), 32);
4352     for (int i = 0 ; i < n ; i++) {
4353     _3ewg->ReadString(pPatterns[i].Name, 16);
4354     pPatterns[i].Size = _3ewg->ReadUint8();
4355     _3ewg->Read(&pPatterns[i][0], 1, 32);
4356     }
4357     }
4358    
4359     MidiRuleAlternator::MidiRuleAlternator() :
4360     Articulations(0),
4361     Patterns(0),
4362     Selector(selector_none),
4363     Controller(0),
4364     Polyphonic(false),
4365     Chained(false)
4366     {
4367     PlayRange.low = PlayRange.high = 0;
4368     KeySwitchRange.low = KeySwitchRange.high = 0;
4369     }
4370    
4371     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4372     pData[32] = 3;
4373     pData[33] = 16;
4374     pData[36] = Articulations;
4375     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4376     (Selector == selector_controller ? 2 :
4377     (Selector == selector_key_switch ? 1 : 0));
4378     pData[38] = Patterns;
4379    
4380     pData[43] = KeySwitchRange.low;
4381     pData[44] = KeySwitchRange.high;
4382     pData[45] = Controller;
4383     pData[46] = PlayRange.low;
4384     pData[47] = PlayRange.high;
4385    
4386     char* str = reinterpret_cast<char*>(pData);
4387     int pos = 48;
4388     int n = std::min(int(Articulations), 32);
4389     for (int i = 0 ; i < n ; i++, pos += 32) {
4390     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4391     }
4392    
4393     pos = 1072;
4394     n = std::min(int(Patterns), 32);
4395     for (int i = 0 ; i < n ; i++, pos += 49) {
4396     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4397     pData[pos + 16] = pPatterns[i].Size;
4398     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4399     }
4400     }
4401    
4402 schoenebeck 2584 // *************** Script ***************
4403     // *
4404    
4405     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4406     pGroup = group;
4407     pChunk = ckScri;
4408     if (ckScri) { // object is loaded from file ...
4409     // read header
4410     uint32_t headerSize = ckScri->ReadUint32();
4411     Compression = (Compression_t) ckScri->ReadUint32();
4412     Encoding = (Encoding_t) ckScri->ReadUint32();
4413     Language = (Language_t) ckScri->ReadUint32();
4414     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4415     crc = ckScri->ReadUint32();
4416     uint32_t nameSize = ckScri->ReadUint32();
4417     Name.resize(nameSize, ' ');
4418     for (int i = 0; i < nameSize; ++i)
4419     Name[i] = ckScri->ReadUint8();
4420     // to handle potential future extensions of the header
4421 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4422 schoenebeck 2584 // read actual script data
4423 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4424 schoenebeck 2584 data.resize(scriptSize);
4425     for (int i = 0; i < scriptSize; ++i)
4426     data[i] = ckScri->ReadUint8();
4427     } else { // this is a new script object, so just initialize it as such ...
4428     Compression = COMPRESSION_NONE;
4429     Encoding = ENCODING_ASCII;
4430     Language = LANGUAGE_NKSP;
4431     Bypass = false;
4432     crc = 0;
4433     Name = "Unnamed Script";
4434     }
4435     }
4436    
4437     Script::~Script() {
4438     }
4439    
4440     /**
4441     * Returns the current script (i.e. as source code) in text format.
4442     */
4443     String Script::GetScriptAsText() {
4444     String s;
4445     s.resize(data.size(), ' ');
4446     memcpy(&s[0], &data[0], data.size());
4447     return s;
4448     }
4449    
4450     /**
4451     * Replaces the current script with the new script source code text given
4452     * by @a text.
4453     *
4454     * @param text - new script source code
4455     */
4456     void Script::SetScriptAsText(const String& text) {
4457     data.resize(text.size());
4458     memcpy(&data[0], &text[0], text.size());
4459     }
4460    
4461 schoenebeck 2682 /**
4462     * Apply this script to the respective RIFF chunks. You have to call
4463     * File::Save() to make changes persistent.
4464     *
4465     * Usually there is absolutely no need to call this method explicitly.
4466     * It will be called automatically when File::Save() was called.
4467     *
4468     * @param pProgress - callback function for progress notification
4469     */
4470     void Script::UpdateChunks(progress_t* pProgress) {
4471 schoenebeck 2584 // recalculate CRC32 check sum
4472     __resetCRC(crc);
4473     __calculateCRC(&data[0], data.size(), crc);
4474 schoenebeck 3115 __finalizeCRC(crc);
4475 schoenebeck 2584 // make sure chunk exists and has the required size
4476 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4477 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4478     else pChunk->Resize(chunkSize);
4479     // fill the chunk data to be written to disk
4480     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4481     int pos = 0;
4482 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4483 schoenebeck 2584 pos += sizeof(int32_t);
4484     store32(&pData[pos], Compression);
4485     pos += sizeof(int32_t);
4486     store32(&pData[pos], Encoding);
4487     pos += sizeof(int32_t);
4488     store32(&pData[pos], Language);
4489     pos += sizeof(int32_t);
4490     store32(&pData[pos], Bypass ? 1 : 0);
4491     pos += sizeof(int32_t);
4492     store32(&pData[pos], crc);
4493     pos += sizeof(int32_t);
4494 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4495 schoenebeck 2584 pos += sizeof(int32_t);
4496     for (int i = 0; i < Name.size(); ++i, ++pos)
4497     pData[pos] = Name[i];
4498     for (int i = 0; i < data.size(); ++i, ++pos)
4499     pData[pos] = data[i];
4500     }
4501    
4502     /**
4503     * Move this script from its current ScriptGroup to another ScriptGroup
4504     * given by @a pGroup.
4505     *
4506     * @param pGroup - script's new group
4507     */
4508     void Script::SetGroup(ScriptGroup* pGroup) {
4509 persson 2836 if (this->pGroup == pGroup) return;
4510 schoenebeck 2584 if (pChunk)
4511     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4512     this->pGroup = pGroup;
4513     }
4514    
4515 schoenebeck 2601 /**
4516     * Returns the script group this script currently belongs to. Each script
4517     * is a member of exactly one ScriptGroup.
4518     *
4519     * @returns current script group
4520     */
4521     ScriptGroup* Script::GetGroup() const {
4522     return pGroup;
4523     }
4524    
4525 schoenebeck 3117 /**
4526     * Make a (semi) deep copy of the Script object given by @a orig
4527     * and assign it to this object. Note: the ScriptGroup this Script
4528     * object belongs to remains untouched by this call.
4529     *
4530     * @param orig - original Script object to be copied from
4531     */
4532     void Script::CopyAssign(const Script* orig) {
4533     Name = orig->Name;
4534     Compression = orig->Compression;
4535     Encoding = orig->Encoding;
4536     Language = orig->Language;
4537     Bypass = orig->Bypass;
4538     data = orig->data;
4539     }
4540    
4541 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4542     File* pFile = pGroup->pFile;
4543     for (int i = 0; pFile->GetInstrument(i); ++i) {
4544     Instrument* instr = pFile->GetInstrument(i);
4545     instr->RemoveScript(this);
4546     }
4547     }
4548    
4549     // *************** ScriptGroup ***************
4550     // *
4551    
4552     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4553     pFile = file;
4554     pList = lstRTIS;
4555     pScripts = NULL;
4556     if (lstRTIS) {
4557     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4558     ::LoadString(ckName, Name);
4559     } else {
4560     Name = "Default Group";
4561     }
4562     }
4563    
4564     ScriptGroup::~ScriptGroup() {
4565     if (pScripts) {
4566     std::list<Script*>::iterator iter = pScripts->begin();
4567     std::list<Script*>::iterator end = pScripts->end();
4568     while (iter != end) {
4569     delete *iter;
4570     ++iter;
4571     }
4572     delete pScripts;
4573     }
4574     }
4575    
4576 schoenebeck 2682 /**
4577     * Apply this script group to the respective RIFF chunks. You have to call
4578     * File::Save() to make changes persistent.
4579     *
4580     * Usually there is absolutely no need to call this method explicitly.
4581     * It will be called automatically when File::Save() was called.
4582     *
4583     * @param pProgress - callback function for progress notification
4584     */
4585     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4586 schoenebeck 2584 if (pScripts) {
4587     if (!pList)
4588     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4589    
4590     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4591     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4592    
4593     for (std::list<Script*>::iterator it = pScripts->begin();
4594     it != pScripts->end(); ++it)
4595     {
4596 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4597 schoenebeck 2584 }
4598     }
4599     }
4600    
4601     /** @brief Get instrument script.
4602     *
4603     * Returns the real-time instrument script with the given index.
4604     *
4605     * @param index - number of the sought script (0..n)
4606     * @returns sought script or NULL if there's no such script
4607     */
4608     Script* ScriptGroup::GetScript(uint index) {
4609     if (!pScripts) LoadScripts();
4610     std::list<Script*>::iterator it = pScripts->begin();
4611     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4612     if (i == index) return *it;
4613     return NULL;
4614     }
4615    
4616     /** @brief Add new instrument script.
4617     *
4618     * Adds a new real-time instrument script to the file. The script is not
4619     * actually used / executed unless it is referenced by an instrument to be
4620     * used. This is similar to samples, which you can add to a file, without
4621     * an instrument necessarily actually using it.
4622     *
4623     * You have to call Save() to make this persistent to the file.
4624     *
4625     * @return new empty script object
4626     */
4627     Script* ScriptGroup::AddScript() {
4628     if (!pScripts) LoadScripts();
4629     Script* pScript = new Script(this, NULL);
4630     pScripts->push_back(pScript);
4631     return pScript;
4632     }
4633    
4634     /** @brief Delete an instrument script.
4635     *
4636     * This will delete the given real-time instrument script. References of
4637     * instruments that are using that script will be removed accordingly.
4638     *
4639     * You have to call Save() to make this persistent to the file.
4640     *
4641     * @param pScript - script to delete
4642     * @throws gig::Exception if given script could not be found
4643     */
4644     void ScriptGroup::DeleteScript(Script* pScript) {
4645     if (!pScripts) LoadScripts();
4646     std::list<Script*>::iterator iter =
4647     find(pScripts->begin(), pScripts->end(), pScript);
4648     if (iter == pScripts->end())
4649     throw gig::Exception("Could not delete script, could not find given script");
4650     pScripts->erase(iter);
4651     pScript->RemoveAllScriptReferences();
4652     if (pScript->pChunk)
4653     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4654     delete pScript;
4655     }
4656    
4657     void ScriptGroup::LoadScripts() {
4658     if (pScripts) return;
4659     pScripts = new std::list<Script*>;
4660     if (!pList) return;
4661    
4662     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4663     ck = pList->GetNextSubChunk())
4664     {
4665     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4666     pScripts->push_back(new Script(this, ck));
4667     }
4668     }
4669     }
4670    
4671 schoenebeck 2 // *************** Instrument ***************
4672     // *
4673    
4674 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4675 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4676 persson 1180 { CHUNK_ID_INAM, 64 },
4677     { CHUNK_ID_ISFT, 12 },
4678     { 0, 0 }
4679     };
4680 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4681 persson 918
4682 schoenebeck 2 // Initialization
4683     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4684 persson 1182 EffectSend = 0;
4685     Attenuation = 0;
4686     FineTune = 0;
4687 schoenebeck 3112 PitchbendRange = 2;
4688 persson 1182 PianoReleaseMode = false;
4689     DimensionKeyRange.low = 0;
4690     DimensionKeyRange.high = 0;
4691 persson 1678 pMidiRules = new MidiRule*[3];
4692     pMidiRules[0] = NULL;
4693 schoenebeck 2584 pScriptRefs = NULL;
4694 schoenebeck 2
4695     // Loading
4696     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4697     if (lart) {
4698     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4699     if (_3ewg) {
4700     EffectSend = _3ewg->ReadUint16();
4701     Attenuation = _3ewg->ReadInt32();
4702     FineTune = _3ewg->ReadInt16();
4703     PitchbendRange = _3ewg->ReadInt16();
4704     uint8_t dimkeystart = _3ewg->ReadUint8();
4705     PianoReleaseMode = dimkeystart & 0x01;
4706     DimensionKeyRange.low = dimkeystart >> 1;
4707     DimensionKeyRange.high = _3ewg->ReadUint8();
4708 persson 1627
4709     if (_3ewg->GetSize() > 32) {
4710     // read MIDI rules
4711 persson 1678 int i = 0;
4712 persson 1627 _3ewg->SetPos(32);
4713     uint8_t id1 = _3ewg->ReadUint8();
4714     uint8_t id2 = _3ewg->ReadUint8();
4715    
4716 persson 2450 if (id2 == 16) {
4717     if (id1 == 4) {
4718     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4719     } else if (id1 == 0) {
4720     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4721     } else if (id1 == 3) {
4722     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4723     } else {
4724     pMidiRules[i++] = new MidiRuleUnknown;
4725     }
4726 persson 1627 }
4727 persson 2450 else if (id1 != 0 || id2 != 0) {
4728     pMidiRules[i++] = new MidiRuleUnknown;
4729     }
4730 persson 1627 //TODO: all the other types of rules
4731 persson 1678
4732     pMidiRules[i] = NULL;
4733 persson 1627 }
4734 schoenebeck 2 }
4735     }
4736    
4737 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4738     if (!pRegions) pRegions = new RegionList;
4739     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4740     if (lrgn) {
4741     RIFF::List* rgn = lrgn->GetFirstSubList();
4742     while (rgn) {
4743     if (rgn->GetListType() == LIST_TYPE_RGN) {
4744     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4745     pRegions->push_back(new Region(this, rgn));
4746     }
4747     rgn = lrgn->GetNextSubList();
4748 schoenebeck 809 }
4749 schoenebeck 1524 // Creating Region Key Table for fast lookup
4750     UpdateRegionKeyTable();
4751 schoenebeck 2 }
4752     }
4753    
4754 schoenebeck 2584 // own gig format extensions
4755     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4756     if (lst3LS) {
4757     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4758     if (ckSCSL) {
4759 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4760     int slotCount = ckSCSL->ReadUint32();
4761     if (slotCount) {
4762     int slotSize = ckSCSL->ReadUint32();
4763     ckSCSL->SetPos(headerSize); // in case of future header extensions
4764     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4765     for (int i = 0; i < slotCount; ++i) {
4766     _ScriptPooolEntry e;
4767     e.fileOffset = ckSCSL->ReadUint32();
4768     e.bypass = ckSCSL->ReadUint32() & 1;
4769     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4770     scriptPoolFileOffsets.push_back(e);
4771     }
4772 schoenebeck 2584 }
4773     }
4774     }
4775    
4776 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4777     }
4778    
4779     void Instrument::UpdateRegionKeyTable() {
4780 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4781 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4782     RegionList::iterator end = pRegions->end();
4783     for (; iter != end; ++iter) {
4784     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4785 schoenebeck 3348 const int low = std::max(int(pRegion->KeyRange.low), 0);
4786     const int high = std::min(int(pRegion->KeyRange.high), 127);
4787     for (int iKey = low; iKey <= high; iKey++) {
4788 schoenebeck 823 RegionKeyTable[iKey] = pRegion;
4789 schoenebeck 2 }
4790     }
4791     }
4792    
4793     Instrument::~Instrument() {
4794 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4795     delete pMidiRules[i];
4796     }
4797 persson 1678 delete[] pMidiRules;
4798 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4799 schoenebeck 2 }
4800    
4801     /**
4802 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4803     * You have to call File::Save() to make changes persistent.
4804     *
4805     * Usually there is absolutely no need to call this method explicitly.
4806     * It will be called automatically when File::Save() was called.
4807     *
4808 schoenebeck 2682 * @param pProgress - callback function for progress notification
4809 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4810     */
4811 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4812 schoenebeck 809 // first update base classes' chunks
4813 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4814 schoenebeck 809
4815     // update Regions' chunks
4816 schoenebeck 823 {
4817     RegionList::iterator iter = pRegions->begin();
4818     RegionList::iterator end = pRegions->end();
4819     for (; iter != end; ++iter)
4820 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4821 schoenebeck 823 }
4822 schoenebeck 809
4823     // make sure 'lart' RIFF list chunk exists
4824     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4825     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4826     // make sure '3ewg' RIFF chunk exists
4827     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4828 persson 1264 if (!_3ewg) {
4829     File* pFile = (File*) GetParent();
4830    
4831     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4832 schoenebeck 3440 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4833 persson 1264 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4834     memset(_3ewg->LoadChunkData(), 0, size);
4835     }
4836 schoenebeck 809 // update '3ewg' RIFF chunk
4837     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4838 persson 1179 store16(&pData[0], EffectSend);
4839     store32(&pData[2], Attenuation);
4840     store16(&pData[6], FineTune);
4841     store16(&pData[8], PitchbendRange);
4842 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4843 schoenebeck 809 DimensionKeyRange.low << 1;
4844 persson 1179 pData[10] = dimkeystart;
4845     pData[11] = DimensionKeyRange.high;
4846 persson 2450
4847     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4848     pData[32] = 0;
4849     pData[33] = 0;
4850     } else {
4851     for (int i = 0 ; pMidiRules[i] ; i++) {
4852     pMidiRules[i]->UpdateChunks(pData);
4853     }
4854     }
4855 schoenebeck 2584
4856     // own gig format extensions
4857 schoenebeck 2648 if (ScriptSlotCount()) {
4858     // make sure we have converted the original loaded script file
4859     // offsets into valid Script object pointers
4860     LoadScripts();
4861    
4862 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4863     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4864 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4865 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4866     const int slotSize = 2 * sizeof(uint32_t);
4867     const int totalChunkSize = headerSize + slotCount * slotSize;
4868 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4869 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4870     else ckSCSL->Resize(totalChunkSize);
4871 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4872 schoenebeck 2609 int pos = 0;
4873     store32(&pData[pos], headerSize);
4874     pos += sizeof(uint32_t);
4875     store32(&pData[pos], slotCount);
4876     pos += sizeof(uint32_t);
4877     store32(&pData[pos], slotSize);
4878     pos += sizeof(uint32_t);
4879     for (int i = 0; i < slotCount; ++i) {
4880     // arbitrary value, the actual file offset will be updated in
4881     // UpdateScriptFileOffsets() after the file has been resized
4882     int bogusFileOffset = 0;
4883     store32(&pData[pos], bogusFileOffset);
4884 schoenebeck 2584 pos += sizeof(uint32_t);
4885     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4886     pos += sizeof(uint32_t);
4887     }
4888 schoenebeck 2648 } else {
4889     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4890     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4891     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4892 schoenebeck 2584 }
4893 schoenebeck 809 }
4894    
4895 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4896     // own gig format extensions
4897 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4898 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4899     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4900 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4901 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4902     ckSCSL->SetPos(headerSize);
4903     for (int i = 0; i < slotCount; ++i) {
4904 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4905 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4906     (*pScriptRefs)[i].script->pChunk->GetPos() -
4907 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4908     );
4909 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4910     // jump over flags entry (containing the bypass flag)
4911     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4912     }
4913     }
4914     }
4915    
4916 schoenebeck 809 /**
4917 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4918     *
4919     * @param Key MIDI Key number of triggered note / key (0 - 127)
4920     * @returns pointer adress to the appropriate Region or NULL if there
4921     * there is no Region defined for the given \a Key
4922     */
4923     Region* Instrument::GetRegion(unsigned int Key) {
4924 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4925 schoenebeck 2 return RegionKeyTable[Key];
4926 schoenebeck 823
4927 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4928     if (Key <= pRegions[i]->KeyRange.high &&
4929     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4930     }
4931     return NULL;*/
4932     }
4933    
4934     /**
4935     * Returns the first Region of the instrument. You have to call this
4936     * method once before you use GetNextRegion().
4937     *
4938     * @returns pointer address to first region or NULL if there is none
4939     * @see GetNextRegion()
4940     */
4941     Region* Instrument::GetFirstRegion() {
4942 schoenebeck 823 if (!pRegions) return NULL;
4943     RegionsIterator = pRegions->begin();
4944     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4945 schoenebeck 2 }
4946    
4947     /**
4948     * Returns the next Region of the instrument. You have to call
4949     * GetFirstRegion() once before you can use this method. By calling this
4950     * method multiple times it iterates through the available Regions.
4951     *
4952     * @returns pointer address to the next region or NULL if end reached
4953     * @see GetFirstRegion()
4954     */
4955     Region* Instrument::GetNextRegion() {
4956 schoenebeck 823 if (!pRegions) return NULL;
4957     RegionsIterator++;
4958     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4959 schoenebeck 2 }
4960    
4961 schoenebeck 809 Region* Instrument::AddRegion() {
4962     // create new Region object (and its RIFF chunks)
4963     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4964     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4965     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4966     Region* pNewRegion = new Region(this, rgn);
4967 schoenebeck 823 pRegions->push_back(pNewRegion);
4968 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
4969 schoenebeck 809 // update Region key table for fast lookup
4970     UpdateRegionKeyTable();
4971     // done
4972     return pNewRegion;
4973     }
4974 schoenebeck 2
4975 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4976     if (!pRegions) return;
4977 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4978 schoenebeck 809 // update Region key table for fast lookup
4979     UpdateRegionKeyTable();
4980     }
4981 schoenebeck 2
4982 persson 1627 /**
4983 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4984     *
4985     * This method can be used to reorder the sequence of instruments in a
4986     * .gig file. This might be helpful especially on large .gig files which
4987     * contain a large number of instruments within the same .gig file. So
4988     * grouping such instruments to similar ones, can help to keep track of them
4989     * when working with such complex .gig files.
4990     *
4991     * When calling this method, this instrument will be removed from in its
4992     * current position in the instruments list and moved to the requested
4993     * target position provided by @param dst. You may also pass NULL as
4994     * argument to this method, in that case this intrument will be moved to the
4995     * very end of the .gig file's instrument list.
4996     *
4997     * You have to call Save() to make the order change persistent to the .gig
4998     * file.
4999     *
5000     * Currently this method is limited to moving the instrument within the same
5001     * .gig file. Trying to move it to another .gig file by calling this method
5002     * will throw an exception.
5003     *
5004     * @param dst - destination instrument at which this instrument will be
5005     * moved to, or pass NULL for moving to end of list
5006     * @throw gig::Exception if this instrument and target instrument are not
5007     * part of the same file
5008     */
5009     void Instrument::MoveTo(Instrument* dst) {
5010     if (dst && GetParent() != dst->GetParent())
5011     throw Exception(
5012     "gig::Instrument::MoveTo() can only be used for moving within "
5013     "the same gig file."
5014     );
5015    
5016     File* pFile = (File*) GetParent();
5017    
5018     // move this instrument within the instrument list
5019     {
5020 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
5021 schoenebeck 2700
5022 persson 2836 File::InstrumentList::iterator itFrom =
5023 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5024    
5025 persson 2836 File::InstrumentList::iterator itTo =
5026 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5027    
5028     list.splice(itTo, list, itFrom);
5029     }
5030    
5031     // move the instrument's actual list RIFF chunk appropriately
5032     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5033     lstCkInstruments->MoveSubChunk(
5034     this->pCkInstrument,
5035 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5036 schoenebeck 2700 );
5037     }
5038    
5039     /**
5040 persson 1678 * Returns a MIDI rule of the instrument.
5041 persson 1627 *
5042     * The list of MIDI rules, at least in gig v3, always contains at
5043     * most two rules. The second rule can only be the DEF filter
5044     * (which currently isn't supported by libgig).
5045     *
5046 persson 1678 * @param i - MIDI rule number
5047     * @returns pointer address to MIDI rule number i or NULL if there is none
5048 persson 1627 */
5049 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
5050     return pMidiRules[i];
5051 persson 1627 }
5052 persson 2450
5053 schoenebeck 2394 /**
5054 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5055     *
5056     * @returns the new MIDI rule
5057     */
5058     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5059     delete pMidiRules[0];
5060     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5061     pMidiRules[0] = r;
5062     pMidiRules[1] = 0;
5063     return r;
5064     }
5065    
5066     /**
5067     * Adds the legato MIDI rule to the instrument.
5068     *
5069     * @returns the new MIDI rule
5070     */
5071     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5072     delete pMidiRules[0];
5073     MidiRuleLegato* r = new MidiRuleLegato;
5074     pMidiRules[0] = r;
5075     pMidiRules[1] = 0;
5076     return r;
5077     }
5078    
5079     /**
5080     * Adds the alternator MIDI rule to the instrument.
5081     *
5082     * @returns the new MIDI rule
5083     */
5084     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5085     delete pMidiRules[0];
5086     MidiRuleAlternator* r = new MidiRuleAlternator;
5087     pMidiRules[0] = r;
5088     pMidiRules[1] = 0;
5089     return r;
5090     }
5091    
5092     /**
5093     * Deletes a MIDI rule from the instrument.
5094     *
5095     * @param i - MIDI rule number
5096     */
5097     void Instrument::DeleteMidiRule(int i) {
5098     delete pMidiRules[i];
5099     pMidiRules[i] = 0;
5100     }
5101    
5102 schoenebeck 2584 void Instrument::LoadScripts() {
5103     if (pScriptRefs) return;
5104     pScriptRefs = new std::vector<_ScriptPooolRef>;
5105     if (scriptPoolFileOffsets.empty()) return;
5106     File* pFile = (File*) GetParent();
5107     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5108 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5109 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5110     ScriptGroup* group = pFile->GetScriptGroup(i);
5111     for (uint s = 0; group->GetScript(s); ++s) {
5112     Script* script = group->GetScript(s);
5113     if (script->pChunk) {
5114 schoenebeck 3053 uint32_t offset = uint32_t(
5115     script->pChunk->GetFilePos() -
5116     script->pChunk->GetPos() -
5117     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5118     );
5119 schoenebeck 2609 if (offset == soughtOffset)
5120 schoenebeck 2584 {
5121     _ScriptPooolRef ref;
5122     ref.script = script;
5123     ref.bypass = scriptPoolFileOffsets[k].bypass;
5124     pScriptRefs->push_back(ref);
5125     break;
5126     }
5127     }
5128     }
5129     }
5130     }
5131     // we don't need that anymore
5132     scriptPoolFileOffsets.clear();
5133     }
5134    
5135 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5136 schoenebeck 2584 *
5137 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5138     * @a index.
5139     *
5140     * @note This is an own format extension which did not exist i.e. in the
5141     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5142     * gigedit.
5143     *
5144     * @param index - instrument script slot index
5145     * @returns script or NULL if index is out of bounds
5146     */
5147     Script* Instrument::GetScriptOfSlot(uint index) {
5148     LoadScripts();
5149     if (index >= pScriptRefs->size()) return NULL;
5150     return pScriptRefs->at(index).script;
5151     }
5152    
5153     /** @brief Add new instrument script slot (gig format extension).
5154     *
5155 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5156     * which shall be executed by the sampler for for this instrument. The
5157     * script will be added to the end of the script list of this instrument.
5158     * The positions of the scripts in the Instrument's Script list are
5159     * relevant, because they define in which order they shall be executed by
5160     * the sampler. For this reason it is also legal to add the same script
5161     * twice to an instrument, for example you might have a script called
5162     * "MyFilter" which performs an event filter task, and you might have
5163     * another script called "MyNoteTrigger" which triggers new notes, then you
5164     * might for example have the following list of scripts on the instrument:
5165     *
5166     * 1. Script "MyFilter"
5167     * 2. Script "MyNoteTrigger"
5168     * 3. Script "MyFilter"
5169     *
5170     * Which would make sense, because the 2nd script launched new events, which
5171     * you might need to filter as well.
5172     *
5173     * There are two ways to disable / "bypass" scripts. You can either disable
5174     * a script locally for the respective script slot on an instrument (i.e. by
5175     * passing @c false to the 2nd argument of this method, or by calling
5176     * SetScriptBypassed()). Or you can disable a script globally for all slots
5177     * and all instruments by setting Script::Bypass.
5178     *
5179     * @note This is an own format extension which did not exist i.e. in the
5180     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5181     * gigedit.
5182     *
5183     * @param pScript - script that shall be executed for this instrument
5184     * @param bypass - if enabled, the sampler shall skip executing this
5185     * script (in the respective list position)
5186     * @see SetScriptBypassed()
5187     */
5188     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5189     LoadScripts();
5190     _ScriptPooolRef ref = { pScript, bypass };
5191     pScriptRefs->push_back(ref);
5192     }
5193    
5194     /** @brief Flip two script slots with each other (gig format extension).
5195     *
5196     * Swaps the position of the two given scripts in the Instrument's Script
5197     * list. The positions of the scripts in the Instrument's Script list are
5198     * relevant, because they define in which order they shall be executed by
5199     * the sampler.
5200     *
5201     * @note This is an own format extension which did not exist i.e. in the
5202     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5203     * gigedit.
5204     *
5205     * @param index1 - index of the first script slot to swap
5206     * @param index2 - index of the second script slot to swap
5207     */
5208     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5209     LoadScripts();
5210     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5211     return;
5212     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5213     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5214     (*pScriptRefs)[index2] = tmp;
5215     }
5216    
5217     /** @brief Remove script slot.
5218     *
5219     * Removes the script slot with the given slot index.
5220     *
5221     * @param index - index of script slot to remove
5222     */
5223     void Instrument::RemoveScriptSlot(uint index) {
5224     LoadScripts();
5225     if (index >= pScriptRefs->size()) return;
5226     pScriptRefs->erase( pScriptRefs->begin() + index );
5227     }
5228    
5229     /** @brief Remove reference to given Script (gig format extension).
5230     *
5231     * This will remove all script slots on the instrument which are referencing
5232     * the given script.
5233     *
5234     * @note This is an own format extension which did not exist i.e. in the
5235     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5236     * gigedit.
5237     *
5238     * @param pScript - script reference to remove from this instrument
5239     * @see RemoveScriptSlot()
5240     */
5241     void Instrument::RemoveScript(Script* pScript) {
5242     LoadScripts();
5243 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5244 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5245     pScriptRefs->erase( pScriptRefs->begin() + i );
5246     }
5247     }
5248     }
5249    
5250     /** @brief Instrument's amount of script slots.
5251     *
5252     * This method returns the amount of script slots this instrument currently
5253     * uses.
5254     *
5255     * A script slot is a reference of a real-time instrument script to be
5256     * executed by the sampler. The scripts will be executed by the sampler in
5257     * sequence of the slots. One (same) script may be referenced multiple
5258     * times in different slots.
5259     *
5260     * @note This is an own format extension which did not exist i.e. in the
5261     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5262     * gigedit.
5263     */
5264     uint Instrument::ScriptSlotCount() const {
5265 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5266 schoenebeck 2584 }
5267    
5268     /** @brief Whether script execution shall be skipped.
5269     *
5270     * Defines locally for the Script reference slot in the Instrument's Script
5271     * list, whether the script shall be skipped by the sampler regarding
5272     * execution.
5273     *
5274     * It is also possible to ignore exeuction of the script globally, for all
5275     * slots and for all instruments by setting Script::Bypass.
5276     *
5277     * @note This is an own format extension which did not exist i.e. in the
5278     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5279     * gigedit.
5280     *
5281     * @param index - index of the script slot on this instrument
5282     * @see Script::Bypass
5283     */
5284     bool Instrument::IsScriptSlotBypassed(uint index) {
5285     if (index >= ScriptSlotCount()) return false;
5286     return pScriptRefs ? pScriptRefs->at(index).bypass
5287     : scriptPoolFileOffsets.at(index).bypass;
5288    
5289     }
5290    
5291     /** @brief Defines whether execution shall be skipped.
5292     *
5293     * You can call this method to define locally whether or whether not the
5294     * given script slot shall be executed by the sampler.
5295     *
5296     * @note This is an own format extension which did not exist i.e. in the
5297     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5298     * gigedit.
5299     *
5300     * @param index - script slot index on this instrument
5301     * @param bBypass - if true, the script slot will be skipped by the sampler
5302     * @see Script::Bypass
5303     */
5304     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5305     if (index >= ScriptSlotCount()) return;
5306     if (pScriptRefs)
5307     pScriptRefs->at(index).bypass = bBypass;
5308     else
5309     scriptPoolFileOffsets.at(index).bypass = bBypass;
5310     }
5311    
5312 persson 2450 /**
5313 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5314     * and assign it to this object.
5315     *
5316     * Note that all sample pointers referenced by @a orig are simply copied as
5317     * memory address. Thus the respective samples are shared, not duplicated!
5318     *
5319     * @param orig - original Instrument object to be copied from
5320     */
5321     void Instrument::CopyAssign(const Instrument* orig) {
5322 schoenebeck 2482 CopyAssign(orig, NULL);
5323     }
5324    
5325     /**
5326     * Make a (semi) deep copy of the Instrument object given by @a orig
5327     * and assign it to this object.
5328     *
5329     * @param orig - original Instrument object to be copied from
5330     * @param mSamples - crosslink map between the foreign file's samples and
5331     * this file's samples
5332     */
5333     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5334 schoenebeck 2394 // handle base class
5335     // (without copying DLS region stuff)
5336     DLS::Instrument::CopyAssignCore(orig);
5337    
5338     // handle own member variables
5339     Attenuation = orig->Attenuation;
5340     EffectSend = orig->EffectSend;
5341     FineTune = orig->FineTune;
5342     PitchbendRange = orig->PitchbendRange;
5343     PianoReleaseMode = orig->PianoReleaseMode;
5344     DimensionKeyRange = orig->DimensionKeyRange;
5345 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5346     pScriptRefs = orig->pScriptRefs;
5347 schoenebeck 2394
5348     // free old midi rules
5349     for (int i = 0 ; pMidiRules[i] ; i++) {
5350     delete pMidiRules[i];
5351     }
5352     //TODO: MIDI rule copying
5353     pMidiRules[0] = NULL;
5354    
5355     // delete all old regions
5356     while (Regions) DeleteRegion(GetFirstRegion());
5357     // create new regions and copy them from original
5358     {
5359     RegionList::const_iterator it = orig->pRegions->begin();
5360     for (int i = 0; i < orig->Regions; ++i, ++it) {
5361     Region* dstRgn = AddRegion();
5362     //NOTE: Region does semi-deep copy !
5363     dstRgn->CopyAssign(
5364 schoenebeck 2482 static_cast<gig::Region*>(*it),
5365     mSamples
5366 schoenebeck 2394 );
5367     }
5368     }
5369 schoenebeck 809
5370 schoenebeck 2394 UpdateRegionKeyTable();
5371     }
5372 schoenebeck 809
5373 schoenebeck 2394
5374 schoenebeck 929 // *************** Group ***************
5375     // *
5376    
5377     /** @brief Constructor.
5378     *
5379 schoenebeck 930 * @param file - pointer to the gig::File object
5380     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5381     * NULL if this is a new Group
5382 schoenebeck 929 */
5383 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5384 schoenebeck 929 pFile = file;
5385     pNameChunk = ck3gnm;
5386     ::LoadString(pNameChunk, Name);
5387     }
5388    
5389     Group::~Group() {
5390 schoenebeck 1099 // remove the chunk associated with this group (if any)
5391     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5392 schoenebeck 929 }
5393    
5394     /** @brief Update chunks with current group settings.
5395     *
5396 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5397     * to call File::Save() to make changes persistent.
5398     *
5399     * Usually there is absolutely no need to call this method explicitly.
5400     * It will be called automatically when File::Save() was called.
5401 schoenebeck 2682 *
5402     * @param pProgress - callback function for progress notification
5403 schoenebeck 929 */
5404 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5405 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5406 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5407 persson 1192 if (!_3gri) {
5408     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5409     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5410     }
5411 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5412 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5413 persson 1266
5414 schoenebeck 3440 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5415 persson 1266 // v3 has a fixed list of 128 strings, find a free one
5416     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5417     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5418     pNameChunk = ck;
5419     break;
5420     }
5421     }
5422     }
5423    
5424 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5425     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5426     }
5427    
5428 schoenebeck 930 /**
5429     * Returns the first Sample of this Group. You have to call this method
5430     * once before you use GetNextSample().
5431     *
5432     * <b>Notice:</b> this method might block for a long time, in case the
5433     * samples of this .gig file were not scanned yet
5434     *
5435     * @returns pointer address to first Sample or NULL if there is none
5436     * applied to this Group
5437     * @see GetNextSample()
5438     */
5439     Sample* Group::GetFirstSample() {
5440     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5441     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5442     if (pSample->GetGroup() == this) return pSample;
5443     }
5444     return NULL;
5445     }
5446 schoenebeck 929
5447 schoenebeck 930 /**
5448     * Returns the next Sample of the Group. You have to call
5449     * GetFirstSample() once before you can use this method. By calling this
5450     * method multiple times it iterates through the Samples assigned to
5451     * this Group.
5452     *
5453     * @returns pointer address to the next Sample of this Group or NULL if
5454     * end reached
5455     * @see GetFirstSample()
5456     */
5457     Sample* Group::GetNextSample() {
5458     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5459     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5460     if (pSample->GetGroup() == this) return pSample;
5461     }
5462     return NULL;
5463     }
5464 schoenebeck 929
5465 schoenebeck 930 /**
5466     * Move Sample given by \a pSample from another Group to this Group.
5467     */
5468     void Group::AddSample(Sample* pSample) {
5469     pSample->pGroup = this;
5470     }
5471    
5472     /**
5473     * Move all members of this group to another group (preferably the 1st
5474     * one except this). This method is called explicitly by
5475     * File::DeleteGroup() thus when a Group was deleted. This code was
5476     * intentionally not placed in the destructor!
5477     */
5478     void Group::MoveAll() {
5479     // get "that" other group first
5480     Group* pOtherGroup = NULL;
5481     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5482     if (pOtherGroup != this) break;
5483     }
5484     if (!pOtherGroup) throw Exception(
5485     "Could not move samples to another group, since there is no "
5486     "other Group. This is a bug, report it!"
5487     );
5488     // now move all samples of this group to the other group
5489     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5490     pOtherGroup->AddSample(pSample);
5491     }
5492     }
5493    
5494    
5495    
5496 schoenebeck 2 // *************** File ***************
5497     // *
5498    
5499 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5500 persson 1199 const DLS::version_t File::VERSION_2 = {
5501     0, 2, 19980628 & 0xffff, 19980628 >> 16
5502     };
5503    
5504 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5505 persson 1199 const DLS::version_t File::VERSION_3 = {
5506     0, 3, 20030331 & 0xffff, 20030331 >> 16
5507     };
5508    
5509 schoenebeck 3440 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5510     const DLS::version_t File::VERSION_4 = {
5511     0, 4, 20071012 & 0xffff, 20071012 >> 16
5512     };
5513    
5514 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5515 persson 1180 { CHUNK_ID_IARL, 256 },
5516     { CHUNK_ID_IART, 128 },
5517     { CHUNK_ID_ICMS, 128 },
5518     { CHUNK_ID_ICMT, 1024 },
5519     { CHUNK_ID_ICOP, 128 },
5520     { CHUNK_ID_ICRD, 128 },
5521     { CHUNK_ID_IENG, 128 },
5522     { CHUNK_ID_IGNR, 128 },
5523     { CHUNK_ID_IKEY, 128 },
5524     { CHUNK_ID_IMED, 128 },
5525     { CHUNK_ID_INAM, 128 },
5526     { CHUNK_ID_IPRD, 128 },
5527     { CHUNK_ID_ISBJ, 128 },
5528     { CHUNK_ID_ISFT, 128 },
5529     { CHUNK_ID_ISRC, 128 },
5530     { CHUNK_ID_ISRF, 128 },
5531     { CHUNK_ID_ITCH, 128 },
5532     { 0, 0 }
5533     };
5534    
5535 schoenebeck 809 File::File() : DLS::File() {
5536 schoenebeck 1524 bAutoLoad = true;
5537 persson 1264 *pVersion = VERSION_3;
5538 schoenebeck 929 pGroups = NULL;
5539 schoenebeck 2584 pScriptGroups = NULL;
5540 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5541 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5542 persson 1192
5543     // add some mandatory chunks to get the file chunks in right
5544     // order (INFO chunk will be moved to first position later)
5545     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5546     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5547 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5548    
5549     GenerateDLSID();
5550 schoenebeck 809 }
5551    
5552 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5553 schoenebeck 1524 bAutoLoad = true;
5554 schoenebeck 929 pGroups = NULL;
5555 schoenebeck 2584 pScriptGroups = NULL;
5556 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5557 schoenebeck 2 }
5558    
5559 schoenebeck 929 File::~File() {
5560     if (pGroups) {
5561     std::list<Group*>::iterator iter = pGroups->begin();
5562     std::list<Group*>::iterator end = pGroups->end();
5563     while (iter != end) {
5564     delete *iter;
5565     ++iter;
5566     }
5567     delete pGroups;
5568     }
5569 schoenebeck 2584 if (pScriptGroups) {
5570     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5571     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5572     while (iter != end) {
5573     delete *iter;
5574     ++iter;
5575     }
5576     delete pScriptGroups;
5577     }
5578 schoenebeck 929 }
5579    
5580 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5581     if (!pSamples) LoadSamples(pProgress);
5582 schoenebeck 2 if (!pSamples) return NULL;
5583     SamplesIterator = pSamples->begin();
5584     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5585     }
5586    
5587     Sample* File::GetNextSample() {
5588     if (!pSamples) return NULL;
5589     SamplesIterator++;
5590     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5591     }
5592 schoenebeck 2482
5593     /**
5594     * Returns Sample object of @a index.
5595     *
5596     * @returns sample object or NULL if index is out of bounds
5597     */
5598     Sample* File::GetSample(uint index) {
5599     if (!pSamples) LoadSamples();
5600     if (!pSamples) return NULL;
5601     DLS::File::SampleList::iterator it = pSamples->begin();
5602     for (int i = 0; i < index; ++i) {
5603     ++it;
5604     if (it == pSamples->end()) return NULL;
5605     }
5606     if (it == pSamples->end()) return NULL;
5607     return static_cast<gig::Sample*>( *it );
5608     }
5609 schoenebeck 2
5610 schoenebeck 3414 /**
5611     * Returns the total amount of samples of this gig file.
5612     *
5613     * Note that this method might block for a long time in case it is required
5614     * to load the sample info for the first time.
5615     *
5616     * @returns total amount of samples
5617     */
5618     size_t File::CountSamples() {
5619     if (!pSamples) LoadSamples();
5620     if (!pSamples) return 0;
5621     return pSamples->size();
5622     }
5623    
5624 schoenebeck 809 /** @brief Add a new sample.
5625     *
5626     * This will create a new Sample object for the gig file. You have to
5627     * call Save() to make this persistent to the file.
5628     *
5629     * @returns pointer to new Sample object
5630     */
5631     Sample* File::AddSample() {
5632     if (!pSamples) LoadSamples();
5633     __ensureMandatoryChunksExist();
5634     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5635     // create new Sample object and its respective 'wave' list chunk
5636     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5637     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5638 persson 1192
5639     // add mandatory chunks to get the chunks in right order
5640     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5641     wave->AddSubList(LIST_TYPE_INFO);
5642    
5643 schoenebeck 809 pSamples->push_back(pSample);
5644     return pSample;
5645     }
5646    
5647     /** @brief Delete a sample.
5648     *
5649 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5650     * references to this sample from Regions and DimensionRegions will be
5651     * removed. You have to call Save() to make this persistent to the file.
5652 schoenebeck 809 *
5653     * @param pSample - sample to delete
5654     * @throws gig::Exception if given sample could not be found
5655     */
5656     void File::DeleteSample(Sample* pSample) {
5657 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5658     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5659 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5660 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5661 schoenebeck 809 pSamples->erase(iter);
5662     delete pSample;
5663 persson 1266
5664 persson 1678 SampleList::iterator tmp = SamplesIterator;
5665 persson 1266 // remove all references to the sample
5666     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5667     instrument = GetNextInstrument()) {
5668     for (Region* region = instrument->GetFirstRegion() ; region ;
5669     region = instrument->GetNextRegion()) {
5670    
5671     if (region->GetSample() == pSample) region->SetSample(NULL);
5672    
5673     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5674     gig::DimensionRegion *d = region->pDimensionRegions[i];
5675     if (d->pSample == pSample) d->pSample = NULL;
5676     }
5677     }
5678     }
5679 persson 1678 SamplesIterator = tmp; // restore iterator
5680 schoenebeck 809 }
5681    
5682 schoenebeck 823 void File::LoadSamples() {
5683     LoadSamples(NULL);
5684     }
5685    
5686 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5687 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5688     // to resolve the group they belong to
5689 schoenebeck 1158 if (!pGroups) LoadGroups();
5690 schoenebeck 930
5691 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5692    
5693 persson 666 RIFF::File* file = pRIFF;
5694 schoenebeck 515
5695 persson 666 // just for progress calculation
5696     int iSampleIndex = 0;
5697     int iTotalSamples = WavePoolCount;
5698 schoenebeck 515
5699 persson 666 // check if samples should be loaded from extension files
5700 schoenebeck 2913 // (only for old gig files < 2 GB)
5701 persson 666 int lastFileNo = 0;
5702 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5703 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5704     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5705     }
5706 persson 666 }
5707 schoenebeck 780 String name(pRIFF->GetFileName());
5708 schoenebeck 3053 int nameLen = (int) name.length();
5709 persson 666 char suffix[6];
5710 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5711 schoenebeck 515
5712 persson 666 for (int fileNo = 0 ; ; ) {
5713     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5714     if (wvpl) {
5715 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5716 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5717     while (wave) {
5718     if (wave->GetListType() == LIST_TYPE_WAVE) {
5719     // notify current progress
5720     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5721     __notify_progress(pProgress, subprogress);
5722    
5723 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5724 schoenebeck 2989 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5725 persson 666
5726     iSampleIndex++;
5727     }
5728     wave = wvpl->GetNextSubList();
5729 schoenebeck 2 }
5730 persson 666
5731     if (fileNo == lastFileNo) break;
5732    
5733     // open extension file (*.gx01, *.gx02, ...)
5734     fileNo++;
5735     sprintf(suffix, ".gx%02d", fileNo);
5736     name.replace(nameLen, 5, suffix);
5737     file = new RIFF::File(name);
5738     ExtensionFiles.push_back(file);
5739 schoenebeck 823 } else break;
5740 schoenebeck 2 }
5741 persson 666
5742     __notify_progress(pProgress, 1.0); // notify done
5743 schoenebeck 2 }
5744    
5745     Instrument* File::GetFirstInstrument() {
5746     if (!pInstruments) LoadInstruments();
5747     if (!pInstruments) return NULL;
5748     InstrumentsIterator = pInstruments->begin();
5749 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5750 schoenebeck 2 }
5751    
5752     Instrument* File::GetNextInstrument() {
5753     if (!pInstruments) return NULL;
5754     InstrumentsIterator++;
5755 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5756 schoenebeck 2 }
5757    
5758 schoenebeck 21 /**
5759 schoenebeck 3414 * Returns the total amount of instruments of this gig file.
5760     *
5761     * Note that this method might block for a long time in case it is required
5762     * to load the instruments info for the first time.
5763     *
5764     * @returns total amount of instruments
5765     */
5766     size_t File::CountInstruments() {
5767     if (!pInstruments) LoadInstruments();
5768     if (!pInstruments) return 0;
5769     return pInstruments->size();
5770     }
5771    
5772     /**
5773 schoenebeck 21 * Returns the instrument with the given index.
5774     *
5775 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5776     * @param pProgress - optional: callback function for progress notification
5777 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5778     */
5779 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5780     if (!pInstruments) {
5781     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5782    
5783     // sample loading subtask
5784     progress_t subprogress;
5785     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5786     __notify_progress(&subprogress, 0.0f);
5787 schoenebeck 1524 if (GetAutoLoad())
5788     GetFirstSample(&subprogress); // now force all samples to be loaded
5789 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5790    
5791     // instrument loading subtask
5792     if (pProgress && pProgress->callback) {
5793     subprogress.__range_min = subprogress.__range_max;
5794     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5795     }
5796     __notify_progress(&subprogress, 0.0f);
5797     LoadInstruments(&subprogress);
5798     __notify_progress(&subprogress, 1.0f);
5799     }
5800 schoenebeck 21 if (!pInstruments) return NULL;
5801     InstrumentsIterator = pInstruments->begin();
5802     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5803 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5804 schoenebeck 21 InstrumentsIterator++;
5805     }
5806     return NULL;
5807     }
5808    
5809 schoenebeck 809 /** @brief Add a new instrument definition.
5810     *
5811     * This will create a new Instrument object for the gig file. You have
5812     * to call Save() to make this persistent to the file.
5813     *
5814     * @returns pointer to new Instrument object
5815     */
5816     Instrument* File::AddInstrument() {
5817     if (!pInstruments) LoadInstruments();
5818     __ensureMandatoryChunksExist();
5819     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5820     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5821 persson 1192
5822     // add mandatory chunks to get the chunks in right order
5823     lstInstr->AddSubList(LIST_TYPE_INFO);
5824 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5825 persson 1192
5826 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5827 persson 1209 pInstrument->GenerateDLSID();
5828 persson 1182
5829 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5830    
5831 persson 1182 // this string is needed for the gig to be loadable in GSt:
5832     pInstrument->pInfo->Software = "Endless Wave";
5833    
5834 schoenebeck 809 pInstruments->push_back(pInstrument);
5835     return pInstrument;
5836     }
5837 schoenebeck 2394
5838     /** @brief Add a duplicate of an existing instrument.
5839     *
5840     * Duplicates the instrument definition given by @a orig and adds it
5841     * to this file. This allows in an instrument editor application to
5842     * easily create variations of an instrument, which will be stored in
5843     * the same .gig file, sharing i.e. the same samples.
5844     *
5845     * Note that all sample pointers referenced by @a orig are simply copied as
5846     * memory address. Thus the respective samples are shared, not duplicated!
5847     *
5848     * You have to call Save() to make this persistent to the file.
5849     *
5850     * @param orig - original instrument to be copied
5851     * @returns duplicated copy of the given instrument
5852     */
5853     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5854     Instrument* instr = AddInstrument();
5855     instr->CopyAssign(orig);
5856     return instr;
5857     }
5858 schoenebeck 2482
5859     /** @brief Add content of another existing file.
5860     *
5861     * Duplicates the samples, groups and instruments of the original file
5862     * given by @a pFile and adds them to @c this File. In case @c this File is
5863     * a new one that you haven't saved before, then you have to call
5864     * SetFileName() before calling AddContentOf(), because this method will
5865     * automatically save this file during operation, which is required for
5866     * writing the sample waveform data by disk streaming.
5867     *
5868     * @param pFile - original file whose's content shall be copied from
5869     */
5870     void File::AddContentOf(File* pFile) {
5871     static int iCallCount = -1;
5872     iCallCount++;
5873     std::map<Group*,Group*> mGroups;
5874     std::map<Sample*,Sample*> mSamples;
5875    
5876     // clone sample groups
5877     for (int i = 0; pFile->GetGroup(i); ++i) {
5878     Group* g = AddGroup();
5879     g->Name =
5880     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5881     mGroups[pFile->GetGroup(i)] = g;
5882     }
5883    
5884     // clone samples (not waveform data here yet)
5885     for (int i = 0; pFile->GetSample(i); ++i) {
5886     Sample* s = AddSample();
5887     s->CopyAssignMeta(pFile->GetSample(i));
5888     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5889     mSamples[pFile->GetSample(i)] = s;
5890     }
5891 schoenebeck 3117
5892     // clone script groups and their scripts
5893     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5894     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5895     ScriptGroup* dg = AddScriptGroup();
5896     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5897     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5898     Script* ss = sg->GetScript(iScript);
5899     Script* ds = dg->AddScript();
5900     ds->CopyAssign(ss);
5901     }
5902     }
5903    
5904 schoenebeck 2482 //BUG: For some reason this method only works with this additional
5905     // Save() call in between here.
5906     //
5907     // Important: The correct one of the 2 Save() methods has to be called
5908     // here, depending on whether the file is completely new or has been
5909     // saved to disk already, otherwise it will result in data corruption.
5910     if (pRIFF->IsNew())
5911     Save(GetFileName());
5912     else
5913     Save();
5914    
5915     // clone instruments
5916     // (passing the crosslink table here for the cloned samples)
5917     for (int i = 0; pFile->GetInstrument(i); ++i) {
5918     Instrument* instr = AddInstrument();
5919     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5920     }
5921    
5922     // Mandatory: file needs to be saved to disk at this point, so this
5923     // file has the correct size and data layout for writing the samples'
5924     // waveform data to disk.
5925     Save();
5926    
5927     // clone samples' waveform data
5928     // (using direct read & write disk streaming)
5929     for (int i = 0; pFile->GetSample(i); ++i) {
5930     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5931     }
5932     }
5933 schoenebeck 809
5934     /** @brief Delete an instrument.
5935     *
5936     * This will delete the given Instrument object from the gig file. You
5937     * have to call Save() to make this persistent to the file.
5938     *
5939     * @param pInstrument - instrument to delete
5940 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5941 schoenebeck 809 */
5942     void File::DeleteInstrument(Instrument* pInstrument) {
5943     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5944 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5945 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5946     pInstruments->erase(iter);
5947     delete pInstrument;
5948     }
5949    
5950 schoenebeck 823 void File::LoadInstruments() {
5951     LoadInstruments(NULL);
5952     }
5953    
5954 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5955 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5956 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5957     if (lstInstruments) {
5958 schoenebeck 515 int iInstrumentIndex = 0;
5959 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5960     while (lstInstr) {
5961     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5962 schoenebeck 515 // notify current progress
5963     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5964     __notify_progress(pProgress, localProgress);
5965    
5966     // divide local progress into subprogress for loading current Instrument
5967     progress_t subprogress;
5968     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5969    
5970     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5971    
5972     iInstrumentIndex++;
5973 schoenebeck 2 }
5974     lstInstr = lstInstruments->GetNextSubList();
5975     }
5976 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5977 schoenebeck 2 }
5978     }
5979    
5980 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5981     /// update is done directly to disk, as this method is called
5982     /// after File::Save()
5983 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5984     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5985     if (!_3crc) return;
5986 persson 1207
5987     // get the index of the sample
5988 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5989 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5990    
5991 persson 1207 // write the CRC-32 checksum to disk
5992 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5993 schoenebeck 2985 uint32_t one = 1;
5994     _3crc->WriteUint32(&one); // always 1
5995 persson 1199 _3crc->WriteUint32(&crc);
5996 schoenebeck 2989 }
5997 schoenebeck 2985
5998 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
5999     // get the index of the sample
6000     int iWaveIndex = GetWaveTableIndexOf(pSample);
6001     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6002    
6003     return GetSampleChecksumByIndex(iWaveIndex);
6004 persson 1199 }
6005    
6006 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
6007     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6008    
6009 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6010     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6011     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6012     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6013    
6014     // read the CRC-32 checksum directly from disk
6015 schoenebeck 2989 size_t pos = index * 8;
6016 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
6017     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6018    
6019     uint32_t one = load32(&pData[pos]); // always 1
6020     if (one != 1)
6021 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6022 schoenebeck 2985
6023     return load32(&pData[pos+4]);
6024     }
6025 schoenebeck 2989
6026 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6027     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6028     File::SampleList::iterator iter = pSamples->begin();
6029     File::SampleList::iterator end = pSamples->end();
6030     for (int index = 0; iter != end; ++iter, ++index)
6031     if (*iter == pSample)
6032     return index;
6033     return -1;
6034     }
6035    
6036     /**
6037     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6038     * the CRC32 check sums of all samples' raw wave data.
6039     *
6040     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6041     */
6042     bool File::VerifySampleChecksumTable() {
6043     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6044     if (!_3crc) return false;
6045     if (_3crc->GetNewSize() <= 0) return false;
6046     if (_3crc->GetNewSize() % 8) return false;
6047     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6048     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6049    
6050 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
6051 schoenebeck 2985
6052     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6053     if (!pData) return false;
6054    
6055 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
6056 schoenebeck 2985 uint32_t one = pData[i*2];
6057     if (one != 1) return false;
6058     }
6059    
6060     return true;
6061     }
6062    
6063     /**
6064     * Recalculates CRC32 checksums for all samples and rebuilds this gig
6065     * file's checksum table with those new checksums. This might usually
6066     * just be necessary if the checksum table was damaged.
6067     *
6068     * @e IMPORTANT: The current implementation of this method only works
6069     * with files that have not been modified since it was loaded, because
6070     * it expects that no externally caused file structure changes are
6071     * required!
6072     *
6073     * Due to the expectation above, this method is currently protected
6074     * and actually only used by the command line tool "gigdump" yet.
6075     *
6076     * @returns true if Save() is required to be called after this call,
6077     * false if no further action is required
6078     */
6079     bool File::RebuildSampleChecksumTable() {
6080     // make sure sample chunks were scanned
6081     if (!pSamples) GetFirstSample();
6082    
6083     bool bRequiresSave = false;
6084    
6085     // make sure "3CRC" chunk exists with required size
6086     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6087     if (!_3crc) {
6088     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6089 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6090     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6091 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6092 schoenebeck 2985 bRequiresSave = true;
6093     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6094     _3crc->Resize(pSamples->size() * 8);
6095     bRequiresSave = true;
6096     }
6097    
6098     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6099     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6100     {
6101     File::SampleList::iterator iter = pSamples->begin();
6102     File::SampleList::iterator end = pSamples->end();
6103     for (; iter != end; ++iter) {
6104     gig::Sample* pSample = (gig::Sample*) *iter;
6105     int index = GetWaveTableIndexOf(pSample);
6106     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6107     pData[index*2] = 1; // always 1
6108     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6109     }
6110     }
6111     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6112     // make sure file is in write mode
6113     pRIFF->SetMode(RIFF::stream_mode_read_write);
6114     {
6115     File::SampleList::iterator iter = pSamples->begin();
6116     File::SampleList::iterator end = pSamples->end();
6117     for (; iter != end; ++iter) {
6118     gig::Sample* pSample = (gig::Sample*) *iter;
6119     int index = GetWaveTableIndexOf(pSample);
6120     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6121 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6122     SetSampleChecksum(pSample, pSample->crc);
6123 schoenebeck 2985 }
6124     }
6125     }
6126    
6127     return bRequiresSave;
6128     }
6129    
6130 schoenebeck 929 Group* File::GetFirstGroup() {
6131     if (!pGroups) LoadGroups();
6132 schoenebeck 930 // there must always be at least one group
6133 schoenebeck 929 GroupsIterator = pGroups->begin();
6134 schoenebeck 930 return *GroupsIterator;
6135 schoenebeck 929 }
6136 schoenebeck 2
6137 schoenebeck 929 Group* File::GetNextGroup() {
6138     if (!pGroups) return NULL;
6139     ++GroupsIterator;
6140     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6141     }
6142 schoenebeck 2
6143 schoenebeck 929 /**
6144     * Returns the group with the given index.
6145     *
6146     * @param index - number of the sought group (0..n)
6147     * @returns sought group or NULL if there's no such group
6148     */
6149     Group* File::GetGroup(uint index) {
6150     if (!pGroups) LoadGroups();
6151     GroupsIterator = pGroups->begin();
6152     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6153     if (i == index) return *GroupsIterator;
6154     ++GroupsIterator;
6155     }
6156     return NULL;
6157     }
6158    
6159 schoenebeck 2543 /**
6160     * Returns the group with the given group name.
6161     *
6162     * Note: group names don't have to be unique in the gig format! So there
6163     * can be multiple groups with the same name. This method will simply
6164     * return the first group found with the given name.
6165     *
6166     * @param name - name of the sought group
6167     * @returns sought group or NULL if there's no group with that name
6168     */
6169     Group* File::GetGroup(String name) {
6170     if (!pGroups) LoadGroups();
6171     GroupsIterator = pGroups->begin();
6172     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6173     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6174     return NULL;
6175     }
6176    
6177 schoenebeck 929 Group* File::AddGroup() {
6178     if (!pGroups) LoadGroups();
6179 schoenebeck 930 // there must always be at least one group
6180 schoenebeck 929 __ensureMandatoryChunksExist();
6181 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6182 schoenebeck 929 pGroups->push_back(pGroup);
6183     return pGroup;
6184     }
6185    
6186 schoenebeck 1081 /** @brief Delete a group and its samples.
6187     *
6188     * This will delete the given Group object and all the samples that
6189     * belong to this group from the gig file. You have to call Save() to
6190     * make this persistent to the file.
6191     *
6192     * @param pGroup - group to delete
6193     * @throws gig::Exception if given group could not be found
6194     */
6195 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6196 schoenebeck 930 if (!pGroups) LoadGroups();
6197 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6198     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6199 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6200 schoenebeck 1081 // delete all members of this group
6201     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6202     DeleteSample(pSample);
6203     }
6204     // now delete this group object
6205     pGroups->erase(iter);
6206     delete pGroup;
6207     }
6208    
6209     /** @brief Delete a group.
6210     *
6211     * This will delete the given Group object from the gig file. All the
6212     * samples that belong to this group will not be deleted, but instead
6213     * be moved to another group. You have to call Save() to make this
6214     * persistent to the file.
6215     *
6216     * @param pGroup - group to delete
6217     * @throws gig::Exception if given group could not be found
6218     */
6219     void File::DeleteGroupOnly(Group* pGroup) {
6220     if (!pGroups) LoadGroups();
6221     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6222     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6223     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6224 schoenebeck 930 // move all members of this group to another group
6225     pGroup->MoveAll();
6226 schoenebeck 929 pGroups->erase(iter);
6227     delete pGroup;
6228     }
6229    
6230     void File::LoadGroups() {
6231     if (!pGroups) pGroups = new std::list<Group*>;
6232 schoenebeck 930 // try to read defined groups from file
6233 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6234 schoenebeck 930 if (lst3gri) {
6235     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6236     if (lst3gnl) {
6237     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6238     while (ck) {
6239     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6240 schoenebeck 3440 if (pVersion && pVersion->major > 2 &&
6241 persson 1266 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6242    
6243 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6244     }
6245     ck = lst3gnl->GetNextSubChunk();
6246 schoenebeck 929 }
6247     }
6248     }
6249 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6250     if (!pGroups->size()) {
6251     Group* pGroup = new Group(this, NULL);
6252     pGroup->Name = "Default Group";
6253     pGroups->push_back(pGroup);
6254     }
6255 schoenebeck 929 }
6256    
6257 schoenebeck 2584 /** @brief Get instrument script group (by index).
6258     *
6259     * Returns the real-time instrument script group with the given index.
6260     *
6261     * @param index - number of the sought group (0..n)
6262     * @returns sought script group or NULL if there's no such group
6263     */
6264     ScriptGroup* File::GetScriptGroup(uint index) {
6265     if (!pScriptGroups) LoadScriptGroups();
6266     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6267     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6268     if (i == index) return *it;
6269     return NULL;
6270     }
6271    
6272     /** @brief Get instrument script group (by name).
6273     *
6274     * Returns the first real-time instrument script group found with the given
6275     * group name. Note that group names may not necessarily be unique.
6276     *
6277     * @param name - name of the sought script group
6278     * @returns sought script group or NULL if there's no such group
6279     */
6280     ScriptGroup* File::GetScriptGroup(const String& name) {
6281     if (!pScriptGroups) LoadScriptGroups();
6282     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6283     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6284     if ((*it)->Name == name) return *it;
6285     return NULL;
6286     }
6287    
6288     /** @brief Add new instrument script group.
6289     *
6290     * Adds a new, empty real-time instrument script group to the file.
6291     *
6292     * You have to call Save() to make this persistent to the file.
6293     *
6294     * @return new empty script group
6295     */
6296     ScriptGroup* File::AddScriptGroup() {
6297     if (!pScriptGroups) LoadScriptGroups();
6298     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6299     pScriptGroups->push_back(pScriptGroup);
6300     return pScriptGroup;
6301     }
6302    
6303     /** @brief Delete an instrument script group.
6304     *
6305     * This will delete the given real-time instrument script group and all its
6306     * instrument scripts it contains. References inside instruments that are
6307     * using the deleted scripts will be removed from the respective instruments
6308     * accordingly.
6309     *
6310     * You have to call Save() to make this persistent to the file.
6311     *
6312     * @param pScriptGroup - script group to delete
6313     * @throws gig::Exception if given script group could not be found
6314     */
6315     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6316     if (!pScriptGroups) LoadScriptGroups();
6317     std::list<ScriptGroup*>::iterator iter =
6318     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6319     if (iter == pScriptGroups->end())
6320     throw gig::Exception("Could not delete script group, could not find given script group");
6321     pScriptGroups->erase(iter);
6322     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6323     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6324     if (pScriptGroup->pList)
6325     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6326     delete pScriptGroup;
6327     }
6328    
6329     void File::LoadScriptGroups() {
6330     if (pScriptGroups) return;
6331     pScriptGroups = new std::list<ScriptGroup*>;
6332     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6333     if (lstLS) {
6334     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6335     lst = lstLS->GetNextSubList())
6336     {
6337     if (lst->GetListType() == LIST_TYPE_RTIS) {
6338     pScriptGroups->push_back(new ScriptGroup(this, lst));
6339     }
6340     }
6341     }
6342     }
6343    
6344 schoenebeck 1098 /**
6345     * Apply all the gig file's current instruments, samples, groups and settings
6346     * to the respective RIFF chunks. You have to call Save() to make changes
6347     * persistent.
6348     *
6349     * Usually there is absolutely no need to call this method explicitly.
6350     * It will be called automatically when File::Save() was called.
6351     *
6352 schoenebeck 2682 * @param pProgress - callback function for progress notification
6353 schoenebeck 1098 * @throws Exception - on errors
6354     */
6355 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6356 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6357 persson 1192
6358 schoenebeck 2584 // update own gig format extension chunks
6359     // (not part of the GigaStudio 4 format)
6360 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6361     if (!lst3LS) {
6362     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6363     }
6364     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6365 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6366     // before the actual wave data
6367 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6368     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6369    
6370 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6371     // because the instruments' script slots will write the file offsets
6372     // of the respective instrument script chunk as reference.
6373     if (pScriptGroups) {
6374 schoenebeck 2912 // Update instrument script (group) chunks.
6375     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6376     it != pScriptGroups->end(); ++it)
6377     {
6378     (*it)->UpdateChunks(pProgress);
6379 schoenebeck 2584 }
6380     }
6381    
6382 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6383     // custom "3LS " chunk again
6384     if (!lst3LS->CountSubChunks()) {
6385     pRIFF->DeleteSubChunk(lst3LS);
6386     lst3LS = NULL;
6387     }
6388    
6389 schoenebeck 1098 // first update base class's chunks
6390 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6391 schoenebeck 929
6392 persson 1199 if (newFile) {
6393 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6394     // is placed first in file
6395 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6396 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6397     if (first != info) {
6398     pRIFF->MoveSubChunk(info, first);
6399     }
6400     }
6401    
6402 schoenebeck 1098 // update group's chunks
6403     if (pGroups) {
6404 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6405     // (before updating the Group chunks)
6406     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6407     if (!_3gri) {
6408     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6409     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6410 schoenebeck 1098 }
6411 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6412     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6413 persson 1266
6414     // v3: make sure the file has 128 3gnm chunks
6415 schoenebeck 2467 // (before updating the Group chunks)
6416 schoenebeck 3440 if (pVersion && pVersion->major > 2) {
6417 persson 1266 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6418     for (int i = 0 ; i < 128 ; i++) {
6419     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6420     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6421     }
6422     }
6423 schoenebeck 2467
6424     std::list<Group*>::iterator iter = pGroups->begin();
6425     std::list<Group*>::iterator end = pGroups->end();
6426     for (; iter != end; ++iter) {
6427 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6428 schoenebeck 2467 }
6429 schoenebeck 1098 }
6430 persson 1199
6431     // update einf chunk
6432    
6433     // The einf chunk contains statistics about the gig file, such
6434     // as the number of regions and samples used by each
6435     // instrument. It is divided in equally sized parts, where the
6436     // first part contains information about the whole gig file,
6437     // and the rest of the parts map to each instrument in the
6438     // file.
6439     //
6440     // At the end of each part there is a bit map of each sample
6441     // in the file, where a set bit means that the sample is used
6442     // by the file/instrument.
6443     //
6444     // Note that there are several fields with unknown use. These
6445     // are set to zero.
6446    
6447 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6448 persson 1199 int einfSize = (Instruments + 1) * sublen;
6449    
6450     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6451     if (einf) {
6452     if (einf->GetSize() != einfSize) {
6453     einf->Resize(einfSize);
6454     memset(einf->LoadChunkData(), 0, einfSize);
6455     }
6456     } else if (newFile) {
6457     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6458     }
6459     if (einf) {
6460     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6461    
6462     std::map<gig::Sample*,int> sampleMap;
6463     int sampleIdx = 0;
6464     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6465     sampleMap[pSample] = sampleIdx++;
6466     }
6467    
6468     int totnbusedsamples = 0;
6469     int totnbusedchannels = 0;
6470     int totnbregions = 0;
6471     int totnbdimregions = 0;
6472 persson 1264 int totnbloops = 0;
6473 persson 1199 int instrumentIdx = 0;
6474    
6475     memset(&pData[48], 0, sublen - 48);
6476    
6477     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6478     instrument = GetNextInstrument()) {
6479     int nbusedsamples = 0;
6480     int nbusedchannels = 0;
6481     int nbdimregions = 0;
6482 persson 1264 int nbloops = 0;
6483 persson 1199
6484     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6485    
6486     for (Region* region = instrument->GetFirstRegion() ; region ;
6487     region = instrument->GetNextRegion()) {
6488     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6489     gig::DimensionRegion *d = region->pDimensionRegions[i];
6490     if (d->pSample) {
6491     int sampleIdx = sampleMap[d->pSample];
6492     int byte = 48 + sampleIdx / 8;
6493     int bit = 1 << (sampleIdx & 7);
6494     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6495     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6496     nbusedsamples++;
6497     nbusedchannels += d->pSample->Channels;
6498    
6499     if ((pData[byte] & bit) == 0) {
6500     pData[byte] |= bit;
6501     totnbusedsamples++;
6502     totnbusedchannels += d->pSample->Channels;
6503     }
6504     }
6505     }
6506 persson 1264 if (d->SampleLoops) nbloops++;
6507 persson 1199 }
6508     nbdimregions += region->DimensionRegions;
6509     }
6510     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6511     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6512     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6513     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6514     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6515     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6516     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6517 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6518     // next 8 bytes unknown
6519 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6520 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6521 persson 1199 // next 4 bytes unknown
6522    
6523     totnbregions += instrument->Regions;
6524     totnbdimregions += nbdimregions;
6525 persson 1264 totnbloops += nbloops;
6526 persson 1199 instrumentIdx++;
6527     }
6528     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6529     // store32(&pData[0], sublen);
6530     store32(&pData[4], totnbusedchannels);
6531     store32(&pData[8], totnbusedsamples);
6532     store32(&pData[12], Instruments);
6533     store32(&pData[16], totnbregions);
6534     store32(&pData[20], totnbdimregions);
6535 persson 1264 store32(&pData[24], totnbloops);
6536     // next 8 bytes unknown
6537     // next 4 bytes unknown, not always 0
6538 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6539 persson 1199 // next 4 bytes unknown
6540     }
6541    
6542     // update 3crc chunk
6543    
6544     // The 3crc chunk contains CRC-32 checksums for the
6545 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6546     // chunk here (in RAM) with the old crc values which we read from the
6547     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6548     // member variable). This step is required, because samples might have
6549     // been deleted by the user since the file was opened, which in turn
6550     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6551     // If a sample was conciously modified by the user (that is if
6552     // Sample::Write() was called later on) then Sample::Write() will just
6553     // update the respective individual checksum(s) directly on disk and
6554     // leaves all other sample checksums untouched.
6555 persson 1199
6556 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6557 persson 1199 if (_3crc) {
6558     _3crc->Resize(pSamples->size() * 8);
6559 schoenebeck 2989 } else /*if (newFile)*/ {
6560 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6561 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6562 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6563 persson 1199 }
6564 schoenebeck 2989 { // must be performed in RAM here ...
6565     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6566     if (pData) {
6567     File::SampleList::iterator iter = pSamples->begin();
6568     File::SampleList::iterator end = pSamples->end();
6569     for (int index = 0; iter != end; ++iter, ++index) {
6570     gig::Sample* pSample = (gig::Sample*) *iter;
6571     pData[index*2] = 1; // always 1
6572     pData[index*2+1] = pSample->crc;
6573     }
6574     }
6575     }
6576 schoenebeck 1098 }
6577 schoenebeck 2609
6578     void File::UpdateFileOffsets() {
6579     DLS::File::UpdateFileOffsets();
6580 schoenebeck 929
6581 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6582     instrument = GetNextInstrument())
6583     {
6584     instrument->UpdateScriptFileOffsets();
6585     }
6586     }
6587    
6588 schoenebeck 1524 /**
6589     * Enable / disable automatic loading. By default this properyt is
6590     * enabled and all informations are loaded automatically. However
6591     * loading all Regions, DimensionRegions and especially samples might
6592     * take a long time for large .gig files, and sometimes one might only
6593     * be interested in retrieving very superficial informations like the
6594     * amount of instruments and their names. In this case one might disable
6595     * automatic loading to avoid very slow response times.
6596     *
6597     * @e CAUTION: by disabling this property many pointers (i.e. sample
6598     * references) and informations will have invalid or even undefined
6599     * data! This feature is currently only intended for retrieving very
6600     * superficial informations in a very fast way. Don't use it to retrieve
6601     * details like synthesis informations or even to modify .gig files!
6602     */
6603     void File::SetAutoLoad(bool b) {
6604     bAutoLoad = b;
6605     }
6606 schoenebeck 1098
6607 schoenebeck 1524 /**
6608     * Returns whether automatic loading is enabled.
6609     * @see SetAutoLoad()
6610     */
6611     bool File::GetAutoLoad() {
6612     return bAutoLoad;
6613     }
6614 schoenebeck 1098
6615 schoenebeck 1524
6616    
6617 schoenebeck 2 // *************** Exception ***************
6618     // *
6619    
6620 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6621 schoenebeck 2 }
6622    
6623 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6624     va_list arg;
6625     va_start(arg, format);
6626     Message = assemble(format, arg);
6627     va_end(arg);
6628     }
6629    
6630     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6631     Message = assemble(format, arg);
6632     }
6633    
6634 schoenebeck 2 void Exception::PrintMessage() {
6635     std::cout << "gig::Exception: " << Message << std::endl;
6636     }
6637    
6638 schoenebeck 518
6639     // *************** functions ***************
6640     // *
6641    
6642     /**
6643     * Returns the name of this C++ library. This is usually "libgig" of
6644     * course. This call is equivalent to RIFF::libraryName() and
6645     * DLS::libraryName().
6646     */
6647     String libraryName() {
6648     return PACKAGE;
6649     }
6650    
6651     /**
6652     * Returns version of this C++ library. This call is equivalent to
6653     * RIFF::libraryVersion() and DLS::libraryVersion().
6654     */
6655     String libraryVersion() {
6656     return VERSION;
6657     }
6658    
6659 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC