/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3710 - (hide annotations) (download)
Fri Jan 10 13:32:34 2020 UTC (4 years, 3 months ago) by schoenebeck
File size: 302833 byte(s)
* gig.cpp: Added methods Region::UsesAnyGigFormatExtension(),
  Instrument::UsesAnyGigFormatExtension() and
  File::UsesAnyGigFormatExtension() (as private methods for
  now, see comments on methods for reason why).

* gig.cpp: Only write pure-GSt-compatibility RIFF chunks
  introduced by SVN r3657 if the file is not using any of
  our gig format extensions anyway.

* Bumped version (4.2.0.svn6).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3710 * Copyright (C) 2003-2020 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 3478 pCk3gix->SetPos(0);
416    
417 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
419 schoenebeck 809 } else { // '3gix' chunk missing
420 schoenebeck 930 // by default assigned to that mandatory "Default Group"
421     pGroup = pFile->GetGroup(0);
422 schoenebeck 809 }
423 schoenebeck 2
424 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425     if (pCkSmpl) {
426 schoenebeck 3478 pCkSmpl->SetPos(0);
427    
428 schoenebeck 809 Manufacturer = pCkSmpl->ReadInt32();
429     Product = pCkSmpl->ReadInt32();
430     SamplePeriod = pCkSmpl->ReadInt32();
431     MIDIUnityNote = pCkSmpl->ReadInt32();
432     FineTune = pCkSmpl->ReadInt32();
433     pCkSmpl->Read(&SMPTEFormat, 1, 4);
434     SMPTEOffset = pCkSmpl->ReadInt32();
435     Loops = pCkSmpl->ReadInt32();
436     pCkSmpl->ReadInt32(); // manufByt
437     LoopID = pCkSmpl->ReadInt32();
438     pCkSmpl->Read(&LoopType, 1, 4);
439     LoopStart = pCkSmpl->ReadInt32();
440     LoopEnd = pCkSmpl->ReadInt32();
441     LoopFraction = pCkSmpl->ReadInt32();
442     LoopPlayCount = pCkSmpl->ReadInt32();
443     } else { // 'smpl' chunk missing
444     // use default values
445     Manufacturer = 0;
446     Product = 0;
447 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 persson 1218 MIDIUnityNote = 60;
449 schoenebeck 809 FineTune = 0;
450 persson 1182 SMPTEFormat = smpte_format_no_offset;
451 schoenebeck 809 SMPTEOffset = 0;
452     Loops = 0;
453     LoopID = 0;
454 persson 1182 LoopType = loop_type_normal;
455 schoenebeck 809 LoopStart = 0;
456     LoopEnd = 0;
457     LoopFraction = 0;
458     LoopPlayCount = 0;
459     }
460 schoenebeck 2
461     FrameTable = NULL;
462     SamplePos = 0;
463     RAMCache.Size = 0;
464     RAMCache.pStart = NULL;
465     RAMCache.NullExtensionSize = 0;
466    
467 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468    
469 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470     Compressed = ewav;
471     Dithered = false;
472     TruncatedBits = 0;
473 schoenebeck 2 if (Compressed) {
474 schoenebeck 3478 ewav->SetPos(0);
475    
476 persson 437 uint32_t version = ewav->ReadInt32();
477 schoenebeck 3440 if (version > 2 && BitDepth == 24) {
478 persson 437 Dithered = ewav->ReadInt32();
479     ewav->SetPos(Channels == 2 ? 84 : 64);
480     TruncatedBits = ewav->ReadInt32();
481     }
482 schoenebeck 2 ScanCompressedSample();
483     }
484 schoenebeck 317
485     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 schoenebeck 317 }
490 persson 437 FrameOffset = 0; // just for streaming compressed samples
491 schoenebeck 21
492 persson 864 LoopSize = LoopEnd - LoopStart + 1;
493 schoenebeck 2 }
494    
495 schoenebeck 809 /**
496 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
497     * the actual waveform data) and assign it to this object.
498     *
499     * Discussion: copying .gig samples is a bit tricky. It requires three
500     * steps:
501     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502     * its new sample waveform data size.
503     * 2. Saving the file (done by File::Save()) so that it gains correct size
504     * and layout for writing the actual wave form data directly to disc
505     * in next step.
506     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507     *
508     * @param orig - original Sample object to be copied from
509     */
510     void Sample::CopyAssignMeta(const Sample* orig) {
511     // handle base classes
512     DLS::Sample::CopyAssignCore(orig);
513    
514     // handle actual own attributes of this class
515     Manufacturer = orig->Manufacturer;
516     Product = orig->Product;
517     SamplePeriod = orig->SamplePeriod;
518     MIDIUnityNote = orig->MIDIUnityNote;
519     FineTune = orig->FineTune;
520     SMPTEFormat = orig->SMPTEFormat;
521     SMPTEOffset = orig->SMPTEOffset;
522     Loops = orig->Loops;
523     LoopID = orig->LoopID;
524     LoopType = orig->LoopType;
525     LoopStart = orig->LoopStart;
526     LoopEnd = orig->LoopEnd;
527     LoopSize = orig->LoopSize;
528     LoopFraction = orig->LoopFraction;
529     LoopPlayCount = orig->LoopPlayCount;
530    
531     // schedule resizing this sample to the given sample's size
532     Resize(orig->GetSize());
533     }
534    
535     /**
536     * Should be called after CopyAssignMeta() and File::Save() sequence.
537     * Read more about it in the discussion of CopyAssignMeta(). This method
538     * copies the actual waveform data by disk streaming.
539     *
540     * @e CAUTION: this method is currently not thread safe! During this
541     * operation the sample must not be used for other purposes by other
542     * threads!
543     *
544     * @param orig - original Sample object to be copied from
545     */
546     void Sample::CopyAssignWave(const Sample* orig) {
547     const int iReadAtOnce = 32*1024;
548     char* buf = new char[iReadAtOnce * orig->FrameSize];
549     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
551 schoenebeck 2482 pOrig->SetPos(0);
552     SetPos(0);
553 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
555     {
556     Write(buf, n);
557     }
558     pOrig->SetPos(restorePos);
559     delete [] buf;
560     }
561    
562     /**
563 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
564     * to call File::Save() to make changes persistent.
565     *
566     * Usually there is absolutely no need to call this method explicitly.
567     * It will be called automatically when File::Save() was called.
568     *
569 schoenebeck 2682 * @param pProgress - callback function for progress notification
570 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 schoenebeck 809 * was provided yet
572     * @throws gig::Exception if there is any invalid sample setting
573     */
574 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
575 schoenebeck 809 // first update base class's chunks
576 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
577 schoenebeck 809
578     // make sure 'smpl' chunk exists
579     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 persson 1182 if (!pCkSmpl) {
581     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582     memset(pCkSmpl->LoadChunkData(), 0, 60);
583     }
584 schoenebeck 809 // update 'smpl' chunk
585     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 persson 1179 store32(&pData[0], Manufacturer);
588     store32(&pData[4], Product);
589     store32(&pData[8], SamplePeriod);
590     store32(&pData[12], MIDIUnityNote);
591     store32(&pData[16], FineTune);
592     store32(&pData[20], SMPTEFormat);
593     store32(&pData[24], SMPTEOffset);
594     store32(&pData[28], Loops);
595 schoenebeck 809
596     // we skip 'manufByt' for now (4 bytes)
597    
598 persson 1179 store32(&pData[36], LoopID);
599     store32(&pData[40], LoopType);
600     store32(&pData[44], LoopStart);
601     store32(&pData[48], LoopEnd);
602     store32(&pData[52], LoopFraction);
603     store32(&pData[56], LoopPlayCount);
604 schoenebeck 809
605     // make sure '3gix' chunk exists
606     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
609 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
611     if (pFile->pGroups) {
612     std::list<Group*>::iterator iter = pFile->pGroups->begin();
613     std::list<Group*>::iterator end = pFile->pGroups->end();
614 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
615 schoenebeck 929 if (*iter == pGroup) {
616     iSampleGroup = i;
617     break; // found
618     }
619     }
620     }
621 schoenebeck 809 // update '3gix' chunk
622     pData = (uint8_t*) pCk3gix->LoadChunkData();
623 persson 1179 store16(&pData[0], iSampleGroup);
624 schoenebeck 2484
625     // if the library user toggled the "Compressed" attribute from true to
626     // false, then the EWAV chunk associated with compressed samples needs
627     // to be deleted
628     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629     if (ewav && !Compressed) {
630     pWaveList->DeleteSubChunk(ewav);
631     }
632 schoenebeck 809 }
633    
634 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635     void Sample::ScanCompressedSample() {
636     //TODO: we have to add some more scans here (e.g. determine compression rate)
637     this->SamplesTotal = 0;
638 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
639 schoenebeck 2
640 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642 persson 365
643 schoenebeck 2 // Scanning
644     pCkData->SetPos(0);
645 persson 365 if (Channels == 2) { // Stereo
646     for (int i = 0 ; ; i++) {
647     // for 24 bit samples every 8:th frame offset is
648     // stored, to save some memory
649     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650    
651     const int mode_l = pCkData->ReadUint8();
652     const int mode_r = pCkData->ReadUint8();
653     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655 persson 365
656     if (pCkData->RemainingBytes() <= frameSize) {
657     SamplesInLastFrame =
658     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660     SamplesTotal += SamplesInLastFrame;
661 schoenebeck 2 break;
662 persson 365 }
663     SamplesTotal += SamplesPerFrame;
664     pCkData->SetPos(frameSize, RIFF::stream_curpos);
665     }
666     }
667     else { // Mono
668     for (int i = 0 ; ; i++) {
669     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670    
671     const int mode = pCkData->ReadUint8();
672     if (mode > 5) throw gig::Exception("Unknown compression mode");
673 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
674 persson 365
675     if (pCkData->RemainingBytes() <= frameSize) {
676     SamplesInLastFrame =
677     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678     SamplesTotal += SamplesInLastFrame;
679 schoenebeck 2 break;
680 persson 365 }
681     SamplesTotal += SamplesPerFrame;
682     pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 schoenebeck 2 }
684     }
685     pCkData->SetPos(0);
686    
687     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688     if (FrameTable) delete[] FrameTable;
689 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
690     std::list<file_offset_t>::iterator end = frameOffsets.end();
691     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
693     FrameTable[i] = *iter;
694     }
695     }
696    
697     /**
698     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699     * ReleaseSampleData() to free the memory if you don't need the cached
700     * sample data anymore.
701     *
702     * @returns buffer_t structure with start address and size of the buffer
703     * in bytes
704     * @see ReleaseSampleData(), Read(), SetPos()
705     */
706     buffer_t Sample::LoadSampleData() {
707     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708     }
709    
710     /**
711     * Reads (uncompresses if needed) and caches the first \a SampleCount
712     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713     * memory space if you don't need the cached samples anymore. There is no
714     * guarantee that exactly \a SampleCount samples will be cached; this is
715     * not an error. The size will be eventually truncated e.g. to the
716     * beginning of a frame of a compressed sample. This is done for
717     * efficiency reasons while streaming the wave by your sampler engine
718     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719     * that will be returned to determine the actual cached samples, but note
720     * that the size is given in bytes! You get the number of actually cached
721     * samples by dividing it by the frame size of the sample:
722 schoenebeck 384 * @code
723 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724     * long cachedsamples = buf.Size / pSample->FrameSize;
725 schoenebeck 384 * @endcode
726 schoenebeck 2 *
727     * @param SampleCount - number of sample points to load into RAM
728     * @returns buffer_t structure with start address and size of
729     * the cached sample data in bytes
730     * @see ReleaseSampleData(), Read(), SetPos()
731     */
732 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734     }
735    
736     /**
737     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738     * ReleaseSampleData() to free the memory if you don't need the cached
739     * sample data anymore.
740     * The method will add \a NullSamplesCount silence samples past the
741     * official buffer end (this won't affect the 'Size' member of the
742     * buffer_t structure, that means 'Size' always reflects the size of the
743     * actual sample data, the buffer might be bigger though). Silence
744     * samples past the official buffer are needed for differential
745     * algorithms that always have to take subsequent samples into account
746     * (resampling/interpolation would be an important example) and avoids
747     * memory access faults in such cases.
748     *
749     * @param NullSamplesCount - number of silence samples the buffer should
750     * be extended past it's data end
751     * @returns buffer_t structure with start address and
752     * size of the buffer in bytes
753     * @see ReleaseSampleData(), Read(), SetPos()
754     */
755     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757     }
758    
759     /**
760     * Reads (uncompresses if needed) and caches the first \a SampleCount
761     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762     * memory space if you don't need the cached samples anymore. There is no
763     * guarantee that exactly \a SampleCount samples will be cached; this is
764     * not an error. The size will be eventually truncated e.g. to the
765     * beginning of a frame of a compressed sample. This is done for
766     * efficiency reasons while streaming the wave by your sampler engine
767     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768     * that will be returned to determine the actual cached samples, but note
769     * that the size is given in bytes! You get the number of actually cached
770     * samples by dividing it by the frame size of the sample:
771 schoenebeck 384 * @code
772 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773     * long cachedsamples = buf.Size / pSample->FrameSize;
774 schoenebeck 384 * @endcode
775 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
776     * official buffer end (this won't affect the 'Size' member of the
777     * buffer_t structure, that means 'Size' always reflects the size of the
778     * actual sample data, the buffer might be bigger though). Silence
779     * samples past the official buffer are needed for differential
780     * algorithms that always have to take subsequent samples into account
781     * (resampling/interpolation would be an important example) and avoids
782     * memory access faults in such cases.
783     *
784     * @param SampleCount - number of sample points to load into RAM
785     * @param NullSamplesCount - number of silence samples the buffer should
786     * be extended past it's data end
787     * @returns buffer_t structure with start address and
788     * size of the cached sample data in bytes
789     * @see ReleaseSampleData(), Read(), SetPos()
790     */
791 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
796 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
797     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799     // fill the remaining buffer space with silence samples
800     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801     return GetCache();
802     }
803    
804     /**
805     * Returns current cached sample points. A buffer_t structure will be
806     * returned which contains address pointer to the begin of the cache and
807     * the size of the cached sample data in bytes. Use
808     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809     * RAM.
810     *
811     * @returns buffer_t structure with current cached sample points
812     * @see LoadSampleData();
813     */
814     buffer_t Sample::GetCache() {
815     // return a copy of the buffer_t structure
816     buffer_t result;
817     result.Size = this->RAMCache.Size;
818     result.pStart = this->RAMCache.pStart;
819     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820     return result;
821     }
822    
823     /**
824     * Frees the cached sample from RAM if loaded with
825     * <i>LoadSampleData()</i> previously.
826     *
827     * @see LoadSampleData();
828     */
829     void Sample::ReleaseSampleData() {
830     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831     RAMCache.pStart = NULL;
832     RAMCache.Size = 0;
833 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
834 schoenebeck 2 }
835    
836 schoenebeck 809 /** @brief Resize sample.
837     *
838     * Resizes the sample's wave form data, that is the actual size of
839     * sample wave data possible to be written for this sample. This call
840     * will return immediately and just schedule the resize operation. You
841     * should call File::Save() to actually perform the resize operation(s)
842     * "physically" to the file. As this can take a while on large files, it
843     * is recommended to call Resize() first on all samples which have to be
844     * resized and finally to call File::Save() to perform all those resize
845     * operations in one rush.
846     *
847     * The actual size (in bytes) is dependant to the current FrameSize
848     * value. You may want to set FrameSize before calling Resize().
849     *
850     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851     * enlarged samples before calling File::Save() as this might exceed the
852     * current sample's boundary!
853     *
854 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 schoenebeck 809 * other formats will fail!
857     *
858 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
859     * greater than zero)
860 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
863     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864     * DLS::Sample::FormatTag, File::Save()
865     */
866 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
867 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 schoenebeck 2922 DLS::Sample::Resize(NewSize);
869 schoenebeck 809 }
870    
871 schoenebeck 2 /**
872     * Sets the position within the sample (in sample points, not in
873     * bytes). Use this method and <i>Read()</i> if you don't want to load
874     * the sample into RAM, thus for disk streaming.
875     *
876     * Although the original Gigasampler engine doesn't allow positioning
877     * within compressed samples, I decided to implement it. Even though
878     * the Gigasampler format doesn't allow to define loops for compressed
879     * samples at the moment, positioning within compressed samples might be
880     * interesting for some sampler engines though. The only drawback about
881     * my decision is that it takes longer to load compressed gig Files on
882     * startup, because it's neccessary to scan the samples for some
883     * mandatory informations. But I think as it doesn't affect the runtime
884     * efficiency, nobody will have a problem with that.
885     *
886     * @param SampleCount number of sample points to jump
887     * @param Whence optional: to which relation \a SampleCount refers
888     * to, if omited <i>RIFF::stream_start</i> is assumed
889     * @returns the new sample position
890     * @see Read()
891     */
892 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 schoenebeck 2 if (Compressed) {
894     switch (Whence) {
895     case RIFF::stream_curpos:
896     this->SamplePos += SampleCount;
897     break;
898     case RIFF::stream_end:
899     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900     break;
901     case RIFF::stream_backward:
902     this->SamplePos -= SampleCount;
903     break;
904     case RIFF::stream_start: default:
905     this->SamplePos = SampleCount;
906     break;
907     }
908     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913     return this->SamplePos;
914     }
915     else { // not compressed
916 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 schoenebeck 2 return (result == orderedBytes) ? SampleCount
919     : result / this->FrameSize;
920     }
921     }
922    
923     /**
924     * Returns the current position in the sample (in sample points).
925     */
926 schoenebeck 2912 file_offset_t Sample::GetPos() const {
927 schoenebeck 2 if (Compressed) return SamplePos;
928     else return pCkData->GetPos() / FrameSize;
929     }
930    
931     /**
932 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
933     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934     * the position within the sample respectively, this method honors the
935     * looping informations of the sample (if any). The sample wave stream
936     * will be decompressed on the fly if using a compressed sample. Use this
937     * method if you don't want to load the sample into RAM, thus for disk
938     * streaming. All this methods needs to know to proceed with streaming
939     * for the next time you call this method is stored in \a pPlaybackState.
940     * You have to allocate and initialize the playback_state_t structure by
941     * yourself before you use it to stream a sample:
942 schoenebeck 384 * @code
943     * gig::playback_state_t playbackstate;
944     * playbackstate.position = 0;
945     * playbackstate.reverse = false;
946     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947     * @endcode
948 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
949     * defined or if the current read position is located within a loop area.
950     * The method already handles such cases by itself.
951     *
952 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
953     * have to use an external decompression buffer for <b>EACH</b>
954     * streaming thread to avoid race conditions and crashes!
955     *
956 schoenebeck 24 * @param pBuffer destination buffer
957     * @param SampleCount number of sample points to read
958     * @param pPlaybackState will be used to store and reload the playback
959     * state for the next ReadAndLoop() call
960 persson 864 * @param pDimRgn dimension region with looping information
961 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 schoenebeck 24 * @returns number of successfully read sample points
963 schoenebeck 384 * @see CreateDecompressionBuffer()
964 schoenebeck 24 */
965 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
969    
970     SetPos(pPlaybackState->position); // recover position from the last time
971    
972 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973 schoenebeck 24
974 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976 schoenebeck 24
977 persson 864 if (GetPos() <= loopEnd) {
978     switch (loop.LoopType) {
979 schoenebeck 24
980 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
981     do {
982     // if not endless loop check if max. number of loop cycles have been passed
983     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984 schoenebeck 24
985 persson 864 if (!pPlaybackState->reverse) { // forward playback
986     do {
987     samplestoloopend = loopEnd - GetPos();
988     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989     samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     if (readsamples == samplestoloopend) {
992     pPlaybackState->reverse = true;
993     break;
994     }
995     } while (samplestoread && readsamples);
996     }
997     else { // backward playback
998 schoenebeck 24
999 persson 864 // as we can only read forward from disk, we have to
1000     // determine the end position within the loop first,
1001     // read forward from that 'end' and finally after
1002     // reading, swap all sample frames so it reflects
1003     // backward playback
1004 schoenebeck 24
1005 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1006     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009 schoenebeck 24
1010 persson 864 SetPos(reverseplaybackend);
1011 schoenebeck 24
1012 persson 864 // read samples for backward playback
1013     do {
1014     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015     samplestoreadinloop -= readsamples;
1016     samplestoread -= readsamples;
1017     totalreadsamples += readsamples;
1018     } while (samplestoreadinloop && readsamples);
1019 schoenebeck 24
1020 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022     if (reverseplaybackend == loop.LoopStart) {
1023     pPlaybackState->loop_cycles_left--;
1024     pPlaybackState->reverse = false;
1025     }
1026    
1027     // reverse the sample frames for backward playback
1028 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 schoenebeck 24 }
1031 persson 864 } while (samplestoread && readsamples);
1032     break;
1033     }
1034 schoenebeck 24
1035 persson 864 case loop_type_backward: { // TODO: not tested yet!
1036     // forward playback (not entered the loop yet)
1037     if (!pPlaybackState->reverse) do {
1038     samplestoloopend = loopEnd - GetPos();
1039     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040     samplestoread -= readsamples;
1041     totalreadsamples += readsamples;
1042     if (readsamples == samplestoloopend) {
1043     pPlaybackState->reverse = true;
1044     break;
1045     }
1046     } while (samplestoread && readsamples);
1047 schoenebeck 24
1048 persson 864 if (!samplestoread) break;
1049 schoenebeck 24
1050 persson 864 // as we can only read forward from disk, we have to
1051     // determine the end position within the loop first,
1052     // read forward from that 'end' and finally after
1053     // reading, swap all sample frames so it reflects
1054     // backward playback
1055 schoenebeck 24
1056 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1057     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 persson 864 : samplestoread;
1060 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061 schoenebeck 24
1062 persson 864 SetPos(reverseplaybackend);
1063 schoenebeck 24
1064 persson 864 // read samples for backward playback
1065     do {
1066     // if not endless loop check if max. number of loop cycles have been passed
1067     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068     samplestoloopend = loopEnd - GetPos();
1069     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070     samplestoreadinloop -= readsamples;
1071     samplestoread -= readsamples;
1072     totalreadsamples += readsamples;
1073     if (readsamples == samplestoloopend) {
1074     pPlaybackState->loop_cycles_left--;
1075     SetPos(loop.LoopStart);
1076     }
1077     } while (samplestoreadinloop && readsamples);
1078 schoenebeck 24
1079 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1080 schoenebeck 24
1081 persson 864 // reverse the sample frames for backward playback
1082     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083     break;
1084     }
1085 schoenebeck 24
1086 persson 864 default: case loop_type_normal: {
1087     do {
1088     // if not endless loop check if max. number of loop cycles have been passed
1089     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090     samplestoloopend = loopEnd - GetPos();
1091     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092     samplestoread -= readsamples;
1093     totalreadsamples += readsamples;
1094     if (readsamples == samplestoloopend) {
1095     pPlaybackState->loop_cycles_left--;
1096     SetPos(loop.LoopStart);
1097     }
1098     } while (samplestoread && readsamples);
1099     break;
1100     }
1101 schoenebeck 24 }
1102     }
1103     }
1104    
1105     // read on without looping
1106     if (samplestoread) do {
1107 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 schoenebeck 24 samplestoread -= readsamples;
1109     totalreadsamples += readsamples;
1110     } while (readsamples && samplestoread);
1111    
1112     // store current position
1113     pPlaybackState->position = GetPos();
1114    
1115     return totalreadsamples;
1116     }
1117    
1118     /**
1119 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1120     * position into the buffer pointed by \a pBuffer and increments the
1121     * position within the sample. The sample wave stream will be
1122     * decompressed on the fly if using a compressed sample. Use this method
1123     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124     * thus for disk streaming.
1125     *
1126 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1127     * have to use an external decompression buffer for <b>EACH</b>
1128     * streaming thread to avoid race conditions and crashes!
1129     *
1130 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1131     * (using native endianness). For 24 bit, the buffer will
1132     * contain three bytes per sample, little-endian.
1133     *
1134 schoenebeck 2 * @param pBuffer destination buffer
1135     * @param SampleCount number of sample points to read
1136 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 schoenebeck 2 * @returns number of successfully read sample points
1138 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1139 schoenebeck 2 */
1140 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 schoenebeck 21 if (SampleCount == 0) return 0;
1142 schoenebeck 317 if (!Compressed) {
1143     if (BitDepth == 24) {
1144 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 schoenebeck 317 }
1146 persson 365 else { // 16 bit
1147     // (pCkData->Read does endian correction)
1148     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149     : pCkData->Read(pBuffer, SampleCount, 2);
1150     }
1151 schoenebeck 317 }
1152 persson 365 else {
1153 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1155 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1156 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1157     remainingsamples = SampleCount,
1158 persson 365 copysamples, skipsamples,
1159     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 schoenebeck 2 this->FrameOffset = 0;
1161    
1162 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163    
1164     // if decompression buffer too small, then reduce amount of samples to read
1165     if (pDecompressionBuffer->Size < assumedsize) {
1166     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168     remainingsamples = SampleCount;
1169     assumedsize = GuessSize(SampleCount);
1170 schoenebeck 2 }
1171    
1172 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177 persson 365 while (remainingsamples && remainingbytes) {
1178 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1179     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180 schoenebeck 2
1181 persson 365 int mode_l = *pSrc++, mode_r = 0;
1182    
1183     if (Channels == 2) {
1184     mode_r = *pSrc++;
1185     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188     if (remainingbytes < framebytes) { // last frame in sample
1189     framesamples = SamplesInLastFrame;
1190     if (mode_l == 4 && (framesamples & 1)) {
1191     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192     }
1193     else {
1194     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195     }
1196 schoenebeck 2 }
1197     }
1198 persson 365 else {
1199     framebytes = bytesPerFrame[mode_l] + 1;
1200     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201     if (remainingbytes < framebytes) {
1202     framesamples = SamplesInLastFrame;
1203     }
1204     }
1205 schoenebeck 2
1206     // determine how many samples in this frame to skip and read
1207 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1208     if (currentframeoffset <= framesamples) {
1209     copysamples = framesamples - currentframeoffset;
1210     skipsamples = currentframeoffset;
1211     }
1212     else {
1213     copysamples = 0;
1214     skipsamples = framesamples;
1215     }
1216 schoenebeck 2 }
1217     else {
1218 persson 365 // This frame has enough data for pBuffer, but not
1219     // all of the frame is needed. Set file position
1220     // to start of this frame for next call to Read.
1221 schoenebeck 2 copysamples = remainingsamples;
1222 persson 365 skipsamples = currentframeoffset;
1223     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224     this->FrameOffset = currentframeoffset + copysamples;
1225     }
1226     remainingsamples -= copysamples;
1227    
1228     if (remainingbytes > framebytes) {
1229     remainingbytes -= framebytes;
1230     if (remainingsamples == 0 &&
1231     currentframeoffset + copysamples == framesamples) {
1232     // This frame has enough data for pBuffer, and
1233     // all of the frame is needed. Set file
1234     // position to start of next frame for next
1235     // call to Read. FrameOffset is 0.
1236 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237     }
1238     }
1239 persson 365 else remainingbytes = 0;
1240 schoenebeck 2
1241 persson 365 currentframeoffset -= skipsamples;
1242 schoenebeck 2
1243 persson 365 if (copysamples == 0) {
1244     // skip this frame
1245     pSrc += framebytes - Channels;
1246     }
1247     else {
1248     const unsigned char* const param_l = pSrc;
1249     if (BitDepth == 24) {
1250     if (mode_l != 2) pSrc += 12;
1251 schoenebeck 2
1252 persson 365 if (Channels == 2) { // Stereo
1253     const unsigned char* const param_r = pSrc;
1254     if (mode_r != 2) pSrc += 12;
1255    
1256 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 persson 437 skipsamples, copysamples, TruncatedBits);
1258 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 persson 437 skipsamples, copysamples, TruncatedBits);
1260 persson 902 pDst24 += copysamples * 6;
1261 schoenebeck 2 }
1262 persson 365 else { // Mono
1263 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 persson 437 skipsamples, copysamples, TruncatedBits);
1265 persson 902 pDst24 += copysamples * 3;
1266 schoenebeck 2 }
1267 persson 365 }
1268     else { // 16 bit
1269     if (mode_l) pSrc += 4;
1270 schoenebeck 2
1271 persson 365 int step;
1272     if (Channels == 2) { // Stereo
1273     const unsigned char* const param_r = pSrc;
1274     if (mode_r) pSrc += 4;
1275    
1276     step = (2 - mode_l) + (2 - mode_r);
1277 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 persson 365 skipsamples, copysamples);
1280     pDst += copysamples << 1;
1281 schoenebeck 2 }
1282 persson 365 else { // Mono
1283     step = 2 - mode_l;
1284 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 persson 365 pDst += copysamples;
1286 schoenebeck 2 }
1287 persson 365 }
1288     pSrc += nextFrameOffset;
1289     }
1290 schoenebeck 2
1291 persson 365 // reload from disk to local buffer if needed
1292     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293     assumedsize = GuessSize(remainingsamples);
1294     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 schoenebeck 2 }
1299 persson 365 } // while
1300    
1301 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1302 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 schoenebeck 2 return (SampleCount - remainingsamples);
1304     }
1305     }
1306    
1307 schoenebeck 809 /** @brief Write sample wave data.
1308     *
1309     * Writes \a SampleCount number of sample points from the buffer pointed
1310     * by \a pBuffer and increments the position within the sample. Use this
1311     * method to directly write the sample data to disk, i.e. if you don't
1312     * want or cannot load the whole sample data into RAM.
1313     *
1314     * You have to Resize() the sample to the desired size and call
1315     * File::Save() <b>before</b> using Write().
1316     *
1317     * Note: there is currently no support for writing compressed samples.
1318     *
1319 persson 1264 * For 16 bit samples, the data in the source buffer should be
1320     * int16_t (using native endianness). For 24 bit, the buffer
1321     * should contain three bytes per sample, little-endian.
1322     *
1323 schoenebeck 809 * @param pBuffer - source buffer
1324     * @param SampleCount - number of sample points to write
1325     * @throws DLS::Exception if current sample size is too small
1326     * @throws gig::Exception if sample is compressed
1327     * @see DLS::LoadSampleData()
1328     */
1329 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331 persson 1207
1332     // if this is the first write in this sample, reset the
1333     // checksum calculator
1334 persson 1199 if (pCkData->GetPos() == 0) {
1335 schoenebeck 1381 __resetCRC(crc);
1336 persson 1199 }
1337 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 schoenebeck 2912 file_offset_t res;
1339 persson 1264 if (BitDepth == 24) {
1340     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341     } else { // 16 bit
1342     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343     : pCkData->Write(pBuffer, SampleCount, 2);
1344     }
1345 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346 persson 1199
1347 persson 1207 // if this is the last write, update the checksum chunk in the
1348     // file
1349 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 schoenebeck 3115 __finalizeCRC(crc);
1351 persson 1199 File* pFile = static_cast<File*>(GetParent());
1352 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1353 persson 1199 }
1354     return res;
1355 schoenebeck 809 }
1356    
1357 schoenebeck 384 /**
1358     * Allocates a decompression buffer for streaming (compressed) samples
1359     * with Sample::Read(). If you are using more than one streaming thread
1360     * in your application you <b>HAVE</b> to create a decompression buffer
1361     * for <b>EACH</b> of your streaming threads and provide it with the
1362     * Sample::Read() call in order to avoid race conditions and crashes.
1363     *
1364     * You should free the memory occupied by the allocated buffer(s) once
1365     * you don't need one of your streaming threads anymore by calling
1366     * DestroyDecompressionBuffer().
1367     *
1368     * @param MaxReadSize - the maximum size (in sample points) you ever
1369     * expect to read with one Read() call
1370     * @returns allocated decompression buffer
1371     * @see DestroyDecompressionBuffer()
1372     */
1373 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 schoenebeck 384 buffer_t result;
1375     const double worstCaseHeaderOverhead =
1376     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 schoenebeck 384 result.pStart = new int8_t[result.Size];
1379     result.NullExtensionSize = 0;
1380     return result;
1381     }
1382    
1383     /**
1384     * Free decompression buffer, previously created with
1385     * CreateDecompressionBuffer().
1386     *
1387     * @param DecompressionBuffer - previously allocated decompression
1388     * buffer to free
1389     */
1390     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392     delete[] (int8_t*) DecompressionBuffer.pStart;
1393     DecompressionBuffer.pStart = NULL;
1394     DecompressionBuffer.Size = 0;
1395     DecompressionBuffer.NullExtensionSize = 0;
1396     }
1397     }
1398    
1399 schoenebeck 930 /**
1400     * Returns pointer to the Group this Sample belongs to. In the .gig
1401     * format a sample always belongs to one group. If it wasn't explicitly
1402     * assigned to a certain group, it will be automatically assigned to a
1403     * default group.
1404     *
1405     * @returns Sample's Group (never NULL)
1406     */
1407     Group* Sample::GetGroup() const {
1408     return pGroup;
1409     }
1410    
1411 schoenebeck 2985 /**
1412 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413     * time when this sample's wave form data was modified for the last time
1414     * by calling Write(). This checksum only covers the raw wave form data,
1415     * not any meta informations like i.e. bit depth or loop points. Since
1416     * this method just returns the checksum stored for this sample i.e. when
1417     * the gig file was loaded, this method returns immediately. So it does no
1418     * recalcuation of the checksum with the currently available sample wave
1419     * form data.
1420     *
1421     * @see VerifyWaveData()
1422     */
1423     uint32_t Sample::GetWaveDataCRC32Checksum() {
1424     return crc;
1425     }
1426    
1427     /**
1428 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429     * Sample's raw wave data is intentionally modified (i.e. by calling
1430     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431     * is calculated and stored/updated for this sample, along to the sample's
1432     * meta informations.
1433     *
1434     * Now by calling this method the current raw audio wave data is checked
1435     * against the already stored CRC32 check sum in order to check whether the
1436     * sample data had been damaged unintentionally for some reason. Since by
1437     * calling this method always the entire raw audio wave data has to be
1438     * read, verifying all samples this way may take a long time accordingly.
1439     * And that's also the reason why the sample integrity is not checked by
1440     * default whenever a gig file is loaded. So this method must be called
1441     * explicitly to fulfill this task.
1442     *
1443 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1444     * calculated checksum of the current raw wave form data,
1445     * you can get the expected checksum instead by calling
1446     * GetWaveDataCRC32Checksum()
1447 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1448     * @throws Exception if no checksum had been stored to disk for this
1449     * sample yet, or on I/O issues
1450 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1451 schoenebeck 2985 */
1452 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1454 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1455 schoenebeck 2989 if (pActually) *pActually = crc;
1456     return crc == this->crc;
1457 schoenebeck 2985 }
1458    
1459     uint32_t Sample::CalculateWaveDataChecksum() {
1460     const size_t sz = 20*1024; // 20kB buffer size
1461     std::vector<uint8_t> buffer(sz);
1462     buffer.resize(sz);
1463    
1464     const size_t n = sz / FrameSize;
1465     SetPos(0);
1466     uint32_t crc = 0;
1467     __resetCRC(crc);
1468     while (true) {
1469     file_offset_t nRead = Read(&buffer[0], n);
1470     if (nRead <= 0) break;
1471     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472     }
1473 schoenebeck 3115 __finalizeCRC(crc);
1474 schoenebeck 2985 return crc;
1475     }
1476    
1477 schoenebeck 2 Sample::~Sample() {
1478     Instances--;
1479 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1480     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481     InternalDecompressionBuffer.pStart = NULL;
1482     InternalDecompressionBuffer.Size = 0;
1483 schoenebeck 355 }
1484 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1485     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486     }
1487    
1488    
1489    
1490     // *************** DimensionRegion ***************
1491     // *
1492    
1493 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1494 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 schoenebeck 16 Instances++;
1498    
1499 schoenebeck 823 pSample = NULL;
1500 schoenebeck 1316 pRegion = pParent;
1501 schoenebeck 823
1502 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503     else memset(&Crossfade, 0, 4);
1504    
1505 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506 schoenebeck 2
1507     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1509 schoenebeck 3478 _3ewa->SetPos(0);
1510    
1511 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514     _3ewa->ReadInt16(); // unknown
1515     LFO1InternalDepth = _3ewa->ReadUint16();
1516     _3ewa->ReadInt16(); // unknown
1517     LFO3InternalDepth = _3ewa->ReadInt16();
1518     _3ewa->ReadInt16(); // unknown
1519     LFO1ControlDepth = _3ewa->ReadUint16();
1520     _3ewa->ReadInt16(); // unknown
1521     LFO3ControlDepth = _3ewa->ReadInt16();
1522     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524     _3ewa->ReadInt16(); // unknown
1525     EG1Sustain = _3ewa->ReadUint16();
1526     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529     EG1ControllerInvert = eg1ctrloptions & 0x01;
1530     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535     EG2ControllerInvert = eg2ctrloptions & 0x01;
1536     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542     _3ewa->ReadInt16(); // unknown
1543     EG2Sustain = _3ewa->ReadUint16();
1544     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545     _3ewa->ReadInt16(); // unknown
1546     LFO2ControlDepth = _3ewa->ReadUint16();
1547     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548     _3ewa->ReadInt16(); // unknown
1549     LFO2InternalDepth = _3ewa->ReadUint16();
1550     int32_t eg1decay2 = _3ewa->ReadInt32();
1551     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553     _3ewa->ReadInt16(); // unknown
1554     EG1PreAttack = _3ewa->ReadUint16();
1555     int32_t eg2decay2 = _3ewa->ReadInt32();
1556     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558     _3ewa->ReadInt16(); // unknown
1559     EG2PreAttack = _3ewa->ReadUint16();
1560     uint8_t velocityresponse = _3ewa->ReadUint8();
1561     if (velocityresponse < 5) {
1562     VelocityResponseCurve = curve_type_nonlinear;
1563     VelocityResponseDepth = velocityresponse;
1564     } else if (velocityresponse < 10) {
1565     VelocityResponseCurve = curve_type_linear;
1566     VelocityResponseDepth = velocityresponse - 5;
1567     } else if (velocityresponse < 15) {
1568     VelocityResponseCurve = curve_type_special;
1569     VelocityResponseDepth = velocityresponse - 10;
1570     } else {
1571     VelocityResponseCurve = curve_type_unknown;
1572     VelocityResponseDepth = 0;
1573     }
1574     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575     if (releasevelocityresponse < 5) {
1576     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577     ReleaseVelocityResponseDepth = releasevelocityresponse;
1578     } else if (releasevelocityresponse < 10) {
1579     ReleaseVelocityResponseCurve = curve_type_linear;
1580     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581     } else if (releasevelocityresponse < 15) {
1582     ReleaseVelocityResponseCurve = curve_type_special;
1583     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584     } else {
1585     ReleaseVelocityResponseCurve = curve_type_unknown;
1586     ReleaseVelocityResponseDepth = 0;
1587     }
1588     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589     AttenuationControllerThreshold = _3ewa->ReadInt8();
1590     _3ewa->ReadInt32(); // unknown
1591     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592     _3ewa->ReadInt16(); // unknown
1593     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597     else DimensionBypass = dim_bypass_ctrl_none;
1598     uint8_t pan = _3ewa->ReadUint8();
1599     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600     SelfMask = _3ewa->ReadInt8() & 0x01;
1601     _3ewa->ReadInt8(); // unknown
1602     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617     : vcf_res_ctrl_none;
1618     uint16_t eg3depth = _3ewa->ReadUint16();
1619     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1622     ChannelOffset = _3ewa->ReadUint8() / 4;
1623     uint8_t regoptions = _3ewa->ReadUint8();
1624     MSDecode = regoptions & 0x01; // bit 0
1625     SustainDefeat = regoptions & 0x02; // bit 1
1626     _3ewa->ReadInt16(); // unknown
1627     VelocityUpperLimit = _3ewa->ReadInt8();
1628     _3ewa->ReadInt8(); // unknown
1629     _3ewa->ReadInt16(); // unknown
1630     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631     _3ewa->ReadInt8(); // unknown
1632     _3ewa->ReadInt8(); // unknown
1633     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634     uint8_t vcfcutoff = _3ewa->ReadUint8();
1635     VCFEnabled = vcfcutoff & 0x80; // bit 7
1636     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638     uint8_t vcfvelscale = _3ewa->ReadUint8();
1639     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641     _3ewa->ReadInt8(); // unknown
1642     uint8_t vcfresonance = _3ewa->ReadUint8();
1643     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648     uint8_t vcfvelocity = _3ewa->ReadUint8();
1649     VCFVelocityDynamicRange = vcfvelocity % 5;
1650     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652     if (VCFType == vcf_type_lowpass) {
1653     if (lfo3ctrl & 0x40) // bit 6
1654     VCFType = vcf_type_lowpassturbo;
1655     }
1656 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1657     _3ewa->Read(DimensionUpperLimits, 1, 8);
1658     } else {
1659     memset(DimensionUpperLimits, 0, 8);
1660     }
1661 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1662     // use default values
1663     LFO3Frequency = 1.0;
1664     EG3Attack = 0.0;
1665     LFO1InternalDepth = 0;
1666     LFO3InternalDepth = 0;
1667     LFO1ControlDepth = 0;
1668     LFO3ControlDepth = 0;
1669     EG1Attack = 0.0;
1670 persson 1218 EG1Decay1 = 0.005;
1671     EG1Sustain = 1000;
1672     EG1Release = 0.3;
1673 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1674     EG1Controller.controller_number = 0;
1675     EG1ControllerInvert = false;
1676     EG1ControllerAttackInfluence = 0;
1677     EG1ControllerDecayInfluence = 0;
1678     EG1ControllerReleaseInfluence = 0;
1679     EG2Controller.type = eg2_ctrl_t::type_none;
1680     EG2Controller.controller_number = 0;
1681     EG2ControllerInvert = false;
1682     EG2ControllerAttackInfluence = 0;
1683     EG2ControllerDecayInfluence = 0;
1684     EG2ControllerReleaseInfluence = 0;
1685     LFO1Frequency = 1.0;
1686     EG2Attack = 0.0;
1687 persson 1218 EG2Decay1 = 0.005;
1688     EG2Sustain = 1000;
1689 schoenebeck 2990 EG2Release = 60;
1690 schoenebeck 809 LFO2ControlDepth = 0;
1691     LFO2Frequency = 1.0;
1692     LFO2InternalDepth = 0;
1693     EG1Decay2 = 0.0;
1694 persson 1218 EG1InfiniteSustain = true;
1695     EG1PreAttack = 0;
1696 schoenebeck 809 EG2Decay2 = 0.0;
1697 persson 1218 EG2InfiniteSustain = true;
1698     EG2PreAttack = 0;
1699 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1700     VelocityResponseDepth = 3;
1701     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702     ReleaseVelocityResponseDepth = 3;
1703     VelocityResponseCurveScaling = 32;
1704     AttenuationControllerThreshold = 0;
1705     SampleStartOffset = 0;
1706     PitchTrack = true;
1707     DimensionBypass = dim_bypass_ctrl_none;
1708     Pan = 0;
1709     SelfMask = true;
1710     LFO3Controller = lfo3_ctrl_modwheel;
1711     LFO3Sync = false;
1712     InvertAttenuationController = false;
1713     AttenuationController.type = attenuation_ctrl_t::type_none;
1714     AttenuationController.controller_number = 0;
1715     LFO2Controller = lfo2_ctrl_internal;
1716     LFO2FlipPhase = false;
1717     LFO2Sync = false;
1718     LFO1Controller = lfo1_ctrl_internal;
1719     LFO1FlipPhase = false;
1720     LFO1Sync = false;
1721     VCFResonanceController = vcf_res_ctrl_none;
1722     EG3Depth = 0;
1723     ChannelOffset = 0;
1724     MSDecode = false;
1725     SustainDefeat = false;
1726     VelocityUpperLimit = 0;
1727     ReleaseTriggerDecay = 0;
1728     EG1Hold = false;
1729     VCFEnabled = false;
1730     VCFCutoff = 0;
1731     VCFCutoffController = vcf_cutoff_ctrl_none;
1732     VCFCutoffControllerInvert = false;
1733     VCFVelocityScale = 0;
1734     VCFResonance = 0;
1735     VCFResonanceDynamic = false;
1736     VCFKeyboardTracking = false;
1737     VCFKeyboardTrackingBreakpoint = 0;
1738     VCFVelocityDynamicRange = 0x04;
1739     VCFVelocityCurve = curve_type_linear;
1740     VCFType = vcf_type_lowpass;
1741 persson 1247 memset(DimensionUpperLimits, 127, 8);
1742 schoenebeck 2 }
1743 schoenebeck 3623
1744 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 schoenebeck 3323 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 schoenebeck 3442 if (lsde) { // format extension for EG behavior options
1747 schoenebeck 3478 lsde->SetPos(0);
1748    
1749 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 schoenebeck 3327 unsigned char byte = lsde->ReadUint8();
1752     pEGOpts[i]->AttackCancel = byte & 1;
1753     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757     }
1758 schoenebeck 3323 }
1759 schoenebeck 3442 // format extension for sustain pedal up effect on release trigger samples
1760     if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761     lsde->SetPos(3);
1762 schoenebeck 3446 uint8_t byte = lsde->ReadUint8();
1763     SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764     NoNoteOffReleaseTrigger = byte >> 7;
1765     } else {
1766     SustainReleaseTrigger = sust_rel_trg_none;
1767     NoNoteOffReleaseTrigger = false;
1768     }
1769 schoenebeck 3623 // format extension for LFOs' wave form, phase displacement and for
1770     // LFO3's flip phase
1771     if (lsde && lsde->GetSize() > 4) {
1772     lsde->SetPos(4);
1773     LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774     LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775     LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776     lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777     LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778     LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779     LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780     const uint32_t flags = lsde->ReadInt32();
1781     LFO3FlipPhase = flags & 1;
1782     } else {
1783     LFO1WaveForm = lfo_wave_sine;
1784     LFO2WaveForm = lfo_wave_sine;
1785     LFO3WaveForm = lfo_wave_sine;
1786     LFO1Phase = 0.0;
1787     LFO2Phase = 0.0;
1788     LFO3Phase = 0.0;
1789     LFO3FlipPhase = false;
1790     }
1791 schoenebeck 16
1792 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793     VelocityResponseDepth,
1794     VelocityResponseCurveScaling);
1795    
1796 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1797     ReleaseVelocityResponseCurve,
1798     ReleaseVelocityResponseDepth
1799     );
1800 persson 613
1801 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802     VCFVelocityDynamicRange,
1803     VCFVelocityScale,
1804     VCFCutoffController);
1805 persson 613
1806     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 persson 858 VelocityTable = 0;
1808 persson 613 }
1809    
1810 persson 1301 /*
1811     * Constructs a DimensionRegion by copying all parameters from
1812     * another DimensionRegion
1813     */
1814     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815     Instances++;
1816 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1818     pParentList = _3ewl; // restore the chunk pointer
1819    
1820     // deep copy of owned structures
1821     if (src.VelocityTable) {
1822     VelocityTable = new uint8_t[128];
1823     for (int k = 0 ; k < 128 ; k++)
1824     VelocityTable[k] = src.VelocityTable[k];
1825     }
1826     if (src.pSampleLoops) {
1827     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828     for (int k = 0 ; k < src.SampleLoops ; k++)
1829     pSampleLoops[k] = src.pSampleLoops[k];
1830     }
1831     }
1832 schoenebeck 2394
1833     /**
1834     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835     * and assign it to this object.
1836     *
1837     * Note that all sample pointers referenced by @a orig are simply copied as
1838     * memory address. Thus the respective samples are shared, not duplicated!
1839     *
1840     * @param orig - original DimensionRegion object to be copied from
1841     */
1842     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 schoenebeck 2482 CopyAssign(orig, NULL);
1844     }
1845    
1846     /**
1847     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848     * and assign it to this object.
1849     *
1850     * @param orig - original DimensionRegion object to be copied from
1851     * @param mSamples - crosslink map between the foreign file's samples and
1852     * this file's samples
1853     */
1854     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 schoenebeck 2394 // delete all allocated data first
1856     if (VelocityTable) delete [] VelocityTable;
1857     if (pSampleLoops) delete [] pSampleLoops;
1858    
1859     // backup parent list pointer
1860     RIFF::List* p = pParentList;
1861    
1862 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1863     gig::Region* pOriginalRegion = pRegion;
1864    
1865 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866    
1867     *this = *orig; // default memberwise shallow copy of all parameters
1868 schoenebeck 2547
1869     // restore members that shall not be altered
1870 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1871 schoenebeck 2547 pRegion = pOriginalRegion;
1872 schoenebeck 2482
1873 schoenebeck 2547 // only take the raw sample reference reference if the
1874 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1875     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876     pSample = pOriginalSample;
1877     }
1878    
1879     if (mSamples && mSamples->count(orig->pSample)) {
1880     pSample = mSamples->find(orig->pSample)->second;
1881     }
1882 persson 1301
1883 schoenebeck 2394 // deep copy of owned structures
1884     if (orig->VelocityTable) {
1885     VelocityTable = new uint8_t[128];
1886     for (int k = 0 ; k < 128 ; k++)
1887     VelocityTable[k] = orig->VelocityTable[k];
1888     }
1889     if (orig->pSampleLoops) {
1890     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891     for (int k = 0 ; k < orig->SampleLoops ; k++)
1892     pSampleLoops[k] = orig->pSampleLoops[k];
1893     }
1894     }
1895    
1896 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 schoenebeck 3182 // in case this class will become backward incompatible one day,
1898     // then set a version and minimum version for this class like:
1899     //archive->setVersion(*this, 2);
1900     //archive->setMinVersion(*this, 1);
1901    
1902 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1903     SRLZ(EG1PreAttack);
1904     SRLZ(EG1Attack);
1905     SRLZ(EG1Decay1);
1906     SRLZ(EG1Decay2);
1907     SRLZ(EG1InfiniteSustain);
1908     SRLZ(EG1Sustain);
1909     SRLZ(EG1Release);
1910     SRLZ(EG1Hold);
1911     SRLZ(EG1Controller);
1912     SRLZ(EG1ControllerInvert);
1913     SRLZ(EG1ControllerAttackInfluence);
1914     SRLZ(EG1ControllerDecayInfluence);
1915     SRLZ(EG1ControllerReleaseInfluence);
1916 schoenebeck 3623 SRLZ(LFO1WaveForm);
1917 schoenebeck 3138 SRLZ(LFO1Frequency);
1918 schoenebeck 3623 SRLZ(LFO1Phase);
1919 schoenebeck 3138 SRLZ(LFO1InternalDepth);
1920     SRLZ(LFO1ControlDepth);
1921     SRLZ(LFO1Controller);
1922     SRLZ(LFO1FlipPhase);
1923     SRLZ(LFO1Sync);
1924     SRLZ(EG2PreAttack);
1925     SRLZ(EG2Attack);
1926     SRLZ(EG2Decay1);
1927     SRLZ(EG2Decay2);
1928     SRLZ(EG2InfiniteSustain);
1929     SRLZ(EG2Sustain);
1930     SRLZ(EG2Release);
1931     SRLZ(EG2Controller);
1932     SRLZ(EG2ControllerInvert);
1933     SRLZ(EG2ControllerAttackInfluence);
1934     SRLZ(EG2ControllerDecayInfluence);
1935     SRLZ(EG2ControllerReleaseInfluence);
1936 schoenebeck 3623 SRLZ(LFO2WaveForm);
1937 schoenebeck 3138 SRLZ(LFO2Frequency);
1938 schoenebeck 3623 SRLZ(LFO2Phase);
1939 schoenebeck 3138 SRLZ(LFO2InternalDepth);
1940     SRLZ(LFO2ControlDepth);
1941     SRLZ(LFO2Controller);
1942     SRLZ(LFO2FlipPhase);
1943     SRLZ(LFO2Sync);
1944     SRLZ(EG3Attack);
1945     SRLZ(EG3Depth);
1946 schoenebeck 3623 SRLZ(LFO3WaveForm);
1947 schoenebeck 3138 SRLZ(LFO3Frequency);
1948 schoenebeck 3623 SRLZ(LFO3Phase);
1949 schoenebeck 3138 SRLZ(LFO3InternalDepth);
1950     SRLZ(LFO3ControlDepth);
1951     SRLZ(LFO3Controller);
1952 schoenebeck 3623 SRLZ(LFO3FlipPhase);
1953 schoenebeck 3138 SRLZ(LFO3Sync);
1954     SRLZ(VCFEnabled);
1955     SRLZ(VCFType);
1956     SRLZ(VCFCutoffController);
1957     SRLZ(VCFCutoffControllerInvert);
1958     SRLZ(VCFCutoff);
1959     SRLZ(VCFVelocityCurve);
1960     SRLZ(VCFVelocityScale);
1961     SRLZ(VCFVelocityDynamicRange);
1962     SRLZ(VCFResonance);
1963     SRLZ(VCFResonanceDynamic);
1964     SRLZ(VCFResonanceController);
1965     SRLZ(VCFKeyboardTracking);
1966     SRLZ(VCFKeyboardTrackingBreakpoint);
1967     SRLZ(VelocityResponseCurve);
1968     SRLZ(VelocityResponseDepth);
1969     SRLZ(VelocityResponseCurveScaling);
1970     SRLZ(ReleaseVelocityResponseCurve);
1971     SRLZ(ReleaseVelocityResponseDepth);
1972     SRLZ(ReleaseTriggerDecay);
1973     SRLZ(Crossfade);
1974     SRLZ(PitchTrack);
1975     SRLZ(DimensionBypass);
1976     SRLZ(Pan);
1977     SRLZ(SelfMask);
1978     SRLZ(AttenuationController);
1979     SRLZ(InvertAttenuationController);
1980     SRLZ(AttenuationControllerThreshold);
1981     SRLZ(ChannelOffset);
1982     SRLZ(SustainDefeat);
1983     SRLZ(MSDecode);
1984     //SRLZ(SampleStartOffset);
1985     SRLZ(SampleAttenuation);
1986 schoenebeck 3327 SRLZ(EG1Options);
1987     SRLZ(EG2Options);
1988 schoenebeck 3442 SRLZ(SustainReleaseTrigger);
1989 schoenebeck 3446 SRLZ(NoNoteOffReleaseTrigger);
1990 schoenebeck 3138
1991     // derived attributes from DLS::Sampler
1992     SRLZ(FineTune);
1993     SRLZ(Gain);
1994     }
1995    
1996 schoenebeck 809 /**
1997 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1998     * which depends on this value.
1999     */
2000     void DimensionRegion::SetGain(int32_t gain) {
2001     DLS::Sampler::SetGain(gain);
2002     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003     }
2004    
2005     /**
2006 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
2007     * have to call File::Save() to make changes persistent.
2008     *
2009     * Usually there is absolutely no need to call this method explicitly.
2010     * It will be called automatically when File::Save() was called.
2011 schoenebeck 2682 *
2012     * @param pProgress - callback function for progress notification
2013 schoenebeck 809 */
2014 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 schoenebeck 809 // first update base class's chunk
2016 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
2017 schoenebeck 809
2018 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020     pData[12] = Crossfade.in_start;
2021     pData[13] = Crossfade.in_end;
2022     pData[14] = Crossfade.out_start;
2023     pData[15] = Crossfade.out_end;
2024    
2025 schoenebeck 809 // make sure '3ewa' chunk exists
2026     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 persson 1317 if (!_3ewa) {
2028     File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 persson 1264 }
2032 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
2033 schoenebeck 809
2034     // update '3ewa' chunk with DimensionRegion's current settings
2035    
2036 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
2038 schoenebeck 809
2039     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 persson 1179 store32(&pData[4], lfo3freq);
2041 schoenebeck 809
2042     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 persson 1179 store32(&pData[8], eg3attack);
2044 schoenebeck 809
2045     // next 2 bytes unknown
2046    
2047 persson 1179 store16(&pData[14], LFO1InternalDepth);
2048 schoenebeck 809
2049     // next 2 bytes unknown
2050    
2051 persson 1179 store16(&pData[18], LFO3InternalDepth);
2052 schoenebeck 809
2053     // next 2 bytes unknown
2054    
2055 persson 1179 store16(&pData[22], LFO1ControlDepth);
2056 schoenebeck 809
2057     // next 2 bytes unknown
2058    
2059 persson 1179 store16(&pData[26], LFO3ControlDepth);
2060 schoenebeck 809
2061     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 persson 1179 store32(&pData[28], eg1attack);
2063 schoenebeck 809
2064     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 persson 1179 store32(&pData[32], eg1decay1);
2066 schoenebeck 809
2067     // next 2 bytes unknown
2068    
2069 persson 1179 store16(&pData[38], EG1Sustain);
2070 schoenebeck 809
2071     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 persson 1179 store32(&pData[40], eg1release);
2073 schoenebeck 809
2074     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 persson 1179 pData[44] = eg1ctl;
2076 schoenebeck 809
2077     const uint8_t eg1ctrloptions =
2078 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 persson 1179 pData[45] = eg1ctrloptions;
2083 schoenebeck 809
2084     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 persson 1179 pData[46] = eg2ctl;
2086 schoenebeck 809
2087     const uint8_t eg2ctrloptions =
2088 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 persson 1179 pData[47] = eg2ctrloptions;
2093 schoenebeck 809
2094     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 persson 1179 store32(&pData[48], lfo1freq);
2096 schoenebeck 809
2097     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 persson 1179 store32(&pData[52], eg2attack);
2099 schoenebeck 809
2100     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 persson 1179 store32(&pData[56], eg2decay1);
2102 schoenebeck 809
2103     // next 2 bytes unknown
2104    
2105 persson 1179 store16(&pData[62], EG2Sustain);
2106 schoenebeck 809
2107     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 persson 1179 store32(&pData[64], eg2release);
2109 schoenebeck 809
2110     // next 2 bytes unknown
2111    
2112 persson 1179 store16(&pData[70], LFO2ControlDepth);
2113 schoenebeck 809
2114     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 persson 1179 store32(&pData[72], lfo2freq);
2116 schoenebeck 809
2117     // next 2 bytes unknown
2118    
2119 persson 1179 store16(&pData[78], LFO2InternalDepth);
2120 schoenebeck 809
2121     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 persson 1179 store32(&pData[80], eg1decay2);
2123 schoenebeck 809
2124     // next 2 bytes unknown
2125    
2126 persson 1179 store16(&pData[86], EG1PreAttack);
2127 schoenebeck 809
2128     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 persson 1179 store32(&pData[88], eg2decay2);
2130 schoenebeck 809
2131     // next 2 bytes unknown
2132    
2133 persson 1179 store16(&pData[94], EG2PreAttack);
2134 schoenebeck 809
2135     {
2136     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137     uint8_t velocityresponse = VelocityResponseDepth;
2138     switch (VelocityResponseCurve) {
2139     case curve_type_nonlinear:
2140     break;
2141     case curve_type_linear:
2142     velocityresponse += 5;
2143     break;
2144     case curve_type_special:
2145     velocityresponse += 10;
2146     break;
2147     case curve_type_unknown:
2148     default:
2149     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150     }
2151 persson 1179 pData[96] = velocityresponse;
2152 schoenebeck 809 }
2153    
2154     {
2155     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157     switch (ReleaseVelocityResponseCurve) {
2158     case curve_type_nonlinear:
2159     break;
2160     case curve_type_linear:
2161     releasevelocityresponse += 5;
2162     break;
2163     case curve_type_special:
2164     releasevelocityresponse += 10;
2165     break;
2166     case curve_type_unknown:
2167     default:
2168     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169     }
2170 persson 1179 pData[97] = releasevelocityresponse;
2171 schoenebeck 809 }
2172    
2173 persson 1179 pData[98] = VelocityResponseCurveScaling;
2174 schoenebeck 809
2175 persson 1179 pData[99] = AttenuationControllerThreshold;
2176 schoenebeck 809
2177     // next 4 bytes unknown
2178    
2179 persson 1179 store16(&pData[104], SampleStartOffset);
2180 schoenebeck 809
2181     // next 2 bytes unknown
2182    
2183     {
2184     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185     switch (DimensionBypass) {
2186     case dim_bypass_ctrl_94:
2187     pitchTrackDimensionBypass |= 0x10;
2188     break;
2189     case dim_bypass_ctrl_95:
2190     pitchTrackDimensionBypass |= 0x20;
2191     break;
2192     case dim_bypass_ctrl_none:
2193     //FIXME: should we set anything here?
2194     break;
2195     default:
2196     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197     }
2198 persson 1179 pData[108] = pitchTrackDimensionBypass;
2199 schoenebeck 809 }
2200    
2201     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 persson 1179 pData[109] = pan;
2203 schoenebeck 809
2204     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 persson 1179 pData[110] = selfmask;
2206 schoenebeck 809
2207     // next byte unknown
2208    
2209     {
2210     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 persson 1179 pData[112] = lfo3ctrl;
2215 schoenebeck 809 }
2216    
2217     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 persson 1179 pData[113] = attenctl;
2219 schoenebeck 809
2220     {
2221     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 persson 1179 pData[114] = lfo2ctrl;
2226 schoenebeck 809 }
2227    
2228     {
2229     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232     if (VCFResonanceController != vcf_res_ctrl_none)
2233     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 persson 1179 pData[115] = lfo1ctrl;
2235 schoenebeck 809 }
2236    
2237     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 persson 1869 store16(&pData[116], eg3depth);
2240 schoenebeck 809
2241     // next 2 bytes unknown
2242    
2243     const uint8_t channeloffset = ChannelOffset * 4;
2244 persson 1179 pData[120] = channeloffset;
2245 schoenebeck 809
2246     {
2247     uint8_t regoptions = 0;
2248     if (MSDecode) regoptions |= 0x01; // bit 0
2249     if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 persson 1179 pData[121] = regoptions;
2251 schoenebeck 809 }
2252    
2253     // next 2 bytes unknown
2254    
2255 persson 1179 pData[124] = VelocityUpperLimit;
2256 schoenebeck 809
2257     // next 3 bytes unknown
2258    
2259 persson 1179 pData[128] = ReleaseTriggerDecay;
2260 schoenebeck 809
2261     // next 2 bytes unknown
2262    
2263     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 persson 1179 pData[131] = eg1hold;
2265 schoenebeck 809
2266 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 persson 1179 pData[132] = vcfcutoff;
2269 schoenebeck 809
2270 persson 1179 pData[133] = VCFCutoffController;
2271 schoenebeck 809
2272 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 persson 1179 pData[134] = vcfvelscale;
2275 schoenebeck 809
2276     // next byte unknown
2277    
2278 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2280 persson 1179 pData[136] = vcfresonance;
2281 schoenebeck 809
2282 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 persson 1179 pData[137] = vcfbreakpoint;
2285 schoenebeck 809
2286 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 schoenebeck 809 VCFVelocityCurve * 5;
2288 persson 1179 pData[138] = vcfvelocity;
2289 schoenebeck 809
2290     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 persson 1179 pData[139] = vcftype;
2292 persson 1070
2293     if (chunksize >= 148) {
2294     memcpy(&pData[140], DimensionUpperLimits, 8);
2295     }
2296 schoenebeck 3323
2297 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with
2298 schoenebeck 3323 // Gigasampler/GigaStudio !
2299     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 schoenebeck 3623 const int lsdeSize =
2301     3 /* EG cancel options */ +
2302     1 /* sustain pedal up on release trigger option */ +
2303     8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304     if (!lsde && UsesAnyGigFormatExtension()) {
2305     // only add this "LSDE" chunk if there is some (format extension)
2306     // setting effective that would require our "LSDE" format extension
2307     // chunk to be stored
2308     lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309     // move LSDE chunk to the end of parent list
2310     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 schoenebeck 3323 }
2312     if (lsde) {
2313 schoenebeck 3442 if (lsde->GetNewSize() < lsdeSize)
2314     lsde->Resize(lsdeSize);
2315     // format extension for EG behavior options
2316 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 schoenebeck 3327 pData[i] =
2320     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325     }
2326 schoenebeck 3446 // format extension for release trigger options
2327     pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 schoenebeck 3623 // format extension for LFOs' wave form, phase displacement and for
2329     // LFO3's flip phase
2330     store16(&pData[4], LFO1WaveForm);
2331     store16(&pData[6], LFO2WaveForm);
2332     store16(&pData[8], LFO3WaveForm);
2333     //NOTE: 16 bits reserved here for potential future use !
2334     const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335     const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336     const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337     store32(&pData[12], lfo1Phase);
2338     store32(&pData[16], lfo2Phase);
2339     store32(&pData[20], lfo3Phase);
2340     const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341     store32(&pData[24], flags);
2342    
2343     // compile time sanity check: is our last store access here
2344     // consistent with the initial lsdeSize value assignment?
2345     static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 schoenebeck 3323 }
2347 schoenebeck 809 }
2348    
2349 schoenebeck 3623 /**
2350     * Returns @c true in case this DimensionRegion object uses any gig format
2351     * extension, that is whether this DimensionRegion object currently has any
2352     * setting effective that would require our "LSDE" RIFF chunk to be stored
2353     * to the gig file.
2354     *
2355     * Right now this is a private method. It is considerable though this method
2356     * to become (in slightly modified form) a public API method in future, i.e.
2357     * to allow instrument editors to visualize and/or warn the user of any
2358     * format extension being used. Right now this method really just serves to
2359     * answer the question whether an LSDE chunk is required, for the public API
2360     * purpose this method would also need to check whether any other setting
2361     * stored to the regular value '3ewa' chunk, is actually a format extension
2362     * as well.
2363     */
2364     bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365     eg_opt_t defaultOpt;
2366     return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367     memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368     SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369     LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370     LFO1Phase || LFO2Phase || LFO3Phase ||
2371     LFO3FlipPhase;
2372     }
2373    
2374 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375     curve_type_t curveType = releaseVelocityResponseCurve;
2376     uint8_t depth = releaseVelocityResponseDepth;
2377     // this models a strange behaviour or bug in GSt: two of the
2378     // velocity response curves for release time are not used even
2379     // if specified, instead another curve is chosen.
2380     if ((curveType == curve_type_nonlinear && depth == 0) ||
2381     (curveType == curve_type_special && depth == 4)) {
2382     curveType = curve_type_nonlinear;
2383     depth = 3;
2384     }
2385     return GetVelocityTable(curveType, depth, 0);
2386     }
2387    
2388     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389     uint8_t vcfVelocityDynamicRange,
2390     uint8_t vcfVelocityScale,
2391     vcf_cutoff_ctrl_t vcfCutoffController)
2392     {
2393     curve_type_t curveType = vcfVelocityCurve;
2394     uint8_t depth = vcfVelocityDynamicRange;
2395     // even stranger GSt: two of the velocity response curves for
2396     // filter cutoff are not used, instead another special curve
2397     // is chosen. This curve is not used anywhere else.
2398     if ((curveType == curve_type_nonlinear && depth == 0) ||
2399     (curveType == curve_type_special && depth == 4)) {
2400     curveType = curve_type_special;
2401     depth = 5;
2402     }
2403     return GetVelocityTable(curveType, depth,
2404     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405     ? vcfVelocityScale : 0);
2406     }
2407    
2408 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410     {
2411 schoenebeck 3349 // sanity check input parameters
2412     // (fallback to some default parameters on ill input)
2413     switch (curveType) {
2414     case curve_type_nonlinear:
2415     case curve_type_linear:
2416     if (depth > 4) {
2417     printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418     depth = 0;
2419     scaling = 0;
2420     }
2421     break;
2422     case curve_type_special:
2423     if (depth > 5) {
2424     printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425     depth = 0;
2426     scaling = 0;
2427     }
2428     break;
2429     case curve_type_unknown:
2430     default:
2431     printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432     curveType = curve_type_linear;
2433     depth = 0;
2434     scaling = 0;
2435     break;
2436     }
2437    
2438 persson 613 double* table;
2439     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2441 persson 613 table = (*pVelocityTables)[tableKey];
2442 schoenebeck 16 }
2443     else {
2444 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2445     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446 schoenebeck 16 }
2447 persson 613 return table;
2448 schoenebeck 2 }
2449 schoenebeck 55
2450 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2451     return pRegion;
2452     }
2453    
2454 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457     //#pragma GCC diagnostic push
2458     //#pragma GCC diagnostic error "-Wswitch"
2459    
2460 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461     leverage_ctrl_t decodedcontroller;
2462     switch (EncodedController) {
2463     // special controller
2464     case _lev_ctrl_none:
2465     decodedcontroller.type = leverage_ctrl_t::type_none;
2466     decodedcontroller.controller_number = 0;
2467     break;
2468     case _lev_ctrl_velocity:
2469     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2470     decodedcontroller.controller_number = 0;
2471     break;
2472     case _lev_ctrl_channelaftertouch:
2473     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2474     decodedcontroller.controller_number = 0;
2475     break;
2476 schoenebeck 55
2477 schoenebeck 36 // ordinary MIDI control change controller
2478     case _lev_ctrl_modwheel:
2479     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2480     decodedcontroller.controller_number = 1;
2481     break;
2482     case _lev_ctrl_breath:
2483     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2484     decodedcontroller.controller_number = 2;
2485     break;
2486     case _lev_ctrl_foot:
2487     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2488     decodedcontroller.controller_number = 4;
2489     break;
2490     case _lev_ctrl_effect1:
2491     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2492     decodedcontroller.controller_number = 12;
2493     break;
2494     case _lev_ctrl_effect2:
2495     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2496     decodedcontroller.controller_number = 13;
2497     break;
2498     case _lev_ctrl_genpurpose1:
2499     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2500     decodedcontroller.controller_number = 16;
2501     break;
2502     case _lev_ctrl_genpurpose2:
2503     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2504     decodedcontroller.controller_number = 17;
2505     break;
2506     case _lev_ctrl_genpurpose3:
2507     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2508     decodedcontroller.controller_number = 18;
2509     break;
2510     case _lev_ctrl_genpurpose4:
2511     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2512     decodedcontroller.controller_number = 19;
2513     break;
2514     case _lev_ctrl_portamentotime:
2515     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2516     decodedcontroller.controller_number = 5;
2517     break;
2518     case _lev_ctrl_sustainpedal:
2519     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2520     decodedcontroller.controller_number = 64;
2521     break;
2522     case _lev_ctrl_portamento:
2523     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2524     decodedcontroller.controller_number = 65;
2525     break;
2526     case _lev_ctrl_sostenutopedal:
2527     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2528     decodedcontroller.controller_number = 66;
2529     break;
2530     case _lev_ctrl_softpedal:
2531     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2532     decodedcontroller.controller_number = 67;
2533     break;
2534     case _lev_ctrl_genpurpose5:
2535     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2536     decodedcontroller.controller_number = 80;
2537     break;
2538     case _lev_ctrl_genpurpose6:
2539     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2540     decodedcontroller.controller_number = 81;
2541     break;
2542     case _lev_ctrl_genpurpose7:
2543     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2544     decodedcontroller.controller_number = 82;
2545     break;
2546     case _lev_ctrl_genpurpose8:
2547     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2548     decodedcontroller.controller_number = 83;
2549     break;
2550     case _lev_ctrl_effect1depth:
2551     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2552     decodedcontroller.controller_number = 91;
2553     break;
2554     case _lev_ctrl_effect2depth:
2555     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2556     decodedcontroller.controller_number = 92;
2557     break;
2558     case _lev_ctrl_effect3depth:
2559     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2560     decodedcontroller.controller_number = 93;
2561     break;
2562     case _lev_ctrl_effect4depth:
2563     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2564     decodedcontroller.controller_number = 94;
2565     break;
2566     case _lev_ctrl_effect5depth:
2567     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2568     decodedcontroller.controller_number = 95;
2569     break;
2570 schoenebeck 55
2571 schoenebeck 2540 // format extension (these controllers are so far only supported by
2572     // LinuxSampler & gigedit) they will *NOT* work with
2573     // Gigasampler/GigaStudio !
2574     case _lev_ctrl_CC3_EXT:
2575     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576     decodedcontroller.controller_number = 3;
2577     break;
2578     case _lev_ctrl_CC6_EXT:
2579     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580     decodedcontroller.controller_number = 6;
2581     break;
2582     case _lev_ctrl_CC7_EXT:
2583     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584     decodedcontroller.controller_number = 7;
2585     break;
2586     case _lev_ctrl_CC8_EXT:
2587     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588     decodedcontroller.controller_number = 8;
2589     break;
2590     case _lev_ctrl_CC9_EXT:
2591     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592     decodedcontroller.controller_number = 9;
2593     break;
2594     case _lev_ctrl_CC10_EXT:
2595     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596     decodedcontroller.controller_number = 10;
2597     break;
2598     case _lev_ctrl_CC11_EXT:
2599     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600     decodedcontroller.controller_number = 11;
2601     break;
2602     case _lev_ctrl_CC14_EXT:
2603     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604     decodedcontroller.controller_number = 14;
2605     break;
2606     case _lev_ctrl_CC15_EXT:
2607     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608     decodedcontroller.controller_number = 15;
2609     break;
2610     case _lev_ctrl_CC20_EXT:
2611     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612     decodedcontroller.controller_number = 20;
2613     break;
2614     case _lev_ctrl_CC21_EXT:
2615     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616     decodedcontroller.controller_number = 21;
2617     break;
2618     case _lev_ctrl_CC22_EXT:
2619     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620     decodedcontroller.controller_number = 22;
2621     break;
2622     case _lev_ctrl_CC23_EXT:
2623     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624     decodedcontroller.controller_number = 23;
2625     break;
2626     case _lev_ctrl_CC24_EXT:
2627     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628     decodedcontroller.controller_number = 24;
2629     break;
2630     case _lev_ctrl_CC25_EXT:
2631     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632     decodedcontroller.controller_number = 25;
2633     break;
2634     case _lev_ctrl_CC26_EXT:
2635     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636     decodedcontroller.controller_number = 26;
2637     break;
2638     case _lev_ctrl_CC27_EXT:
2639     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640     decodedcontroller.controller_number = 27;
2641     break;
2642     case _lev_ctrl_CC28_EXT:
2643     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644     decodedcontroller.controller_number = 28;
2645     break;
2646     case _lev_ctrl_CC29_EXT:
2647     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648     decodedcontroller.controller_number = 29;
2649     break;
2650     case _lev_ctrl_CC30_EXT:
2651     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652     decodedcontroller.controller_number = 30;
2653     break;
2654     case _lev_ctrl_CC31_EXT:
2655     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656     decodedcontroller.controller_number = 31;
2657     break;
2658     case _lev_ctrl_CC68_EXT:
2659     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660     decodedcontroller.controller_number = 68;
2661     break;
2662     case _lev_ctrl_CC69_EXT:
2663     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664     decodedcontroller.controller_number = 69;
2665     break;
2666     case _lev_ctrl_CC70_EXT:
2667     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668     decodedcontroller.controller_number = 70;
2669     break;
2670     case _lev_ctrl_CC71_EXT:
2671     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672     decodedcontroller.controller_number = 71;
2673     break;
2674     case _lev_ctrl_CC72_EXT:
2675     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676     decodedcontroller.controller_number = 72;
2677     break;
2678     case _lev_ctrl_CC73_EXT:
2679     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680     decodedcontroller.controller_number = 73;
2681     break;
2682     case _lev_ctrl_CC74_EXT:
2683     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684     decodedcontroller.controller_number = 74;
2685     break;
2686     case _lev_ctrl_CC75_EXT:
2687     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688     decodedcontroller.controller_number = 75;
2689     break;
2690     case _lev_ctrl_CC76_EXT:
2691     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692     decodedcontroller.controller_number = 76;
2693     break;
2694     case _lev_ctrl_CC77_EXT:
2695     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696     decodedcontroller.controller_number = 77;
2697     break;
2698     case _lev_ctrl_CC78_EXT:
2699     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700     decodedcontroller.controller_number = 78;
2701     break;
2702     case _lev_ctrl_CC79_EXT:
2703     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704     decodedcontroller.controller_number = 79;
2705     break;
2706     case _lev_ctrl_CC84_EXT:
2707     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708     decodedcontroller.controller_number = 84;
2709     break;
2710     case _lev_ctrl_CC85_EXT:
2711     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712     decodedcontroller.controller_number = 85;
2713     break;
2714     case _lev_ctrl_CC86_EXT:
2715     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716     decodedcontroller.controller_number = 86;
2717     break;
2718     case _lev_ctrl_CC87_EXT:
2719     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720     decodedcontroller.controller_number = 87;
2721     break;
2722     case _lev_ctrl_CC89_EXT:
2723     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724     decodedcontroller.controller_number = 89;
2725     break;
2726     case _lev_ctrl_CC90_EXT:
2727     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728     decodedcontroller.controller_number = 90;
2729     break;
2730     case _lev_ctrl_CC96_EXT:
2731     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732     decodedcontroller.controller_number = 96;
2733     break;
2734     case _lev_ctrl_CC97_EXT:
2735     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736     decodedcontroller.controller_number = 97;
2737     break;
2738     case _lev_ctrl_CC102_EXT:
2739     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740     decodedcontroller.controller_number = 102;
2741     break;
2742     case _lev_ctrl_CC103_EXT:
2743     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744     decodedcontroller.controller_number = 103;
2745     break;
2746     case _lev_ctrl_CC104_EXT:
2747     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748     decodedcontroller.controller_number = 104;
2749     break;
2750     case _lev_ctrl_CC105_EXT:
2751     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752     decodedcontroller.controller_number = 105;
2753     break;
2754     case _lev_ctrl_CC106_EXT:
2755     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756     decodedcontroller.controller_number = 106;
2757     break;
2758     case _lev_ctrl_CC107_EXT:
2759     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760     decodedcontroller.controller_number = 107;
2761     break;
2762     case _lev_ctrl_CC108_EXT:
2763     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764     decodedcontroller.controller_number = 108;
2765     break;
2766     case _lev_ctrl_CC109_EXT:
2767     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768     decodedcontroller.controller_number = 109;
2769     break;
2770     case _lev_ctrl_CC110_EXT:
2771     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772     decodedcontroller.controller_number = 110;
2773     break;
2774     case _lev_ctrl_CC111_EXT:
2775     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776     decodedcontroller.controller_number = 111;
2777     break;
2778     case _lev_ctrl_CC112_EXT:
2779     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780     decodedcontroller.controller_number = 112;
2781     break;
2782     case _lev_ctrl_CC113_EXT:
2783     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784     decodedcontroller.controller_number = 113;
2785     break;
2786     case _lev_ctrl_CC114_EXT:
2787     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788     decodedcontroller.controller_number = 114;
2789     break;
2790     case _lev_ctrl_CC115_EXT:
2791     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792     decodedcontroller.controller_number = 115;
2793     break;
2794     case _lev_ctrl_CC116_EXT:
2795     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796     decodedcontroller.controller_number = 116;
2797     break;
2798     case _lev_ctrl_CC117_EXT:
2799     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800     decodedcontroller.controller_number = 117;
2801     break;
2802     case _lev_ctrl_CC118_EXT:
2803     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804     decodedcontroller.controller_number = 118;
2805     break;
2806     case _lev_ctrl_CC119_EXT:
2807     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808     decodedcontroller.controller_number = 119;
2809     break;
2810    
2811 schoenebeck 36 // unknown controller type
2812     default:
2813 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2814     decodedcontroller.controller_number = 0;
2815     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816     break;
2817 schoenebeck 36 }
2818     return decodedcontroller;
2819     }
2820 schoenebeck 2540
2821     // see above (diagnostic push not supported prior GCC 4.6)
2822     //#pragma GCC diagnostic pop
2823 schoenebeck 2
2824 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825     _lev_ctrl_t encodedcontroller;
2826     switch (DecodedController.type) {
2827     // special controller
2828     case leverage_ctrl_t::type_none:
2829     encodedcontroller = _lev_ctrl_none;
2830     break;
2831     case leverage_ctrl_t::type_velocity:
2832     encodedcontroller = _lev_ctrl_velocity;
2833     break;
2834     case leverage_ctrl_t::type_channelaftertouch:
2835     encodedcontroller = _lev_ctrl_channelaftertouch;
2836     break;
2837    
2838     // ordinary MIDI control change controller
2839     case leverage_ctrl_t::type_controlchange:
2840     switch (DecodedController.controller_number) {
2841     case 1:
2842     encodedcontroller = _lev_ctrl_modwheel;
2843     break;
2844     case 2:
2845     encodedcontroller = _lev_ctrl_breath;
2846     break;
2847     case 4:
2848     encodedcontroller = _lev_ctrl_foot;
2849     break;
2850     case 12:
2851     encodedcontroller = _lev_ctrl_effect1;
2852     break;
2853     case 13:
2854     encodedcontroller = _lev_ctrl_effect2;
2855     break;
2856     case 16:
2857     encodedcontroller = _lev_ctrl_genpurpose1;
2858     break;
2859     case 17:
2860     encodedcontroller = _lev_ctrl_genpurpose2;
2861     break;
2862     case 18:
2863     encodedcontroller = _lev_ctrl_genpurpose3;
2864     break;
2865     case 19:
2866     encodedcontroller = _lev_ctrl_genpurpose4;
2867     break;
2868     case 5:
2869     encodedcontroller = _lev_ctrl_portamentotime;
2870     break;
2871     case 64:
2872     encodedcontroller = _lev_ctrl_sustainpedal;
2873     break;
2874     case 65:
2875     encodedcontroller = _lev_ctrl_portamento;
2876     break;
2877     case 66:
2878     encodedcontroller = _lev_ctrl_sostenutopedal;
2879     break;
2880     case 67:
2881     encodedcontroller = _lev_ctrl_softpedal;
2882     break;
2883     case 80:
2884     encodedcontroller = _lev_ctrl_genpurpose5;
2885     break;
2886     case 81:
2887     encodedcontroller = _lev_ctrl_genpurpose6;
2888     break;
2889     case 82:
2890     encodedcontroller = _lev_ctrl_genpurpose7;
2891     break;
2892     case 83:
2893     encodedcontroller = _lev_ctrl_genpurpose8;
2894     break;
2895     case 91:
2896     encodedcontroller = _lev_ctrl_effect1depth;
2897     break;
2898     case 92:
2899     encodedcontroller = _lev_ctrl_effect2depth;
2900     break;
2901     case 93:
2902     encodedcontroller = _lev_ctrl_effect3depth;
2903     break;
2904     case 94:
2905     encodedcontroller = _lev_ctrl_effect4depth;
2906     break;
2907     case 95:
2908     encodedcontroller = _lev_ctrl_effect5depth;
2909     break;
2910 schoenebeck 2540
2911     // format extension (these controllers are so far only
2912     // supported by LinuxSampler & gigedit) they will *NOT*
2913     // work with Gigasampler/GigaStudio !
2914     case 3:
2915     encodedcontroller = _lev_ctrl_CC3_EXT;
2916     break;
2917     case 6:
2918     encodedcontroller = _lev_ctrl_CC6_EXT;
2919     break;
2920     case 7:
2921     encodedcontroller = _lev_ctrl_CC7_EXT;
2922     break;
2923     case 8:
2924     encodedcontroller = _lev_ctrl_CC8_EXT;
2925     break;
2926     case 9:
2927     encodedcontroller = _lev_ctrl_CC9_EXT;
2928     break;
2929     case 10:
2930     encodedcontroller = _lev_ctrl_CC10_EXT;
2931     break;
2932     case 11:
2933     encodedcontroller = _lev_ctrl_CC11_EXT;
2934     break;
2935     case 14:
2936     encodedcontroller = _lev_ctrl_CC14_EXT;
2937     break;
2938     case 15:
2939     encodedcontroller = _lev_ctrl_CC15_EXT;
2940     break;
2941     case 20:
2942     encodedcontroller = _lev_ctrl_CC20_EXT;
2943     break;
2944     case 21:
2945     encodedcontroller = _lev_ctrl_CC21_EXT;
2946     break;
2947     case 22:
2948     encodedcontroller = _lev_ctrl_CC22_EXT;
2949     break;
2950     case 23:
2951     encodedcontroller = _lev_ctrl_CC23_EXT;
2952     break;
2953     case 24:
2954     encodedcontroller = _lev_ctrl_CC24_EXT;
2955     break;
2956     case 25:
2957     encodedcontroller = _lev_ctrl_CC25_EXT;
2958     break;
2959     case 26:
2960     encodedcontroller = _lev_ctrl_CC26_EXT;
2961     break;
2962     case 27:
2963     encodedcontroller = _lev_ctrl_CC27_EXT;
2964     break;
2965     case 28:
2966     encodedcontroller = _lev_ctrl_CC28_EXT;
2967     break;
2968     case 29:
2969     encodedcontroller = _lev_ctrl_CC29_EXT;
2970     break;
2971     case 30:
2972     encodedcontroller = _lev_ctrl_CC30_EXT;
2973     break;
2974     case 31:
2975     encodedcontroller = _lev_ctrl_CC31_EXT;
2976     break;
2977     case 68:
2978     encodedcontroller = _lev_ctrl_CC68_EXT;
2979     break;
2980     case 69:
2981     encodedcontroller = _lev_ctrl_CC69_EXT;
2982     break;
2983     case 70:
2984     encodedcontroller = _lev_ctrl_CC70_EXT;
2985     break;
2986     case 71:
2987     encodedcontroller = _lev_ctrl_CC71_EXT;
2988     break;
2989     case 72:
2990     encodedcontroller = _lev_ctrl_CC72_EXT;
2991     break;
2992     case 73:
2993     encodedcontroller = _lev_ctrl_CC73_EXT;
2994     break;
2995     case 74:
2996     encodedcontroller = _lev_ctrl_CC74_EXT;
2997     break;
2998     case 75:
2999     encodedcontroller = _lev_ctrl_CC75_EXT;
3000     break;
3001     case 76:
3002     encodedcontroller = _lev_ctrl_CC76_EXT;
3003     break;
3004     case 77:
3005     encodedcontroller = _lev_ctrl_CC77_EXT;
3006     break;
3007     case 78:
3008     encodedcontroller = _lev_ctrl_CC78_EXT;
3009     break;
3010     case 79:
3011     encodedcontroller = _lev_ctrl_CC79_EXT;
3012     break;
3013     case 84:
3014     encodedcontroller = _lev_ctrl_CC84_EXT;
3015     break;
3016     case 85:
3017     encodedcontroller = _lev_ctrl_CC85_EXT;
3018     break;
3019     case 86:
3020     encodedcontroller = _lev_ctrl_CC86_EXT;
3021     break;
3022     case 87:
3023     encodedcontroller = _lev_ctrl_CC87_EXT;
3024     break;
3025     case 89:
3026     encodedcontroller = _lev_ctrl_CC89_EXT;
3027     break;
3028     case 90:
3029     encodedcontroller = _lev_ctrl_CC90_EXT;
3030     break;
3031     case 96:
3032     encodedcontroller = _lev_ctrl_CC96_EXT;
3033     break;
3034     case 97:
3035     encodedcontroller = _lev_ctrl_CC97_EXT;
3036     break;
3037     case 102:
3038     encodedcontroller = _lev_ctrl_CC102_EXT;
3039     break;
3040     case 103:
3041     encodedcontroller = _lev_ctrl_CC103_EXT;
3042     break;
3043     case 104:
3044     encodedcontroller = _lev_ctrl_CC104_EXT;
3045     break;
3046     case 105:
3047     encodedcontroller = _lev_ctrl_CC105_EXT;
3048     break;
3049     case 106:
3050     encodedcontroller = _lev_ctrl_CC106_EXT;
3051     break;
3052     case 107:
3053     encodedcontroller = _lev_ctrl_CC107_EXT;
3054     break;
3055     case 108:
3056     encodedcontroller = _lev_ctrl_CC108_EXT;
3057     break;
3058     case 109:
3059     encodedcontroller = _lev_ctrl_CC109_EXT;
3060     break;
3061     case 110:
3062     encodedcontroller = _lev_ctrl_CC110_EXT;
3063     break;
3064     case 111:
3065     encodedcontroller = _lev_ctrl_CC111_EXT;
3066     break;
3067     case 112:
3068     encodedcontroller = _lev_ctrl_CC112_EXT;
3069     break;
3070     case 113:
3071     encodedcontroller = _lev_ctrl_CC113_EXT;
3072     break;
3073     case 114:
3074     encodedcontroller = _lev_ctrl_CC114_EXT;
3075     break;
3076     case 115:
3077     encodedcontroller = _lev_ctrl_CC115_EXT;
3078     break;
3079     case 116:
3080     encodedcontroller = _lev_ctrl_CC116_EXT;
3081     break;
3082     case 117:
3083     encodedcontroller = _lev_ctrl_CC117_EXT;
3084     break;
3085     case 118:
3086     encodedcontroller = _lev_ctrl_CC118_EXT;
3087     break;
3088     case 119:
3089     encodedcontroller = _lev_ctrl_CC119_EXT;
3090     break;
3091    
3092 schoenebeck 809 default:
3093     throw gig::Exception("leverage controller number is not supported by the gig format");
3094     }
3095 persson 1182 break;
3096 schoenebeck 809 default:
3097     throw gig::Exception("Unknown leverage controller type.");
3098     }
3099     return encodedcontroller;
3100     }
3101    
3102 schoenebeck 16 DimensionRegion::~DimensionRegion() {
3103     Instances--;
3104     if (!Instances) {
3105     // delete the velocity->volume tables
3106     VelocityTableMap::iterator iter;
3107     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3108     double* pTable = iter->second;
3109     if (pTable) delete[] pTable;
3110     }
3111     pVelocityTables->clear();
3112     delete pVelocityTables;
3113     pVelocityTables = NULL;
3114     }
3115 persson 858 if (VelocityTable) delete[] VelocityTable;
3116 schoenebeck 16 }
3117 schoenebeck 2
3118 schoenebeck 16 /**
3119     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3120     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3121     * and VelocityResponseCurveScaling) involved are taken into account to
3122     * calculate the amplitude factor. Use this method when a key was
3123     * triggered to get the volume with which the sample should be played
3124     * back.
3125     *
3126 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3127     * @returns amplitude factor (between 0.0 and 1.0)
3128 schoenebeck 16 */
3129     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3130     return pVelocityAttenuationTable[MIDIKeyVelocity];
3131     }
3132 schoenebeck 2
3133 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134     return pVelocityReleaseTable[MIDIKeyVelocity];
3135     }
3136    
3137 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138     return pVelocityCutoffTable[MIDIKeyVelocity];
3139     }
3140    
3141 schoenebeck 1358 /**
3142     * Updates the respective member variable and the lookup table / cache
3143     * that depends on this value.
3144     */
3145     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146     pVelocityAttenuationTable =
3147     GetVelocityTable(
3148     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149     );
3150     VelocityResponseCurve = curve;
3151     }
3152    
3153     /**
3154     * Updates the respective member variable and the lookup table / cache
3155     * that depends on this value.
3156     */
3157     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158     pVelocityAttenuationTable =
3159     GetVelocityTable(
3160     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161     );
3162     VelocityResponseDepth = depth;
3163     }
3164    
3165     /**
3166     * Updates the respective member variable and the lookup table / cache
3167     * that depends on this value.
3168     */
3169     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170     pVelocityAttenuationTable =
3171     GetVelocityTable(
3172     VelocityResponseCurve, VelocityResponseDepth, scaling
3173     );
3174     VelocityResponseCurveScaling = scaling;
3175     }
3176    
3177     /**
3178     * Updates the respective member variable and the lookup table / cache
3179     * that depends on this value.
3180     */
3181     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183     ReleaseVelocityResponseCurve = curve;
3184     }
3185    
3186     /**
3187     * Updates the respective member variable and the lookup table / cache
3188     * that depends on this value.
3189     */
3190     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192     ReleaseVelocityResponseDepth = depth;
3193     }
3194    
3195     /**
3196     * Updates the respective member variable and the lookup table / cache
3197     * that depends on this value.
3198     */
3199     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201     VCFCutoffController = controller;
3202     }
3203    
3204     /**
3205     * Updates the respective member variable and the lookup table / cache
3206     * that depends on this value.
3207     */
3208     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210     VCFVelocityCurve = curve;
3211     }
3212    
3213     /**
3214     * Updates the respective member variable and the lookup table / cache
3215     * that depends on this value.
3216     */
3217     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219     VCFVelocityDynamicRange = range;
3220     }
3221    
3222     /**
3223     * Updates the respective member variable and the lookup table / cache
3224     * that depends on this value.
3225     */
3226     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228     VCFVelocityScale = scaling;
3229     }
3230    
3231 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232 schoenebeck 317
3233 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3234 schoenebeck 16
3235 schoenebeck 308 // linear
3236     const int lin0[] = { 1, 1, 127, 127 };
3237     const int lin1[] = { 1, 21, 127, 127 };
3238     const int lin2[] = { 1, 45, 127, 127 };
3239     const int lin3[] = { 1, 74, 127, 127 };
3240     const int lin4[] = { 1, 127, 127, 127 };
3241 schoenebeck 16
3242 schoenebeck 308 // non-linear
3243     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3244 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3245 schoenebeck 308 127, 127 };
3246     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3247     127, 127 };
3248     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3249     127, 127 };
3250     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3251 schoenebeck 317
3252 schoenebeck 308 // special
3253 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3254 schoenebeck 308 113, 127, 127, 127 };
3255     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3256     118, 127, 127, 127 };
3257 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3258 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3259 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3260 schoenebeck 308 117, 127, 127, 127 };
3261 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262 schoenebeck 308 127, 127 };
3263 schoenebeck 317
3264 persson 728 // this is only used by the VCF velocity curve
3265     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266     91, 127, 127, 127 };
3267    
3268 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3269 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3270 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3271 schoenebeck 317
3272 schoenebeck 308 double* const table = new double[128];
3273    
3274     const int* curve = curves[curveType * 5 + depth];
3275     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3276 schoenebeck 317
3277 schoenebeck 308 table[0] = 0;
3278     for (int x = 1 ; x < 128 ; x++) {
3279    
3280     if (x > curve[2]) curve += 2;
3281 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3282 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3283     y = y / 127;
3284    
3285     // Scale up for s > 20, down for s < 20. When
3286     // down-scaling, the curve still ends at 1.0.
3287     if (s < 20 && y >= 0.5)
3288     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3289     else
3290     y = y * (s / 20.0);
3291     if (y > 1) y = 1;
3292    
3293     table[x] = y;
3294     }
3295     return table;
3296     }
3297    
3298    
3299 schoenebeck 2 // *************** Region ***************
3300     // *
3301    
3302     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3303     // Initialization
3304     Dimensions = 0;
3305 schoenebeck 347 for (int i = 0; i < 256; i++) {
3306 schoenebeck 2 pDimensionRegions[i] = NULL;
3307     }
3308 schoenebeck 282 Layers = 1;
3309 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3310 schoenebeck 3440 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311 schoenebeck 2
3312     // Actual Loading
3313    
3314 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3315    
3316 schoenebeck 2 LoadDimensionRegions(rgnList);
3317    
3318     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319     if (_3lnk) {
3320 schoenebeck 3478 _3lnk->SetPos(0);
3321    
3322 schoenebeck 2 DimensionRegions = _3lnk->ReadUint32();
3323 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3324 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325     uint8_t bits = _3lnk->ReadUint8();
3326 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3330     pDimensionDefinitions[i].dimension = dimension_none;
3331     pDimensionDefinitions[i].bits = 0;
3332     pDimensionDefinitions[i].zones = 0;
3333     pDimensionDefinitions[i].split_type = split_type_bit;
3334     pDimensionDefinitions[i].zone_size = 0;
3335     }
3336     else { // active dimension
3337     pDimensionDefinitions[i].dimension = dimension;
3338     pDimensionDefinitions[i].bits = bits;
3339 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3342 schoenebeck 2 Dimensions++;
3343 schoenebeck 282
3344     // if this is a layer dimension, remember the amount of layers
3345     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346 schoenebeck 2 }
3347 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348 schoenebeck 2 }
3349 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350 schoenebeck 2
3351 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3352     // update the VelocityTables in the dimension regions
3353     UpdateVelocityTable();
3354 schoenebeck 2
3355 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3356 schoenebeck 3440 if (file->pVersion && file->pVersion->major > 2)
3357 schoenebeck 317 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358     else
3359     _3lnk->SetPos(44);
3360    
3361 schoenebeck 1524 // load sample references (if auto loading is enabled)
3362     if (file->GetAutoLoad()) {
3363     for (uint i = 0; i < DimensionRegions; i++) {
3364     uint32_t wavepoolindex = _3lnk->ReadUint32();
3365 schoenebeck 3348 if (file->pWavePoolTable && pDimensionRegions[i])
3366     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367 schoenebeck 1524 }
3368     GetSample(); // load global region sample reference
3369 schoenebeck 2 }
3370 persson 1102 } else {
3371     DimensionRegions = 0;
3372 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3373     pDimensionDefinitions[i].dimension = dimension_none;
3374     pDimensionDefinitions[i].bits = 0;
3375     pDimensionDefinitions[i].zones = 0;
3376     }
3377 schoenebeck 2 }
3378 schoenebeck 823
3379     // make sure there is at least one dimension region
3380     if (!DimensionRegions) {
3381     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385 schoenebeck 823 DimensionRegions = 1;
3386     }
3387 schoenebeck 2 }
3388    
3389 schoenebeck 809 /**
3390     * Apply Region settings and all its DimensionRegions to the respective
3391     * RIFF chunks. You have to call File::Save() to make changes persistent.
3392     *
3393     * Usually there is absolutely no need to call this method explicitly.
3394     * It will be called automatically when File::Save() was called.
3395     *
3396 schoenebeck 2682 * @param pProgress - callback function for progress notification
3397 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3398     */
3399 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3400 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3401     // but we still have to provide some existing one to not corrupt the
3402     // file, so to avoid the latter we simply always assign the sample of
3403     // the first dimension region of this region
3404     pSample = pDimensionRegions[0]->pSample;
3405    
3406 schoenebeck 809 // first update base class's chunks
3407 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3408 schoenebeck 809
3409     // update dimension region's chunks
3410 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3411 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3412 schoenebeck 823 }
3413 schoenebeck 809
3414 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3415 schoenebeck 3657 const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416 schoenebeck 3440 const int iMaxDimensions = versiongt2 ? 8 : 5;
3417     const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418 schoenebeck 809
3419     // make sure '3lnk' chunk exists
3420     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421     if (!_3lnk) {
3422 schoenebeck 3440 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425 persson 1192
3426     // move 3prg to last position
3427 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428 schoenebeck 809 }
3429    
3430     // update dimension definitions in '3lnk' chunk
3431     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432 persson 1179 store32(&pData[0], DimensionRegions);
3433 persson 1199 int shift = 0;
3434 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3435 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440 persson 1199 // next 3 bytes unknown, always zero?
3441    
3442     shift += pDimensionDefinitions[i].bits;
3443 schoenebeck 809 }
3444    
3445     // update wave pool table in '3lnk' chunk
3446 schoenebeck 3440 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448     int iWaveIndex = -1;
3449     if (i < DimensionRegions) {
3450 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451     File::SampleList::iterator iter = pFile->pSamples->begin();
3452     File::SampleList::iterator end = pFile->pSamples->end();
3453 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3454 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3455     iWaveIndex = index;
3456     break;
3457     }
3458 schoenebeck 809 }
3459     }
3460 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461 schoenebeck 809 }
3462 schoenebeck 3657
3463 schoenebeck 3710 // The following chunks are just added for compatibility with the
3464     // GigaStudio software, which would show a warning if these were
3465     // missing. However currently these chunks don't cover any useful
3466     // data. So if this gig file uses any of our own gig format
3467     // extensions which would cause this gig file to be unloadable
3468     // with GSt software anyway, then just skip these GSt compatibility
3469     // chunks here as well.
3470     if (versiongt2 && !UsesAnyGigFormatExtension()) {
3471 schoenebeck 3657 // add 3dnm list which always seems to be empty
3472     RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3473     if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3474    
3475     // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3476     RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3477     if (!_3ddp) _3ddp = pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3478     uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3479     for (int i = 0; i < 16; i += 4) {
3480     store32(&pData[i], 0xFFFFFFFF);
3481     }
3482    
3483     // move 3dnm and 3ddp to the end of the region list
3484     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3485     pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3486     } else {
3487     // this is intended for the user switching from GSt >= 3 version
3488     // back to an older format version, delete GSt3 chunks ...
3489     RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3490     if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3491    
3492     RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3493     if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3494     }
3495 schoenebeck 809 }
3496    
3497 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3498     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3499     if (_3prg) {
3500     int dimensionRegionNr = 0;
3501     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3502     while (_3ewl) {
3503     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3504 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3505 schoenebeck 2 dimensionRegionNr++;
3506     }
3507     _3ewl = _3prg->GetNextSubList();
3508     }
3509     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3510     }
3511     }
3512    
3513 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3514     // update KeyRange struct and make sure regions are in correct order
3515     DLS::Region::SetKeyRange(Low, High);
3516     // update Region key table for fast lookup
3517     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3518     }
3519    
3520 persson 858 void Region::UpdateVelocityTable() {
3521     // get velocity dimension's index
3522     int veldim = -1;
3523     for (int i = 0 ; i < Dimensions ; i++) {
3524     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3525     veldim = i;
3526 schoenebeck 809 break;
3527     }
3528     }
3529 persson 858 if (veldim == -1) return;
3530 schoenebeck 809
3531 persson 858 int step = 1;
3532     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3533     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3534 schoenebeck 809
3535 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3536     int dim[8] = { 0 };
3537     for (int i = 0 ; i < DimensionRegions ; i++) {
3538 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3539 persson 858
3540 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3541 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3542     pDimensionRegions[i]->VelocityUpperLimit) {
3543 persson 858 // create the velocity table
3544     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3545     if (!table) {
3546     table = new uint8_t[128];
3547     pDimensionRegions[i]->VelocityTable = table;
3548     }
3549     int tableidx = 0;
3550     int velocityZone = 0;
3551 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3552     for (int k = i ; k < end ; k += step) {
3553     DimensionRegion *d = pDimensionRegions[k];
3554     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3555     velocityZone++;
3556     }
3557     } else { // gig2
3558     for (int k = i ; k < end ; k += step) {
3559     DimensionRegion *d = pDimensionRegions[k];
3560     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3561     velocityZone++;
3562     }
3563 persson 858 }
3564     } else {
3565     if (pDimensionRegions[i]->VelocityTable) {
3566     delete[] pDimensionRegions[i]->VelocityTable;
3567     pDimensionRegions[i]->VelocityTable = 0;
3568     }
3569 schoenebeck 809 }
3570 persson 858
3571 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3572 persson 858 int j;
3573     int shift = 0;
3574     for (j = 0 ; j < Dimensions ; j++) {
3575     if (j == veldim) i += skipveldim; // skip velocity dimension
3576     else {
3577     dim[j]++;
3578     if (dim[j] < pDimensionDefinitions[j].zones) break;
3579     else {
3580     // skip unused dimension regions
3581     dim[j] = 0;
3582     i += ((1 << pDimensionDefinitions[j].bits) -
3583     pDimensionDefinitions[j].zones) << shift;
3584     }
3585     }
3586     shift += pDimensionDefinitions[j].bits;
3587     }
3588     if (j == Dimensions) break;
3589 schoenebeck 809 }
3590     }
3591    
3592     /** @brief Einstein would have dreamed of it - create a new dimension.
3593     *
3594     * Creates a new dimension with the dimension definition given by
3595     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3596     * There is a hard limit of dimensions and total amount of "bits" all
3597     * dimensions can have. This limit is dependant to what gig file format
3598     * version this file refers to. The gig v2 (and lower) format has a
3599     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3600     * format has a limit of 8.
3601     *
3602     * @param pDimDef - defintion of the new dimension
3603     * @throws gig::Exception if dimension of the same type exists already
3604     * @throws gig::Exception if amount of dimensions or total amount of
3605     * dimension bits limit is violated
3606     */
3607     void Region::AddDimension(dimension_def_t* pDimDef) {
3608 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3609     if (pDimDef->zones < 2)
3610     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3611     if (pDimDef->bits < 1)
3612     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3613     if (pDimDef->dimension == dimension_samplechannel) {
3614     if (pDimDef->zones != 2)
3615     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3616     if (pDimDef->bits != 1)
3617     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3618     }
3619    
3620 schoenebeck 809 // check if max. amount of dimensions reached
3621     File* file = (File*) GetParent()->GetParent();
3622 schoenebeck 3440 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3623 schoenebeck 809 if (Dimensions >= iMaxDimensions)
3624     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3625     // check if max. amount of dimension bits reached
3626     int iCurrentBits = 0;
3627     for (int i = 0; i < Dimensions; i++)
3628     iCurrentBits += pDimensionDefinitions[i].bits;
3629     if (iCurrentBits >= iMaxDimensions)
3630     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3631     const int iNewBits = iCurrentBits + pDimDef->bits;
3632     if (iNewBits > iMaxDimensions)
3633     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3634     // check if there's already a dimensions of the same type
3635     for (int i = 0; i < Dimensions; i++)
3636     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3637     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3638    
3639 persson 1301 // pos is where the new dimension should be placed, normally
3640     // last in list, except for the samplechannel dimension which
3641     // has to be first in list
3642     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3643     int bitpos = 0;
3644     for (int i = 0 ; i < pos ; i++)
3645     bitpos += pDimensionDefinitions[i].bits;
3646    
3647     // make room for the new dimension
3648     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3649     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3650     for (int j = Dimensions ; j > pos ; j--) {
3651     pDimensionRegions[i]->DimensionUpperLimits[j] =
3652     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3653     }
3654     }
3655    
3656 schoenebeck 809 // assign definition of new dimension
3657 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3658 schoenebeck 809
3659 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3660 persson 1301 pDimensionDefinitions[pos].split_type =
3661     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3662     pDimensionDefinitions[pos].zone_size =
3663     __resolveZoneSize(pDimensionDefinitions[pos]);
3664 schoenebeck 1113
3665 persson 1301 // create new dimension region(s) for this new dimension, and make
3666     // sure that the dimension regions are placed correctly in both the
3667     // RIFF list and the pDimensionRegions array
3668     RIFF::Chunk* moveTo = NULL;
3669     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3670     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3671     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3672     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3673     }
3674     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3675     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3676     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3677     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3678     // create a new dimension region and copy all parameter values from
3679     // an existing dimension region
3680     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3681     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3682 persson 1247
3683 persson 1301 DimensionRegions++;
3684     }
3685     }
3686     moveTo = pDimensionRegions[i]->pParentList;
3687 schoenebeck 809 }
3688    
3689 persson 1247 // initialize the upper limits for this dimension
3690 persson 1301 int mask = (1 << bitpos) - 1;
3691     for (int z = 0 ; z < pDimDef->zones ; z++) {
3692 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3693 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3694 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3695     (z << bitpos) |
3696     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3697 persson 1247 }
3698     }
3699    
3700 schoenebeck 809 Dimensions++;
3701    
3702     // if this is a layer dimension, update 'Layers' attribute
3703     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3704    
3705 persson 858 UpdateVelocityTable();
3706 schoenebeck 809 }
3707    
3708     /** @brief Delete an existing dimension.
3709     *
3710     * Deletes the dimension given by \a pDimDef and deletes all respective
3711     * dimension regions, that is all dimension regions where the dimension's
3712     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3713     * for example this would delete all dimension regions for the case(s)
3714     * where the sustain pedal is pressed down.
3715     *
3716     * @param pDimDef - dimension to delete
3717     * @throws gig::Exception if given dimension cannot be found
3718     */
3719     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3720     // get dimension's index
3721     int iDimensionNr = -1;
3722     for (int i = 0; i < Dimensions; i++) {
3723     if (&pDimensionDefinitions[i] == pDimDef) {
3724     iDimensionNr = i;
3725     break;
3726     }
3727     }
3728     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3729    
3730     // get amount of bits below the dimension to delete
3731     int iLowerBits = 0;
3732     for (int i = 0; i < iDimensionNr; i++)
3733     iLowerBits += pDimensionDefinitions[i].bits;
3734    
3735     // get amount ot bits above the dimension to delete
3736     int iUpperBits = 0;
3737     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3738     iUpperBits += pDimensionDefinitions[i].bits;
3739    
3740 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3741    
3742 schoenebeck 809 // delete dimension regions which belong to the given dimension
3743     // (that is where the dimension's bit > 0)
3744     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3745     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3746     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3747     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3748     iObsoleteBit << iLowerBits |
3749     iLowerBit;
3750 persson 1247
3751     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3752 schoenebeck 809 delete pDimensionRegions[iToDelete];
3753     pDimensionRegions[iToDelete] = NULL;
3754     DimensionRegions--;
3755     }
3756     }
3757     }
3758    
3759     // defrag pDimensionRegions array
3760     // (that is remove the NULL spaces within the pDimensionRegions array)
3761     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3762     if (!pDimensionRegions[iTo]) {
3763     if (iFrom <= iTo) iFrom = iTo + 1;
3764     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3765     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3766     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3767     pDimensionRegions[iFrom] = NULL;
3768     }
3769     }
3770     }
3771    
3772 persson 1247 // remove the this dimension from the upper limits arrays
3773     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3774     DimensionRegion* d = pDimensionRegions[j];
3775     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3776     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3777     }
3778     d->DimensionUpperLimits[Dimensions - 1] = 127;
3779     }
3780    
3781 schoenebeck 809 // 'remove' dimension definition
3782     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3783     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3784     }
3785     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3786     pDimensionDefinitions[Dimensions - 1].bits = 0;
3787     pDimensionDefinitions[Dimensions - 1].zones = 0;
3788    
3789     Dimensions--;
3790    
3791     // if this was a layer dimension, update 'Layers' attribute
3792     if (pDimDef->dimension == dimension_layer) Layers = 1;
3793     }
3794    
3795 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3796     *
3797     * Instead of deleting an entire dimensions, this method will only delete
3798     * one particular split zone given by @a zone of the Region's dimension
3799     * given by @a type. So this method will simply decrement the amount of
3800     * zones by one of the dimension in question. To be able to do that, the
3801     * respective dimension must exist on this Region and it must have at least
3802     * 3 zones. All DimensionRegion objects associated with the zone will be
3803     * deleted.
3804     *
3805     * @param type - identifies the dimension where a zone shall be deleted
3806     * @param zone - index of the dimension split zone that shall be deleted
3807     * @throws gig::Exception if requested zone could not be deleted
3808     */
3809     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3810     dimension_def_t* oldDef = GetDimensionDefinition(type);
3811     if (!oldDef)
3812     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3813     if (oldDef->zones <= 2)
3814     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3815     if (zone < 0 || zone >= oldDef->zones)
3816     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3817    
3818     const int newZoneSize = oldDef->zones - 1;
3819    
3820     // create a temporary Region which just acts as a temporary copy
3821     // container and will be deleted at the end of this function and will
3822     // also not be visible through the API during this process
3823     gig::Region* tempRgn = NULL;
3824     {
3825     // adding these temporary chunks is probably not even necessary
3826     Instrument* instr = static_cast<Instrument*>(GetParent());
3827     RIFF::List* pCkInstrument = instr->pCkInstrument;
3828     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3829     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3830     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3831     tempRgn = new Region(instr, rgn);
3832     }
3833    
3834     // copy this region's dimensions (with already the dimension split size
3835     // requested by the arguments of this method call) to the temporary
3836     // region, and don't use Region::CopyAssign() here for this task, since
3837     // it would also alter fast lookup helper variables here and there
3838     dimension_def_t newDef;
3839     for (int i = 0; i < Dimensions; ++i) {
3840     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3841     // is this the dimension requested by the method arguments? ...
3842     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3843     def.zones = newZoneSize;
3844     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3845     newDef = def;
3846     }
3847     tempRgn->AddDimension(&def);
3848     }
3849    
3850     // find the dimension index in the tempRegion which is the dimension
3851     // type passed to this method (paranoidly expecting different order)
3852     int tempReducedDimensionIndex = -1;
3853     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3854     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3855     tempReducedDimensionIndex = d;
3856     break;
3857     }
3858     }
3859    
3860     // copy dimension regions from this region to the temporary region
3861     for (int iDst = 0; iDst < 256; ++iDst) {
3862     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3863     if (!dstDimRgn) continue;
3864     std::map<dimension_t,int> dimCase;
3865     bool isValidZone = true;
3866     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3867     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3868     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3869     (iDst >> baseBits) & ((1 << dstBits) - 1);
3870     baseBits += dstBits;
3871     // there are also DimensionRegion objects of unused zones, skip them
3872     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3873     isValidZone = false;
3874     break;
3875     }
3876     }
3877     if (!isValidZone) continue;
3878     // a bit paranoid: cope with the chance that the dimensions would
3879     // have different order in source and destination regions
3880     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3881     if (dimCase[type] >= zone) dimCase[type]++;
3882     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3883     dstDimRgn->CopyAssign(srcDimRgn);
3884     // if this is the upper most zone of the dimension passed to this
3885     // method, then correct (raise) its upper limit to 127
3886     if (newDef.split_type == split_type_normal && isLastZone)
3887     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3888     }
3889    
3890     // now tempRegion's dimensions and DimensionRegions basically reflect
3891     // what we wanted to get for this actual Region here, so we now just
3892     // delete and recreate the dimension in question with the new amount
3893     // zones and then copy back from tempRegion
3894     DeleteDimension(oldDef);
3895     AddDimension(&newDef);
3896     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3897     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3898     if (!srcDimRgn) continue;
3899     std::map<dimension_t,int> dimCase;
3900     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3901     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3902     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3903     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3904     baseBits += srcBits;
3905     }
3906     // a bit paranoid: cope with the chance that the dimensions would
3907     // have different order in source and destination regions
3908     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3909     if (!dstDimRgn) continue;
3910     dstDimRgn->CopyAssign(srcDimRgn);
3911     }
3912    
3913     // delete temporary region
3914 schoenebeck 3478 tempRgn->DeleteChunks();
3915 schoenebeck 2555 delete tempRgn;
3916 schoenebeck 2557
3917     UpdateVelocityTable();
3918 schoenebeck 2555 }
3919    
3920     /** @brief Divide split zone of a dimension in two (increment zone amount).
3921     *
3922     * This will increment the amount of zones for the dimension (given by
3923     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3924     * in the middle of its zone range in two. So the two zones resulting from
3925     * the zone being splitted, will be an equivalent copy regarding all their
3926     * articulation informations and sample reference. The two zones will only
3927     * differ in their zone's upper limit
3928     * (DimensionRegion::DimensionUpperLimits).
3929     *
3930     * @param type - identifies the dimension where a zone shall be splitted
3931     * @param zone - index of the dimension split zone that shall be splitted
3932     * @throws gig::Exception if requested zone could not be splitted
3933     */
3934     void Region::SplitDimensionZone(dimension_t type, int zone) {
3935     dimension_def_t* oldDef = GetDimensionDefinition(type);
3936     if (!oldDef)
3937     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3938     if (zone < 0 || zone >= oldDef->zones)
3939     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3940    
3941     const int newZoneSize = oldDef->zones + 1;
3942    
3943     // create a temporary Region which just acts as a temporary copy
3944     // container and will be deleted at the end of this function and will
3945     // also not be visible through the API during this process
3946     gig::Region* tempRgn = NULL;
3947     {
3948     // adding these temporary chunks is probably not even necessary
3949     Instrument* instr = static_cast<Instrument*>(GetParent());
3950     RIFF::List* pCkInstrument = instr->pCkInstrument;
3951     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3952     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3953     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3954     tempRgn = new Region(instr, rgn);
3955     }
3956    
3957     // copy this region's dimensions (with already the dimension split size
3958     // requested by the arguments of this method call) to the temporary
3959     // region, and don't use Region::CopyAssign() here for this task, since
3960     // it would also alter fast lookup helper variables here and there
3961     dimension_def_t newDef;
3962     for (int i = 0; i < Dimensions; ++i) {
3963     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3964     // is this the dimension requested by the method arguments? ...
3965     if (def.dimension == type) { // ... if yes, increment zone amount by one
3966     def.zones = newZoneSize;
3967     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3968     newDef = def;
3969     }
3970     tempRgn->AddDimension(&def);
3971     }
3972    
3973     // find the dimension index in the tempRegion which is the dimension
3974     // type passed to this method (paranoidly expecting different order)
3975     int tempIncreasedDimensionIndex = -1;
3976     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3977     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3978     tempIncreasedDimensionIndex = d;
3979     break;
3980     }
3981     }
3982    
3983     // copy dimension regions from this region to the temporary region
3984     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3985     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3986     if (!srcDimRgn) continue;
3987     std::map<dimension_t,int> dimCase;
3988     bool isValidZone = true;
3989     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3990     const int srcBits = pDimensionDefinitions[d].bits;
3991     dimCase[pDimensionDefinitions[d].dimension] =
3992     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3993     // there are also DimensionRegion objects for unused zones, skip them
3994     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3995     isValidZone = false;
3996     break;
3997     }
3998     baseBits += srcBits;
3999     }
4000     if (!isValidZone) continue;
4001     // a bit paranoid: cope with the chance that the dimensions would
4002     // have different order in source and destination regions
4003     if (dimCase[type] > zone) dimCase[type]++;
4004     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4005     dstDimRgn->CopyAssign(srcDimRgn);
4006     // if this is the requested zone to be splitted, then also copy
4007     // the source DimensionRegion to the newly created target zone
4008     // and set the old zones upper limit lower
4009     if (dimCase[type] == zone) {
4010     // lower old zones upper limit
4011     if (newDef.split_type == split_type_normal) {
4012     const int high =
4013     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4014     int low = 0;
4015     if (zone > 0) {
4016     std::map<dimension_t,int> lowerCase = dimCase;
4017     lowerCase[type]--;
4018     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4019     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4020     }
4021     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4022     }
4023     // fill the newly created zone of the divided zone as well
4024     dimCase[type]++;
4025     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4026     dstDimRgn->CopyAssign(srcDimRgn);
4027     }
4028     }
4029    
4030     // now tempRegion's dimensions and DimensionRegions basically reflect
4031     // what we wanted to get for this actual Region here, so we now just
4032     // delete and recreate the dimension in question with the new amount
4033 schoenebeck 3709 // zones and then copy back from tempRegion. we're actually deleting and
4034     // recreating all dimensions here, to avoid altering the precise order
4035     // of the dimensions (which would not be an error per so, but it would
4036     // cause usability issues with instrument editors)
4037     {
4038     std::vector<dimension_def_t> oldDefs;
4039     for (int i = 0; i < Dimensions; ++i)
4040     oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4041     for (int i = Dimensions - 1; i >= 0; --i)
4042     DeleteDimension(&pDimensionDefinitions[i]);
4043     for (int i = 0; i < oldDefs.size(); ++i) {
4044     dimension_def_t& def = oldDefs[i];
4045     AddDimension(
4046     (def.dimension == newDef.dimension) ? &newDef : &def
4047     );
4048     }
4049     }
4050 schoenebeck 2555 for (int iSrc = 0; iSrc < 256; ++iSrc) {
4051     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4052     if (!srcDimRgn) continue;
4053     std::map<dimension_t,int> dimCase;
4054     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4055     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4056     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4057     (iSrc >> baseBits) & ((1 << srcBits) - 1);
4058     baseBits += srcBits;
4059     }
4060     // a bit paranoid: cope with the chance that the dimensions would
4061     // have different order in source and destination regions
4062     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4063     if (!dstDimRgn) continue;
4064     dstDimRgn->CopyAssign(srcDimRgn);
4065     }
4066    
4067     // delete temporary region
4068 schoenebeck 3478 tempRgn->DeleteChunks();
4069 schoenebeck 2555 delete tempRgn;
4070 schoenebeck 2557
4071     UpdateVelocityTable();
4072 schoenebeck 2555 }
4073    
4074 schoenebeck 2639 /** @brief Change type of an existing dimension.
4075     *
4076     * Alters the dimension type of a dimension already existing on this
4077     * region. If there is currently no dimension on this Region with type
4078     * @a oldType, then this call with throw an Exception. Likewise there are
4079     * cases where the requested dimension type cannot be performed. For example
4080     * if the new dimension type shall be gig::dimension_samplechannel, and the
4081     * current dimension has more than 2 zones. In such cases an Exception is
4082     * thrown as well.
4083     *
4084     * @param oldType - identifies the existing dimension to be changed
4085     * @param newType - to which dimension type it should be changed to
4086     * @throws gig::Exception if requested change cannot be performed
4087     */
4088     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4089     if (oldType == newType) return;
4090     dimension_def_t* def = GetDimensionDefinition(oldType);
4091     if (!def)
4092     throw gig::Exception("No dimension with provided old dimension type exists on this region");
4093     if (newType == dimension_samplechannel && def->zones != 2)
4094     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4095 schoenebeck 2640 if (GetDimensionDefinition(newType))
4096     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4097     def->dimension = newType;
4098 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
4099     }
4100    
4101 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4102     uint8_t bits[8] = {};
4103     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4104     it != DimCase.end(); ++it)
4105     {
4106     for (int d = 0; d < Dimensions; ++d) {
4107     if (pDimensionDefinitions[d].dimension == it->first) {
4108     bits[d] = it->second;
4109     goto nextDimCaseSlice;
4110     }
4111     }
4112     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4113     nextDimCaseSlice:
4114     ; // noop
4115     }
4116     return GetDimensionRegionByBit(bits);
4117     }
4118    
4119 schoenebeck 2547 /**
4120     * Searches in the current Region for a dimension of the given dimension
4121     * type and returns the precise configuration of that dimension in this
4122     * Region.
4123     *
4124     * @param type - dimension type of the sought dimension
4125     * @returns dimension definition or NULL if there is no dimension with
4126     * sought type in this Region.
4127     */
4128     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4129     for (int i = 0; i < Dimensions; ++i)
4130     if (pDimensionDefinitions[i].dimension == type)
4131     return &pDimensionDefinitions[i];
4132     return NULL;
4133     }
4134    
4135 schoenebeck 2 Region::~Region() {
4136 schoenebeck 350 for (int i = 0; i < 256; i++) {
4137 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4138     }
4139     }
4140    
4141     /**
4142     * Use this method in your audio engine to get the appropriate dimension
4143     * region with it's articulation data for the current situation. Just
4144     * call the method with the current MIDI controller values and you'll get
4145     * the DimensionRegion with the appropriate articulation data for the
4146     * current situation (for this Region of course only). To do that you'll
4147     * first have to look which dimensions with which controllers and in
4148     * which order are defined for this Region when you load the .gig file.
4149     * Special cases are e.g. layer or channel dimensions where you just put
4150     * in the index numbers instead of a MIDI controller value (means 0 for
4151     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4152     * etc.).
4153     *
4154 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4155 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
4156     * @see pDimensionDefinitions
4157     * @see Dimensions
4158     */
4159 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4160 persson 858 uint8_t bits;
4161     int veldim = -1;
4162 schoenebeck 3053 int velbitpos = 0;
4163 persson 858 int bitpos = 0;
4164     int dimregidx = 0;
4165 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
4166 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4167     // the velocity dimension must be handled after the other dimensions
4168     veldim = i;
4169     velbitpos = bitpos;
4170     } else {
4171     switch (pDimensionDefinitions[i].split_type) {
4172     case split_type_normal:
4173 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4174     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4175     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4176     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4177     }
4178     } else {
4179     // gig2: evenly sized zones
4180     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4181     }
4182 persson 858 break;
4183     case split_type_bit: // the value is already the sought dimension bit number
4184     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4185     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4186     break;
4187     }
4188     dimregidx |= bits << bitpos;
4189 schoenebeck 2 }
4190 persson 858 bitpos += pDimensionDefinitions[i].bits;
4191 schoenebeck 2 }
4192 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4193     if (!dimreg) return NULL;
4194 persson 858 if (veldim != -1) {
4195     // (dimreg is now the dimension region for the lowest velocity)
4196 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4197 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4198 persson 858 else // normal split type
4199 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4200 persson 858
4201 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4202     dimregidx |= (bits & limiter_mask) << velbitpos;
4203     dimreg = pDimensionRegions[dimregidx & 255];
4204 persson 858 }
4205     return dimreg;
4206 schoenebeck 2 }
4207    
4208 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4209     uint8_t bits;
4210     int veldim = -1;
4211 schoenebeck 3053 int velbitpos = 0;
4212 schoenebeck 2599 int bitpos = 0;
4213     int dimregidx = 0;
4214     for (uint i = 0; i < Dimensions; i++) {
4215     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4216     // the velocity dimension must be handled after the other dimensions
4217     veldim = i;
4218     velbitpos = bitpos;
4219     } else {
4220     switch (pDimensionDefinitions[i].split_type) {
4221     case split_type_normal:
4222     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4223     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4224     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4225     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4226     }
4227     } else {
4228     // gig2: evenly sized zones
4229     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4230     }
4231     break;
4232     case split_type_bit: // the value is already the sought dimension bit number
4233     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4234     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4235     break;
4236     }
4237     dimregidx |= bits << bitpos;
4238     }
4239     bitpos += pDimensionDefinitions[i].bits;
4240     }
4241     dimregidx &= 255;
4242     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4243     if (!dimreg) return -1;
4244     if (veldim != -1) {
4245     // (dimreg is now the dimension region for the lowest velocity)
4246     if (dimreg->VelocityTable) // custom defined zone ranges
4247     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4248     else // normal split type
4249     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4250    
4251     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4252     dimregidx |= (bits & limiter_mask) << velbitpos;
4253     dimregidx &= 255;
4254     }
4255     return dimregidx;
4256     }
4257    
4258 schoenebeck 2 /**
4259     * Returns the appropriate DimensionRegion for the given dimension bit
4260     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4261     * instead of calling this method directly!
4262     *
4263 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4264 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4265     * bit numbers
4266     * @see GetDimensionRegionByValue()
4267     */
4268 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4269     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4270     << pDimensionDefinitions[5].bits | DimBits[5])
4271     << pDimensionDefinitions[4].bits | DimBits[4])
4272     << pDimensionDefinitions[3].bits | DimBits[3])
4273     << pDimensionDefinitions[2].bits | DimBits[2])
4274     << pDimensionDefinitions[1].bits | DimBits[1])
4275     << pDimensionDefinitions[0].bits | DimBits[0]];
4276 schoenebeck 2 }
4277    
4278     /**
4279     * Returns pointer address to the Sample referenced with this region.
4280     * This is the global Sample for the entire Region (not sure if this is
4281     * actually used by the Gigasampler engine - I would only use the Sample
4282     * referenced by the appropriate DimensionRegion instead of this sample).
4283     *
4284     * @returns address to Sample or NULL if there is no reference to a
4285     * sample saved in the .gig file
4286     */
4287     Sample* Region::GetSample() {
4288     if (pSample) return static_cast<gig::Sample*>(pSample);
4289     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4290     }
4291    
4292 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4293 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4294 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4295 persson 902 if (!file->pWavePoolTable) return NULL;
4296 schoenebeck 3350 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4297 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4298     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4299     // use 64 bit wave pool offsets (treating this as large file)
4300 schoenebeck 2912 uint64_t soughtoffset =
4301     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4302     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4303     Sample* sample = file->GetFirstSample(pProgress);
4304     while (sample) {
4305     if (sample->ullWavePoolOffset == soughtoffset)
4306     return static_cast<gig::Sample*>(sample);
4307     sample = file->GetNextSample();
4308     }
4309     } else {
4310 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4311 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4312     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4313     Sample* sample = file->GetFirstSample(pProgress);
4314     while (sample) {
4315     if (sample->ullWavePoolOffset == soughtoffset &&
4316     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4317     sample = file->GetNextSample();
4318     }
4319 schoenebeck 2 }
4320     return NULL;
4321     }
4322 schoenebeck 2394
4323     /**
4324     * Make a (semi) deep copy of the Region object given by @a orig
4325     * and assign it to this object.
4326     *
4327     * Note that all sample pointers referenced by @a orig are simply copied as
4328     * memory address. Thus the respective samples are shared, not duplicated!
4329     *
4330     * @param orig - original Region object to be copied from
4331     */
4332     void Region::CopyAssign(const Region* orig) {
4333 schoenebeck 2482 CopyAssign(orig, NULL);
4334     }
4335    
4336     /**
4337     * Make a (semi) deep copy of the Region object given by @a orig and
4338     * assign it to this object
4339     *
4340     * @param mSamples - crosslink map between the foreign file's samples and
4341     * this file's samples
4342     */
4343     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4344 schoenebeck 2394 // handle base classes
4345     DLS::Region::CopyAssign(orig);
4346    
4347 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4348     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4349     }
4350    
4351 schoenebeck 2394 // handle own member variables
4352     for (int i = Dimensions - 1; i >= 0; --i) {
4353     DeleteDimension(&pDimensionDefinitions[i]);
4354     }
4355     Layers = 0; // just to be sure
4356     for (int i = 0; i < orig->Dimensions; i++) {
4357     // we need to copy the dim definition here, to avoid the compiler
4358     // complaining about const-ness issue
4359     dimension_def_t def = orig->pDimensionDefinitions[i];
4360     AddDimension(&def);
4361     }
4362     for (int i = 0; i < 256; i++) {
4363     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4364     pDimensionRegions[i]->CopyAssign(
4365 schoenebeck 2482 orig->pDimensionRegions[i],
4366     mSamples
4367 schoenebeck 2394 );
4368     }
4369     }
4370     Layers = orig->Layers;
4371     }
4372 schoenebeck 2
4373 schoenebeck 3710 /**
4374     * Returns @c true in case this Region object uses any gig format
4375     * extension, that is e.g. whether any DimensionRegion object currently
4376     * has any setting effective that would require our "LSDE" RIFF chunk to
4377     * be stored to the gig file.
4378     *
4379     * Right now this is a private method. It is considerable though this method
4380     * to become (in slightly modified form) a public API method in future, i.e.
4381     * to allow instrument editors to visualize and/or warn the user of any gig
4382     * format extension being used. See also comments on
4383     * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
4384     * potential public API change in future.
4385     */
4386     bool Region::UsesAnyGigFormatExtension() const {
4387     for (int i = 0; i < 256; i++) {
4388     if (pDimensionRegions[i]) {
4389     if (pDimensionRegions[i]->UsesAnyGigFormatExtension())
4390     return true;
4391     }
4392     }
4393     return false;
4394     }
4395 schoenebeck 2
4396 schoenebeck 3710
4397 persson 1627 // *************** MidiRule ***************
4398     // *
4399 schoenebeck 2
4400 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4401     _3ewg->SetPos(36);
4402     Triggers = _3ewg->ReadUint8();
4403     _3ewg->SetPos(40);
4404     ControllerNumber = _3ewg->ReadUint8();
4405     _3ewg->SetPos(46);
4406     for (int i = 0 ; i < Triggers ; i++) {
4407     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4408     pTriggers[i].Descending = _3ewg->ReadUint8();
4409     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4410     pTriggers[i].Key = _3ewg->ReadUint8();
4411     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4412     pTriggers[i].Velocity = _3ewg->ReadUint8();
4413     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4414     _3ewg->ReadUint8();
4415     }
4416 persson 1627 }
4417    
4418 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4419     ControllerNumber(0),
4420     Triggers(0) {
4421     }
4422 persson 1627
4423 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4424     pData[32] = 4;
4425     pData[33] = 16;
4426     pData[36] = Triggers;
4427     pData[40] = ControllerNumber;
4428     for (int i = 0 ; i < Triggers ; i++) {
4429     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4430     pData[47 + i * 8] = pTriggers[i].Descending;
4431     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4432     pData[49 + i * 8] = pTriggers[i].Key;
4433     pData[50 + i * 8] = pTriggers[i].NoteOff;
4434     pData[51 + i * 8] = pTriggers[i].Velocity;
4435     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4436     }
4437     }
4438    
4439     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4440     _3ewg->SetPos(36);
4441     LegatoSamples = _3ewg->ReadUint8(); // always 12
4442     _3ewg->SetPos(40);
4443     BypassUseController = _3ewg->ReadUint8();
4444     BypassKey = _3ewg->ReadUint8();
4445     BypassController = _3ewg->ReadUint8();
4446     ThresholdTime = _3ewg->ReadUint16();
4447     _3ewg->ReadInt16();
4448     ReleaseTime = _3ewg->ReadUint16();
4449     _3ewg->ReadInt16();
4450     KeyRange.low = _3ewg->ReadUint8();
4451     KeyRange.high = _3ewg->ReadUint8();
4452     _3ewg->SetPos(64);
4453     ReleaseTriggerKey = _3ewg->ReadUint8();
4454     AltSustain1Key = _3ewg->ReadUint8();
4455     AltSustain2Key = _3ewg->ReadUint8();
4456     }
4457    
4458     MidiRuleLegato::MidiRuleLegato() :
4459     LegatoSamples(12),
4460     BypassUseController(false),
4461     BypassKey(0),
4462     BypassController(1),
4463     ThresholdTime(20),
4464     ReleaseTime(20),
4465     ReleaseTriggerKey(0),
4466     AltSustain1Key(0),
4467     AltSustain2Key(0)
4468     {
4469     KeyRange.low = KeyRange.high = 0;
4470     }
4471    
4472     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4473     pData[32] = 0;
4474     pData[33] = 16;
4475     pData[36] = LegatoSamples;
4476     pData[40] = BypassUseController;
4477     pData[41] = BypassKey;
4478     pData[42] = BypassController;
4479     store16(&pData[43], ThresholdTime);
4480     store16(&pData[47], ReleaseTime);
4481     pData[51] = KeyRange.low;
4482     pData[52] = KeyRange.high;
4483     pData[64] = ReleaseTriggerKey;
4484     pData[65] = AltSustain1Key;
4485     pData[66] = AltSustain2Key;
4486     }
4487    
4488     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4489     _3ewg->SetPos(36);
4490     Articulations = _3ewg->ReadUint8();
4491     int flags = _3ewg->ReadUint8();
4492     Polyphonic = flags & 8;
4493     Chained = flags & 4;
4494     Selector = (flags & 2) ? selector_controller :
4495     (flags & 1) ? selector_key_switch : selector_none;
4496     Patterns = _3ewg->ReadUint8();
4497     _3ewg->ReadUint8(); // chosen row
4498     _3ewg->ReadUint8(); // unknown
4499     _3ewg->ReadUint8(); // unknown
4500     _3ewg->ReadUint8(); // unknown
4501     KeySwitchRange.low = _3ewg->ReadUint8();
4502     KeySwitchRange.high = _3ewg->ReadUint8();
4503     Controller = _3ewg->ReadUint8();
4504     PlayRange.low = _3ewg->ReadUint8();
4505     PlayRange.high = _3ewg->ReadUint8();
4506    
4507     int n = std::min(int(Articulations), 32);
4508     for (int i = 0 ; i < n ; i++) {
4509     _3ewg->ReadString(pArticulations[i], 32);
4510     }
4511     _3ewg->SetPos(1072);
4512     n = std::min(int(Patterns), 32);
4513     for (int i = 0 ; i < n ; i++) {
4514     _3ewg->ReadString(pPatterns[i].Name, 16);
4515     pPatterns[i].Size = _3ewg->ReadUint8();
4516     _3ewg->Read(&pPatterns[i][0], 1, 32);
4517     }
4518     }
4519    
4520     MidiRuleAlternator::MidiRuleAlternator() :
4521     Articulations(0),
4522     Patterns(0),
4523     Selector(selector_none),
4524     Controller(0),
4525     Polyphonic(false),
4526     Chained(false)
4527     {
4528     PlayRange.low = PlayRange.high = 0;
4529     KeySwitchRange.low = KeySwitchRange.high = 0;
4530     }
4531    
4532     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4533     pData[32] = 3;
4534     pData[33] = 16;
4535     pData[36] = Articulations;
4536     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4537     (Selector == selector_controller ? 2 :
4538     (Selector == selector_key_switch ? 1 : 0));
4539     pData[38] = Patterns;
4540    
4541     pData[43] = KeySwitchRange.low;
4542     pData[44] = KeySwitchRange.high;
4543     pData[45] = Controller;
4544     pData[46] = PlayRange.low;
4545     pData[47] = PlayRange.high;
4546    
4547     char* str = reinterpret_cast<char*>(pData);
4548     int pos = 48;
4549     int n = std::min(int(Articulations), 32);
4550     for (int i = 0 ; i < n ; i++, pos += 32) {
4551     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4552     }
4553    
4554     pos = 1072;
4555     n = std::min(int(Patterns), 32);
4556     for (int i = 0 ; i < n ; i++, pos += 49) {
4557     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4558     pData[pos + 16] = pPatterns[i].Size;
4559     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4560     }
4561     }
4562    
4563 schoenebeck 2584 // *************** Script ***************
4564     // *
4565    
4566     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4567     pGroup = group;
4568     pChunk = ckScri;
4569     if (ckScri) { // object is loaded from file ...
4570 schoenebeck 3478 ckScri->SetPos(0);
4571    
4572 schoenebeck 2584 // read header
4573     uint32_t headerSize = ckScri->ReadUint32();
4574     Compression = (Compression_t) ckScri->ReadUint32();
4575     Encoding = (Encoding_t) ckScri->ReadUint32();
4576     Language = (Language_t) ckScri->ReadUint32();
4577     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4578     crc = ckScri->ReadUint32();
4579     uint32_t nameSize = ckScri->ReadUint32();
4580     Name.resize(nameSize, ' ');
4581     for (int i = 0; i < nameSize; ++i)
4582     Name[i] = ckScri->ReadUint8();
4583     // to handle potential future extensions of the header
4584 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4585 schoenebeck 2584 // read actual script data
4586 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4587 schoenebeck 2584 data.resize(scriptSize);
4588     for (int i = 0; i < scriptSize; ++i)
4589     data[i] = ckScri->ReadUint8();
4590     } else { // this is a new script object, so just initialize it as such ...
4591     Compression = COMPRESSION_NONE;
4592     Encoding = ENCODING_ASCII;
4593     Language = LANGUAGE_NKSP;
4594     Bypass = false;
4595     crc = 0;
4596     Name = "Unnamed Script";
4597     }
4598     }
4599    
4600     Script::~Script() {
4601     }
4602    
4603     /**
4604     * Returns the current script (i.e. as source code) in text format.
4605     */
4606     String Script::GetScriptAsText() {
4607     String s;
4608     s.resize(data.size(), ' ');
4609     memcpy(&s[0], &data[0], data.size());
4610     return s;
4611     }
4612    
4613     /**
4614     * Replaces the current script with the new script source code text given
4615     * by @a text.
4616     *
4617     * @param text - new script source code
4618     */
4619     void Script::SetScriptAsText(const String& text) {
4620     data.resize(text.size());
4621     memcpy(&data[0], &text[0], text.size());
4622     }
4623    
4624 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this Script object.
4625     *
4626     * At the moment Script::DeleteChunks() does nothing. It is
4627     * recommended to call this method explicitly though from deriving classes's
4628     * own overridden implementation of this method to avoid potential future
4629     * compatiblity issues.
4630     *
4631     * See DLS::Storage::DeleteChunks() for details.
4632     */
4633     void Script::DeleteChunks() {
4634     }
4635    
4636 schoenebeck 2682 /**
4637     * Apply this script to the respective RIFF chunks. You have to call
4638     * File::Save() to make changes persistent.
4639     *
4640     * Usually there is absolutely no need to call this method explicitly.
4641     * It will be called automatically when File::Save() was called.
4642     *
4643     * @param pProgress - callback function for progress notification
4644     */
4645     void Script::UpdateChunks(progress_t* pProgress) {
4646 schoenebeck 2584 // recalculate CRC32 check sum
4647     __resetCRC(crc);
4648     __calculateCRC(&data[0], data.size(), crc);
4649 schoenebeck 3115 __finalizeCRC(crc);
4650 schoenebeck 2584 // make sure chunk exists and has the required size
4651 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4652 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4653     else pChunk->Resize(chunkSize);
4654     // fill the chunk data to be written to disk
4655     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4656     int pos = 0;
4657 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4658 schoenebeck 2584 pos += sizeof(int32_t);
4659     store32(&pData[pos], Compression);
4660     pos += sizeof(int32_t);
4661     store32(&pData[pos], Encoding);
4662     pos += sizeof(int32_t);
4663     store32(&pData[pos], Language);
4664     pos += sizeof(int32_t);
4665     store32(&pData[pos], Bypass ? 1 : 0);
4666     pos += sizeof(int32_t);
4667     store32(&pData[pos], crc);
4668     pos += sizeof(int32_t);
4669 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4670 schoenebeck 2584 pos += sizeof(int32_t);
4671     for (int i = 0; i < Name.size(); ++i, ++pos)
4672     pData[pos] = Name[i];
4673     for (int i = 0; i < data.size(); ++i, ++pos)
4674     pData[pos] = data[i];
4675     }
4676    
4677     /**
4678     * Move this script from its current ScriptGroup to another ScriptGroup
4679     * given by @a pGroup.
4680     *
4681     * @param pGroup - script's new group
4682     */
4683     void Script::SetGroup(ScriptGroup* pGroup) {
4684 persson 2836 if (this->pGroup == pGroup) return;
4685 schoenebeck 2584 if (pChunk)
4686     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4687     this->pGroup = pGroup;
4688     }
4689    
4690 schoenebeck 2601 /**
4691     * Returns the script group this script currently belongs to. Each script
4692     * is a member of exactly one ScriptGroup.
4693     *
4694     * @returns current script group
4695     */
4696     ScriptGroup* Script::GetGroup() const {
4697     return pGroup;
4698     }
4699    
4700 schoenebeck 3117 /**
4701     * Make a (semi) deep copy of the Script object given by @a orig
4702     * and assign it to this object. Note: the ScriptGroup this Script
4703     * object belongs to remains untouched by this call.
4704     *
4705     * @param orig - original Script object to be copied from
4706     */
4707     void Script::CopyAssign(const Script* orig) {
4708     Name = orig->Name;
4709     Compression = orig->Compression;
4710     Encoding = orig->Encoding;
4711     Language = orig->Language;
4712     Bypass = orig->Bypass;
4713     data = orig->data;
4714     }
4715    
4716 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4717     File* pFile = pGroup->pFile;
4718     for (int i = 0; pFile->GetInstrument(i); ++i) {
4719     Instrument* instr = pFile->GetInstrument(i);
4720     instr->RemoveScript(this);
4721     }
4722     }
4723    
4724     // *************** ScriptGroup ***************
4725     // *
4726    
4727     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4728     pFile = file;
4729     pList = lstRTIS;
4730     pScripts = NULL;
4731     if (lstRTIS) {
4732     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4733     ::LoadString(ckName, Name);
4734     } else {
4735     Name = "Default Group";
4736     }
4737     }
4738    
4739     ScriptGroup::~ScriptGroup() {
4740     if (pScripts) {
4741     std::list<Script*>::iterator iter = pScripts->begin();
4742     std::list<Script*>::iterator end = pScripts->end();
4743     while (iter != end) {
4744     delete *iter;
4745     ++iter;
4746     }
4747     delete pScripts;
4748     }
4749     }
4750    
4751 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4752     *
4753     * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4754     * recommended to call this method explicitly though from deriving classes's
4755     * own overridden implementation of this method to avoid potential future
4756     * compatiblity issues.
4757     *
4758     * See DLS::Storage::DeleteChunks() for details.
4759     */
4760     void ScriptGroup::DeleteChunks() {
4761     }
4762    
4763 schoenebeck 2682 /**
4764     * Apply this script group to the respective RIFF chunks. You have to call
4765     * File::Save() to make changes persistent.
4766     *
4767     * Usually there is absolutely no need to call this method explicitly.
4768     * It will be called automatically when File::Save() was called.
4769     *
4770     * @param pProgress - callback function for progress notification
4771     */
4772     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4773 schoenebeck 2584 if (pScripts) {
4774     if (!pList)
4775     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4776    
4777     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4778     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4779    
4780     for (std::list<Script*>::iterator it = pScripts->begin();
4781     it != pScripts->end(); ++it)
4782     {
4783 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4784 schoenebeck 2584 }
4785     }
4786     }
4787    
4788     /** @brief Get instrument script.
4789     *
4790     * Returns the real-time instrument script with the given index.
4791     *
4792     * @param index - number of the sought script (0..n)
4793     * @returns sought script or NULL if there's no such script
4794     */
4795     Script* ScriptGroup::GetScript(uint index) {
4796     if (!pScripts) LoadScripts();
4797     std::list<Script*>::iterator it = pScripts->begin();
4798     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4799     if (i == index) return *it;
4800     return NULL;
4801     }
4802    
4803     /** @brief Add new instrument script.
4804     *
4805     * Adds a new real-time instrument script to the file. The script is not
4806     * actually used / executed unless it is referenced by an instrument to be
4807     * used. This is similar to samples, which you can add to a file, without
4808     * an instrument necessarily actually using it.
4809     *
4810     * You have to call Save() to make this persistent to the file.
4811     *
4812     * @return new empty script object
4813     */
4814     Script* ScriptGroup::AddScript() {
4815     if (!pScripts) LoadScripts();
4816     Script* pScript = new Script(this, NULL);
4817     pScripts->push_back(pScript);
4818     return pScript;
4819     }
4820    
4821     /** @brief Delete an instrument script.
4822     *
4823     * This will delete the given real-time instrument script. References of
4824     * instruments that are using that script will be removed accordingly.
4825     *
4826     * You have to call Save() to make this persistent to the file.
4827     *
4828     * @param pScript - script to delete
4829     * @throws gig::Exception if given script could not be found
4830     */
4831     void ScriptGroup::DeleteScript(Script* pScript) {
4832     if (!pScripts) LoadScripts();
4833     std::list<Script*>::iterator iter =
4834     find(pScripts->begin(), pScripts->end(), pScript);
4835     if (iter == pScripts->end())
4836     throw gig::Exception("Could not delete script, could not find given script");
4837     pScripts->erase(iter);
4838     pScript->RemoveAllScriptReferences();
4839     if (pScript->pChunk)
4840     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4841     delete pScript;
4842     }
4843    
4844     void ScriptGroup::LoadScripts() {
4845     if (pScripts) return;
4846     pScripts = new std::list<Script*>;
4847     if (!pList) return;
4848    
4849     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4850     ck = pList->GetNextSubChunk())
4851     {
4852     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4853     pScripts->push_back(new Script(this, ck));
4854     }
4855     }
4856     }
4857    
4858 schoenebeck 2 // *************** Instrument ***************
4859     // *
4860    
4861 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4862 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4863 persson 1180 { CHUNK_ID_INAM, 64 },
4864     { CHUNK_ID_ISFT, 12 },
4865     { 0, 0 }
4866     };
4867 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4868 persson 918
4869 schoenebeck 2 // Initialization
4870     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4871 persson 1182 EffectSend = 0;
4872     Attenuation = 0;
4873     FineTune = 0;
4874 schoenebeck 3112 PitchbendRange = 2;
4875 persson 1182 PianoReleaseMode = false;
4876     DimensionKeyRange.low = 0;
4877     DimensionKeyRange.high = 0;
4878 persson 1678 pMidiRules = new MidiRule*[3];
4879     pMidiRules[0] = NULL;
4880 schoenebeck 2584 pScriptRefs = NULL;
4881 schoenebeck 2
4882     // Loading
4883     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4884     if (lart) {
4885     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4886     if (_3ewg) {
4887 schoenebeck 3478 _3ewg->SetPos(0);
4888    
4889 schoenebeck 2 EffectSend = _3ewg->ReadUint16();
4890     Attenuation = _3ewg->ReadInt32();
4891     FineTune = _3ewg->ReadInt16();
4892     PitchbendRange = _3ewg->ReadInt16();
4893     uint8_t dimkeystart = _3ewg->ReadUint8();
4894     PianoReleaseMode = dimkeystart & 0x01;
4895     DimensionKeyRange.low = dimkeystart >> 1;
4896     DimensionKeyRange.high = _3ewg->ReadUint8();
4897 persson 1627
4898     if (_3ewg->GetSize() > 32) {
4899     // read MIDI rules
4900 persson 1678 int i = 0;
4901 persson 1627 _3ewg->SetPos(32);
4902     uint8_t id1 = _3ewg->ReadUint8();
4903     uint8_t id2 = _3ewg->ReadUint8();
4904    
4905 persson 2450 if (id2 == 16) {
4906     if (id1 == 4) {
4907     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4908     } else if (id1 == 0) {
4909     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4910     } else if (id1 == 3) {
4911     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4912     } else {
4913     pMidiRules[i++] = new MidiRuleUnknown;
4914     }
4915 persson 1627 }
4916 persson 2450 else if (id1 != 0 || id2 != 0) {
4917     pMidiRules[i++] = new MidiRuleUnknown;
4918     }
4919 persson 1627 //TODO: all the other types of rules
4920 persson 1678
4921     pMidiRules[i] = NULL;
4922 persson 1627 }
4923 schoenebeck 2 }
4924     }
4925    
4926 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4927     if (!pRegions) pRegions = new RegionList;
4928     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4929     if (lrgn) {
4930     RIFF::List* rgn = lrgn->GetFirstSubList();
4931     while (rgn) {
4932     if (rgn->GetListType() == LIST_TYPE_RGN) {
4933 schoenebeck 3488 if (pProgress)
4934     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4935 schoenebeck 1524 pRegions->push_back(new Region(this, rgn));
4936     }
4937     rgn = lrgn->GetNextSubList();
4938 schoenebeck 809 }
4939 schoenebeck 1524 // Creating Region Key Table for fast lookup
4940     UpdateRegionKeyTable();
4941 schoenebeck 2 }
4942     }
4943    
4944 schoenebeck 2584 // own gig format extensions
4945     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4946     if (lst3LS) {
4947     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4948     if (ckSCSL) {
4949 schoenebeck 3478 ckSCSL->SetPos(0);
4950    
4951 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4952     int slotCount = ckSCSL->ReadUint32();
4953     if (slotCount) {
4954     int slotSize = ckSCSL->ReadUint32();
4955     ckSCSL->SetPos(headerSize); // in case of future header extensions
4956     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4957     for (int i = 0; i < slotCount; ++i) {
4958     _ScriptPooolEntry e;
4959     e.fileOffset = ckSCSL->ReadUint32();
4960     e.bypass = ckSCSL->ReadUint32() & 1;
4961     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4962     scriptPoolFileOffsets.push_back(e);
4963     }
4964 schoenebeck 2584 }
4965     }
4966     }
4967    
4968 schoenebeck 3488 if (pProgress)
4969     __notify_progress(pProgress, 1.0f); // notify done
4970 schoenebeck 809 }
4971    
4972     void Instrument::UpdateRegionKeyTable() {
4973 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4974 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4975     RegionList::iterator end = pRegions->end();
4976     for (; iter != end; ++iter) {
4977     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4978 schoenebeck 3348 const int low = std::max(int(pRegion->KeyRange.low), 0);
4979     const int high = std::min(int(pRegion->KeyRange.high), 127);
4980     for (int iKey = low; iKey <= high; iKey++) {
4981 schoenebeck 823 RegionKeyTable[iKey] = pRegion;
4982 schoenebeck 2 }
4983     }
4984     }
4985    
4986     Instrument::~Instrument() {
4987 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4988     delete pMidiRules[i];
4989     }
4990 persson 1678 delete[] pMidiRules;
4991 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4992 schoenebeck 2 }
4993    
4994     /**
4995 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4996     * You have to call File::Save() to make changes persistent.
4997     *
4998     * Usually there is absolutely no need to call this method explicitly.
4999     * It will be called automatically when File::Save() was called.
5000     *
5001 schoenebeck 2682 * @param pProgress - callback function for progress notification
5002 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
5003     */
5004 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
5005 schoenebeck 809 // first update base classes' chunks
5006 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
5007 schoenebeck 809
5008     // update Regions' chunks
5009 schoenebeck 823 {
5010     RegionList::iterator iter = pRegions->begin();
5011     RegionList::iterator end = pRegions->end();
5012     for (; iter != end; ++iter)
5013 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
5014 schoenebeck 823 }
5015 schoenebeck 809
5016     // make sure 'lart' RIFF list chunk exists
5017     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
5018     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
5019     // make sure '3ewg' RIFF chunk exists
5020     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
5021 persson 1264 if (!_3ewg) {
5022     File* pFile = (File*) GetParent();
5023    
5024     // 3ewg is bigger in gig3, as it includes the iMIDI rules
5025 schoenebeck 3440 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
5026 persson 1264 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
5027     memset(_3ewg->LoadChunkData(), 0, size);
5028     }
5029 schoenebeck 809 // update '3ewg' RIFF chunk
5030     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5031 persson 1179 store16(&pData[0], EffectSend);
5032     store32(&pData[2], Attenuation);
5033     store16(&pData[6], FineTune);
5034     store16(&pData[8], PitchbendRange);
5035 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5036 schoenebeck 809 DimensionKeyRange.low << 1;
5037 persson 1179 pData[10] = dimkeystart;
5038     pData[11] = DimensionKeyRange.high;
5039 persson 2450
5040     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5041     pData[32] = 0;
5042     pData[33] = 0;
5043     } else {
5044     for (int i = 0 ; pMidiRules[i] ; i++) {
5045     pMidiRules[i]->UpdateChunks(pData);
5046     }
5047     }
5048 schoenebeck 2584
5049     // own gig format extensions
5050 schoenebeck 2648 if (ScriptSlotCount()) {
5051     // make sure we have converted the original loaded script file
5052     // offsets into valid Script object pointers
5053     LoadScripts();
5054    
5055 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5056     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5057 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
5058 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
5059     const int slotSize = 2 * sizeof(uint32_t);
5060     const int totalChunkSize = headerSize + slotCount * slotSize;
5061 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5062 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5063     else ckSCSL->Resize(totalChunkSize);
5064 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5065 schoenebeck 2609 int pos = 0;
5066     store32(&pData[pos], headerSize);
5067     pos += sizeof(uint32_t);
5068     store32(&pData[pos], slotCount);
5069     pos += sizeof(uint32_t);
5070     store32(&pData[pos], slotSize);
5071     pos += sizeof(uint32_t);
5072     for (int i = 0; i < slotCount; ++i) {
5073     // arbitrary value, the actual file offset will be updated in
5074     // UpdateScriptFileOffsets() after the file has been resized
5075     int bogusFileOffset = 0;
5076     store32(&pData[pos], bogusFileOffset);
5077 schoenebeck 2584 pos += sizeof(uint32_t);
5078     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5079     pos += sizeof(uint32_t);
5080     }
5081 schoenebeck 2648 } else {
5082     // no script slots, so get rid of any LS custom RIFF chunks (if any)
5083     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5084     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5085 schoenebeck 2584 }
5086 schoenebeck 809 }
5087    
5088 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
5089     // own gig format extensions
5090 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
5091 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5092     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5093 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
5094 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
5095     ckSCSL->SetPos(headerSize);
5096     for (int i = 0; i < slotCount; ++i) {
5097 schoenebeck 3053 uint32_t fileOffset = uint32_t(
5098 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5099     (*pScriptRefs)[i].script->pChunk->GetPos() -
5100 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5101     );
5102 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
5103     // jump over flags entry (containing the bypass flag)
5104     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5105     }
5106     }
5107     }
5108    
5109 schoenebeck 809 /**
5110 schoenebeck 2 * Returns the appropriate Region for a triggered note.
5111     *
5112     * @param Key MIDI Key number of triggered note / key (0 - 127)
5113     * @returns pointer adress to the appropriate Region or NULL if there
5114     * there is no Region defined for the given \a Key
5115     */
5116     Region* Instrument::GetRegion(unsigned int Key) {
5117 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5118 schoenebeck 2 return RegionKeyTable[Key];
5119 schoenebeck 823
5120 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
5121     if (Key <= pRegions[i]->KeyRange.high &&
5122     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
5123     }
5124     return NULL;*/
5125     }
5126    
5127     /**
5128     * Returns the first Region of the instrument. You have to call this
5129     * method once before you use GetNextRegion().
5130     *
5131     * @returns pointer address to first region or NULL if there is none
5132     * @see GetNextRegion()
5133     */
5134     Region* Instrument::GetFirstRegion() {
5135 schoenebeck 823 if (!pRegions) return NULL;
5136     RegionsIterator = pRegions->begin();
5137     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5138 schoenebeck 2 }
5139    
5140     /**
5141     * Returns the next Region of the instrument. You have to call
5142     * GetFirstRegion() once before you can use this method. By calling this
5143     * method multiple times it iterates through the available Regions.
5144     *
5145     * @returns pointer address to the next region or NULL if end reached
5146     * @see GetFirstRegion()
5147     */
5148     Region* Instrument::GetNextRegion() {
5149 schoenebeck 823 if (!pRegions) return NULL;
5150     RegionsIterator++;
5151     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5152 schoenebeck 2 }
5153    
5154 schoenebeck 809 Region* Instrument::AddRegion() {
5155     // create new Region object (and its RIFF chunks)
5156     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5157     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5158     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5159     Region* pNewRegion = new Region(this, rgn);
5160 schoenebeck 823 pRegions->push_back(pNewRegion);
5161 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
5162 schoenebeck 809 // update Region key table for fast lookup
5163     UpdateRegionKeyTable();
5164     // done
5165     return pNewRegion;
5166     }
5167 schoenebeck 2
5168 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
5169     if (!pRegions) return;
5170 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5171 schoenebeck 809 // update Region key table for fast lookup
5172     UpdateRegionKeyTable();
5173     }
5174 schoenebeck 2
5175 persson 1627 /**
5176 schoenebeck 2700 * Move this instrument at the position before @arg dst.
5177     *
5178     * This method can be used to reorder the sequence of instruments in a
5179     * .gig file. This might be helpful especially on large .gig files which
5180     * contain a large number of instruments within the same .gig file. So
5181     * grouping such instruments to similar ones, can help to keep track of them
5182     * when working with such complex .gig files.
5183     *
5184     * When calling this method, this instrument will be removed from in its
5185     * current position in the instruments list and moved to the requested
5186     * target position provided by @param dst. You may also pass NULL as
5187     * argument to this method, in that case this intrument will be moved to the
5188     * very end of the .gig file's instrument list.
5189     *
5190     * You have to call Save() to make the order change persistent to the .gig
5191     * file.
5192     *
5193     * Currently this method is limited to moving the instrument within the same
5194     * .gig file. Trying to move it to another .gig file by calling this method
5195     * will throw an exception.
5196     *
5197     * @param dst - destination instrument at which this instrument will be
5198     * moved to, or pass NULL for moving to end of list
5199     * @throw gig::Exception if this instrument and target instrument are not
5200     * part of the same file
5201     */
5202     void Instrument::MoveTo(Instrument* dst) {
5203     if (dst && GetParent() != dst->GetParent())
5204     throw Exception(
5205     "gig::Instrument::MoveTo() can only be used for moving within "
5206     "the same gig file."
5207     );
5208    
5209     File* pFile = (File*) GetParent();
5210    
5211     // move this instrument within the instrument list
5212     {
5213 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
5214 schoenebeck 2700
5215 persson 2836 File::InstrumentList::iterator itFrom =
5216 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5217    
5218 persson 2836 File::InstrumentList::iterator itTo =
5219 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5220    
5221     list.splice(itTo, list, itFrom);
5222     }
5223    
5224     // move the instrument's actual list RIFF chunk appropriately
5225     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5226     lstCkInstruments->MoveSubChunk(
5227     this->pCkInstrument,
5228 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5229 schoenebeck 2700 );
5230     }
5231    
5232     /**
5233 persson 1678 * Returns a MIDI rule of the instrument.
5234 persson 1627 *
5235     * The list of MIDI rules, at least in gig v3, always contains at
5236     * most two rules. The second rule can only be the DEF filter
5237     * (which currently isn't supported by libgig).
5238     *
5239 persson 1678 * @param i - MIDI rule number
5240     * @returns pointer address to MIDI rule number i or NULL if there is none
5241 persson 1627 */
5242 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
5243     return pMidiRules[i];
5244 persson 1627 }
5245 persson 2450
5246 schoenebeck 2394 /**
5247 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5248     *
5249     * @returns the new MIDI rule
5250     */
5251     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5252     delete pMidiRules[0];
5253     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5254     pMidiRules[0] = r;
5255     pMidiRules[1] = 0;
5256     return r;
5257     }
5258    
5259     /**
5260     * Adds the legato MIDI rule to the instrument.
5261     *
5262     * @returns the new MIDI rule
5263     */
5264     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5265     delete pMidiRules[0];
5266     MidiRuleLegato* r = new MidiRuleLegato;
5267     pMidiRules[0] = r;
5268     pMidiRules[1] = 0;
5269     return r;
5270     }
5271    
5272     /**
5273     * Adds the alternator MIDI rule to the instrument.
5274     *
5275     * @returns the new MIDI rule
5276     */
5277     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5278     delete pMidiRules[0];
5279     MidiRuleAlternator* r = new MidiRuleAlternator;
5280     pMidiRules[0] = r;
5281     pMidiRules[1] = 0;
5282     return r;
5283     }
5284    
5285     /**
5286     * Deletes a MIDI rule from the instrument.
5287     *
5288     * @param i - MIDI rule number
5289     */
5290     void Instrument::DeleteMidiRule(int i) {
5291     delete pMidiRules[i];
5292     pMidiRules[i] = 0;
5293     }
5294    
5295 schoenebeck 2584 void Instrument::LoadScripts() {
5296     if (pScriptRefs) return;
5297     pScriptRefs = new std::vector<_ScriptPooolRef>;
5298     if (scriptPoolFileOffsets.empty()) return;
5299     File* pFile = (File*) GetParent();
5300     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5301 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5302 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5303     ScriptGroup* group = pFile->GetScriptGroup(i);
5304     for (uint s = 0; group->GetScript(s); ++s) {
5305     Script* script = group->GetScript(s);
5306     if (script->pChunk) {
5307 schoenebeck 3053 uint32_t offset = uint32_t(
5308     script->pChunk->GetFilePos() -
5309     script->pChunk->GetPos() -
5310     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5311     );
5312 schoenebeck 2609 if (offset == soughtOffset)
5313 schoenebeck 2584 {
5314     _ScriptPooolRef ref;
5315     ref.script = script;
5316     ref.bypass = scriptPoolFileOffsets[k].bypass;
5317     pScriptRefs->push_back(ref);
5318     break;
5319     }
5320     }
5321     }
5322     }
5323     }
5324     // we don't need that anymore
5325     scriptPoolFileOffsets.clear();
5326     }
5327    
5328 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5329 schoenebeck 2584 *
5330 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5331     * @a index.
5332     *
5333     * @note This is an own format extension which did not exist i.e. in the
5334     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5335     * gigedit.
5336     *
5337     * @param index - instrument script slot index
5338     * @returns script or NULL if index is out of bounds
5339     */
5340     Script* Instrument::GetScriptOfSlot(uint index) {
5341     LoadScripts();
5342     if (index >= pScriptRefs->size()) return NULL;
5343     return pScriptRefs->at(index).script;
5344     }
5345    
5346     /** @brief Add new instrument script slot (gig format extension).
5347     *
5348 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5349     * which shall be executed by the sampler for for this instrument. The
5350     * script will be added to the end of the script list of this instrument.
5351     * The positions of the scripts in the Instrument's Script list are
5352     * relevant, because they define in which order they shall be executed by
5353     * the sampler. For this reason it is also legal to add the same script
5354     * twice to an instrument, for example you might have a script called
5355     * "MyFilter" which performs an event filter task, and you might have
5356     * another script called "MyNoteTrigger" which triggers new notes, then you
5357     * might for example have the following list of scripts on the instrument:
5358     *
5359     * 1. Script "MyFilter"
5360     * 2. Script "MyNoteTrigger"
5361     * 3. Script "MyFilter"
5362     *
5363     * Which would make sense, because the 2nd script launched new events, which
5364     * you might need to filter as well.
5365     *
5366     * There are two ways to disable / "bypass" scripts. You can either disable
5367     * a script locally for the respective script slot on an instrument (i.e. by
5368     * passing @c false to the 2nd argument of this method, or by calling
5369     * SetScriptBypassed()). Or you can disable a script globally for all slots
5370     * and all instruments by setting Script::Bypass.
5371     *
5372     * @note This is an own format extension which did not exist i.e. in the
5373     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5374     * gigedit.
5375     *
5376     * @param pScript - script that shall be executed for this instrument
5377     * @param bypass - if enabled, the sampler shall skip executing this
5378     * script (in the respective list position)
5379     * @see SetScriptBypassed()
5380     */
5381     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5382     LoadScripts();
5383     _ScriptPooolRef ref = { pScript, bypass };
5384     pScriptRefs->push_back(ref);
5385     }
5386    
5387     /** @brief Flip two script slots with each other (gig format extension).
5388     *
5389     * Swaps the position of the two given scripts in the Instrument's Script
5390     * list. The positions of the scripts in the Instrument's Script list are
5391     * relevant, because they define in which order they shall be executed by
5392     * the sampler.
5393     *
5394     * @note This is an own format extension which did not exist i.e. in the
5395     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5396     * gigedit.
5397     *
5398     * @param index1 - index of the first script slot to swap
5399     * @param index2 - index of the second script slot to swap
5400     */
5401     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5402     LoadScripts();
5403     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5404     return;
5405     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5406     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5407     (*pScriptRefs)[index2] = tmp;
5408     }
5409    
5410     /** @brief Remove script slot.
5411     *
5412     * Removes the script slot with the given slot index.
5413     *
5414     * @param index - index of script slot to remove
5415     */
5416     void Instrument::RemoveScriptSlot(uint index) {
5417     LoadScripts();
5418     if (index >= pScriptRefs->size()) return;
5419     pScriptRefs->erase( pScriptRefs->begin() + index );
5420     }
5421    
5422     /** @brief Remove reference to given Script (gig format extension).
5423     *
5424     * This will remove all script slots on the instrument which are referencing
5425     * the given script.
5426     *
5427     * @note This is an own format extension which did not exist i.e. in the
5428     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5429     * gigedit.
5430     *
5431     * @param pScript - script reference to remove from this instrument
5432     * @see RemoveScriptSlot()
5433     */
5434     void Instrument::RemoveScript(Script* pScript) {
5435     LoadScripts();
5436 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5437 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5438     pScriptRefs->erase( pScriptRefs->begin() + i );
5439     }
5440     }
5441     }
5442    
5443     /** @brief Instrument's amount of script slots.
5444     *
5445     * This method returns the amount of script slots this instrument currently
5446     * uses.
5447     *
5448     * A script slot is a reference of a real-time instrument script to be
5449     * executed by the sampler. The scripts will be executed by the sampler in
5450     * sequence of the slots. One (same) script may be referenced multiple
5451     * times in different slots.
5452     *
5453     * @note This is an own format extension which did not exist i.e. in the
5454     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5455     * gigedit.
5456     */
5457     uint Instrument::ScriptSlotCount() const {
5458 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5459 schoenebeck 2584 }
5460    
5461     /** @brief Whether script execution shall be skipped.
5462     *
5463     * Defines locally for the Script reference slot in the Instrument's Script
5464     * list, whether the script shall be skipped by the sampler regarding
5465     * execution.
5466     *
5467     * It is also possible to ignore exeuction of the script globally, for all
5468     * slots and for all instruments by setting Script::Bypass.
5469     *
5470     * @note This is an own format extension which did not exist i.e. in the
5471     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5472     * gigedit.
5473     *
5474     * @param index - index of the script slot on this instrument
5475     * @see Script::Bypass
5476     */
5477     bool Instrument::IsScriptSlotBypassed(uint index) {
5478     if (index >= ScriptSlotCount()) return false;
5479     return pScriptRefs ? pScriptRefs->at(index).bypass
5480     : scriptPoolFileOffsets.at(index).bypass;
5481    
5482     }
5483    
5484     /** @brief Defines whether execution shall be skipped.
5485     *
5486     * You can call this method to define locally whether or whether not the
5487     * given script slot shall be executed by the sampler.
5488     *
5489     * @note This is an own format extension which did not exist i.e. in the
5490     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5491     * gigedit.
5492     *
5493     * @param index - script slot index on this instrument
5494     * @param bBypass - if true, the script slot will be skipped by the sampler
5495     * @see Script::Bypass
5496     */
5497     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5498     if (index >= ScriptSlotCount()) return;
5499     if (pScriptRefs)
5500     pScriptRefs->at(index).bypass = bBypass;
5501     else
5502     scriptPoolFileOffsets.at(index).bypass = bBypass;
5503     }
5504    
5505 persson 2450 /**
5506 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5507     * and assign it to this object.
5508     *
5509     * Note that all sample pointers referenced by @a orig are simply copied as
5510     * memory address. Thus the respective samples are shared, not duplicated!
5511     *
5512     * @param orig - original Instrument object to be copied from
5513     */
5514     void Instrument::CopyAssign(const Instrument* orig) {
5515 schoenebeck 2482 CopyAssign(orig, NULL);
5516     }
5517    
5518     /**
5519     * Make a (semi) deep copy of the Instrument object given by @a orig
5520     * and assign it to this object.
5521     *
5522     * @param orig - original Instrument object to be copied from
5523     * @param mSamples - crosslink map between the foreign file's samples and
5524     * this file's samples
5525     */
5526     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5527 schoenebeck 2394 // handle base class
5528     // (without copying DLS region stuff)
5529     DLS::Instrument::CopyAssignCore(orig);
5530    
5531     // handle own member variables
5532     Attenuation = orig->Attenuation;
5533     EffectSend = orig->EffectSend;
5534     FineTune = orig->FineTune;
5535     PitchbendRange = orig->PitchbendRange;
5536     PianoReleaseMode = orig->PianoReleaseMode;
5537     DimensionKeyRange = orig->DimensionKeyRange;
5538 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5539     pScriptRefs = orig->pScriptRefs;
5540 schoenebeck 2394
5541     // free old midi rules
5542     for (int i = 0 ; pMidiRules[i] ; i++) {
5543     delete pMidiRules[i];
5544     }
5545     //TODO: MIDI rule copying
5546     pMidiRules[0] = NULL;
5547    
5548     // delete all old regions
5549     while (Regions) DeleteRegion(GetFirstRegion());
5550     // create new regions and copy them from original
5551     {
5552     RegionList::const_iterator it = orig->pRegions->begin();
5553     for (int i = 0; i < orig->Regions; ++i, ++it) {
5554     Region* dstRgn = AddRegion();
5555     //NOTE: Region does semi-deep copy !
5556     dstRgn->CopyAssign(
5557 schoenebeck 2482 static_cast<gig::Region*>(*it),
5558     mSamples
5559 schoenebeck 2394 );
5560     }
5561     }
5562 schoenebeck 809
5563 schoenebeck 2394 UpdateRegionKeyTable();
5564     }
5565 schoenebeck 809
5566 schoenebeck 3710 /**
5567     * Returns @c true in case this Instrument object uses any gig format
5568     * extension, that is e.g. whether any DimensionRegion object currently
5569     * has any setting effective that would require our "LSDE" RIFF chunk to
5570     * be stored to the gig file.
5571     *
5572     * Right now this is a private method. It is considerable though this method
5573     * to become (in slightly modified form) a public API method in future, i.e.
5574     * to allow instrument editors to visualize and/or warn the user of any gig
5575     * format extension being used. See also comments on
5576     * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
5577     * potential public API change in future.
5578     */
5579     bool Instrument::UsesAnyGigFormatExtension() const {
5580     if (!pRegions) return false;
5581     RegionList::const_iterator iter = pRegions->begin();
5582     RegionList::const_iterator end = pRegions->end();
5583     for (; iter != end; ++iter) {
5584     gig::Region* rgn = static_cast<gig::Region*>(*iter);
5585     if (rgn->UsesAnyGigFormatExtension())
5586     return true;
5587     }
5588     return false;
5589     }
5590 schoenebeck 2394
5591 schoenebeck 3710
5592 schoenebeck 929 // *************** Group ***************
5593     // *
5594    
5595     /** @brief Constructor.
5596     *
5597 schoenebeck 930 * @param file - pointer to the gig::File object
5598     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5599     * NULL if this is a new Group
5600 schoenebeck 929 */
5601 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5602 schoenebeck 929 pFile = file;
5603     pNameChunk = ck3gnm;
5604     ::LoadString(pNameChunk, Name);
5605     }
5606    
5607 schoenebeck 3478 /** @brief Destructor.
5608     *
5609     * Currently this destructor implementation does nothing.
5610     */
5611 schoenebeck 929 Group::~Group() {
5612     }
5613    
5614 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this Group object.
5615     *
5616     * See DLS::Storage::DeleteChunks() for details.
5617     */
5618     void Group::DeleteChunks() {
5619     // handle own RIFF chunks
5620     if (pNameChunk) {
5621     pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5622     pNameChunk = NULL;
5623     }
5624     }
5625    
5626 schoenebeck 929 /** @brief Update chunks with current group settings.
5627     *
5628 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5629     * to call File::Save() to make changes persistent.
5630     *
5631     * Usually there is absolutely no need to call this method explicitly.
5632     * It will be called automatically when File::Save() was called.
5633 schoenebeck 2682 *
5634     * @param pProgress - callback function for progress notification
5635 schoenebeck 929 */
5636 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5637 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5638 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5639 persson 1192 if (!_3gri) {
5640     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5641     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5642     }
5643 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5644 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5645 persson 1266
5646 schoenebeck 3440 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5647 persson 1266 // v3 has a fixed list of 128 strings, find a free one
5648     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5649     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5650     pNameChunk = ck;
5651     break;
5652     }
5653     }
5654     }
5655    
5656 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5657     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5658     }
5659    
5660 schoenebeck 930 /**
5661     * Returns the first Sample of this Group. You have to call this method
5662     * once before you use GetNextSample().
5663     *
5664     * <b>Notice:</b> this method might block for a long time, in case the
5665     * samples of this .gig file were not scanned yet
5666     *
5667     * @returns pointer address to first Sample or NULL if there is none
5668     * applied to this Group
5669     * @see GetNextSample()
5670     */
5671     Sample* Group::GetFirstSample() {
5672     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5673     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5674     if (pSample->GetGroup() == this) return pSample;
5675     }
5676     return NULL;
5677     }
5678 schoenebeck 929
5679 schoenebeck 930 /**
5680     * Returns the next Sample of the Group. You have to call
5681     * GetFirstSample() once before you can use this method. By calling this
5682     * method multiple times it iterates through the Samples assigned to
5683     * this Group.
5684     *
5685     * @returns pointer address to the next Sample of this Group or NULL if
5686     * end reached
5687     * @see GetFirstSample()
5688     */
5689     Sample* Group::GetNextSample() {
5690     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5691     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5692     if (pSample->GetGroup() == this) return pSample;
5693     }
5694     return NULL;
5695     }
5696 schoenebeck 929
5697 schoenebeck 930 /**
5698     * Move Sample given by \a pSample from another Group to this Group.
5699     */
5700     void Group::AddSample(Sample* pSample) {
5701     pSample->pGroup = this;
5702     }
5703    
5704     /**
5705     * Move all members of this group to another group (preferably the 1st
5706     * one except this). This method is called explicitly by
5707     * File::DeleteGroup() thus when a Group was deleted. This code was
5708     * intentionally not placed in the destructor!
5709     */
5710     void Group::MoveAll() {
5711     // get "that" other group first
5712     Group* pOtherGroup = NULL;
5713     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5714     if (pOtherGroup != this) break;
5715     }
5716     if (!pOtherGroup) throw Exception(
5717     "Could not move samples to another group, since there is no "
5718     "other Group. This is a bug, report it!"
5719     );
5720     // now move all samples of this group to the other group
5721     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5722     pOtherGroup->AddSample(pSample);
5723     }
5724     }
5725    
5726    
5727    
5728 schoenebeck 2 // *************** File ***************
5729     // *
5730    
5731 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5732 persson 1199 const DLS::version_t File::VERSION_2 = {
5733     0, 2, 19980628 & 0xffff, 19980628 >> 16
5734     };
5735    
5736 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5737 persson 1199 const DLS::version_t File::VERSION_3 = {
5738     0, 3, 20030331 & 0xffff, 20030331 >> 16
5739     };
5740    
5741 schoenebeck 3440 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5742     const DLS::version_t File::VERSION_4 = {
5743     0, 4, 20071012 & 0xffff, 20071012 >> 16
5744     };
5745    
5746 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5747 persson 1180 { CHUNK_ID_IARL, 256 },
5748     { CHUNK_ID_IART, 128 },
5749     { CHUNK_ID_ICMS, 128 },
5750     { CHUNK_ID_ICMT, 1024 },
5751     { CHUNK_ID_ICOP, 128 },
5752     { CHUNK_ID_ICRD, 128 },
5753     { CHUNK_ID_IENG, 128 },
5754     { CHUNK_ID_IGNR, 128 },
5755     { CHUNK_ID_IKEY, 128 },
5756     { CHUNK_ID_IMED, 128 },
5757     { CHUNK_ID_INAM, 128 },
5758     { CHUNK_ID_IPRD, 128 },
5759     { CHUNK_ID_ISBJ, 128 },
5760     { CHUNK_ID_ISFT, 128 },
5761     { CHUNK_ID_ISRC, 128 },
5762     { CHUNK_ID_ISRF, 128 },
5763     { CHUNK_ID_ITCH, 128 },
5764     { 0, 0 }
5765     };
5766    
5767 schoenebeck 809 File::File() : DLS::File() {
5768 schoenebeck 1524 bAutoLoad = true;
5769 persson 1264 *pVersion = VERSION_3;
5770 schoenebeck 929 pGroups = NULL;
5771 schoenebeck 2584 pScriptGroups = NULL;
5772 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5773 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5774 persson 1192
5775     // add some mandatory chunks to get the file chunks in right
5776     // order (INFO chunk will be moved to first position later)
5777     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5778     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5779 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5780    
5781     GenerateDLSID();
5782 schoenebeck 809 }
5783    
5784 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5785 schoenebeck 1524 bAutoLoad = true;
5786 schoenebeck 929 pGroups = NULL;
5787 schoenebeck 2584 pScriptGroups = NULL;
5788 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5789 schoenebeck 2 }
5790    
5791 schoenebeck 929 File::~File() {
5792     if (pGroups) {
5793     std::list<Group*>::iterator iter = pGroups->begin();
5794     std::list<Group*>::iterator end = pGroups->end();
5795     while (iter != end) {
5796     delete *iter;
5797     ++iter;
5798     }
5799     delete pGroups;
5800     }
5801 schoenebeck 2584 if (pScriptGroups) {
5802     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5803     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5804     while (iter != end) {
5805     delete *iter;
5806     ++iter;
5807     }
5808     delete pScriptGroups;
5809     }
5810 schoenebeck 929 }
5811    
5812 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5813     if (!pSamples) LoadSamples(pProgress);
5814 schoenebeck 2 if (!pSamples) return NULL;
5815     SamplesIterator = pSamples->begin();
5816     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5817     }
5818    
5819     Sample* File::GetNextSample() {
5820     if (!pSamples) return NULL;
5821     SamplesIterator++;
5822     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5823     }
5824 schoenebeck 2482
5825     /**
5826     * Returns Sample object of @a index.
5827     *
5828     * @returns sample object or NULL if index is out of bounds
5829     */
5830     Sample* File::GetSample(uint index) {
5831     if (!pSamples) LoadSamples();
5832     if (!pSamples) return NULL;
5833     DLS::File::SampleList::iterator it = pSamples->begin();
5834     for (int i = 0; i < index; ++i) {
5835     ++it;
5836     if (it == pSamples->end()) return NULL;
5837     }
5838     if (it == pSamples->end()) return NULL;
5839     return static_cast<gig::Sample*>( *it );
5840     }
5841 schoenebeck 2
5842 schoenebeck 3414 /**
5843     * Returns the total amount of samples of this gig file.
5844     *
5845     * Note that this method might block for a long time in case it is required
5846     * to load the sample info for the first time.
5847     *
5848     * @returns total amount of samples
5849     */
5850     size_t File::CountSamples() {
5851     if (!pSamples) LoadSamples();
5852     if (!pSamples) return 0;
5853     return pSamples->size();
5854     }
5855    
5856 schoenebeck 809 /** @brief Add a new sample.
5857     *
5858     * This will create a new Sample object for the gig file. You have to
5859     * call Save() to make this persistent to the file.
5860     *
5861     * @returns pointer to new Sample object
5862     */
5863     Sample* File::AddSample() {
5864     if (!pSamples) LoadSamples();
5865     __ensureMandatoryChunksExist();
5866     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5867     // create new Sample object and its respective 'wave' list chunk
5868     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5869     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5870 persson 1192
5871     // add mandatory chunks to get the chunks in right order
5872     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5873     wave->AddSubList(LIST_TYPE_INFO);
5874    
5875 schoenebeck 809 pSamples->push_back(pSample);
5876     return pSample;
5877     }
5878    
5879     /** @brief Delete a sample.
5880     *
5881 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5882     * references to this sample from Regions and DimensionRegions will be
5883     * removed. You have to call Save() to make this persistent to the file.
5884 schoenebeck 809 *
5885     * @param pSample - sample to delete
5886     * @throws gig::Exception if given sample could not be found
5887     */
5888     void File::DeleteSample(Sample* pSample) {
5889 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5890     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5891 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5892 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5893 schoenebeck 809 pSamples->erase(iter);
5894 schoenebeck 3478 pSample->DeleteChunks();
5895 schoenebeck 809 delete pSample;
5896 persson 1266
5897 persson 1678 SampleList::iterator tmp = SamplesIterator;
5898 persson 1266 // remove all references to the sample
5899     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5900     instrument = GetNextInstrument()) {
5901     for (Region* region = instrument->GetFirstRegion() ; region ;
5902     region = instrument->GetNextRegion()) {
5903    
5904     if (region->GetSample() == pSample) region->SetSample(NULL);
5905    
5906     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5907     gig::DimensionRegion *d = region->pDimensionRegions[i];
5908     if (d->pSample == pSample) d->pSample = NULL;
5909     }
5910     }
5911     }
5912 persson 1678 SamplesIterator = tmp; // restore iterator
5913 schoenebeck 809 }
5914    
5915 schoenebeck 823 void File::LoadSamples() {
5916     LoadSamples(NULL);
5917     }
5918    
5919 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5920 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5921     // to resolve the group they belong to
5922 schoenebeck 1158 if (!pGroups) LoadGroups();
5923 schoenebeck 930
5924 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5925    
5926 persson 666 RIFF::File* file = pRIFF;
5927 schoenebeck 515
5928 persson 666 // just for progress calculation
5929     int iSampleIndex = 0;
5930     int iTotalSamples = WavePoolCount;
5931 schoenebeck 515
5932 schoenebeck 3474 // just for assembling path of optional extension files to be read
5933     const std::string folder = parentPath(pRIFF->GetFileName());
5934     const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5935    
5936     // the main gig file and the extension files (.gx01, ... , .gx98) may
5937     // contain wave data (wave pool)
5938     std::vector<RIFF::File*> poolFiles;
5939     poolFiles.push_back(pRIFF);
5940    
5941     // get info about all extension files
5942     RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5943     if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5944     const uint32_t n = ckXfil->ReadInt32();
5945     for (int i = 0; i < n; i++) {
5946     // read the filename and load the extension file
5947     std::string name;
5948     ckXfil->ReadString(name, 128);
5949     std::string path = concatPath(folder, name);
5950     RIFF::File* pExtFile = new RIFF::File(path);
5951     // check that the dlsids match
5952     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5953     if (ckDLSID) {
5954     ::DLS::dlsid_t idExpected;
5955     idExpected.ulData1 = ckXfil->ReadInt32();
5956     idExpected.usData2 = ckXfil->ReadInt16();
5957     idExpected.usData3 = ckXfil->ReadInt16();
5958     ckXfil->Read(idExpected.abData, 8, 1);
5959     ::DLS::dlsid_t idFound;
5960     ckDLSID->Read(&idFound.ulData1, 1, 4);
5961     ckDLSID->Read(&idFound.usData2, 1, 2);
5962     ckDLSID->Read(&idFound.usData3, 1, 2);
5963     ckDLSID->Read(idFound.abData, 8, 1);
5964     if (memcmp(&idExpected, &idFound, 16) != 0)
5965     throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5966     }
5967     poolFiles.push_back(pExtFile);
5968     ExtensionFiles.push_back(pExtFile);
5969 schoenebeck 2912 }
5970 persson 666 }
5971 schoenebeck 515
5972 schoenebeck 3474 // check if a .gx99 (GigaPulse) file exists
5973     RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5974     if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5975     std::string path = baseName + ".gx99";
5976     RIFF::File* pExtFile = new RIFF::File(path);
5977    
5978     // skip unused int and filename
5979 schoenebeck 3475 ckDoxf->SetPos(132, RIFF::stream_curpos);
5980 schoenebeck 3474
5981     // check that the dlsids match
5982     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5983     if (ckDLSID) {
5984     ::DLS::dlsid_t idExpected;
5985     idExpected.ulData1 = ckDoxf->ReadInt32();
5986     idExpected.usData2 = ckDoxf->ReadInt16();
5987     idExpected.usData3 = ckDoxf->ReadInt16();
5988     ckDoxf->Read(idExpected.abData, 8, 1);
5989     ::DLS::dlsid_t idFound;
5990     ckDLSID->Read(&idFound.ulData1, 1, 4);
5991     ckDLSID->Read(&idFound.usData2, 1, 2);
5992     ckDLSID->Read(&idFound.usData3, 1, 2);
5993     ckDLSID->Read(idFound.abData, 8, 1);
5994     if (memcmp(&idExpected, &idFound, 16) != 0)
5995     throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5996     }
5997     poolFiles.push_back(pExtFile);
5998     ExtensionFiles.push_back(pExtFile);
5999     }
6000    
6001     // load samples from extension files (if required)
6002     for (int i = 0; i < poolFiles.size(); i++) {
6003     RIFF::File* file = poolFiles[i];
6004 persson 666 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
6005     if (wvpl) {
6006 schoenebeck 3478 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
6007     wvpl->GetPos(); // should be zero, but just to be sure
6008 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
6009     while (wave) {
6010     if (wave->GetListType() == LIST_TYPE_WAVE) {
6011     // notify current progress
6012 schoenebeck 3488 if (pProgress) {
6013     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
6014     __notify_progress(pProgress, subprogress);
6015     }
6016 persson 666
6017 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
6018 schoenebeck 3474 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
6019 persson 666
6020     iSampleIndex++;
6021     }
6022     wave = wvpl->GetNextSubList();
6023 schoenebeck 2 }
6024 schoenebeck 3474 }
6025 schoenebeck 2 }
6026 persson 666
6027 schoenebeck 3488 if (pProgress)
6028     __notify_progress(pProgress, 1.0); // notify done
6029 schoenebeck 2 }
6030    
6031     Instrument* File::GetFirstInstrument() {
6032     if (!pInstruments) LoadInstruments();
6033     if (!pInstruments) return NULL;
6034     InstrumentsIterator = pInstruments->begin();
6035 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6036 schoenebeck 2 }
6037    
6038     Instrument* File::GetNextInstrument() {
6039     if (!pInstruments) return NULL;
6040     InstrumentsIterator++;
6041 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6042 schoenebeck 2 }
6043    
6044 schoenebeck 21 /**
6045 schoenebeck 3414 * Returns the total amount of instruments of this gig file.
6046     *
6047     * Note that this method might block for a long time in case it is required
6048     * to load the instruments info for the first time.
6049     *
6050     * @returns total amount of instruments
6051     */
6052     size_t File::CountInstruments() {
6053     if (!pInstruments) LoadInstruments();
6054     if (!pInstruments) return 0;
6055     return pInstruments->size();
6056     }
6057    
6058     /**
6059 schoenebeck 21 * Returns the instrument with the given index.
6060     *
6061 schoenebeck 515 * @param index - number of the sought instrument (0..n)
6062     * @param pProgress - optional: callback function for progress notification
6063 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
6064     */
6065 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
6066     if (!pInstruments) {
6067     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6068    
6069 schoenebeck 3488 if (pProgress) {
6070     // sample loading subtask
6071     progress_t subprogress;
6072     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6073     __notify_progress(&subprogress, 0.0f);
6074     if (GetAutoLoad())
6075     GetFirstSample(&subprogress); // now force all samples to be loaded
6076     __notify_progress(&subprogress, 1.0f);
6077 schoenebeck 515
6078 schoenebeck 3488 // instrument loading subtask
6079     if (pProgress->callback) {
6080     subprogress.__range_min = subprogress.__range_max;
6081     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6082     }
6083     __notify_progress(&subprogress, 0.0f);
6084     LoadInstruments(&subprogress);
6085     __notify_progress(&subprogress, 1.0f);
6086     } else {
6087     // sample loading subtask
6088     if (GetAutoLoad())
6089     GetFirstSample(); // now force all samples to be loaded
6090    
6091     // instrument loading subtask
6092     LoadInstruments();
6093 schoenebeck 515 }
6094     }
6095 schoenebeck 21 if (!pInstruments) return NULL;
6096     InstrumentsIterator = pInstruments->begin();
6097     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6098 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6099 schoenebeck 21 InstrumentsIterator++;
6100     }
6101     return NULL;
6102     }
6103    
6104 schoenebeck 809 /** @brief Add a new instrument definition.
6105     *
6106     * This will create a new Instrument object for the gig file. You have
6107     * to call Save() to make this persistent to the file.
6108     *
6109     * @returns pointer to new Instrument object
6110     */
6111     Instrument* File::AddInstrument() {
6112     if (!pInstruments) LoadInstruments();
6113     __ensureMandatoryChunksExist();
6114     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6115     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6116 persson 1192
6117     // add mandatory chunks to get the chunks in right order
6118     lstInstr->AddSubList(LIST_TYPE_INFO);
6119 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6120 persson 1192
6121 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
6122 persson 1209 pInstrument->GenerateDLSID();
6123 persson 1182
6124 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6125    
6126 persson 1182 // this string is needed for the gig to be loadable in GSt:
6127     pInstrument->pInfo->Software = "Endless Wave";
6128    
6129 schoenebeck 809 pInstruments->push_back(pInstrument);
6130     return pInstrument;
6131     }
6132 schoenebeck 2394
6133     /** @brief Add a duplicate of an existing instrument.
6134     *
6135     * Duplicates the instrument definition given by @a orig and adds it
6136     * to this file. This allows in an instrument editor application to
6137     * easily create variations of an instrument, which will be stored in
6138     * the same .gig file, sharing i.e. the same samples.
6139     *
6140     * Note that all sample pointers referenced by @a orig are simply copied as
6141     * memory address. Thus the respective samples are shared, not duplicated!
6142     *
6143     * You have to call Save() to make this persistent to the file.
6144     *
6145     * @param orig - original instrument to be copied
6146     * @returns duplicated copy of the given instrument
6147     */
6148     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6149     Instrument* instr = AddInstrument();
6150     instr->CopyAssign(orig);
6151     return instr;
6152     }
6153 schoenebeck 2482
6154     /** @brief Add content of another existing file.
6155     *
6156     * Duplicates the samples, groups and instruments of the original file
6157     * given by @a pFile and adds them to @c this File. In case @c this File is
6158     * a new one that you haven't saved before, then you have to call
6159     * SetFileName() before calling AddContentOf(), because this method will
6160     * automatically save this file during operation, which is required for
6161     * writing the sample waveform data by disk streaming.
6162     *
6163     * @param pFile - original file whose's content shall be copied from
6164     */
6165     void File::AddContentOf(File* pFile) {
6166     static int iCallCount = -1;
6167     iCallCount++;
6168     std::map<Group*,Group*> mGroups;
6169     std::map<Sample*,Sample*> mSamples;
6170    
6171     // clone sample groups
6172     for (int i = 0; pFile->GetGroup(i); ++i) {
6173     Group* g = AddGroup();
6174     g->Name =
6175     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6176     mGroups[pFile->GetGroup(i)] = g;
6177     }
6178    
6179     // clone samples (not waveform data here yet)
6180     for (int i = 0; pFile->GetSample(i); ++i) {
6181     Sample* s = AddSample();
6182     s->CopyAssignMeta(pFile->GetSample(i));
6183     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6184     mSamples[pFile->GetSample(i)] = s;
6185     }
6186 schoenebeck 3117
6187     // clone script groups and their scripts
6188     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6189     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6190     ScriptGroup* dg = AddScriptGroup();
6191     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6192     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6193     Script* ss = sg->GetScript(iScript);
6194     Script* ds = dg->AddScript();
6195     ds->CopyAssign(ss);
6196     }
6197     }
6198    
6199 schoenebeck 2482 //BUG: For some reason this method only works with this additional
6200     // Save() call in between here.
6201     //
6202     // Important: The correct one of the 2 Save() methods has to be called
6203     // here, depending on whether the file is completely new or has been
6204     // saved to disk already, otherwise it will result in data corruption.
6205     if (pRIFF->IsNew())
6206     Save(GetFileName());
6207     else
6208     Save();
6209    
6210     // clone instruments
6211     // (passing the crosslink table here for the cloned samples)
6212     for (int i = 0; pFile->GetInstrument(i); ++i) {
6213     Instrument* instr = AddInstrument();
6214     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6215     }
6216    
6217     // Mandatory: file needs to be saved to disk at this point, so this
6218     // file has the correct size and data layout for writing the samples'
6219     // waveform data to disk.
6220     Save();
6221    
6222     // clone samples' waveform data
6223     // (using direct read & write disk streaming)
6224     for (int i = 0; pFile->GetSample(i); ++i) {
6225     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6226     }
6227     }
6228 schoenebeck 809
6229     /** @brief Delete an instrument.
6230     *
6231     * This will delete the given Instrument object from the gig file. You
6232     * have to call Save() to make this persistent to the file.
6233     *
6234     * @param pInstrument - instrument to delete
6235 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
6236 schoenebeck 809 */
6237     void File::DeleteInstrument(Instrument* pInstrument) {
6238     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6239 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6240 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6241     pInstruments->erase(iter);
6242 schoenebeck 3478 pInstrument->DeleteChunks();
6243 schoenebeck 809 delete pInstrument;
6244     }
6245    
6246 schoenebeck 823 void File::LoadInstruments() {
6247     LoadInstruments(NULL);
6248     }
6249    
6250 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
6251 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
6252 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6253     if (lstInstruments) {
6254 schoenebeck 515 int iInstrumentIndex = 0;
6255 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6256     while (lstInstr) {
6257     if (lstInstr->GetListType() == LIST_TYPE_INS) {
6258 schoenebeck 3488 if (pProgress) {
6259     // notify current progress
6260     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6261     __notify_progress(pProgress, localProgress);
6262 schoenebeck 515
6263 schoenebeck 3488 // divide local progress into subprogress for loading current Instrument
6264     progress_t subprogress;
6265     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6266 schoenebeck 515
6267 schoenebeck 3488 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6268     } else {
6269     pInstruments->push_back(new Instrument(this, lstInstr));
6270     }
6271 schoenebeck 515
6272     iInstrumentIndex++;
6273 schoenebeck 2 }
6274     lstInstr = lstInstruments->GetNextSubList();
6275     }
6276 schoenebeck 3488 if (pProgress)
6277     __notify_progress(pProgress, 1.0); // notify done
6278 schoenebeck 2 }
6279     }
6280    
6281 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
6282     /// update is done directly to disk, as this method is called
6283     /// after File::Save()
6284 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6285     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6286     if (!_3crc) return;
6287 persson 1207
6288     // get the index of the sample
6289 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
6290 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6291    
6292 persson 1207 // write the CRC-32 checksum to disk
6293 persson 1199 _3crc->SetPos(iWaveIndex * 8);
6294 schoenebeck 2985 uint32_t one = 1;
6295     _3crc->WriteUint32(&one); // always 1
6296 persson 1199 _3crc->WriteUint32(&crc);
6297 schoenebeck 2989 }
6298 schoenebeck 2985
6299 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
6300     // get the index of the sample
6301     int iWaveIndex = GetWaveTableIndexOf(pSample);
6302     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6303    
6304     return GetSampleChecksumByIndex(iWaveIndex);
6305 persson 1199 }
6306    
6307 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
6308     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6309    
6310 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6311     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6312     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6313     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6314    
6315     // read the CRC-32 checksum directly from disk
6316 schoenebeck 2989 size_t pos = index * 8;
6317 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
6318     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6319    
6320     uint32_t one = load32(&pData[pos]); // always 1
6321     if (one != 1)
6322 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6323 schoenebeck 2985
6324     return load32(&pData[pos+4]);
6325     }
6326 schoenebeck 2989
6327 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6328     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6329     File::SampleList::iterator iter = pSamples->begin();
6330     File::SampleList::iterator end = pSamples->end();
6331     for (int index = 0; iter != end; ++iter, ++index)
6332     if (*iter == pSample)
6333     return index;
6334     return -1;
6335     }
6336    
6337     /**
6338     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6339     * the CRC32 check sums of all samples' raw wave data.
6340     *
6341     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6342     */
6343     bool File::VerifySampleChecksumTable() {
6344     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6345     if (!_3crc) return false;
6346     if (_3crc->GetNewSize() <= 0) return false;
6347     if (_3crc->GetNewSize() % 8) return false;
6348     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6349     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6350    
6351 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
6352 schoenebeck 2985
6353     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6354     if (!pData) return false;
6355    
6356 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
6357 schoenebeck 2985 uint32_t one = pData[i*2];
6358     if (one != 1) return false;
6359     }
6360    
6361     return true;
6362     }
6363    
6364     /**
6365     * Recalculates CRC32 checksums for all samples and rebuilds this gig
6366     * file's checksum table with those new checksums. This might usually
6367     * just be necessary if the checksum table was damaged.
6368     *
6369     * @e IMPORTANT: The current implementation of this method only works
6370     * with files that have not been modified since it was loaded, because
6371     * it expects that no externally caused file structure changes are
6372     * required!
6373     *
6374     * Due to the expectation above, this method is currently protected
6375     * and actually only used by the command line tool "gigdump" yet.
6376     *
6377     * @returns true if Save() is required to be called after this call,
6378     * false if no further action is required
6379     */
6380     bool File::RebuildSampleChecksumTable() {
6381     // make sure sample chunks were scanned
6382     if (!pSamples) GetFirstSample();
6383    
6384     bool bRequiresSave = false;
6385    
6386     // make sure "3CRC" chunk exists with required size
6387     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6388     if (!_3crc) {
6389     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6390 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6391     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6392 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6393 schoenebeck 2985 bRequiresSave = true;
6394     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6395     _3crc->Resize(pSamples->size() * 8);
6396     bRequiresSave = true;
6397     }
6398    
6399     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6400     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6401     {
6402     File::SampleList::iterator iter = pSamples->begin();
6403     File::SampleList::iterator end = pSamples->end();
6404     for (; iter != end; ++iter) {
6405     gig::Sample* pSample = (gig::Sample*) *iter;
6406     int index = GetWaveTableIndexOf(pSample);
6407     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6408     pData[index*2] = 1; // always 1
6409     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6410     }
6411     }
6412     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6413     // make sure file is in write mode
6414     pRIFF->SetMode(RIFF::stream_mode_read_write);
6415     {
6416     File::SampleList::iterator iter = pSamples->begin();
6417     File::SampleList::iterator end = pSamples->end();
6418     for (; iter != end; ++iter) {
6419     gig::Sample* pSample = (gig::Sample*) *iter;
6420     int index = GetWaveTableIndexOf(pSample);
6421     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6422 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6423     SetSampleChecksum(pSample, pSample->crc);
6424 schoenebeck 2985 }
6425     }
6426     }
6427    
6428     return bRequiresSave;
6429     }
6430    
6431 schoenebeck 929 Group* File::GetFirstGroup() {
6432     if (!pGroups) LoadGroups();
6433 schoenebeck 930 // there must always be at least one group
6434 schoenebeck 929 GroupsIterator = pGroups->begin();
6435 schoenebeck 930 return *GroupsIterator;
6436 schoenebeck 929 }
6437 schoenebeck 2
6438 schoenebeck 929 Group* File::GetNextGroup() {
6439     if (!pGroups) return NULL;
6440     ++GroupsIterator;
6441     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6442     }
6443 schoenebeck 2
6444 schoenebeck 929 /**
6445     * Returns the group with the given index.
6446     *
6447     * @param index - number of the sought group (0..n)
6448     * @returns sought group or NULL if there's no such group
6449     */
6450     Group* File::GetGroup(uint index) {
6451     if (!pGroups) LoadGroups();
6452     GroupsIterator = pGroups->begin();
6453     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6454     if (i == index) return *GroupsIterator;
6455     ++GroupsIterator;
6456     }
6457     return NULL;
6458     }
6459    
6460 schoenebeck 2543 /**
6461     * Returns the group with the given group name.
6462     *
6463     * Note: group names don't have to be unique in the gig format! So there
6464     * can be multiple groups with the same name. This method will simply
6465     * return the first group found with the given name.
6466     *
6467     * @param name - name of the sought group
6468     * @returns sought group or NULL if there's no group with that name
6469     */
6470     Group* File::GetGroup(String name) {
6471     if (!pGroups) LoadGroups();
6472     GroupsIterator = pGroups->begin();
6473     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6474     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6475     return NULL;
6476     }
6477    
6478 schoenebeck 929 Group* File::AddGroup() {
6479     if (!pGroups) LoadGroups();
6480 schoenebeck 930 // there must always be at least one group
6481 schoenebeck 929 __ensureMandatoryChunksExist();
6482 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6483 schoenebeck 929 pGroups->push_back(pGroup);
6484     return pGroup;
6485     }
6486    
6487 schoenebeck 1081 /** @brief Delete a group and its samples.
6488     *
6489     * This will delete the given Group object and all the samples that
6490     * belong to this group from the gig file. You have to call Save() to
6491     * make this persistent to the file.
6492     *
6493     * @param pGroup - group to delete
6494     * @throws gig::Exception if given group could not be found
6495     */
6496 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6497 schoenebeck 930 if (!pGroups) LoadGroups();
6498 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6499     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6500 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6501 schoenebeck 1081 // delete all members of this group
6502     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6503     DeleteSample(pSample);
6504     }
6505     // now delete this group object
6506     pGroups->erase(iter);
6507 schoenebeck 3478 pGroup->DeleteChunks();
6508 schoenebeck 1081 delete pGroup;
6509     }
6510    
6511     /** @brief Delete a group.
6512     *
6513     * This will delete the given Group object from the gig file. All the
6514     * samples that belong to this group will not be deleted, but instead
6515     * be moved to another group. You have to call Save() to make this
6516     * persistent to the file.
6517     *
6518     * @param pGroup - group to delete
6519     * @throws gig::Exception if given group could not be found
6520     */
6521     void File::DeleteGroupOnly(Group* pGroup) {
6522     if (!pGroups) LoadGroups();
6523     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6524     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6525     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6526 schoenebeck 930 // move all members of this group to another group
6527     pGroup->MoveAll();
6528 schoenebeck 929 pGroups->erase(iter);
6529 schoenebeck 3478 pGroup->DeleteChunks();
6530 schoenebeck 929 delete pGroup;
6531     }
6532    
6533     void File::LoadGroups() {
6534     if (!pGroups) pGroups = new std::list<Group*>;
6535 schoenebeck 930 // try to read defined groups from file
6536 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6537 schoenebeck 930 if (lst3gri) {
6538     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6539     if (lst3gnl) {
6540     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6541     while (ck) {
6542     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6543 schoenebeck 3440 if (pVersion && pVersion->major > 2 &&
6544 persson 1266 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6545    
6546 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6547     }
6548     ck = lst3gnl->GetNextSubChunk();
6549 schoenebeck 929 }
6550     }
6551     }
6552 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6553     if (!pGroups->size()) {
6554     Group* pGroup = new Group(this, NULL);
6555     pGroup->Name = "Default Group";
6556     pGroups->push_back(pGroup);
6557     }
6558 schoenebeck 929 }
6559    
6560 schoenebeck 2584 /** @brief Get instrument script group (by index).
6561     *
6562     * Returns the real-time instrument script group with the given index.
6563     *
6564     * @param index - number of the sought group (0..n)
6565     * @returns sought script group or NULL if there's no such group
6566     */
6567     ScriptGroup* File::GetScriptGroup(uint index) {
6568     if (!pScriptGroups) LoadScriptGroups();
6569     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6570     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6571     if (i == index) return *it;
6572     return NULL;
6573     }
6574    
6575     /** @brief Get instrument script group (by name).
6576     *
6577     * Returns the first real-time instrument script group found with the given
6578     * group name. Note that group names may not necessarily be unique.
6579     *
6580     * @param name - name of the sought script group
6581     * @returns sought script group or NULL if there's no such group
6582     */
6583     ScriptGroup* File::GetScriptGroup(const String& name) {
6584     if (!pScriptGroups) LoadScriptGroups();
6585     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6586     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6587     if ((*it)->Name == name) return *it;
6588     return NULL;
6589     }
6590    
6591     /** @brief Add new instrument script group.
6592     *
6593     * Adds a new, empty real-time instrument script group to the file.
6594     *
6595     * You have to call Save() to make this persistent to the file.
6596     *
6597     * @return new empty script group
6598     */
6599     ScriptGroup* File::AddScriptGroup() {
6600     if (!pScriptGroups) LoadScriptGroups();
6601     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6602     pScriptGroups->push_back(pScriptGroup);
6603     return pScriptGroup;
6604     }
6605    
6606     /** @brief Delete an instrument script group.
6607     *
6608     * This will delete the given real-time instrument script group and all its
6609     * instrument scripts it contains. References inside instruments that are
6610     * using the deleted scripts will be removed from the respective instruments
6611     * accordingly.
6612     *
6613     * You have to call Save() to make this persistent to the file.
6614     *
6615     * @param pScriptGroup - script group to delete
6616     * @throws gig::Exception if given script group could not be found
6617     */
6618     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6619     if (!pScriptGroups) LoadScriptGroups();
6620     std::list<ScriptGroup*>::iterator iter =
6621     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6622     if (iter == pScriptGroups->end())
6623     throw gig::Exception("Could not delete script group, could not find given script group");
6624     pScriptGroups->erase(iter);
6625     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6626     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6627     if (pScriptGroup->pList)
6628     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6629 schoenebeck 3478 pScriptGroup->DeleteChunks();
6630 schoenebeck 2584 delete pScriptGroup;
6631     }
6632    
6633     void File::LoadScriptGroups() {
6634     if (pScriptGroups) return;
6635     pScriptGroups = new std::list<ScriptGroup*>;
6636     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6637     if (lstLS) {
6638     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6639     lst = lstLS->GetNextSubList())
6640     {
6641     if (lst->GetListType() == LIST_TYPE_RTIS) {
6642     pScriptGroups->push_back(new ScriptGroup(this, lst));
6643     }
6644     }
6645     }
6646     }
6647    
6648 schoenebeck 1098 /**
6649     * Apply all the gig file's current instruments, samples, groups and settings
6650     * to the respective RIFF chunks. You have to call Save() to make changes
6651     * persistent.
6652     *
6653     * Usually there is absolutely no need to call this method explicitly.
6654     * It will be called automatically when File::Save() was called.
6655     *
6656 schoenebeck 2682 * @param pProgress - callback function for progress notification
6657 schoenebeck 1098 * @throws Exception - on errors
6658     */
6659 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6660 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6661 persson 1192
6662 schoenebeck 2584 // update own gig format extension chunks
6663     // (not part of the GigaStudio 4 format)
6664 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6665     if (!lst3LS) {
6666     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6667     }
6668     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6669 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6670     // before the actual wave data
6671 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6672     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6673    
6674 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6675     // because the instruments' script slots will write the file offsets
6676     // of the respective instrument script chunk as reference.
6677     if (pScriptGroups) {
6678 schoenebeck 2912 // Update instrument script (group) chunks.
6679     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6680     it != pScriptGroups->end(); ++it)
6681     {
6682     (*it)->UpdateChunks(pProgress);
6683 schoenebeck 2584 }
6684     }
6685    
6686 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6687     // custom "3LS " chunk again
6688     if (!lst3LS->CountSubChunks()) {
6689     pRIFF->DeleteSubChunk(lst3LS);
6690     lst3LS = NULL;
6691     }
6692    
6693 schoenebeck 1098 // first update base class's chunks
6694 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6695 schoenebeck 929
6696 persson 1199 if (newFile) {
6697 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6698     // is placed first in file
6699 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6700 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6701     if (first != info) {
6702     pRIFF->MoveSubChunk(info, first);
6703     }
6704     }
6705    
6706 schoenebeck 1098 // update group's chunks
6707     if (pGroups) {
6708 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6709     // (before updating the Group chunks)
6710     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6711     if (!_3gri) {
6712     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6713     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6714 schoenebeck 1098 }
6715 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6716     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6717 persson 1266
6718     // v3: make sure the file has 128 3gnm chunks
6719 schoenebeck 2467 // (before updating the Group chunks)
6720 schoenebeck 3440 if (pVersion && pVersion->major > 2) {
6721 persson 1266 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6722     for (int i = 0 ; i < 128 ; i++) {
6723 schoenebeck 3656 // create 128 empty placeholder strings which will either
6724     // be filled by Group::UpdateChunks below or left empty.
6725     ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6726 persson 1266 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6727     }
6728     }
6729 schoenebeck 2467
6730     std::list<Group*>::iterator iter = pGroups->begin();
6731     std::list<Group*>::iterator end = pGroups->end();
6732     for (; iter != end; ++iter) {
6733 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6734 schoenebeck 2467 }
6735 schoenebeck 1098 }
6736 persson 1199
6737     // update einf chunk
6738    
6739     // The einf chunk contains statistics about the gig file, such
6740     // as the number of regions and samples used by each
6741     // instrument. It is divided in equally sized parts, where the
6742     // first part contains information about the whole gig file,
6743     // and the rest of the parts map to each instrument in the
6744     // file.
6745     //
6746     // At the end of each part there is a bit map of each sample
6747     // in the file, where a set bit means that the sample is used
6748     // by the file/instrument.
6749     //
6750     // Note that there are several fields with unknown use. These
6751     // are set to zero.
6752    
6753 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6754 persson 1199 int einfSize = (Instruments + 1) * sublen;
6755    
6756     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6757     if (einf) {
6758     if (einf->GetSize() != einfSize) {
6759     einf->Resize(einfSize);
6760     memset(einf->LoadChunkData(), 0, einfSize);
6761     }
6762     } else if (newFile) {
6763     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6764     }
6765     if (einf) {
6766     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6767    
6768     std::map<gig::Sample*,int> sampleMap;
6769     int sampleIdx = 0;
6770     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6771     sampleMap[pSample] = sampleIdx++;
6772     }
6773    
6774     int totnbusedsamples = 0;
6775     int totnbusedchannels = 0;
6776     int totnbregions = 0;
6777     int totnbdimregions = 0;
6778 persson 1264 int totnbloops = 0;
6779 persson 1199 int instrumentIdx = 0;
6780    
6781     memset(&pData[48], 0, sublen - 48);
6782    
6783     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6784     instrument = GetNextInstrument()) {
6785     int nbusedsamples = 0;
6786     int nbusedchannels = 0;
6787     int nbdimregions = 0;
6788 persson 1264 int nbloops = 0;
6789 persson 1199
6790     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6791    
6792     for (Region* region = instrument->GetFirstRegion() ; region ;
6793     region = instrument->GetNextRegion()) {
6794     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6795     gig::DimensionRegion *d = region->pDimensionRegions[i];
6796     if (d->pSample) {
6797     int sampleIdx = sampleMap[d->pSample];
6798     int byte = 48 + sampleIdx / 8;
6799     int bit = 1 << (sampleIdx & 7);
6800     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6801     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6802     nbusedsamples++;
6803     nbusedchannels += d->pSample->Channels;
6804    
6805     if ((pData[byte] & bit) == 0) {
6806     pData[byte] |= bit;
6807     totnbusedsamples++;
6808     totnbusedchannels += d->pSample->Channels;
6809     }
6810     }
6811     }
6812 persson 1264 if (d->SampleLoops) nbloops++;
6813 persson 1199 }
6814     nbdimregions += region->DimensionRegions;
6815     }
6816     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6817     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6818     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6819     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6820     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6821     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6822     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6823 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6824     // next 8 bytes unknown
6825 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6826 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6827 persson 1199 // next 4 bytes unknown
6828    
6829     totnbregions += instrument->Regions;
6830     totnbdimregions += nbdimregions;
6831 persson 1264 totnbloops += nbloops;
6832 persson 1199 instrumentIdx++;
6833     }
6834     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6835     // store32(&pData[0], sublen);
6836     store32(&pData[4], totnbusedchannels);
6837     store32(&pData[8], totnbusedsamples);
6838     store32(&pData[12], Instruments);
6839     store32(&pData[16], totnbregions);
6840     store32(&pData[20], totnbdimregions);
6841 persson 1264 store32(&pData[24], totnbloops);
6842     // next 8 bytes unknown
6843     // next 4 bytes unknown, not always 0
6844 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6845 persson 1199 // next 4 bytes unknown
6846     }
6847    
6848     // update 3crc chunk
6849    
6850     // The 3crc chunk contains CRC-32 checksums for the
6851 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6852     // chunk here (in RAM) with the old crc values which we read from the
6853     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6854     // member variable). This step is required, because samples might have
6855     // been deleted by the user since the file was opened, which in turn
6856     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6857     // If a sample was conciously modified by the user (that is if
6858     // Sample::Write() was called later on) then Sample::Write() will just
6859     // update the respective individual checksum(s) directly on disk and
6860     // leaves all other sample checksums untouched.
6861 persson 1199
6862 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6863 persson 1199 if (_3crc) {
6864     _3crc->Resize(pSamples->size() * 8);
6865 schoenebeck 2989 } else /*if (newFile)*/ {
6866 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6867 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6868 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6869 persson 1199 }
6870 schoenebeck 2989 { // must be performed in RAM here ...
6871     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6872     if (pData) {
6873     File::SampleList::iterator iter = pSamples->begin();
6874     File::SampleList::iterator end = pSamples->end();
6875     for (int index = 0; iter != end; ++iter, ++index) {
6876     gig::Sample* pSample = (gig::Sample*) *iter;
6877     pData[index*2] = 1; // always 1
6878     pData[index*2+1] = pSample->crc;
6879     }
6880     }
6881     }
6882 schoenebeck 1098 }
6883 schoenebeck 2609
6884     void File::UpdateFileOffsets() {
6885     DLS::File::UpdateFileOffsets();
6886 schoenebeck 929
6887 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6888     instrument = GetNextInstrument())
6889     {
6890     instrument->UpdateScriptFileOffsets();
6891     }
6892     }
6893    
6894 schoenebeck 1524 /**
6895 schoenebeck 3481 * Enable / disable automatic loading. By default this property is
6896     * enabled and every information is loaded automatically. However
6897 schoenebeck 1524 * loading all Regions, DimensionRegions and especially samples might
6898     * take a long time for large .gig files, and sometimes one might only
6899     * be interested in retrieving very superficial informations like the
6900     * amount of instruments and their names. In this case one might disable
6901     * automatic loading to avoid very slow response times.
6902     *
6903     * @e CAUTION: by disabling this property many pointers (i.e. sample
6904 schoenebeck 3481 * references) and attributes will have invalid or even undefined
6905 schoenebeck 1524 * data! This feature is currently only intended for retrieving very
6906 schoenebeck 3481 * superficial information in a very fast way. Don't use it to retrieve
6907     * details like synthesis information or even to modify .gig files!
6908 schoenebeck 1524 */
6909     void File::SetAutoLoad(bool b) {
6910     bAutoLoad = b;
6911     }
6912 schoenebeck 1098
6913 schoenebeck 1524 /**
6914     * Returns whether automatic loading is enabled.
6915     * @see SetAutoLoad()
6916     */
6917     bool File::GetAutoLoad() {
6918     return bAutoLoad;
6919     }
6920 schoenebeck 1098
6921 schoenebeck 3710 /**
6922     * Returns @c true in case this gig File object uses any gig format
6923     * extension, that is e.g. whether any DimensionRegion object currently
6924     * has any setting effective that would require our "LSDE" RIFF chunk to
6925     * be stored to the gig file.
6926     *
6927     * Right now this is a private method. It is considerable though this method
6928     * to become (in slightly modified form) a public API method in future, i.e.
6929     * to allow instrument editors to visualize and/or warn the user of any gig
6930     * format extension being used. See also comments on
6931     * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
6932     * potential public API change in future.
6933     */
6934     bool File::UsesAnyGigFormatExtension() const {
6935     if (!pInstruments) return false;
6936     InstrumentList::iterator iter = pInstruments->begin();
6937     InstrumentList::iterator end = pInstruments->end();
6938     for (; iter != end; ++iter) {
6939     Instrument* pInstrument = static_cast<gig::Instrument*>(*iter);
6940     if (pInstrument->UsesAnyGigFormatExtension())
6941     return true;
6942     }
6943     return false;
6944     }
6945 schoenebeck 1524
6946    
6947 schoenebeck 2 // *************** Exception ***************
6948     // *
6949    
6950 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6951 schoenebeck 2 }
6952    
6953 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6954     va_list arg;
6955     va_start(arg, format);
6956     Message = assemble(format, arg);
6957     va_end(arg);
6958     }
6959    
6960     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6961     Message = assemble(format, arg);
6962     }
6963    
6964 schoenebeck 2 void Exception::PrintMessage() {
6965     std::cout << "gig::Exception: " << Message << std::endl;
6966     }
6967    
6968 schoenebeck 518
6969     // *************** functions ***************
6970     // *
6971    
6972     /**
6973     * Returns the name of this C++ library. This is usually "libgig" of
6974     * course. This call is equivalent to RIFF::libraryName() and
6975     * DLS::libraryName().
6976     */
6977     String libraryName() {
6978     return PACKAGE;
6979     }
6980    
6981     /**
6982     * Returns version of this C++ library. This call is equivalent to
6983     * RIFF::libraryVersion() and DLS::libraryVersion().
6984     */
6985     String libraryVersion() {
6986     return VERSION;
6987     }
6988    
6989 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC