/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3478 - (hide annotations) (download)
Thu Feb 21 20:10:08 2019 UTC (5 years, 1 month ago) by schoenebeck
File size: 292615 byte(s)
* Fix: Don't automatically delete RIFF chunks from DLS/gig classes'
  destructors. Added new virtual method DeleteChunks() to those classes
  for this which must be explicitly called instead to remove their RIFF
  chunks.
* Fix: Many methods of DLS/gig classes assumed a RIFF chunk read position
  of zero; which is unsafe per se.
* Added C++11 "override" keyword where appropriate.
* DLS.cpp, DLS.h: Added new abstract interface base class DLS::Storage
  which is derived by the respective classes for implementing (the old)
  UpdateChunks() and the new DeleteChunks() method.
* RIFF.cpp, RIFF.h: Added new method progress_t::subdivide().
* Bumped version (4.1.0.svn13).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3474 * Copyright (C) 2003-2019 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 3478 pCk3gix->SetPos(0);
416    
417 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
419 schoenebeck 809 } else { // '3gix' chunk missing
420 schoenebeck 930 // by default assigned to that mandatory "Default Group"
421     pGroup = pFile->GetGroup(0);
422 schoenebeck 809 }
423 schoenebeck 2
424 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425     if (pCkSmpl) {
426 schoenebeck 3478 pCkSmpl->SetPos(0);
427    
428 schoenebeck 809 Manufacturer = pCkSmpl->ReadInt32();
429     Product = pCkSmpl->ReadInt32();
430     SamplePeriod = pCkSmpl->ReadInt32();
431     MIDIUnityNote = pCkSmpl->ReadInt32();
432     FineTune = pCkSmpl->ReadInt32();
433     pCkSmpl->Read(&SMPTEFormat, 1, 4);
434     SMPTEOffset = pCkSmpl->ReadInt32();
435     Loops = pCkSmpl->ReadInt32();
436     pCkSmpl->ReadInt32(); // manufByt
437     LoopID = pCkSmpl->ReadInt32();
438     pCkSmpl->Read(&LoopType, 1, 4);
439     LoopStart = pCkSmpl->ReadInt32();
440     LoopEnd = pCkSmpl->ReadInt32();
441     LoopFraction = pCkSmpl->ReadInt32();
442     LoopPlayCount = pCkSmpl->ReadInt32();
443     } else { // 'smpl' chunk missing
444     // use default values
445     Manufacturer = 0;
446     Product = 0;
447 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 persson 1218 MIDIUnityNote = 60;
449 schoenebeck 809 FineTune = 0;
450 persson 1182 SMPTEFormat = smpte_format_no_offset;
451 schoenebeck 809 SMPTEOffset = 0;
452     Loops = 0;
453     LoopID = 0;
454 persson 1182 LoopType = loop_type_normal;
455 schoenebeck 809 LoopStart = 0;
456     LoopEnd = 0;
457     LoopFraction = 0;
458     LoopPlayCount = 0;
459     }
460 schoenebeck 2
461     FrameTable = NULL;
462     SamplePos = 0;
463     RAMCache.Size = 0;
464     RAMCache.pStart = NULL;
465     RAMCache.NullExtensionSize = 0;
466    
467 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468    
469 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470     Compressed = ewav;
471     Dithered = false;
472     TruncatedBits = 0;
473 schoenebeck 2 if (Compressed) {
474 schoenebeck 3478 ewav->SetPos(0);
475    
476 persson 437 uint32_t version = ewav->ReadInt32();
477 schoenebeck 3440 if (version > 2 && BitDepth == 24) {
478 persson 437 Dithered = ewav->ReadInt32();
479     ewav->SetPos(Channels == 2 ? 84 : 64);
480     TruncatedBits = ewav->ReadInt32();
481     }
482 schoenebeck 2 ScanCompressedSample();
483     }
484 schoenebeck 317
485     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 schoenebeck 317 }
490 persson 437 FrameOffset = 0; // just for streaming compressed samples
491 schoenebeck 21
492 persson 864 LoopSize = LoopEnd - LoopStart + 1;
493 schoenebeck 2 }
494    
495 schoenebeck 809 /**
496 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
497     * the actual waveform data) and assign it to this object.
498     *
499     * Discussion: copying .gig samples is a bit tricky. It requires three
500     * steps:
501     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502     * its new sample waveform data size.
503     * 2. Saving the file (done by File::Save()) so that it gains correct size
504     * and layout for writing the actual wave form data directly to disc
505     * in next step.
506     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507     *
508     * @param orig - original Sample object to be copied from
509     */
510     void Sample::CopyAssignMeta(const Sample* orig) {
511     // handle base classes
512     DLS::Sample::CopyAssignCore(orig);
513    
514     // handle actual own attributes of this class
515     Manufacturer = orig->Manufacturer;
516     Product = orig->Product;
517     SamplePeriod = orig->SamplePeriod;
518     MIDIUnityNote = orig->MIDIUnityNote;
519     FineTune = orig->FineTune;
520     SMPTEFormat = orig->SMPTEFormat;
521     SMPTEOffset = orig->SMPTEOffset;
522     Loops = orig->Loops;
523     LoopID = orig->LoopID;
524     LoopType = orig->LoopType;
525     LoopStart = orig->LoopStart;
526     LoopEnd = orig->LoopEnd;
527     LoopSize = orig->LoopSize;
528     LoopFraction = orig->LoopFraction;
529     LoopPlayCount = orig->LoopPlayCount;
530    
531     // schedule resizing this sample to the given sample's size
532     Resize(orig->GetSize());
533     }
534    
535     /**
536     * Should be called after CopyAssignMeta() and File::Save() sequence.
537     * Read more about it in the discussion of CopyAssignMeta(). This method
538     * copies the actual waveform data by disk streaming.
539     *
540     * @e CAUTION: this method is currently not thread safe! During this
541     * operation the sample must not be used for other purposes by other
542     * threads!
543     *
544     * @param orig - original Sample object to be copied from
545     */
546     void Sample::CopyAssignWave(const Sample* orig) {
547     const int iReadAtOnce = 32*1024;
548     char* buf = new char[iReadAtOnce * orig->FrameSize];
549     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
551 schoenebeck 2482 pOrig->SetPos(0);
552     SetPos(0);
553 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
555     {
556     Write(buf, n);
557     }
558     pOrig->SetPos(restorePos);
559     delete [] buf;
560     }
561    
562     /**
563 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
564     * to call File::Save() to make changes persistent.
565     *
566     * Usually there is absolutely no need to call this method explicitly.
567     * It will be called automatically when File::Save() was called.
568     *
569 schoenebeck 2682 * @param pProgress - callback function for progress notification
570 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 schoenebeck 809 * was provided yet
572     * @throws gig::Exception if there is any invalid sample setting
573     */
574 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
575 schoenebeck 809 // first update base class's chunks
576 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
577 schoenebeck 809
578     // make sure 'smpl' chunk exists
579     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 persson 1182 if (!pCkSmpl) {
581     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582     memset(pCkSmpl->LoadChunkData(), 0, 60);
583     }
584 schoenebeck 809 // update 'smpl' chunk
585     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 persson 1179 store32(&pData[0], Manufacturer);
588     store32(&pData[4], Product);
589     store32(&pData[8], SamplePeriod);
590     store32(&pData[12], MIDIUnityNote);
591     store32(&pData[16], FineTune);
592     store32(&pData[20], SMPTEFormat);
593     store32(&pData[24], SMPTEOffset);
594     store32(&pData[28], Loops);
595 schoenebeck 809
596     // we skip 'manufByt' for now (4 bytes)
597    
598 persson 1179 store32(&pData[36], LoopID);
599     store32(&pData[40], LoopType);
600     store32(&pData[44], LoopStart);
601     store32(&pData[48], LoopEnd);
602     store32(&pData[52], LoopFraction);
603     store32(&pData[56], LoopPlayCount);
604 schoenebeck 809
605     // make sure '3gix' chunk exists
606     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
609 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
611     if (pFile->pGroups) {
612     std::list<Group*>::iterator iter = pFile->pGroups->begin();
613     std::list<Group*>::iterator end = pFile->pGroups->end();
614 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
615 schoenebeck 929 if (*iter == pGroup) {
616     iSampleGroup = i;
617     break; // found
618     }
619     }
620     }
621 schoenebeck 809 // update '3gix' chunk
622     pData = (uint8_t*) pCk3gix->LoadChunkData();
623 persson 1179 store16(&pData[0], iSampleGroup);
624 schoenebeck 2484
625     // if the library user toggled the "Compressed" attribute from true to
626     // false, then the EWAV chunk associated with compressed samples needs
627     // to be deleted
628     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629     if (ewav && !Compressed) {
630     pWaveList->DeleteSubChunk(ewav);
631     }
632 schoenebeck 809 }
633    
634 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635     void Sample::ScanCompressedSample() {
636     //TODO: we have to add some more scans here (e.g. determine compression rate)
637     this->SamplesTotal = 0;
638 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
639 schoenebeck 2
640 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642 persson 365
643 schoenebeck 2 // Scanning
644     pCkData->SetPos(0);
645 persson 365 if (Channels == 2) { // Stereo
646     for (int i = 0 ; ; i++) {
647     // for 24 bit samples every 8:th frame offset is
648     // stored, to save some memory
649     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650    
651     const int mode_l = pCkData->ReadUint8();
652     const int mode_r = pCkData->ReadUint8();
653     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655 persson 365
656     if (pCkData->RemainingBytes() <= frameSize) {
657     SamplesInLastFrame =
658     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660     SamplesTotal += SamplesInLastFrame;
661 schoenebeck 2 break;
662 persson 365 }
663     SamplesTotal += SamplesPerFrame;
664     pCkData->SetPos(frameSize, RIFF::stream_curpos);
665     }
666     }
667     else { // Mono
668     for (int i = 0 ; ; i++) {
669     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670    
671     const int mode = pCkData->ReadUint8();
672     if (mode > 5) throw gig::Exception("Unknown compression mode");
673 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
674 persson 365
675     if (pCkData->RemainingBytes() <= frameSize) {
676     SamplesInLastFrame =
677     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678     SamplesTotal += SamplesInLastFrame;
679 schoenebeck 2 break;
680 persson 365 }
681     SamplesTotal += SamplesPerFrame;
682     pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 schoenebeck 2 }
684     }
685     pCkData->SetPos(0);
686    
687     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688     if (FrameTable) delete[] FrameTable;
689 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
690     std::list<file_offset_t>::iterator end = frameOffsets.end();
691     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
693     FrameTable[i] = *iter;
694     }
695     }
696    
697     /**
698     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699     * ReleaseSampleData() to free the memory if you don't need the cached
700     * sample data anymore.
701     *
702     * @returns buffer_t structure with start address and size of the buffer
703     * in bytes
704     * @see ReleaseSampleData(), Read(), SetPos()
705     */
706     buffer_t Sample::LoadSampleData() {
707     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708     }
709    
710     /**
711     * Reads (uncompresses if needed) and caches the first \a SampleCount
712     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713     * memory space if you don't need the cached samples anymore. There is no
714     * guarantee that exactly \a SampleCount samples will be cached; this is
715     * not an error. The size will be eventually truncated e.g. to the
716     * beginning of a frame of a compressed sample. This is done for
717     * efficiency reasons while streaming the wave by your sampler engine
718     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719     * that will be returned to determine the actual cached samples, but note
720     * that the size is given in bytes! You get the number of actually cached
721     * samples by dividing it by the frame size of the sample:
722 schoenebeck 384 * @code
723 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724     * long cachedsamples = buf.Size / pSample->FrameSize;
725 schoenebeck 384 * @endcode
726 schoenebeck 2 *
727     * @param SampleCount - number of sample points to load into RAM
728     * @returns buffer_t structure with start address and size of
729     * the cached sample data in bytes
730     * @see ReleaseSampleData(), Read(), SetPos()
731     */
732 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734     }
735    
736     /**
737     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738     * ReleaseSampleData() to free the memory if you don't need the cached
739     * sample data anymore.
740     * The method will add \a NullSamplesCount silence samples past the
741     * official buffer end (this won't affect the 'Size' member of the
742     * buffer_t structure, that means 'Size' always reflects the size of the
743     * actual sample data, the buffer might be bigger though). Silence
744     * samples past the official buffer are needed for differential
745     * algorithms that always have to take subsequent samples into account
746     * (resampling/interpolation would be an important example) and avoids
747     * memory access faults in such cases.
748     *
749     * @param NullSamplesCount - number of silence samples the buffer should
750     * be extended past it's data end
751     * @returns buffer_t structure with start address and
752     * size of the buffer in bytes
753     * @see ReleaseSampleData(), Read(), SetPos()
754     */
755     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757     }
758    
759     /**
760     * Reads (uncompresses if needed) and caches the first \a SampleCount
761     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762     * memory space if you don't need the cached samples anymore. There is no
763     * guarantee that exactly \a SampleCount samples will be cached; this is
764     * not an error. The size will be eventually truncated e.g. to the
765     * beginning of a frame of a compressed sample. This is done for
766     * efficiency reasons while streaming the wave by your sampler engine
767     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768     * that will be returned to determine the actual cached samples, but note
769     * that the size is given in bytes! You get the number of actually cached
770     * samples by dividing it by the frame size of the sample:
771 schoenebeck 384 * @code
772 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773     * long cachedsamples = buf.Size / pSample->FrameSize;
774 schoenebeck 384 * @endcode
775 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
776     * official buffer end (this won't affect the 'Size' member of the
777     * buffer_t structure, that means 'Size' always reflects the size of the
778     * actual sample data, the buffer might be bigger though). Silence
779     * samples past the official buffer are needed for differential
780     * algorithms that always have to take subsequent samples into account
781     * (resampling/interpolation would be an important example) and avoids
782     * memory access faults in such cases.
783     *
784     * @param SampleCount - number of sample points to load into RAM
785     * @param NullSamplesCount - number of silence samples the buffer should
786     * be extended past it's data end
787     * @returns buffer_t structure with start address and
788     * size of the cached sample data in bytes
789     * @see ReleaseSampleData(), Read(), SetPos()
790     */
791 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
796 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
797     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799     // fill the remaining buffer space with silence samples
800     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801     return GetCache();
802     }
803    
804     /**
805     * Returns current cached sample points. A buffer_t structure will be
806     * returned which contains address pointer to the begin of the cache and
807     * the size of the cached sample data in bytes. Use
808     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809     * RAM.
810     *
811     * @returns buffer_t structure with current cached sample points
812     * @see LoadSampleData();
813     */
814     buffer_t Sample::GetCache() {
815     // return a copy of the buffer_t structure
816     buffer_t result;
817     result.Size = this->RAMCache.Size;
818     result.pStart = this->RAMCache.pStart;
819     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820     return result;
821     }
822    
823     /**
824     * Frees the cached sample from RAM if loaded with
825     * <i>LoadSampleData()</i> previously.
826     *
827     * @see LoadSampleData();
828     */
829     void Sample::ReleaseSampleData() {
830     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831     RAMCache.pStart = NULL;
832     RAMCache.Size = 0;
833 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
834 schoenebeck 2 }
835    
836 schoenebeck 809 /** @brief Resize sample.
837     *
838     * Resizes the sample's wave form data, that is the actual size of
839     * sample wave data possible to be written for this sample. This call
840     * will return immediately and just schedule the resize operation. You
841     * should call File::Save() to actually perform the resize operation(s)
842     * "physically" to the file. As this can take a while on large files, it
843     * is recommended to call Resize() first on all samples which have to be
844     * resized and finally to call File::Save() to perform all those resize
845     * operations in one rush.
846     *
847     * The actual size (in bytes) is dependant to the current FrameSize
848     * value. You may want to set FrameSize before calling Resize().
849     *
850     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851     * enlarged samples before calling File::Save() as this might exceed the
852     * current sample's boundary!
853     *
854 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 schoenebeck 809 * other formats will fail!
857     *
858 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
859     * greater than zero)
860 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
863     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864     * DLS::Sample::FormatTag, File::Save()
865     */
866 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
867 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 schoenebeck 2922 DLS::Sample::Resize(NewSize);
869 schoenebeck 809 }
870    
871 schoenebeck 2 /**
872     * Sets the position within the sample (in sample points, not in
873     * bytes). Use this method and <i>Read()</i> if you don't want to load
874     * the sample into RAM, thus for disk streaming.
875     *
876     * Although the original Gigasampler engine doesn't allow positioning
877     * within compressed samples, I decided to implement it. Even though
878     * the Gigasampler format doesn't allow to define loops for compressed
879     * samples at the moment, positioning within compressed samples might be
880     * interesting for some sampler engines though. The only drawback about
881     * my decision is that it takes longer to load compressed gig Files on
882     * startup, because it's neccessary to scan the samples for some
883     * mandatory informations. But I think as it doesn't affect the runtime
884     * efficiency, nobody will have a problem with that.
885     *
886     * @param SampleCount number of sample points to jump
887     * @param Whence optional: to which relation \a SampleCount refers
888     * to, if omited <i>RIFF::stream_start</i> is assumed
889     * @returns the new sample position
890     * @see Read()
891     */
892 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 schoenebeck 2 if (Compressed) {
894     switch (Whence) {
895     case RIFF::stream_curpos:
896     this->SamplePos += SampleCount;
897     break;
898     case RIFF::stream_end:
899     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900     break;
901     case RIFF::stream_backward:
902     this->SamplePos -= SampleCount;
903     break;
904     case RIFF::stream_start: default:
905     this->SamplePos = SampleCount;
906     break;
907     }
908     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913     return this->SamplePos;
914     }
915     else { // not compressed
916 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 schoenebeck 2 return (result == orderedBytes) ? SampleCount
919     : result / this->FrameSize;
920     }
921     }
922    
923     /**
924     * Returns the current position in the sample (in sample points).
925     */
926 schoenebeck 2912 file_offset_t Sample::GetPos() const {
927 schoenebeck 2 if (Compressed) return SamplePos;
928     else return pCkData->GetPos() / FrameSize;
929     }
930    
931     /**
932 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
933     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934     * the position within the sample respectively, this method honors the
935     * looping informations of the sample (if any). The sample wave stream
936     * will be decompressed on the fly if using a compressed sample. Use this
937     * method if you don't want to load the sample into RAM, thus for disk
938     * streaming. All this methods needs to know to proceed with streaming
939     * for the next time you call this method is stored in \a pPlaybackState.
940     * You have to allocate and initialize the playback_state_t structure by
941     * yourself before you use it to stream a sample:
942 schoenebeck 384 * @code
943     * gig::playback_state_t playbackstate;
944     * playbackstate.position = 0;
945     * playbackstate.reverse = false;
946     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947     * @endcode
948 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
949     * defined or if the current read position is located within a loop area.
950     * The method already handles such cases by itself.
951     *
952 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
953     * have to use an external decompression buffer for <b>EACH</b>
954     * streaming thread to avoid race conditions and crashes!
955     *
956 schoenebeck 24 * @param pBuffer destination buffer
957     * @param SampleCount number of sample points to read
958     * @param pPlaybackState will be used to store and reload the playback
959     * state for the next ReadAndLoop() call
960 persson 864 * @param pDimRgn dimension region with looping information
961 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 schoenebeck 24 * @returns number of successfully read sample points
963 schoenebeck 384 * @see CreateDecompressionBuffer()
964 schoenebeck 24 */
965 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
969    
970     SetPos(pPlaybackState->position); // recover position from the last time
971    
972 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973 schoenebeck 24
974 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976 schoenebeck 24
977 persson 864 if (GetPos() <= loopEnd) {
978     switch (loop.LoopType) {
979 schoenebeck 24
980 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
981     do {
982     // if not endless loop check if max. number of loop cycles have been passed
983     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984 schoenebeck 24
985 persson 864 if (!pPlaybackState->reverse) { // forward playback
986     do {
987     samplestoloopend = loopEnd - GetPos();
988     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989     samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     if (readsamples == samplestoloopend) {
992     pPlaybackState->reverse = true;
993     break;
994     }
995     } while (samplestoread && readsamples);
996     }
997     else { // backward playback
998 schoenebeck 24
999 persson 864 // as we can only read forward from disk, we have to
1000     // determine the end position within the loop first,
1001     // read forward from that 'end' and finally after
1002     // reading, swap all sample frames so it reflects
1003     // backward playback
1004 schoenebeck 24
1005 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1006     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009 schoenebeck 24
1010 persson 864 SetPos(reverseplaybackend);
1011 schoenebeck 24
1012 persson 864 // read samples for backward playback
1013     do {
1014     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015     samplestoreadinloop -= readsamples;
1016     samplestoread -= readsamples;
1017     totalreadsamples += readsamples;
1018     } while (samplestoreadinloop && readsamples);
1019 schoenebeck 24
1020 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022     if (reverseplaybackend == loop.LoopStart) {
1023     pPlaybackState->loop_cycles_left--;
1024     pPlaybackState->reverse = false;
1025     }
1026    
1027     // reverse the sample frames for backward playback
1028 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 schoenebeck 24 }
1031 persson 864 } while (samplestoread && readsamples);
1032     break;
1033     }
1034 schoenebeck 24
1035 persson 864 case loop_type_backward: { // TODO: not tested yet!
1036     // forward playback (not entered the loop yet)
1037     if (!pPlaybackState->reverse) do {
1038     samplestoloopend = loopEnd - GetPos();
1039     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040     samplestoread -= readsamples;
1041     totalreadsamples += readsamples;
1042     if (readsamples == samplestoloopend) {
1043     pPlaybackState->reverse = true;
1044     break;
1045     }
1046     } while (samplestoread && readsamples);
1047 schoenebeck 24
1048 persson 864 if (!samplestoread) break;
1049 schoenebeck 24
1050 persson 864 // as we can only read forward from disk, we have to
1051     // determine the end position within the loop first,
1052     // read forward from that 'end' and finally after
1053     // reading, swap all sample frames so it reflects
1054     // backward playback
1055 schoenebeck 24
1056 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1057     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 persson 864 : samplestoread;
1060 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061 schoenebeck 24
1062 persson 864 SetPos(reverseplaybackend);
1063 schoenebeck 24
1064 persson 864 // read samples for backward playback
1065     do {
1066     // if not endless loop check if max. number of loop cycles have been passed
1067     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068     samplestoloopend = loopEnd - GetPos();
1069     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070     samplestoreadinloop -= readsamples;
1071     samplestoread -= readsamples;
1072     totalreadsamples += readsamples;
1073     if (readsamples == samplestoloopend) {
1074     pPlaybackState->loop_cycles_left--;
1075     SetPos(loop.LoopStart);
1076     }
1077     } while (samplestoreadinloop && readsamples);
1078 schoenebeck 24
1079 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1080 schoenebeck 24
1081 persson 864 // reverse the sample frames for backward playback
1082     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083     break;
1084     }
1085 schoenebeck 24
1086 persson 864 default: case loop_type_normal: {
1087     do {
1088     // if not endless loop check if max. number of loop cycles have been passed
1089     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090     samplestoloopend = loopEnd - GetPos();
1091     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092     samplestoread -= readsamples;
1093     totalreadsamples += readsamples;
1094     if (readsamples == samplestoloopend) {
1095     pPlaybackState->loop_cycles_left--;
1096     SetPos(loop.LoopStart);
1097     }
1098     } while (samplestoread && readsamples);
1099     break;
1100     }
1101 schoenebeck 24 }
1102     }
1103     }
1104    
1105     // read on without looping
1106     if (samplestoread) do {
1107 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 schoenebeck 24 samplestoread -= readsamples;
1109     totalreadsamples += readsamples;
1110     } while (readsamples && samplestoread);
1111    
1112     // store current position
1113     pPlaybackState->position = GetPos();
1114    
1115     return totalreadsamples;
1116     }
1117    
1118     /**
1119 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1120     * position into the buffer pointed by \a pBuffer and increments the
1121     * position within the sample. The sample wave stream will be
1122     * decompressed on the fly if using a compressed sample. Use this method
1123     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124     * thus for disk streaming.
1125     *
1126 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1127     * have to use an external decompression buffer for <b>EACH</b>
1128     * streaming thread to avoid race conditions and crashes!
1129     *
1130 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1131     * (using native endianness). For 24 bit, the buffer will
1132     * contain three bytes per sample, little-endian.
1133     *
1134 schoenebeck 2 * @param pBuffer destination buffer
1135     * @param SampleCount number of sample points to read
1136 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 schoenebeck 2 * @returns number of successfully read sample points
1138 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1139 schoenebeck 2 */
1140 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 schoenebeck 21 if (SampleCount == 0) return 0;
1142 schoenebeck 317 if (!Compressed) {
1143     if (BitDepth == 24) {
1144 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 schoenebeck 317 }
1146 persson 365 else { // 16 bit
1147     // (pCkData->Read does endian correction)
1148     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149     : pCkData->Read(pBuffer, SampleCount, 2);
1150     }
1151 schoenebeck 317 }
1152 persson 365 else {
1153 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1155 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1156 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1157     remainingsamples = SampleCount,
1158 persson 365 copysamples, skipsamples,
1159     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 schoenebeck 2 this->FrameOffset = 0;
1161    
1162 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163    
1164     // if decompression buffer too small, then reduce amount of samples to read
1165     if (pDecompressionBuffer->Size < assumedsize) {
1166     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168     remainingsamples = SampleCount;
1169     assumedsize = GuessSize(SampleCount);
1170 schoenebeck 2 }
1171    
1172 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177 persson 365 while (remainingsamples && remainingbytes) {
1178 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1179     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180 schoenebeck 2
1181 persson 365 int mode_l = *pSrc++, mode_r = 0;
1182    
1183     if (Channels == 2) {
1184     mode_r = *pSrc++;
1185     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188     if (remainingbytes < framebytes) { // last frame in sample
1189     framesamples = SamplesInLastFrame;
1190     if (mode_l == 4 && (framesamples & 1)) {
1191     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192     }
1193     else {
1194     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195     }
1196 schoenebeck 2 }
1197     }
1198 persson 365 else {
1199     framebytes = bytesPerFrame[mode_l] + 1;
1200     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201     if (remainingbytes < framebytes) {
1202     framesamples = SamplesInLastFrame;
1203     }
1204     }
1205 schoenebeck 2
1206     // determine how many samples in this frame to skip and read
1207 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1208     if (currentframeoffset <= framesamples) {
1209     copysamples = framesamples - currentframeoffset;
1210     skipsamples = currentframeoffset;
1211     }
1212     else {
1213     copysamples = 0;
1214     skipsamples = framesamples;
1215     }
1216 schoenebeck 2 }
1217     else {
1218 persson 365 // This frame has enough data for pBuffer, but not
1219     // all of the frame is needed. Set file position
1220     // to start of this frame for next call to Read.
1221 schoenebeck 2 copysamples = remainingsamples;
1222 persson 365 skipsamples = currentframeoffset;
1223     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224     this->FrameOffset = currentframeoffset + copysamples;
1225     }
1226     remainingsamples -= copysamples;
1227    
1228     if (remainingbytes > framebytes) {
1229     remainingbytes -= framebytes;
1230     if (remainingsamples == 0 &&
1231     currentframeoffset + copysamples == framesamples) {
1232     // This frame has enough data for pBuffer, and
1233     // all of the frame is needed. Set file
1234     // position to start of next frame for next
1235     // call to Read. FrameOffset is 0.
1236 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237     }
1238     }
1239 persson 365 else remainingbytes = 0;
1240 schoenebeck 2
1241 persson 365 currentframeoffset -= skipsamples;
1242 schoenebeck 2
1243 persson 365 if (copysamples == 0) {
1244     // skip this frame
1245     pSrc += framebytes - Channels;
1246     }
1247     else {
1248     const unsigned char* const param_l = pSrc;
1249     if (BitDepth == 24) {
1250     if (mode_l != 2) pSrc += 12;
1251 schoenebeck 2
1252 persson 365 if (Channels == 2) { // Stereo
1253     const unsigned char* const param_r = pSrc;
1254     if (mode_r != 2) pSrc += 12;
1255    
1256 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 persson 437 skipsamples, copysamples, TruncatedBits);
1258 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 persson 437 skipsamples, copysamples, TruncatedBits);
1260 persson 902 pDst24 += copysamples * 6;
1261 schoenebeck 2 }
1262 persson 365 else { // Mono
1263 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 persson 437 skipsamples, copysamples, TruncatedBits);
1265 persson 902 pDst24 += copysamples * 3;
1266 schoenebeck 2 }
1267 persson 365 }
1268     else { // 16 bit
1269     if (mode_l) pSrc += 4;
1270 schoenebeck 2
1271 persson 365 int step;
1272     if (Channels == 2) { // Stereo
1273     const unsigned char* const param_r = pSrc;
1274     if (mode_r) pSrc += 4;
1275    
1276     step = (2 - mode_l) + (2 - mode_r);
1277 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 persson 365 skipsamples, copysamples);
1280     pDst += copysamples << 1;
1281 schoenebeck 2 }
1282 persson 365 else { // Mono
1283     step = 2 - mode_l;
1284 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 persson 365 pDst += copysamples;
1286 schoenebeck 2 }
1287 persson 365 }
1288     pSrc += nextFrameOffset;
1289     }
1290 schoenebeck 2
1291 persson 365 // reload from disk to local buffer if needed
1292     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293     assumedsize = GuessSize(remainingsamples);
1294     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 schoenebeck 2 }
1299 persson 365 } // while
1300    
1301 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1302 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 schoenebeck 2 return (SampleCount - remainingsamples);
1304     }
1305     }
1306    
1307 schoenebeck 809 /** @brief Write sample wave data.
1308     *
1309     * Writes \a SampleCount number of sample points from the buffer pointed
1310     * by \a pBuffer and increments the position within the sample. Use this
1311     * method to directly write the sample data to disk, i.e. if you don't
1312     * want or cannot load the whole sample data into RAM.
1313     *
1314     * You have to Resize() the sample to the desired size and call
1315     * File::Save() <b>before</b> using Write().
1316     *
1317     * Note: there is currently no support for writing compressed samples.
1318     *
1319 persson 1264 * For 16 bit samples, the data in the source buffer should be
1320     * int16_t (using native endianness). For 24 bit, the buffer
1321     * should contain three bytes per sample, little-endian.
1322     *
1323 schoenebeck 809 * @param pBuffer - source buffer
1324     * @param SampleCount - number of sample points to write
1325     * @throws DLS::Exception if current sample size is too small
1326     * @throws gig::Exception if sample is compressed
1327     * @see DLS::LoadSampleData()
1328     */
1329 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331 persson 1207
1332     // if this is the first write in this sample, reset the
1333     // checksum calculator
1334 persson 1199 if (pCkData->GetPos() == 0) {
1335 schoenebeck 1381 __resetCRC(crc);
1336 persson 1199 }
1337 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 schoenebeck 2912 file_offset_t res;
1339 persson 1264 if (BitDepth == 24) {
1340     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341     } else { // 16 bit
1342     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343     : pCkData->Write(pBuffer, SampleCount, 2);
1344     }
1345 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346 persson 1199
1347 persson 1207 // if this is the last write, update the checksum chunk in the
1348     // file
1349 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 schoenebeck 3115 __finalizeCRC(crc);
1351 persson 1199 File* pFile = static_cast<File*>(GetParent());
1352 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1353 persson 1199 }
1354     return res;
1355 schoenebeck 809 }
1356    
1357 schoenebeck 384 /**
1358     * Allocates a decompression buffer for streaming (compressed) samples
1359     * with Sample::Read(). If you are using more than one streaming thread
1360     * in your application you <b>HAVE</b> to create a decompression buffer
1361     * for <b>EACH</b> of your streaming threads and provide it with the
1362     * Sample::Read() call in order to avoid race conditions and crashes.
1363     *
1364     * You should free the memory occupied by the allocated buffer(s) once
1365     * you don't need one of your streaming threads anymore by calling
1366     * DestroyDecompressionBuffer().
1367     *
1368     * @param MaxReadSize - the maximum size (in sample points) you ever
1369     * expect to read with one Read() call
1370     * @returns allocated decompression buffer
1371     * @see DestroyDecompressionBuffer()
1372     */
1373 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 schoenebeck 384 buffer_t result;
1375     const double worstCaseHeaderOverhead =
1376     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 schoenebeck 384 result.pStart = new int8_t[result.Size];
1379     result.NullExtensionSize = 0;
1380     return result;
1381     }
1382    
1383     /**
1384     * Free decompression buffer, previously created with
1385     * CreateDecompressionBuffer().
1386     *
1387     * @param DecompressionBuffer - previously allocated decompression
1388     * buffer to free
1389     */
1390     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392     delete[] (int8_t*) DecompressionBuffer.pStart;
1393     DecompressionBuffer.pStart = NULL;
1394     DecompressionBuffer.Size = 0;
1395     DecompressionBuffer.NullExtensionSize = 0;
1396     }
1397     }
1398    
1399 schoenebeck 930 /**
1400     * Returns pointer to the Group this Sample belongs to. In the .gig
1401     * format a sample always belongs to one group. If it wasn't explicitly
1402     * assigned to a certain group, it will be automatically assigned to a
1403     * default group.
1404     *
1405     * @returns Sample's Group (never NULL)
1406     */
1407     Group* Sample::GetGroup() const {
1408     return pGroup;
1409     }
1410    
1411 schoenebeck 2985 /**
1412 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413     * time when this sample's wave form data was modified for the last time
1414     * by calling Write(). This checksum only covers the raw wave form data,
1415     * not any meta informations like i.e. bit depth or loop points. Since
1416     * this method just returns the checksum stored for this sample i.e. when
1417     * the gig file was loaded, this method returns immediately. So it does no
1418     * recalcuation of the checksum with the currently available sample wave
1419     * form data.
1420     *
1421     * @see VerifyWaveData()
1422     */
1423     uint32_t Sample::GetWaveDataCRC32Checksum() {
1424     return crc;
1425     }
1426    
1427     /**
1428 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429     * Sample's raw wave data is intentionally modified (i.e. by calling
1430     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431     * is calculated and stored/updated for this sample, along to the sample's
1432     * meta informations.
1433     *
1434     * Now by calling this method the current raw audio wave data is checked
1435     * against the already stored CRC32 check sum in order to check whether the
1436     * sample data had been damaged unintentionally for some reason. Since by
1437     * calling this method always the entire raw audio wave data has to be
1438     * read, verifying all samples this way may take a long time accordingly.
1439     * And that's also the reason why the sample integrity is not checked by
1440     * default whenever a gig file is loaded. So this method must be called
1441     * explicitly to fulfill this task.
1442     *
1443 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1444     * calculated checksum of the current raw wave form data,
1445     * you can get the expected checksum instead by calling
1446     * GetWaveDataCRC32Checksum()
1447 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1448     * @throws Exception if no checksum had been stored to disk for this
1449     * sample yet, or on I/O issues
1450 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1451 schoenebeck 2985 */
1452 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1454 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1455 schoenebeck 2989 if (pActually) *pActually = crc;
1456     return crc == this->crc;
1457 schoenebeck 2985 }
1458    
1459     uint32_t Sample::CalculateWaveDataChecksum() {
1460     const size_t sz = 20*1024; // 20kB buffer size
1461     std::vector<uint8_t> buffer(sz);
1462     buffer.resize(sz);
1463    
1464     const size_t n = sz / FrameSize;
1465     SetPos(0);
1466     uint32_t crc = 0;
1467     __resetCRC(crc);
1468     while (true) {
1469     file_offset_t nRead = Read(&buffer[0], n);
1470     if (nRead <= 0) break;
1471     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472     }
1473 schoenebeck 3115 __finalizeCRC(crc);
1474 schoenebeck 2985 return crc;
1475     }
1476    
1477 schoenebeck 2 Sample::~Sample() {
1478     Instances--;
1479 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1480     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481     InternalDecompressionBuffer.pStart = NULL;
1482     InternalDecompressionBuffer.Size = 0;
1483 schoenebeck 355 }
1484 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1485     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486     }
1487    
1488    
1489    
1490     // *************** DimensionRegion ***************
1491     // *
1492    
1493 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1494 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 schoenebeck 16 Instances++;
1498    
1499 schoenebeck 823 pSample = NULL;
1500 schoenebeck 1316 pRegion = pParent;
1501 schoenebeck 823
1502 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503     else memset(&Crossfade, 0, 4);
1504    
1505 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506 schoenebeck 2
1507     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1509 schoenebeck 3478 _3ewa->SetPos(0);
1510    
1511 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514     _3ewa->ReadInt16(); // unknown
1515     LFO1InternalDepth = _3ewa->ReadUint16();
1516     _3ewa->ReadInt16(); // unknown
1517     LFO3InternalDepth = _3ewa->ReadInt16();
1518     _3ewa->ReadInt16(); // unknown
1519     LFO1ControlDepth = _3ewa->ReadUint16();
1520     _3ewa->ReadInt16(); // unknown
1521     LFO3ControlDepth = _3ewa->ReadInt16();
1522     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524     _3ewa->ReadInt16(); // unknown
1525     EG1Sustain = _3ewa->ReadUint16();
1526     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529     EG1ControllerInvert = eg1ctrloptions & 0x01;
1530     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535     EG2ControllerInvert = eg2ctrloptions & 0x01;
1536     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542     _3ewa->ReadInt16(); // unknown
1543     EG2Sustain = _3ewa->ReadUint16();
1544     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545     _3ewa->ReadInt16(); // unknown
1546     LFO2ControlDepth = _3ewa->ReadUint16();
1547     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548     _3ewa->ReadInt16(); // unknown
1549     LFO2InternalDepth = _3ewa->ReadUint16();
1550     int32_t eg1decay2 = _3ewa->ReadInt32();
1551     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553     _3ewa->ReadInt16(); // unknown
1554     EG1PreAttack = _3ewa->ReadUint16();
1555     int32_t eg2decay2 = _3ewa->ReadInt32();
1556     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558     _3ewa->ReadInt16(); // unknown
1559     EG2PreAttack = _3ewa->ReadUint16();
1560     uint8_t velocityresponse = _3ewa->ReadUint8();
1561     if (velocityresponse < 5) {
1562     VelocityResponseCurve = curve_type_nonlinear;
1563     VelocityResponseDepth = velocityresponse;
1564     } else if (velocityresponse < 10) {
1565     VelocityResponseCurve = curve_type_linear;
1566     VelocityResponseDepth = velocityresponse - 5;
1567     } else if (velocityresponse < 15) {
1568     VelocityResponseCurve = curve_type_special;
1569     VelocityResponseDepth = velocityresponse - 10;
1570     } else {
1571     VelocityResponseCurve = curve_type_unknown;
1572     VelocityResponseDepth = 0;
1573     }
1574     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575     if (releasevelocityresponse < 5) {
1576     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577     ReleaseVelocityResponseDepth = releasevelocityresponse;
1578     } else if (releasevelocityresponse < 10) {
1579     ReleaseVelocityResponseCurve = curve_type_linear;
1580     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581     } else if (releasevelocityresponse < 15) {
1582     ReleaseVelocityResponseCurve = curve_type_special;
1583     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584     } else {
1585     ReleaseVelocityResponseCurve = curve_type_unknown;
1586     ReleaseVelocityResponseDepth = 0;
1587     }
1588     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589     AttenuationControllerThreshold = _3ewa->ReadInt8();
1590     _3ewa->ReadInt32(); // unknown
1591     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592     _3ewa->ReadInt16(); // unknown
1593     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597     else DimensionBypass = dim_bypass_ctrl_none;
1598     uint8_t pan = _3ewa->ReadUint8();
1599     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600     SelfMask = _3ewa->ReadInt8() & 0x01;
1601     _3ewa->ReadInt8(); // unknown
1602     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617     : vcf_res_ctrl_none;
1618     uint16_t eg3depth = _3ewa->ReadUint16();
1619     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1622     ChannelOffset = _3ewa->ReadUint8() / 4;
1623     uint8_t regoptions = _3ewa->ReadUint8();
1624     MSDecode = regoptions & 0x01; // bit 0
1625     SustainDefeat = regoptions & 0x02; // bit 1
1626     _3ewa->ReadInt16(); // unknown
1627     VelocityUpperLimit = _3ewa->ReadInt8();
1628     _3ewa->ReadInt8(); // unknown
1629     _3ewa->ReadInt16(); // unknown
1630     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631     _3ewa->ReadInt8(); // unknown
1632     _3ewa->ReadInt8(); // unknown
1633     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634     uint8_t vcfcutoff = _3ewa->ReadUint8();
1635     VCFEnabled = vcfcutoff & 0x80; // bit 7
1636     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638     uint8_t vcfvelscale = _3ewa->ReadUint8();
1639     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641     _3ewa->ReadInt8(); // unknown
1642     uint8_t vcfresonance = _3ewa->ReadUint8();
1643     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648     uint8_t vcfvelocity = _3ewa->ReadUint8();
1649     VCFVelocityDynamicRange = vcfvelocity % 5;
1650     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652     if (VCFType == vcf_type_lowpass) {
1653     if (lfo3ctrl & 0x40) // bit 6
1654     VCFType = vcf_type_lowpassturbo;
1655     }
1656 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1657     _3ewa->Read(DimensionUpperLimits, 1, 8);
1658     } else {
1659     memset(DimensionUpperLimits, 0, 8);
1660     }
1661 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1662     // use default values
1663     LFO3Frequency = 1.0;
1664     EG3Attack = 0.0;
1665     LFO1InternalDepth = 0;
1666     LFO3InternalDepth = 0;
1667     LFO1ControlDepth = 0;
1668     LFO3ControlDepth = 0;
1669     EG1Attack = 0.0;
1670 persson 1218 EG1Decay1 = 0.005;
1671     EG1Sustain = 1000;
1672     EG1Release = 0.3;
1673 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1674     EG1Controller.controller_number = 0;
1675     EG1ControllerInvert = false;
1676     EG1ControllerAttackInfluence = 0;
1677     EG1ControllerDecayInfluence = 0;
1678     EG1ControllerReleaseInfluence = 0;
1679     EG2Controller.type = eg2_ctrl_t::type_none;
1680     EG2Controller.controller_number = 0;
1681     EG2ControllerInvert = false;
1682     EG2ControllerAttackInfluence = 0;
1683     EG2ControllerDecayInfluence = 0;
1684     EG2ControllerReleaseInfluence = 0;
1685     LFO1Frequency = 1.0;
1686     EG2Attack = 0.0;
1687 persson 1218 EG2Decay1 = 0.005;
1688     EG2Sustain = 1000;
1689 schoenebeck 2990 EG2Release = 60;
1690 schoenebeck 809 LFO2ControlDepth = 0;
1691     LFO2Frequency = 1.0;
1692     LFO2InternalDepth = 0;
1693     EG1Decay2 = 0.0;
1694 persson 1218 EG1InfiniteSustain = true;
1695     EG1PreAttack = 0;
1696 schoenebeck 809 EG2Decay2 = 0.0;
1697 persson 1218 EG2InfiniteSustain = true;
1698     EG2PreAttack = 0;
1699 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1700     VelocityResponseDepth = 3;
1701     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702     ReleaseVelocityResponseDepth = 3;
1703     VelocityResponseCurveScaling = 32;
1704     AttenuationControllerThreshold = 0;
1705     SampleStartOffset = 0;
1706     PitchTrack = true;
1707     DimensionBypass = dim_bypass_ctrl_none;
1708     Pan = 0;
1709     SelfMask = true;
1710     LFO3Controller = lfo3_ctrl_modwheel;
1711     LFO3Sync = false;
1712     InvertAttenuationController = false;
1713     AttenuationController.type = attenuation_ctrl_t::type_none;
1714     AttenuationController.controller_number = 0;
1715     LFO2Controller = lfo2_ctrl_internal;
1716     LFO2FlipPhase = false;
1717     LFO2Sync = false;
1718     LFO1Controller = lfo1_ctrl_internal;
1719     LFO1FlipPhase = false;
1720     LFO1Sync = false;
1721     VCFResonanceController = vcf_res_ctrl_none;
1722     EG3Depth = 0;
1723     ChannelOffset = 0;
1724     MSDecode = false;
1725     SustainDefeat = false;
1726     VelocityUpperLimit = 0;
1727     ReleaseTriggerDecay = 0;
1728     EG1Hold = false;
1729     VCFEnabled = false;
1730     VCFCutoff = 0;
1731     VCFCutoffController = vcf_cutoff_ctrl_none;
1732     VCFCutoffControllerInvert = false;
1733     VCFVelocityScale = 0;
1734     VCFResonance = 0;
1735     VCFResonanceDynamic = false;
1736     VCFKeyboardTracking = false;
1737     VCFKeyboardTrackingBreakpoint = 0;
1738     VCFVelocityDynamicRange = 0x04;
1739     VCFVelocityCurve = curve_type_linear;
1740     VCFType = vcf_type_lowpass;
1741 persson 1247 memset(DimensionUpperLimits, 127, 8);
1742 schoenebeck 2 }
1743 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1744 schoenebeck 3323 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1745 schoenebeck 3442 if (lsde) { // format extension for EG behavior options
1746 schoenebeck 3478 lsde->SetPos(0);
1747    
1748 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1749 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1750 schoenebeck 3327 unsigned char byte = lsde->ReadUint8();
1751     pEGOpts[i]->AttackCancel = byte & 1;
1752     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1753     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1754     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1755     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1756     }
1757 schoenebeck 3323 }
1758 schoenebeck 3442 // format extension for sustain pedal up effect on release trigger samples
1759     if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1760     lsde->SetPos(3);
1761 schoenebeck 3446 uint8_t byte = lsde->ReadUint8();
1762     SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1763     NoNoteOffReleaseTrigger = byte >> 7;
1764     } else {
1765     SustainReleaseTrigger = sust_rel_trg_none;
1766     NoNoteOffReleaseTrigger = false;
1767     }
1768 schoenebeck 16
1769 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1770     VelocityResponseDepth,
1771     VelocityResponseCurveScaling);
1772    
1773 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1774     ReleaseVelocityResponseCurve,
1775     ReleaseVelocityResponseDepth
1776     );
1777 persson 613
1778 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1779     VCFVelocityDynamicRange,
1780     VCFVelocityScale,
1781     VCFCutoffController);
1782 persson 613
1783     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1784 persson 858 VelocityTable = 0;
1785 persson 613 }
1786    
1787 persson 1301 /*
1788     * Constructs a DimensionRegion by copying all parameters from
1789     * another DimensionRegion
1790     */
1791     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1792     Instances++;
1793 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1794 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1795     pParentList = _3ewl; // restore the chunk pointer
1796    
1797     // deep copy of owned structures
1798     if (src.VelocityTable) {
1799     VelocityTable = new uint8_t[128];
1800     for (int k = 0 ; k < 128 ; k++)
1801     VelocityTable[k] = src.VelocityTable[k];
1802     }
1803     if (src.pSampleLoops) {
1804     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1805     for (int k = 0 ; k < src.SampleLoops ; k++)
1806     pSampleLoops[k] = src.pSampleLoops[k];
1807     }
1808     }
1809 schoenebeck 2394
1810     /**
1811     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1812     * and assign it to this object.
1813     *
1814     * Note that all sample pointers referenced by @a orig are simply copied as
1815     * memory address. Thus the respective samples are shared, not duplicated!
1816     *
1817     * @param orig - original DimensionRegion object to be copied from
1818     */
1819     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1820 schoenebeck 2482 CopyAssign(orig, NULL);
1821     }
1822    
1823     /**
1824     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1825     * and assign it to this object.
1826     *
1827     * @param orig - original DimensionRegion object to be copied from
1828     * @param mSamples - crosslink map between the foreign file's samples and
1829     * this file's samples
1830     */
1831     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1832 schoenebeck 2394 // delete all allocated data first
1833     if (VelocityTable) delete [] VelocityTable;
1834     if (pSampleLoops) delete [] pSampleLoops;
1835    
1836     // backup parent list pointer
1837     RIFF::List* p = pParentList;
1838    
1839 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1840     gig::Region* pOriginalRegion = pRegion;
1841    
1842 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1843    
1844     *this = *orig; // default memberwise shallow copy of all parameters
1845 schoenebeck 2547
1846     // restore members that shall not be altered
1847 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1848 schoenebeck 2547 pRegion = pOriginalRegion;
1849 schoenebeck 2482
1850 schoenebeck 2547 // only take the raw sample reference reference if the
1851 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1852     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1853     pSample = pOriginalSample;
1854     }
1855    
1856     if (mSamples && mSamples->count(orig->pSample)) {
1857     pSample = mSamples->find(orig->pSample)->second;
1858     }
1859 persson 1301
1860 schoenebeck 2394 // deep copy of owned structures
1861     if (orig->VelocityTable) {
1862     VelocityTable = new uint8_t[128];
1863     for (int k = 0 ; k < 128 ; k++)
1864     VelocityTable[k] = orig->VelocityTable[k];
1865     }
1866     if (orig->pSampleLoops) {
1867     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1868     for (int k = 0 ; k < orig->SampleLoops ; k++)
1869     pSampleLoops[k] = orig->pSampleLoops[k];
1870     }
1871     }
1872    
1873 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1874 schoenebeck 3182 // in case this class will become backward incompatible one day,
1875     // then set a version and minimum version for this class like:
1876     //archive->setVersion(*this, 2);
1877     //archive->setMinVersion(*this, 1);
1878    
1879 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1880     SRLZ(EG1PreAttack);
1881     SRLZ(EG1Attack);
1882     SRLZ(EG1Decay1);
1883     SRLZ(EG1Decay2);
1884     SRLZ(EG1InfiniteSustain);
1885     SRLZ(EG1Sustain);
1886     SRLZ(EG1Release);
1887     SRLZ(EG1Hold);
1888     SRLZ(EG1Controller);
1889     SRLZ(EG1ControllerInvert);
1890     SRLZ(EG1ControllerAttackInfluence);
1891     SRLZ(EG1ControllerDecayInfluence);
1892     SRLZ(EG1ControllerReleaseInfluence);
1893     SRLZ(LFO1Frequency);
1894     SRLZ(LFO1InternalDepth);
1895     SRLZ(LFO1ControlDepth);
1896     SRLZ(LFO1Controller);
1897     SRLZ(LFO1FlipPhase);
1898     SRLZ(LFO1Sync);
1899     SRLZ(EG2PreAttack);
1900     SRLZ(EG2Attack);
1901     SRLZ(EG2Decay1);
1902     SRLZ(EG2Decay2);
1903     SRLZ(EG2InfiniteSustain);
1904     SRLZ(EG2Sustain);
1905     SRLZ(EG2Release);
1906     SRLZ(EG2Controller);
1907     SRLZ(EG2ControllerInvert);
1908     SRLZ(EG2ControllerAttackInfluence);
1909     SRLZ(EG2ControllerDecayInfluence);
1910     SRLZ(EG2ControllerReleaseInfluence);
1911     SRLZ(LFO2Frequency);
1912     SRLZ(LFO2InternalDepth);
1913     SRLZ(LFO2ControlDepth);
1914     SRLZ(LFO2Controller);
1915     SRLZ(LFO2FlipPhase);
1916     SRLZ(LFO2Sync);
1917     SRLZ(EG3Attack);
1918     SRLZ(EG3Depth);
1919     SRLZ(LFO3Frequency);
1920     SRLZ(LFO3InternalDepth);
1921     SRLZ(LFO3ControlDepth);
1922     SRLZ(LFO3Controller);
1923     SRLZ(LFO3Sync);
1924     SRLZ(VCFEnabled);
1925     SRLZ(VCFType);
1926     SRLZ(VCFCutoffController);
1927     SRLZ(VCFCutoffControllerInvert);
1928     SRLZ(VCFCutoff);
1929     SRLZ(VCFVelocityCurve);
1930     SRLZ(VCFVelocityScale);
1931     SRLZ(VCFVelocityDynamicRange);
1932     SRLZ(VCFResonance);
1933     SRLZ(VCFResonanceDynamic);
1934     SRLZ(VCFResonanceController);
1935     SRLZ(VCFKeyboardTracking);
1936     SRLZ(VCFKeyboardTrackingBreakpoint);
1937     SRLZ(VelocityResponseCurve);
1938     SRLZ(VelocityResponseDepth);
1939     SRLZ(VelocityResponseCurveScaling);
1940     SRLZ(ReleaseVelocityResponseCurve);
1941     SRLZ(ReleaseVelocityResponseDepth);
1942     SRLZ(ReleaseTriggerDecay);
1943     SRLZ(Crossfade);
1944     SRLZ(PitchTrack);
1945     SRLZ(DimensionBypass);
1946     SRLZ(Pan);
1947     SRLZ(SelfMask);
1948     SRLZ(AttenuationController);
1949     SRLZ(InvertAttenuationController);
1950     SRLZ(AttenuationControllerThreshold);
1951     SRLZ(ChannelOffset);
1952     SRLZ(SustainDefeat);
1953     SRLZ(MSDecode);
1954     //SRLZ(SampleStartOffset);
1955     SRLZ(SampleAttenuation);
1956 schoenebeck 3327 SRLZ(EG1Options);
1957     SRLZ(EG2Options);
1958 schoenebeck 3442 SRLZ(SustainReleaseTrigger);
1959 schoenebeck 3446 SRLZ(NoNoteOffReleaseTrigger);
1960 schoenebeck 3138
1961     // derived attributes from DLS::Sampler
1962     SRLZ(FineTune);
1963     SRLZ(Gain);
1964     }
1965    
1966 schoenebeck 809 /**
1967 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1968     * which depends on this value.
1969     */
1970     void DimensionRegion::SetGain(int32_t gain) {
1971     DLS::Sampler::SetGain(gain);
1972     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1973     }
1974    
1975     /**
1976 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1977     * have to call File::Save() to make changes persistent.
1978     *
1979     * Usually there is absolutely no need to call this method explicitly.
1980     * It will be called automatically when File::Save() was called.
1981 schoenebeck 2682 *
1982     * @param pProgress - callback function for progress notification
1983 schoenebeck 809 */
1984 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1985 schoenebeck 809 // first update base class's chunk
1986 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1987 schoenebeck 809
1988 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1989     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1990     pData[12] = Crossfade.in_start;
1991     pData[13] = Crossfade.in_end;
1992     pData[14] = Crossfade.out_start;
1993     pData[15] = Crossfade.out_end;
1994    
1995 schoenebeck 809 // make sure '3ewa' chunk exists
1996     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1997 persson 1317 if (!_3ewa) {
1998     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1999 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2000     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2001 persson 1264 }
2002 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
2003 schoenebeck 809
2004     // update '3ewa' chunk with DimensionRegion's current settings
2005    
2006 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2007 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
2008 schoenebeck 809
2009     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2010 persson 1179 store32(&pData[4], lfo3freq);
2011 schoenebeck 809
2012     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2013 persson 1179 store32(&pData[8], eg3attack);
2014 schoenebeck 809
2015     // next 2 bytes unknown
2016    
2017 persson 1179 store16(&pData[14], LFO1InternalDepth);
2018 schoenebeck 809
2019     // next 2 bytes unknown
2020    
2021 persson 1179 store16(&pData[18], LFO3InternalDepth);
2022 schoenebeck 809
2023     // next 2 bytes unknown
2024    
2025 persson 1179 store16(&pData[22], LFO1ControlDepth);
2026 schoenebeck 809
2027     // next 2 bytes unknown
2028    
2029 persson 1179 store16(&pData[26], LFO3ControlDepth);
2030 schoenebeck 809
2031     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2032 persson 1179 store32(&pData[28], eg1attack);
2033 schoenebeck 809
2034     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2035 persson 1179 store32(&pData[32], eg1decay1);
2036 schoenebeck 809
2037     // next 2 bytes unknown
2038    
2039 persson 1179 store16(&pData[38], EG1Sustain);
2040 schoenebeck 809
2041     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2042 persson 1179 store32(&pData[40], eg1release);
2043 schoenebeck 809
2044     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2045 persson 1179 pData[44] = eg1ctl;
2046 schoenebeck 809
2047     const uint8_t eg1ctrloptions =
2048 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2049 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2050     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2051     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2052 persson 1179 pData[45] = eg1ctrloptions;
2053 schoenebeck 809
2054     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2055 persson 1179 pData[46] = eg2ctl;
2056 schoenebeck 809
2057     const uint8_t eg2ctrloptions =
2058 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2059 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2060     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2061     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2062 persson 1179 pData[47] = eg2ctrloptions;
2063 schoenebeck 809
2064     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2065 persson 1179 store32(&pData[48], lfo1freq);
2066 schoenebeck 809
2067     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2068 persson 1179 store32(&pData[52], eg2attack);
2069 schoenebeck 809
2070     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2071 persson 1179 store32(&pData[56], eg2decay1);
2072 schoenebeck 809
2073     // next 2 bytes unknown
2074    
2075 persson 1179 store16(&pData[62], EG2Sustain);
2076 schoenebeck 809
2077     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2078 persson 1179 store32(&pData[64], eg2release);
2079 schoenebeck 809
2080     // next 2 bytes unknown
2081    
2082 persson 1179 store16(&pData[70], LFO2ControlDepth);
2083 schoenebeck 809
2084     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2085 persson 1179 store32(&pData[72], lfo2freq);
2086 schoenebeck 809
2087     // next 2 bytes unknown
2088    
2089 persson 1179 store16(&pData[78], LFO2InternalDepth);
2090 schoenebeck 809
2091     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2092 persson 1179 store32(&pData[80], eg1decay2);
2093 schoenebeck 809
2094     // next 2 bytes unknown
2095    
2096 persson 1179 store16(&pData[86], EG1PreAttack);
2097 schoenebeck 809
2098     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2099 persson 1179 store32(&pData[88], eg2decay2);
2100 schoenebeck 809
2101     // next 2 bytes unknown
2102    
2103 persson 1179 store16(&pData[94], EG2PreAttack);
2104 schoenebeck 809
2105     {
2106     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2107     uint8_t velocityresponse = VelocityResponseDepth;
2108     switch (VelocityResponseCurve) {
2109     case curve_type_nonlinear:
2110     break;
2111     case curve_type_linear:
2112     velocityresponse += 5;
2113     break;
2114     case curve_type_special:
2115     velocityresponse += 10;
2116     break;
2117     case curve_type_unknown:
2118     default:
2119     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2120     }
2121 persson 1179 pData[96] = velocityresponse;
2122 schoenebeck 809 }
2123    
2124     {
2125     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2126     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2127     switch (ReleaseVelocityResponseCurve) {
2128     case curve_type_nonlinear:
2129     break;
2130     case curve_type_linear:
2131     releasevelocityresponse += 5;
2132     break;
2133     case curve_type_special:
2134     releasevelocityresponse += 10;
2135     break;
2136     case curve_type_unknown:
2137     default:
2138     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2139     }
2140 persson 1179 pData[97] = releasevelocityresponse;
2141 schoenebeck 809 }
2142    
2143 persson 1179 pData[98] = VelocityResponseCurveScaling;
2144 schoenebeck 809
2145 persson 1179 pData[99] = AttenuationControllerThreshold;
2146 schoenebeck 809
2147     // next 4 bytes unknown
2148    
2149 persson 1179 store16(&pData[104], SampleStartOffset);
2150 schoenebeck 809
2151     // next 2 bytes unknown
2152    
2153     {
2154     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2155     switch (DimensionBypass) {
2156     case dim_bypass_ctrl_94:
2157     pitchTrackDimensionBypass |= 0x10;
2158     break;
2159     case dim_bypass_ctrl_95:
2160     pitchTrackDimensionBypass |= 0x20;
2161     break;
2162     case dim_bypass_ctrl_none:
2163     //FIXME: should we set anything here?
2164     break;
2165     default:
2166     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2167     }
2168 persson 1179 pData[108] = pitchTrackDimensionBypass;
2169 schoenebeck 809 }
2170    
2171     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2172 persson 1179 pData[109] = pan;
2173 schoenebeck 809
2174     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2175 persson 1179 pData[110] = selfmask;
2176 schoenebeck 809
2177     // next byte unknown
2178    
2179     {
2180     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2181     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2182     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2183     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2184 persson 1179 pData[112] = lfo3ctrl;
2185 schoenebeck 809 }
2186    
2187     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2188 persson 1179 pData[113] = attenctl;
2189 schoenebeck 809
2190     {
2191     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2192     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2193     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2194     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2195 persson 1179 pData[114] = lfo2ctrl;
2196 schoenebeck 809 }
2197    
2198     {
2199     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2200     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2201     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2202     if (VCFResonanceController != vcf_res_ctrl_none)
2203     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2204 persson 1179 pData[115] = lfo1ctrl;
2205 schoenebeck 809 }
2206    
2207     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2208 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2209 persson 1869 store16(&pData[116], eg3depth);
2210 schoenebeck 809
2211     // next 2 bytes unknown
2212    
2213     const uint8_t channeloffset = ChannelOffset * 4;
2214 persson 1179 pData[120] = channeloffset;
2215 schoenebeck 809
2216     {
2217     uint8_t regoptions = 0;
2218     if (MSDecode) regoptions |= 0x01; // bit 0
2219     if (SustainDefeat) regoptions |= 0x02; // bit 1
2220 persson 1179 pData[121] = regoptions;
2221 schoenebeck 809 }
2222    
2223     // next 2 bytes unknown
2224    
2225 persson 1179 pData[124] = VelocityUpperLimit;
2226 schoenebeck 809
2227     // next 3 bytes unknown
2228    
2229 persson 1179 pData[128] = ReleaseTriggerDecay;
2230 schoenebeck 809
2231     // next 2 bytes unknown
2232    
2233     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2234 persson 1179 pData[131] = eg1hold;
2235 schoenebeck 809
2236 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2237 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2238 persson 1179 pData[132] = vcfcutoff;
2239 schoenebeck 809
2240 persson 1179 pData[133] = VCFCutoffController;
2241 schoenebeck 809
2242 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2243 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2244 persson 1179 pData[134] = vcfvelscale;
2245 schoenebeck 809
2246     // next byte unknown
2247    
2248 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2249 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2250 persson 1179 pData[136] = vcfresonance;
2251 schoenebeck 809
2252 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2253 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2254 persson 1179 pData[137] = vcfbreakpoint;
2255 schoenebeck 809
2256 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2257 schoenebeck 809 VCFVelocityCurve * 5;
2258 persson 1179 pData[138] = vcfvelocity;
2259 schoenebeck 809
2260     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2261 persson 1179 pData[139] = vcftype;
2262 persson 1070
2263     if (chunksize >= 148) {
2264     memcpy(&pData[140], DimensionUpperLimits, 8);
2265     }
2266 schoenebeck 3323
2267 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with
2268 schoenebeck 3323 // Gigasampler/GigaStudio !
2269     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2270 schoenebeck 3442 const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2271 schoenebeck 3323 if (!lsde) {
2272 schoenebeck 3446 // only add this "LSDE" chunk if either EG options or release
2273     // trigger options deviate from their default behaviour
2274 schoenebeck 3323 eg_opt_t defaultOpt;
2275 schoenebeck 3327 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2276 schoenebeck 3442 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2277 schoenebeck 3446 SustainReleaseTrigger || NoNoteOffReleaseTrigger)
2278 schoenebeck 3327 {
2279 schoenebeck 3442 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2280 schoenebeck 3323 // move LSDE chunk to the end of parent list
2281     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2282     }
2283     }
2284     if (lsde) {
2285 schoenebeck 3442 if (lsde->GetNewSize() < lsdeSize)
2286     lsde->Resize(lsdeSize);
2287     // format extension for EG behavior options
2288 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2289     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2290 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2291 schoenebeck 3327 pData[i] =
2292     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2293     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2294     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2295     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2296     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2297     }
2298 schoenebeck 3446 // format extension for release trigger options
2299     pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2300 schoenebeck 3323 }
2301 schoenebeck 809 }
2302    
2303 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2304     curve_type_t curveType = releaseVelocityResponseCurve;
2305     uint8_t depth = releaseVelocityResponseDepth;
2306     // this models a strange behaviour or bug in GSt: two of the
2307     // velocity response curves for release time are not used even
2308     // if specified, instead another curve is chosen.
2309     if ((curveType == curve_type_nonlinear && depth == 0) ||
2310     (curveType == curve_type_special && depth == 4)) {
2311     curveType = curve_type_nonlinear;
2312     depth = 3;
2313     }
2314     return GetVelocityTable(curveType, depth, 0);
2315     }
2316    
2317     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2318     uint8_t vcfVelocityDynamicRange,
2319     uint8_t vcfVelocityScale,
2320     vcf_cutoff_ctrl_t vcfCutoffController)
2321     {
2322     curve_type_t curveType = vcfVelocityCurve;
2323     uint8_t depth = vcfVelocityDynamicRange;
2324     // even stranger GSt: two of the velocity response curves for
2325     // filter cutoff are not used, instead another special curve
2326     // is chosen. This curve is not used anywhere else.
2327     if ((curveType == curve_type_nonlinear && depth == 0) ||
2328     (curveType == curve_type_special && depth == 4)) {
2329     curveType = curve_type_special;
2330     depth = 5;
2331     }
2332     return GetVelocityTable(curveType, depth,
2333     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2334     ? vcfVelocityScale : 0);
2335     }
2336    
2337 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2338     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2339     {
2340 schoenebeck 3349 // sanity check input parameters
2341     // (fallback to some default parameters on ill input)
2342     switch (curveType) {
2343     case curve_type_nonlinear:
2344     case curve_type_linear:
2345     if (depth > 4) {
2346     printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2347     depth = 0;
2348     scaling = 0;
2349     }
2350     break;
2351     case curve_type_special:
2352     if (depth > 5) {
2353     printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2354     depth = 0;
2355     scaling = 0;
2356     }
2357     break;
2358     case curve_type_unknown:
2359     default:
2360     printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2361     curveType = curve_type_linear;
2362     depth = 0;
2363     scaling = 0;
2364     break;
2365     }
2366    
2367 persson 613 double* table;
2368     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2369 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2370 persson 613 table = (*pVelocityTables)[tableKey];
2371 schoenebeck 16 }
2372     else {
2373 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2374     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2375 schoenebeck 16 }
2376 persson 613 return table;
2377 schoenebeck 2 }
2378 schoenebeck 55
2379 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2380     return pRegion;
2381     }
2382    
2383 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2384     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2385     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2386     //#pragma GCC diagnostic push
2387     //#pragma GCC diagnostic error "-Wswitch"
2388    
2389 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2390     leverage_ctrl_t decodedcontroller;
2391     switch (EncodedController) {
2392     // special controller
2393     case _lev_ctrl_none:
2394     decodedcontroller.type = leverage_ctrl_t::type_none;
2395     decodedcontroller.controller_number = 0;
2396     break;
2397     case _lev_ctrl_velocity:
2398     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2399     decodedcontroller.controller_number = 0;
2400     break;
2401     case _lev_ctrl_channelaftertouch:
2402     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2403     decodedcontroller.controller_number = 0;
2404     break;
2405 schoenebeck 55
2406 schoenebeck 36 // ordinary MIDI control change controller
2407     case _lev_ctrl_modwheel:
2408     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409     decodedcontroller.controller_number = 1;
2410     break;
2411     case _lev_ctrl_breath:
2412     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413     decodedcontroller.controller_number = 2;
2414     break;
2415     case _lev_ctrl_foot:
2416     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417     decodedcontroller.controller_number = 4;
2418     break;
2419     case _lev_ctrl_effect1:
2420     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421     decodedcontroller.controller_number = 12;
2422     break;
2423     case _lev_ctrl_effect2:
2424     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425     decodedcontroller.controller_number = 13;
2426     break;
2427     case _lev_ctrl_genpurpose1:
2428     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429     decodedcontroller.controller_number = 16;
2430     break;
2431     case _lev_ctrl_genpurpose2:
2432     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433     decodedcontroller.controller_number = 17;
2434     break;
2435     case _lev_ctrl_genpurpose3:
2436     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437     decodedcontroller.controller_number = 18;
2438     break;
2439     case _lev_ctrl_genpurpose4:
2440     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441     decodedcontroller.controller_number = 19;
2442     break;
2443     case _lev_ctrl_portamentotime:
2444     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445     decodedcontroller.controller_number = 5;
2446     break;
2447     case _lev_ctrl_sustainpedal:
2448     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449     decodedcontroller.controller_number = 64;
2450     break;
2451     case _lev_ctrl_portamento:
2452     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453     decodedcontroller.controller_number = 65;
2454     break;
2455     case _lev_ctrl_sostenutopedal:
2456     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457     decodedcontroller.controller_number = 66;
2458     break;
2459     case _lev_ctrl_softpedal:
2460     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461     decodedcontroller.controller_number = 67;
2462     break;
2463     case _lev_ctrl_genpurpose5:
2464     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465     decodedcontroller.controller_number = 80;
2466     break;
2467     case _lev_ctrl_genpurpose6:
2468     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469     decodedcontroller.controller_number = 81;
2470     break;
2471     case _lev_ctrl_genpurpose7:
2472     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473     decodedcontroller.controller_number = 82;
2474     break;
2475     case _lev_ctrl_genpurpose8:
2476     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477     decodedcontroller.controller_number = 83;
2478     break;
2479     case _lev_ctrl_effect1depth:
2480     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481     decodedcontroller.controller_number = 91;
2482     break;
2483     case _lev_ctrl_effect2depth:
2484     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485     decodedcontroller.controller_number = 92;
2486     break;
2487     case _lev_ctrl_effect3depth:
2488     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489     decodedcontroller.controller_number = 93;
2490     break;
2491     case _lev_ctrl_effect4depth:
2492     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493     decodedcontroller.controller_number = 94;
2494     break;
2495     case _lev_ctrl_effect5depth:
2496     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497     decodedcontroller.controller_number = 95;
2498     break;
2499 schoenebeck 55
2500 schoenebeck 2540 // format extension (these controllers are so far only supported by
2501     // LinuxSampler & gigedit) they will *NOT* work with
2502     // Gigasampler/GigaStudio !
2503     case _lev_ctrl_CC3_EXT:
2504     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505     decodedcontroller.controller_number = 3;
2506     break;
2507     case _lev_ctrl_CC6_EXT:
2508     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509     decodedcontroller.controller_number = 6;
2510     break;
2511     case _lev_ctrl_CC7_EXT:
2512     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513     decodedcontroller.controller_number = 7;
2514     break;
2515     case _lev_ctrl_CC8_EXT:
2516     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517     decodedcontroller.controller_number = 8;
2518     break;
2519     case _lev_ctrl_CC9_EXT:
2520     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521     decodedcontroller.controller_number = 9;
2522     break;
2523     case _lev_ctrl_CC10_EXT:
2524     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525     decodedcontroller.controller_number = 10;
2526     break;
2527     case _lev_ctrl_CC11_EXT:
2528     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529     decodedcontroller.controller_number = 11;
2530     break;
2531     case _lev_ctrl_CC14_EXT:
2532     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533     decodedcontroller.controller_number = 14;
2534     break;
2535     case _lev_ctrl_CC15_EXT:
2536     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537     decodedcontroller.controller_number = 15;
2538     break;
2539     case _lev_ctrl_CC20_EXT:
2540     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541     decodedcontroller.controller_number = 20;
2542     break;
2543     case _lev_ctrl_CC21_EXT:
2544     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545     decodedcontroller.controller_number = 21;
2546     break;
2547     case _lev_ctrl_CC22_EXT:
2548     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549     decodedcontroller.controller_number = 22;
2550     break;
2551     case _lev_ctrl_CC23_EXT:
2552     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553     decodedcontroller.controller_number = 23;
2554     break;
2555     case _lev_ctrl_CC24_EXT:
2556     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557     decodedcontroller.controller_number = 24;
2558     break;
2559     case _lev_ctrl_CC25_EXT:
2560     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561     decodedcontroller.controller_number = 25;
2562     break;
2563     case _lev_ctrl_CC26_EXT:
2564     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565     decodedcontroller.controller_number = 26;
2566     break;
2567     case _lev_ctrl_CC27_EXT:
2568     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569     decodedcontroller.controller_number = 27;
2570     break;
2571     case _lev_ctrl_CC28_EXT:
2572     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573     decodedcontroller.controller_number = 28;
2574     break;
2575     case _lev_ctrl_CC29_EXT:
2576     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577     decodedcontroller.controller_number = 29;
2578     break;
2579     case _lev_ctrl_CC30_EXT:
2580     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581     decodedcontroller.controller_number = 30;
2582     break;
2583     case _lev_ctrl_CC31_EXT:
2584     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585     decodedcontroller.controller_number = 31;
2586     break;
2587     case _lev_ctrl_CC68_EXT:
2588     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589     decodedcontroller.controller_number = 68;
2590     break;
2591     case _lev_ctrl_CC69_EXT:
2592     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593     decodedcontroller.controller_number = 69;
2594     break;
2595     case _lev_ctrl_CC70_EXT:
2596     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597     decodedcontroller.controller_number = 70;
2598     break;
2599     case _lev_ctrl_CC71_EXT:
2600     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601     decodedcontroller.controller_number = 71;
2602     break;
2603     case _lev_ctrl_CC72_EXT:
2604     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605     decodedcontroller.controller_number = 72;
2606     break;
2607     case _lev_ctrl_CC73_EXT:
2608     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609     decodedcontroller.controller_number = 73;
2610     break;
2611     case _lev_ctrl_CC74_EXT:
2612     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613     decodedcontroller.controller_number = 74;
2614     break;
2615     case _lev_ctrl_CC75_EXT:
2616     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617     decodedcontroller.controller_number = 75;
2618     break;
2619     case _lev_ctrl_CC76_EXT:
2620     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621     decodedcontroller.controller_number = 76;
2622     break;
2623     case _lev_ctrl_CC77_EXT:
2624     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625     decodedcontroller.controller_number = 77;
2626     break;
2627     case _lev_ctrl_CC78_EXT:
2628     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629     decodedcontroller.controller_number = 78;
2630     break;
2631     case _lev_ctrl_CC79_EXT:
2632     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633     decodedcontroller.controller_number = 79;
2634     break;
2635     case _lev_ctrl_CC84_EXT:
2636     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637     decodedcontroller.controller_number = 84;
2638     break;
2639     case _lev_ctrl_CC85_EXT:
2640     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641     decodedcontroller.controller_number = 85;
2642     break;
2643     case _lev_ctrl_CC86_EXT:
2644     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645     decodedcontroller.controller_number = 86;
2646     break;
2647     case _lev_ctrl_CC87_EXT:
2648     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649     decodedcontroller.controller_number = 87;
2650     break;
2651     case _lev_ctrl_CC89_EXT:
2652     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653     decodedcontroller.controller_number = 89;
2654     break;
2655     case _lev_ctrl_CC90_EXT:
2656     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657     decodedcontroller.controller_number = 90;
2658     break;
2659     case _lev_ctrl_CC96_EXT:
2660     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661     decodedcontroller.controller_number = 96;
2662     break;
2663     case _lev_ctrl_CC97_EXT:
2664     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665     decodedcontroller.controller_number = 97;
2666     break;
2667     case _lev_ctrl_CC102_EXT:
2668     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669     decodedcontroller.controller_number = 102;
2670     break;
2671     case _lev_ctrl_CC103_EXT:
2672     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673     decodedcontroller.controller_number = 103;
2674     break;
2675     case _lev_ctrl_CC104_EXT:
2676     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677     decodedcontroller.controller_number = 104;
2678     break;
2679     case _lev_ctrl_CC105_EXT:
2680     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681     decodedcontroller.controller_number = 105;
2682     break;
2683     case _lev_ctrl_CC106_EXT:
2684     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685     decodedcontroller.controller_number = 106;
2686     break;
2687     case _lev_ctrl_CC107_EXT:
2688     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689     decodedcontroller.controller_number = 107;
2690     break;
2691     case _lev_ctrl_CC108_EXT:
2692     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693     decodedcontroller.controller_number = 108;
2694     break;
2695     case _lev_ctrl_CC109_EXT:
2696     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697     decodedcontroller.controller_number = 109;
2698     break;
2699     case _lev_ctrl_CC110_EXT:
2700     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701     decodedcontroller.controller_number = 110;
2702     break;
2703     case _lev_ctrl_CC111_EXT:
2704     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705     decodedcontroller.controller_number = 111;
2706     break;
2707     case _lev_ctrl_CC112_EXT:
2708     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709     decodedcontroller.controller_number = 112;
2710     break;
2711     case _lev_ctrl_CC113_EXT:
2712     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2713     decodedcontroller.controller_number = 113;
2714     break;
2715     case _lev_ctrl_CC114_EXT:
2716     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2717     decodedcontroller.controller_number = 114;
2718     break;
2719     case _lev_ctrl_CC115_EXT:
2720     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2721     decodedcontroller.controller_number = 115;
2722     break;
2723     case _lev_ctrl_CC116_EXT:
2724     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2725     decodedcontroller.controller_number = 116;
2726     break;
2727     case _lev_ctrl_CC117_EXT:
2728     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2729     decodedcontroller.controller_number = 117;
2730     break;
2731     case _lev_ctrl_CC118_EXT:
2732     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2733     decodedcontroller.controller_number = 118;
2734     break;
2735     case _lev_ctrl_CC119_EXT:
2736     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2737     decodedcontroller.controller_number = 119;
2738     break;
2739    
2740 schoenebeck 36 // unknown controller type
2741     default:
2742 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2743     decodedcontroller.controller_number = 0;
2744     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2745     break;
2746 schoenebeck 36 }
2747     return decodedcontroller;
2748     }
2749 schoenebeck 2540
2750     // see above (diagnostic push not supported prior GCC 4.6)
2751     //#pragma GCC diagnostic pop
2752 schoenebeck 2
2753 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2754     _lev_ctrl_t encodedcontroller;
2755     switch (DecodedController.type) {
2756     // special controller
2757     case leverage_ctrl_t::type_none:
2758     encodedcontroller = _lev_ctrl_none;
2759     break;
2760     case leverage_ctrl_t::type_velocity:
2761     encodedcontroller = _lev_ctrl_velocity;
2762     break;
2763     case leverage_ctrl_t::type_channelaftertouch:
2764     encodedcontroller = _lev_ctrl_channelaftertouch;
2765     break;
2766    
2767     // ordinary MIDI control change controller
2768     case leverage_ctrl_t::type_controlchange:
2769     switch (DecodedController.controller_number) {
2770     case 1:
2771     encodedcontroller = _lev_ctrl_modwheel;
2772     break;
2773     case 2:
2774     encodedcontroller = _lev_ctrl_breath;
2775     break;
2776     case 4:
2777     encodedcontroller = _lev_ctrl_foot;
2778     break;
2779     case 12:
2780     encodedcontroller = _lev_ctrl_effect1;
2781     break;
2782     case 13:
2783     encodedcontroller = _lev_ctrl_effect2;
2784     break;
2785     case 16:
2786     encodedcontroller = _lev_ctrl_genpurpose1;
2787     break;
2788     case 17:
2789     encodedcontroller = _lev_ctrl_genpurpose2;
2790     break;
2791     case 18:
2792     encodedcontroller = _lev_ctrl_genpurpose3;
2793     break;
2794     case 19:
2795     encodedcontroller = _lev_ctrl_genpurpose4;
2796     break;
2797     case 5:
2798     encodedcontroller = _lev_ctrl_portamentotime;
2799     break;
2800     case 64:
2801     encodedcontroller = _lev_ctrl_sustainpedal;
2802     break;
2803     case 65:
2804     encodedcontroller = _lev_ctrl_portamento;
2805     break;
2806     case 66:
2807     encodedcontroller = _lev_ctrl_sostenutopedal;
2808     break;
2809     case 67:
2810     encodedcontroller = _lev_ctrl_softpedal;
2811     break;
2812     case 80:
2813     encodedcontroller = _lev_ctrl_genpurpose5;
2814     break;
2815     case 81:
2816     encodedcontroller = _lev_ctrl_genpurpose6;
2817     break;
2818     case 82:
2819     encodedcontroller = _lev_ctrl_genpurpose7;
2820     break;
2821     case 83:
2822     encodedcontroller = _lev_ctrl_genpurpose8;
2823     break;
2824     case 91:
2825     encodedcontroller = _lev_ctrl_effect1depth;
2826     break;
2827     case 92:
2828     encodedcontroller = _lev_ctrl_effect2depth;
2829     break;
2830     case 93:
2831     encodedcontroller = _lev_ctrl_effect3depth;
2832     break;
2833     case 94:
2834     encodedcontroller = _lev_ctrl_effect4depth;
2835     break;
2836     case 95:
2837     encodedcontroller = _lev_ctrl_effect5depth;
2838     break;
2839 schoenebeck 2540
2840     // format extension (these controllers are so far only
2841     // supported by LinuxSampler & gigedit) they will *NOT*
2842     // work with Gigasampler/GigaStudio !
2843     case 3:
2844     encodedcontroller = _lev_ctrl_CC3_EXT;
2845     break;
2846     case 6:
2847     encodedcontroller = _lev_ctrl_CC6_EXT;
2848     break;
2849     case 7:
2850     encodedcontroller = _lev_ctrl_CC7_EXT;
2851     break;
2852     case 8:
2853     encodedcontroller = _lev_ctrl_CC8_EXT;
2854     break;
2855     case 9:
2856     encodedcontroller = _lev_ctrl_CC9_EXT;
2857     break;
2858     case 10:
2859     encodedcontroller = _lev_ctrl_CC10_EXT;
2860     break;
2861     case 11:
2862     encodedcontroller = _lev_ctrl_CC11_EXT;
2863     break;
2864     case 14:
2865     encodedcontroller = _lev_ctrl_CC14_EXT;
2866     break;
2867     case 15:
2868     encodedcontroller = _lev_ctrl_CC15_EXT;
2869     break;
2870     case 20:
2871     encodedcontroller = _lev_ctrl_CC20_EXT;
2872     break;
2873     case 21:
2874     encodedcontroller = _lev_ctrl_CC21_EXT;
2875     break;
2876     case 22:
2877     encodedcontroller = _lev_ctrl_CC22_EXT;
2878     break;
2879     case 23:
2880     encodedcontroller = _lev_ctrl_CC23_EXT;
2881     break;
2882     case 24:
2883     encodedcontroller = _lev_ctrl_CC24_EXT;
2884     break;
2885     case 25:
2886     encodedcontroller = _lev_ctrl_CC25_EXT;
2887     break;
2888     case 26:
2889     encodedcontroller = _lev_ctrl_CC26_EXT;
2890     break;
2891     case 27:
2892     encodedcontroller = _lev_ctrl_CC27_EXT;
2893     break;
2894     case 28:
2895     encodedcontroller = _lev_ctrl_CC28_EXT;
2896     break;
2897     case 29:
2898     encodedcontroller = _lev_ctrl_CC29_EXT;
2899     break;
2900     case 30:
2901     encodedcontroller = _lev_ctrl_CC30_EXT;
2902     break;
2903     case 31:
2904     encodedcontroller = _lev_ctrl_CC31_EXT;
2905     break;
2906     case 68:
2907     encodedcontroller = _lev_ctrl_CC68_EXT;
2908     break;
2909     case 69:
2910     encodedcontroller = _lev_ctrl_CC69_EXT;
2911     break;
2912     case 70:
2913     encodedcontroller = _lev_ctrl_CC70_EXT;
2914     break;
2915     case 71:
2916     encodedcontroller = _lev_ctrl_CC71_EXT;
2917     break;
2918     case 72:
2919     encodedcontroller = _lev_ctrl_CC72_EXT;
2920     break;
2921     case 73:
2922     encodedcontroller = _lev_ctrl_CC73_EXT;
2923     break;
2924     case 74:
2925     encodedcontroller = _lev_ctrl_CC74_EXT;
2926     break;
2927     case 75:
2928     encodedcontroller = _lev_ctrl_CC75_EXT;
2929     break;
2930     case 76:
2931     encodedcontroller = _lev_ctrl_CC76_EXT;
2932     break;
2933     case 77:
2934     encodedcontroller = _lev_ctrl_CC77_EXT;
2935     break;
2936     case 78:
2937     encodedcontroller = _lev_ctrl_CC78_EXT;
2938     break;
2939     case 79:
2940     encodedcontroller = _lev_ctrl_CC79_EXT;
2941     break;
2942     case 84:
2943     encodedcontroller = _lev_ctrl_CC84_EXT;
2944     break;
2945     case 85:
2946     encodedcontroller = _lev_ctrl_CC85_EXT;
2947     break;
2948     case 86:
2949     encodedcontroller = _lev_ctrl_CC86_EXT;
2950     break;
2951     case 87:
2952     encodedcontroller = _lev_ctrl_CC87_EXT;
2953     break;
2954     case 89:
2955     encodedcontroller = _lev_ctrl_CC89_EXT;
2956     break;
2957     case 90:
2958     encodedcontroller = _lev_ctrl_CC90_EXT;
2959     break;
2960     case 96:
2961     encodedcontroller = _lev_ctrl_CC96_EXT;
2962     break;
2963     case 97:
2964     encodedcontroller = _lev_ctrl_CC97_EXT;
2965     break;
2966     case 102:
2967     encodedcontroller = _lev_ctrl_CC102_EXT;
2968     break;
2969     case 103:
2970     encodedcontroller = _lev_ctrl_CC103_EXT;
2971     break;
2972     case 104:
2973     encodedcontroller = _lev_ctrl_CC104_EXT;
2974     break;
2975     case 105:
2976     encodedcontroller = _lev_ctrl_CC105_EXT;
2977     break;
2978     case 106:
2979     encodedcontroller = _lev_ctrl_CC106_EXT;
2980     break;
2981     case 107:
2982     encodedcontroller = _lev_ctrl_CC107_EXT;
2983     break;
2984     case 108:
2985     encodedcontroller = _lev_ctrl_CC108_EXT;
2986     break;
2987     case 109:
2988     encodedcontroller = _lev_ctrl_CC109_EXT;
2989     break;
2990     case 110:
2991     encodedcontroller = _lev_ctrl_CC110_EXT;
2992     break;
2993     case 111:
2994     encodedcontroller = _lev_ctrl_CC111_EXT;
2995     break;
2996     case 112:
2997     encodedcontroller = _lev_ctrl_CC112_EXT;
2998     break;
2999     case 113:
3000     encodedcontroller = _lev_ctrl_CC113_EXT;
3001     break;
3002     case 114:
3003     encodedcontroller = _lev_ctrl_CC114_EXT;
3004     break;
3005     case 115:
3006     encodedcontroller = _lev_ctrl_CC115_EXT;
3007     break;
3008     case 116:
3009     encodedcontroller = _lev_ctrl_CC116_EXT;
3010     break;
3011     case 117:
3012     encodedcontroller = _lev_ctrl_CC117_EXT;
3013     break;
3014     case 118:
3015     encodedcontroller = _lev_ctrl_CC118_EXT;
3016     break;
3017     case 119:
3018     encodedcontroller = _lev_ctrl_CC119_EXT;
3019     break;
3020    
3021 schoenebeck 809 default:
3022     throw gig::Exception("leverage controller number is not supported by the gig format");
3023     }
3024 persson 1182 break;
3025 schoenebeck 809 default:
3026     throw gig::Exception("Unknown leverage controller type.");
3027     }
3028     return encodedcontroller;
3029     }
3030    
3031 schoenebeck 16 DimensionRegion::~DimensionRegion() {
3032     Instances--;
3033     if (!Instances) {
3034     // delete the velocity->volume tables
3035     VelocityTableMap::iterator iter;
3036     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3037     double* pTable = iter->second;
3038     if (pTable) delete[] pTable;
3039     }
3040     pVelocityTables->clear();
3041     delete pVelocityTables;
3042     pVelocityTables = NULL;
3043     }
3044 persson 858 if (VelocityTable) delete[] VelocityTable;
3045 schoenebeck 16 }
3046 schoenebeck 2
3047 schoenebeck 16 /**
3048     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3049     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3050     * and VelocityResponseCurveScaling) involved are taken into account to
3051     * calculate the amplitude factor. Use this method when a key was
3052     * triggered to get the volume with which the sample should be played
3053     * back.
3054     *
3055 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3056     * @returns amplitude factor (between 0.0 and 1.0)
3057 schoenebeck 16 */
3058     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3059     return pVelocityAttenuationTable[MIDIKeyVelocity];
3060     }
3061 schoenebeck 2
3062 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3063     return pVelocityReleaseTable[MIDIKeyVelocity];
3064     }
3065    
3066 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3067     return pVelocityCutoffTable[MIDIKeyVelocity];
3068     }
3069    
3070 schoenebeck 1358 /**
3071     * Updates the respective member variable and the lookup table / cache
3072     * that depends on this value.
3073     */
3074     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3075     pVelocityAttenuationTable =
3076     GetVelocityTable(
3077     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3078     );
3079     VelocityResponseCurve = curve;
3080     }
3081    
3082     /**
3083     * Updates the respective member variable and the lookup table / cache
3084     * that depends on this value.
3085     */
3086     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3087     pVelocityAttenuationTable =
3088     GetVelocityTable(
3089     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3090     );
3091     VelocityResponseDepth = depth;
3092     }
3093    
3094     /**
3095     * Updates the respective member variable and the lookup table / cache
3096     * that depends on this value.
3097     */
3098     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3099     pVelocityAttenuationTable =
3100     GetVelocityTable(
3101     VelocityResponseCurve, VelocityResponseDepth, scaling
3102     );
3103     VelocityResponseCurveScaling = scaling;
3104     }
3105    
3106     /**
3107     * Updates the respective member variable and the lookup table / cache
3108     * that depends on this value.
3109     */
3110     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3111     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3112     ReleaseVelocityResponseCurve = curve;
3113     }
3114    
3115     /**
3116     * Updates the respective member variable and the lookup table / cache
3117     * that depends on this value.
3118     */
3119     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3120     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3121     ReleaseVelocityResponseDepth = depth;
3122     }
3123    
3124     /**
3125     * Updates the respective member variable and the lookup table / cache
3126     * that depends on this value.
3127     */
3128     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3129     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3130     VCFCutoffController = controller;
3131     }
3132    
3133     /**
3134     * Updates the respective member variable and the lookup table / cache
3135     * that depends on this value.
3136     */
3137     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3138     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3139     VCFVelocityCurve = curve;
3140     }
3141    
3142     /**
3143     * Updates the respective member variable and the lookup table / cache
3144     * that depends on this value.
3145     */
3146     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3147     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3148     VCFVelocityDynamicRange = range;
3149     }
3150    
3151     /**
3152     * Updates the respective member variable and the lookup table / cache
3153     * that depends on this value.
3154     */
3155     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3156     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3157     VCFVelocityScale = scaling;
3158     }
3159    
3160 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3161 schoenebeck 317
3162 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3163 schoenebeck 16
3164 schoenebeck 308 // linear
3165     const int lin0[] = { 1, 1, 127, 127 };
3166     const int lin1[] = { 1, 21, 127, 127 };
3167     const int lin2[] = { 1, 45, 127, 127 };
3168     const int lin3[] = { 1, 74, 127, 127 };
3169     const int lin4[] = { 1, 127, 127, 127 };
3170 schoenebeck 16
3171 schoenebeck 308 // non-linear
3172     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3173 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3174 schoenebeck 308 127, 127 };
3175     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3176     127, 127 };
3177     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3178     127, 127 };
3179     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3180 schoenebeck 317
3181 schoenebeck 308 // special
3182 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3183 schoenebeck 308 113, 127, 127, 127 };
3184     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3185     118, 127, 127, 127 };
3186 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3187 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3188 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3189 schoenebeck 308 117, 127, 127, 127 };
3190 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3191 schoenebeck 308 127, 127 };
3192 schoenebeck 317
3193 persson 728 // this is only used by the VCF velocity curve
3194     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3195     91, 127, 127, 127 };
3196    
3197 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3198 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3199 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3200 schoenebeck 317
3201 schoenebeck 308 double* const table = new double[128];
3202    
3203     const int* curve = curves[curveType * 5 + depth];
3204     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3205 schoenebeck 317
3206 schoenebeck 308 table[0] = 0;
3207     for (int x = 1 ; x < 128 ; x++) {
3208    
3209     if (x > curve[2]) curve += 2;
3210 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3211 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3212     y = y / 127;
3213    
3214     // Scale up for s > 20, down for s < 20. When
3215     // down-scaling, the curve still ends at 1.0.
3216     if (s < 20 && y >= 0.5)
3217     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3218     else
3219     y = y * (s / 20.0);
3220     if (y > 1) y = 1;
3221    
3222     table[x] = y;
3223     }
3224     return table;
3225     }
3226    
3227    
3228 schoenebeck 2 // *************** Region ***************
3229     // *
3230    
3231     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3232     // Initialization
3233     Dimensions = 0;
3234 schoenebeck 347 for (int i = 0; i < 256; i++) {
3235 schoenebeck 2 pDimensionRegions[i] = NULL;
3236     }
3237 schoenebeck 282 Layers = 1;
3238 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3239 schoenebeck 3440 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3240 schoenebeck 2
3241     // Actual Loading
3242    
3243 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3244    
3245 schoenebeck 2 LoadDimensionRegions(rgnList);
3246    
3247     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3248     if (_3lnk) {
3249 schoenebeck 3478 _3lnk->SetPos(0);
3250    
3251 schoenebeck 2 DimensionRegions = _3lnk->ReadUint32();
3252 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3253 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3254     uint8_t bits = _3lnk->ReadUint8();
3255 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3256     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3257 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3258 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3259     pDimensionDefinitions[i].dimension = dimension_none;
3260     pDimensionDefinitions[i].bits = 0;
3261     pDimensionDefinitions[i].zones = 0;
3262     pDimensionDefinitions[i].split_type = split_type_bit;
3263     pDimensionDefinitions[i].zone_size = 0;
3264     }
3265     else { // active dimension
3266     pDimensionDefinitions[i].dimension = dimension;
3267     pDimensionDefinitions[i].bits = bits;
3268 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3269 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3270     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3271 schoenebeck 2 Dimensions++;
3272 schoenebeck 282
3273     // if this is a layer dimension, remember the amount of layers
3274     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3275 schoenebeck 2 }
3276 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3277 schoenebeck 2 }
3278 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3279 schoenebeck 2
3280 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3281     // update the VelocityTables in the dimension regions
3282     UpdateVelocityTable();
3283 schoenebeck 2
3284 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3285 schoenebeck 3440 if (file->pVersion && file->pVersion->major > 2)
3286 schoenebeck 317 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3287     else
3288     _3lnk->SetPos(44);
3289    
3290 schoenebeck 1524 // load sample references (if auto loading is enabled)
3291     if (file->GetAutoLoad()) {
3292     for (uint i = 0; i < DimensionRegions; i++) {
3293     uint32_t wavepoolindex = _3lnk->ReadUint32();
3294 schoenebeck 3348 if (file->pWavePoolTable && pDimensionRegions[i])
3295     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3296 schoenebeck 1524 }
3297     GetSample(); // load global region sample reference
3298 schoenebeck 2 }
3299 persson 1102 } else {
3300     DimensionRegions = 0;
3301 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3302     pDimensionDefinitions[i].dimension = dimension_none;
3303     pDimensionDefinitions[i].bits = 0;
3304     pDimensionDefinitions[i].zones = 0;
3305     }
3306 schoenebeck 2 }
3307 schoenebeck 823
3308     // make sure there is at least one dimension region
3309     if (!DimensionRegions) {
3310     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3311     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3312     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3313 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3314 schoenebeck 823 DimensionRegions = 1;
3315     }
3316 schoenebeck 2 }
3317    
3318 schoenebeck 809 /**
3319     * Apply Region settings and all its DimensionRegions to the respective
3320     * RIFF chunks. You have to call File::Save() to make changes persistent.
3321     *
3322     * Usually there is absolutely no need to call this method explicitly.
3323     * It will be called automatically when File::Save() was called.
3324     *
3325 schoenebeck 2682 * @param pProgress - callback function for progress notification
3326 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3327     */
3328 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3329 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3330     // but we still have to provide some existing one to not corrupt the
3331     // file, so to avoid the latter we simply always assign the sample of
3332     // the first dimension region of this region
3333     pSample = pDimensionRegions[0]->pSample;
3334    
3335 schoenebeck 809 // first update base class's chunks
3336 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3337 schoenebeck 809
3338     // update dimension region's chunks
3339 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3340 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3341 schoenebeck 823 }
3342 schoenebeck 809
3343 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3344 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3345     const int iMaxDimensions = versiongt2 ? 8 : 5;
3346     const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3347 schoenebeck 809
3348     // make sure '3lnk' chunk exists
3349     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3350     if (!_3lnk) {
3351 schoenebeck 3440 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3352 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3353 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3354 persson 1192
3355     // move 3prg to last position
3356 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3357 schoenebeck 809 }
3358    
3359     // update dimension definitions in '3lnk' chunk
3360     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3361 persson 1179 store32(&pData[0], DimensionRegions);
3362 persson 1199 int shift = 0;
3363 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3364 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3365     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3366 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3367 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3368 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3369 persson 1199 // next 3 bytes unknown, always zero?
3370    
3371     shift += pDimensionDefinitions[i].bits;
3372 schoenebeck 809 }
3373    
3374     // update wave pool table in '3lnk' chunk
3375 schoenebeck 3440 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3376 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3377     int iWaveIndex = -1;
3378     if (i < DimensionRegions) {
3379 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3380     File::SampleList::iterator iter = pFile->pSamples->begin();
3381     File::SampleList::iterator end = pFile->pSamples->end();
3382 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3383 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3384     iWaveIndex = index;
3385     break;
3386     }
3387 schoenebeck 809 }
3388     }
3389 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3390 schoenebeck 809 }
3391     }
3392    
3393 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3394     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3395     if (_3prg) {
3396     int dimensionRegionNr = 0;
3397     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3398     while (_3ewl) {
3399     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3400 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3401 schoenebeck 2 dimensionRegionNr++;
3402     }
3403     _3ewl = _3prg->GetNextSubList();
3404     }
3405     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3406     }
3407     }
3408    
3409 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3410     // update KeyRange struct and make sure regions are in correct order
3411     DLS::Region::SetKeyRange(Low, High);
3412     // update Region key table for fast lookup
3413     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3414     }
3415    
3416 persson 858 void Region::UpdateVelocityTable() {
3417     // get velocity dimension's index
3418     int veldim = -1;
3419     for (int i = 0 ; i < Dimensions ; i++) {
3420     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3421     veldim = i;
3422 schoenebeck 809 break;
3423     }
3424     }
3425 persson 858 if (veldim == -1) return;
3426 schoenebeck 809
3427 persson 858 int step = 1;
3428     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3429     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3430 schoenebeck 809
3431 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3432     int dim[8] = { 0 };
3433     for (int i = 0 ; i < DimensionRegions ; i++) {
3434 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3435 persson 858
3436 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3437 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3438     pDimensionRegions[i]->VelocityUpperLimit) {
3439 persson 858 // create the velocity table
3440     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3441     if (!table) {
3442     table = new uint8_t[128];
3443     pDimensionRegions[i]->VelocityTable = table;
3444     }
3445     int tableidx = 0;
3446     int velocityZone = 0;
3447 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3448     for (int k = i ; k < end ; k += step) {
3449     DimensionRegion *d = pDimensionRegions[k];
3450     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3451     velocityZone++;
3452     }
3453     } else { // gig2
3454     for (int k = i ; k < end ; k += step) {
3455     DimensionRegion *d = pDimensionRegions[k];
3456     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3457     velocityZone++;
3458     }
3459 persson 858 }
3460     } else {
3461     if (pDimensionRegions[i]->VelocityTable) {
3462     delete[] pDimensionRegions[i]->VelocityTable;
3463     pDimensionRegions[i]->VelocityTable = 0;
3464     }
3465 schoenebeck 809 }
3466 persson 858
3467 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3468 persson 858 int j;
3469     int shift = 0;
3470     for (j = 0 ; j < Dimensions ; j++) {
3471     if (j == veldim) i += skipveldim; // skip velocity dimension
3472     else {
3473     dim[j]++;
3474     if (dim[j] < pDimensionDefinitions[j].zones) break;
3475     else {
3476     // skip unused dimension regions
3477     dim[j] = 0;
3478     i += ((1 << pDimensionDefinitions[j].bits) -
3479     pDimensionDefinitions[j].zones) << shift;
3480     }
3481     }
3482     shift += pDimensionDefinitions[j].bits;
3483     }
3484     if (j == Dimensions) break;
3485 schoenebeck 809 }
3486     }
3487    
3488     /** @brief Einstein would have dreamed of it - create a new dimension.
3489     *
3490     * Creates a new dimension with the dimension definition given by
3491     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3492     * There is a hard limit of dimensions and total amount of "bits" all
3493     * dimensions can have. This limit is dependant to what gig file format
3494     * version this file refers to. The gig v2 (and lower) format has a
3495     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3496     * format has a limit of 8.
3497     *
3498     * @param pDimDef - defintion of the new dimension
3499     * @throws gig::Exception if dimension of the same type exists already
3500     * @throws gig::Exception if amount of dimensions or total amount of
3501     * dimension bits limit is violated
3502     */
3503     void Region::AddDimension(dimension_def_t* pDimDef) {
3504 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3505     if (pDimDef->zones < 2)
3506     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3507     if (pDimDef->bits < 1)
3508     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3509     if (pDimDef->dimension == dimension_samplechannel) {
3510     if (pDimDef->zones != 2)
3511     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3512     if (pDimDef->bits != 1)
3513     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3514     }
3515    
3516 schoenebeck 809 // check if max. amount of dimensions reached
3517     File* file = (File*) GetParent()->GetParent();
3518 schoenebeck 3440 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3519 schoenebeck 809 if (Dimensions >= iMaxDimensions)
3520     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3521     // check if max. amount of dimension bits reached
3522     int iCurrentBits = 0;
3523     for (int i = 0; i < Dimensions; i++)
3524     iCurrentBits += pDimensionDefinitions[i].bits;
3525     if (iCurrentBits >= iMaxDimensions)
3526     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3527     const int iNewBits = iCurrentBits + pDimDef->bits;
3528     if (iNewBits > iMaxDimensions)
3529     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3530     // check if there's already a dimensions of the same type
3531     for (int i = 0; i < Dimensions; i++)
3532     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3533     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3534    
3535 persson 1301 // pos is where the new dimension should be placed, normally
3536     // last in list, except for the samplechannel dimension which
3537     // has to be first in list
3538     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3539     int bitpos = 0;
3540     for (int i = 0 ; i < pos ; i++)
3541     bitpos += pDimensionDefinitions[i].bits;
3542    
3543     // make room for the new dimension
3544     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3545     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3546     for (int j = Dimensions ; j > pos ; j--) {
3547     pDimensionRegions[i]->DimensionUpperLimits[j] =
3548     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3549     }
3550     }
3551    
3552 schoenebeck 809 // assign definition of new dimension
3553 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3554 schoenebeck 809
3555 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3556 persson 1301 pDimensionDefinitions[pos].split_type =
3557     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3558     pDimensionDefinitions[pos].zone_size =
3559     __resolveZoneSize(pDimensionDefinitions[pos]);
3560 schoenebeck 1113
3561 persson 1301 // create new dimension region(s) for this new dimension, and make
3562     // sure that the dimension regions are placed correctly in both the
3563     // RIFF list and the pDimensionRegions array
3564     RIFF::Chunk* moveTo = NULL;
3565     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3566     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3567     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3568     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3569     }
3570     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3571     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3572     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3573     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3574     // create a new dimension region and copy all parameter values from
3575     // an existing dimension region
3576     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3577     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3578 persson 1247
3579 persson 1301 DimensionRegions++;
3580     }
3581     }
3582     moveTo = pDimensionRegions[i]->pParentList;
3583 schoenebeck 809 }
3584    
3585 persson 1247 // initialize the upper limits for this dimension
3586 persson 1301 int mask = (1 << bitpos) - 1;
3587     for (int z = 0 ; z < pDimDef->zones ; z++) {
3588 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3589 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3590 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3591     (z << bitpos) |
3592     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3593 persson 1247 }
3594     }
3595    
3596 schoenebeck 809 Dimensions++;
3597    
3598     // if this is a layer dimension, update 'Layers' attribute
3599     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3600    
3601 persson 858 UpdateVelocityTable();
3602 schoenebeck 809 }
3603    
3604     /** @brief Delete an existing dimension.
3605     *
3606     * Deletes the dimension given by \a pDimDef and deletes all respective
3607     * dimension regions, that is all dimension regions where the dimension's
3608     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3609     * for example this would delete all dimension regions for the case(s)
3610     * where the sustain pedal is pressed down.
3611     *
3612     * @param pDimDef - dimension to delete
3613     * @throws gig::Exception if given dimension cannot be found
3614     */
3615     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3616     // get dimension's index
3617     int iDimensionNr = -1;
3618     for (int i = 0; i < Dimensions; i++) {
3619     if (&pDimensionDefinitions[i] == pDimDef) {
3620     iDimensionNr = i;
3621     break;
3622     }
3623     }
3624     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3625    
3626     // get amount of bits below the dimension to delete
3627     int iLowerBits = 0;
3628     for (int i = 0; i < iDimensionNr; i++)
3629     iLowerBits += pDimensionDefinitions[i].bits;
3630    
3631     // get amount ot bits above the dimension to delete
3632     int iUpperBits = 0;
3633     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3634     iUpperBits += pDimensionDefinitions[i].bits;
3635    
3636 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3637    
3638 schoenebeck 809 // delete dimension regions which belong to the given dimension
3639     // (that is where the dimension's bit > 0)
3640     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3641     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3642     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3643     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3644     iObsoleteBit << iLowerBits |
3645     iLowerBit;
3646 persson 1247
3647     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3648 schoenebeck 809 delete pDimensionRegions[iToDelete];
3649     pDimensionRegions[iToDelete] = NULL;
3650     DimensionRegions--;
3651     }
3652     }
3653     }
3654    
3655     // defrag pDimensionRegions array
3656     // (that is remove the NULL spaces within the pDimensionRegions array)
3657     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3658     if (!pDimensionRegions[iTo]) {
3659     if (iFrom <= iTo) iFrom = iTo + 1;
3660     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3661     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3662     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3663     pDimensionRegions[iFrom] = NULL;
3664     }
3665     }
3666     }
3667    
3668 persson 1247 // remove the this dimension from the upper limits arrays
3669     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3670     DimensionRegion* d = pDimensionRegions[j];
3671     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3672     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3673     }
3674     d->DimensionUpperLimits[Dimensions - 1] = 127;
3675     }
3676    
3677 schoenebeck 809 // 'remove' dimension definition
3678     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3679     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3680     }
3681     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3682     pDimensionDefinitions[Dimensions - 1].bits = 0;
3683     pDimensionDefinitions[Dimensions - 1].zones = 0;
3684    
3685     Dimensions--;
3686    
3687     // if this was a layer dimension, update 'Layers' attribute
3688     if (pDimDef->dimension == dimension_layer) Layers = 1;
3689     }
3690    
3691 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3692     *
3693     * Instead of deleting an entire dimensions, this method will only delete
3694     * one particular split zone given by @a zone of the Region's dimension
3695     * given by @a type. So this method will simply decrement the amount of
3696     * zones by one of the dimension in question. To be able to do that, the
3697     * respective dimension must exist on this Region and it must have at least
3698     * 3 zones. All DimensionRegion objects associated with the zone will be
3699     * deleted.
3700     *
3701     * @param type - identifies the dimension where a zone shall be deleted
3702     * @param zone - index of the dimension split zone that shall be deleted
3703     * @throws gig::Exception if requested zone could not be deleted
3704     */
3705     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3706     dimension_def_t* oldDef = GetDimensionDefinition(type);
3707     if (!oldDef)
3708     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3709     if (oldDef->zones <= 2)
3710     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3711     if (zone < 0 || zone >= oldDef->zones)
3712     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3713    
3714     const int newZoneSize = oldDef->zones - 1;
3715    
3716     // create a temporary Region which just acts as a temporary copy
3717     // container and will be deleted at the end of this function and will
3718     // also not be visible through the API during this process
3719     gig::Region* tempRgn = NULL;
3720     {
3721     // adding these temporary chunks is probably not even necessary
3722     Instrument* instr = static_cast<Instrument*>(GetParent());
3723     RIFF::List* pCkInstrument = instr->pCkInstrument;
3724     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3725     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3726     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3727     tempRgn = new Region(instr, rgn);
3728     }
3729    
3730     // copy this region's dimensions (with already the dimension split size
3731     // requested by the arguments of this method call) to the temporary
3732     // region, and don't use Region::CopyAssign() here for this task, since
3733     // it would also alter fast lookup helper variables here and there
3734     dimension_def_t newDef;
3735     for (int i = 0; i < Dimensions; ++i) {
3736     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3737     // is this the dimension requested by the method arguments? ...
3738     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3739     def.zones = newZoneSize;
3740     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3741     newDef = def;
3742     }
3743     tempRgn->AddDimension(&def);
3744     }
3745    
3746     // find the dimension index in the tempRegion which is the dimension
3747     // type passed to this method (paranoidly expecting different order)
3748     int tempReducedDimensionIndex = -1;
3749     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3750     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3751     tempReducedDimensionIndex = d;
3752     break;
3753     }
3754     }
3755    
3756     // copy dimension regions from this region to the temporary region
3757     for (int iDst = 0; iDst < 256; ++iDst) {
3758     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3759     if (!dstDimRgn) continue;
3760     std::map<dimension_t,int> dimCase;
3761     bool isValidZone = true;
3762     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3763     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3764     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3765     (iDst >> baseBits) & ((1 << dstBits) - 1);
3766     baseBits += dstBits;
3767     // there are also DimensionRegion objects of unused zones, skip them
3768     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3769     isValidZone = false;
3770     break;
3771     }
3772     }
3773     if (!isValidZone) continue;
3774     // a bit paranoid: cope with the chance that the dimensions would
3775     // have different order in source and destination regions
3776     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3777     if (dimCase[type] >= zone) dimCase[type]++;
3778     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3779     dstDimRgn->CopyAssign(srcDimRgn);
3780     // if this is the upper most zone of the dimension passed to this
3781     // method, then correct (raise) its upper limit to 127
3782     if (newDef.split_type == split_type_normal && isLastZone)
3783     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3784     }
3785    
3786     // now tempRegion's dimensions and DimensionRegions basically reflect
3787     // what we wanted to get for this actual Region here, so we now just
3788     // delete and recreate the dimension in question with the new amount
3789     // zones and then copy back from tempRegion
3790     DeleteDimension(oldDef);
3791     AddDimension(&newDef);
3792     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3793     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3794     if (!srcDimRgn) continue;
3795     std::map<dimension_t,int> dimCase;
3796     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3797     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3798     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3799     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3800     baseBits += srcBits;
3801     }
3802     // a bit paranoid: cope with the chance that the dimensions would
3803     // have different order in source and destination regions
3804     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3805     if (!dstDimRgn) continue;
3806     dstDimRgn->CopyAssign(srcDimRgn);
3807     }
3808    
3809     // delete temporary region
3810 schoenebeck 3478 tempRgn->DeleteChunks();
3811 schoenebeck 2555 delete tempRgn;
3812 schoenebeck 2557
3813     UpdateVelocityTable();
3814 schoenebeck 2555 }
3815    
3816     /** @brief Divide split zone of a dimension in two (increment zone amount).
3817     *
3818     * This will increment the amount of zones for the dimension (given by
3819     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3820     * in the middle of its zone range in two. So the two zones resulting from
3821     * the zone being splitted, will be an equivalent copy regarding all their
3822     * articulation informations and sample reference. The two zones will only
3823     * differ in their zone's upper limit
3824     * (DimensionRegion::DimensionUpperLimits).
3825     *
3826     * @param type - identifies the dimension where a zone shall be splitted
3827     * @param zone - index of the dimension split zone that shall be splitted
3828     * @throws gig::Exception if requested zone could not be splitted
3829     */
3830     void Region::SplitDimensionZone(dimension_t type, int zone) {
3831     dimension_def_t* oldDef = GetDimensionDefinition(type);
3832     if (!oldDef)
3833     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3834     if (zone < 0 || zone >= oldDef->zones)
3835     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3836    
3837     const int newZoneSize = oldDef->zones + 1;
3838    
3839     // create a temporary Region which just acts as a temporary copy
3840     // container and will be deleted at the end of this function and will
3841     // also not be visible through the API during this process
3842     gig::Region* tempRgn = NULL;
3843     {
3844     // adding these temporary chunks is probably not even necessary
3845     Instrument* instr = static_cast<Instrument*>(GetParent());
3846     RIFF::List* pCkInstrument = instr->pCkInstrument;
3847     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3848     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3849     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3850     tempRgn = new Region(instr, rgn);
3851     }
3852    
3853     // copy this region's dimensions (with already the dimension split size
3854     // requested by the arguments of this method call) to the temporary
3855     // region, and don't use Region::CopyAssign() here for this task, since
3856     // it would also alter fast lookup helper variables here and there
3857     dimension_def_t newDef;
3858     for (int i = 0; i < Dimensions; ++i) {
3859     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3860     // is this the dimension requested by the method arguments? ...
3861     if (def.dimension == type) { // ... if yes, increment zone amount by one
3862     def.zones = newZoneSize;
3863     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3864     newDef = def;
3865     }
3866     tempRgn->AddDimension(&def);
3867     }
3868    
3869     // find the dimension index in the tempRegion which is the dimension
3870     // type passed to this method (paranoidly expecting different order)
3871     int tempIncreasedDimensionIndex = -1;
3872     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3873     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3874     tempIncreasedDimensionIndex = d;
3875     break;
3876     }
3877     }
3878    
3879     // copy dimension regions from this region to the temporary region
3880     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3881     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3882     if (!srcDimRgn) continue;
3883     std::map<dimension_t,int> dimCase;
3884     bool isValidZone = true;
3885     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3886     const int srcBits = pDimensionDefinitions[d].bits;
3887     dimCase[pDimensionDefinitions[d].dimension] =
3888     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3889     // there are also DimensionRegion objects for unused zones, skip them
3890     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3891     isValidZone = false;
3892     break;
3893     }
3894     baseBits += srcBits;
3895     }
3896     if (!isValidZone) continue;
3897     // a bit paranoid: cope with the chance that the dimensions would
3898     // have different order in source and destination regions
3899     if (dimCase[type] > zone) dimCase[type]++;
3900     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3901     dstDimRgn->CopyAssign(srcDimRgn);
3902     // if this is the requested zone to be splitted, then also copy
3903     // the source DimensionRegion to the newly created target zone
3904     // and set the old zones upper limit lower
3905     if (dimCase[type] == zone) {
3906     // lower old zones upper limit
3907     if (newDef.split_type == split_type_normal) {
3908     const int high =
3909     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3910     int low = 0;
3911     if (zone > 0) {
3912     std::map<dimension_t,int> lowerCase = dimCase;
3913     lowerCase[type]--;
3914     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3915     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3916     }
3917     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3918     }
3919     // fill the newly created zone of the divided zone as well
3920     dimCase[type]++;
3921     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3922     dstDimRgn->CopyAssign(srcDimRgn);
3923     }
3924     }
3925    
3926     // now tempRegion's dimensions and DimensionRegions basically reflect
3927     // what we wanted to get for this actual Region here, so we now just
3928     // delete and recreate the dimension in question with the new amount
3929     // zones and then copy back from tempRegion
3930     DeleteDimension(oldDef);
3931     AddDimension(&newDef);
3932     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3933     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3934     if (!srcDimRgn) continue;
3935     std::map<dimension_t,int> dimCase;
3936     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3937     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3938     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3939     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3940     baseBits += srcBits;
3941     }
3942     // a bit paranoid: cope with the chance that the dimensions would
3943     // have different order in source and destination regions
3944     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3945     if (!dstDimRgn) continue;
3946     dstDimRgn->CopyAssign(srcDimRgn);
3947     }
3948    
3949     // delete temporary region
3950 schoenebeck 3478 tempRgn->DeleteChunks();
3951 schoenebeck 2555 delete tempRgn;
3952 schoenebeck 2557
3953     UpdateVelocityTable();
3954 schoenebeck 2555 }
3955    
3956 schoenebeck 2639 /** @brief Change type of an existing dimension.
3957     *
3958     * Alters the dimension type of a dimension already existing on this
3959     * region. If there is currently no dimension on this Region with type
3960     * @a oldType, then this call with throw an Exception. Likewise there are
3961     * cases where the requested dimension type cannot be performed. For example
3962     * if the new dimension type shall be gig::dimension_samplechannel, and the
3963     * current dimension has more than 2 zones. In such cases an Exception is
3964     * thrown as well.
3965     *
3966     * @param oldType - identifies the existing dimension to be changed
3967     * @param newType - to which dimension type it should be changed to
3968     * @throws gig::Exception if requested change cannot be performed
3969     */
3970     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3971     if (oldType == newType) return;
3972     dimension_def_t* def = GetDimensionDefinition(oldType);
3973     if (!def)
3974     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3975     if (newType == dimension_samplechannel && def->zones != 2)
3976     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3977 schoenebeck 2640 if (GetDimensionDefinition(newType))
3978     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3979     def->dimension = newType;
3980 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3981     }
3982    
3983 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3984     uint8_t bits[8] = {};
3985     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3986     it != DimCase.end(); ++it)
3987     {
3988     for (int d = 0; d < Dimensions; ++d) {
3989     if (pDimensionDefinitions[d].dimension == it->first) {
3990     bits[d] = it->second;
3991     goto nextDimCaseSlice;
3992     }
3993     }
3994     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3995     nextDimCaseSlice:
3996     ; // noop
3997     }
3998     return GetDimensionRegionByBit(bits);
3999     }
4000    
4001 schoenebeck 2547 /**
4002     * Searches in the current Region for a dimension of the given dimension
4003     * type and returns the precise configuration of that dimension in this
4004     * Region.
4005     *
4006     * @param type - dimension type of the sought dimension
4007     * @returns dimension definition or NULL if there is no dimension with
4008     * sought type in this Region.
4009     */
4010     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4011     for (int i = 0; i < Dimensions; ++i)
4012     if (pDimensionDefinitions[i].dimension == type)
4013     return &pDimensionDefinitions[i];
4014     return NULL;
4015     }
4016    
4017 schoenebeck 2 Region::~Region() {
4018 schoenebeck 350 for (int i = 0; i < 256; i++) {
4019 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4020     }
4021     }
4022    
4023     /**
4024     * Use this method in your audio engine to get the appropriate dimension
4025     * region with it's articulation data for the current situation. Just
4026     * call the method with the current MIDI controller values and you'll get
4027     * the DimensionRegion with the appropriate articulation data for the
4028     * current situation (for this Region of course only). To do that you'll
4029     * first have to look which dimensions with which controllers and in
4030     * which order are defined for this Region when you load the .gig file.
4031     * Special cases are e.g. layer or channel dimensions where you just put
4032     * in the index numbers instead of a MIDI controller value (means 0 for
4033     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4034     * etc.).
4035     *
4036 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4037 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
4038     * @see pDimensionDefinitions
4039     * @see Dimensions
4040     */
4041 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4042 persson 858 uint8_t bits;
4043     int veldim = -1;
4044 schoenebeck 3053 int velbitpos = 0;
4045 persson 858 int bitpos = 0;
4046     int dimregidx = 0;
4047 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
4048 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4049     // the velocity dimension must be handled after the other dimensions
4050     veldim = i;
4051     velbitpos = bitpos;
4052     } else {
4053     switch (pDimensionDefinitions[i].split_type) {
4054     case split_type_normal:
4055 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4056     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4057     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4058     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4059     }
4060     } else {
4061     // gig2: evenly sized zones
4062     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4063     }
4064 persson 858 break;
4065     case split_type_bit: // the value is already the sought dimension bit number
4066     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4067     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4068     break;
4069     }
4070     dimregidx |= bits << bitpos;
4071 schoenebeck 2 }
4072 persson 858 bitpos += pDimensionDefinitions[i].bits;
4073 schoenebeck 2 }
4074 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4075     if (!dimreg) return NULL;
4076 persson 858 if (veldim != -1) {
4077     // (dimreg is now the dimension region for the lowest velocity)
4078 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4079 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4080 persson 858 else // normal split type
4081 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4082 persson 858
4083 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4084     dimregidx |= (bits & limiter_mask) << velbitpos;
4085     dimreg = pDimensionRegions[dimregidx & 255];
4086 persson 858 }
4087     return dimreg;
4088 schoenebeck 2 }
4089    
4090 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4091     uint8_t bits;
4092     int veldim = -1;
4093 schoenebeck 3053 int velbitpos = 0;
4094 schoenebeck 2599 int bitpos = 0;
4095     int dimregidx = 0;
4096     for (uint i = 0; i < Dimensions; i++) {
4097     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4098     // the velocity dimension must be handled after the other dimensions
4099     veldim = i;
4100     velbitpos = bitpos;
4101     } else {
4102     switch (pDimensionDefinitions[i].split_type) {
4103     case split_type_normal:
4104     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4105     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4106     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4107     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4108     }
4109     } else {
4110     // gig2: evenly sized zones
4111     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4112     }
4113     break;
4114     case split_type_bit: // the value is already the sought dimension bit number
4115     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4116     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4117     break;
4118     }
4119     dimregidx |= bits << bitpos;
4120     }
4121     bitpos += pDimensionDefinitions[i].bits;
4122     }
4123     dimregidx &= 255;
4124     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4125     if (!dimreg) return -1;
4126     if (veldim != -1) {
4127     // (dimreg is now the dimension region for the lowest velocity)
4128     if (dimreg->VelocityTable) // custom defined zone ranges
4129     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4130     else // normal split type
4131     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4132    
4133     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4134     dimregidx |= (bits & limiter_mask) << velbitpos;
4135     dimregidx &= 255;
4136     }
4137     return dimregidx;
4138     }
4139    
4140 schoenebeck 2 /**
4141     * Returns the appropriate DimensionRegion for the given dimension bit
4142     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4143     * instead of calling this method directly!
4144     *
4145 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4146 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4147     * bit numbers
4148     * @see GetDimensionRegionByValue()
4149     */
4150 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4151     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4152     << pDimensionDefinitions[5].bits | DimBits[5])
4153     << pDimensionDefinitions[4].bits | DimBits[4])
4154     << pDimensionDefinitions[3].bits | DimBits[3])
4155     << pDimensionDefinitions[2].bits | DimBits[2])
4156     << pDimensionDefinitions[1].bits | DimBits[1])
4157     << pDimensionDefinitions[0].bits | DimBits[0]];
4158 schoenebeck 2 }
4159    
4160     /**
4161     * Returns pointer address to the Sample referenced with this region.
4162     * This is the global Sample for the entire Region (not sure if this is
4163     * actually used by the Gigasampler engine - I would only use the Sample
4164     * referenced by the appropriate DimensionRegion instead of this sample).
4165     *
4166     * @returns address to Sample or NULL if there is no reference to a
4167     * sample saved in the .gig file
4168     */
4169     Sample* Region::GetSample() {
4170     if (pSample) return static_cast<gig::Sample*>(pSample);
4171     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4172     }
4173    
4174 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4175 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4176 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4177 persson 902 if (!file->pWavePoolTable) return NULL;
4178 schoenebeck 3350 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4179 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4180     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4181     // use 64 bit wave pool offsets (treating this as large file)
4182 schoenebeck 2912 uint64_t soughtoffset =
4183     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4184     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4185     Sample* sample = file->GetFirstSample(pProgress);
4186     while (sample) {
4187     if (sample->ullWavePoolOffset == soughtoffset)
4188     return static_cast<gig::Sample*>(sample);
4189     sample = file->GetNextSample();
4190     }
4191     } else {
4192 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4193 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4194     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4195     Sample* sample = file->GetFirstSample(pProgress);
4196     while (sample) {
4197     if (sample->ullWavePoolOffset == soughtoffset &&
4198     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4199     sample = file->GetNextSample();
4200     }
4201 schoenebeck 2 }
4202     return NULL;
4203     }
4204 schoenebeck 2394
4205     /**
4206     * Make a (semi) deep copy of the Region object given by @a orig
4207     * and assign it to this object.
4208     *
4209     * Note that all sample pointers referenced by @a orig are simply copied as
4210     * memory address. Thus the respective samples are shared, not duplicated!
4211     *
4212     * @param orig - original Region object to be copied from
4213     */
4214     void Region::CopyAssign(const Region* orig) {
4215 schoenebeck 2482 CopyAssign(orig, NULL);
4216     }
4217    
4218     /**
4219     * Make a (semi) deep copy of the Region object given by @a orig and
4220     * assign it to this object
4221     *
4222     * @param mSamples - crosslink map between the foreign file's samples and
4223     * this file's samples
4224     */
4225     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4226 schoenebeck 2394 // handle base classes
4227     DLS::Region::CopyAssign(orig);
4228    
4229 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4230     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4231     }
4232    
4233 schoenebeck 2394 // handle own member variables
4234     for (int i = Dimensions - 1; i >= 0; --i) {
4235     DeleteDimension(&pDimensionDefinitions[i]);
4236     }
4237     Layers = 0; // just to be sure
4238     for (int i = 0; i < orig->Dimensions; i++) {
4239     // we need to copy the dim definition here, to avoid the compiler
4240     // complaining about const-ness issue
4241     dimension_def_t def = orig->pDimensionDefinitions[i];
4242     AddDimension(&def);
4243     }
4244     for (int i = 0; i < 256; i++) {
4245     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4246     pDimensionRegions[i]->CopyAssign(
4247 schoenebeck 2482 orig->pDimensionRegions[i],
4248     mSamples
4249 schoenebeck 2394 );
4250     }
4251     }
4252     Layers = orig->Layers;
4253     }
4254 schoenebeck 2
4255    
4256 persson 1627 // *************** MidiRule ***************
4257     // *
4258 schoenebeck 2
4259 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4260     _3ewg->SetPos(36);
4261     Triggers = _3ewg->ReadUint8();
4262     _3ewg->SetPos(40);
4263     ControllerNumber = _3ewg->ReadUint8();
4264     _3ewg->SetPos(46);
4265     for (int i = 0 ; i < Triggers ; i++) {
4266     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4267     pTriggers[i].Descending = _3ewg->ReadUint8();
4268     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4269     pTriggers[i].Key = _3ewg->ReadUint8();
4270     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4271     pTriggers[i].Velocity = _3ewg->ReadUint8();
4272     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4273     _3ewg->ReadUint8();
4274     }
4275 persson 1627 }
4276    
4277 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4278     ControllerNumber(0),
4279     Triggers(0) {
4280     }
4281 persson 1627
4282 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4283     pData[32] = 4;
4284     pData[33] = 16;
4285     pData[36] = Triggers;
4286     pData[40] = ControllerNumber;
4287     for (int i = 0 ; i < Triggers ; i++) {
4288     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4289     pData[47 + i * 8] = pTriggers[i].Descending;
4290     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4291     pData[49 + i * 8] = pTriggers[i].Key;
4292     pData[50 + i * 8] = pTriggers[i].NoteOff;
4293     pData[51 + i * 8] = pTriggers[i].Velocity;
4294     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4295     }
4296     }
4297    
4298     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4299     _3ewg->SetPos(36);
4300     LegatoSamples = _3ewg->ReadUint8(); // always 12
4301     _3ewg->SetPos(40);
4302     BypassUseController = _3ewg->ReadUint8();
4303     BypassKey = _3ewg->ReadUint8();
4304     BypassController = _3ewg->ReadUint8();
4305     ThresholdTime = _3ewg->ReadUint16();
4306     _3ewg->ReadInt16();
4307     ReleaseTime = _3ewg->ReadUint16();
4308     _3ewg->ReadInt16();
4309     KeyRange.low = _3ewg->ReadUint8();
4310     KeyRange.high = _3ewg->ReadUint8();
4311     _3ewg->SetPos(64);
4312     ReleaseTriggerKey = _3ewg->ReadUint8();
4313     AltSustain1Key = _3ewg->ReadUint8();
4314     AltSustain2Key = _3ewg->ReadUint8();
4315     }
4316    
4317     MidiRuleLegato::MidiRuleLegato() :
4318     LegatoSamples(12),
4319     BypassUseController(false),
4320     BypassKey(0),
4321     BypassController(1),
4322     ThresholdTime(20),
4323     ReleaseTime(20),
4324     ReleaseTriggerKey(0),
4325     AltSustain1Key(0),
4326     AltSustain2Key(0)
4327     {
4328     KeyRange.low = KeyRange.high = 0;
4329     }
4330    
4331     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4332     pData[32] = 0;
4333     pData[33] = 16;
4334     pData[36] = LegatoSamples;
4335     pData[40] = BypassUseController;
4336     pData[41] = BypassKey;
4337     pData[42] = BypassController;
4338     store16(&pData[43], ThresholdTime);
4339     store16(&pData[47], ReleaseTime);
4340     pData[51] = KeyRange.low;
4341     pData[52] = KeyRange.high;
4342     pData[64] = ReleaseTriggerKey;
4343     pData[65] = AltSustain1Key;
4344     pData[66] = AltSustain2Key;
4345     }
4346    
4347     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4348     _3ewg->SetPos(36);
4349     Articulations = _3ewg->ReadUint8();
4350     int flags = _3ewg->ReadUint8();
4351     Polyphonic = flags & 8;
4352     Chained = flags & 4;
4353     Selector = (flags & 2) ? selector_controller :
4354     (flags & 1) ? selector_key_switch : selector_none;
4355     Patterns = _3ewg->ReadUint8();
4356     _3ewg->ReadUint8(); // chosen row
4357     _3ewg->ReadUint8(); // unknown
4358     _3ewg->ReadUint8(); // unknown
4359     _3ewg->ReadUint8(); // unknown
4360     KeySwitchRange.low = _3ewg->ReadUint8();
4361     KeySwitchRange.high = _3ewg->ReadUint8();
4362     Controller = _3ewg->ReadUint8();
4363     PlayRange.low = _3ewg->ReadUint8();
4364     PlayRange.high = _3ewg->ReadUint8();
4365    
4366     int n = std::min(int(Articulations), 32);
4367     for (int i = 0 ; i < n ; i++) {
4368     _3ewg->ReadString(pArticulations[i], 32);
4369     }
4370     _3ewg->SetPos(1072);
4371     n = std::min(int(Patterns), 32);
4372     for (int i = 0 ; i < n ; i++) {
4373     _3ewg->ReadString(pPatterns[i].Name, 16);
4374     pPatterns[i].Size = _3ewg->ReadUint8();
4375     _3ewg->Read(&pPatterns[i][0], 1, 32);
4376     }
4377     }
4378    
4379     MidiRuleAlternator::MidiRuleAlternator() :
4380     Articulations(0),
4381     Patterns(0),
4382     Selector(selector_none),
4383     Controller(0),
4384     Polyphonic(false),
4385     Chained(false)
4386     {
4387     PlayRange.low = PlayRange.high = 0;
4388     KeySwitchRange.low = KeySwitchRange.high = 0;
4389     }
4390    
4391     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4392     pData[32] = 3;
4393     pData[33] = 16;
4394     pData[36] = Articulations;
4395     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4396     (Selector == selector_controller ? 2 :
4397     (Selector == selector_key_switch ? 1 : 0));
4398     pData[38] = Patterns;
4399    
4400     pData[43] = KeySwitchRange.low;
4401     pData[44] = KeySwitchRange.high;
4402     pData[45] = Controller;
4403     pData[46] = PlayRange.low;
4404     pData[47] = PlayRange.high;
4405    
4406     char* str = reinterpret_cast<char*>(pData);
4407     int pos = 48;
4408     int n = std::min(int(Articulations), 32);
4409     for (int i = 0 ; i < n ; i++, pos += 32) {
4410     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4411     }
4412    
4413     pos = 1072;
4414     n = std::min(int(Patterns), 32);
4415     for (int i = 0 ; i < n ; i++, pos += 49) {
4416     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4417     pData[pos + 16] = pPatterns[i].Size;
4418     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4419     }
4420     }
4421    
4422 schoenebeck 2584 // *************** Script ***************
4423     // *
4424    
4425     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4426     pGroup = group;
4427     pChunk = ckScri;
4428     if (ckScri) { // object is loaded from file ...
4429 schoenebeck 3478 ckScri->SetPos(0);
4430    
4431 schoenebeck 2584 // read header
4432     uint32_t headerSize = ckScri->ReadUint32();
4433     Compression = (Compression_t) ckScri->ReadUint32();
4434     Encoding = (Encoding_t) ckScri->ReadUint32();
4435     Language = (Language_t) ckScri->ReadUint32();
4436     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4437     crc = ckScri->ReadUint32();
4438     uint32_t nameSize = ckScri->ReadUint32();
4439     Name.resize(nameSize, ' ');
4440     for (int i = 0; i < nameSize; ++i)
4441     Name[i] = ckScri->ReadUint8();
4442     // to handle potential future extensions of the header
4443 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4444 schoenebeck 2584 // read actual script data
4445 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4446 schoenebeck 2584 data.resize(scriptSize);
4447     for (int i = 0; i < scriptSize; ++i)
4448     data[i] = ckScri->ReadUint8();
4449     } else { // this is a new script object, so just initialize it as such ...
4450     Compression = COMPRESSION_NONE;
4451     Encoding = ENCODING_ASCII;
4452     Language = LANGUAGE_NKSP;
4453     Bypass = false;
4454     crc = 0;
4455     Name = "Unnamed Script";
4456     }
4457     }
4458    
4459     Script::~Script() {
4460     }
4461    
4462     /**
4463     * Returns the current script (i.e. as source code) in text format.
4464     */
4465     String Script::GetScriptAsText() {
4466     String s;
4467     s.resize(data.size(), ' ');
4468     memcpy(&s[0], &data[0], data.size());
4469     return s;
4470     }
4471    
4472     /**
4473     * Replaces the current script with the new script source code text given
4474     * by @a text.
4475     *
4476     * @param text - new script source code
4477     */
4478     void Script::SetScriptAsText(const String& text) {
4479     data.resize(text.size());
4480     memcpy(&data[0], &text[0], text.size());
4481     }
4482    
4483 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this Script object.
4484     *
4485     * At the moment Script::DeleteChunks() does nothing. It is
4486     * recommended to call this method explicitly though from deriving classes's
4487     * own overridden implementation of this method to avoid potential future
4488     * compatiblity issues.
4489     *
4490     * See DLS::Storage::DeleteChunks() for details.
4491     */
4492     void Script::DeleteChunks() {
4493     }
4494    
4495 schoenebeck 2682 /**
4496     * Apply this script to the respective RIFF chunks. You have to call
4497     * File::Save() to make changes persistent.
4498     *
4499     * Usually there is absolutely no need to call this method explicitly.
4500     * It will be called automatically when File::Save() was called.
4501     *
4502     * @param pProgress - callback function for progress notification
4503     */
4504     void Script::UpdateChunks(progress_t* pProgress) {
4505 schoenebeck 2584 // recalculate CRC32 check sum
4506     __resetCRC(crc);
4507     __calculateCRC(&data[0], data.size(), crc);
4508 schoenebeck 3115 __finalizeCRC(crc);
4509 schoenebeck 2584 // make sure chunk exists and has the required size
4510 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4511 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4512     else pChunk->Resize(chunkSize);
4513     // fill the chunk data to be written to disk
4514     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4515     int pos = 0;
4516 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4517 schoenebeck 2584 pos += sizeof(int32_t);
4518     store32(&pData[pos], Compression);
4519     pos += sizeof(int32_t);
4520     store32(&pData[pos], Encoding);
4521     pos += sizeof(int32_t);
4522     store32(&pData[pos], Language);
4523     pos += sizeof(int32_t);
4524     store32(&pData[pos], Bypass ? 1 : 0);
4525     pos += sizeof(int32_t);
4526     store32(&pData[pos], crc);
4527     pos += sizeof(int32_t);
4528 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4529 schoenebeck 2584 pos += sizeof(int32_t);
4530     for (int i = 0; i < Name.size(); ++i, ++pos)
4531     pData[pos] = Name[i];
4532     for (int i = 0; i < data.size(); ++i, ++pos)
4533     pData[pos] = data[i];
4534     }
4535    
4536     /**
4537     * Move this script from its current ScriptGroup to another ScriptGroup
4538     * given by @a pGroup.
4539     *
4540     * @param pGroup - script's new group
4541     */
4542     void Script::SetGroup(ScriptGroup* pGroup) {
4543 persson 2836 if (this->pGroup == pGroup) return;
4544 schoenebeck 2584 if (pChunk)
4545     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4546     this->pGroup = pGroup;
4547     }
4548    
4549 schoenebeck 2601 /**
4550     * Returns the script group this script currently belongs to. Each script
4551     * is a member of exactly one ScriptGroup.
4552     *
4553     * @returns current script group
4554     */
4555     ScriptGroup* Script::GetGroup() const {
4556     return pGroup;
4557     }
4558    
4559 schoenebeck 3117 /**
4560     * Make a (semi) deep copy of the Script object given by @a orig
4561     * and assign it to this object. Note: the ScriptGroup this Script
4562     * object belongs to remains untouched by this call.
4563     *
4564     * @param orig - original Script object to be copied from
4565     */
4566     void Script::CopyAssign(const Script* orig) {
4567     Name = orig->Name;
4568     Compression = orig->Compression;
4569     Encoding = orig->Encoding;
4570     Language = orig->Language;
4571     Bypass = orig->Bypass;
4572     data = orig->data;
4573     }
4574    
4575 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4576     File* pFile = pGroup->pFile;
4577     for (int i = 0; pFile->GetInstrument(i); ++i) {
4578     Instrument* instr = pFile->GetInstrument(i);
4579     instr->RemoveScript(this);
4580     }
4581     }
4582    
4583     // *************** ScriptGroup ***************
4584     // *
4585    
4586     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4587     pFile = file;
4588     pList = lstRTIS;
4589     pScripts = NULL;
4590     if (lstRTIS) {
4591     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4592     ::LoadString(ckName, Name);
4593     } else {
4594     Name = "Default Group";
4595     }
4596     }
4597    
4598     ScriptGroup::~ScriptGroup() {
4599     if (pScripts) {
4600     std::list<Script*>::iterator iter = pScripts->begin();
4601     std::list<Script*>::iterator end = pScripts->end();
4602     while (iter != end) {
4603     delete *iter;
4604     ++iter;
4605     }
4606     delete pScripts;
4607     }
4608     }
4609    
4610 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4611     *
4612     * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4613     * recommended to call this method explicitly though from deriving classes's
4614     * own overridden implementation of this method to avoid potential future
4615     * compatiblity issues.
4616     *
4617     * See DLS::Storage::DeleteChunks() for details.
4618     */
4619     void ScriptGroup::DeleteChunks() {
4620     }
4621    
4622 schoenebeck 2682 /**
4623     * Apply this script group to the respective RIFF chunks. You have to call
4624     * File::Save() to make changes persistent.
4625     *
4626     * Usually there is absolutely no need to call this method explicitly.
4627     * It will be called automatically when File::Save() was called.
4628     *
4629     * @param pProgress - callback function for progress notification
4630     */
4631     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4632 schoenebeck 2584 if (pScripts) {
4633     if (!pList)
4634     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4635    
4636     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4637     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4638    
4639     for (std::list<Script*>::iterator it = pScripts->begin();
4640     it != pScripts->end(); ++it)
4641     {
4642 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4643 schoenebeck 2584 }
4644     }
4645     }
4646    
4647     /** @brief Get instrument script.
4648     *
4649     * Returns the real-time instrument script with the given index.
4650     *
4651     * @param index - number of the sought script (0..n)
4652     * @returns sought script or NULL if there's no such script
4653     */
4654     Script* ScriptGroup::GetScript(uint index) {
4655     if (!pScripts) LoadScripts();
4656     std::list<Script*>::iterator it = pScripts->begin();
4657     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4658     if (i == index) return *it;
4659     return NULL;
4660     }
4661    
4662     /** @brief Add new instrument script.
4663     *
4664     * Adds a new real-time instrument script to the file. The script is not
4665     * actually used / executed unless it is referenced by an instrument to be
4666     * used. This is similar to samples, which you can add to a file, without
4667     * an instrument necessarily actually using it.
4668     *
4669     * You have to call Save() to make this persistent to the file.
4670     *
4671     * @return new empty script object
4672     */
4673     Script* ScriptGroup::AddScript() {
4674     if (!pScripts) LoadScripts();
4675     Script* pScript = new Script(this, NULL);
4676     pScripts->push_back(pScript);
4677     return pScript;
4678     }
4679    
4680     /** @brief Delete an instrument script.
4681     *
4682     * This will delete the given real-time instrument script. References of
4683     * instruments that are using that script will be removed accordingly.
4684     *
4685     * You have to call Save() to make this persistent to the file.
4686     *
4687     * @param pScript - script to delete
4688     * @throws gig::Exception if given script could not be found
4689     */
4690     void ScriptGroup::DeleteScript(Script* pScript) {
4691     if (!pScripts) LoadScripts();
4692     std::list<Script*>::iterator iter =
4693     find(pScripts->begin(), pScripts->end(), pScript);
4694     if (iter == pScripts->end())
4695     throw gig::Exception("Could not delete script, could not find given script");
4696     pScripts->erase(iter);
4697     pScript->RemoveAllScriptReferences();
4698     if (pScript->pChunk)
4699     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4700     delete pScript;
4701     }
4702    
4703     void ScriptGroup::LoadScripts() {
4704     if (pScripts) return;
4705     pScripts = new std::list<Script*>;
4706     if (!pList) return;
4707    
4708     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4709     ck = pList->GetNextSubChunk())
4710     {
4711     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4712     pScripts->push_back(new Script(this, ck));
4713     }
4714     }
4715     }
4716    
4717 schoenebeck 2 // *************** Instrument ***************
4718     // *
4719    
4720 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4721 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4722 persson 1180 { CHUNK_ID_INAM, 64 },
4723     { CHUNK_ID_ISFT, 12 },
4724     { 0, 0 }
4725     };
4726 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4727 persson 918
4728 schoenebeck 2 // Initialization
4729     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4730 persson 1182 EffectSend = 0;
4731     Attenuation = 0;
4732     FineTune = 0;
4733 schoenebeck 3112 PitchbendRange = 2;
4734 persson 1182 PianoReleaseMode = false;
4735     DimensionKeyRange.low = 0;
4736     DimensionKeyRange.high = 0;
4737 persson 1678 pMidiRules = new MidiRule*[3];
4738     pMidiRules[0] = NULL;
4739 schoenebeck 2584 pScriptRefs = NULL;
4740 schoenebeck 2
4741     // Loading
4742     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4743     if (lart) {
4744     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4745     if (_3ewg) {
4746 schoenebeck 3478 _3ewg->SetPos(0);
4747    
4748 schoenebeck 2 EffectSend = _3ewg->ReadUint16();
4749     Attenuation = _3ewg->ReadInt32();
4750     FineTune = _3ewg->ReadInt16();
4751     PitchbendRange = _3ewg->ReadInt16();
4752     uint8_t dimkeystart = _3ewg->ReadUint8();
4753     PianoReleaseMode = dimkeystart & 0x01;
4754     DimensionKeyRange.low = dimkeystart >> 1;
4755     DimensionKeyRange.high = _3ewg->ReadUint8();
4756 persson 1627
4757     if (_3ewg->GetSize() > 32) {
4758     // read MIDI rules
4759 persson 1678 int i = 0;
4760 persson 1627 _3ewg->SetPos(32);
4761     uint8_t id1 = _3ewg->ReadUint8();
4762     uint8_t id2 = _3ewg->ReadUint8();
4763    
4764 persson 2450 if (id2 == 16) {
4765     if (id1 == 4) {
4766     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4767     } else if (id1 == 0) {
4768     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4769     } else if (id1 == 3) {
4770     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4771     } else {
4772     pMidiRules[i++] = new MidiRuleUnknown;
4773     }
4774 persson 1627 }
4775 persson 2450 else if (id1 != 0 || id2 != 0) {
4776     pMidiRules[i++] = new MidiRuleUnknown;
4777     }
4778 persson 1627 //TODO: all the other types of rules
4779 persson 1678
4780     pMidiRules[i] = NULL;
4781 persson 1627 }
4782 schoenebeck 2 }
4783     }
4784    
4785 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4786     if (!pRegions) pRegions = new RegionList;
4787     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4788     if (lrgn) {
4789     RIFF::List* rgn = lrgn->GetFirstSubList();
4790     while (rgn) {
4791     if (rgn->GetListType() == LIST_TYPE_RGN) {
4792     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4793     pRegions->push_back(new Region(this, rgn));
4794     }
4795     rgn = lrgn->GetNextSubList();
4796 schoenebeck 809 }
4797 schoenebeck 1524 // Creating Region Key Table for fast lookup
4798     UpdateRegionKeyTable();
4799 schoenebeck 2 }
4800     }
4801    
4802 schoenebeck 2584 // own gig format extensions
4803     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4804     if (lst3LS) {
4805     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4806     if (ckSCSL) {
4807 schoenebeck 3478 ckSCSL->SetPos(0);
4808    
4809 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4810     int slotCount = ckSCSL->ReadUint32();
4811     if (slotCount) {
4812     int slotSize = ckSCSL->ReadUint32();
4813     ckSCSL->SetPos(headerSize); // in case of future header extensions
4814     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4815     for (int i = 0; i < slotCount; ++i) {
4816     _ScriptPooolEntry e;
4817     e.fileOffset = ckSCSL->ReadUint32();
4818     e.bypass = ckSCSL->ReadUint32() & 1;
4819     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4820     scriptPoolFileOffsets.push_back(e);
4821     }
4822 schoenebeck 2584 }
4823     }
4824     }
4825    
4826 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4827     }
4828    
4829     void Instrument::UpdateRegionKeyTable() {
4830 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4831 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4832     RegionList::iterator end = pRegions->end();
4833     for (; iter != end; ++iter) {
4834     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4835 schoenebeck 3348 const int low = std::max(int(pRegion->KeyRange.low), 0);
4836     const int high = std::min(int(pRegion->KeyRange.high), 127);
4837     for (int iKey = low; iKey <= high; iKey++) {
4838 schoenebeck 823 RegionKeyTable[iKey] = pRegion;
4839 schoenebeck 2 }
4840     }
4841     }
4842    
4843     Instrument::~Instrument() {
4844 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4845     delete pMidiRules[i];
4846     }
4847 persson 1678 delete[] pMidiRules;
4848 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4849 schoenebeck 2 }
4850    
4851     /**
4852 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4853     * You have to call File::Save() to make changes persistent.
4854     *
4855     * Usually there is absolutely no need to call this method explicitly.
4856     * It will be called automatically when File::Save() was called.
4857     *
4858 schoenebeck 2682 * @param pProgress - callback function for progress notification
4859 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4860     */
4861 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4862 schoenebeck 809 // first update base classes' chunks
4863 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4864 schoenebeck 809
4865     // update Regions' chunks
4866 schoenebeck 823 {
4867     RegionList::iterator iter = pRegions->begin();
4868     RegionList::iterator end = pRegions->end();
4869     for (; iter != end; ++iter)
4870 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4871 schoenebeck 823 }
4872 schoenebeck 809
4873     // make sure 'lart' RIFF list chunk exists
4874     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4875     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4876     // make sure '3ewg' RIFF chunk exists
4877     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4878 persson 1264 if (!_3ewg) {
4879     File* pFile = (File*) GetParent();
4880    
4881     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4882 schoenebeck 3440 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4883 persson 1264 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4884     memset(_3ewg->LoadChunkData(), 0, size);
4885     }
4886 schoenebeck 809 // update '3ewg' RIFF chunk
4887     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4888 persson 1179 store16(&pData[0], EffectSend);
4889     store32(&pData[2], Attenuation);
4890     store16(&pData[6], FineTune);
4891     store16(&pData[8], PitchbendRange);
4892 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4893 schoenebeck 809 DimensionKeyRange.low << 1;
4894 persson 1179 pData[10] = dimkeystart;
4895     pData[11] = DimensionKeyRange.high;
4896 persson 2450
4897     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4898     pData[32] = 0;
4899     pData[33] = 0;
4900     } else {
4901     for (int i = 0 ; pMidiRules[i] ; i++) {
4902     pMidiRules[i]->UpdateChunks(pData);
4903     }
4904     }
4905 schoenebeck 2584
4906     // own gig format extensions
4907 schoenebeck 2648 if (ScriptSlotCount()) {
4908     // make sure we have converted the original loaded script file
4909     // offsets into valid Script object pointers
4910     LoadScripts();
4911    
4912 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4913     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4914 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4915 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4916     const int slotSize = 2 * sizeof(uint32_t);
4917     const int totalChunkSize = headerSize + slotCount * slotSize;
4918 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4919 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4920     else ckSCSL->Resize(totalChunkSize);
4921 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4922 schoenebeck 2609 int pos = 0;
4923     store32(&pData[pos], headerSize);
4924     pos += sizeof(uint32_t);
4925     store32(&pData[pos], slotCount);
4926     pos += sizeof(uint32_t);
4927     store32(&pData[pos], slotSize);
4928     pos += sizeof(uint32_t);
4929     for (int i = 0; i < slotCount; ++i) {
4930     // arbitrary value, the actual file offset will be updated in
4931     // UpdateScriptFileOffsets() after the file has been resized
4932     int bogusFileOffset = 0;
4933     store32(&pData[pos], bogusFileOffset);
4934 schoenebeck 2584 pos += sizeof(uint32_t);
4935     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4936     pos += sizeof(uint32_t);
4937     }
4938 schoenebeck 2648 } else {
4939     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4940     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4941     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4942 schoenebeck 2584 }
4943 schoenebeck 809 }
4944    
4945 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4946     // own gig format extensions
4947 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4948 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4949     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4950 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4951 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4952     ckSCSL->SetPos(headerSize);
4953     for (int i = 0; i < slotCount; ++i) {
4954 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4955 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4956     (*pScriptRefs)[i].script->pChunk->GetPos() -
4957 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4958     );
4959 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4960     // jump over flags entry (containing the bypass flag)
4961     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4962     }
4963     }
4964     }
4965    
4966 schoenebeck 809 /**
4967 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4968     *
4969     * @param Key MIDI Key number of triggered note / key (0 - 127)
4970     * @returns pointer adress to the appropriate Region or NULL if there
4971     * there is no Region defined for the given \a Key
4972     */
4973     Region* Instrument::GetRegion(unsigned int Key) {
4974 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4975 schoenebeck 2 return RegionKeyTable[Key];
4976 schoenebeck 823
4977 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4978     if (Key <= pRegions[i]->KeyRange.high &&
4979     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4980     }
4981     return NULL;*/
4982     }
4983    
4984     /**
4985     * Returns the first Region of the instrument. You have to call this
4986     * method once before you use GetNextRegion().
4987     *
4988     * @returns pointer address to first region or NULL if there is none
4989     * @see GetNextRegion()
4990     */
4991     Region* Instrument::GetFirstRegion() {
4992 schoenebeck 823 if (!pRegions) return NULL;
4993     RegionsIterator = pRegions->begin();
4994     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4995 schoenebeck 2 }
4996    
4997     /**
4998     * Returns the next Region of the instrument. You have to call
4999     * GetFirstRegion() once before you can use this method. By calling this
5000     * method multiple times it iterates through the available Regions.
5001     *
5002     * @returns pointer address to the next region or NULL if end reached
5003     * @see GetFirstRegion()
5004     */
5005     Region* Instrument::GetNextRegion() {
5006 schoenebeck 823 if (!pRegions) return NULL;
5007     RegionsIterator++;
5008     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5009 schoenebeck 2 }
5010    
5011 schoenebeck 809 Region* Instrument::AddRegion() {
5012     // create new Region object (and its RIFF chunks)
5013     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5014     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5015     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5016     Region* pNewRegion = new Region(this, rgn);
5017 schoenebeck 823 pRegions->push_back(pNewRegion);
5018 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
5019 schoenebeck 809 // update Region key table for fast lookup
5020     UpdateRegionKeyTable();
5021     // done
5022     return pNewRegion;
5023     }
5024 schoenebeck 2
5025 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
5026     if (!pRegions) return;
5027 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5028 schoenebeck 809 // update Region key table for fast lookup
5029     UpdateRegionKeyTable();
5030     }
5031 schoenebeck 2
5032 persson 1627 /**
5033 schoenebeck 2700 * Move this instrument at the position before @arg dst.
5034     *
5035     * This method can be used to reorder the sequence of instruments in a
5036     * .gig file. This might be helpful especially on large .gig files which
5037     * contain a large number of instruments within the same .gig file. So
5038     * grouping such instruments to similar ones, can help to keep track of them
5039     * when working with such complex .gig files.
5040     *
5041     * When calling this method, this instrument will be removed from in its
5042     * current position in the instruments list and moved to the requested
5043     * target position provided by @param dst. You may also pass NULL as
5044     * argument to this method, in that case this intrument will be moved to the
5045     * very end of the .gig file's instrument list.
5046     *
5047     * You have to call Save() to make the order change persistent to the .gig
5048     * file.
5049     *
5050     * Currently this method is limited to moving the instrument within the same
5051     * .gig file. Trying to move it to another .gig file by calling this method
5052     * will throw an exception.
5053     *
5054     * @param dst - destination instrument at which this instrument will be
5055     * moved to, or pass NULL for moving to end of list
5056     * @throw gig::Exception if this instrument and target instrument are not
5057     * part of the same file
5058     */
5059     void Instrument::MoveTo(Instrument* dst) {
5060     if (dst && GetParent() != dst->GetParent())
5061     throw Exception(
5062     "gig::Instrument::MoveTo() can only be used for moving within "
5063     "the same gig file."
5064     );
5065    
5066     File* pFile = (File*) GetParent();
5067    
5068     // move this instrument within the instrument list
5069     {
5070 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
5071 schoenebeck 2700
5072 persson 2836 File::InstrumentList::iterator itFrom =
5073 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5074    
5075 persson 2836 File::InstrumentList::iterator itTo =
5076 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5077    
5078     list.splice(itTo, list, itFrom);
5079     }
5080    
5081     // move the instrument's actual list RIFF chunk appropriately
5082     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5083     lstCkInstruments->MoveSubChunk(
5084     this->pCkInstrument,
5085 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5086 schoenebeck 2700 );
5087     }
5088    
5089     /**
5090 persson 1678 * Returns a MIDI rule of the instrument.
5091 persson 1627 *
5092     * The list of MIDI rules, at least in gig v3, always contains at
5093     * most two rules. The second rule can only be the DEF filter
5094     * (which currently isn't supported by libgig).
5095     *
5096 persson 1678 * @param i - MIDI rule number
5097     * @returns pointer address to MIDI rule number i or NULL if there is none
5098 persson 1627 */
5099 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
5100     return pMidiRules[i];
5101 persson 1627 }
5102 persson 2450
5103 schoenebeck 2394 /**
5104 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5105     *
5106     * @returns the new MIDI rule
5107     */
5108     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5109     delete pMidiRules[0];
5110     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5111     pMidiRules[0] = r;
5112     pMidiRules[1] = 0;
5113     return r;
5114     }
5115    
5116     /**
5117     * Adds the legato MIDI rule to the instrument.
5118     *
5119     * @returns the new MIDI rule
5120     */
5121     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5122     delete pMidiRules[0];
5123     MidiRuleLegato* r = new MidiRuleLegato;
5124     pMidiRules[0] = r;
5125     pMidiRules[1] = 0;
5126     return r;
5127     }
5128    
5129     /**
5130     * Adds the alternator MIDI rule to the instrument.
5131     *
5132     * @returns the new MIDI rule
5133     */
5134     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5135     delete pMidiRules[0];
5136     MidiRuleAlternator* r = new MidiRuleAlternator;
5137     pMidiRules[0] = r;
5138     pMidiRules[1] = 0;
5139     return r;
5140     }
5141    
5142     /**
5143     * Deletes a MIDI rule from the instrument.
5144     *
5145     * @param i - MIDI rule number
5146     */
5147     void Instrument::DeleteMidiRule(int i) {
5148     delete pMidiRules[i];
5149     pMidiRules[i] = 0;
5150     }
5151    
5152 schoenebeck 2584 void Instrument::LoadScripts() {
5153     if (pScriptRefs) return;
5154     pScriptRefs = new std::vector<_ScriptPooolRef>;
5155     if (scriptPoolFileOffsets.empty()) return;
5156     File* pFile = (File*) GetParent();
5157     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5158 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5159 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5160     ScriptGroup* group = pFile->GetScriptGroup(i);
5161     for (uint s = 0; group->GetScript(s); ++s) {
5162     Script* script = group->GetScript(s);
5163     if (script->pChunk) {
5164 schoenebeck 3053 uint32_t offset = uint32_t(
5165     script->pChunk->GetFilePos() -
5166     script->pChunk->GetPos() -
5167     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5168     );
5169 schoenebeck 2609 if (offset == soughtOffset)
5170 schoenebeck 2584 {
5171     _ScriptPooolRef ref;
5172     ref.script = script;
5173     ref.bypass = scriptPoolFileOffsets[k].bypass;
5174     pScriptRefs->push_back(ref);
5175     break;
5176     }
5177     }
5178     }
5179     }
5180     }
5181     // we don't need that anymore
5182     scriptPoolFileOffsets.clear();
5183     }
5184    
5185 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5186 schoenebeck 2584 *
5187 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5188     * @a index.
5189     *
5190     * @note This is an own format extension which did not exist i.e. in the
5191     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5192     * gigedit.
5193     *
5194     * @param index - instrument script slot index
5195     * @returns script or NULL if index is out of bounds
5196     */
5197     Script* Instrument::GetScriptOfSlot(uint index) {
5198     LoadScripts();
5199     if (index >= pScriptRefs->size()) return NULL;
5200     return pScriptRefs->at(index).script;
5201     }
5202    
5203     /** @brief Add new instrument script slot (gig format extension).
5204     *
5205 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5206     * which shall be executed by the sampler for for this instrument. The
5207     * script will be added to the end of the script list of this instrument.
5208     * The positions of the scripts in the Instrument's Script list are
5209     * relevant, because they define in which order they shall be executed by
5210     * the sampler. For this reason it is also legal to add the same script
5211     * twice to an instrument, for example you might have a script called
5212     * "MyFilter" which performs an event filter task, and you might have
5213     * another script called "MyNoteTrigger" which triggers new notes, then you
5214     * might for example have the following list of scripts on the instrument:
5215     *
5216     * 1. Script "MyFilter"
5217     * 2. Script "MyNoteTrigger"
5218     * 3. Script "MyFilter"
5219     *
5220     * Which would make sense, because the 2nd script launched new events, which
5221     * you might need to filter as well.
5222     *
5223     * There are two ways to disable / "bypass" scripts. You can either disable
5224     * a script locally for the respective script slot on an instrument (i.e. by
5225     * passing @c false to the 2nd argument of this method, or by calling
5226     * SetScriptBypassed()). Or you can disable a script globally for all slots
5227     * and all instruments by setting Script::Bypass.
5228     *
5229     * @note This is an own format extension which did not exist i.e. in the
5230     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5231     * gigedit.
5232     *
5233     * @param pScript - script that shall be executed for this instrument
5234     * @param bypass - if enabled, the sampler shall skip executing this
5235     * script (in the respective list position)
5236     * @see SetScriptBypassed()
5237     */
5238     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5239     LoadScripts();
5240     _ScriptPooolRef ref = { pScript, bypass };
5241     pScriptRefs->push_back(ref);
5242     }
5243    
5244     /** @brief Flip two script slots with each other (gig format extension).
5245     *
5246     * Swaps the position of the two given scripts in the Instrument's Script
5247     * list. The positions of the scripts in the Instrument's Script list are
5248     * relevant, because they define in which order they shall be executed by
5249     * the sampler.
5250     *
5251     * @note This is an own format extension which did not exist i.e. in the
5252     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5253     * gigedit.
5254     *
5255     * @param index1 - index of the first script slot to swap
5256     * @param index2 - index of the second script slot to swap
5257     */
5258     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5259     LoadScripts();
5260     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5261     return;
5262     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5263     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5264     (*pScriptRefs)[index2] = tmp;
5265     }
5266    
5267     /** @brief Remove script slot.
5268     *
5269     * Removes the script slot with the given slot index.
5270     *
5271     * @param index - index of script slot to remove
5272     */
5273     void Instrument::RemoveScriptSlot(uint index) {
5274     LoadScripts();
5275     if (index >= pScriptRefs->size()) return;
5276     pScriptRefs->erase( pScriptRefs->begin() + index );
5277     }
5278    
5279     /** @brief Remove reference to given Script (gig format extension).
5280     *
5281     * This will remove all script slots on the instrument which are referencing
5282     * the given script.
5283     *
5284     * @note This is an own format extension which did not exist i.e. in the
5285     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5286     * gigedit.
5287     *
5288     * @param pScript - script reference to remove from this instrument
5289     * @see RemoveScriptSlot()
5290     */
5291     void Instrument::RemoveScript(Script* pScript) {
5292     LoadScripts();
5293 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5294 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5295     pScriptRefs->erase( pScriptRefs->begin() + i );
5296     }
5297     }
5298     }
5299    
5300     /** @brief Instrument's amount of script slots.
5301     *
5302     * This method returns the amount of script slots this instrument currently
5303     * uses.
5304     *
5305     * A script slot is a reference of a real-time instrument script to be
5306     * executed by the sampler. The scripts will be executed by the sampler in
5307     * sequence of the slots. One (same) script may be referenced multiple
5308     * times in different slots.
5309     *
5310     * @note This is an own format extension which did not exist i.e. in the
5311     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5312     * gigedit.
5313     */
5314     uint Instrument::ScriptSlotCount() const {
5315 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5316 schoenebeck 2584 }
5317    
5318     /** @brief Whether script execution shall be skipped.
5319     *
5320     * Defines locally for the Script reference slot in the Instrument's Script
5321     * list, whether the script shall be skipped by the sampler regarding
5322     * execution.
5323     *
5324     * It is also possible to ignore exeuction of the script globally, for all
5325     * slots and for all instruments by setting Script::Bypass.
5326     *
5327     * @note This is an own format extension which did not exist i.e. in the
5328     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5329     * gigedit.
5330     *
5331     * @param index - index of the script slot on this instrument
5332     * @see Script::Bypass
5333     */
5334     bool Instrument::IsScriptSlotBypassed(uint index) {
5335     if (index >= ScriptSlotCount()) return false;
5336     return pScriptRefs ? pScriptRefs->at(index).bypass
5337     : scriptPoolFileOffsets.at(index).bypass;
5338    
5339     }
5340    
5341     /** @brief Defines whether execution shall be skipped.
5342     *
5343     * You can call this method to define locally whether or whether not the
5344     * given script slot shall be executed by the sampler.
5345     *
5346     * @note This is an own format extension which did not exist i.e. in the
5347     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5348     * gigedit.
5349     *
5350     * @param index - script slot index on this instrument
5351     * @param bBypass - if true, the script slot will be skipped by the sampler
5352     * @see Script::Bypass
5353     */
5354     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5355     if (index >= ScriptSlotCount()) return;
5356     if (pScriptRefs)
5357     pScriptRefs->at(index).bypass = bBypass;
5358     else
5359     scriptPoolFileOffsets.at(index).bypass = bBypass;
5360     }
5361    
5362 persson 2450 /**
5363 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5364     * and assign it to this object.
5365     *
5366     * Note that all sample pointers referenced by @a orig are simply copied as
5367     * memory address. Thus the respective samples are shared, not duplicated!
5368     *
5369     * @param orig - original Instrument object to be copied from
5370     */
5371     void Instrument::CopyAssign(const Instrument* orig) {
5372 schoenebeck 2482 CopyAssign(orig, NULL);
5373     }
5374    
5375     /**
5376     * Make a (semi) deep copy of the Instrument object given by @a orig
5377     * and assign it to this object.
5378     *
5379     * @param orig - original Instrument object to be copied from
5380     * @param mSamples - crosslink map between the foreign file's samples and
5381     * this file's samples
5382     */
5383     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5384 schoenebeck 2394 // handle base class
5385     // (without copying DLS region stuff)
5386     DLS::Instrument::CopyAssignCore(orig);
5387    
5388     // handle own member variables
5389     Attenuation = orig->Attenuation;
5390     EffectSend = orig->EffectSend;
5391     FineTune = orig->FineTune;
5392     PitchbendRange = orig->PitchbendRange;
5393     PianoReleaseMode = orig->PianoReleaseMode;
5394     DimensionKeyRange = orig->DimensionKeyRange;
5395 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5396     pScriptRefs = orig->pScriptRefs;
5397 schoenebeck 2394
5398     // free old midi rules
5399     for (int i = 0 ; pMidiRules[i] ; i++) {
5400     delete pMidiRules[i];
5401     }
5402     //TODO: MIDI rule copying
5403     pMidiRules[0] = NULL;
5404    
5405     // delete all old regions
5406     while (Regions) DeleteRegion(GetFirstRegion());
5407     // create new regions and copy them from original
5408     {
5409     RegionList::const_iterator it = orig->pRegions->begin();
5410     for (int i = 0; i < orig->Regions; ++i, ++it) {
5411     Region* dstRgn = AddRegion();
5412     //NOTE: Region does semi-deep copy !
5413     dstRgn->CopyAssign(
5414 schoenebeck 2482 static_cast<gig::Region*>(*it),
5415     mSamples
5416 schoenebeck 2394 );
5417     }
5418     }
5419 schoenebeck 809
5420 schoenebeck 2394 UpdateRegionKeyTable();
5421     }
5422 schoenebeck 809
5423 schoenebeck 2394
5424 schoenebeck 929 // *************** Group ***************
5425     // *
5426    
5427     /** @brief Constructor.
5428     *
5429 schoenebeck 930 * @param file - pointer to the gig::File object
5430     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5431     * NULL if this is a new Group
5432 schoenebeck 929 */
5433 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5434 schoenebeck 929 pFile = file;
5435     pNameChunk = ck3gnm;
5436     ::LoadString(pNameChunk, Name);
5437     }
5438    
5439 schoenebeck 3478 /** @brief Destructor.
5440     *
5441     * Currently this destructor implementation does nothing.
5442     */
5443 schoenebeck 929 Group::~Group() {
5444     }
5445    
5446 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this Group object.
5447     *
5448     * See DLS::Storage::DeleteChunks() for details.
5449     */
5450     void Group::DeleteChunks() {
5451     // handle own RIFF chunks
5452     if (pNameChunk) {
5453     pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5454     pNameChunk = NULL;
5455     }
5456     }
5457    
5458 schoenebeck 929 /** @brief Update chunks with current group settings.
5459     *
5460 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5461     * to call File::Save() to make changes persistent.
5462     *
5463     * Usually there is absolutely no need to call this method explicitly.
5464     * It will be called automatically when File::Save() was called.
5465 schoenebeck 2682 *
5466     * @param pProgress - callback function for progress notification
5467 schoenebeck 929 */
5468 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5469 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5470 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5471 persson 1192 if (!_3gri) {
5472     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5473     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5474     }
5475 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5476 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5477 persson 1266
5478 schoenebeck 3440 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5479 persson 1266 // v3 has a fixed list of 128 strings, find a free one
5480     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5481     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5482     pNameChunk = ck;
5483     break;
5484     }
5485     }
5486     }
5487    
5488 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5489     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5490     }
5491    
5492 schoenebeck 930 /**
5493     * Returns the first Sample of this Group. You have to call this method
5494     * once before you use GetNextSample().
5495     *
5496     * <b>Notice:</b> this method might block for a long time, in case the
5497     * samples of this .gig file were not scanned yet
5498     *
5499     * @returns pointer address to first Sample or NULL if there is none
5500     * applied to this Group
5501     * @see GetNextSample()
5502     */
5503     Sample* Group::GetFirstSample() {
5504     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5505     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5506     if (pSample->GetGroup() == this) return pSample;
5507     }
5508     return NULL;
5509     }
5510 schoenebeck 929
5511 schoenebeck 930 /**
5512     * Returns the next Sample of the Group. You have to call
5513     * GetFirstSample() once before you can use this method. By calling this
5514     * method multiple times it iterates through the Samples assigned to
5515     * this Group.
5516     *
5517     * @returns pointer address to the next Sample of this Group or NULL if
5518     * end reached
5519     * @see GetFirstSample()
5520     */
5521     Sample* Group::GetNextSample() {
5522     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5523     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5524     if (pSample->GetGroup() == this) return pSample;
5525     }
5526     return NULL;
5527     }
5528 schoenebeck 929
5529 schoenebeck 930 /**
5530     * Move Sample given by \a pSample from another Group to this Group.
5531     */
5532     void Group::AddSample(Sample* pSample) {
5533     pSample->pGroup = this;
5534     }
5535    
5536     /**
5537     * Move all members of this group to another group (preferably the 1st
5538     * one except this). This method is called explicitly by
5539     * File::DeleteGroup() thus when a Group was deleted. This code was
5540     * intentionally not placed in the destructor!
5541     */
5542     void Group::MoveAll() {
5543     // get "that" other group first
5544     Group* pOtherGroup = NULL;
5545     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5546     if (pOtherGroup != this) break;
5547     }
5548     if (!pOtherGroup) throw Exception(
5549     "Could not move samples to another group, since there is no "
5550     "other Group. This is a bug, report it!"
5551     );
5552     // now move all samples of this group to the other group
5553     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5554     pOtherGroup->AddSample(pSample);
5555     }
5556     }
5557    
5558    
5559    
5560 schoenebeck 2 // *************** File ***************
5561     // *
5562    
5563 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5564 persson 1199 const DLS::version_t File::VERSION_2 = {
5565     0, 2, 19980628 & 0xffff, 19980628 >> 16
5566     };
5567    
5568 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5569 persson 1199 const DLS::version_t File::VERSION_3 = {
5570     0, 3, 20030331 & 0xffff, 20030331 >> 16
5571     };
5572    
5573 schoenebeck 3440 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5574     const DLS::version_t File::VERSION_4 = {
5575     0, 4, 20071012 & 0xffff, 20071012 >> 16
5576     };
5577    
5578 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5579 persson 1180 { CHUNK_ID_IARL, 256 },
5580     { CHUNK_ID_IART, 128 },
5581     { CHUNK_ID_ICMS, 128 },
5582     { CHUNK_ID_ICMT, 1024 },
5583     { CHUNK_ID_ICOP, 128 },
5584     { CHUNK_ID_ICRD, 128 },
5585     { CHUNK_ID_IENG, 128 },
5586     { CHUNK_ID_IGNR, 128 },
5587     { CHUNK_ID_IKEY, 128 },
5588     { CHUNK_ID_IMED, 128 },
5589     { CHUNK_ID_INAM, 128 },
5590     { CHUNK_ID_IPRD, 128 },
5591     { CHUNK_ID_ISBJ, 128 },
5592     { CHUNK_ID_ISFT, 128 },
5593     { CHUNK_ID_ISRC, 128 },
5594     { CHUNK_ID_ISRF, 128 },
5595     { CHUNK_ID_ITCH, 128 },
5596     { 0, 0 }
5597     };
5598    
5599 schoenebeck 809 File::File() : DLS::File() {
5600 schoenebeck 1524 bAutoLoad = true;
5601 persson 1264 *pVersion = VERSION_3;
5602 schoenebeck 929 pGroups = NULL;
5603 schoenebeck 2584 pScriptGroups = NULL;
5604 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5605 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5606 persson 1192
5607     // add some mandatory chunks to get the file chunks in right
5608     // order (INFO chunk will be moved to first position later)
5609     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5610     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5611 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5612    
5613     GenerateDLSID();
5614 schoenebeck 809 }
5615    
5616 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5617 schoenebeck 1524 bAutoLoad = true;
5618 schoenebeck 929 pGroups = NULL;
5619 schoenebeck 2584 pScriptGroups = NULL;
5620 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5621 schoenebeck 2 }
5622    
5623 schoenebeck 929 File::~File() {
5624     if (pGroups) {
5625     std::list<Group*>::iterator iter = pGroups->begin();
5626     std::list<Group*>::iterator end = pGroups->end();
5627     while (iter != end) {
5628     delete *iter;
5629     ++iter;
5630     }
5631     delete pGroups;
5632     }
5633 schoenebeck 2584 if (pScriptGroups) {
5634     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5635     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5636     while (iter != end) {
5637     delete *iter;
5638     ++iter;
5639     }
5640     delete pScriptGroups;
5641     }
5642 schoenebeck 929 }
5643    
5644 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5645     if (!pSamples) LoadSamples(pProgress);
5646 schoenebeck 2 if (!pSamples) return NULL;
5647     SamplesIterator = pSamples->begin();
5648     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5649     }
5650    
5651     Sample* File::GetNextSample() {
5652     if (!pSamples) return NULL;
5653     SamplesIterator++;
5654     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5655     }
5656 schoenebeck 2482
5657     /**
5658     * Returns Sample object of @a index.
5659     *
5660     * @returns sample object or NULL if index is out of bounds
5661     */
5662     Sample* File::GetSample(uint index) {
5663     if (!pSamples) LoadSamples();
5664     if (!pSamples) return NULL;
5665     DLS::File::SampleList::iterator it = pSamples->begin();
5666     for (int i = 0; i < index; ++i) {
5667     ++it;
5668     if (it == pSamples->end()) return NULL;
5669     }
5670     if (it == pSamples->end()) return NULL;
5671     return static_cast<gig::Sample*>( *it );
5672     }
5673 schoenebeck 2
5674 schoenebeck 3414 /**
5675     * Returns the total amount of samples of this gig file.
5676     *
5677     * Note that this method might block for a long time in case it is required
5678     * to load the sample info for the first time.
5679     *
5680     * @returns total amount of samples
5681     */
5682     size_t File::CountSamples() {
5683     if (!pSamples) LoadSamples();
5684     if (!pSamples) return 0;
5685     return pSamples->size();
5686     }
5687    
5688 schoenebeck 809 /** @brief Add a new sample.
5689     *
5690     * This will create a new Sample object for the gig file. You have to
5691     * call Save() to make this persistent to the file.
5692     *
5693     * @returns pointer to new Sample object
5694     */
5695     Sample* File::AddSample() {
5696     if (!pSamples) LoadSamples();
5697     __ensureMandatoryChunksExist();
5698     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5699     // create new Sample object and its respective 'wave' list chunk
5700     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5701     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5702 persson 1192
5703     // add mandatory chunks to get the chunks in right order
5704     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5705     wave->AddSubList(LIST_TYPE_INFO);
5706    
5707 schoenebeck 809 pSamples->push_back(pSample);
5708     return pSample;
5709     }
5710    
5711     /** @brief Delete a sample.
5712     *
5713 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5714     * references to this sample from Regions and DimensionRegions will be
5715     * removed. You have to call Save() to make this persistent to the file.
5716 schoenebeck 809 *
5717     * @param pSample - sample to delete
5718     * @throws gig::Exception if given sample could not be found
5719     */
5720     void File::DeleteSample(Sample* pSample) {
5721 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5722     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5723 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5724 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5725 schoenebeck 809 pSamples->erase(iter);
5726 schoenebeck 3478 pSample->DeleteChunks();
5727 schoenebeck 809 delete pSample;
5728 persson 1266
5729 persson 1678 SampleList::iterator tmp = SamplesIterator;
5730 persson 1266 // remove all references to the sample
5731     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5732     instrument = GetNextInstrument()) {
5733     for (Region* region = instrument->GetFirstRegion() ; region ;
5734     region = instrument->GetNextRegion()) {
5735    
5736     if (region->GetSample() == pSample) region->SetSample(NULL);
5737    
5738     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5739     gig::DimensionRegion *d = region->pDimensionRegions[i];
5740     if (d->pSample == pSample) d->pSample = NULL;
5741     }
5742     }
5743     }
5744 persson 1678 SamplesIterator = tmp; // restore iterator
5745 schoenebeck 809 }
5746    
5747 schoenebeck 823 void File::LoadSamples() {
5748     LoadSamples(NULL);
5749     }
5750    
5751 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5752 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5753     // to resolve the group they belong to
5754 schoenebeck 1158 if (!pGroups) LoadGroups();
5755 schoenebeck 930
5756 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5757    
5758 persson 666 RIFF::File* file = pRIFF;
5759 schoenebeck 515
5760 persson 666 // just for progress calculation
5761     int iSampleIndex = 0;
5762     int iTotalSamples = WavePoolCount;
5763 schoenebeck 515
5764 schoenebeck 3474 // just for assembling path of optional extension files to be read
5765     const std::string folder = parentPath(pRIFF->GetFileName());
5766     const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5767    
5768     // the main gig file and the extension files (.gx01, ... , .gx98) may
5769     // contain wave data (wave pool)
5770     std::vector<RIFF::File*> poolFiles;
5771     poolFiles.push_back(pRIFF);
5772    
5773     // get info about all extension files
5774     RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5775     if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5776     const uint32_t n = ckXfil->ReadInt32();
5777     for (int i = 0; i < n; i++) {
5778     // read the filename and load the extension file
5779     std::string name;
5780     ckXfil->ReadString(name, 128);
5781     std::string path = concatPath(folder, name);
5782     RIFF::File* pExtFile = new RIFF::File(path);
5783     // check that the dlsids match
5784     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5785     if (ckDLSID) {
5786     ::DLS::dlsid_t idExpected;
5787     idExpected.ulData1 = ckXfil->ReadInt32();
5788     idExpected.usData2 = ckXfil->ReadInt16();
5789     idExpected.usData3 = ckXfil->ReadInt16();
5790     ckXfil->Read(idExpected.abData, 8, 1);
5791     ::DLS::dlsid_t idFound;
5792     ckDLSID->Read(&idFound.ulData1, 1, 4);
5793     ckDLSID->Read(&idFound.usData2, 1, 2);
5794     ckDLSID->Read(&idFound.usData3, 1, 2);
5795     ckDLSID->Read(idFound.abData, 8, 1);
5796     if (memcmp(&idExpected, &idFound, 16) != 0)
5797     throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5798     }
5799     poolFiles.push_back(pExtFile);
5800     ExtensionFiles.push_back(pExtFile);
5801 schoenebeck 2912 }
5802 persson 666 }
5803 schoenebeck 515
5804 schoenebeck 3474 // check if a .gx99 (GigaPulse) file exists
5805     RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5806     if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5807     std::string path = baseName + ".gx99";
5808     RIFF::File* pExtFile = new RIFF::File(path);
5809    
5810     // skip unused int and filename
5811 schoenebeck 3475 ckDoxf->SetPos(132, RIFF::stream_curpos);
5812 schoenebeck 3474
5813     // check that the dlsids match
5814     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5815     if (ckDLSID) {
5816     ::DLS::dlsid_t idExpected;
5817     idExpected.ulData1 = ckDoxf->ReadInt32();
5818     idExpected.usData2 = ckDoxf->ReadInt16();
5819     idExpected.usData3 = ckDoxf->ReadInt16();
5820     ckDoxf->Read(idExpected.abData, 8, 1);
5821     ::DLS::dlsid_t idFound;
5822     ckDLSID->Read(&idFound.ulData1, 1, 4);
5823     ckDLSID->Read(&idFound.usData2, 1, 2);
5824     ckDLSID->Read(&idFound.usData3, 1, 2);
5825     ckDLSID->Read(idFound.abData, 8, 1);
5826     if (memcmp(&idExpected, &idFound, 16) != 0)
5827     throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5828     }
5829     poolFiles.push_back(pExtFile);
5830     ExtensionFiles.push_back(pExtFile);
5831     }
5832    
5833     // load samples from extension files (if required)
5834     for (int i = 0; i < poolFiles.size(); i++) {
5835     RIFF::File* file = poolFiles[i];
5836 persson 666 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5837     if (wvpl) {
5838 schoenebeck 3478 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
5839     wvpl->GetPos(); // should be zero, but just to be sure
5840 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5841     while (wave) {
5842     if (wave->GetListType() == LIST_TYPE_WAVE) {
5843     // notify current progress
5844     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5845     __notify_progress(pProgress, subprogress);
5846    
5847 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5848 schoenebeck 3474 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5849 persson 666
5850     iSampleIndex++;
5851     }
5852     wave = wvpl->GetNextSubList();
5853 schoenebeck 2 }
5854 schoenebeck 3474 }
5855 schoenebeck 2 }
5856 persson 666
5857     __notify_progress(pProgress, 1.0); // notify done
5858 schoenebeck 2 }
5859    
5860     Instrument* File::GetFirstInstrument() {
5861     if (!pInstruments) LoadInstruments();
5862     if (!pInstruments) return NULL;
5863     InstrumentsIterator = pInstruments->begin();
5864 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5865 schoenebeck 2 }
5866    
5867     Instrument* File::GetNextInstrument() {
5868     if (!pInstruments) return NULL;
5869     InstrumentsIterator++;
5870 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5871 schoenebeck 2 }
5872    
5873 schoenebeck 21 /**
5874 schoenebeck 3414 * Returns the total amount of instruments of this gig file.
5875     *
5876     * Note that this method might block for a long time in case it is required
5877     * to load the instruments info for the first time.
5878     *
5879     * @returns total amount of instruments
5880     */
5881     size_t File::CountInstruments() {
5882     if (!pInstruments) LoadInstruments();
5883     if (!pInstruments) return 0;
5884     return pInstruments->size();
5885     }
5886    
5887     /**
5888 schoenebeck 21 * Returns the instrument with the given index.
5889     *
5890 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5891     * @param pProgress - optional: callback function for progress notification
5892 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5893     */
5894 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5895     if (!pInstruments) {
5896     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5897    
5898     // sample loading subtask
5899     progress_t subprogress;
5900     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5901     __notify_progress(&subprogress, 0.0f);
5902 schoenebeck 1524 if (GetAutoLoad())
5903     GetFirstSample(&subprogress); // now force all samples to be loaded
5904 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5905    
5906     // instrument loading subtask
5907     if (pProgress && pProgress->callback) {
5908     subprogress.__range_min = subprogress.__range_max;
5909     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5910     }
5911     __notify_progress(&subprogress, 0.0f);
5912     LoadInstruments(&subprogress);
5913     __notify_progress(&subprogress, 1.0f);
5914     }
5915 schoenebeck 21 if (!pInstruments) return NULL;
5916     InstrumentsIterator = pInstruments->begin();
5917     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5918 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5919 schoenebeck 21 InstrumentsIterator++;
5920     }
5921     return NULL;
5922     }
5923    
5924 schoenebeck 809 /** @brief Add a new instrument definition.
5925     *
5926     * This will create a new Instrument object for the gig file. You have
5927     * to call Save() to make this persistent to the file.
5928     *
5929     * @returns pointer to new Instrument object
5930     */
5931     Instrument* File::AddInstrument() {
5932     if (!pInstruments) LoadInstruments();
5933     __ensureMandatoryChunksExist();
5934     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5935     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5936 persson 1192
5937     // add mandatory chunks to get the chunks in right order
5938     lstInstr->AddSubList(LIST_TYPE_INFO);
5939 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5940 persson 1192
5941 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5942 persson 1209 pInstrument->GenerateDLSID();
5943 persson 1182
5944 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5945    
5946 persson 1182 // this string is needed for the gig to be loadable in GSt:
5947     pInstrument->pInfo->Software = "Endless Wave";
5948    
5949 schoenebeck 809 pInstruments->push_back(pInstrument);
5950     return pInstrument;
5951     }
5952 schoenebeck 2394
5953     /** @brief Add a duplicate of an existing instrument.
5954     *
5955     * Duplicates the instrument definition given by @a orig and adds it
5956     * to this file. This allows in an instrument editor application to
5957     * easily create variations of an instrument, which will be stored in
5958     * the same .gig file, sharing i.e. the same samples.
5959     *
5960     * Note that all sample pointers referenced by @a orig are simply copied as
5961     * memory address. Thus the respective samples are shared, not duplicated!
5962     *
5963     * You have to call Save() to make this persistent to the file.
5964     *
5965     * @param orig - original instrument to be copied
5966     * @returns duplicated copy of the given instrument
5967     */
5968     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5969     Instrument* instr = AddInstrument();
5970     instr->CopyAssign(orig);
5971     return instr;
5972     }
5973 schoenebeck 2482
5974     /** @brief Add content of another existing file.
5975     *
5976     * Duplicates the samples, groups and instruments of the original file
5977     * given by @a pFile and adds them to @c this File. In case @c this File is
5978     * a new one that you haven't saved before, then you have to call
5979     * SetFileName() before calling AddContentOf(), because this method will
5980     * automatically save this file during operation, which is required for
5981     * writing the sample waveform data by disk streaming.
5982     *
5983     * @param pFile - original file whose's content shall be copied from
5984     */
5985     void File::AddContentOf(File* pFile) {
5986     static int iCallCount = -1;
5987     iCallCount++;
5988     std::map<Group*,Group*> mGroups;
5989     std::map<Sample*,Sample*> mSamples;
5990    
5991     // clone sample groups
5992     for (int i = 0; pFile->GetGroup(i); ++i) {
5993     Group* g = AddGroup();
5994     g->Name =
5995     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5996     mGroups[pFile->GetGroup(i)] = g;
5997     }
5998    
5999     // clone samples (not waveform data here yet)
6000     for (int i = 0; pFile->GetSample(i); ++i) {
6001     Sample* s = AddSample();
6002     s->CopyAssignMeta(pFile->GetSample(i));
6003     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6004     mSamples[pFile->GetSample(i)] = s;
6005     }
6006 schoenebeck 3117
6007     // clone script groups and their scripts
6008     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6009     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6010     ScriptGroup* dg = AddScriptGroup();
6011     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6012     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6013     Script* ss = sg->GetScript(iScript);
6014     Script* ds = dg->AddScript();
6015     ds->CopyAssign(ss);
6016     }
6017     }
6018    
6019 schoenebeck 2482 //BUG: For some reason this method only works with this additional
6020     // Save() call in between here.
6021     //
6022     // Important: The correct one of the 2 Save() methods has to be called
6023     // here, depending on whether the file is completely new or has been
6024     // saved to disk already, otherwise it will result in data corruption.
6025     if (pRIFF->IsNew())
6026     Save(GetFileName());
6027     else
6028     Save();
6029    
6030     // clone instruments
6031     // (passing the crosslink table here for the cloned samples)
6032     for (int i = 0; pFile->GetInstrument(i); ++i) {
6033     Instrument* instr = AddInstrument();
6034     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6035     }
6036    
6037     // Mandatory: file needs to be saved to disk at this point, so this
6038     // file has the correct size and data layout for writing the samples'
6039     // waveform data to disk.
6040     Save();
6041    
6042     // clone samples' waveform data
6043     // (using direct read & write disk streaming)
6044     for (int i = 0; pFile->GetSample(i); ++i) {
6045     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6046     }
6047     }
6048 schoenebeck 809
6049     /** @brief Delete an instrument.
6050     *
6051     * This will delete the given Instrument object from the gig file. You
6052     * have to call Save() to make this persistent to the file.
6053     *
6054     * @param pInstrument - instrument to delete
6055 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
6056 schoenebeck 809 */
6057     void File::DeleteInstrument(Instrument* pInstrument) {
6058     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6059 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6060 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6061     pInstruments->erase(iter);
6062 schoenebeck 3478 pInstrument->DeleteChunks();
6063 schoenebeck 809 delete pInstrument;
6064     }
6065    
6066 schoenebeck 823 void File::LoadInstruments() {
6067     LoadInstruments(NULL);
6068     }
6069    
6070 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
6071 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
6072 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6073     if (lstInstruments) {
6074 schoenebeck 515 int iInstrumentIndex = 0;
6075 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6076     while (lstInstr) {
6077     if (lstInstr->GetListType() == LIST_TYPE_INS) {
6078 schoenebeck 515 // notify current progress
6079     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6080     __notify_progress(pProgress, localProgress);
6081    
6082     // divide local progress into subprogress for loading current Instrument
6083     progress_t subprogress;
6084     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6085    
6086     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6087    
6088     iInstrumentIndex++;
6089 schoenebeck 2 }
6090     lstInstr = lstInstruments->GetNextSubList();
6091     }
6092 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
6093 schoenebeck 2 }
6094     }
6095    
6096 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
6097     /// update is done directly to disk, as this method is called
6098     /// after File::Save()
6099 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6100     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6101     if (!_3crc) return;
6102 persson 1207
6103     // get the index of the sample
6104 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
6105 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6106    
6107 persson 1207 // write the CRC-32 checksum to disk
6108 persson 1199 _3crc->SetPos(iWaveIndex * 8);
6109 schoenebeck 2985 uint32_t one = 1;
6110     _3crc->WriteUint32(&one); // always 1
6111 persson 1199 _3crc->WriteUint32(&crc);
6112 schoenebeck 2989 }
6113 schoenebeck 2985
6114 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
6115     // get the index of the sample
6116     int iWaveIndex = GetWaveTableIndexOf(pSample);
6117     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6118    
6119     return GetSampleChecksumByIndex(iWaveIndex);
6120 persson 1199 }
6121    
6122 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
6123     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6124    
6125 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6126     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6127     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6128     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6129    
6130     // read the CRC-32 checksum directly from disk
6131 schoenebeck 2989 size_t pos = index * 8;
6132 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
6133     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6134    
6135     uint32_t one = load32(&pData[pos]); // always 1
6136     if (one != 1)
6137 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6138 schoenebeck 2985
6139     return load32(&pData[pos+4]);
6140     }
6141 schoenebeck 2989
6142 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6143     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6144     File::SampleList::iterator iter = pSamples->begin();
6145     File::SampleList::iterator end = pSamples->end();
6146     for (int index = 0; iter != end; ++iter, ++index)
6147     if (*iter == pSample)
6148     return index;
6149     return -1;
6150     }
6151    
6152     /**
6153     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6154     * the CRC32 check sums of all samples' raw wave data.
6155     *
6156     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6157     */
6158     bool File::VerifySampleChecksumTable() {
6159     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6160     if (!_3crc) return false;
6161     if (_3crc->GetNewSize() <= 0) return false;
6162     if (_3crc->GetNewSize() % 8) return false;
6163     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6164     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6165    
6166 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
6167 schoenebeck 2985
6168     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6169     if (!pData) return false;
6170    
6171 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
6172 schoenebeck 2985 uint32_t one = pData[i*2];
6173     if (one != 1) return false;
6174     }
6175    
6176     return true;
6177     }
6178    
6179     /**
6180     * Recalculates CRC32 checksums for all samples and rebuilds this gig
6181     * file's checksum table with those new checksums. This might usually
6182     * just be necessary if the checksum table was damaged.
6183     *
6184     * @e IMPORTANT: The current implementation of this method only works
6185     * with files that have not been modified since it was loaded, because
6186     * it expects that no externally caused file structure changes are
6187     * required!
6188     *
6189     * Due to the expectation above, this method is currently protected
6190     * and actually only used by the command line tool "gigdump" yet.
6191     *
6192     * @returns true if Save() is required to be called after this call,
6193     * false if no further action is required
6194     */
6195     bool File::RebuildSampleChecksumTable() {
6196     // make sure sample chunks were scanned
6197     if (!pSamples) GetFirstSample();
6198    
6199     bool bRequiresSave = false;
6200    
6201     // make sure "3CRC" chunk exists with required size
6202     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6203     if (!_3crc) {
6204     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6205 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6206     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6207 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6208 schoenebeck 2985 bRequiresSave = true;
6209     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6210     _3crc->Resize(pSamples->size() * 8);
6211     bRequiresSave = true;
6212     }
6213    
6214     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6215     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6216     {
6217     File::SampleList::iterator iter = pSamples->begin();
6218     File::SampleList::iterator end = pSamples->end();
6219     for (; iter != end; ++iter) {
6220     gig::Sample* pSample = (gig::Sample*) *iter;
6221     int index = GetWaveTableIndexOf(pSample);
6222     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6223     pData[index*2] = 1; // always 1
6224     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6225     }
6226     }
6227     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6228     // make sure file is in write mode
6229     pRIFF->SetMode(RIFF::stream_mode_read_write);
6230     {
6231     File::SampleList::iterator iter = pSamples->begin();
6232     File::SampleList::iterator end = pSamples->end();
6233     for (; iter != end; ++iter) {
6234     gig::Sample* pSample = (gig::Sample*) *iter;
6235     int index = GetWaveTableIndexOf(pSample);
6236     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6237 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6238     SetSampleChecksum(pSample, pSample->crc);
6239 schoenebeck 2985 }
6240     }
6241     }
6242    
6243     return bRequiresSave;
6244     }
6245    
6246 schoenebeck 929 Group* File::GetFirstGroup() {
6247     if (!pGroups) LoadGroups();
6248 schoenebeck 930 // there must always be at least one group
6249 schoenebeck 929 GroupsIterator = pGroups->begin();
6250 schoenebeck 930 return *GroupsIterator;
6251 schoenebeck 929 }
6252 schoenebeck 2
6253 schoenebeck 929 Group* File::GetNextGroup() {
6254     if (!pGroups) return NULL;
6255     ++GroupsIterator;
6256     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6257     }
6258 schoenebeck 2
6259 schoenebeck 929 /**
6260     * Returns the group with the given index.
6261     *
6262     * @param index - number of the sought group (0..n)
6263     * @returns sought group or NULL if there's no such group
6264     */
6265     Group* File::GetGroup(uint index) {
6266     if (!pGroups) LoadGroups();
6267     GroupsIterator = pGroups->begin();
6268     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6269     if (i == index) return *GroupsIterator;
6270     ++GroupsIterator;
6271     }
6272     return NULL;
6273     }
6274    
6275 schoenebeck 2543 /**
6276     * Returns the group with the given group name.
6277     *
6278     * Note: group names don't have to be unique in the gig format! So there
6279     * can be multiple groups with the same name. This method will simply
6280     * return the first group found with the given name.
6281     *
6282     * @param name - name of the sought group
6283     * @returns sought group or NULL if there's no group with that name
6284     */
6285     Group* File::GetGroup(String name) {
6286     if (!pGroups) LoadGroups();
6287     GroupsIterator = pGroups->begin();
6288     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6289     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6290     return NULL;
6291     }
6292    
6293 schoenebeck 929 Group* File::AddGroup() {
6294     if (!pGroups) LoadGroups();
6295 schoenebeck 930 // there must always be at least one group
6296 schoenebeck 929 __ensureMandatoryChunksExist();
6297 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6298 schoenebeck 929 pGroups->push_back(pGroup);
6299     return pGroup;
6300     }
6301    
6302 schoenebeck 1081 /** @brief Delete a group and its samples.
6303     *
6304     * This will delete the given Group object and all the samples that
6305     * belong to this group from the gig file. You have to call Save() to
6306     * make this persistent to the file.
6307     *
6308     * @param pGroup - group to delete
6309     * @throws gig::Exception if given group could not be found
6310     */
6311 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6312 schoenebeck 930 if (!pGroups) LoadGroups();
6313 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6314     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6315 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6316 schoenebeck 1081 // delete all members of this group
6317     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6318     DeleteSample(pSample);
6319     }
6320     // now delete this group object
6321     pGroups->erase(iter);
6322 schoenebeck 3478 pGroup->DeleteChunks();
6323 schoenebeck 1081 delete pGroup;
6324     }
6325    
6326     /** @brief Delete a group.
6327     *
6328     * This will delete the given Group object from the gig file. All the
6329     * samples that belong to this group will not be deleted, but instead
6330     * be moved to another group. You have to call Save() to make this
6331     * persistent to the file.
6332     *
6333     * @param pGroup - group to delete
6334     * @throws gig::Exception if given group could not be found
6335     */
6336     void File::DeleteGroupOnly(Group* pGroup) {
6337     if (!pGroups) LoadGroups();
6338     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6339     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6340     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6341 schoenebeck 930 // move all members of this group to another group
6342     pGroup->MoveAll();
6343 schoenebeck 929 pGroups->erase(iter);
6344 schoenebeck 3478 pGroup->DeleteChunks();
6345 schoenebeck 929 delete pGroup;
6346     }
6347    
6348     void File::LoadGroups() {
6349     if (!pGroups) pGroups = new std::list<Group*>;
6350 schoenebeck 930 // try to read defined groups from file
6351 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6352 schoenebeck 930 if (lst3gri) {
6353     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6354     if (lst3gnl) {
6355     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6356     while (ck) {
6357     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6358 schoenebeck 3440 if (pVersion && pVersion->major > 2 &&
6359 persson 1266 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6360    
6361 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6362     }
6363     ck = lst3gnl->GetNextSubChunk();
6364 schoenebeck 929 }
6365     }
6366     }
6367 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6368     if (!pGroups->size()) {
6369     Group* pGroup = new Group(this, NULL);
6370     pGroup->Name = "Default Group";
6371     pGroups->push_back(pGroup);
6372     }
6373 schoenebeck 929 }
6374    
6375 schoenebeck 2584 /** @brief Get instrument script group (by index).
6376     *
6377     * Returns the real-time instrument script group with the given index.
6378     *
6379     * @param index - number of the sought group (0..n)
6380     * @returns sought script group or NULL if there's no such group
6381     */
6382     ScriptGroup* File::GetScriptGroup(uint index) {
6383     if (!pScriptGroups) LoadScriptGroups();
6384     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6385     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6386     if (i == index) return *it;
6387     return NULL;
6388     }
6389    
6390     /** @brief Get instrument script group (by name).
6391     *
6392     * Returns the first real-time instrument script group found with the given
6393     * group name. Note that group names may not necessarily be unique.
6394     *
6395     * @param name - name of the sought script group
6396     * @returns sought script group or NULL if there's no such group
6397     */
6398     ScriptGroup* File::GetScriptGroup(const String& name) {
6399     if (!pScriptGroups) LoadScriptGroups();
6400     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6401     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6402     if ((*it)->Name == name) return *it;
6403     return NULL;
6404     }
6405    
6406     /** @brief Add new instrument script group.
6407     *
6408     * Adds a new, empty real-time instrument script group to the file.
6409     *
6410     * You have to call Save() to make this persistent to the file.
6411     *
6412     * @return new empty script group
6413     */
6414     ScriptGroup* File::AddScriptGroup() {
6415     if (!pScriptGroups) LoadScriptGroups();
6416     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6417     pScriptGroups->push_back(pScriptGroup);
6418     return pScriptGroup;
6419     }
6420    
6421     /** @brief Delete an instrument script group.
6422     *
6423     * This will delete the given real-time instrument script group and all its
6424     * instrument scripts it contains. References inside instruments that are
6425     * using the deleted scripts will be removed from the respective instruments
6426     * accordingly.
6427     *
6428     * You have to call Save() to make this persistent to the file.
6429     *
6430     * @param pScriptGroup - script group to delete
6431     * @throws gig::Exception if given script group could not be found
6432     */
6433     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6434     if (!pScriptGroups) LoadScriptGroups();
6435     std::list<ScriptGroup*>::iterator iter =
6436     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6437     if (iter == pScriptGroups->end())
6438     throw gig::Exception("Could not delete script group, could not find given script group");
6439     pScriptGroups->erase(iter);
6440     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6441     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6442     if (pScriptGroup->pList)
6443     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6444 schoenebeck 3478 pScriptGroup->DeleteChunks();
6445 schoenebeck 2584 delete pScriptGroup;
6446     }
6447    
6448     void File::LoadScriptGroups() {
6449     if (pScriptGroups) return;
6450     pScriptGroups = new std::list<ScriptGroup*>;
6451     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6452     if (lstLS) {
6453     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6454     lst = lstLS->GetNextSubList())
6455     {
6456     if (lst->GetListType() == LIST_TYPE_RTIS) {
6457     pScriptGroups->push_back(new ScriptGroup(this, lst));
6458     }
6459     }
6460     }
6461     }
6462    
6463 schoenebeck 1098 /**
6464     * Apply all the gig file's current instruments, samples, groups and settings
6465     * to the respective RIFF chunks. You have to call Save() to make changes
6466     * persistent.
6467     *
6468     * Usually there is absolutely no need to call this method explicitly.
6469     * It will be called automatically when File::Save() was called.
6470     *
6471 schoenebeck 2682 * @param pProgress - callback function for progress notification
6472 schoenebeck 1098 * @throws Exception - on errors
6473     */
6474 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6475 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6476 persson 1192
6477 schoenebeck 2584 // update own gig format extension chunks
6478     // (not part of the GigaStudio 4 format)
6479 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6480     if (!lst3LS) {
6481     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6482     }
6483     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6484 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6485     // before the actual wave data
6486 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6487     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6488    
6489 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6490     // because the instruments' script slots will write the file offsets
6491     // of the respective instrument script chunk as reference.
6492     if (pScriptGroups) {
6493 schoenebeck 2912 // Update instrument script (group) chunks.
6494     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6495     it != pScriptGroups->end(); ++it)
6496     {
6497     (*it)->UpdateChunks(pProgress);
6498 schoenebeck 2584 }
6499     }
6500    
6501 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6502     // custom "3LS " chunk again
6503     if (!lst3LS->CountSubChunks()) {
6504     pRIFF->DeleteSubChunk(lst3LS);
6505     lst3LS = NULL;
6506     }
6507    
6508 schoenebeck 1098 // first update base class's chunks
6509 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6510 schoenebeck 929
6511 persson 1199 if (newFile) {
6512 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6513     // is placed first in file
6514 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6515 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6516     if (first != info) {
6517     pRIFF->MoveSubChunk(info, first);
6518     }
6519     }
6520    
6521 schoenebeck 1098 // update group's chunks
6522     if (pGroups) {
6523 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6524     // (before updating the Group chunks)
6525     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6526     if (!_3gri) {
6527     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6528     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6529 schoenebeck 1098 }
6530 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6531     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6532 persson 1266
6533     // v3: make sure the file has 128 3gnm chunks
6534 schoenebeck 2467 // (before updating the Group chunks)
6535 schoenebeck 3440 if (pVersion && pVersion->major > 2) {
6536 persson 1266 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6537     for (int i = 0 ; i < 128 ; i++) {
6538     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6539     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6540     }
6541     }
6542 schoenebeck 2467
6543     std::list<Group*>::iterator iter = pGroups->begin();
6544     std::list<Group*>::iterator end = pGroups->end();
6545     for (; iter != end; ++iter) {
6546 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6547 schoenebeck 2467 }
6548 schoenebeck 1098 }
6549 persson 1199
6550     // update einf chunk
6551    
6552     // The einf chunk contains statistics about the gig file, such
6553     // as the number of regions and samples used by each
6554     // instrument. It is divided in equally sized parts, where the
6555     // first part contains information about the whole gig file,
6556     // and the rest of the parts map to each instrument in the
6557     // file.
6558     //
6559     // At the end of each part there is a bit map of each sample
6560     // in the file, where a set bit means that the sample is used
6561     // by the file/instrument.
6562     //
6563     // Note that there are several fields with unknown use. These
6564     // are set to zero.
6565    
6566 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6567 persson 1199 int einfSize = (Instruments + 1) * sublen;
6568    
6569     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6570     if (einf) {
6571     if (einf->GetSize() != einfSize) {
6572     einf->Resize(einfSize);
6573     memset(einf->LoadChunkData(), 0, einfSize);
6574     }
6575     } else if (newFile) {
6576     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6577     }
6578     if (einf) {
6579     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6580    
6581     std::map<gig::Sample*,int> sampleMap;
6582     int sampleIdx = 0;
6583     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6584     sampleMap[pSample] = sampleIdx++;
6585     }
6586    
6587     int totnbusedsamples = 0;
6588     int totnbusedchannels = 0;
6589     int totnbregions = 0;
6590     int totnbdimregions = 0;
6591 persson 1264 int totnbloops = 0;
6592 persson 1199 int instrumentIdx = 0;
6593    
6594     memset(&pData[48], 0, sublen - 48);
6595    
6596     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6597     instrument = GetNextInstrument()) {
6598     int nbusedsamples = 0;
6599     int nbusedchannels = 0;
6600     int nbdimregions = 0;
6601 persson 1264 int nbloops = 0;
6602 persson 1199
6603     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6604    
6605     for (Region* region = instrument->GetFirstRegion() ; region ;
6606     region = instrument->GetNextRegion()) {
6607     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6608     gig::DimensionRegion *d = region->pDimensionRegions[i];
6609     if (d->pSample) {
6610     int sampleIdx = sampleMap[d->pSample];
6611     int byte = 48 + sampleIdx / 8;
6612     int bit = 1 << (sampleIdx & 7);
6613     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6614     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6615     nbusedsamples++;
6616     nbusedchannels += d->pSample->Channels;
6617    
6618     if ((pData[byte] & bit) == 0) {
6619     pData[byte] |= bit;
6620     totnbusedsamples++;
6621     totnbusedchannels += d->pSample->Channels;
6622     }
6623     }
6624     }
6625 persson 1264 if (d->SampleLoops) nbloops++;
6626 persson 1199 }
6627     nbdimregions += region->DimensionRegions;
6628     }
6629     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6630     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6631     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6632     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6633     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6634     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6635     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6636 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6637     // next 8 bytes unknown
6638 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6639 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6640 persson 1199 // next 4 bytes unknown
6641    
6642     totnbregions += instrument->Regions;
6643     totnbdimregions += nbdimregions;
6644 persson 1264 totnbloops += nbloops;
6645 persson 1199 instrumentIdx++;
6646     }
6647     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6648     // store32(&pData[0], sublen);
6649     store32(&pData[4], totnbusedchannels);
6650     store32(&pData[8], totnbusedsamples);
6651     store32(&pData[12], Instruments);
6652     store32(&pData[16], totnbregions);
6653     store32(&pData[20], totnbdimregions);
6654 persson 1264 store32(&pData[24], totnbloops);
6655     // next 8 bytes unknown
6656     // next 4 bytes unknown, not always 0
6657 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6658 persson 1199 // next 4 bytes unknown
6659     }
6660    
6661     // update 3crc chunk
6662    
6663     // The 3crc chunk contains CRC-32 checksums for the
6664 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6665     // chunk here (in RAM) with the old crc values which we read from the
6666     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6667     // member variable). This step is required, because samples might have
6668     // been deleted by the user since the file was opened, which in turn
6669     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6670     // If a sample was conciously modified by the user (that is if
6671     // Sample::Write() was called later on) then Sample::Write() will just
6672     // update the respective individual checksum(s) directly on disk and
6673     // leaves all other sample checksums untouched.
6674 persson 1199
6675 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6676 persson 1199 if (_3crc) {
6677     _3crc->Resize(pSamples->size() * 8);
6678 schoenebeck 2989 } else /*if (newFile)*/ {
6679 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6680 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6681 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6682 persson 1199 }
6683 schoenebeck 2989 { // must be performed in RAM here ...
6684     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6685     if (pData) {
6686     File::SampleList::iterator iter = pSamples->begin();
6687     File::SampleList::iterator end = pSamples->end();
6688     for (int index = 0; iter != end; ++iter, ++index) {
6689     gig::Sample* pSample = (gig::Sample*) *iter;
6690     pData[index*2] = 1; // always 1
6691     pData[index*2+1] = pSample->crc;
6692     }
6693     }
6694     }
6695 schoenebeck 1098 }
6696 schoenebeck 2609
6697     void File::UpdateFileOffsets() {
6698     DLS::File::UpdateFileOffsets();
6699 schoenebeck 929
6700 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6701     instrument = GetNextInstrument())
6702     {
6703     instrument->UpdateScriptFileOffsets();
6704     }
6705     }
6706    
6707 schoenebeck 1524 /**
6708     * Enable / disable automatic loading. By default this properyt is
6709     * enabled and all informations are loaded automatically. However
6710     * loading all Regions, DimensionRegions and especially samples might
6711     * take a long time for large .gig files, and sometimes one might only
6712     * be interested in retrieving very superficial informations like the
6713     * amount of instruments and their names. In this case one might disable
6714     * automatic loading to avoid very slow response times.
6715     *
6716     * @e CAUTION: by disabling this property many pointers (i.e. sample
6717     * references) and informations will have invalid or even undefined
6718     * data! This feature is currently only intended for retrieving very
6719     * superficial informations in a very fast way. Don't use it to retrieve
6720     * details like synthesis informations or even to modify .gig files!
6721     */
6722     void File::SetAutoLoad(bool b) {
6723     bAutoLoad = b;
6724     }
6725 schoenebeck 1098
6726 schoenebeck 1524 /**
6727     * Returns whether automatic loading is enabled.
6728     * @see SetAutoLoad()
6729     */
6730     bool File::GetAutoLoad() {
6731     return bAutoLoad;
6732     }
6733 schoenebeck 1098
6734 schoenebeck 1524
6735    
6736 schoenebeck 2 // *************** Exception ***************
6737     // *
6738    
6739 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6740 schoenebeck 2 }
6741    
6742 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6743     va_list arg;
6744     va_start(arg, format);
6745     Message = assemble(format, arg);
6746     va_end(arg);
6747     }
6748    
6749     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6750     Message = assemble(format, arg);
6751     }
6752    
6753 schoenebeck 2 void Exception::PrintMessage() {
6754     std::cout << "gig::Exception: " << Message << std::endl;
6755     }
6756    
6757 schoenebeck 518
6758     // *************** functions ***************
6759     // *
6760    
6761     /**
6762     * Returns the name of this C++ library. This is usually "libgig" of
6763     * course. This call is equivalent to RIFF::libraryName() and
6764     * DLS::libraryName().
6765     */
6766     String libraryName() {
6767     return PACKAGE;
6768     }
6769    
6770     /**
6771     * Returns version of this C++ library. This call is equivalent to
6772     * RIFF::libraryVersion() and DLS::libraryVersion().
6773     */
6774     String libraryVersion() {
6775     return VERSION;
6776     }
6777    
6778 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC