/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3475 - (hide annotations) (download)
Wed Feb 20 17:06:11 2019 UTC (5 years, 1 month ago) by schoenebeck
File size: 290776 byte(s)
- Fixed compiler error with older compilers.

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3474 * Copyright (C) 2003-2019 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
417 schoenebeck 809 } else { // '3gix' chunk missing
418 schoenebeck 930 // by default assigned to that mandatory "Default Group"
419     pGroup = pFile->GetGroup(0);
420 schoenebeck 809 }
421 schoenebeck 2
422 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423     if (pCkSmpl) {
424     Manufacturer = pCkSmpl->ReadInt32();
425     Product = pCkSmpl->ReadInt32();
426     SamplePeriod = pCkSmpl->ReadInt32();
427     MIDIUnityNote = pCkSmpl->ReadInt32();
428     FineTune = pCkSmpl->ReadInt32();
429     pCkSmpl->Read(&SMPTEFormat, 1, 4);
430     SMPTEOffset = pCkSmpl->ReadInt32();
431     Loops = pCkSmpl->ReadInt32();
432     pCkSmpl->ReadInt32(); // manufByt
433     LoopID = pCkSmpl->ReadInt32();
434     pCkSmpl->Read(&LoopType, 1, 4);
435     LoopStart = pCkSmpl->ReadInt32();
436     LoopEnd = pCkSmpl->ReadInt32();
437     LoopFraction = pCkSmpl->ReadInt32();
438     LoopPlayCount = pCkSmpl->ReadInt32();
439     } else { // 'smpl' chunk missing
440     // use default values
441     Manufacturer = 0;
442     Product = 0;
443 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 persson 1218 MIDIUnityNote = 60;
445 schoenebeck 809 FineTune = 0;
446 persson 1182 SMPTEFormat = smpte_format_no_offset;
447 schoenebeck 809 SMPTEOffset = 0;
448     Loops = 0;
449     LoopID = 0;
450 persson 1182 LoopType = loop_type_normal;
451 schoenebeck 809 LoopStart = 0;
452     LoopEnd = 0;
453     LoopFraction = 0;
454     LoopPlayCount = 0;
455     }
456 schoenebeck 2
457     FrameTable = NULL;
458     SamplePos = 0;
459     RAMCache.Size = 0;
460     RAMCache.pStart = NULL;
461     RAMCache.NullExtensionSize = 0;
462    
463 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464    
465 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466     Compressed = ewav;
467     Dithered = false;
468     TruncatedBits = 0;
469 schoenebeck 2 if (Compressed) {
470 persson 437 uint32_t version = ewav->ReadInt32();
471 schoenebeck 3440 if (version > 2 && BitDepth == 24) {
472 persson 437 Dithered = ewav->ReadInt32();
473     ewav->SetPos(Channels == 2 ? 84 : 64);
474     TruncatedBits = ewav->ReadInt32();
475     }
476 schoenebeck 2 ScanCompressedSample();
477     }
478 schoenebeck 317
479     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 schoenebeck 317 }
484 persson 437 FrameOffset = 0; // just for streaming compressed samples
485 schoenebeck 21
486 persson 864 LoopSize = LoopEnd - LoopStart + 1;
487 schoenebeck 2 }
488    
489 schoenebeck 809 /**
490 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
491     * the actual waveform data) and assign it to this object.
492     *
493     * Discussion: copying .gig samples is a bit tricky. It requires three
494     * steps:
495     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496     * its new sample waveform data size.
497     * 2. Saving the file (done by File::Save()) so that it gains correct size
498     * and layout for writing the actual wave form data directly to disc
499     * in next step.
500     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501     *
502     * @param orig - original Sample object to be copied from
503     */
504     void Sample::CopyAssignMeta(const Sample* orig) {
505     // handle base classes
506     DLS::Sample::CopyAssignCore(orig);
507    
508     // handle actual own attributes of this class
509     Manufacturer = orig->Manufacturer;
510     Product = orig->Product;
511     SamplePeriod = orig->SamplePeriod;
512     MIDIUnityNote = orig->MIDIUnityNote;
513     FineTune = orig->FineTune;
514     SMPTEFormat = orig->SMPTEFormat;
515     SMPTEOffset = orig->SMPTEOffset;
516     Loops = orig->Loops;
517     LoopID = orig->LoopID;
518     LoopType = orig->LoopType;
519     LoopStart = orig->LoopStart;
520     LoopEnd = orig->LoopEnd;
521     LoopSize = orig->LoopSize;
522     LoopFraction = orig->LoopFraction;
523     LoopPlayCount = orig->LoopPlayCount;
524    
525     // schedule resizing this sample to the given sample's size
526     Resize(orig->GetSize());
527     }
528    
529     /**
530     * Should be called after CopyAssignMeta() and File::Save() sequence.
531     * Read more about it in the discussion of CopyAssignMeta(). This method
532     * copies the actual waveform data by disk streaming.
533     *
534     * @e CAUTION: this method is currently not thread safe! During this
535     * operation the sample must not be used for other purposes by other
536     * threads!
537     *
538     * @param orig - original Sample object to be copied from
539     */
540     void Sample::CopyAssignWave(const Sample* orig) {
541     const int iReadAtOnce = 32*1024;
542     char* buf = new char[iReadAtOnce * orig->FrameSize];
543     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
545 schoenebeck 2482 pOrig->SetPos(0);
546     SetPos(0);
547 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
549     {
550     Write(buf, n);
551     }
552     pOrig->SetPos(restorePos);
553     delete [] buf;
554     }
555    
556     /**
557 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
558     * to call File::Save() to make changes persistent.
559     *
560     * Usually there is absolutely no need to call this method explicitly.
561     * It will be called automatically when File::Save() was called.
562     *
563 schoenebeck 2682 * @param pProgress - callback function for progress notification
564 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 schoenebeck 809 * was provided yet
566     * @throws gig::Exception if there is any invalid sample setting
567     */
568 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
569 schoenebeck 809 // first update base class's chunks
570 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
571 schoenebeck 809
572     // make sure 'smpl' chunk exists
573     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 persson 1182 if (!pCkSmpl) {
575     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576     memset(pCkSmpl->LoadChunkData(), 0, 60);
577     }
578 schoenebeck 809 // update 'smpl' chunk
579     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 persson 1179 store32(&pData[0], Manufacturer);
582     store32(&pData[4], Product);
583     store32(&pData[8], SamplePeriod);
584     store32(&pData[12], MIDIUnityNote);
585     store32(&pData[16], FineTune);
586     store32(&pData[20], SMPTEFormat);
587     store32(&pData[24], SMPTEOffset);
588     store32(&pData[28], Loops);
589 schoenebeck 809
590     // we skip 'manufByt' for now (4 bytes)
591    
592 persson 1179 store32(&pData[36], LoopID);
593     store32(&pData[40], LoopType);
594     store32(&pData[44], LoopStart);
595     store32(&pData[48], LoopEnd);
596     store32(&pData[52], LoopFraction);
597     store32(&pData[56], LoopPlayCount);
598 schoenebeck 809
599     // make sure '3gix' chunk exists
600     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
603 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
605     if (pFile->pGroups) {
606     std::list<Group*>::iterator iter = pFile->pGroups->begin();
607     std::list<Group*>::iterator end = pFile->pGroups->end();
608 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
609 schoenebeck 929 if (*iter == pGroup) {
610     iSampleGroup = i;
611     break; // found
612     }
613     }
614     }
615 schoenebeck 809 // update '3gix' chunk
616     pData = (uint8_t*) pCk3gix->LoadChunkData();
617 persson 1179 store16(&pData[0], iSampleGroup);
618 schoenebeck 2484
619     // if the library user toggled the "Compressed" attribute from true to
620     // false, then the EWAV chunk associated with compressed samples needs
621     // to be deleted
622     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623     if (ewav && !Compressed) {
624     pWaveList->DeleteSubChunk(ewav);
625     }
626 schoenebeck 809 }
627    
628 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629     void Sample::ScanCompressedSample() {
630     //TODO: we have to add some more scans here (e.g. determine compression rate)
631     this->SamplesTotal = 0;
632 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
633 schoenebeck 2
634 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636 persson 365
637 schoenebeck 2 // Scanning
638     pCkData->SetPos(0);
639 persson 365 if (Channels == 2) { // Stereo
640     for (int i = 0 ; ; i++) {
641     // for 24 bit samples every 8:th frame offset is
642     // stored, to save some memory
643     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644    
645     const int mode_l = pCkData->ReadUint8();
646     const int mode_r = pCkData->ReadUint8();
647     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649 persson 365
650     if (pCkData->RemainingBytes() <= frameSize) {
651     SamplesInLastFrame =
652     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654     SamplesTotal += SamplesInLastFrame;
655 schoenebeck 2 break;
656 persson 365 }
657     SamplesTotal += SamplesPerFrame;
658     pCkData->SetPos(frameSize, RIFF::stream_curpos);
659     }
660     }
661     else { // Mono
662     for (int i = 0 ; ; i++) {
663     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664    
665     const int mode = pCkData->ReadUint8();
666     if (mode > 5) throw gig::Exception("Unknown compression mode");
667 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
668 persson 365
669     if (pCkData->RemainingBytes() <= frameSize) {
670     SamplesInLastFrame =
671     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672     SamplesTotal += SamplesInLastFrame;
673 schoenebeck 2 break;
674 persson 365 }
675     SamplesTotal += SamplesPerFrame;
676     pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 schoenebeck 2 }
678     }
679     pCkData->SetPos(0);
680    
681     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682     if (FrameTable) delete[] FrameTable;
683 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
684     std::list<file_offset_t>::iterator end = frameOffsets.end();
685     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
687     FrameTable[i] = *iter;
688     }
689     }
690    
691     /**
692     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693     * ReleaseSampleData() to free the memory if you don't need the cached
694     * sample data anymore.
695     *
696     * @returns buffer_t structure with start address and size of the buffer
697     * in bytes
698     * @see ReleaseSampleData(), Read(), SetPos()
699     */
700     buffer_t Sample::LoadSampleData() {
701     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702     }
703    
704     /**
705     * Reads (uncompresses if needed) and caches the first \a SampleCount
706     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707     * memory space if you don't need the cached samples anymore. There is no
708     * guarantee that exactly \a SampleCount samples will be cached; this is
709     * not an error. The size will be eventually truncated e.g. to the
710     * beginning of a frame of a compressed sample. This is done for
711     * efficiency reasons while streaming the wave by your sampler engine
712     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713     * that will be returned to determine the actual cached samples, but note
714     * that the size is given in bytes! You get the number of actually cached
715     * samples by dividing it by the frame size of the sample:
716 schoenebeck 384 * @code
717 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718     * long cachedsamples = buf.Size / pSample->FrameSize;
719 schoenebeck 384 * @endcode
720 schoenebeck 2 *
721     * @param SampleCount - number of sample points to load into RAM
722     * @returns buffer_t structure with start address and size of
723     * the cached sample data in bytes
724     * @see ReleaseSampleData(), Read(), SetPos()
725     */
726 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728     }
729    
730     /**
731     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732     * ReleaseSampleData() to free the memory if you don't need the cached
733     * sample data anymore.
734     * The method will add \a NullSamplesCount silence samples past the
735     * official buffer end (this won't affect the 'Size' member of the
736     * buffer_t structure, that means 'Size' always reflects the size of the
737     * actual sample data, the buffer might be bigger though). Silence
738     * samples past the official buffer are needed for differential
739     * algorithms that always have to take subsequent samples into account
740     * (resampling/interpolation would be an important example) and avoids
741     * memory access faults in such cases.
742     *
743     * @param NullSamplesCount - number of silence samples the buffer should
744     * be extended past it's data end
745     * @returns buffer_t structure with start address and
746     * size of the buffer in bytes
747     * @see ReleaseSampleData(), Read(), SetPos()
748     */
749     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751     }
752    
753     /**
754     * Reads (uncompresses if needed) and caches the first \a SampleCount
755     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756     * memory space if you don't need the cached samples anymore. There is no
757     * guarantee that exactly \a SampleCount samples will be cached; this is
758     * not an error. The size will be eventually truncated e.g. to the
759     * beginning of a frame of a compressed sample. This is done for
760     * efficiency reasons while streaming the wave by your sampler engine
761     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762     * that will be returned to determine the actual cached samples, but note
763     * that the size is given in bytes! You get the number of actually cached
764     * samples by dividing it by the frame size of the sample:
765 schoenebeck 384 * @code
766 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767     * long cachedsamples = buf.Size / pSample->FrameSize;
768 schoenebeck 384 * @endcode
769 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
770     * official buffer end (this won't affect the 'Size' member of the
771     * buffer_t structure, that means 'Size' always reflects the size of the
772     * actual sample data, the buffer might be bigger though). Silence
773     * samples past the official buffer are needed for differential
774     * algorithms that always have to take subsequent samples into account
775     * (resampling/interpolation would be an important example) and avoids
776     * memory access faults in such cases.
777     *
778     * @param SampleCount - number of sample points to load into RAM
779     * @param NullSamplesCount - number of silence samples the buffer should
780     * be extended past it's data end
781     * @returns buffer_t structure with start address and
782     * size of the cached sample data in bytes
783     * @see ReleaseSampleData(), Read(), SetPos()
784     */
785 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
790 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
791     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793     // fill the remaining buffer space with silence samples
794     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795     return GetCache();
796     }
797    
798     /**
799     * Returns current cached sample points. A buffer_t structure will be
800     * returned which contains address pointer to the begin of the cache and
801     * the size of the cached sample data in bytes. Use
802     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803     * RAM.
804     *
805     * @returns buffer_t structure with current cached sample points
806     * @see LoadSampleData();
807     */
808     buffer_t Sample::GetCache() {
809     // return a copy of the buffer_t structure
810     buffer_t result;
811     result.Size = this->RAMCache.Size;
812     result.pStart = this->RAMCache.pStart;
813     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814     return result;
815     }
816    
817     /**
818     * Frees the cached sample from RAM if loaded with
819     * <i>LoadSampleData()</i> previously.
820     *
821     * @see LoadSampleData();
822     */
823     void Sample::ReleaseSampleData() {
824     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825     RAMCache.pStart = NULL;
826     RAMCache.Size = 0;
827 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
828 schoenebeck 2 }
829    
830 schoenebeck 809 /** @brief Resize sample.
831     *
832     * Resizes the sample's wave form data, that is the actual size of
833     * sample wave data possible to be written for this sample. This call
834     * will return immediately and just schedule the resize operation. You
835     * should call File::Save() to actually perform the resize operation(s)
836     * "physically" to the file. As this can take a while on large files, it
837     * is recommended to call Resize() first on all samples which have to be
838     * resized and finally to call File::Save() to perform all those resize
839     * operations in one rush.
840     *
841     * The actual size (in bytes) is dependant to the current FrameSize
842     * value. You may want to set FrameSize before calling Resize().
843     *
844     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845     * enlarged samples before calling File::Save() as this might exceed the
846     * current sample's boundary!
847     *
848 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 schoenebeck 809 * other formats will fail!
851     *
852 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
853     * greater than zero)
854 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
857     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858     * DLS::Sample::FormatTag, File::Save()
859     */
860 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
861 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 schoenebeck 2922 DLS::Sample::Resize(NewSize);
863 schoenebeck 809 }
864    
865 schoenebeck 2 /**
866     * Sets the position within the sample (in sample points, not in
867     * bytes). Use this method and <i>Read()</i> if you don't want to load
868     * the sample into RAM, thus for disk streaming.
869     *
870     * Although the original Gigasampler engine doesn't allow positioning
871     * within compressed samples, I decided to implement it. Even though
872     * the Gigasampler format doesn't allow to define loops for compressed
873     * samples at the moment, positioning within compressed samples might be
874     * interesting for some sampler engines though. The only drawback about
875     * my decision is that it takes longer to load compressed gig Files on
876     * startup, because it's neccessary to scan the samples for some
877     * mandatory informations. But I think as it doesn't affect the runtime
878     * efficiency, nobody will have a problem with that.
879     *
880     * @param SampleCount number of sample points to jump
881     * @param Whence optional: to which relation \a SampleCount refers
882     * to, if omited <i>RIFF::stream_start</i> is assumed
883     * @returns the new sample position
884     * @see Read()
885     */
886 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 schoenebeck 2 if (Compressed) {
888     switch (Whence) {
889     case RIFF::stream_curpos:
890     this->SamplePos += SampleCount;
891     break;
892     case RIFF::stream_end:
893     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894     break;
895     case RIFF::stream_backward:
896     this->SamplePos -= SampleCount;
897     break;
898     case RIFF::stream_start: default:
899     this->SamplePos = SampleCount;
900     break;
901     }
902     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907     return this->SamplePos;
908     }
909     else { // not compressed
910 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 schoenebeck 2 return (result == orderedBytes) ? SampleCount
913     : result / this->FrameSize;
914     }
915     }
916    
917     /**
918     * Returns the current position in the sample (in sample points).
919     */
920 schoenebeck 2912 file_offset_t Sample::GetPos() const {
921 schoenebeck 2 if (Compressed) return SamplePos;
922     else return pCkData->GetPos() / FrameSize;
923     }
924    
925     /**
926 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
927     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928     * the position within the sample respectively, this method honors the
929     * looping informations of the sample (if any). The sample wave stream
930     * will be decompressed on the fly if using a compressed sample. Use this
931     * method if you don't want to load the sample into RAM, thus for disk
932     * streaming. All this methods needs to know to proceed with streaming
933     * for the next time you call this method is stored in \a pPlaybackState.
934     * You have to allocate and initialize the playback_state_t structure by
935     * yourself before you use it to stream a sample:
936 schoenebeck 384 * @code
937     * gig::playback_state_t playbackstate;
938     * playbackstate.position = 0;
939     * playbackstate.reverse = false;
940     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941     * @endcode
942 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
943     * defined or if the current read position is located within a loop area.
944     * The method already handles such cases by itself.
945     *
946 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
947     * have to use an external decompression buffer for <b>EACH</b>
948     * streaming thread to avoid race conditions and crashes!
949     *
950 schoenebeck 24 * @param pBuffer destination buffer
951     * @param SampleCount number of sample points to read
952     * @param pPlaybackState will be used to store and reload the playback
953     * state for the next ReadAndLoop() call
954 persson 864 * @param pDimRgn dimension region with looping information
955 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 schoenebeck 24 * @returns number of successfully read sample points
957 schoenebeck 384 * @see CreateDecompressionBuffer()
958 schoenebeck 24 */
959 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
963    
964     SetPos(pPlaybackState->position); // recover position from the last time
965    
966 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967 schoenebeck 24
968 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970 schoenebeck 24
971 persson 864 if (GetPos() <= loopEnd) {
972     switch (loop.LoopType) {
973 schoenebeck 24
974 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
975     do {
976     // if not endless loop check if max. number of loop cycles have been passed
977     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978 schoenebeck 24
979 persson 864 if (!pPlaybackState->reverse) { // forward playback
980     do {
981     samplestoloopend = loopEnd - GetPos();
982     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983     samplestoread -= readsamples;
984     totalreadsamples += readsamples;
985     if (readsamples == samplestoloopend) {
986     pPlaybackState->reverse = true;
987     break;
988     }
989     } while (samplestoread && readsamples);
990     }
991     else { // backward playback
992 schoenebeck 24
993 persson 864 // as we can only read forward from disk, we have to
994     // determine the end position within the loop first,
995     // read forward from that 'end' and finally after
996     // reading, swap all sample frames so it reflects
997     // backward playback
998 schoenebeck 24
999 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1000     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003 schoenebeck 24
1004 persson 864 SetPos(reverseplaybackend);
1005 schoenebeck 24
1006 persson 864 // read samples for backward playback
1007     do {
1008     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009     samplestoreadinloop -= readsamples;
1010     samplestoread -= readsamples;
1011     totalreadsamples += readsamples;
1012     } while (samplestoreadinloop && readsamples);
1013 schoenebeck 24
1014 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016     if (reverseplaybackend == loop.LoopStart) {
1017     pPlaybackState->loop_cycles_left--;
1018     pPlaybackState->reverse = false;
1019     }
1020    
1021     // reverse the sample frames for backward playback
1022 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 schoenebeck 24 }
1025 persson 864 } while (samplestoread && readsamples);
1026     break;
1027     }
1028 schoenebeck 24
1029 persson 864 case loop_type_backward: { // TODO: not tested yet!
1030     // forward playback (not entered the loop yet)
1031     if (!pPlaybackState->reverse) do {
1032     samplestoloopend = loopEnd - GetPos();
1033     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034     samplestoread -= readsamples;
1035     totalreadsamples += readsamples;
1036     if (readsamples == samplestoloopend) {
1037     pPlaybackState->reverse = true;
1038     break;
1039     }
1040     } while (samplestoread && readsamples);
1041 schoenebeck 24
1042 persson 864 if (!samplestoread) break;
1043 schoenebeck 24
1044 persson 864 // as we can only read forward from disk, we have to
1045     // determine the end position within the loop first,
1046     // read forward from that 'end' and finally after
1047     // reading, swap all sample frames so it reflects
1048     // backward playback
1049 schoenebeck 24
1050 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1051     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 persson 864 : samplestoread;
1054 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055 schoenebeck 24
1056 persson 864 SetPos(reverseplaybackend);
1057 schoenebeck 24
1058 persson 864 // read samples for backward playback
1059     do {
1060     // if not endless loop check if max. number of loop cycles have been passed
1061     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062     samplestoloopend = loopEnd - GetPos();
1063     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064     samplestoreadinloop -= readsamples;
1065     samplestoread -= readsamples;
1066     totalreadsamples += readsamples;
1067     if (readsamples == samplestoloopend) {
1068     pPlaybackState->loop_cycles_left--;
1069     SetPos(loop.LoopStart);
1070     }
1071     } while (samplestoreadinloop && readsamples);
1072 schoenebeck 24
1073 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1074 schoenebeck 24
1075 persson 864 // reverse the sample frames for backward playback
1076     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077     break;
1078     }
1079 schoenebeck 24
1080 persson 864 default: case loop_type_normal: {
1081     do {
1082     // if not endless loop check if max. number of loop cycles have been passed
1083     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084     samplestoloopend = loopEnd - GetPos();
1085     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086     samplestoread -= readsamples;
1087     totalreadsamples += readsamples;
1088     if (readsamples == samplestoloopend) {
1089     pPlaybackState->loop_cycles_left--;
1090     SetPos(loop.LoopStart);
1091     }
1092     } while (samplestoread && readsamples);
1093     break;
1094     }
1095 schoenebeck 24 }
1096     }
1097     }
1098    
1099     // read on without looping
1100     if (samplestoread) do {
1101 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 schoenebeck 24 samplestoread -= readsamples;
1103     totalreadsamples += readsamples;
1104     } while (readsamples && samplestoread);
1105    
1106     // store current position
1107     pPlaybackState->position = GetPos();
1108    
1109     return totalreadsamples;
1110     }
1111    
1112     /**
1113 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1114     * position into the buffer pointed by \a pBuffer and increments the
1115     * position within the sample. The sample wave stream will be
1116     * decompressed on the fly if using a compressed sample. Use this method
1117     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118     * thus for disk streaming.
1119     *
1120 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1121     * have to use an external decompression buffer for <b>EACH</b>
1122     * streaming thread to avoid race conditions and crashes!
1123     *
1124 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1125     * (using native endianness). For 24 bit, the buffer will
1126     * contain three bytes per sample, little-endian.
1127     *
1128 schoenebeck 2 * @param pBuffer destination buffer
1129     * @param SampleCount number of sample points to read
1130 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 schoenebeck 2 * @returns number of successfully read sample points
1132 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1133 schoenebeck 2 */
1134 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 schoenebeck 21 if (SampleCount == 0) return 0;
1136 schoenebeck 317 if (!Compressed) {
1137     if (BitDepth == 24) {
1138 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 schoenebeck 317 }
1140 persson 365 else { // 16 bit
1141     // (pCkData->Read does endian correction)
1142     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143     : pCkData->Read(pBuffer, SampleCount, 2);
1144     }
1145 schoenebeck 317 }
1146 persson 365 else {
1147 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1149 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1150 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1151     remainingsamples = SampleCount,
1152 persson 365 copysamples, skipsamples,
1153     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 schoenebeck 2 this->FrameOffset = 0;
1155    
1156 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157    
1158     // if decompression buffer too small, then reduce amount of samples to read
1159     if (pDecompressionBuffer->Size < assumedsize) {
1160     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162     remainingsamples = SampleCount;
1163     assumedsize = GuessSize(SampleCount);
1164 schoenebeck 2 }
1165    
1166 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171 persson 365 while (remainingsamples && remainingbytes) {
1172 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1173     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174 schoenebeck 2
1175 persson 365 int mode_l = *pSrc++, mode_r = 0;
1176    
1177     if (Channels == 2) {
1178     mode_r = *pSrc++;
1179     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182     if (remainingbytes < framebytes) { // last frame in sample
1183     framesamples = SamplesInLastFrame;
1184     if (mode_l == 4 && (framesamples & 1)) {
1185     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186     }
1187     else {
1188     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189     }
1190 schoenebeck 2 }
1191     }
1192 persson 365 else {
1193     framebytes = bytesPerFrame[mode_l] + 1;
1194     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195     if (remainingbytes < framebytes) {
1196     framesamples = SamplesInLastFrame;
1197     }
1198     }
1199 schoenebeck 2
1200     // determine how many samples in this frame to skip and read
1201 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1202     if (currentframeoffset <= framesamples) {
1203     copysamples = framesamples - currentframeoffset;
1204     skipsamples = currentframeoffset;
1205     }
1206     else {
1207     copysamples = 0;
1208     skipsamples = framesamples;
1209     }
1210 schoenebeck 2 }
1211     else {
1212 persson 365 // This frame has enough data for pBuffer, but not
1213     // all of the frame is needed. Set file position
1214     // to start of this frame for next call to Read.
1215 schoenebeck 2 copysamples = remainingsamples;
1216 persson 365 skipsamples = currentframeoffset;
1217     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218     this->FrameOffset = currentframeoffset + copysamples;
1219     }
1220     remainingsamples -= copysamples;
1221    
1222     if (remainingbytes > framebytes) {
1223     remainingbytes -= framebytes;
1224     if (remainingsamples == 0 &&
1225     currentframeoffset + copysamples == framesamples) {
1226     // This frame has enough data for pBuffer, and
1227     // all of the frame is needed. Set file
1228     // position to start of next frame for next
1229     // call to Read. FrameOffset is 0.
1230 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231     }
1232     }
1233 persson 365 else remainingbytes = 0;
1234 schoenebeck 2
1235 persson 365 currentframeoffset -= skipsamples;
1236 schoenebeck 2
1237 persson 365 if (copysamples == 0) {
1238     // skip this frame
1239     pSrc += framebytes - Channels;
1240     }
1241     else {
1242     const unsigned char* const param_l = pSrc;
1243     if (BitDepth == 24) {
1244     if (mode_l != 2) pSrc += 12;
1245 schoenebeck 2
1246 persson 365 if (Channels == 2) { // Stereo
1247     const unsigned char* const param_r = pSrc;
1248     if (mode_r != 2) pSrc += 12;
1249    
1250 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 persson 437 skipsamples, copysamples, TruncatedBits);
1252 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 persson 437 skipsamples, copysamples, TruncatedBits);
1254 persson 902 pDst24 += copysamples * 6;
1255 schoenebeck 2 }
1256 persson 365 else { // Mono
1257 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 persson 437 skipsamples, copysamples, TruncatedBits);
1259 persson 902 pDst24 += copysamples * 3;
1260 schoenebeck 2 }
1261 persson 365 }
1262     else { // 16 bit
1263     if (mode_l) pSrc += 4;
1264 schoenebeck 2
1265 persson 365 int step;
1266     if (Channels == 2) { // Stereo
1267     const unsigned char* const param_r = pSrc;
1268     if (mode_r) pSrc += 4;
1269    
1270     step = (2 - mode_l) + (2 - mode_r);
1271 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 persson 365 skipsamples, copysamples);
1274     pDst += copysamples << 1;
1275 schoenebeck 2 }
1276 persson 365 else { // Mono
1277     step = 2 - mode_l;
1278 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 persson 365 pDst += copysamples;
1280 schoenebeck 2 }
1281 persson 365 }
1282     pSrc += nextFrameOffset;
1283     }
1284 schoenebeck 2
1285 persson 365 // reload from disk to local buffer if needed
1286     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287     assumedsize = GuessSize(remainingsamples);
1288     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 schoenebeck 2 }
1293 persson 365 } // while
1294    
1295 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1296 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 schoenebeck 2 return (SampleCount - remainingsamples);
1298     }
1299     }
1300    
1301 schoenebeck 809 /** @brief Write sample wave data.
1302     *
1303     * Writes \a SampleCount number of sample points from the buffer pointed
1304     * by \a pBuffer and increments the position within the sample. Use this
1305     * method to directly write the sample data to disk, i.e. if you don't
1306     * want or cannot load the whole sample data into RAM.
1307     *
1308     * You have to Resize() the sample to the desired size and call
1309     * File::Save() <b>before</b> using Write().
1310     *
1311     * Note: there is currently no support for writing compressed samples.
1312     *
1313 persson 1264 * For 16 bit samples, the data in the source buffer should be
1314     * int16_t (using native endianness). For 24 bit, the buffer
1315     * should contain three bytes per sample, little-endian.
1316     *
1317 schoenebeck 809 * @param pBuffer - source buffer
1318     * @param SampleCount - number of sample points to write
1319     * @throws DLS::Exception if current sample size is too small
1320     * @throws gig::Exception if sample is compressed
1321     * @see DLS::LoadSampleData()
1322     */
1323 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325 persson 1207
1326     // if this is the first write in this sample, reset the
1327     // checksum calculator
1328 persson 1199 if (pCkData->GetPos() == 0) {
1329 schoenebeck 1381 __resetCRC(crc);
1330 persson 1199 }
1331 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 schoenebeck 2912 file_offset_t res;
1333 persson 1264 if (BitDepth == 24) {
1334     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335     } else { // 16 bit
1336     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337     : pCkData->Write(pBuffer, SampleCount, 2);
1338     }
1339 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340 persson 1199
1341 persson 1207 // if this is the last write, update the checksum chunk in the
1342     // file
1343 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 schoenebeck 3115 __finalizeCRC(crc);
1345 persson 1199 File* pFile = static_cast<File*>(GetParent());
1346 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1347 persson 1199 }
1348     return res;
1349 schoenebeck 809 }
1350    
1351 schoenebeck 384 /**
1352     * Allocates a decompression buffer for streaming (compressed) samples
1353     * with Sample::Read(). If you are using more than one streaming thread
1354     * in your application you <b>HAVE</b> to create a decompression buffer
1355     * for <b>EACH</b> of your streaming threads and provide it with the
1356     * Sample::Read() call in order to avoid race conditions and crashes.
1357     *
1358     * You should free the memory occupied by the allocated buffer(s) once
1359     * you don't need one of your streaming threads anymore by calling
1360     * DestroyDecompressionBuffer().
1361     *
1362     * @param MaxReadSize - the maximum size (in sample points) you ever
1363     * expect to read with one Read() call
1364     * @returns allocated decompression buffer
1365     * @see DestroyDecompressionBuffer()
1366     */
1367 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 schoenebeck 384 buffer_t result;
1369     const double worstCaseHeaderOverhead =
1370     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 schoenebeck 384 result.pStart = new int8_t[result.Size];
1373     result.NullExtensionSize = 0;
1374     return result;
1375     }
1376    
1377     /**
1378     * Free decompression buffer, previously created with
1379     * CreateDecompressionBuffer().
1380     *
1381     * @param DecompressionBuffer - previously allocated decompression
1382     * buffer to free
1383     */
1384     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386     delete[] (int8_t*) DecompressionBuffer.pStart;
1387     DecompressionBuffer.pStart = NULL;
1388     DecompressionBuffer.Size = 0;
1389     DecompressionBuffer.NullExtensionSize = 0;
1390     }
1391     }
1392    
1393 schoenebeck 930 /**
1394     * Returns pointer to the Group this Sample belongs to. In the .gig
1395     * format a sample always belongs to one group. If it wasn't explicitly
1396     * assigned to a certain group, it will be automatically assigned to a
1397     * default group.
1398     *
1399     * @returns Sample's Group (never NULL)
1400     */
1401     Group* Sample::GetGroup() const {
1402     return pGroup;
1403     }
1404    
1405 schoenebeck 2985 /**
1406 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407     * time when this sample's wave form data was modified for the last time
1408     * by calling Write(). This checksum only covers the raw wave form data,
1409     * not any meta informations like i.e. bit depth or loop points. Since
1410     * this method just returns the checksum stored for this sample i.e. when
1411     * the gig file was loaded, this method returns immediately. So it does no
1412     * recalcuation of the checksum with the currently available sample wave
1413     * form data.
1414     *
1415     * @see VerifyWaveData()
1416     */
1417     uint32_t Sample::GetWaveDataCRC32Checksum() {
1418     return crc;
1419     }
1420    
1421     /**
1422 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423     * Sample's raw wave data is intentionally modified (i.e. by calling
1424     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425     * is calculated and stored/updated for this sample, along to the sample's
1426     * meta informations.
1427     *
1428     * Now by calling this method the current raw audio wave data is checked
1429     * against the already stored CRC32 check sum in order to check whether the
1430     * sample data had been damaged unintentionally for some reason. Since by
1431     * calling this method always the entire raw audio wave data has to be
1432     * read, verifying all samples this way may take a long time accordingly.
1433     * And that's also the reason why the sample integrity is not checked by
1434     * default whenever a gig file is loaded. So this method must be called
1435     * explicitly to fulfill this task.
1436     *
1437 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1438     * calculated checksum of the current raw wave form data,
1439     * you can get the expected checksum instead by calling
1440     * GetWaveDataCRC32Checksum()
1441 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1442     * @throws Exception if no checksum had been stored to disk for this
1443     * sample yet, or on I/O issues
1444 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1445 schoenebeck 2985 */
1446 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1448 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1449 schoenebeck 2989 if (pActually) *pActually = crc;
1450     return crc == this->crc;
1451 schoenebeck 2985 }
1452    
1453     uint32_t Sample::CalculateWaveDataChecksum() {
1454     const size_t sz = 20*1024; // 20kB buffer size
1455     std::vector<uint8_t> buffer(sz);
1456     buffer.resize(sz);
1457    
1458     const size_t n = sz / FrameSize;
1459     SetPos(0);
1460     uint32_t crc = 0;
1461     __resetCRC(crc);
1462     while (true) {
1463     file_offset_t nRead = Read(&buffer[0], n);
1464     if (nRead <= 0) break;
1465     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466     }
1467 schoenebeck 3115 __finalizeCRC(crc);
1468 schoenebeck 2985 return crc;
1469     }
1470    
1471 schoenebeck 2 Sample::~Sample() {
1472     Instances--;
1473 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1474     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475     InternalDecompressionBuffer.pStart = NULL;
1476     InternalDecompressionBuffer.Size = 0;
1477 schoenebeck 355 }
1478 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1479     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480     }
1481    
1482    
1483    
1484     // *************** DimensionRegion ***************
1485     // *
1486    
1487 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1488 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 schoenebeck 16 Instances++;
1492    
1493 schoenebeck 823 pSample = NULL;
1494 schoenebeck 1316 pRegion = pParent;
1495 schoenebeck 823
1496 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497     else memset(&Crossfade, 0, 4);
1498    
1499 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500 schoenebeck 2
1501     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1503 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506     _3ewa->ReadInt16(); // unknown
1507     LFO1InternalDepth = _3ewa->ReadUint16();
1508     _3ewa->ReadInt16(); // unknown
1509     LFO3InternalDepth = _3ewa->ReadInt16();
1510     _3ewa->ReadInt16(); // unknown
1511     LFO1ControlDepth = _3ewa->ReadUint16();
1512     _3ewa->ReadInt16(); // unknown
1513     LFO3ControlDepth = _3ewa->ReadInt16();
1514     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516     _3ewa->ReadInt16(); // unknown
1517     EG1Sustain = _3ewa->ReadUint16();
1518     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521     EG1ControllerInvert = eg1ctrloptions & 0x01;
1522     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527     EG2ControllerInvert = eg2ctrloptions & 0x01;
1528     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534     _3ewa->ReadInt16(); // unknown
1535     EG2Sustain = _3ewa->ReadUint16();
1536     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537     _3ewa->ReadInt16(); // unknown
1538     LFO2ControlDepth = _3ewa->ReadUint16();
1539     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     _3ewa->ReadInt16(); // unknown
1541     LFO2InternalDepth = _3ewa->ReadUint16();
1542     int32_t eg1decay2 = _3ewa->ReadInt32();
1543     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545     _3ewa->ReadInt16(); // unknown
1546     EG1PreAttack = _3ewa->ReadUint16();
1547     int32_t eg2decay2 = _3ewa->ReadInt32();
1548     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550     _3ewa->ReadInt16(); // unknown
1551     EG2PreAttack = _3ewa->ReadUint16();
1552     uint8_t velocityresponse = _3ewa->ReadUint8();
1553     if (velocityresponse < 5) {
1554     VelocityResponseCurve = curve_type_nonlinear;
1555     VelocityResponseDepth = velocityresponse;
1556     } else if (velocityresponse < 10) {
1557     VelocityResponseCurve = curve_type_linear;
1558     VelocityResponseDepth = velocityresponse - 5;
1559     } else if (velocityresponse < 15) {
1560     VelocityResponseCurve = curve_type_special;
1561     VelocityResponseDepth = velocityresponse - 10;
1562     } else {
1563     VelocityResponseCurve = curve_type_unknown;
1564     VelocityResponseDepth = 0;
1565     }
1566     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567     if (releasevelocityresponse < 5) {
1568     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569     ReleaseVelocityResponseDepth = releasevelocityresponse;
1570     } else if (releasevelocityresponse < 10) {
1571     ReleaseVelocityResponseCurve = curve_type_linear;
1572     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573     } else if (releasevelocityresponse < 15) {
1574     ReleaseVelocityResponseCurve = curve_type_special;
1575     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576     } else {
1577     ReleaseVelocityResponseCurve = curve_type_unknown;
1578     ReleaseVelocityResponseDepth = 0;
1579     }
1580     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581     AttenuationControllerThreshold = _3ewa->ReadInt8();
1582     _3ewa->ReadInt32(); // unknown
1583     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584     _3ewa->ReadInt16(); // unknown
1585     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589     else DimensionBypass = dim_bypass_ctrl_none;
1590     uint8_t pan = _3ewa->ReadUint8();
1591     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592     SelfMask = _3ewa->ReadInt8() & 0x01;
1593     _3ewa->ReadInt8(); // unknown
1594     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609     : vcf_res_ctrl_none;
1610     uint16_t eg3depth = _3ewa->ReadUint16();
1611     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1614     ChannelOffset = _3ewa->ReadUint8() / 4;
1615     uint8_t regoptions = _3ewa->ReadUint8();
1616     MSDecode = regoptions & 0x01; // bit 0
1617     SustainDefeat = regoptions & 0x02; // bit 1
1618     _3ewa->ReadInt16(); // unknown
1619     VelocityUpperLimit = _3ewa->ReadInt8();
1620     _3ewa->ReadInt8(); // unknown
1621     _3ewa->ReadInt16(); // unknown
1622     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623     _3ewa->ReadInt8(); // unknown
1624     _3ewa->ReadInt8(); // unknown
1625     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626     uint8_t vcfcutoff = _3ewa->ReadUint8();
1627     VCFEnabled = vcfcutoff & 0x80; // bit 7
1628     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630     uint8_t vcfvelscale = _3ewa->ReadUint8();
1631     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633     _3ewa->ReadInt8(); // unknown
1634     uint8_t vcfresonance = _3ewa->ReadUint8();
1635     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640     uint8_t vcfvelocity = _3ewa->ReadUint8();
1641     VCFVelocityDynamicRange = vcfvelocity % 5;
1642     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644     if (VCFType == vcf_type_lowpass) {
1645     if (lfo3ctrl & 0x40) // bit 6
1646     VCFType = vcf_type_lowpassturbo;
1647     }
1648 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1649     _3ewa->Read(DimensionUpperLimits, 1, 8);
1650     } else {
1651     memset(DimensionUpperLimits, 0, 8);
1652     }
1653 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1654     // use default values
1655     LFO3Frequency = 1.0;
1656     EG3Attack = 0.0;
1657     LFO1InternalDepth = 0;
1658     LFO3InternalDepth = 0;
1659     LFO1ControlDepth = 0;
1660     LFO3ControlDepth = 0;
1661     EG1Attack = 0.0;
1662 persson 1218 EG1Decay1 = 0.005;
1663     EG1Sustain = 1000;
1664     EG1Release = 0.3;
1665 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1666     EG1Controller.controller_number = 0;
1667     EG1ControllerInvert = false;
1668     EG1ControllerAttackInfluence = 0;
1669     EG1ControllerDecayInfluence = 0;
1670     EG1ControllerReleaseInfluence = 0;
1671     EG2Controller.type = eg2_ctrl_t::type_none;
1672     EG2Controller.controller_number = 0;
1673     EG2ControllerInvert = false;
1674     EG2ControllerAttackInfluence = 0;
1675     EG2ControllerDecayInfluence = 0;
1676     EG2ControllerReleaseInfluence = 0;
1677     LFO1Frequency = 1.0;
1678     EG2Attack = 0.0;
1679 persson 1218 EG2Decay1 = 0.005;
1680     EG2Sustain = 1000;
1681 schoenebeck 2990 EG2Release = 60;
1682 schoenebeck 809 LFO2ControlDepth = 0;
1683     LFO2Frequency = 1.0;
1684     LFO2InternalDepth = 0;
1685     EG1Decay2 = 0.0;
1686 persson 1218 EG1InfiniteSustain = true;
1687     EG1PreAttack = 0;
1688 schoenebeck 809 EG2Decay2 = 0.0;
1689 persson 1218 EG2InfiniteSustain = true;
1690     EG2PreAttack = 0;
1691 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1692     VelocityResponseDepth = 3;
1693     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694     ReleaseVelocityResponseDepth = 3;
1695     VelocityResponseCurveScaling = 32;
1696     AttenuationControllerThreshold = 0;
1697     SampleStartOffset = 0;
1698     PitchTrack = true;
1699     DimensionBypass = dim_bypass_ctrl_none;
1700     Pan = 0;
1701     SelfMask = true;
1702     LFO3Controller = lfo3_ctrl_modwheel;
1703     LFO3Sync = false;
1704     InvertAttenuationController = false;
1705     AttenuationController.type = attenuation_ctrl_t::type_none;
1706     AttenuationController.controller_number = 0;
1707     LFO2Controller = lfo2_ctrl_internal;
1708     LFO2FlipPhase = false;
1709     LFO2Sync = false;
1710     LFO1Controller = lfo1_ctrl_internal;
1711     LFO1FlipPhase = false;
1712     LFO1Sync = false;
1713     VCFResonanceController = vcf_res_ctrl_none;
1714     EG3Depth = 0;
1715     ChannelOffset = 0;
1716     MSDecode = false;
1717     SustainDefeat = false;
1718     VelocityUpperLimit = 0;
1719     ReleaseTriggerDecay = 0;
1720     EG1Hold = false;
1721     VCFEnabled = false;
1722     VCFCutoff = 0;
1723     VCFCutoffController = vcf_cutoff_ctrl_none;
1724     VCFCutoffControllerInvert = false;
1725     VCFVelocityScale = 0;
1726     VCFResonance = 0;
1727     VCFResonanceDynamic = false;
1728     VCFKeyboardTracking = false;
1729     VCFKeyboardTrackingBreakpoint = 0;
1730     VCFVelocityDynamicRange = 0x04;
1731     VCFVelocityCurve = curve_type_linear;
1732     VCFType = vcf_type_lowpass;
1733 persson 1247 memset(DimensionUpperLimits, 127, 8);
1734 schoenebeck 2 }
1735 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1736 schoenebeck 3323 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1737 schoenebeck 3442 if (lsde) { // format extension for EG behavior options
1738 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1739 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1740 schoenebeck 3327 unsigned char byte = lsde->ReadUint8();
1741     pEGOpts[i]->AttackCancel = byte & 1;
1742     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1743     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1744     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1745     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1746     }
1747 schoenebeck 3323 }
1748 schoenebeck 3442 // format extension for sustain pedal up effect on release trigger samples
1749     if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1750     lsde->SetPos(3);
1751 schoenebeck 3446 uint8_t byte = lsde->ReadUint8();
1752     SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1753     NoNoteOffReleaseTrigger = byte >> 7;
1754     } else {
1755     SustainReleaseTrigger = sust_rel_trg_none;
1756     NoNoteOffReleaseTrigger = false;
1757     }
1758 schoenebeck 16
1759 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1760     VelocityResponseDepth,
1761     VelocityResponseCurveScaling);
1762    
1763 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1764     ReleaseVelocityResponseCurve,
1765     ReleaseVelocityResponseDepth
1766     );
1767 persson 613
1768 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1769     VCFVelocityDynamicRange,
1770     VCFVelocityScale,
1771     VCFCutoffController);
1772 persson 613
1773     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1774 persson 858 VelocityTable = 0;
1775 persson 613 }
1776    
1777 persson 1301 /*
1778     * Constructs a DimensionRegion by copying all parameters from
1779     * another DimensionRegion
1780     */
1781     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1782     Instances++;
1783 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1784 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1785     pParentList = _3ewl; // restore the chunk pointer
1786    
1787     // deep copy of owned structures
1788     if (src.VelocityTable) {
1789     VelocityTable = new uint8_t[128];
1790     for (int k = 0 ; k < 128 ; k++)
1791     VelocityTable[k] = src.VelocityTable[k];
1792     }
1793     if (src.pSampleLoops) {
1794     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1795     for (int k = 0 ; k < src.SampleLoops ; k++)
1796     pSampleLoops[k] = src.pSampleLoops[k];
1797     }
1798     }
1799 schoenebeck 2394
1800     /**
1801     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1802     * and assign it to this object.
1803     *
1804     * Note that all sample pointers referenced by @a orig are simply copied as
1805     * memory address. Thus the respective samples are shared, not duplicated!
1806     *
1807     * @param orig - original DimensionRegion object to be copied from
1808     */
1809     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1810 schoenebeck 2482 CopyAssign(orig, NULL);
1811     }
1812    
1813     /**
1814     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1815     * and assign it to this object.
1816     *
1817     * @param orig - original DimensionRegion object to be copied from
1818     * @param mSamples - crosslink map between the foreign file's samples and
1819     * this file's samples
1820     */
1821     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1822 schoenebeck 2394 // delete all allocated data first
1823     if (VelocityTable) delete [] VelocityTable;
1824     if (pSampleLoops) delete [] pSampleLoops;
1825    
1826     // backup parent list pointer
1827     RIFF::List* p = pParentList;
1828    
1829 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1830     gig::Region* pOriginalRegion = pRegion;
1831    
1832 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1833    
1834     *this = *orig; // default memberwise shallow copy of all parameters
1835 schoenebeck 2547
1836     // restore members that shall not be altered
1837 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1838 schoenebeck 2547 pRegion = pOriginalRegion;
1839 schoenebeck 2482
1840 schoenebeck 2547 // only take the raw sample reference reference if the
1841 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1842     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1843     pSample = pOriginalSample;
1844     }
1845    
1846     if (mSamples && mSamples->count(orig->pSample)) {
1847     pSample = mSamples->find(orig->pSample)->second;
1848     }
1849 persson 1301
1850 schoenebeck 2394 // deep copy of owned structures
1851     if (orig->VelocityTable) {
1852     VelocityTable = new uint8_t[128];
1853     for (int k = 0 ; k < 128 ; k++)
1854     VelocityTable[k] = orig->VelocityTable[k];
1855     }
1856     if (orig->pSampleLoops) {
1857     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1858     for (int k = 0 ; k < orig->SampleLoops ; k++)
1859     pSampleLoops[k] = orig->pSampleLoops[k];
1860     }
1861     }
1862    
1863 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1864 schoenebeck 3182 // in case this class will become backward incompatible one day,
1865     // then set a version and minimum version for this class like:
1866     //archive->setVersion(*this, 2);
1867     //archive->setMinVersion(*this, 1);
1868    
1869 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1870     SRLZ(EG1PreAttack);
1871     SRLZ(EG1Attack);
1872     SRLZ(EG1Decay1);
1873     SRLZ(EG1Decay2);
1874     SRLZ(EG1InfiniteSustain);
1875     SRLZ(EG1Sustain);
1876     SRLZ(EG1Release);
1877     SRLZ(EG1Hold);
1878     SRLZ(EG1Controller);
1879     SRLZ(EG1ControllerInvert);
1880     SRLZ(EG1ControllerAttackInfluence);
1881     SRLZ(EG1ControllerDecayInfluence);
1882     SRLZ(EG1ControllerReleaseInfluence);
1883     SRLZ(LFO1Frequency);
1884     SRLZ(LFO1InternalDepth);
1885     SRLZ(LFO1ControlDepth);
1886     SRLZ(LFO1Controller);
1887     SRLZ(LFO1FlipPhase);
1888     SRLZ(LFO1Sync);
1889     SRLZ(EG2PreAttack);
1890     SRLZ(EG2Attack);
1891     SRLZ(EG2Decay1);
1892     SRLZ(EG2Decay2);
1893     SRLZ(EG2InfiniteSustain);
1894     SRLZ(EG2Sustain);
1895     SRLZ(EG2Release);
1896     SRLZ(EG2Controller);
1897     SRLZ(EG2ControllerInvert);
1898     SRLZ(EG2ControllerAttackInfluence);
1899     SRLZ(EG2ControllerDecayInfluence);
1900     SRLZ(EG2ControllerReleaseInfluence);
1901     SRLZ(LFO2Frequency);
1902     SRLZ(LFO2InternalDepth);
1903     SRLZ(LFO2ControlDepth);
1904     SRLZ(LFO2Controller);
1905     SRLZ(LFO2FlipPhase);
1906     SRLZ(LFO2Sync);
1907     SRLZ(EG3Attack);
1908     SRLZ(EG3Depth);
1909     SRLZ(LFO3Frequency);
1910     SRLZ(LFO3InternalDepth);
1911     SRLZ(LFO3ControlDepth);
1912     SRLZ(LFO3Controller);
1913     SRLZ(LFO3Sync);
1914     SRLZ(VCFEnabled);
1915     SRLZ(VCFType);
1916     SRLZ(VCFCutoffController);
1917     SRLZ(VCFCutoffControllerInvert);
1918     SRLZ(VCFCutoff);
1919     SRLZ(VCFVelocityCurve);
1920     SRLZ(VCFVelocityScale);
1921     SRLZ(VCFVelocityDynamicRange);
1922     SRLZ(VCFResonance);
1923     SRLZ(VCFResonanceDynamic);
1924     SRLZ(VCFResonanceController);
1925     SRLZ(VCFKeyboardTracking);
1926     SRLZ(VCFKeyboardTrackingBreakpoint);
1927     SRLZ(VelocityResponseCurve);
1928     SRLZ(VelocityResponseDepth);
1929     SRLZ(VelocityResponseCurveScaling);
1930     SRLZ(ReleaseVelocityResponseCurve);
1931     SRLZ(ReleaseVelocityResponseDepth);
1932     SRLZ(ReleaseTriggerDecay);
1933     SRLZ(Crossfade);
1934     SRLZ(PitchTrack);
1935     SRLZ(DimensionBypass);
1936     SRLZ(Pan);
1937     SRLZ(SelfMask);
1938     SRLZ(AttenuationController);
1939     SRLZ(InvertAttenuationController);
1940     SRLZ(AttenuationControllerThreshold);
1941     SRLZ(ChannelOffset);
1942     SRLZ(SustainDefeat);
1943     SRLZ(MSDecode);
1944     //SRLZ(SampleStartOffset);
1945     SRLZ(SampleAttenuation);
1946 schoenebeck 3327 SRLZ(EG1Options);
1947     SRLZ(EG2Options);
1948 schoenebeck 3442 SRLZ(SustainReleaseTrigger);
1949 schoenebeck 3446 SRLZ(NoNoteOffReleaseTrigger);
1950 schoenebeck 3138
1951     // derived attributes from DLS::Sampler
1952     SRLZ(FineTune);
1953     SRLZ(Gain);
1954     }
1955    
1956 schoenebeck 809 /**
1957 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1958     * which depends on this value.
1959     */
1960     void DimensionRegion::SetGain(int32_t gain) {
1961     DLS::Sampler::SetGain(gain);
1962     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1963     }
1964    
1965     /**
1966 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1967     * have to call File::Save() to make changes persistent.
1968     *
1969     * Usually there is absolutely no need to call this method explicitly.
1970     * It will be called automatically when File::Save() was called.
1971 schoenebeck 2682 *
1972     * @param pProgress - callback function for progress notification
1973 schoenebeck 809 */
1974 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1975 schoenebeck 809 // first update base class's chunk
1976 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1977 schoenebeck 809
1978 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1979     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1980     pData[12] = Crossfade.in_start;
1981     pData[13] = Crossfade.in_end;
1982     pData[14] = Crossfade.out_start;
1983     pData[15] = Crossfade.out_end;
1984    
1985 schoenebeck 809 // make sure '3ewa' chunk exists
1986     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1987 persson 1317 if (!_3ewa) {
1988     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1989 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
1990     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
1991 persson 1264 }
1992 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1993 schoenebeck 809
1994     // update '3ewa' chunk with DimensionRegion's current settings
1995    
1996 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1997 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1998 schoenebeck 809
1999     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2000 persson 1179 store32(&pData[4], lfo3freq);
2001 schoenebeck 809
2002     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2003 persson 1179 store32(&pData[8], eg3attack);
2004 schoenebeck 809
2005     // next 2 bytes unknown
2006    
2007 persson 1179 store16(&pData[14], LFO1InternalDepth);
2008 schoenebeck 809
2009     // next 2 bytes unknown
2010    
2011 persson 1179 store16(&pData[18], LFO3InternalDepth);
2012 schoenebeck 809
2013     // next 2 bytes unknown
2014    
2015 persson 1179 store16(&pData[22], LFO1ControlDepth);
2016 schoenebeck 809
2017     // next 2 bytes unknown
2018    
2019 persson 1179 store16(&pData[26], LFO3ControlDepth);
2020 schoenebeck 809
2021     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2022 persson 1179 store32(&pData[28], eg1attack);
2023 schoenebeck 809
2024     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2025 persson 1179 store32(&pData[32], eg1decay1);
2026 schoenebeck 809
2027     // next 2 bytes unknown
2028    
2029 persson 1179 store16(&pData[38], EG1Sustain);
2030 schoenebeck 809
2031     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2032 persson 1179 store32(&pData[40], eg1release);
2033 schoenebeck 809
2034     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2035 persson 1179 pData[44] = eg1ctl;
2036 schoenebeck 809
2037     const uint8_t eg1ctrloptions =
2038 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2039 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2040     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2041     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2042 persson 1179 pData[45] = eg1ctrloptions;
2043 schoenebeck 809
2044     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2045 persson 1179 pData[46] = eg2ctl;
2046 schoenebeck 809
2047     const uint8_t eg2ctrloptions =
2048 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2049 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2050     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2051     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2052 persson 1179 pData[47] = eg2ctrloptions;
2053 schoenebeck 809
2054     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2055 persson 1179 store32(&pData[48], lfo1freq);
2056 schoenebeck 809
2057     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2058 persson 1179 store32(&pData[52], eg2attack);
2059 schoenebeck 809
2060     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2061 persson 1179 store32(&pData[56], eg2decay1);
2062 schoenebeck 809
2063     // next 2 bytes unknown
2064    
2065 persson 1179 store16(&pData[62], EG2Sustain);
2066 schoenebeck 809
2067     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2068 persson 1179 store32(&pData[64], eg2release);
2069 schoenebeck 809
2070     // next 2 bytes unknown
2071    
2072 persson 1179 store16(&pData[70], LFO2ControlDepth);
2073 schoenebeck 809
2074     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2075 persson 1179 store32(&pData[72], lfo2freq);
2076 schoenebeck 809
2077     // next 2 bytes unknown
2078    
2079 persson 1179 store16(&pData[78], LFO2InternalDepth);
2080 schoenebeck 809
2081     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2082 persson 1179 store32(&pData[80], eg1decay2);
2083 schoenebeck 809
2084     // next 2 bytes unknown
2085    
2086 persson 1179 store16(&pData[86], EG1PreAttack);
2087 schoenebeck 809
2088     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2089 persson 1179 store32(&pData[88], eg2decay2);
2090 schoenebeck 809
2091     // next 2 bytes unknown
2092    
2093 persson 1179 store16(&pData[94], EG2PreAttack);
2094 schoenebeck 809
2095     {
2096     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2097     uint8_t velocityresponse = VelocityResponseDepth;
2098     switch (VelocityResponseCurve) {
2099     case curve_type_nonlinear:
2100     break;
2101     case curve_type_linear:
2102     velocityresponse += 5;
2103     break;
2104     case curve_type_special:
2105     velocityresponse += 10;
2106     break;
2107     case curve_type_unknown:
2108     default:
2109     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2110     }
2111 persson 1179 pData[96] = velocityresponse;
2112 schoenebeck 809 }
2113    
2114     {
2115     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2116     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2117     switch (ReleaseVelocityResponseCurve) {
2118     case curve_type_nonlinear:
2119     break;
2120     case curve_type_linear:
2121     releasevelocityresponse += 5;
2122     break;
2123     case curve_type_special:
2124     releasevelocityresponse += 10;
2125     break;
2126     case curve_type_unknown:
2127     default:
2128     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2129     }
2130 persson 1179 pData[97] = releasevelocityresponse;
2131 schoenebeck 809 }
2132    
2133 persson 1179 pData[98] = VelocityResponseCurveScaling;
2134 schoenebeck 809
2135 persson 1179 pData[99] = AttenuationControllerThreshold;
2136 schoenebeck 809
2137     // next 4 bytes unknown
2138    
2139 persson 1179 store16(&pData[104], SampleStartOffset);
2140 schoenebeck 809
2141     // next 2 bytes unknown
2142    
2143     {
2144     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2145     switch (DimensionBypass) {
2146     case dim_bypass_ctrl_94:
2147     pitchTrackDimensionBypass |= 0x10;
2148     break;
2149     case dim_bypass_ctrl_95:
2150     pitchTrackDimensionBypass |= 0x20;
2151     break;
2152     case dim_bypass_ctrl_none:
2153     //FIXME: should we set anything here?
2154     break;
2155     default:
2156     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2157     }
2158 persson 1179 pData[108] = pitchTrackDimensionBypass;
2159 schoenebeck 809 }
2160    
2161     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2162 persson 1179 pData[109] = pan;
2163 schoenebeck 809
2164     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2165 persson 1179 pData[110] = selfmask;
2166 schoenebeck 809
2167     // next byte unknown
2168    
2169     {
2170     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2171     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2172     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2173     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2174 persson 1179 pData[112] = lfo3ctrl;
2175 schoenebeck 809 }
2176    
2177     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2178 persson 1179 pData[113] = attenctl;
2179 schoenebeck 809
2180     {
2181     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2182     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2183     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2184     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2185 persson 1179 pData[114] = lfo2ctrl;
2186 schoenebeck 809 }
2187    
2188     {
2189     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2190     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2191     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2192     if (VCFResonanceController != vcf_res_ctrl_none)
2193     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2194 persson 1179 pData[115] = lfo1ctrl;
2195 schoenebeck 809 }
2196    
2197     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2198 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2199 persson 1869 store16(&pData[116], eg3depth);
2200 schoenebeck 809
2201     // next 2 bytes unknown
2202    
2203     const uint8_t channeloffset = ChannelOffset * 4;
2204 persson 1179 pData[120] = channeloffset;
2205 schoenebeck 809
2206     {
2207     uint8_t regoptions = 0;
2208     if (MSDecode) regoptions |= 0x01; // bit 0
2209     if (SustainDefeat) regoptions |= 0x02; // bit 1
2210 persson 1179 pData[121] = regoptions;
2211 schoenebeck 809 }
2212    
2213     // next 2 bytes unknown
2214    
2215 persson 1179 pData[124] = VelocityUpperLimit;
2216 schoenebeck 809
2217     // next 3 bytes unknown
2218    
2219 persson 1179 pData[128] = ReleaseTriggerDecay;
2220 schoenebeck 809
2221     // next 2 bytes unknown
2222    
2223     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2224 persson 1179 pData[131] = eg1hold;
2225 schoenebeck 809
2226 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2227 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2228 persson 1179 pData[132] = vcfcutoff;
2229 schoenebeck 809
2230 persson 1179 pData[133] = VCFCutoffController;
2231 schoenebeck 809
2232 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2233 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2234 persson 1179 pData[134] = vcfvelscale;
2235 schoenebeck 809
2236     // next byte unknown
2237    
2238 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2239 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2240 persson 1179 pData[136] = vcfresonance;
2241 schoenebeck 809
2242 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2243 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2244 persson 1179 pData[137] = vcfbreakpoint;
2245 schoenebeck 809
2246 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2247 schoenebeck 809 VCFVelocityCurve * 5;
2248 persson 1179 pData[138] = vcfvelocity;
2249 schoenebeck 809
2250     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2251 persson 1179 pData[139] = vcftype;
2252 persson 1070
2253     if (chunksize >= 148) {
2254     memcpy(&pData[140], DimensionUpperLimits, 8);
2255     }
2256 schoenebeck 3323
2257 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with
2258 schoenebeck 3323 // Gigasampler/GigaStudio !
2259     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2260 schoenebeck 3442 const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2261 schoenebeck 3323 if (!lsde) {
2262 schoenebeck 3446 // only add this "LSDE" chunk if either EG options or release
2263     // trigger options deviate from their default behaviour
2264 schoenebeck 3323 eg_opt_t defaultOpt;
2265 schoenebeck 3327 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2266 schoenebeck 3442 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2267 schoenebeck 3446 SustainReleaseTrigger || NoNoteOffReleaseTrigger)
2268 schoenebeck 3327 {
2269 schoenebeck 3442 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2270 schoenebeck 3323 // move LSDE chunk to the end of parent list
2271     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2272     }
2273     }
2274     if (lsde) {
2275 schoenebeck 3442 if (lsde->GetNewSize() < lsdeSize)
2276     lsde->Resize(lsdeSize);
2277     // format extension for EG behavior options
2278 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2279     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2280 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2281 schoenebeck 3327 pData[i] =
2282     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2283     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2284     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2285     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2286     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2287     }
2288 schoenebeck 3446 // format extension for release trigger options
2289     pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2290 schoenebeck 3323 }
2291 schoenebeck 809 }
2292    
2293 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2294     curve_type_t curveType = releaseVelocityResponseCurve;
2295     uint8_t depth = releaseVelocityResponseDepth;
2296     // this models a strange behaviour or bug in GSt: two of the
2297     // velocity response curves for release time are not used even
2298     // if specified, instead another curve is chosen.
2299     if ((curveType == curve_type_nonlinear && depth == 0) ||
2300     (curveType == curve_type_special && depth == 4)) {
2301     curveType = curve_type_nonlinear;
2302     depth = 3;
2303     }
2304     return GetVelocityTable(curveType, depth, 0);
2305     }
2306    
2307     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2308     uint8_t vcfVelocityDynamicRange,
2309     uint8_t vcfVelocityScale,
2310     vcf_cutoff_ctrl_t vcfCutoffController)
2311     {
2312     curve_type_t curveType = vcfVelocityCurve;
2313     uint8_t depth = vcfVelocityDynamicRange;
2314     // even stranger GSt: two of the velocity response curves for
2315     // filter cutoff are not used, instead another special curve
2316     // is chosen. This curve is not used anywhere else.
2317     if ((curveType == curve_type_nonlinear && depth == 0) ||
2318     (curveType == curve_type_special && depth == 4)) {
2319     curveType = curve_type_special;
2320     depth = 5;
2321     }
2322     return GetVelocityTable(curveType, depth,
2323     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2324     ? vcfVelocityScale : 0);
2325     }
2326    
2327 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2328     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2329     {
2330 schoenebeck 3349 // sanity check input parameters
2331     // (fallback to some default parameters on ill input)
2332     switch (curveType) {
2333     case curve_type_nonlinear:
2334     case curve_type_linear:
2335     if (depth > 4) {
2336     printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2337     depth = 0;
2338     scaling = 0;
2339     }
2340     break;
2341     case curve_type_special:
2342     if (depth > 5) {
2343     printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2344     depth = 0;
2345     scaling = 0;
2346     }
2347     break;
2348     case curve_type_unknown:
2349     default:
2350     printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2351     curveType = curve_type_linear;
2352     depth = 0;
2353     scaling = 0;
2354     break;
2355     }
2356    
2357 persson 613 double* table;
2358     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2359 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2360 persson 613 table = (*pVelocityTables)[tableKey];
2361 schoenebeck 16 }
2362     else {
2363 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2364     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2365 schoenebeck 16 }
2366 persson 613 return table;
2367 schoenebeck 2 }
2368 schoenebeck 55
2369 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2370     return pRegion;
2371     }
2372    
2373 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2374     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2375     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2376     //#pragma GCC diagnostic push
2377     //#pragma GCC diagnostic error "-Wswitch"
2378    
2379 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2380     leverage_ctrl_t decodedcontroller;
2381     switch (EncodedController) {
2382     // special controller
2383     case _lev_ctrl_none:
2384     decodedcontroller.type = leverage_ctrl_t::type_none;
2385     decodedcontroller.controller_number = 0;
2386     break;
2387     case _lev_ctrl_velocity:
2388     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2389     decodedcontroller.controller_number = 0;
2390     break;
2391     case _lev_ctrl_channelaftertouch:
2392     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2393     decodedcontroller.controller_number = 0;
2394     break;
2395 schoenebeck 55
2396 schoenebeck 36 // ordinary MIDI control change controller
2397     case _lev_ctrl_modwheel:
2398     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399     decodedcontroller.controller_number = 1;
2400     break;
2401     case _lev_ctrl_breath:
2402     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403     decodedcontroller.controller_number = 2;
2404     break;
2405     case _lev_ctrl_foot:
2406     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407     decodedcontroller.controller_number = 4;
2408     break;
2409     case _lev_ctrl_effect1:
2410     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411     decodedcontroller.controller_number = 12;
2412     break;
2413     case _lev_ctrl_effect2:
2414     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415     decodedcontroller.controller_number = 13;
2416     break;
2417     case _lev_ctrl_genpurpose1:
2418     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419     decodedcontroller.controller_number = 16;
2420     break;
2421     case _lev_ctrl_genpurpose2:
2422     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423     decodedcontroller.controller_number = 17;
2424     break;
2425     case _lev_ctrl_genpurpose3:
2426     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427     decodedcontroller.controller_number = 18;
2428     break;
2429     case _lev_ctrl_genpurpose4:
2430     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431     decodedcontroller.controller_number = 19;
2432     break;
2433     case _lev_ctrl_portamentotime:
2434     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435     decodedcontroller.controller_number = 5;
2436     break;
2437     case _lev_ctrl_sustainpedal:
2438     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439     decodedcontroller.controller_number = 64;
2440     break;
2441     case _lev_ctrl_portamento:
2442     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443     decodedcontroller.controller_number = 65;
2444     break;
2445     case _lev_ctrl_sostenutopedal:
2446     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447     decodedcontroller.controller_number = 66;
2448     break;
2449     case _lev_ctrl_softpedal:
2450     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2451     decodedcontroller.controller_number = 67;
2452     break;
2453     case _lev_ctrl_genpurpose5:
2454     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2455     decodedcontroller.controller_number = 80;
2456     break;
2457     case _lev_ctrl_genpurpose6:
2458     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2459     decodedcontroller.controller_number = 81;
2460     break;
2461     case _lev_ctrl_genpurpose7:
2462     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2463     decodedcontroller.controller_number = 82;
2464     break;
2465     case _lev_ctrl_genpurpose8:
2466     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2467     decodedcontroller.controller_number = 83;
2468     break;
2469     case _lev_ctrl_effect1depth:
2470     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2471     decodedcontroller.controller_number = 91;
2472     break;
2473     case _lev_ctrl_effect2depth:
2474     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2475     decodedcontroller.controller_number = 92;
2476     break;
2477     case _lev_ctrl_effect3depth:
2478     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2479     decodedcontroller.controller_number = 93;
2480     break;
2481     case _lev_ctrl_effect4depth:
2482     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2483     decodedcontroller.controller_number = 94;
2484     break;
2485     case _lev_ctrl_effect5depth:
2486     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2487     decodedcontroller.controller_number = 95;
2488     break;
2489 schoenebeck 55
2490 schoenebeck 2540 // format extension (these controllers are so far only supported by
2491     // LinuxSampler & gigedit) they will *NOT* work with
2492     // Gigasampler/GigaStudio !
2493     case _lev_ctrl_CC3_EXT:
2494     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2495     decodedcontroller.controller_number = 3;
2496     break;
2497     case _lev_ctrl_CC6_EXT:
2498     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2499     decodedcontroller.controller_number = 6;
2500     break;
2501     case _lev_ctrl_CC7_EXT:
2502     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2503     decodedcontroller.controller_number = 7;
2504     break;
2505     case _lev_ctrl_CC8_EXT:
2506     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2507     decodedcontroller.controller_number = 8;
2508     break;
2509     case _lev_ctrl_CC9_EXT:
2510     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2511     decodedcontroller.controller_number = 9;
2512     break;
2513     case _lev_ctrl_CC10_EXT:
2514     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2515     decodedcontroller.controller_number = 10;
2516     break;
2517     case _lev_ctrl_CC11_EXT:
2518     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2519     decodedcontroller.controller_number = 11;
2520     break;
2521     case _lev_ctrl_CC14_EXT:
2522     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2523     decodedcontroller.controller_number = 14;
2524     break;
2525     case _lev_ctrl_CC15_EXT:
2526     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2527     decodedcontroller.controller_number = 15;
2528     break;
2529     case _lev_ctrl_CC20_EXT:
2530     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2531     decodedcontroller.controller_number = 20;
2532     break;
2533     case _lev_ctrl_CC21_EXT:
2534     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2535     decodedcontroller.controller_number = 21;
2536     break;
2537     case _lev_ctrl_CC22_EXT:
2538     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2539     decodedcontroller.controller_number = 22;
2540     break;
2541     case _lev_ctrl_CC23_EXT:
2542     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2543     decodedcontroller.controller_number = 23;
2544     break;
2545     case _lev_ctrl_CC24_EXT:
2546     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2547     decodedcontroller.controller_number = 24;
2548     break;
2549     case _lev_ctrl_CC25_EXT:
2550     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2551     decodedcontroller.controller_number = 25;
2552     break;
2553     case _lev_ctrl_CC26_EXT:
2554     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2555     decodedcontroller.controller_number = 26;
2556     break;
2557     case _lev_ctrl_CC27_EXT:
2558     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2559     decodedcontroller.controller_number = 27;
2560     break;
2561     case _lev_ctrl_CC28_EXT:
2562     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2563     decodedcontroller.controller_number = 28;
2564     break;
2565     case _lev_ctrl_CC29_EXT:
2566     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2567     decodedcontroller.controller_number = 29;
2568     break;
2569     case _lev_ctrl_CC30_EXT:
2570     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2571     decodedcontroller.controller_number = 30;
2572     break;
2573     case _lev_ctrl_CC31_EXT:
2574     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2575     decodedcontroller.controller_number = 31;
2576     break;
2577     case _lev_ctrl_CC68_EXT:
2578     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2579     decodedcontroller.controller_number = 68;
2580     break;
2581     case _lev_ctrl_CC69_EXT:
2582     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2583     decodedcontroller.controller_number = 69;
2584     break;
2585     case _lev_ctrl_CC70_EXT:
2586     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2587     decodedcontroller.controller_number = 70;
2588     break;
2589     case _lev_ctrl_CC71_EXT:
2590     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2591     decodedcontroller.controller_number = 71;
2592     break;
2593     case _lev_ctrl_CC72_EXT:
2594     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2595     decodedcontroller.controller_number = 72;
2596     break;
2597     case _lev_ctrl_CC73_EXT:
2598     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2599     decodedcontroller.controller_number = 73;
2600     break;
2601     case _lev_ctrl_CC74_EXT:
2602     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2603     decodedcontroller.controller_number = 74;
2604     break;
2605     case _lev_ctrl_CC75_EXT:
2606     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2607     decodedcontroller.controller_number = 75;
2608     break;
2609     case _lev_ctrl_CC76_EXT:
2610     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2611     decodedcontroller.controller_number = 76;
2612     break;
2613     case _lev_ctrl_CC77_EXT:
2614     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2615     decodedcontroller.controller_number = 77;
2616     break;
2617     case _lev_ctrl_CC78_EXT:
2618     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2619     decodedcontroller.controller_number = 78;
2620     break;
2621     case _lev_ctrl_CC79_EXT:
2622     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2623     decodedcontroller.controller_number = 79;
2624     break;
2625     case _lev_ctrl_CC84_EXT:
2626     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2627     decodedcontroller.controller_number = 84;
2628     break;
2629     case _lev_ctrl_CC85_EXT:
2630     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2631     decodedcontroller.controller_number = 85;
2632     break;
2633     case _lev_ctrl_CC86_EXT:
2634     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2635     decodedcontroller.controller_number = 86;
2636     break;
2637     case _lev_ctrl_CC87_EXT:
2638     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2639     decodedcontroller.controller_number = 87;
2640     break;
2641     case _lev_ctrl_CC89_EXT:
2642     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2643     decodedcontroller.controller_number = 89;
2644     break;
2645     case _lev_ctrl_CC90_EXT:
2646     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2647     decodedcontroller.controller_number = 90;
2648     break;
2649     case _lev_ctrl_CC96_EXT:
2650     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2651     decodedcontroller.controller_number = 96;
2652     break;
2653     case _lev_ctrl_CC97_EXT:
2654     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2655     decodedcontroller.controller_number = 97;
2656     break;
2657     case _lev_ctrl_CC102_EXT:
2658     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2659     decodedcontroller.controller_number = 102;
2660     break;
2661     case _lev_ctrl_CC103_EXT:
2662     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2663     decodedcontroller.controller_number = 103;
2664     break;
2665     case _lev_ctrl_CC104_EXT:
2666     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2667     decodedcontroller.controller_number = 104;
2668     break;
2669     case _lev_ctrl_CC105_EXT:
2670     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2671     decodedcontroller.controller_number = 105;
2672     break;
2673     case _lev_ctrl_CC106_EXT:
2674     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2675     decodedcontroller.controller_number = 106;
2676     break;
2677     case _lev_ctrl_CC107_EXT:
2678     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2679     decodedcontroller.controller_number = 107;
2680     break;
2681     case _lev_ctrl_CC108_EXT:
2682     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2683     decodedcontroller.controller_number = 108;
2684     break;
2685     case _lev_ctrl_CC109_EXT:
2686     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2687     decodedcontroller.controller_number = 109;
2688     break;
2689     case _lev_ctrl_CC110_EXT:
2690     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2691     decodedcontroller.controller_number = 110;
2692     break;
2693     case _lev_ctrl_CC111_EXT:
2694     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2695     decodedcontroller.controller_number = 111;
2696     break;
2697     case _lev_ctrl_CC112_EXT:
2698     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2699     decodedcontroller.controller_number = 112;
2700     break;
2701     case _lev_ctrl_CC113_EXT:
2702     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2703     decodedcontroller.controller_number = 113;
2704     break;
2705     case _lev_ctrl_CC114_EXT:
2706     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2707     decodedcontroller.controller_number = 114;
2708     break;
2709     case _lev_ctrl_CC115_EXT:
2710     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2711     decodedcontroller.controller_number = 115;
2712     break;
2713     case _lev_ctrl_CC116_EXT:
2714     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2715     decodedcontroller.controller_number = 116;
2716     break;
2717     case _lev_ctrl_CC117_EXT:
2718     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2719     decodedcontroller.controller_number = 117;
2720     break;
2721     case _lev_ctrl_CC118_EXT:
2722     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2723     decodedcontroller.controller_number = 118;
2724     break;
2725     case _lev_ctrl_CC119_EXT:
2726     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2727     decodedcontroller.controller_number = 119;
2728     break;
2729    
2730 schoenebeck 36 // unknown controller type
2731     default:
2732 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2733     decodedcontroller.controller_number = 0;
2734     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2735     break;
2736 schoenebeck 36 }
2737     return decodedcontroller;
2738     }
2739 schoenebeck 2540
2740     // see above (diagnostic push not supported prior GCC 4.6)
2741     //#pragma GCC diagnostic pop
2742 schoenebeck 2
2743 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2744     _lev_ctrl_t encodedcontroller;
2745     switch (DecodedController.type) {
2746     // special controller
2747     case leverage_ctrl_t::type_none:
2748     encodedcontroller = _lev_ctrl_none;
2749     break;
2750     case leverage_ctrl_t::type_velocity:
2751     encodedcontroller = _lev_ctrl_velocity;
2752     break;
2753     case leverage_ctrl_t::type_channelaftertouch:
2754     encodedcontroller = _lev_ctrl_channelaftertouch;
2755     break;
2756    
2757     // ordinary MIDI control change controller
2758     case leverage_ctrl_t::type_controlchange:
2759     switch (DecodedController.controller_number) {
2760     case 1:
2761     encodedcontroller = _lev_ctrl_modwheel;
2762     break;
2763     case 2:
2764     encodedcontroller = _lev_ctrl_breath;
2765     break;
2766     case 4:
2767     encodedcontroller = _lev_ctrl_foot;
2768     break;
2769     case 12:
2770     encodedcontroller = _lev_ctrl_effect1;
2771     break;
2772     case 13:
2773     encodedcontroller = _lev_ctrl_effect2;
2774     break;
2775     case 16:
2776     encodedcontroller = _lev_ctrl_genpurpose1;
2777     break;
2778     case 17:
2779     encodedcontroller = _lev_ctrl_genpurpose2;
2780     break;
2781     case 18:
2782     encodedcontroller = _lev_ctrl_genpurpose3;
2783     break;
2784     case 19:
2785     encodedcontroller = _lev_ctrl_genpurpose4;
2786     break;
2787     case 5:
2788     encodedcontroller = _lev_ctrl_portamentotime;
2789     break;
2790     case 64:
2791     encodedcontroller = _lev_ctrl_sustainpedal;
2792     break;
2793     case 65:
2794     encodedcontroller = _lev_ctrl_portamento;
2795     break;
2796     case 66:
2797     encodedcontroller = _lev_ctrl_sostenutopedal;
2798     break;
2799     case 67:
2800     encodedcontroller = _lev_ctrl_softpedal;
2801     break;
2802     case 80:
2803     encodedcontroller = _lev_ctrl_genpurpose5;
2804     break;
2805     case 81:
2806     encodedcontroller = _lev_ctrl_genpurpose6;
2807     break;
2808     case 82:
2809     encodedcontroller = _lev_ctrl_genpurpose7;
2810     break;
2811     case 83:
2812     encodedcontroller = _lev_ctrl_genpurpose8;
2813     break;
2814     case 91:
2815     encodedcontroller = _lev_ctrl_effect1depth;
2816     break;
2817     case 92:
2818     encodedcontroller = _lev_ctrl_effect2depth;
2819     break;
2820     case 93:
2821     encodedcontroller = _lev_ctrl_effect3depth;
2822     break;
2823     case 94:
2824     encodedcontroller = _lev_ctrl_effect4depth;
2825     break;
2826     case 95:
2827     encodedcontroller = _lev_ctrl_effect5depth;
2828     break;
2829 schoenebeck 2540
2830     // format extension (these controllers are so far only
2831     // supported by LinuxSampler & gigedit) they will *NOT*
2832     // work with Gigasampler/GigaStudio !
2833     case 3:
2834     encodedcontroller = _lev_ctrl_CC3_EXT;
2835     break;
2836     case 6:
2837     encodedcontroller = _lev_ctrl_CC6_EXT;
2838     break;
2839     case 7:
2840     encodedcontroller = _lev_ctrl_CC7_EXT;
2841     break;
2842     case 8:
2843     encodedcontroller = _lev_ctrl_CC8_EXT;
2844     break;
2845     case 9:
2846     encodedcontroller = _lev_ctrl_CC9_EXT;
2847     break;
2848     case 10:
2849     encodedcontroller = _lev_ctrl_CC10_EXT;
2850     break;
2851     case 11:
2852     encodedcontroller = _lev_ctrl_CC11_EXT;
2853     break;
2854     case 14:
2855     encodedcontroller = _lev_ctrl_CC14_EXT;
2856     break;
2857     case 15:
2858     encodedcontroller = _lev_ctrl_CC15_EXT;
2859     break;
2860     case 20:
2861     encodedcontroller = _lev_ctrl_CC20_EXT;
2862     break;
2863     case 21:
2864     encodedcontroller = _lev_ctrl_CC21_EXT;
2865     break;
2866     case 22:
2867     encodedcontroller = _lev_ctrl_CC22_EXT;
2868     break;
2869     case 23:
2870     encodedcontroller = _lev_ctrl_CC23_EXT;
2871     break;
2872     case 24:
2873     encodedcontroller = _lev_ctrl_CC24_EXT;
2874     break;
2875     case 25:
2876     encodedcontroller = _lev_ctrl_CC25_EXT;
2877     break;
2878     case 26:
2879     encodedcontroller = _lev_ctrl_CC26_EXT;
2880     break;
2881     case 27:
2882     encodedcontroller = _lev_ctrl_CC27_EXT;
2883     break;
2884     case 28:
2885     encodedcontroller = _lev_ctrl_CC28_EXT;
2886     break;
2887     case 29:
2888     encodedcontroller = _lev_ctrl_CC29_EXT;
2889     break;
2890     case 30:
2891     encodedcontroller = _lev_ctrl_CC30_EXT;
2892     break;
2893     case 31:
2894     encodedcontroller = _lev_ctrl_CC31_EXT;
2895     break;
2896     case 68:
2897     encodedcontroller = _lev_ctrl_CC68_EXT;
2898     break;
2899     case 69:
2900     encodedcontroller = _lev_ctrl_CC69_EXT;
2901     break;
2902     case 70:
2903     encodedcontroller = _lev_ctrl_CC70_EXT;
2904     break;
2905     case 71:
2906     encodedcontroller = _lev_ctrl_CC71_EXT;
2907     break;
2908     case 72:
2909     encodedcontroller = _lev_ctrl_CC72_EXT;
2910     break;
2911     case 73:
2912     encodedcontroller = _lev_ctrl_CC73_EXT;
2913     break;
2914     case 74:
2915     encodedcontroller = _lev_ctrl_CC74_EXT;
2916     break;
2917     case 75:
2918     encodedcontroller = _lev_ctrl_CC75_EXT;
2919     break;
2920     case 76:
2921     encodedcontroller = _lev_ctrl_CC76_EXT;
2922     break;
2923     case 77:
2924     encodedcontroller = _lev_ctrl_CC77_EXT;
2925     break;
2926     case 78:
2927     encodedcontroller = _lev_ctrl_CC78_EXT;
2928     break;
2929     case 79:
2930     encodedcontroller = _lev_ctrl_CC79_EXT;
2931     break;
2932     case 84:
2933     encodedcontroller = _lev_ctrl_CC84_EXT;
2934     break;
2935     case 85:
2936     encodedcontroller = _lev_ctrl_CC85_EXT;
2937     break;
2938     case 86:
2939     encodedcontroller = _lev_ctrl_CC86_EXT;
2940     break;
2941     case 87:
2942     encodedcontroller = _lev_ctrl_CC87_EXT;
2943     break;
2944     case 89:
2945     encodedcontroller = _lev_ctrl_CC89_EXT;
2946     break;
2947     case 90:
2948     encodedcontroller = _lev_ctrl_CC90_EXT;
2949     break;
2950     case 96:
2951     encodedcontroller = _lev_ctrl_CC96_EXT;
2952     break;
2953     case 97:
2954     encodedcontroller = _lev_ctrl_CC97_EXT;
2955     break;
2956     case 102:
2957     encodedcontroller = _lev_ctrl_CC102_EXT;
2958     break;
2959     case 103:
2960     encodedcontroller = _lev_ctrl_CC103_EXT;
2961     break;
2962     case 104:
2963     encodedcontroller = _lev_ctrl_CC104_EXT;
2964     break;
2965     case 105:
2966     encodedcontroller = _lev_ctrl_CC105_EXT;
2967     break;
2968     case 106:
2969     encodedcontroller = _lev_ctrl_CC106_EXT;
2970     break;
2971     case 107:
2972     encodedcontroller = _lev_ctrl_CC107_EXT;
2973     break;
2974     case 108:
2975     encodedcontroller = _lev_ctrl_CC108_EXT;
2976     break;
2977     case 109:
2978     encodedcontroller = _lev_ctrl_CC109_EXT;
2979     break;
2980     case 110:
2981     encodedcontroller = _lev_ctrl_CC110_EXT;
2982     break;
2983     case 111:
2984     encodedcontroller = _lev_ctrl_CC111_EXT;
2985     break;
2986     case 112:
2987     encodedcontroller = _lev_ctrl_CC112_EXT;
2988     break;
2989     case 113:
2990     encodedcontroller = _lev_ctrl_CC113_EXT;
2991     break;
2992     case 114:
2993     encodedcontroller = _lev_ctrl_CC114_EXT;
2994     break;
2995     case 115:
2996     encodedcontroller = _lev_ctrl_CC115_EXT;
2997     break;
2998     case 116:
2999     encodedcontroller = _lev_ctrl_CC116_EXT;
3000     break;
3001     case 117:
3002     encodedcontroller = _lev_ctrl_CC117_EXT;
3003     break;
3004     case 118:
3005     encodedcontroller = _lev_ctrl_CC118_EXT;
3006     break;
3007     case 119:
3008     encodedcontroller = _lev_ctrl_CC119_EXT;
3009     break;
3010    
3011 schoenebeck 809 default:
3012     throw gig::Exception("leverage controller number is not supported by the gig format");
3013     }
3014 persson 1182 break;
3015 schoenebeck 809 default:
3016     throw gig::Exception("Unknown leverage controller type.");
3017     }
3018     return encodedcontroller;
3019     }
3020    
3021 schoenebeck 16 DimensionRegion::~DimensionRegion() {
3022     Instances--;
3023     if (!Instances) {
3024     // delete the velocity->volume tables
3025     VelocityTableMap::iterator iter;
3026     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3027     double* pTable = iter->second;
3028     if (pTable) delete[] pTable;
3029     }
3030     pVelocityTables->clear();
3031     delete pVelocityTables;
3032     pVelocityTables = NULL;
3033     }
3034 persson 858 if (VelocityTable) delete[] VelocityTable;
3035 schoenebeck 16 }
3036 schoenebeck 2
3037 schoenebeck 16 /**
3038     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3039     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3040     * and VelocityResponseCurveScaling) involved are taken into account to
3041     * calculate the amplitude factor. Use this method when a key was
3042     * triggered to get the volume with which the sample should be played
3043     * back.
3044     *
3045 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3046     * @returns amplitude factor (between 0.0 and 1.0)
3047 schoenebeck 16 */
3048     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3049     return pVelocityAttenuationTable[MIDIKeyVelocity];
3050     }
3051 schoenebeck 2
3052 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3053     return pVelocityReleaseTable[MIDIKeyVelocity];
3054     }
3055    
3056 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3057     return pVelocityCutoffTable[MIDIKeyVelocity];
3058     }
3059    
3060 schoenebeck 1358 /**
3061     * Updates the respective member variable and the lookup table / cache
3062     * that depends on this value.
3063     */
3064     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3065     pVelocityAttenuationTable =
3066     GetVelocityTable(
3067     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3068     );
3069     VelocityResponseCurve = curve;
3070     }
3071    
3072     /**
3073     * Updates the respective member variable and the lookup table / cache
3074     * that depends on this value.
3075     */
3076     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3077     pVelocityAttenuationTable =
3078     GetVelocityTable(
3079     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3080     );
3081     VelocityResponseDepth = depth;
3082     }
3083    
3084     /**
3085     * Updates the respective member variable and the lookup table / cache
3086     * that depends on this value.
3087     */
3088     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3089     pVelocityAttenuationTable =
3090     GetVelocityTable(
3091     VelocityResponseCurve, VelocityResponseDepth, scaling
3092     );
3093     VelocityResponseCurveScaling = scaling;
3094     }
3095    
3096     /**
3097     * Updates the respective member variable and the lookup table / cache
3098     * that depends on this value.
3099     */
3100     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3101     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3102     ReleaseVelocityResponseCurve = curve;
3103     }
3104    
3105     /**
3106     * Updates the respective member variable and the lookup table / cache
3107     * that depends on this value.
3108     */
3109     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3110     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3111     ReleaseVelocityResponseDepth = depth;
3112     }
3113    
3114     /**
3115     * Updates the respective member variable and the lookup table / cache
3116     * that depends on this value.
3117     */
3118     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3119     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3120     VCFCutoffController = controller;
3121     }
3122    
3123     /**
3124     * Updates the respective member variable and the lookup table / cache
3125     * that depends on this value.
3126     */
3127     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3128     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3129     VCFVelocityCurve = curve;
3130     }
3131    
3132     /**
3133     * Updates the respective member variable and the lookup table / cache
3134     * that depends on this value.
3135     */
3136     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3137     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3138     VCFVelocityDynamicRange = range;
3139     }
3140    
3141     /**
3142     * Updates the respective member variable and the lookup table / cache
3143     * that depends on this value.
3144     */
3145     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3146     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3147     VCFVelocityScale = scaling;
3148     }
3149    
3150 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3151 schoenebeck 317
3152 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3153 schoenebeck 16
3154 schoenebeck 308 // linear
3155     const int lin0[] = { 1, 1, 127, 127 };
3156     const int lin1[] = { 1, 21, 127, 127 };
3157     const int lin2[] = { 1, 45, 127, 127 };
3158     const int lin3[] = { 1, 74, 127, 127 };
3159     const int lin4[] = { 1, 127, 127, 127 };
3160 schoenebeck 16
3161 schoenebeck 308 // non-linear
3162     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3163 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3164 schoenebeck 308 127, 127 };
3165     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3166     127, 127 };
3167     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3168     127, 127 };
3169     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3170 schoenebeck 317
3171 schoenebeck 308 // special
3172 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3173 schoenebeck 308 113, 127, 127, 127 };
3174     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3175     118, 127, 127, 127 };
3176 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3177 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3178 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3179 schoenebeck 308 117, 127, 127, 127 };
3180 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3181 schoenebeck 308 127, 127 };
3182 schoenebeck 317
3183 persson 728 // this is only used by the VCF velocity curve
3184     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3185     91, 127, 127, 127 };
3186    
3187 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3188 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3189 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3190 schoenebeck 317
3191 schoenebeck 308 double* const table = new double[128];
3192    
3193     const int* curve = curves[curveType * 5 + depth];
3194     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3195 schoenebeck 317
3196 schoenebeck 308 table[0] = 0;
3197     for (int x = 1 ; x < 128 ; x++) {
3198    
3199     if (x > curve[2]) curve += 2;
3200 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3201 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3202     y = y / 127;
3203    
3204     // Scale up for s > 20, down for s < 20. When
3205     // down-scaling, the curve still ends at 1.0.
3206     if (s < 20 && y >= 0.5)
3207     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3208     else
3209     y = y * (s / 20.0);
3210     if (y > 1) y = 1;
3211    
3212     table[x] = y;
3213     }
3214     return table;
3215     }
3216    
3217    
3218 schoenebeck 2 // *************** Region ***************
3219     // *
3220    
3221     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3222     // Initialization
3223     Dimensions = 0;
3224 schoenebeck 347 for (int i = 0; i < 256; i++) {
3225 schoenebeck 2 pDimensionRegions[i] = NULL;
3226     }
3227 schoenebeck 282 Layers = 1;
3228 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3229 schoenebeck 3440 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3230 schoenebeck 2
3231     // Actual Loading
3232    
3233 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3234    
3235 schoenebeck 2 LoadDimensionRegions(rgnList);
3236    
3237     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3238     if (_3lnk) {
3239     DimensionRegions = _3lnk->ReadUint32();
3240 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3241 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3242     uint8_t bits = _3lnk->ReadUint8();
3243 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3244     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3245 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3246 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3247     pDimensionDefinitions[i].dimension = dimension_none;
3248     pDimensionDefinitions[i].bits = 0;
3249     pDimensionDefinitions[i].zones = 0;
3250     pDimensionDefinitions[i].split_type = split_type_bit;
3251     pDimensionDefinitions[i].zone_size = 0;
3252     }
3253     else { // active dimension
3254     pDimensionDefinitions[i].dimension = dimension;
3255     pDimensionDefinitions[i].bits = bits;
3256 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3257 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3258     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3259 schoenebeck 2 Dimensions++;
3260 schoenebeck 282
3261     // if this is a layer dimension, remember the amount of layers
3262     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3263 schoenebeck 2 }
3264 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3265 schoenebeck 2 }
3266 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3267 schoenebeck 2
3268 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3269     // update the VelocityTables in the dimension regions
3270     UpdateVelocityTable();
3271 schoenebeck 2
3272 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3273 schoenebeck 3440 if (file->pVersion && file->pVersion->major > 2)
3274 schoenebeck 317 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3275     else
3276     _3lnk->SetPos(44);
3277    
3278 schoenebeck 1524 // load sample references (if auto loading is enabled)
3279     if (file->GetAutoLoad()) {
3280     for (uint i = 0; i < DimensionRegions; i++) {
3281     uint32_t wavepoolindex = _3lnk->ReadUint32();
3282 schoenebeck 3348 if (file->pWavePoolTable && pDimensionRegions[i])
3283     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3284 schoenebeck 1524 }
3285     GetSample(); // load global region sample reference
3286 schoenebeck 2 }
3287 persson 1102 } else {
3288     DimensionRegions = 0;
3289 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3290     pDimensionDefinitions[i].dimension = dimension_none;
3291     pDimensionDefinitions[i].bits = 0;
3292     pDimensionDefinitions[i].zones = 0;
3293     }
3294 schoenebeck 2 }
3295 schoenebeck 823
3296     // make sure there is at least one dimension region
3297     if (!DimensionRegions) {
3298     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3299     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3300     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3301 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3302 schoenebeck 823 DimensionRegions = 1;
3303     }
3304 schoenebeck 2 }
3305    
3306 schoenebeck 809 /**
3307     * Apply Region settings and all its DimensionRegions to the respective
3308     * RIFF chunks. You have to call File::Save() to make changes persistent.
3309     *
3310     * Usually there is absolutely no need to call this method explicitly.
3311     * It will be called automatically when File::Save() was called.
3312     *
3313 schoenebeck 2682 * @param pProgress - callback function for progress notification
3314 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3315     */
3316 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3317 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3318     // but we still have to provide some existing one to not corrupt the
3319     // file, so to avoid the latter we simply always assign the sample of
3320     // the first dimension region of this region
3321     pSample = pDimensionRegions[0]->pSample;
3322    
3323 schoenebeck 809 // first update base class's chunks
3324 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3325 schoenebeck 809
3326     // update dimension region's chunks
3327 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3328 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3329 schoenebeck 823 }
3330 schoenebeck 809
3331 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3332 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3333     const int iMaxDimensions = versiongt2 ? 8 : 5;
3334     const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3335 schoenebeck 809
3336     // make sure '3lnk' chunk exists
3337     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3338     if (!_3lnk) {
3339 schoenebeck 3440 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3340 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3341 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3342 persson 1192
3343     // move 3prg to last position
3344 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3345 schoenebeck 809 }
3346    
3347     // update dimension definitions in '3lnk' chunk
3348     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3349 persson 1179 store32(&pData[0], DimensionRegions);
3350 persson 1199 int shift = 0;
3351 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3352 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3353     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3354 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3355 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3356 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3357 persson 1199 // next 3 bytes unknown, always zero?
3358    
3359     shift += pDimensionDefinitions[i].bits;
3360 schoenebeck 809 }
3361    
3362     // update wave pool table in '3lnk' chunk
3363 schoenebeck 3440 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3364 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3365     int iWaveIndex = -1;
3366     if (i < DimensionRegions) {
3367 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3368     File::SampleList::iterator iter = pFile->pSamples->begin();
3369     File::SampleList::iterator end = pFile->pSamples->end();
3370 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3371 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3372     iWaveIndex = index;
3373     break;
3374     }
3375 schoenebeck 809 }
3376     }
3377 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3378 schoenebeck 809 }
3379     }
3380    
3381 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3382     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3383     if (_3prg) {
3384     int dimensionRegionNr = 0;
3385     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3386     while (_3ewl) {
3387     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3388 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3389 schoenebeck 2 dimensionRegionNr++;
3390     }
3391     _3ewl = _3prg->GetNextSubList();
3392     }
3393     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3394     }
3395     }
3396    
3397 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3398     // update KeyRange struct and make sure regions are in correct order
3399     DLS::Region::SetKeyRange(Low, High);
3400     // update Region key table for fast lookup
3401     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3402     }
3403    
3404 persson 858 void Region::UpdateVelocityTable() {
3405     // get velocity dimension's index
3406     int veldim = -1;
3407     for (int i = 0 ; i < Dimensions ; i++) {
3408     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3409     veldim = i;
3410 schoenebeck 809 break;
3411     }
3412     }
3413 persson 858 if (veldim == -1) return;
3414 schoenebeck 809
3415 persson 858 int step = 1;
3416     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3417     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3418 schoenebeck 809
3419 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3420     int dim[8] = { 0 };
3421     for (int i = 0 ; i < DimensionRegions ; i++) {
3422 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3423 persson 858
3424 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3425 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3426     pDimensionRegions[i]->VelocityUpperLimit) {
3427 persson 858 // create the velocity table
3428     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3429     if (!table) {
3430     table = new uint8_t[128];
3431     pDimensionRegions[i]->VelocityTable = table;
3432     }
3433     int tableidx = 0;
3434     int velocityZone = 0;
3435 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3436     for (int k = i ; k < end ; k += step) {
3437     DimensionRegion *d = pDimensionRegions[k];
3438     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3439     velocityZone++;
3440     }
3441     } else { // gig2
3442     for (int k = i ; k < end ; k += step) {
3443     DimensionRegion *d = pDimensionRegions[k];
3444     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3445     velocityZone++;
3446     }
3447 persson 858 }
3448     } else {
3449     if (pDimensionRegions[i]->VelocityTable) {
3450     delete[] pDimensionRegions[i]->VelocityTable;
3451     pDimensionRegions[i]->VelocityTable = 0;
3452     }
3453 schoenebeck 809 }
3454 persson 858
3455 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3456 persson 858 int j;
3457     int shift = 0;
3458     for (j = 0 ; j < Dimensions ; j++) {
3459     if (j == veldim) i += skipveldim; // skip velocity dimension
3460     else {
3461     dim[j]++;
3462     if (dim[j] < pDimensionDefinitions[j].zones) break;
3463     else {
3464     // skip unused dimension regions
3465     dim[j] = 0;
3466     i += ((1 << pDimensionDefinitions[j].bits) -
3467     pDimensionDefinitions[j].zones) << shift;
3468     }
3469     }
3470     shift += pDimensionDefinitions[j].bits;
3471     }
3472     if (j == Dimensions) break;
3473 schoenebeck 809 }
3474     }
3475    
3476     /** @brief Einstein would have dreamed of it - create a new dimension.
3477     *
3478     * Creates a new dimension with the dimension definition given by
3479     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3480     * There is a hard limit of dimensions and total amount of "bits" all
3481     * dimensions can have. This limit is dependant to what gig file format
3482     * version this file refers to. The gig v2 (and lower) format has a
3483     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3484     * format has a limit of 8.
3485     *
3486     * @param pDimDef - defintion of the new dimension
3487     * @throws gig::Exception if dimension of the same type exists already
3488     * @throws gig::Exception if amount of dimensions or total amount of
3489     * dimension bits limit is violated
3490     */
3491     void Region::AddDimension(dimension_def_t* pDimDef) {
3492 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3493     if (pDimDef->zones < 2)
3494     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3495     if (pDimDef->bits < 1)
3496     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3497     if (pDimDef->dimension == dimension_samplechannel) {
3498     if (pDimDef->zones != 2)
3499     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3500     if (pDimDef->bits != 1)
3501     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3502     }
3503    
3504 schoenebeck 809 // check if max. amount of dimensions reached
3505     File* file = (File*) GetParent()->GetParent();
3506 schoenebeck 3440 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3507 schoenebeck 809 if (Dimensions >= iMaxDimensions)
3508     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3509     // check if max. amount of dimension bits reached
3510     int iCurrentBits = 0;
3511     for (int i = 0; i < Dimensions; i++)
3512     iCurrentBits += pDimensionDefinitions[i].bits;
3513     if (iCurrentBits >= iMaxDimensions)
3514     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3515     const int iNewBits = iCurrentBits + pDimDef->bits;
3516     if (iNewBits > iMaxDimensions)
3517     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3518     // check if there's already a dimensions of the same type
3519     for (int i = 0; i < Dimensions; i++)
3520     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3521     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3522    
3523 persson 1301 // pos is where the new dimension should be placed, normally
3524     // last in list, except for the samplechannel dimension which
3525     // has to be first in list
3526     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3527     int bitpos = 0;
3528     for (int i = 0 ; i < pos ; i++)
3529     bitpos += pDimensionDefinitions[i].bits;
3530    
3531     // make room for the new dimension
3532     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3533     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3534     for (int j = Dimensions ; j > pos ; j--) {
3535     pDimensionRegions[i]->DimensionUpperLimits[j] =
3536     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3537     }
3538     }
3539    
3540 schoenebeck 809 // assign definition of new dimension
3541 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3542 schoenebeck 809
3543 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3544 persson 1301 pDimensionDefinitions[pos].split_type =
3545     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3546     pDimensionDefinitions[pos].zone_size =
3547     __resolveZoneSize(pDimensionDefinitions[pos]);
3548 schoenebeck 1113
3549 persson 1301 // create new dimension region(s) for this new dimension, and make
3550     // sure that the dimension regions are placed correctly in both the
3551     // RIFF list and the pDimensionRegions array
3552     RIFF::Chunk* moveTo = NULL;
3553     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3554     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3555     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3556     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3557     }
3558     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3559     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3560     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3561     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3562     // create a new dimension region and copy all parameter values from
3563     // an existing dimension region
3564     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3565     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3566 persson 1247
3567 persson 1301 DimensionRegions++;
3568     }
3569     }
3570     moveTo = pDimensionRegions[i]->pParentList;
3571 schoenebeck 809 }
3572    
3573 persson 1247 // initialize the upper limits for this dimension
3574 persson 1301 int mask = (1 << bitpos) - 1;
3575     for (int z = 0 ; z < pDimDef->zones ; z++) {
3576 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3577 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3578 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3579     (z << bitpos) |
3580     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3581 persson 1247 }
3582     }
3583    
3584 schoenebeck 809 Dimensions++;
3585    
3586     // if this is a layer dimension, update 'Layers' attribute
3587     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3588    
3589 persson 858 UpdateVelocityTable();
3590 schoenebeck 809 }
3591    
3592     /** @brief Delete an existing dimension.
3593     *
3594     * Deletes the dimension given by \a pDimDef and deletes all respective
3595     * dimension regions, that is all dimension regions where the dimension's
3596     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3597     * for example this would delete all dimension regions for the case(s)
3598     * where the sustain pedal is pressed down.
3599     *
3600     * @param pDimDef - dimension to delete
3601     * @throws gig::Exception if given dimension cannot be found
3602     */
3603     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3604     // get dimension's index
3605     int iDimensionNr = -1;
3606     for (int i = 0; i < Dimensions; i++) {
3607     if (&pDimensionDefinitions[i] == pDimDef) {
3608     iDimensionNr = i;
3609     break;
3610     }
3611     }
3612     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3613    
3614     // get amount of bits below the dimension to delete
3615     int iLowerBits = 0;
3616     for (int i = 0; i < iDimensionNr; i++)
3617     iLowerBits += pDimensionDefinitions[i].bits;
3618    
3619     // get amount ot bits above the dimension to delete
3620     int iUpperBits = 0;
3621     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3622     iUpperBits += pDimensionDefinitions[i].bits;
3623    
3624 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3625    
3626 schoenebeck 809 // delete dimension regions which belong to the given dimension
3627     // (that is where the dimension's bit > 0)
3628     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3629     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3630     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3631     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3632     iObsoleteBit << iLowerBits |
3633     iLowerBit;
3634 persson 1247
3635     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3636 schoenebeck 809 delete pDimensionRegions[iToDelete];
3637     pDimensionRegions[iToDelete] = NULL;
3638     DimensionRegions--;
3639     }
3640     }
3641     }
3642    
3643     // defrag pDimensionRegions array
3644     // (that is remove the NULL spaces within the pDimensionRegions array)
3645     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3646     if (!pDimensionRegions[iTo]) {
3647     if (iFrom <= iTo) iFrom = iTo + 1;
3648     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3649     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3650     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3651     pDimensionRegions[iFrom] = NULL;
3652     }
3653     }
3654     }
3655    
3656 persson 1247 // remove the this dimension from the upper limits arrays
3657     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3658     DimensionRegion* d = pDimensionRegions[j];
3659     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3660     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3661     }
3662     d->DimensionUpperLimits[Dimensions - 1] = 127;
3663     }
3664    
3665 schoenebeck 809 // 'remove' dimension definition
3666     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3667     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3668     }
3669     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3670     pDimensionDefinitions[Dimensions - 1].bits = 0;
3671     pDimensionDefinitions[Dimensions - 1].zones = 0;
3672    
3673     Dimensions--;
3674    
3675     // if this was a layer dimension, update 'Layers' attribute
3676     if (pDimDef->dimension == dimension_layer) Layers = 1;
3677     }
3678    
3679 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3680     *
3681     * Instead of deleting an entire dimensions, this method will only delete
3682     * one particular split zone given by @a zone of the Region's dimension
3683     * given by @a type. So this method will simply decrement the amount of
3684     * zones by one of the dimension in question. To be able to do that, the
3685     * respective dimension must exist on this Region and it must have at least
3686     * 3 zones. All DimensionRegion objects associated with the zone will be
3687     * deleted.
3688     *
3689     * @param type - identifies the dimension where a zone shall be deleted
3690     * @param zone - index of the dimension split zone that shall be deleted
3691     * @throws gig::Exception if requested zone could not be deleted
3692     */
3693     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3694     dimension_def_t* oldDef = GetDimensionDefinition(type);
3695     if (!oldDef)
3696     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3697     if (oldDef->zones <= 2)
3698     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3699     if (zone < 0 || zone >= oldDef->zones)
3700     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3701    
3702     const int newZoneSize = oldDef->zones - 1;
3703    
3704     // create a temporary Region which just acts as a temporary copy
3705     // container and will be deleted at the end of this function and will
3706     // also not be visible through the API during this process
3707     gig::Region* tempRgn = NULL;
3708     {
3709     // adding these temporary chunks is probably not even necessary
3710     Instrument* instr = static_cast<Instrument*>(GetParent());
3711     RIFF::List* pCkInstrument = instr->pCkInstrument;
3712     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3713     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3714     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3715     tempRgn = new Region(instr, rgn);
3716     }
3717    
3718     // copy this region's dimensions (with already the dimension split size
3719     // requested by the arguments of this method call) to the temporary
3720     // region, and don't use Region::CopyAssign() here for this task, since
3721     // it would also alter fast lookup helper variables here and there
3722     dimension_def_t newDef;
3723     for (int i = 0; i < Dimensions; ++i) {
3724     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3725     // is this the dimension requested by the method arguments? ...
3726     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3727     def.zones = newZoneSize;
3728     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3729     newDef = def;
3730     }
3731     tempRgn->AddDimension(&def);
3732     }
3733    
3734     // find the dimension index in the tempRegion which is the dimension
3735     // type passed to this method (paranoidly expecting different order)
3736     int tempReducedDimensionIndex = -1;
3737     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3738     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3739     tempReducedDimensionIndex = d;
3740     break;
3741     }
3742     }
3743    
3744     // copy dimension regions from this region to the temporary region
3745     for (int iDst = 0; iDst < 256; ++iDst) {
3746     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3747     if (!dstDimRgn) continue;
3748     std::map<dimension_t,int> dimCase;
3749     bool isValidZone = true;
3750     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3751     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3752     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3753     (iDst >> baseBits) & ((1 << dstBits) - 1);
3754     baseBits += dstBits;
3755     // there are also DimensionRegion objects of unused zones, skip them
3756     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3757     isValidZone = false;
3758     break;
3759     }
3760     }
3761     if (!isValidZone) continue;
3762     // a bit paranoid: cope with the chance that the dimensions would
3763     // have different order in source and destination regions
3764     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3765     if (dimCase[type] >= zone) dimCase[type]++;
3766     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3767     dstDimRgn->CopyAssign(srcDimRgn);
3768     // if this is the upper most zone of the dimension passed to this
3769     // method, then correct (raise) its upper limit to 127
3770     if (newDef.split_type == split_type_normal && isLastZone)
3771     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3772     }
3773    
3774     // now tempRegion's dimensions and DimensionRegions basically reflect
3775     // what we wanted to get for this actual Region here, so we now just
3776     // delete and recreate the dimension in question with the new amount
3777     // zones and then copy back from tempRegion
3778     DeleteDimension(oldDef);
3779     AddDimension(&newDef);
3780     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3781     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3782     if (!srcDimRgn) continue;
3783     std::map<dimension_t,int> dimCase;
3784     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3785     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3786     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3787     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3788     baseBits += srcBits;
3789     }
3790     // a bit paranoid: cope with the chance that the dimensions would
3791     // have different order in source and destination regions
3792     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3793     if (!dstDimRgn) continue;
3794     dstDimRgn->CopyAssign(srcDimRgn);
3795     }
3796    
3797     // delete temporary region
3798     delete tempRgn;
3799 schoenebeck 2557
3800     UpdateVelocityTable();
3801 schoenebeck 2555 }
3802    
3803     /** @brief Divide split zone of a dimension in two (increment zone amount).
3804     *
3805     * This will increment the amount of zones for the dimension (given by
3806     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3807     * in the middle of its zone range in two. So the two zones resulting from
3808     * the zone being splitted, will be an equivalent copy regarding all their
3809     * articulation informations and sample reference. The two zones will only
3810     * differ in their zone's upper limit
3811     * (DimensionRegion::DimensionUpperLimits).
3812     *
3813     * @param type - identifies the dimension where a zone shall be splitted
3814     * @param zone - index of the dimension split zone that shall be splitted
3815     * @throws gig::Exception if requested zone could not be splitted
3816     */
3817     void Region::SplitDimensionZone(dimension_t type, int zone) {
3818     dimension_def_t* oldDef = GetDimensionDefinition(type);
3819     if (!oldDef)
3820     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3821     if (zone < 0 || zone >= oldDef->zones)
3822     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3823    
3824     const int newZoneSize = oldDef->zones + 1;
3825    
3826     // create a temporary Region which just acts as a temporary copy
3827     // container and will be deleted at the end of this function and will
3828     // also not be visible through the API during this process
3829     gig::Region* tempRgn = NULL;
3830     {
3831     // adding these temporary chunks is probably not even necessary
3832     Instrument* instr = static_cast<Instrument*>(GetParent());
3833     RIFF::List* pCkInstrument = instr->pCkInstrument;
3834     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3835     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3836     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3837     tempRgn = new Region(instr, rgn);
3838     }
3839    
3840     // copy this region's dimensions (with already the dimension split size
3841     // requested by the arguments of this method call) to the temporary
3842     // region, and don't use Region::CopyAssign() here for this task, since
3843     // it would also alter fast lookup helper variables here and there
3844     dimension_def_t newDef;
3845     for (int i = 0; i < Dimensions; ++i) {
3846     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3847     // is this the dimension requested by the method arguments? ...
3848     if (def.dimension == type) { // ... if yes, increment zone amount by one
3849     def.zones = newZoneSize;
3850     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3851     newDef = def;
3852     }
3853     tempRgn->AddDimension(&def);
3854     }
3855    
3856     // find the dimension index in the tempRegion which is the dimension
3857     // type passed to this method (paranoidly expecting different order)
3858     int tempIncreasedDimensionIndex = -1;
3859     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3860     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3861     tempIncreasedDimensionIndex = d;
3862     break;
3863     }
3864     }
3865    
3866     // copy dimension regions from this region to the temporary region
3867     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3868     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3869     if (!srcDimRgn) continue;
3870     std::map<dimension_t,int> dimCase;
3871     bool isValidZone = true;
3872     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3873     const int srcBits = pDimensionDefinitions[d].bits;
3874     dimCase[pDimensionDefinitions[d].dimension] =
3875     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3876     // there are also DimensionRegion objects for unused zones, skip them
3877     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3878     isValidZone = false;
3879     break;
3880     }
3881     baseBits += srcBits;
3882     }
3883     if (!isValidZone) continue;
3884     // a bit paranoid: cope with the chance that the dimensions would
3885     // have different order in source and destination regions
3886     if (dimCase[type] > zone) dimCase[type]++;
3887     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3888     dstDimRgn->CopyAssign(srcDimRgn);
3889     // if this is the requested zone to be splitted, then also copy
3890     // the source DimensionRegion to the newly created target zone
3891     // and set the old zones upper limit lower
3892     if (dimCase[type] == zone) {
3893     // lower old zones upper limit
3894     if (newDef.split_type == split_type_normal) {
3895     const int high =
3896     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3897     int low = 0;
3898     if (zone > 0) {
3899     std::map<dimension_t,int> lowerCase = dimCase;
3900     lowerCase[type]--;
3901     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3902     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3903     }
3904     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3905     }
3906     // fill the newly created zone of the divided zone as well
3907     dimCase[type]++;
3908     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3909     dstDimRgn->CopyAssign(srcDimRgn);
3910     }
3911     }
3912    
3913     // now tempRegion's dimensions and DimensionRegions basically reflect
3914     // what we wanted to get for this actual Region here, so we now just
3915     // delete and recreate the dimension in question with the new amount
3916     // zones and then copy back from tempRegion
3917     DeleteDimension(oldDef);
3918     AddDimension(&newDef);
3919     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3920     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3921     if (!srcDimRgn) continue;
3922     std::map<dimension_t,int> dimCase;
3923     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3924     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3925     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3926     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3927     baseBits += srcBits;
3928     }
3929     // a bit paranoid: cope with the chance that the dimensions would
3930     // have different order in source and destination regions
3931     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3932     if (!dstDimRgn) continue;
3933     dstDimRgn->CopyAssign(srcDimRgn);
3934     }
3935    
3936     // delete temporary region
3937     delete tempRgn;
3938 schoenebeck 2557
3939     UpdateVelocityTable();
3940 schoenebeck 2555 }
3941    
3942 schoenebeck 2639 /** @brief Change type of an existing dimension.
3943     *
3944     * Alters the dimension type of a dimension already existing on this
3945     * region. If there is currently no dimension on this Region with type
3946     * @a oldType, then this call with throw an Exception. Likewise there are
3947     * cases where the requested dimension type cannot be performed. For example
3948     * if the new dimension type shall be gig::dimension_samplechannel, and the
3949     * current dimension has more than 2 zones. In such cases an Exception is
3950     * thrown as well.
3951     *
3952     * @param oldType - identifies the existing dimension to be changed
3953     * @param newType - to which dimension type it should be changed to
3954     * @throws gig::Exception if requested change cannot be performed
3955     */
3956     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3957     if (oldType == newType) return;
3958     dimension_def_t* def = GetDimensionDefinition(oldType);
3959     if (!def)
3960     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3961     if (newType == dimension_samplechannel && def->zones != 2)
3962     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3963 schoenebeck 2640 if (GetDimensionDefinition(newType))
3964     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3965     def->dimension = newType;
3966 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3967     }
3968    
3969 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3970     uint8_t bits[8] = {};
3971     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3972     it != DimCase.end(); ++it)
3973     {
3974     for (int d = 0; d < Dimensions; ++d) {
3975     if (pDimensionDefinitions[d].dimension == it->first) {
3976     bits[d] = it->second;
3977     goto nextDimCaseSlice;
3978     }
3979     }
3980     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3981     nextDimCaseSlice:
3982     ; // noop
3983     }
3984     return GetDimensionRegionByBit(bits);
3985     }
3986    
3987 schoenebeck 2547 /**
3988     * Searches in the current Region for a dimension of the given dimension
3989     * type and returns the precise configuration of that dimension in this
3990     * Region.
3991     *
3992     * @param type - dimension type of the sought dimension
3993     * @returns dimension definition or NULL if there is no dimension with
3994     * sought type in this Region.
3995     */
3996     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3997     for (int i = 0; i < Dimensions; ++i)
3998     if (pDimensionDefinitions[i].dimension == type)
3999     return &pDimensionDefinitions[i];
4000     return NULL;
4001     }
4002    
4003 schoenebeck 2 Region::~Region() {
4004 schoenebeck 350 for (int i = 0; i < 256; i++) {
4005 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4006     }
4007     }
4008    
4009     /**
4010     * Use this method in your audio engine to get the appropriate dimension
4011     * region with it's articulation data for the current situation. Just
4012     * call the method with the current MIDI controller values and you'll get
4013     * the DimensionRegion with the appropriate articulation data for the
4014     * current situation (for this Region of course only). To do that you'll
4015     * first have to look which dimensions with which controllers and in
4016     * which order are defined for this Region when you load the .gig file.
4017     * Special cases are e.g. layer or channel dimensions where you just put
4018     * in the index numbers instead of a MIDI controller value (means 0 for
4019     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4020     * etc.).
4021     *
4022 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4023 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
4024     * @see pDimensionDefinitions
4025     * @see Dimensions
4026     */
4027 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4028 persson 858 uint8_t bits;
4029     int veldim = -1;
4030 schoenebeck 3053 int velbitpos = 0;
4031 persson 858 int bitpos = 0;
4032     int dimregidx = 0;
4033 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
4034 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4035     // the velocity dimension must be handled after the other dimensions
4036     veldim = i;
4037     velbitpos = bitpos;
4038     } else {
4039     switch (pDimensionDefinitions[i].split_type) {
4040     case split_type_normal:
4041 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4042     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4043     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4044     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4045     }
4046     } else {
4047     // gig2: evenly sized zones
4048     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4049     }
4050 persson 858 break;
4051     case split_type_bit: // the value is already the sought dimension bit number
4052     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4053     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4054     break;
4055     }
4056     dimregidx |= bits << bitpos;
4057 schoenebeck 2 }
4058 persson 858 bitpos += pDimensionDefinitions[i].bits;
4059 schoenebeck 2 }
4060 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4061     if (!dimreg) return NULL;
4062 persson 858 if (veldim != -1) {
4063     // (dimreg is now the dimension region for the lowest velocity)
4064 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4065 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4066 persson 858 else // normal split type
4067 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4068 persson 858
4069 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4070     dimregidx |= (bits & limiter_mask) << velbitpos;
4071     dimreg = pDimensionRegions[dimregidx & 255];
4072 persson 858 }
4073     return dimreg;
4074 schoenebeck 2 }
4075    
4076 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4077     uint8_t bits;
4078     int veldim = -1;
4079 schoenebeck 3053 int velbitpos = 0;
4080 schoenebeck 2599 int bitpos = 0;
4081     int dimregidx = 0;
4082     for (uint i = 0; i < Dimensions; i++) {
4083     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4084     // the velocity dimension must be handled after the other dimensions
4085     veldim = i;
4086     velbitpos = bitpos;
4087     } else {
4088     switch (pDimensionDefinitions[i].split_type) {
4089     case split_type_normal:
4090     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4091     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4092     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4093     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4094     }
4095     } else {
4096     // gig2: evenly sized zones
4097     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4098     }
4099     break;
4100     case split_type_bit: // the value is already the sought dimension bit number
4101     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4102     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4103     break;
4104     }
4105     dimregidx |= bits << bitpos;
4106     }
4107     bitpos += pDimensionDefinitions[i].bits;
4108     }
4109     dimregidx &= 255;
4110     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4111     if (!dimreg) return -1;
4112     if (veldim != -1) {
4113     // (dimreg is now the dimension region for the lowest velocity)
4114     if (dimreg->VelocityTable) // custom defined zone ranges
4115     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4116     else // normal split type
4117     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4118    
4119     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4120     dimregidx |= (bits & limiter_mask) << velbitpos;
4121     dimregidx &= 255;
4122     }
4123     return dimregidx;
4124     }
4125    
4126 schoenebeck 2 /**
4127     * Returns the appropriate DimensionRegion for the given dimension bit
4128     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4129     * instead of calling this method directly!
4130     *
4131 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4132 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4133     * bit numbers
4134     * @see GetDimensionRegionByValue()
4135     */
4136 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4137     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4138     << pDimensionDefinitions[5].bits | DimBits[5])
4139     << pDimensionDefinitions[4].bits | DimBits[4])
4140     << pDimensionDefinitions[3].bits | DimBits[3])
4141     << pDimensionDefinitions[2].bits | DimBits[2])
4142     << pDimensionDefinitions[1].bits | DimBits[1])
4143     << pDimensionDefinitions[0].bits | DimBits[0]];
4144 schoenebeck 2 }
4145    
4146     /**
4147     * Returns pointer address to the Sample referenced with this region.
4148     * This is the global Sample for the entire Region (not sure if this is
4149     * actually used by the Gigasampler engine - I would only use the Sample
4150     * referenced by the appropriate DimensionRegion instead of this sample).
4151     *
4152     * @returns address to Sample or NULL if there is no reference to a
4153     * sample saved in the .gig file
4154     */
4155     Sample* Region::GetSample() {
4156     if (pSample) return static_cast<gig::Sample*>(pSample);
4157     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4158     }
4159    
4160 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4161 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4162 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4163 persson 902 if (!file->pWavePoolTable) return NULL;
4164 schoenebeck 3350 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4165 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4166     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4167     // use 64 bit wave pool offsets (treating this as large file)
4168 schoenebeck 2912 uint64_t soughtoffset =
4169     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4170     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4171     Sample* sample = file->GetFirstSample(pProgress);
4172     while (sample) {
4173     if (sample->ullWavePoolOffset == soughtoffset)
4174     return static_cast<gig::Sample*>(sample);
4175     sample = file->GetNextSample();
4176     }
4177     } else {
4178 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4179 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4180     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4181     Sample* sample = file->GetFirstSample(pProgress);
4182     while (sample) {
4183     if (sample->ullWavePoolOffset == soughtoffset &&
4184     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4185     sample = file->GetNextSample();
4186     }
4187 schoenebeck 2 }
4188     return NULL;
4189     }
4190 schoenebeck 2394
4191     /**
4192     * Make a (semi) deep copy of the Region object given by @a orig
4193     * and assign it to this object.
4194     *
4195     * Note that all sample pointers referenced by @a orig are simply copied as
4196     * memory address. Thus the respective samples are shared, not duplicated!
4197     *
4198     * @param orig - original Region object to be copied from
4199     */
4200     void Region::CopyAssign(const Region* orig) {
4201 schoenebeck 2482 CopyAssign(orig, NULL);
4202     }
4203    
4204     /**
4205     * Make a (semi) deep copy of the Region object given by @a orig and
4206     * assign it to this object
4207     *
4208     * @param mSamples - crosslink map between the foreign file's samples and
4209     * this file's samples
4210     */
4211     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4212 schoenebeck 2394 // handle base classes
4213     DLS::Region::CopyAssign(orig);
4214    
4215 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4216     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4217     }
4218    
4219 schoenebeck 2394 // handle own member variables
4220     for (int i = Dimensions - 1; i >= 0; --i) {
4221     DeleteDimension(&pDimensionDefinitions[i]);
4222     }
4223     Layers = 0; // just to be sure
4224     for (int i = 0; i < orig->Dimensions; i++) {
4225     // we need to copy the dim definition here, to avoid the compiler
4226     // complaining about const-ness issue
4227     dimension_def_t def = orig->pDimensionDefinitions[i];
4228     AddDimension(&def);
4229     }
4230     for (int i = 0; i < 256; i++) {
4231     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4232     pDimensionRegions[i]->CopyAssign(
4233 schoenebeck 2482 orig->pDimensionRegions[i],
4234     mSamples
4235 schoenebeck 2394 );
4236     }
4237     }
4238     Layers = orig->Layers;
4239     }
4240 schoenebeck 2
4241    
4242 persson 1627 // *************** MidiRule ***************
4243     // *
4244 schoenebeck 2
4245 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4246     _3ewg->SetPos(36);
4247     Triggers = _3ewg->ReadUint8();
4248     _3ewg->SetPos(40);
4249     ControllerNumber = _3ewg->ReadUint8();
4250     _3ewg->SetPos(46);
4251     for (int i = 0 ; i < Triggers ; i++) {
4252     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4253     pTriggers[i].Descending = _3ewg->ReadUint8();
4254     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4255     pTriggers[i].Key = _3ewg->ReadUint8();
4256     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4257     pTriggers[i].Velocity = _3ewg->ReadUint8();
4258     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4259     _3ewg->ReadUint8();
4260     }
4261 persson 1627 }
4262    
4263 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4264     ControllerNumber(0),
4265     Triggers(0) {
4266     }
4267 persson 1627
4268 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4269     pData[32] = 4;
4270     pData[33] = 16;
4271     pData[36] = Triggers;
4272     pData[40] = ControllerNumber;
4273     for (int i = 0 ; i < Triggers ; i++) {
4274     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4275     pData[47 + i * 8] = pTriggers[i].Descending;
4276     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4277     pData[49 + i * 8] = pTriggers[i].Key;
4278     pData[50 + i * 8] = pTriggers[i].NoteOff;
4279     pData[51 + i * 8] = pTriggers[i].Velocity;
4280     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4281     }
4282     }
4283    
4284     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4285     _3ewg->SetPos(36);
4286     LegatoSamples = _3ewg->ReadUint8(); // always 12
4287     _3ewg->SetPos(40);
4288     BypassUseController = _3ewg->ReadUint8();
4289     BypassKey = _3ewg->ReadUint8();
4290     BypassController = _3ewg->ReadUint8();
4291     ThresholdTime = _3ewg->ReadUint16();
4292     _3ewg->ReadInt16();
4293     ReleaseTime = _3ewg->ReadUint16();
4294     _3ewg->ReadInt16();
4295     KeyRange.low = _3ewg->ReadUint8();
4296     KeyRange.high = _3ewg->ReadUint8();
4297     _3ewg->SetPos(64);
4298     ReleaseTriggerKey = _3ewg->ReadUint8();
4299     AltSustain1Key = _3ewg->ReadUint8();
4300     AltSustain2Key = _3ewg->ReadUint8();
4301     }
4302    
4303     MidiRuleLegato::MidiRuleLegato() :
4304     LegatoSamples(12),
4305     BypassUseController(false),
4306     BypassKey(0),
4307     BypassController(1),
4308     ThresholdTime(20),
4309     ReleaseTime(20),
4310     ReleaseTriggerKey(0),
4311     AltSustain1Key(0),
4312     AltSustain2Key(0)
4313     {
4314     KeyRange.low = KeyRange.high = 0;
4315     }
4316    
4317     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4318     pData[32] = 0;
4319     pData[33] = 16;
4320     pData[36] = LegatoSamples;
4321     pData[40] = BypassUseController;
4322     pData[41] = BypassKey;
4323     pData[42] = BypassController;
4324     store16(&pData[43], ThresholdTime);
4325     store16(&pData[47], ReleaseTime);
4326     pData[51] = KeyRange.low;
4327     pData[52] = KeyRange.high;
4328     pData[64] = ReleaseTriggerKey;
4329     pData[65] = AltSustain1Key;
4330     pData[66] = AltSustain2Key;
4331     }
4332    
4333     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4334     _3ewg->SetPos(36);
4335     Articulations = _3ewg->ReadUint8();
4336     int flags = _3ewg->ReadUint8();
4337     Polyphonic = flags & 8;
4338     Chained = flags & 4;
4339     Selector = (flags & 2) ? selector_controller :
4340     (flags & 1) ? selector_key_switch : selector_none;
4341     Patterns = _3ewg->ReadUint8();
4342     _3ewg->ReadUint8(); // chosen row
4343     _3ewg->ReadUint8(); // unknown
4344     _3ewg->ReadUint8(); // unknown
4345     _3ewg->ReadUint8(); // unknown
4346     KeySwitchRange.low = _3ewg->ReadUint8();
4347     KeySwitchRange.high = _3ewg->ReadUint8();
4348     Controller = _3ewg->ReadUint8();
4349     PlayRange.low = _3ewg->ReadUint8();
4350     PlayRange.high = _3ewg->ReadUint8();
4351    
4352     int n = std::min(int(Articulations), 32);
4353     for (int i = 0 ; i < n ; i++) {
4354     _3ewg->ReadString(pArticulations[i], 32);
4355     }
4356     _3ewg->SetPos(1072);
4357     n = std::min(int(Patterns), 32);
4358     for (int i = 0 ; i < n ; i++) {
4359     _3ewg->ReadString(pPatterns[i].Name, 16);
4360     pPatterns[i].Size = _3ewg->ReadUint8();
4361     _3ewg->Read(&pPatterns[i][0], 1, 32);
4362     }
4363     }
4364    
4365     MidiRuleAlternator::MidiRuleAlternator() :
4366     Articulations(0),
4367     Patterns(0),
4368     Selector(selector_none),
4369     Controller(0),
4370     Polyphonic(false),
4371     Chained(false)
4372     {
4373     PlayRange.low = PlayRange.high = 0;
4374     KeySwitchRange.low = KeySwitchRange.high = 0;
4375     }
4376    
4377     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4378     pData[32] = 3;
4379     pData[33] = 16;
4380     pData[36] = Articulations;
4381     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4382     (Selector == selector_controller ? 2 :
4383     (Selector == selector_key_switch ? 1 : 0));
4384     pData[38] = Patterns;
4385    
4386     pData[43] = KeySwitchRange.low;
4387     pData[44] = KeySwitchRange.high;
4388     pData[45] = Controller;
4389     pData[46] = PlayRange.low;
4390     pData[47] = PlayRange.high;
4391    
4392     char* str = reinterpret_cast<char*>(pData);
4393     int pos = 48;
4394     int n = std::min(int(Articulations), 32);
4395     for (int i = 0 ; i < n ; i++, pos += 32) {
4396     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4397     }
4398    
4399     pos = 1072;
4400     n = std::min(int(Patterns), 32);
4401     for (int i = 0 ; i < n ; i++, pos += 49) {
4402     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4403     pData[pos + 16] = pPatterns[i].Size;
4404     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4405     }
4406     }
4407    
4408 schoenebeck 2584 // *************** Script ***************
4409     // *
4410    
4411     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4412     pGroup = group;
4413     pChunk = ckScri;
4414     if (ckScri) { // object is loaded from file ...
4415     // read header
4416     uint32_t headerSize = ckScri->ReadUint32();
4417     Compression = (Compression_t) ckScri->ReadUint32();
4418     Encoding = (Encoding_t) ckScri->ReadUint32();
4419     Language = (Language_t) ckScri->ReadUint32();
4420     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4421     crc = ckScri->ReadUint32();
4422     uint32_t nameSize = ckScri->ReadUint32();
4423     Name.resize(nameSize, ' ');
4424     for (int i = 0; i < nameSize; ++i)
4425     Name[i] = ckScri->ReadUint8();
4426     // to handle potential future extensions of the header
4427 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4428 schoenebeck 2584 // read actual script data
4429 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4430 schoenebeck 2584 data.resize(scriptSize);
4431     for (int i = 0; i < scriptSize; ++i)
4432     data[i] = ckScri->ReadUint8();
4433     } else { // this is a new script object, so just initialize it as such ...
4434     Compression = COMPRESSION_NONE;
4435     Encoding = ENCODING_ASCII;
4436     Language = LANGUAGE_NKSP;
4437     Bypass = false;
4438     crc = 0;
4439     Name = "Unnamed Script";
4440     }
4441     }
4442    
4443     Script::~Script() {
4444     }
4445    
4446     /**
4447     * Returns the current script (i.e. as source code) in text format.
4448     */
4449     String Script::GetScriptAsText() {
4450     String s;
4451     s.resize(data.size(), ' ');
4452     memcpy(&s[0], &data[0], data.size());
4453     return s;
4454     }
4455    
4456     /**
4457     * Replaces the current script with the new script source code text given
4458     * by @a text.
4459     *
4460     * @param text - new script source code
4461     */
4462     void Script::SetScriptAsText(const String& text) {
4463     data.resize(text.size());
4464     memcpy(&data[0], &text[0], text.size());
4465     }
4466    
4467 schoenebeck 2682 /**
4468     * Apply this script to the respective RIFF chunks. You have to call
4469     * File::Save() to make changes persistent.
4470     *
4471     * Usually there is absolutely no need to call this method explicitly.
4472     * It will be called automatically when File::Save() was called.
4473     *
4474     * @param pProgress - callback function for progress notification
4475     */
4476     void Script::UpdateChunks(progress_t* pProgress) {
4477 schoenebeck 2584 // recalculate CRC32 check sum
4478     __resetCRC(crc);
4479     __calculateCRC(&data[0], data.size(), crc);
4480 schoenebeck 3115 __finalizeCRC(crc);
4481 schoenebeck 2584 // make sure chunk exists and has the required size
4482 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4483 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4484     else pChunk->Resize(chunkSize);
4485     // fill the chunk data to be written to disk
4486     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4487     int pos = 0;
4488 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4489 schoenebeck 2584 pos += sizeof(int32_t);
4490     store32(&pData[pos], Compression);
4491     pos += sizeof(int32_t);
4492     store32(&pData[pos], Encoding);
4493     pos += sizeof(int32_t);
4494     store32(&pData[pos], Language);
4495     pos += sizeof(int32_t);
4496     store32(&pData[pos], Bypass ? 1 : 0);
4497     pos += sizeof(int32_t);
4498     store32(&pData[pos], crc);
4499     pos += sizeof(int32_t);
4500 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4501 schoenebeck 2584 pos += sizeof(int32_t);
4502     for (int i = 0; i < Name.size(); ++i, ++pos)
4503     pData[pos] = Name[i];
4504     for (int i = 0; i < data.size(); ++i, ++pos)
4505     pData[pos] = data[i];
4506     }
4507    
4508     /**
4509     * Move this script from its current ScriptGroup to another ScriptGroup
4510     * given by @a pGroup.
4511     *
4512     * @param pGroup - script's new group
4513     */
4514     void Script::SetGroup(ScriptGroup* pGroup) {
4515 persson 2836 if (this->pGroup == pGroup) return;
4516 schoenebeck 2584 if (pChunk)
4517     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4518     this->pGroup = pGroup;
4519     }
4520    
4521 schoenebeck 2601 /**
4522     * Returns the script group this script currently belongs to. Each script
4523     * is a member of exactly one ScriptGroup.
4524     *
4525     * @returns current script group
4526     */
4527     ScriptGroup* Script::GetGroup() const {
4528     return pGroup;
4529     }
4530    
4531 schoenebeck 3117 /**
4532     * Make a (semi) deep copy of the Script object given by @a orig
4533     * and assign it to this object. Note: the ScriptGroup this Script
4534     * object belongs to remains untouched by this call.
4535     *
4536     * @param orig - original Script object to be copied from
4537     */
4538     void Script::CopyAssign(const Script* orig) {
4539     Name = orig->Name;
4540     Compression = orig->Compression;
4541     Encoding = orig->Encoding;
4542     Language = orig->Language;
4543     Bypass = orig->Bypass;
4544     data = orig->data;
4545     }
4546    
4547 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4548     File* pFile = pGroup->pFile;
4549     for (int i = 0; pFile->GetInstrument(i); ++i) {
4550     Instrument* instr = pFile->GetInstrument(i);
4551     instr->RemoveScript(this);
4552     }
4553     }
4554    
4555     // *************** ScriptGroup ***************
4556     // *
4557    
4558     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4559     pFile = file;
4560     pList = lstRTIS;
4561     pScripts = NULL;
4562     if (lstRTIS) {
4563     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4564     ::LoadString(ckName, Name);
4565     } else {
4566     Name = "Default Group";
4567     }
4568     }
4569    
4570     ScriptGroup::~ScriptGroup() {
4571     if (pScripts) {
4572     std::list<Script*>::iterator iter = pScripts->begin();
4573     std::list<Script*>::iterator end = pScripts->end();
4574     while (iter != end) {
4575     delete *iter;
4576     ++iter;
4577     }
4578     delete pScripts;
4579     }
4580     }
4581    
4582 schoenebeck 2682 /**
4583     * Apply this script group to the respective RIFF chunks. You have to call
4584     * File::Save() to make changes persistent.
4585     *
4586     * Usually there is absolutely no need to call this method explicitly.
4587     * It will be called automatically when File::Save() was called.
4588     *
4589     * @param pProgress - callback function for progress notification
4590     */
4591     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4592 schoenebeck 2584 if (pScripts) {
4593     if (!pList)
4594     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4595    
4596     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4597     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4598    
4599     for (std::list<Script*>::iterator it = pScripts->begin();
4600     it != pScripts->end(); ++it)
4601     {
4602 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4603 schoenebeck 2584 }
4604     }
4605     }
4606    
4607     /** @brief Get instrument script.
4608     *
4609     * Returns the real-time instrument script with the given index.
4610     *
4611     * @param index - number of the sought script (0..n)
4612     * @returns sought script or NULL if there's no such script
4613     */
4614     Script* ScriptGroup::GetScript(uint index) {
4615     if (!pScripts) LoadScripts();
4616     std::list<Script*>::iterator it = pScripts->begin();
4617     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4618     if (i == index) return *it;
4619     return NULL;
4620     }
4621    
4622     /** @brief Add new instrument script.
4623     *
4624     * Adds a new real-time instrument script to the file. The script is not
4625     * actually used / executed unless it is referenced by an instrument to be
4626     * used. This is similar to samples, which you can add to a file, without
4627     * an instrument necessarily actually using it.
4628     *
4629     * You have to call Save() to make this persistent to the file.
4630     *
4631     * @return new empty script object
4632     */
4633     Script* ScriptGroup::AddScript() {
4634     if (!pScripts) LoadScripts();
4635     Script* pScript = new Script(this, NULL);
4636     pScripts->push_back(pScript);
4637     return pScript;
4638     }
4639    
4640     /** @brief Delete an instrument script.
4641     *
4642     * This will delete the given real-time instrument script. References of
4643     * instruments that are using that script will be removed accordingly.
4644     *
4645     * You have to call Save() to make this persistent to the file.
4646     *
4647     * @param pScript - script to delete
4648     * @throws gig::Exception if given script could not be found
4649     */
4650     void ScriptGroup::DeleteScript(Script* pScript) {
4651     if (!pScripts) LoadScripts();
4652     std::list<Script*>::iterator iter =
4653     find(pScripts->begin(), pScripts->end(), pScript);
4654     if (iter == pScripts->end())
4655     throw gig::Exception("Could not delete script, could not find given script");
4656     pScripts->erase(iter);
4657     pScript->RemoveAllScriptReferences();
4658     if (pScript->pChunk)
4659     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4660     delete pScript;
4661     }
4662    
4663     void ScriptGroup::LoadScripts() {
4664     if (pScripts) return;
4665     pScripts = new std::list<Script*>;
4666     if (!pList) return;
4667    
4668     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4669     ck = pList->GetNextSubChunk())
4670     {
4671     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4672     pScripts->push_back(new Script(this, ck));
4673     }
4674     }
4675     }
4676    
4677 schoenebeck 2 // *************** Instrument ***************
4678     // *
4679    
4680 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4681 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4682 persson 1180 { CHUNK_ID_INAM, 64 },
4683     { CHUNK_ID_ISFT, 12 },
4684     { 0, 0 }
4685     };
4686 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4687 persson 918
4688 schoenebeck 2 // Initialization
4689     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4690 persson 1182 EffectSend = 0;
4691     Attenuation = 0;
4692     FineTune = 0;
4693 schoenebeck 3112 PitchbendRange = 2;
4694 persson 1182 PianoReleaseMode = false;
4695     DimensionKeyRange.low = 0;
4696     DimensionKeyRange.high = 0;
4697 persson 1678 pMidiRules = new MidiRule*[3];
4698     pMidiRules[0] = NULL;
4699 schoenebeck 2584 pScriptRefs = NULL;
4700 schoenebeck 2
4701     // Loading
4702     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4703     if (lart) {
4704     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4705     if (_3ewg) {
4706     EffectSend = _3ewg->ReadUint16();
4707     Attenuation = _3ewg->ReadInt32();
4708     FineTune = _3ewg->ReadInt16();
4709     PitchbendRange = _3ewg->ReadInt16();
4710     uint8_t dimkeystart = _3ewg->ReadUint8();
4711     PianoReleaseMode = dimkeystart & 0x01;
4712     DimensionKeyRange.low = dimkeystart >> 1;
4713     DimensionKeyRange.high = _3ewg->ReadUint8();
4714 persson 1627
4715     if (_3ewg->GetSize() > 32) {
4716     // read MIDI rules
4717 persson 1678 int i = 0;
4718 persson 1627 _3ewg->SetPos(32);
4719     uint8_t id1 = _3ewg->ReadUint8();
4720     uint8_t id2 = _3ewg->ReadUint8();
4721    
4722 persson 2450 if (id2 == 16) {
4723     if (id1 == 4) {
4724     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4725     } else if (id1 == 0) {
4726     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4727     } else if (id1 == 3) {
4728     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4729     } else {
4730     pMidiRules[i++] = new MidiRuleUnknown;
4731     }
4732 persson 1627 }
4733 persson 2450 else if (id1 != 0 || id2 != 0) {
4734     pMidiRules[i++] = new MidiRuleUnknown;
4735     }
4736 persson 1627 //TODO: all the other types of rules
4737 persson 1678
4738     pMidiRules[i] = NULL;
4739 persson 1627 }
4740 schoenebeck 2 }
4741     }
4742    
4743 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4744     if (!pRegions) pRegions = new RegionList;
4745     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4746     if (lrgn) {
4747     RIFF::List* rgn = lrgn->GetFirstSubList();
4748     while (rgn) {
4749     if (rgn->GetListType() == LIST_TYPE_RGN) {
4750     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4751     pRegions->push_back(new Region(this, rgn));
4752     }
4753     rgn = lrgn->GetNextSubList();
4754 schoenebeck 809 }
4755 schoenebeck 1524 // Creating Region Key Table for fast lookup
4756     UpdateRegionKeyTable();
4757 schoenebeck 2 }
4758     }
4759    
4760 schoenebeck 2584 // own gig format extensions
4761     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4762     if (lst3LS) {
4763     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4764     if (ckSCSL) {
4765 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4766     int slotCount = ckSCSL->ReadUint32();
4767     if (slotCount) {
4768     int slotSize = ckSCSL->ReadUint32();
4769     ckSCSL->SetPos(headerSize); // in case of future header extensions
4770     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4771     for (int i = 0; i < slotCount; ++i) {
4772     _ScriptPooolEntry e;
4773     e.fileOffset = ckSCSL->ReadUint32();
4774     e.bypass = ckSCSL->ReadUint32() & 1;
4775     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4776     scriptPoolFileOffsets.push_back(e);
4777     }
4778 schoenebeck 2584 }
4779     }
4780     }
4781    
4782 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4783     }
4784    
4785     void Instrument::UpdateRegionKeyTable() {
4786 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4787 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4788     RegionList::iterator end = pRegions->end();
4789     for (; iter != end; ++iter) {
4790     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4791 schoenebeck 3348 const int low = std::max(int(pRegion->KeyRange.low), 0);
4792     const int high = std::min(int(pRegion->KeyRange.high), 127);
4793     for (int iKey = low; iKey <= high; iKey++) {
4794 schoenebeck 823 RegionKeyTable[iKey] = pRegion;
4795 schoenebeck 2 }
4796     }
4797     }
4798    
4799     Instrument::~Instrument() {
4800 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4801     delete pMidiRules[i];
4802     }
4803 persson 1678 delete[] pMidiRules;
4804 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4805 schoenebeck 2 }
4806    
4807     /**
4808 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4809     * You have to call File::Save() to make changes persistent.
4810     *
4811     * Usually there is absolutely no need to call this method explicitly.
4812     * It will be called automatically when File::Save() was called.
4813     *
4814 schoenebeck 2682 * @param pProgress - callback function for progress notification
4815 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4816     */
4817 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4818 schoenebeck 809 // first update base classes' chunks
4819 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4820 schoenebeck 809
4821     // update Regions' chunks
4822 schoenebeck 823 {
4823     RegionList::iterator iter = pRegions->begin();
4824     RegionList::iterator end = pRegions->end();
4825     for (; iter != end; ++iter)
4826 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4827 schoenebeck 823 }
4828 schoenebeck 809
4829     // make sure 'lart' RIFF list chunk exists
4830     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4831     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4832     // make sure '3ewg' RIFF chunk exists
4833     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4834 persson 1264 if (!_3ewg) {
4835     File* pFile = (File*) GetParent();
4836    
4837     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4838 schoenebeck 3440 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4839 persson 1264 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4840     memset(_3ewg->LoadChunkData(), 0, size);
4841     }
4842 schoenebeck 809 // update '3ewg' RIFF chunk
4843     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4844 persson 1179 store16(&pData[0], EffectSend);
4845     store32(&pData[2], Attenuation);
4846     store16(&pData[6], FineTune);
4847     store16(&pData[8], PitchbendRange);
4848 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4849 schoenebeck 809 DimensionKeyRange.low << 1;
4850 persson 1179 pData[10] = dimkeystart;
4851     pData[11] = DimensionKeyRange.high;
4852 persson 2450
4853     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4854     pData[32] = 0;
4855     pData[33] = 0;
4856     } else {
4857     for (int i = 0 ; pMidiRules[i] ; i++) {
4858     pMidiRules[i]->UpdateChunks(pData);
4859     }
4860     }
4861 schoenebeck 2584
4862     // own gig format extensions
4863 schoenebeck 2648 if (ScriptSlotCount()) {
4864     // make sure we have converted the original loaded script file
4865     // offsets into valid Script object pointers
4866     LoadScripts();
4867    
4868 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4869     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4870 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4871 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4872     const int slotSize = 2 * sizeof(uint32_t);
4873     const int totalChunkSize = headerSize + slotCount * slotSize;
4874 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4875 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4876     else ckSCSL->Resize(totalChunkSize);
4877 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4878 schoenebeck 2609 int pos = 0;
4879     store32(&pData[pos], headerSize);
4880     pos += sizeof(uint32_t);
4881     store32(&pData[pos], slotCount);
4882     pos += sizeof(uint32_t);
4883     store32(&pData[pos], slotSize);
4884     pos += sizeof(uint32_t);
4885     for (int i = 0; i < slotCount; ++i) {
4886     // arbitrary value, the actual file offset will be updated in
4887     // UpdateScriptFileOffsets() after the file has been resized
4888     int bogusFileOffset = 0;
4889     store32(&pData[pos], bogusFileOffset);
4890 schoenebeck 2584 pos += sizeof(uint32_t);
4891     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4892     pos += sizeof(uint32_t);
4893     }
4894 schoenebeck 2648 } else {
4895     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4896     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4897     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4898 schoenebeck 2584 }
4899 schoenebeck 809 }
4900    
4901 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4902     // own gig format extensions
4903 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4904 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4905     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4906 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4907 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4908     ckSCSL->SetPos(headerSize);
4909     for (int i = 0; i < slotCount; ++i) {
4910 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4911 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4912     (*pScriptRefs)[i].script->pChunk->GetPos() -
4913 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4914     );
4915 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4916     // jump over flags entry (containing the bypass flag)
4917     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4918     }
4919     }
4920     }
4921    
4922 schoenebeck 809 /**
4923 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4924     *
4925     * @param Key MIDI Key number of triggered note / key (0 - 127)
4926     * @returns pointer adress to the appropriate Region or NULL if there
4927     * there is no Region defined for the given \a Key
4928     */
4929     Region* Instrument::GetRegion(unsigned int Key) {
4930 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4931 schoenebeck 2 return RegionKeyTable[Key];
4932 schoenebeck 823
4933 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4934     if (Key <= pRegions[i]->KeyRange.high &&
4935     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4936     }
4937     return NULL;*/
4938     }
4939    
4940     /**
4941     * Returns the first Region of the instrument. You have to call this
4942     * method once before you use GetNextRegion().
4943     *
4944     * @returns pointer address to first region or NULL if there is none
4945     * @see GetNextRegion()
4946     */
4947     Region* Instrument::GetFirstRegion() {
4948 schoenebeck 823 if (!pRegions) return NULL;
4949     RegionsIterator = pRegions->begin();
4950     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4951 schoenebeck 2 }
4952    
4953     /**
4954     * Returns the next Region of the instrument. You have to call
4955     * GetFirstRegion() once before you can use this method. By calling this
4956     * method multiple times it iterates through the available Regions.
4957     *
4958     * @returns pointer address to the next region or NULL if end reached
4959     * @see GetFirstRegion()
4960     */
4961     Region* Instrument::GetNextRegion() {
4962 schoenebeck 823 if (!pRegions) return NULL;
4963     RegionsIterator++;
4964     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4965 schoenebeck 2 }
4966    
4967 schoenebeck 809 Region* Instrument::AddRegion() {
4968     // create new Region object (and its RIFF chunks)
4969     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4970     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4971     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4972     Region* pNewRegion = new Region(this, rgn);
4973 schoenebeck 823 pRegions->push_back(pNewRegion);
4974 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
4975 schoenebeck 809 // update Region key table for fast lookup
4976     UpdateRegionKeyTable();
4977     // done
4978     return pNewRegion;
4979     }
4980 schoenebeck 2
4981 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4982     if (!pRegions) return;
4983 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4984 schoenebeck 809 // update Region key table for fast lookup
4985     UpdateRegionKeyTable();
4986     }
4987 schoenebeck 2
4988 persson 1627 /**
4989 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4990     *
4991     * This method can be used to reorder the sequence of instruments in a
4992     * .gig file. This might be helpful especially on large .gig files which
4993     * contain a large number of instruments within the same .gig file. So
4994     * grouping such instruments to similar ones, can help to keep track of them
4995     * when working with such complex .gig files.
4996     *
4997     * When calling this method, this instrument will be removed from in its
4998     * current position in the instruments list and moved to the requested
4999     * target position provided by @param dst. You may also pass NULL as
5000     * argument to this method, in that case this intrument will be moved to the
5001     * very end of the .gig file's instrument list.
5002     *
5003     * You have to call Save() to make the order change persistent to the .gig
5004     * file.
5005     *
5006     * Currently this method is limited to moving the instrument within the same
5007     * .gig file. Trying to move it to another .gig file by calling this method
5008     * will throw an exception.
5009     *
5010     * @param dst - destination instrument at which this instrument will be
5011     * moved to, or pass NULL for moving to end of list
5012     * @throw gig::Exception if this instrument and target instrument are not
5013     * part of the same file
5014     */
5015     void Instrument::MoveTo(Instrument* dst) {
5016     if (dst && GetParent() != dst->GetParent())
5017     throw Exception(
5018     "gig::Instrument::MoveTo() can only be used for moving within "
5019     "the same gig file."
5020     );
5021    
5022     File* pFile = (File*) GetParent();
5023    
5024     // move this instrument within the instrument list
5025     {
5026 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
5027 schoenebeck 2700
5028 persson 2836 File::InstrumentList::iterator itFrom =
5029 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5030    
5031 persson 2836 File::InstrumentList::iterator itTo =
5032 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5033    
5034     list.splice(itTo, list, itFrom);
5035     }
5036    
5037     // move the instrument's actual list RIFF chunk appropriately
5038     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5039     lstCkInstruments->MoveSubChunk(
5040     this->pCkInstrument,
5041 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5042 schoenebeck 2700 );
5043     }
5044    
5045     /**
5046 persson 1678 * Returns a MIDI rule of the instrument.
5047 persson 1627 *
5048     * The list of MIDI rules, at least in gig v3, always contains at
5049     * most two rules. The second rule can only be the DEF filter
5050     * (which currently isn't supported by libgig).
5051     *
5052 persson 1678 * @param i - MIDI rule number
5053     * @returns pointer address to MIDI rule number i or NULL if there is none
5054 persson 1627 */
5055 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
5056     return pMidiRules[i];
5057 persson 1627 }
5058 persson 2450
5059 schoenebeck 2394 /**
5060 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5061     *
5062     * @returns the new MIDI rule
5063     */
5064     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5065     delete pMidiRules[0];
5066     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5067     pMidiRules[0] = r;
5068     pMidiRules[1] = 0;
5069     return r;
5070     }
5071    
5072     /**
5073     * Adds the legato MIDI rule to the instrument.
5074     *
5075     * @returns the new MIDI rule
5076     */
5077     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5078     delete pMidiRules[0];
5079     MidiRuleLegato* r = new MidiRuleLegato;
5080     pMidiRules[0] = r;
5081     pMidiRules[1] = 0;
5082     return r;
5083     }
5084    
5085     /**
5086     * Adds the alternator MIDI rule to the instrument.
5087     *
5088     * @returns the new MIDI rule
5089     */
5090     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5091     delete pMidiRules[0];
5092     MidiRuleAlternator* r = new MidiRuleAlternator;
5093     pMidiRules[0] = r;
5094     pMidiRules[1] = 0;
5095     return r;
5096     }
5097    
5098     /**
5099     * Deletes a MIDI rule from the instrument.
5100     *
5101     * @param i - MIDI rule number
5102     */
5103     void Instrument::DeleteMidiRule(int i) {
5104     delete pMidiRules[i];
5105     pMidiRules[i] = 0;
5106     }
5107    
5108 schoenebeck 2584 void Instrument::LoadScripts() {
5109     if (pScriptRefs) return;
5110     pScriptRefs = new std::vector<_ScriptPooolRef>;
5111     if (scriptPoolFileOffsets.empty()) return;
5112     File* pFile = (File*) GetParent();
5113     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5114 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5115 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5116     ScriptGroup* group = pFile->GetScriptGroup(i);
5117     for (uint s = 0; group->GetScript(s); ++s) {
5118     Script* script = group->GetScript(s);
5119     if (script->pChunk) {
5120 schoenebeck 3053 uint32_t offset = uint32_t(
5121     script->pChunk->GetFilePos() -
5122     script->pChunk->GetPos() -
5123     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5124     );
5125 schoenebeck 2609 if (offset == soughtOffset)
5126 schoenebeck 2584 {
5127     _ScriptPooolRef ref;
5128     ref.script = script;
5129     ref.bypass = scriptPoolFileOffsets[k].bypass;
5130     pScriptRefs->push_back(ref);
5131     break;
5132     }
5133     }
5134     }
5135     }
5136     }
5137     // we don't need that anymore
5138     scriptPoolFileOffsets.clear();
5139     }
5140    
5141 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5142 schoenebeck 2584 *
5143 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5144     * @a index.
5145     *
5146     * @note This is an own format extension which did not exist i.e. in the
5147     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5148     * gigedit.
5149     *
5150     * @param index - instrument script slot index
5151     * @returns script or NULL if index is out of bounds
5152     */
5153     Script* Instrument::GetScriptOfSlot(uint index) {
5154     LoadScripts();
5155     if (index >= pScriptRefs->size()) return NULL;
5156     return pScriptRefs->at(index).script;
5157     }
5158    
5159     /** @brief Add new instrument script slot (gig format extension).
5160     *
5161 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5162     * which shall be executed by the sampler for for this instrument. The
5163     * script will be added to the end of the script list of this instrument.
5164     * The positions of the scripts in the Instrument's Script list are
5165     * relevant, because they define in which order they shall be executed by
5166     * the sampler. For this reason it is also legal to add the same script
5167     * twice to an instrument, for example you might have a script called
5168     * "MyFilter" which performs an event filter task, and you might have
5169     * another script called "MyNoteTrigger" which triggers new notes, then you
5170     * might for example have the following list of scripts on the instrument:
5171     *
5172     * 1. Script "MyFilter"
5173     * 2. Script "MyNoteTrigger"
5174     * 3. Script "MyFilter"
5175     *
5176     * Which would make sense, because the 2nd script launched new events, which
5177     * you might need to filter as well.
5178     *
5179     * There are two ways to disable / "bypass" scripts. You can either disable
5180     * a script locally for the respective script slot on an instrument (i.e. by
5181     * passing @c false to the 2nd argument of this method, or by calling
5182     * SetScriptBypassed()). Or you can disable a script globally for all slots
5183     * and all instruments by setting Script::Bypass.
5184     *
5185     * @note This is an own format extension which did not exist i.e. in the
5186     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5187     * gigedit.
5188     *
5189     * @param pScript - script that shall be executed for this instrument
5190     * @param bypass - if enabled, the sampler shall skip executing this
5191     * script (in the respective list position)
5192     * @see SetScriptBypassed()
5193     */
5194     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5195     LoadScripts();
5196     _ScriptPooolRef ref = { pScript, bypass };
5197     pScriptRefs->push_back(ref);
5198     }
5199    
5200     /** @brief Flip two script slots with each other (gig format extension).
5201     *
5202     * Swaps the position of the two given scripts in the Instrument's Script
5203     * list. The positions of the scripts in the Instrument's Script list are
5204     * relevant, because they define in which order they shall be executed by
5205     * the sampler.
5206     *
5207     * @note This is an own format extension which did not exist i.e. in the
5208     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5209     * gigedit.
5210     *
5211     * @param index1 - index of the first script slot to swap
5212     * @param index2 - index of the second script slot to swap
5213     */
5214     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5215     LoadScripts();
5216     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5217     return;
5218     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5219     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5220     (*pScriptRefs)[index2] = tmp;
5221     }
5222    
5223     /** @brief Remove script slot.
5224     *
5225     * Removes the script slot with the given slot index.
5226     *
5227     * @param index - index of script slot to remove
5228     */
5229     void Instrument::RemoveScriptSlot(uint index) {
5230     LoadScripts();
5231     if (index >= pScriptRefs->size()) return;
5232     pScriptRefs->erase( pScriptRefs->begin() + index );
5233     }
5234    
5235     /** @brief Remove reference to given Script (gig format extension).
5236     *
5237     * This will remove all script slots on the instrument which are referencing
5238     * the given script.
5239     *
5240     * @note This is an own format extension which did not exist i.e. in the
5241     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5242     * gigedit.
5243     *
5244     * @param pScript - script reference to remove from this instrument
5245     * @see RemoveScriptSlot()
5246     */
5247     void Instrument::RemoveScript(Script* pScript) {
5248     LoadScripts();
5249 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5250 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5251     pScriptRefs->erase( pScriptRefs->begin() + i );
5252     }
5253     }
5254     }
5255    
5256     /** @brief Instrument's amount of script slots.
5257     *
5258     * This method returns the amount of script slots this instrument currently
5259     * uses.
5260     *
5261     * A script slot is a reference of a real-time instrument script to be
5262     * executed by the sampler. The scripts will be executed by the sampler in
5263     * sequence of the slots. One (same) script may be referenced multiple
5264     * times in different slots.
5265     *
5266     * @note This is an own format extension which did not exist i.e. in the
5267     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5268     * gigedit.
5269     */
5270     uint Instrument::ScriptSlotCount() const {
5271 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5272 schoenebeck 2584 }
5273    
5274     /** @brief Whether script execution shall be skipped.
5275     *
5276     * Defines locally for the Script reference slot in the Instrument's Script
5277     * list, whether the script shall be skipped by the sampler regarding
5278     * execution.
5279     *
5280     * It is also possible to ignore exeuction of the script globally, for all
5281     * slots and for all instruments by setting Script::Bypass.
5282     *
5283     * @note This is an own format extension which did not exist i.e. in the
5284     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5285     * gigedit.
5286     *
5287     * @param index - index of the script slot on this instrument
5288     * @see Script::Bypass
5289     */
5290     bool Instrument::IsScriptSlotBypassed(uint index) {
5291     if (index >= ScriptSlotCount()) return false;
5292     return pScriptRefs ? pScriptRefs->at(index).bypass
5293     : scriptPoolFileOffsets.at(index).bypass;
5294    
5295     }
5296    
5297     /** @brief Defines whether execution shall be skipped.
5298     *
5299     * You can call this method to define locally whether or whether not the
5300     * given script slot shall be executed by the sampler.
5301     *
5302     * @note This is an own format extension which did not exist i.e. in the
5303     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5304     * gigedit.
5305     *
5306     * @param index - script slot index on this instrument
5307     * @param bBypass - if true, the script slot will be skipped by the sampler
5308     * @see Script::Bypass
5309     */
5310     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5311     if (index >= ScriptSlotCount()) return;
5312     if (pScriptRefs)
5313     pScriptRefs->at(index).bypass = bBypass;
5314     else
5315     scriptPoolFileOffsets.at(index).bypass = bBypass;
5316     }
5317    
5318 persson 2450 /**
5319 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5320     * and assign it to this object.
5321     *
5322     * Note that all sample pointers referenced by @a orig are simply copied as
5323     * memory address. Thus the respective samples are shared, not duplicated!
5324     *
5325     * @param orig - original Instrument object to be copied from
5326     */
5327     void Instrument::CopyAssign(const Instrument* orig) {
5328 schoenebeck 2482 CopyAssign(orig, NULL);
5329     }
5330    
5331     /**
5332     * Make a (semi) deep copy of the Instrument object given by @a orig
5333     * and assign it to this object.
5334     *
5335     * @param orig - original Instrument object to be copied from
5336     * @param mSamples - crosslink map between the foreign file's samples and
5337     * this file's samples
5338     */
5339     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5340 schoenebeck 2394 // handle base class
5341     // (without copying DLS region stuff)
5342     DLS::Instrument::CopyAssignCore(orig);
5343    
5344     // handle own member variables
5345     Attenuation = orig->Attenuation;
5346     EffectSend = orig->EffectSend;
5347     FineTune = orig->FineTune;
5348     PitchbendRange = orig->PitchbendRange;
5349     PianoReleaseMode = orig->PianoReleaseMode;
5350     DimensionKeyRange = orig->DimensionKeyRange;
5351 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5352     pScriptRefs = orig->pScriptRefs;
5353 schoenebeck 2394
5354     // free old midi rules
5355     for (int i = 0 ; pMidiRules[i] ; i++) {
5356     delete pMidiRules[i];
5357     }
5358     //TODO: MIDI rule copying
5359     pMidiRules[0] = NULL;
5360    
5361     // delete all old regions
5362     while (Regions) DeleteRegion(GetFirstRegion());
5363     // create new regions and copy them from original
5364     {
5365     RegionList::const_iterator it = orig->pRegions->begin();
5366     for (int i = 0; i < orig->Regions; ++i, ++it) {
5367     Region* dstRgn = AddRegion();
5368     //NOTE: Region does semi-deep copy !
5369     dstRgn->CopyAssign(
5370 schoenebeck 2482 static_cast<gig::Region*>(*it),
5371     mSamples
5372 schoenebeck 2394 );
5373     }
5374     }
5375 schoenebeck 809
5376 schoenebeck 2394 UpdateRegionKeyTable();
5377     }
5378 schoenebeck 809
5379 schoenebeck 2394
5380 schoenebeck 929 // *************** Group ***************
5381     // *
5382    
5383     /** @brief Constructor.
5384     *
5385 schoenebeck 930 * @param file - pointer to the gig::File object
5386     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5387     * NULL if this is a new Group
5388 schoenebeck 929 */
5389 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5390 schoenebeck 929 pFile = file;
5391     pNameChunk = ck3gnm;
5392     ::LoadString(pNameChunk, Name);
5393     }
5394    
5395     Group::~Group() {
5396 schoenebeck 1099 // remove the chunk associated with this group (if any)
5397     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5398 schoenebeck 929 }
5399    
5400     /** @brief Update chunks with current group settings.
5401     *
5402 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5403     * to call File::Save() to make changes persistent.
5404     *
5405     * Usually there is absolutely no need to call this method explicitly.
5406     * It will be called automatically when File::Save() was called.
5407 schoenebeck 2682 *
5408     * @param pProgress - callback function for progress notification
5409 schoenebeck 929 */
5410 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5411 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5412 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5413 persson 1192 if (!_3gri) {
5414     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5415     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5416     }
5417 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5418 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5419 persson 1266
5420 schoenebeck 3440 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5421 persson 1266 // v3 has a fixed list of 128 strings, find a free one
5422     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5423     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5424     pNameChunk = ck;
5425     break;
5426     }
5427     }
5428     }
5429    
5430 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5431     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5432     }
5433    
5434 schoenebeck 930 /**
5435     * Returns the first Sample of this Group. You have to call this method
5436     * once before you use GetNextSample().
5437     *
5438     * <b>Notice:</b> this method might block for a long time, in case the
5439     * samples of this .gig file were not scanned yet
5440     *
5441     * @returns pointer address to first Sample or NULL if there is none
5442     * applied to this Group
5443     * @see GetNextSample()
5444     */
5445     Sample* Group::GetFirstSample() {
5446     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5447     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5448     if (pSample->GetGroup() == this) return pSample;
5449     }
5450     return NULL;
5451     }
5452 schoenebeck 929
5453 schoenebeck 930 /**
5454     * Returns the next Sample of the Group. You have to call
5455     * GetFirstSample() once before you can use this method. By calling this
5456     * method multiple times it iterates through the Samples assigned to
5457     * this Group.
5458     *
5459     * @returns pointer address to the next Sample of this Group or NULL if
5460     * end reached
5461     * @see GetFirstSample()
5462     */
5463     Sample* Group::GetNextSample() {
5464     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5465     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5466     if (pSample->GetGroup() == this) return pSample;
5467     }
5468     return NULL;
5469     }
5470 schoenebeck 929
5471 schoenebeck 930 /**
5472     * Move Sample given by \a pSample from another Group to this Group.
5473     */
5474     void Group::AddSample(Sample* pSample) {
5475     pSample->pGroup = this;
5476     }
5477    
5478     /**
5479     * Move all members of this group to another group (preferably the 1st
5480     * one except this). This method is called explicitly by
5481     * File::DeleteGroup() thus when a Group was deleted. This code was
5482     * intentionally not placed in the destructor!
5483     */
5484     void Group::MoveAll() {
5485     // get "that" other group first
5486     Group* pOtherGroup = NULL;
5487     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5488     if (pOtherGroup != this) break;
5489     }
5490     if (!pOtherGroup) throw Exception(
5491     "Could not move samples to another group, since there is no "
5492     "other Group. This is a bug, report it!"
5493     );
5494     // now move all samples of this group to the other group
5495     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5496     pOtherGroup->AddSample(pSample);
5497     }
5498     }
5499    
5500    
5501    
5502 schoenebeck 2 // *************** File ***************
5503     // *
5504    
5505 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5506 persson 1199 const DLS::version_t File::VERSION_2 = {
5507     0, 2, 19980628 & 0xffff, 19980628 >> 16
5508     };
5509    
5510 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5511 persson 1199 const DLS::version_t File::VERSION_3 = {
5512     0, 3, 20030331 & 0xffff, 20030331 >> 16
5513     };
5514    
5515 schoenebeck 3440 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5516     const DLS::version_t File::VERSION_4 = {
5517     0, 4, 20071012 & 0xffff, 20071012 >> 16
5518     };
5519    
5520 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5521 persson 1180 { CHUNK_ID_IARL, 256 },
5522     { CHUNK_ID_IART, 128 },
5523     { CHUNK_ID_ICMS, 128 },
5524     { CHUNK_ID_ICMT, 1024 },
5525     { CHUNK_ID_ICOP, 128 },
5526     { CHUNK_ID_ICRD, 128 },
5527     { CHUNK_ID_IENG, 128 },
5528     { CHUNK_ID_IGNR, 128 },
5529     { CHUNK_ID_IKEY, 128 },
5530     { CHUNK_ID_IMED, 128 },
5531     { CHUNK_ID_INAM, 128 },
5532     { CHUNK_ID_IPRD, 128 },
5533     { CHUNK_ID_ISBJ, 128 },
5534     { CHUNK_ID_ISFT, 128 },
5535     { CHUNK_ID_ISRC, 128 },
5536     { CHUNK_ID_ISRF, 128 },
5537     { CHUNK_ID_ITCH, 128 },
5538     { 0, 0 }
5539     };
5540    
5541 schoenebeck 809 File::File() : DLS::File() {
5542 schoenebeck 1524 bAutoLoad = true;
5543 persson 1264 *pVersion = VERSION_3;
5544 schoenebeck 929 pGroups = NULL;
5545 schoenebeck 2584 pScriptGroups = NULL;
5546 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5547 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5548 persson 1192
5549     // add some mandatory chunks to get the file chunks in right
5550     // order (INFO chunk will be moved to first position later)
5551     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5552     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5553 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5554    
5555     GenerateDLSID();
5556 schoenebeck 809 }
5557    
5558 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5559 schoenebeck 1524 bAutoLoad = true;
5560 schoenebeck 929 pGroups = NULL;
5561 schoenebeck 2584 pScriptGroups = NULL;
5562 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5563 schoenebeck 2 }
5564    
5565 schoenebeck 929 File::~File() {
5566     if (pGroups) {
5567     std::list<Group*>::iterator iter = pGroups->begin();
5568     std::list<Group*>::iterator end = pGroups->end();
5569     while (iter != end) {
5570     delete *iter;
5571     ++iter;
5572     }
5573     delete pGroups;
5574     }
5575 schoenebeck 2584 if (pScriptGroups) {
5576     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5577     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5578     while (iter != end) {
5579     delete *iter;
5580     ++iter;
5581     }
5582     delete pScriptGroups;
5583     }
5584 schoenebeck 929 }
5585    
5586 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5587     if (!pSamples) LoadSamples(pProgress);
5588 schoenebeck 2 if (!pSamples) return NULL;
5589     SamplesIterator = pSamples->begin();
5590     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5591     }
5592    
5593     Sample* File::GetNextSample() {
5594     if (!pSamples) return NULL;
5595     SamplesIterator++;
5596     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5597     }
5598 schoenebeck 2482
5599     /**
5600     * Returns Sample object of @a index.
5601     *
5602     * @returns sample object or NULL if index is out of bounds
5603     */
5604     Sample* File::GetSample(uint index) {
5605     if (!pSamples) LoadSamples();
5606     if (!pSamples) return NULL;
5607     DLS::File::SampleList::iterator it = pSamples->begin();
5608     for (int i = 0; i < index; ++i) {
5609     ++it;
5610     if (it == pSamples->end()) return NULL;
5611     }
5612     if (it == pSamples->end()) return NULL;
5613     return static_cast<gig::Sample*>( *it );
5614     }
5615 schoenebeck 2
5616 schoenebeck 3414 /**
5617     * Returns the total amount of samples of this gig file.
5618     *
5619     * Note that this method might block for a long time in case it is required
5620     * to load the sample info for the first time.
5621     *
5622     * @returns total amount of samples
5623     */
5624     size_t File::CountSamples() {
5625     if (!pSamples) LoadSamples();
5626     if (!pSamples) return 0;
5627     return pSamples->size();
5628     }
5629    
5630 schoenebeck 809 /** @brief Add a new sample.
5631     *
5632     * This will create a new Sample object for the gig file. You have to
5633     * call Save() to make this persistent to the file.
5634     *
5635     * @returns pointer to new Sample object
5636     */
5637     Sample* File::AddSample() {
5638     if (!pSamples) LoadSamples();
5639     __ensureMandatoryChunksExist();
5640     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5641     // create new Sample object and its respective 'wave' list chunk
5642     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5643     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5644 persson 1192
5645     // add mandatory chunks to get the chunks in right order
5646     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5647     wave->AddSubList(LIST_TYPE_INFO);
5648    
5649 schoenebeck 809 pSamples->push_back(pSample);
5650     return pSample;
5651     }
5652    
5653     /** @brief Delete a sample.
5654     *
5655 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5656     * references to this sample from Regions and DimensionRegions will be
5657     * removed. You have to call Save() to make this persistent to the file.
5658 schoenebeck 809 *
5659     * @param pSample - sample to delete
5660     * @throws gig::Exception if given sample could not be found
5661     */
5662     void File::DeleteSample(Sample* pSample) {
5663 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5664     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5665 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5666 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5667 schoenebeck 809 pSamples->erase(iter);
5668     delete pSample;
5669 persson 1266
5670 persson 1678 SampleList::iterator tmp = SamplesIterator;
5671 persson 1266 // remove all references to the sample
5672     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5673     instrument = GetNextInstrument()) {
5674     for (Region* region = instrument->GetFirstRegion() ; region ;
5675     region = instrument->GetNextRegion()) {
5676    
5677     if (region->GetSample() == pSample) region->SetSample(NULL);
5678    
5679     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5680     gig::DimensionRegion *d = region->pDimensionRegions[i];
5681     if (d->pSample == pSample) d->pSample = NULL;
5682     }
5683     }
5684     }
5685 persson 1678 SamplesIterator = tmp; // restore iterator
5686 schoenebeck 809 }
5687    
5688 schoenebeck 823 void File::LoadSamples() {
5689     LoadSamples(NULL);
5690     }
5691    
5692 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5693 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5694     // to resolve the group they belong to
5695 schoenebeck 1158 if (!pGroups) LoadGroups();
5696 schoenebeck 930
5697 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5698    
5699 persson 666 RIFF::File* file = pRIFF;
5700 schoenebeck 515
5701 persson 666 // just for progress calculation
5702     int iSampleIndex = 0;
5703     int iTotalSamples = WavePoolCount;
5704 schoenebeck 515
5705 schoenebeck 3474 // just for assembling path of optional extension files to be read
5706     const std::string folder = parentPath(pRIFF->GetFileName());
5707     const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5708    
5709     // the main gig file and the extension files (.gx01, ... , .gx98) may
5710     // contain wave data (wave pool)
5711     std::vector<RIFF::File*> poolFiles;
5712     poolFiles.push_back(pRIFF);
5713    
5714     // get info about all extension files
5715     RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5716     if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5717     const uint32_t n = ckXfil->ReadInt32();
5718     for (int i = 0; i < n; i++) {
5719     // read the filename and load the extension file
5720     std::string name;
5721     ckXfil->ReadString(name, 128);
5722     std::string path = concatPath(folder, name);
5723     RIFF::File* pExtFile = new RIFF::File(path);
5724     // check that the dlsids match
5725     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5726     if (ckDLSID) {
5727     ::DLS::dlsid_t idExpected;
5728     idExpected.ulData1 = ckXfil->ReadInt32();
5729     idExpected.usData2 = ckXfil->ReadInt16();
5730     idExpected.usData3 = ckXfil->ReadInt16();
5731     ckXfil->Read(idExpected.abData, 8, 1);
5732     ::DLS::dlsid_t idFound;
5733     ckDLSID->Read(&idFound.ulData1, 1, 4);
5734     ckDLSID->Read(&idFound.usData2, 1, 2);
5735     ckDLSID->Read(&idFound.usData3, 1, 2);
5736     ckDLSID->Read(idFound.abData, 8, 1);
5737     if (memcmp(&idExpected, &idFound, 16) != 0)
5738     throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5739     }
5740     poolFiles.push_back(pExtFile);
5741     ExtensionFiles.push_back(pExtFile);
5742 schoenebeck 2912 }
5743 persson 666 }
5744 schoenebeck 515
5745 schoenebeck 3474 // check if a .gx99 (GigaPulse) file exists
5746     RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5747     if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5748     std::string path = baseName + ".gx99";
5749     RIFF::File* pExtFile = new RIFF::File(path);
5750    
5751     // skip unused int and filename
5752 schoenebeck 3475 ckDoxf->SetPos(132, RIFF::stream_curpos);
5753 schoenebeck 3474
5754     // check that the dlsids match
5755     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5756     if (ckDLSID) {
5757     ::DLS::dlsid_t idExpected;
5758     idExpected.ulData1 = ckDoxf->ReadInt32();
5759     idExpected.usData2 = ckDoxf->ReadInt16();
5760     idExpected.usData3 = ckDoxf->ReadInt16();
5761     ckDoxf->Read(idExpected.abData, 8, 1);
5762     ::DLS::dlsid_t idFound;
5763     ckDLSID->Read(&idFound.ulData1, 1, 4);
5764     ckDLSID->Read(&idFound.usData2, 1, 2);
5765     ckDLSID->Read(&idFound.usData3, 1, 2);
5766     ckDLSID->Read(idFound.abData, 8, 1);
5767     if (memcmp(&idExpected, &idFound, 16) != 0)
5768     throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5769     }
5770     poolFiles.push_back(pExtFile);
5771     ExtensionFiles.push_back(pExtFile);
5772     }
5773    
5774     // load samples from extension files (if required)
5775     for (int i = 0; i < poolFiles.size(); i++) {
5776     RIFF::File* file = poolFiles[i];
5777 persson 666 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5778     if (wvpl) {
5779 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5780 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5781     while (wave) {
5782     if (wave->GetListType() == LIST_TYPE_WAVE) {
5783     // notify current progress
5784     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5785     __notify_progress(pProgress, subprogress);
5786    
5787 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5788 schoenebeck 3474 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5789 persson 666
5790     iSampleIndex++;
5791     }
5792     wave = wvpl->GetNextSubList();
5793 schoenebeck 2 }
5794 schoenebeck 3474 }
5795 schoenebeck 2 }
5796 persson 666
5797     __notify_progress(pProgress, 1.0); // notify done
5798 schoenebeck 2 }
5799    
5800     Instrument* File::GetFirstInstrument() {
5801     if (!pInstruments) LoadInstruments();
5802     if (!pInstruments) return NULL;
5803     InstrumentsIterator = pInstruments->begin();
5804 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5805 schoenebeck 2 }
5806    
5807     Instrument* File::GetNextInstrument() {
5808     if (!pInstruments) return NULL;
5809     InstrumentsIterator++;
5810 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5811 schoenebeck 2 }
5812    
5813 schoenebeck 21 /**
5814 schoenebeck 3414 * Returns the total amount of instruments of this gig file.
5815     *
5816     * Note that this method might block for a long time in case it is required
5817     * to load the instruments info for the first time.
5818     *
5819     * @returns total amount of instruments
5820     */
5821     size_t File::CountInstruments() {
5822     if (!pInstruments) LoadInstruments();
5823     if (!pInstruments) return 0;
5824     return pInstruments->size();
5825     }
5826    
5827     /**
5828 schoenebeck 21 * Returns the instrument with the given index.
5829     *
5830 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5831     * @param pProgress - optional: callback function for progress notification
5832 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5833     */
5834 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5835     if (!pInstruments) {
5836     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5837    
5838     // sample loading subtask
5839     progress_t subprogress;
5840     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5841     __notify_progress(&subprogress, 0.0f);
5842 schoenebeck 1524 if (GetAutoLoad())
5843     GetFirstSample(&subprogress); // now force all samples to be loaded
5844 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5845    
5846     // instrument loading subtask
5847     if (pProgress && pProgress->callback) {
5848     subprogress.__range_min = subprogress.__range_max;
5849     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5850     }
5851     __notify_progress(&subprogress, 0.0f);
5852     LoadInstruments(&subprogress);
5853     __notify_progress(&subprogress, 1.0f);
5854     }
5855 schoenebeck 21 if (!pInstruments) return NULL;
5856     InstrumentsIterator = pInstruments->begin();
5857     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5858 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5859 schoenebeck 21 InstrumentsIterator++;
5860     }
5861     return NULL;
5862     }
5863    
5864 schoenebeck 809 /** @brief Add a new instrument definition.
5865     *
5866     * This will create a new Instrument object for the gig file. You have
5867     * to call Save() to make this persistent to the file.
5868     *
5869     * @returns pointer to new Instrument object
5870     */
5871     Instrument* File::AddInstrument() {
5872     if (!pInstruments) LoadInstruments();
5873     __ensureMandatoryChunksExist();
5874     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5875     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5876 persson 1192
5877     // add mandatory chunks to get the chunks in right order
5878     lstInstr->AddSubList(LIST_TYPE_INFO);
5879 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5880 persson 1192
5881 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5882 persson 1209 pInstrument->GenerateDLSID();
5883 persson 1182
5884 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5885    
5886 persson 1182 // this string is needed for the gig to be loadable in GSt:
5887     pInstrument->pInfo->Software = "Endless Wave";
5888    
5889 schoenebeck 809 pInstruments->push_back(pInstrument);
5890     return pInstrument;
5891     }
5892 schoenebeck 2394
5893     /** @brief Add a duplicate of an existing instrument.
5894     *
5895     * Duplicates the instrument definition given by @a orig and adds it
5896     * to this file. This allows in an instrument editor application to
5897     * easily create variations of an instrument, which will be stored in
5898     * the same .gig file, sharing i.e. the same samples.
5899     *
5900     * Note that all sample pointers referenced by @a orig are simply copied as
5901     * memory address. Thus the respective samples are shared, not duplicated!
5902     *
5903     * You have to call Save() to make this persistent to the file.
5904     *
5905     * @param orig - original instrument to be copied
5906     * @returns duplicated copy of the given instrument
5907     */
5908     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5909     Instrument* instr = AddInstrument();
5910     instr->CopyAssign(orig);
5911     return instr;
5912     }
5913 schoenebeck 2482
5914     /** @brief Add content of another existing file.
5915     *
5916     * Duplicates the samples, groups and instruments of the original file
5917     * given by @a pFile and adds them to @c this File. In case @c this File is
5918     * a new one that you haven't saved before, then you have to call
5919     * SetFileName() before calling AddContentOf(), because this method will
5920     * automatically save this file during operation, which is required for
5921     * writing the sample waveform data by disk streaming.
5922     *
5923     * @param pFile - original file whose's content shall be copied from
5924     */
5925     void File::AddContentOf(File* pFile) {
5926     static int iCallCount = -1;
5927     iCallCount++;
5928     std::map<Group*,Group*> mGroups;
5929     std::map<Sample*,Sample*> mSamples;
5930    
5931     // clone sample groups
5932     for (int i = 0; pFile->GetGroup(i); ++i) {
5933     Group* g = AddGroup();
5934     g->Name =
5935     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5936     mGroups[pFile->GetGroup(i)] = g;
5937     }
5938    
5939     // clone samples (not waveform data here yet)
5940     for (int i = 0; pFile->GetSample(i); ++i) {
5941     Sample* s = AddSample();
5942     s->CopyAssignMeta(pFile->GetSample(i));
5943     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5944     mSamples[pFile->GetSample(i)] = s;
5945     }
5946 schoenebeck 3117
5947     // clone script groups and their scripts
5948     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5949     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5950     ScriptGroup* dg = AddScriptGroup();
5951     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5952     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5953     Script* ss = sg->GetScript(iScript);
5954     Script* ds = dg->AddScript();
5955     ds->CopyAssign(ss);
5956     }
5957     }
5958    
5959 schoenebeck 2482 //BUG: For some reason this method only works with this additional
5960     // Save() call in between here.
5961     //
5962     // Important: The correct one of the 2 Save() methods has to be called
5963     // here, depending on whether the file is completely new or has been
5964     // saved to disk already, otherwise it will result in data corruption.
5965     if (pRIFF->IsNew())
5966     Save(GetFileName());
5967     else
5968     Save();
5969    
5970     // clone instruments
5971     // (passing the crosslink table here for the cloned samples)
5972     for (int i = 0; pFile->GetInstrument(i); ++i) {
5973     Instrument* instr = AddInstrument();
5974     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5975     }
5976    
5977     // Mandatory: file needs to be saved to disk at this point, so this
5978     // file has the correct size and data layout for writing the samples'
5979     // waveform data to disk.
5980     Save();
5981    
5982     // clone samples' waveform data
5983     // (using direct read & write disk streaming)
5984     for (int i = 0; pFile->GetSample(i); ++i) {
5985     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5986     }
5987     }
5988 schoenebeck 809
5989     /** @brief Delete an instrument.
5990     *
5991     * This will delete the given Instrument object from the gig file. You
5992     * have to call Save() to make this persistent to the file.
5993     *
5994     * @param pInstrument - instrument to delete
5995 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5996 schoenebeck 809 */
5997     void File::DeleteInstrument(Instrument* pInstrument) {
5998     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5999 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6000 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6001     pInstruments->erase(iter);
6002     delete pInstrument;
6003     }
6004    
6005 schoenebeck 823 void File::LoadInstruments() {
6006     LoadInstruments(NULL);
6007     }
6008    
6009 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
6010 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
6011 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6012     if (lstInstruments) {
6013 schoenebeck 515 int iInstrumentIndex = 0;
6014 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6015     while (lstInstr) {
6016     if (lstInstr->GetListType() == LIST_TYPE_INS) {
6017 schoenebeck 515 // notify current progress
6018     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6019     __notify_progress(pProgress, localProgress);
6020    
6021     // divide local progress into subprogress for loading current Instrument
6022     progress_t subprogress;
6023     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6024    
6025     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6026    
6027     iInstrumentIndex++;
6028 schoenebeck 2 }
6029     lstInstr = lstInstruments->GetNextSubList();
6030     }
6031 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
6032 schoenebeck 2 }
6033     }
6034    
6035 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
6036     /// update is done directly to disk, as this method is called
6037     /// after File::Save()
6038 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6039     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6040     if (!_3crc) return;
6041 persson 1207
6042     // get the index of the sample
6043 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
6044 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6045    
6046 persson 1207 // write the CRC-32 checksum to disk
6047 persson 1199 _3crc->SetPos(iWaveIndex * 8);
6048 schoenebeck 2985 uint32_t one = 1;
6049     _3crc->WriteUint32(&one); // always 1
6050 persson 1199 _3crc->WriteUint32(&crc);
6051 schoenebeck 2989 }
6052 schoenebeck 2985
6053 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
6054     // get the index of the sample
6055     int iWaveIndex = GetWaveTableIndexOf(pSample);
6056     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6057    
6058     return GetSampleChecksumByIndex(iWaveIndex);
6059 persson 1199 }
6060    
6061 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
6062     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6063    
6064 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6065     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6066     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6067     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6068    
6069     // read the CRC-32 checksum directly from disk
6070 schoenebeck 2989 size_t pos = index * 8;
6071 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
6072     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6073    
6074     uint32_t one = load32(&pData[pos]); // always 1
6075     if (one != 1)
6076 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6077 schoenebeck 2985
6078     return load32(&pData[pos+4]);
6079     }
6080 schoenebeck 2989
6081 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6082     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6083     File::SampleList::iterator iter = pSamples->begin();
6084     File::SampleList::iterator end = pSamples->end();
6085     for (int index = 0; iter != end; ++iter, ++index)
6086     if (*iter == pSample)
6087     return index;
6088     return -1;
6089     }
6090    
6091     /**
6092     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6093     * the CRC32 check sums of all samples' raw wave data.
6094     *
6095     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6096     */
6097     bool File::VerifySampleChecksumTable() {
6098     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6099     if (!_3crc) return false;
6100     if (_3crc->GetNewSize() <= 0) return false;
6101     if (_3crc->GetNewSize() % 8) return false;
6102     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6103     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6104    
6105 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
6106 schoenebeck 2985
6107     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6108     if (!pData) return false;
6109    
6110 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
6111 schoenebeck 2985 uint32_t one = pData[i*2];
6112     if (one != 1) return false;
6113     }
6114    
6115     return true;
6116     }
6117    
6118     /**
6119     * Recalculates CRC32 checksums for all samples and rebuilds this gig
6120     * file's checksum table with those new checksums. This might usually
6121     * just be necessary if the checksum table was damaged.
6122     *
6123     * @e IMPORTANT: The current implementation of this method only works
6124     * with files that have not been modified since it was loaded, because
6125     * it expects that no externally caused file structure changes are
6126     * required!
6127     *
6128     * Due to the expectation above, this method is currently protected
6129     * and actually only used by the command line tool "gigdump" yet.
6130     *
6131     * @returns true if Save() is required to be called after this call,
6132     * false if no further action is required
6133     */
6134     bool File::RebuildSampleChecksumTable() {
6135     // make sure sample chunks were scanned
6136     if (!pSamples) GetFirstSample();
6137    
6138     bool bRequiresSave = false;
6139    
6140     // make sure "3CRC" chunk exists with required size
6141     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6142     if (!_3crc) {
6143     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6144 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6145     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6146 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6147 schoenebeck 2985 bRequiresSave = true;
6148     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6149     _3crc->Resize(pSamples->size() * 8);
6150     bRequiresSave = true;
6151     }
6152    
6153     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6154     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6155     {
6156     File::SampleList::iterator iter = pSamples->begin();
6157     File::SampleList::iterator end = pSamples->end();
6158     for (; iter != end; ++iter) {
6159     gig::Sample* pSample = (gig::Sample*) *iter;
6160     int index = GetWaveTableIndexOf(pSample);
6161     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6162     pData[index*2] = 1; // always 1
6163     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6164     }
6165     }
6166     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6167     // make sure file is in write mode
6168     pRIFF->SetMode(RIFF::stream_mode_read_write);
6169     {
6170     File::SampleList::iterator iter = pSamples->begin();
6171     File::SampleList::iterator end = pSamples->end();
6172     for (; iter != end; ++iter) {
6173     gig::Sample* pSample = (gig::Sample*) *iter;
6174     int index = GetWaveTableIndexOf(pSample);
6175     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6176 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6177     SetSampleChecksum(pSample, pSample->crc);
6178 schoenebeck 2985 }
6179     }
6180     }
6181    
6182     return bRequiresSave;
6183     }
6184    
6185 schoenebeck 929 Group* File::GetFirstGroup() {
6186     if (!pGroups) LoadGroups();
6187 schoenebeck 930 // there must always be at least one group
6188 schoenebeck 929 GroupsIterator = pGroups->begin();
6189 schoenebeck 930 return *GroupsIterator;
6190 schoenebeck 929 }
6191 schoenebeck 2
6192 schoenebeck 929 Group* File::GetNextGroup() {
6193     if (!pGroups) return NULL;
6194     ++GroupsIterator;
6195     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6196     }
6197 schoenebeck 2
6198 schoenebeck 929 /**
6199     * Returns the group with the given index.
6200     *
6201     * @param index - number of the sought group (0..n)
6202     * @returns sought group or NULL if there's no such group
6203     */
6204     Group* File::GetGroup(uint index) {
6205     if (!pGroups) LoadGroups();
6206     GroupsIterator = pGroups->begin();
6207     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6208     if (i == index) return *GroupsIterator;
6209     ++GroupsIterator;
6210     }
6211     return NULL;
6212     }
6213    
6214 schoenebeck 2543 /**
6215     * Returns the group with the given group name.
6216     *
6217     * Note: group names don't have to be unique in the gig format! So there
6218     * can be multiple groups with the same name. This method will simply
6219     * return the first group found with the given name.
6220     *
6221     * @param name - name of the sought group
6222     * @returns sought group or NULL if there's no group with that name
6223     */
6224     Group* File::GetGroup(String name) {
6225     if (!pGroups) LoadGroups();
6226     GroupsIterator = pGroups->begin();
6227     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6228     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6229     return NULL;
6230     }
6231    
6232 schoenebeck 929 Group* File::AddGroup() {
6233     if (!pGroups) LoadGroups();
6234 schoenebeck 930 // there must always be at least one group
6235 schoenebeck 929 __ensureMandatoryChunksExist();
6236 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6237 schoenebeck 929 pGroups->push_back(pGroup);
6238     return pGroup;
6239     }
6240    
6241 schoenebeck 1081 /** @brief Delete a group and its samples.
6242     *
6243     * This will delete the given Group object and all the samples that
6244     * belong to this group from the gig file. You have to call Save() to
6245     * make this persistent to the file.
6246     *
6247     * @param pGroup - group to delete
6248     * @throws gig::Exception if given group could not be found
6249     */
6250 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6251 schoenebeck 930 if (!pGroups) LoadGroups();
6252 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6253     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6254 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6255 schoenebeck 1081 // delete all members of this group
6256     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6257     DeleteSample(pSample);
6258     }
6259     // now delete this group object
6260     pGroups->erase(iter);
6261     delete pGroup;
6262     }
6263    
6264     /** @brief Delete a group.
6265     *
6266     * This will delete the given Group object from the gig file. All the
6267     * samples that belong to this group will not be deleted, but instead
6268     * be moved to another group. You have to call Save() to make this
6269     * persistent to the file.
6270     *
6271     * @param pGroup - group to delete
6272     * @throws gig::Exception if given group could not be found
6273     */
6274     void File::DeleteGroupOnly(Group* pGroup) {
6275     if (!pGroups) LoadGroups();
6276     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6277     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6278     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6279 schoenebeck 930 // move all members of this group to another group
6280     pGroup->MoveAll();
6281 schoenebeck 929 pGroups->erase(iter);
6282     delete pGroup;
6283     }
6284    
6285     void File::LoadGroups() {
6286     if (!pGroups) pGroups = new std::list<Group*>;
6287 schoenebeck 930 // try to read defined groups from file
6288 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6289 schoenebeck 930 if (lst3gri) {
6290     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6291     if (lst3gnl) {
6292     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6293     while (ck) {
6294     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6295 schoenebeck 3440 if (pVersion && pVersion->major > 2 &&
6296 persson 1266 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6297    
6298 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6299     }
6300     ck = lst3gnl->GetNextSubChunk();
6301 schoenebeck 929 }
6302     }
6303     }
6304 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6305     if (!pGroups->size()) {
6306     Group* pGroup = new Group(this, NULL);
6307     pGroup->Name = "Default Group";
6308     pGroups->push_back(pGroup);
6309     }
6310 schoenebeck 929 }
6311    
6312 schoenebeck 2584 /** @brief Get instrument script group (by index).
6313     *
6314     * Returns the real-time instrument script group with the given index.
6315     *
6316     * @param index - number of the sought group (0..n)
6317     * @returns sought script group or NULL if there's no such group
6318     */
6319     ScriptGroup* File::GetScriptGroup(uint index) {
6320     if (!pScriptGroups) LoadScriptGroups();
6321     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6322     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6323     if (i == index) return *it;
6324     return NULL;
6325     }
6326    
6327     /** @brief Get instrument script group (by name).
6328     *
6329     * Returns the first real-time instrument script group found with the given
6330     * group name. Note that group names may not necessarily be unique.
6331     *
6332     * @param name - name of the sought script group
6333     * @returns sought script group or NULL if there's no such group
6334     */
6335     ScriptGroup* File::GetScriptGroup(const String& name) {
6336     if (!pScriptGroups) LoadScriptGroups();
6337     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6338     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6339     if ((*it)->Name == name) return *it;
6340     return NULL;
6341     }
6342    
6343     /** @brief Add new instrument script group.
6344     *
6345     * Adds a new, empty real-time instrument script group to the file.
6346     *
6347     * You have to call Save() to make this persistent to the file.
6348     *
6349     * @return new empty script group
6350     */
6351     ScriptGroup* File::AddScriptGroup() {
6352     if (!pScriptGroups) LoadScriptGroups();
6353     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6354     pScriptGroups->push_back(pScriptGroup);
6355     return pScriptGroup;
6356     }
6357    
6358     /** @brief Delete an instrument script group.
6359     *
6360     * This will delete the given real-time instrument script group and all its
6361     * instrument scripts it contains. References inside instruments that are
6362     * using the deleted scripts will be removed from the respective instruments
6363     * accordingly.
6364     *
6365     * You have to call Save() to make this persistent to the file.
6366     *
6367     * @param pScriptGroup - script group to delete
6368     * @throws gig::Exception if given script group could not be found
6369     */
6370     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6371     if (!pScriptGroups) LoadScriptGroups();
6372     std::list<ScriptGroup*>::iterator iter =
6373     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6374     if (iter == pScriptGroups->end())
6375     throw gig::Exception("Could not delete script group, could not find given script group");
6376     pScriptGroups->erase(iter);
6377     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6378     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6379     if (pScriptGroup->pList)
6380     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6381     delete pScriptGroup;
6382     }
6383    
6384     void File::LoadScriptGroups() {
6385     if (pScriptGroups) return;
6386     pScriptGroups = new std::list<ScriptGroup*>;
6387     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6388     if (lstLS) {
6389     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6390     lst = lstLS->GetNextSubList())
6391     {
6392     if (lst->GetListType() == LIST_TYPE_RTIS) {
6393     pScriptGroups->push_back(new ScriptGroup(this, lst));
6394     }
6395     }
6396     }
6397     }
6398    
6399 schoenebeck 1098 /**
6400     * Apply all the gig file's current instruments, samples, groups and settings
6401     * to the respective RIFF chunks. You have to call Save() to make changes
6402     * persistent.
6403     *
6404     * Usually there is absolutely no need to call this method explicitly.
6405     * It will be called automatically when File::Save() was called.
6406     *
6407 schoenebeck 2682 * @param pProgress - callback function for progress notification
6408 schoenebeck 1098 * @throws Exception - on errors
6409     */
6410 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6411 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6412 persson 1192
6413 schoenebeck 2584 // update own gig format extension chunks
6414     // (not part of the GigaStudio 4 format)
6415 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6416     if (!lst3LS) {
6417     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6418     }
6419     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6420 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6421     // before the actual wave data
6422 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6423     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6424    
6425 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6426     // because the instruments' script slots will write the file offsets
6427     // of the respective instrument script chunk as reference.
6428     if (pScriptGroups) {
6429 schoenebeck 2912 // Update instrument script (group) chunks.
6430     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6431     it != pScriptGroups->end(); ++it)
6432     {
6433     (*it)->UpdateChunks(pProgress);
6434 schoenebeck 2584 }
6435     }
6436    
6437 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6438     // custom "3LS " chunk again
6439     if (!lst3LS->CountSubChunks()) {
6440     pRIFF->DeleteSubChunk(lst3LS);
6441     lst3LS = NULL;
6442     }
6443    
6444 schoenebeck 1098 // first update base class's chunks
6445 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6446 schoenebeck 929
6447 persson 1199 if (newFile) {
6448 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6449     // is placed first in file
6450 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6451 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6452     if (first != info) {
6453     pRIFF->MoveSubChunk(info, first);
6454     }
6455     }
6456    
6457 schoenebeck 1098 // update group's chunks
6458     if (pGroups) {
6459 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6460     // (before updating the Group chunks)
6461     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6462     if (!_3gri) {
6463     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6464     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6465 schoenebeck 1098 }
6466 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6467     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6468 persson 1266
6469     // v3: make sure the file has 128 3gnm chunks
6470 schoenebeck 2467 // (before updating the Group chunks)
6471 schoenebeck 3440 if (pVersion && pVersion->major > 2) {
6472 persson 1266 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6473     for (int i = 0 ; i < 128 ; i++) {
6474     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6475     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6476     }
6477     }
6478 schoenebeck 2467
6479     std::list<Group*>::iterator iter = pGroups->begin();
6480     std::list<Group*>::iterator end = pGroups->end();
6481     for (; iter != end; ++iter) {
6482 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6483 schoenebeck 2467 }
6484 schoenebeck 1098 }
6485 persson 1199
6486     // update einf chunk
6487    
6488     // The einf chunk contains statistics about the gig file, such
6489     // as the number of regions and samples used by each
6490     // instrument. It is divided in equally sized parts, where the
6491     // first part contains information about the whole gig file,
6492     // and the rest of the parts map to each instrument in the
6493     // file.
6494     //
6495     // At the end of each part there is a bit map of each sample
6496     // in the file, where a set bit means that the sample is used
6497     // by the file/instrument.
6498     //
6499     // Note that there are several fields with unknown use. These
6500     // are set to zero.
6501    
6502 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6503 persson 1199 int einfSize = (Instruments + 1) * sublen;
6504    
6505     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6506     if (einf) {
6507     if (einf->GetSize() != einfSize) {
6508     einf->Resize(einfSize);
6509     memset(einf->LoadChunkData(), 0, einfSize);
6510     }
6511     } else if (newFile) {
6512     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6513     }
6514     if (einf) {
6515     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6516    
6517     std::map<gig::Sample*,int> sampleMap;
6518     int sampleIdx = 0;
6519     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6520     sampleMap[pSample] = sampleIdx++;
6521     }
6522    
6523     int totnbusedsamples = 0;
6524     int totnbusedchannels = 0;
6525     int totnbregions = 0;
6526     int totnbdimregions = 0;
6527 persson 1264 int totnbloops = 0;
6528 persson 1199 int instrumentIdx = 0;
6529    
6530     memset(&pData[48], 0, sublen - 48);
6531    
6532     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6533     instrument = GetNextInstrument()) {
6534     int nbusedsamples = 0;
6535     int nbusedchannels = 0;
6536     int nbdimregions = 0;
6537 persson 1264 int nbloops = 0;
6538 persson 1199
6539     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6540    
6541     for (Region* region = instrument->GetFirstRegion() ; region ;
6542     region = instrument->GetNextRegion()) {
6543     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6544     gig::DimensionRegion *d = region->pDimensionRegions[i];
6545     if (d->pSample) {
6546     int sampleIdx = sampleMap[d->pSample];
6547     int byte = 48 + sampleIdx / 8;
6548     int bit = 1 << (sampleIdx & 7);
6549     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6550     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6551     nbusedsamples++;
6552     nbusedchannels += d->pSample->Channels;
6553    
6554     if ((pData[byte] & bit) == 0) {
6555     pData[byte] |= bit;
6556     totnbusedsamples++;
6557     totnbusedchannels += d->pSample->Channels;
6558     }
6559     }
6560     }
6561 persson 1264 if (d->SampleLoops) nbloops++;
6562 persson 1199 }
6563     nbdimregions += region->DimensionRegions;
6564     }
6565     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6566     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6567     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6568     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6569     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6570     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6571     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6572 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6573     // next 8 bytes unknown
6574 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6575 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6576 persson 1199 // next 4 bytes unknown
6577    
6578     totnbregions += instrument->Regions;
6579     totnbdimregions += nbdimregions;
6580 persson 1264 totnbloops += nbloops;
6581 persson 1199 instrumentIdx++;
6582     }
6583     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6584     // store32(&pData[0], sublen);
6585     store32(&pData[4], totnbusedchannels);
6586     store32(&pData[8], totnbusedsamples);
6587     store32(&pData[12], Instruments);
6588     store32(&pData[16], totnbregions);
6589     store32(&pData[20], totnbdimregions);
6590 persson 1264 store32(&pData[24], totnbloops);
6591     // next 8 bytes unknown
6592     // next 4 bytes unknown, not always 0
6593 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6594 persson 1199 // next 4 bytes unknown
6595     }
6596    
6597     // update 3crc chunk
6598    
6599     // The 3crc chunk contains CRC-32 checksums for the
6600 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6601     // chunk here (in RAM) with the old crc values which we read from the
6602     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6603     // member variable). This step is required, because samples might have
6604     // been deleted by the user since the file was opened, which in turn
6605     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6606     // If a sample was conciously modified by the user (that is if
6607     // Sample::Write() was called later on) then Sample::Write() will just
6608     // update the respective individual checksum(s) directly on disk and
6609     // leaves all other sample checksums untouched.
6610 persson 1199
6611 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6612 persson 1199 if (_3crc) {
6613     _3crc->Resize(pSamples->size() * 8);
6614 schoenebeck 2989 } else /*if (newFile)*/ {
6615 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6616 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6617 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6618 persson 1199 }
6619 schoenebeck 2989 { // must be performed in RAM here ...
6620     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6621     if (pData) {
6622     File::SampleList::iterator iter = pSamples->begin();
6623     File::SampleList::iterator end = pSamples->end();
6624     for (int index = 0; iter != end; ++iter, ++index) {
6625     gig::Sample* pSample = (gig::Sample*) *iter;
6626     pData[index*2] = 1; // always 1
6627     pData[index*2+1] = pSample->crc;
6628     }
6629     }
6630     }
6631 schoenebeck 1098 }
6632 schoenebeck 2609
6633     void File::UpdateFileOffsets() {
6634     DLS::File::UpdateFileOffsets();
6635 schoenebeck 929
6636 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6637     instrument = GetNextInstrument())
6638     {
6639     instrument->UpdateScriptFileOffsets();
6640     }
6641     }
6642    
6643 schoenebeck 1524 /**
6644     * Enable / disable automatic loading. By default this properyt is
6645     * enabled and all informations are loaded automatically. However
6646     * loading all Regions, DimensionRegions and especially samples might
6647     * take a long time for large .gig files, and sometimes one might only
6648     * be interested in retrieving very superficial informations like the
6649     * amount of instruments and their names. In this case one might disable
6650     * automatic loading to avoid very slow response times.
6651     *
6652     * @e CAUTION: by disabling this property many pointers (i.e. sample
6653     * references) and informations will have invalid or even undefined
6654     * data! This feature is currently only intended for retrieving very
6655     * superficial informations in a very fast way. Don't use it to retrieve
6656     * details like synthesis informations or even to modify .gig files!
6657     */
6658     void File::SetAutoLoad(bool b) {
6659     bAutoLoad = b;
6660     }
6661 schoenebeck 1098
6662 schoenebeck 1524 /**
6663     * Returns whether automatic loading is enabled.
6664     * @see SetAutoLoad()
6665     */
6666     bool File::GetAutoLoad() {
6667     return bAutoLoad;
6668     }
6669 schoenebeck 1098
6670 schoenebeck 1524
6671    
6672 schoenebeck 2 // *************** Exception ***************
6673     // *
6674    
6675 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6676 schoenebeck 2 }
6677    
6678 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6679     va_list arg;
6680     va_start(arg, format);
6681     Message = assemble(format, arg);
6682     va_end(arg);
6683     }
6684    
6685     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6686     Message = assemble(format, arg);
6687     }
6688    
6689 schoenebeck 2 void Exception::PrintMessage() {
6690     std::cout << "gig::Exception: " << Message << std::endl;
6691     }
6692    
6693 schoenebeck 518
6694     // *************** functions ***************
6695     // *
6696    
6697     /**
6698     * Returns the name of this C++ library. This is usually "libgig" of
6699     * course. This call is equivalent to RIFF::libraryName() and
6700     * DLS::libraryName().
6701     */
6702     String libraryName() {
6703     return PACKAGE;
6704     }
6705    
6706     /**
6707     * Returns version of this C++ library. This call is equivalent to
6708     * RIFF::libraryVersion() and DLS::libraryVersion().
6709     */
6710     String libraryVersion() {
6711     return VERSION;
6712     }
6713    
6714 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC