/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3936 - (hide annotations) (download)
Thu Jun 17 10:29:54 2021 UTC (2 years, 9 months ago) by schoenebeck
File size: 326461 byte(s)
* gig: Fixed File::GetGroup(size_t) to be reentrant-safe.

* Bumped version (4.3.0.svn21).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3904 * Copyright (C) 2003-2021 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 3478 pCk3gix->SetPos(0);
416    
417 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
419 schoenebeck 809 } else { // '3gix' chunk missing
420 schoenebeck 930 // by default assigned to that mandatory "Default Group"
421     pGroup = pFile->GetGroup(0);
422 schoenebeck 809 }
423 schoenebeck 2
424 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425     if (pCkSmpl) {
426 schoenebeck 3478 pCkSmpl->SetPos(0);
427    
428 schoenebeck 809 Manufacturer = pCkSmpl->ReadInt32();
429     Product = pCkSmpl->ReadInt32();
430     SamplePeriod = pCkSmpl->ReadInt32();
431     MIDIUnityNote = pCkSmpl->ReadInt32();
432     FineTune = pCkSmpl->ReadInt32();
433     pCkSmpl->Read(&SMPTEFormat, 1, 4);
434     SMPTEOffset = pCkSmpl->ReadInt32();
435     Loops = pCkSmpl->ReadInt32();
436     pCkSmpl->ReadInt32(); // manufByt
437     LoopID = pCkSmpl->ReadInt32();
438     pCkSmpl->Read(&LoopType, 1, 4);
439     LoopStart = pCkSmpl->ReadInt32();
440     LoopEnd = pCkSmpl->ReadInt32();
441     LoopFraction = pCkSmpl->ReadInt32();
442     LoopPlayCount = pCkSmpl->ReadInt32();
443     } else { // 'smpl' chunk missing
444     // use default values
445     Manufacturer = 0;
446     Product = 0;
447 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 persson 1218 MIDIUnityNote = 60;
449 schoenebeck 809 FineTune = 0;
450 persson 1182 SMPTEFormat = smpte_format_no_offset;
451 schoenebeck 809 SMPTEOffset = 0;
452     Loops = 0;
453     LoopID = 0;
454 persson 1182 LoopType = loop_type_normal;
455 schoenebeck 809 LoopStart = 0;
456     LoopEnd = 0;
457     LoopFraction = 0;
458     LoopPlayCount = 0;
459     }
460 schoenebeck 2
461     FrameTable = NULL;
462     SamplePos = 0;
463     RAMCache.Size = 0;
464     RAMCache.pStart = NULL;
465     RAMCache.NullExtensionSize = 0;
466    
467 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468    
469 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470     Compressed = ewav;
471     Dithered = false;
472     TruncatedBits = 0;
473 schoenebeck 2 if (Compressed) {
474 schoenebeck 3478 ewav->SetPos(0);
475    
476 persson 437 uint32_t version = ewav->ReadInt32();
477 schoenebeck 3440 if (version > 2 && BitDepth == 24) {
478 persson 437 Dithered = ewav->ReadInt32();
479     ewav->SetPos(Channels == 2 ? 84 : 64);
480     TruncatedBits = ewav->ReadInt32();
481     }
482 schoenebeck 2 ScanCompressedSample();
483     }
484 schoenebeck 317
485 schoenebeck 3913 // we use a buffer for decompression only
486     if (Compressed && !InternalDecompressionBuffer.Size) {
487 schoenebeck 384 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 schoenebeck 317 }
490 persson 437 FrameOffset = 0; // just for streaming compressed samples
491 schoenebeck 21
492 persson 864 LoopSize = LoopEnd - LoopStart + 1;
493 schoenebeck 2 }
494    
495 schoenebeck 809 /**
496 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
497     * the actual waveform data) and assign it to this object.
498     *
499     * Discussion: copying .gig samples is a bit tricky. It requires three
500     * steps:
501     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502     * its new sample waveform data size.
503     * 2. Saving the file (done by File::Save()) so that it gains correct size
504     * and layout for writing the actual wave form data directly to disc
505     * in next step.
506     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507     *
508     * @param orig - original Sample object to be copied from
509     */
510     void Sample::CopyAssignMeta(const Sample* orig) {
511     // handle base classes
512     DLS::Sample::CopyAssignCore(orig);
513    
514     // handle actual own attributes of this class
515     Manufacturer = orig->Manufacturer;
516     Product = orig->Product;
517     SamplePeriod = orig->SamplePeriod;
518     MIDIUnityNote = orig->MIDIUnityNote;
519     FineTune = orig->FineTune;
520     SMPTEFormat = orig->SMPTEFormat;
521     SMPTEOffset = orig->SMPTEOffset;
522     Loops = orig->Loops;
523     LoopID = orig->LoopID;
524     LoopType = orig->LoopType;
525     LoopStart = orig->LoopStart;
526     LoopEnd = orig->LoopEnd;
527     LoopSize = orig->LoopSize;
528     LoopFraction = orig->LoopFraction;
529     LoopPlayCount = orig->LoopPlayCount;
530    
531     // schedule resizing this sample to the given sample's size
532     Resize(orig->GetSize());
533     }
534    
535     /**
536     * Should be called after CopyAssignMeta() and File::Save() sequence.
537     * Read more about it in the discussion of CopyAssignMeta(). This method
538     * copies the actual waveform data by disk streaming.
539     *
540     * @e CAUTION: this method is currently not thread safe! During this
541     * operation the sample must not be used for other purposes by other
542     * threads!
543     *
544     * @param orig - original Sample object to be copied from
545     */
546     void Sample::CopyAssignWave(const Sample* orig) {
547     const int iReadAtOnce = 32*1024;
548     char* buf = new char[iReadAtOnce * orig->FrameSize];
549     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
551 schoenebeck 2482 pOrig->SetPos(0);
552     SetPos(0);
553 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
555     {
556     Write(buf, n);
557     }
558     pOrig->SetPos(restorePos);
559     delete [] buf;
560     }
561    
562     /**
563 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
564     * to call File::Save() to make changes persistent.
565     *
566     * Usually there is absolutely no need to call this method explicitly.
567     * It will be called automatically when File::Save() was called.
568     *
569 schoenebeck 2682 * @param pProgress - callback function for progress notification
570 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 schoenebeck 809 * was provided yet
572     * @throws gig::Exception if there is any invalid sample setting
573     */
574 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
575 schoenebeck 809 // first update base class's chunks
576 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
577 schoenebeck 809
578     // make sure 'smpl' chunk exists
579     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 persson 1182 if (!pCkSmpl) {
581     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582     memset(pCkSmpl->LoadChunkData(), 0, 60);
583     }
584 schoenebeck 809 // update 'smpl' chunk
585     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 persson 1179 store32(&pData[0], Manufacturer);
588     store32(&pData[4], Product);
589     store32(&pData[8], SamplePeriod);
590     store32(&pData[12], MIDIUnityNote);
591     store32(&pData[16], FineTune);
592     store32(&pData[20], SMPTEFormat);
593     store32(&pData[24], SMPTEOffset);
594     store32(&pData[28], Loops);
595 schoenebeck 809
596     // we skip 'manufByt' for now (4 bytes)
597    
598 persson 1179 store32(&pData[36], LoopID);
599     store32(&pData[40], LoopType);
600     store32(&pData[44], LoopStart);
601     store32(&pData[48], LoopEnd);
602     store32(&pData[52], LoopFraction);
603     store32(&pData[56], LoopPlayCount);
604 schoenebeck 809
605     // make sure '3gix' chunk exists
606     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
609 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
611     if (pFile->pGroups) {
612 schoenebeck 3936 std::vector<Group*>::iterator iter = pFile->pGroups->begin();
613     std::vector<Group*>::iterator end = pFile->pGroups->end();
614 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
615 schoenebeck 929 if (*iter == pGroup) {
616     iSampleGroup = i;
617     break; // found
618     }
619     }
620     }
621 schoenebeck 809 // update '3gix' chunk
622     pData = (uint8_t*) pCk3gix->LoadChunkData();
623 persson 1179 store16(&pData[0], iSampleGroup);
624 schoenebeck 2484
625     // if the library user toggled the "Compressed" attribute from true to
626     // false, then the EWAV chunk associated with compressed samples needs
627     // to be deleted
628     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629     if (ewav && !Compressed) {
630     pWaveList->DeleteSubChunk(ewav);
631     }
632 schoenebeck 809 }
633    
634 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635     void Sample::ScanCompressedSample() {
636     //TODO: we have to add some more scans here (e.g. determine compression rate)
637     this->SamplesTotal = 0;
638 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
639 schoenebeck 2
640 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642 persson 365
643 schoenebeck 2 // Scanning
644     pCkData->SetPos(0);
645 persson 365 if (Channels == 2) { // Stereo
646     for (int i = 0 ; ; i++) {
647     // for 24 bit samples every 8:th frame offset is
648     // stored, to save some memory
649     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650    
651     const int mode_l = pCkData->ReadUint8();
652     const int mode_r = pCkData->ReadUint8();
653     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655 persson 365
656     if (pCkData->RemainingBytes() <= frameSize) {
657     SamplesInLastFrame =
658     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660     SamplesTotal += SamplesInLastFrame;
661 schoenebeck 2 break;
662 persson 365 }
663     SamplesTotal += SamplesPerFrame;
664     pCkData->SetPos(frameSize, RIFF::stream_curpos);
665     }
666     }
667     else { // Mono
668     for (int i = 0 ; ; i++) {
669     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670    
671     const int mode = pCkData->ReadUint8();
672     if (mode > 5) throw gig::Exception("Unknown compression mode");
673 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
674 persson 365
675     if (pCkData->RemainingBytes() <= frameSize) {
676     SamplesInLastFrame =
677     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678     SamplesTotal += SamplesInLastFrame;
679 schoenebeck 2 break;
680 persson 365 }
681     SamplesTotal += SamplesPerFrame;
682     pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 schoenebeck 2 }
684     }
685     pCkData->SetPos(0);
686    
687     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688     if (FrameTable) delete[] FrameTable;
689 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
690     std::list<file_offset_t>::iterator end = frameOffsets.end();
691     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
693     FrameTable[i] = *iter;
694     }
695     }
696    
697     /**
698     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699     * ReleaseSampleData() to free the memory if you don't need the cached
700     * sample data anymore.
701     *
702     * @returns buffer_t structure with start address and size of the buffer
703     * in bytes
704     * @see ReleaseSampleData(), Read(), SetPos()
705     */
706     buffer_t Sample::LoadSampleData() {
707     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708     }
709    
710     /**
711     * Reads (uncompresses if needed) and caches the first \a SampleCount
712     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713     * memory space if you don't need the cached samples anymore. There is no
714     * guarantee that exactly \a SampleCount samples will be cached; this is
715     * not an error. The size will be eventually truncated e.g. to the
716     * beginning of a frame of a compressed sample. This is done for
717     * efficiency reasons while streaming the wave by your sampler engine
718     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719     * that will be returned to determine the actual cached samples, but note
720     * that the size is given in bytes! You get the number of actually cached
721     * samples by dividing it by the frame size of the sample:
722 schoenebeck 384 * @code
723 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724     * long cachedsamples = buf.Size / pSample->FrameSize;
725 schoenebeck 384 * @endcode
726 schoenebeck 2 *
727     * @param SampleCount - number of sample points to load into RAM
728     * @returns buffer_t structure with start address and size of
729     * the cached sample data in bytes
730     * @see ReleaseSampleData(), Read(), SetPos()
731     */
732 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734     }
735    
736     /**
737     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738     * ReleaseSampleData() to free the memory if you don't need the cached
739     * sample data anymore.
740     * The method will add \a NullSamplesCount silence samples past the
741     * official buffer end (this won't affect the 'Size' member of the
742     * buffer_t structure, that means 'Size' always reflects the size of the
743     * actual sample data, the buffer might be bigger though). Silence
744     * samples past the official buffer are needed for differential
745     * algorithms that always have to take subsequent samples into account
746     * (resampling/interpolation would be an important example) and avoids
747     * memory access faults in such cases.
748     *
749     * @param NullSamplesCount - number of silence samples the buffer should
750     * be extended past it's data end
751     * @returns buffer_t structure with start address and
752     * size of the buffer in bytes
753     * @see ReleaseSampleData(), Read(), SetPos()
754     */
755     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757     }
758    
759     /**
760     * Reads (uncompresses if needed) and caches the first \a SampleCount
761     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762     * memory space if you don't need the cached samples anymore. There is no
763     * guarantee that exactly \a SampleCount samples will be cached; this is
764     * not an error. The size will be eventually truncated e.g. to the
765     * beginning of a frame of a compressed sample. This is done for
766     * efficiency reasons while streaming the wave by your sampler engine
767     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768     * that will be returned to determine the actual cached samples, but note
769     * that the size is given in bytes! You get the number of actually cached
770     * samples by dividing it by the frame size of the sample:
771 schoenebeck 384 * @code
772 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773     * long cachedsamples = buf.Size / pSample->FrameSize;
774 schoenebeck 384 * @endcode
775 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
776     * official buffer end (this won't affect the 'Size' member of the
777     * buffer_t structure, that means 'Size' always reflects the size of the
778     * actual sample data, the buffer might be bigger though). Silence
779     * samples past the official buffer are needed for differential
780     * algorithms that always have to take subsequent samples into account
781     * (resampling/interpolation would be an important example) and avoids
782     * memory access faults in such cases.
783     *
784     * @param SampleCount - number of sample points to load into RAM
785     * @param NullSamplesCount - number of silence samples the buffer should
786     * be extended past it's data end
787     * @returns buffer_t structure with start address and
788     * size of the cached sample data in bytes
789     * @see ReleaseSampleData(), Read(), SetPos()
790     */
791 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
796 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
797     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799     // fill the remaining buffer space with silence samples
800     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801     return GetCache();
802     }
803    
804     /**
805     * Returns current cached sample points. A buffer_t structure will be
806     * returned which contains address pointer to the begin of the cache and
807     * the size of the cached sample data in bytes. Use
808     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809     * RAM.
810     *
811     * @returns buffer_t structure with current cached sample points
812     * @see LoadSampleData();
813     */
814     buffer_t Sample::GetCache() {
815     // return a copy of the buffer_t structure
816     buffer_t result;
817     result.Size = this->RAMCache.Size;
818     result.pStart = this->RAMCache.pStart;
819     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820     return result;
821     }
822    
823     /**
824     * Frees the cached sample from RAM if loaded with
825     * <i>LoadSampleData()</i> previously.
826     *
827     * @see LoadSampleData();
828     */
829     void Sample::ReleaseSampleData() {
830     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831     RAMCache.pStart = NULL;
832     RAMCache.Size = 0;
833 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
834 schoenebeck 2 }
835    
836 schoenebeck 809 /** @brief Resize sample.
837     *
838     * Resizes the sample's wave form data, that is the actual size of
839     * sample wave data possible to be written for this sample. This call
840     * will return immediately and just schedule the resize operation. You
841     * should call File::Save() to actually perform the resize operation(s)
842     * "physically" to the file. As this can take a while on large files, it
843     * is recommended to call Resize() first on all samples which have to be
844     * resized and finally to call File::Save() to perform all those resize
845     * operations in one rush.
846     *
847     * The actual size (in bytes) is dependant to the current FrameSize
848     * value. You may want to set FrameSize before calling Resize().
849     *
850     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851     * enlarged samples before calling File::Save() as this might exceed the
852     * current sample's boundary!
853     *
854 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 schoenebeck 809 * other formats will fail!
857     *
858 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
859     * greater than zero)
860 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
863     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864     * DLS::Sample::FormatTag, File::Save()
865     */
866 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
867 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 schoenebeck 2922 DLS::Sample::Resize(NewSize);
869 schoenebeck 809 }
870    
871 schoenebeck 2 /**
872     * Sets the position within the sample (in sample points, not in
873     * bytes). Use this method and <i>Read()</i> if you don't want to load
874     * the sample into RAM, thus for disk streaming.
875     *
876     * Although the original Gigasampler engine doesn't allow positioning
877     * within compressed samples, I decided to implement it. Even though
878     * the Gigasampler format doesn't allow to define loops for compressed
879     * samples at the moment, positioning within compressed samples might be
880     * interesting for some sampler engines though. The only drawback about
881     * my decision is that it takes longer to load compressed gig Files on
882     * startup, because it's neccessary to scan the samples for some
883     * mandatory informations. But I think as it doesn't affect the runtime
884     * efficiency, nobody will have a problem with that.
885     *
886     * @param SampleCount number of sample points to jump
887     * @param Whence optional: to which relation \a SampleCount refers
888     * to, if omited <i>RIFF::stream_start</i> is assumed
889     * @returns the new sample position
890     * @see Read()
891     */
892 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 schoenebeck 2 if (Compressed) {
894     switch (Whence) {
895     case RIFF::stream_curpos:
896     this->SamplePos += SampleCount;
897     break;
898     case RIFF::stream_end:
899     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900     break;
901     case RIFF::stream_backward:
902     this->SamplePos -= SampleCount;
903     break;
904     case RIFF::stream_start: default:
905     this->SamplePos = SampleCount;
906     break;
907     }
908     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913     return this->SamplePos;
914     }
915     else { // not compressed
916 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 schoenebeck 2 return (result == orderedBytes) ? SampleCount
919     : result / this->FrameSize;
920     }
921     }
922    
923     /**
924     * Returns the current position in the sample (in sample points).
925     */
926 schoenebeck 2912 file_offset_t Sample::GetPos() const {
927 schoenebeck 2 if (Compressed) return SamplePos;
928     else return pCkData->GetPos() / FrameSize;
929     }
930    
931     /**
932 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
933     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934     * the position within the sample respectively, this method honors the
935     * looping informations of the sample (if any). The sample wave stream
936     * will be decompressed on the fly if using a compressed sample. Use this
937     * method if you don't want to load the sample into RAM, thus for disk
938     * streaming. All this methods needs to know to proceed with streaming
939     * for the next time you call this method is stored in \a pPlaybackState.
940     * You have to allocate and initialize the playback_state_t structure by
941     * yourself before you use it to stream a sample:
942 schoenebeck 384 * @code
943     * gig::playback_state_t playbackstate;
944     * playbackstate.position = 0;
945     * playbackstate.reverse = false;
946     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947     * @endcode
948 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
949     * defined or if the current read position is located within a loop area.
950     * The method already handles such cases by itself.
951     *
952 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
953     * have to use an external decompression buffer for <b>EACH</b>
954     * streaming thread to avoid race conditions and crashes!
955     *
956 schoenebeck 24 * @param pBuffer destination buffer
957     * @param SampleCount number of sample points to read
958     * @param pPlaybackState will be used to store and reload the playback
959     * state for the next ReadAndLoop() call
960 persson 864 * @param pDimRgn dimension region with looping information
961 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 schoenebeck 24 * @returns number of successfully read sample points
963 schoenebeck 384 * @see CreateDecompressionBuffer()
964 schoenebeck 24 */
965 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
969    
970     SetPos(pPlaybackState->position); // recover position from the last time
971    
972 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973 schoenebeck 24
974 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976 schoenebeck 24
977 persson 864 if (GetPos() <= loopEnd) {
978     switch (loop.LoopType) {
979 schoenebeck 24
980 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
981     do {
982     // if not endless loop check if max. number of loop cycles have been passed
983     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984 schoenebeck 24
985 persson 864 if (!pPlaybackState->reverse) { // forward playback
986     do {
987     samplestoloopend = loopEnd - GetPos();
988     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989     samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     if (readsamples == samplestoloopend) {
992     pPlaybackState->reverse = true;
993     break;
994     }
995     } while (samplestoread && readsamples);
996     }
997     else { // backward playback
998 schoenebeck 24
999 persson 864 // as we can only read forward from disk, we have to
1000     // determine the end position within the loop first,
1001     // read forward from that 'end' and finally after
1002     // reading, swap all sample frames so it reflects
1003     // backward playback
1004 schoenebeck 24
1005 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1006     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009 schoenebeck 24
1010 persson 864 SetPos(reverseplaybackend);
1011 schoenebeck 24
1012 persson 864 // read samples for backward playback
1013     do {
1014     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015     samplestoreadinloop -= readsamples;
1016     samplestoread -= readsamples;
1017     totalreadsamples += readsamples;
1018     } while (samplestoreadinloop && readsamples);
1019 schoenebeck 24
1020 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022     if (reverseplaybackend == loop.LoopStart) {
1023     pPlaybackState->loop_cycles_left--;
1024     pPlaybackState->reverse = false;
1025     }
1026    
1027     // reverse the sample frames for backward playback
1028 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 schoenebeck 24 }
1031 persson 864 } while (samplestoread && readsamples);
1032     break;
1033     }
1034 schoenebeck 24
1035 persson 864 case loop_type_backward: { // TODO: not tested yet!
1036     // forward playback (not entered the loop yet)
1037     if (!pPlaybackState->reverse) do {
1038     samplestoloopend = loopEnd - GetPos();
1039     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040     samplestoread -= readsamples;
1041     totalreadsamples += readsamples;
1042     if (readsamples == samplestoloopend) {
1043     pPlaybackState->reverse = true;
1044     break;
1045     }
1046     } while (samplestoread && readsamples);
1047 schoenebeck 24
1048 persson 864 if (!samplestoread) break;
1049 schoenebeck 24
1050 persson 864 // as we can only read forward from disk, we have to
1051     // determine the end position within the loop first,
1052     // read forward from that 'end' and finally after
1053     // reading, swap all sample frames so it reflects
1054     // backward playback
1055 schoenebeck 24
1056 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1057     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 persson 864 : samplestoread;
1060 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061 schoenebeck 24
1062 persson 864 SetPos(reverseplaybackend);
1063 schoenebeck 24
1064 persson 864 // read samples for backward playback
1065     do {
1066     // if not endless loop check if max. number of loop cycles have been passed
1067     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068     samplestoloopend = loopEnd - GetPos();
1069     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070     samplestoreadinloop -= readsamples;
1071     samplestoread -= readsamples;
1072     totalreadsamples += readsamples;
1073     if (readsamples == samplestoloopend) {
1074     pPlaybackState->loop_cycles_left--;
1075     SetPos(loop.LoopStart);
1076     }
1077     } while (samplestoreadinloop && readsamples);
1078 schoenebeck 24
1079 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1080 schoenebeck 24
1081 persson 864 // reverse the sample frames for backward playback
1082     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083     break;
1084     }
1085 schoenebeck 24
1086 persson 864 default: case loop_type_normal: {
1087     do {
1088     // if not endless loop check if max. number of loop cycles have been passed
1089     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090     samplestoloopend = loopEnd - GetPos();
1091     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092     samplestoread -= readsamples;
1093     totalreadsamples += readsamples;
1094     if (readsamples == samplestoloopend) {
1095     pPlaybackState->loop_cycles_left--;
1096     SetPos(loop.LoopStart);
1097     }
1098     } while (samplestoread && readsamples);
1099     break;
1100     }
1101 schoenebeck 24 }
1102     }
1103     }
1104    
1105     // read on without looping
1106     if (samplestoread) do {
1107 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 schoenebeck 24 samplestoread -= readsamples;
1109     totalreadsamples += readsamples;
1110     } while (readsamples && samplestoread);
1111    
1112     // store current position
1113     pPlaybackState->position = GetPos();
1114    
1115     return totalreadsamples;
1116     }
1117    
1118     /**
1119 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1120     * position into the buffer pointed by \a pBuffer and increments the
1121     * position within the sample. The sample wave stream will be
1122     * decompressed on the fly if using a compressed sample. Use this method
1123     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124     * thus for disk streaming.
1125     *
1126 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1127     * have to use an external decompression buffer for <b>EACH</b>
1128     * streaming thread to avoid race conditions and crashes!
1129     *
1130 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1131     * (using native endianness). For 24 bit, the buffer will
1132     * contain three bytes per sample, little-endian.
1133     *
1134 schoenebeck 2 * @param pBuffer destination buffer
1135     * @param SampleCount number of sample points to read
1136 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 schoenebeck 2 * @returns number of successfully read sample points
1138 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1139 schoenebeck 2 */
1140 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 schoenebeck 21 if (SampleCount == 0) return 0;
1142 schoenebeck 317 if (!Compressed) {
1143     if (BitDepth == 24) {
1144 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 schoenebeck 317 }
1146 persson 365 else { // 16 bit
1147     // (pCkData->Read does endian correction)
1148     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149     : pCkData->Read(pBuffer, SampleCount, 2);
1150     }
1151 schoenebeck 317 }
1152 persson 365 else {
1153 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1155 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1156 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1157     remainingsamples = SampleCount,
1158 persson 365 copysamples, skipsamples,
1159     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 schoenebeck 2 this->FrameOffset = 0;
1161    
1162 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163    
1164     // if decompression buffer too small, then reduce amount of samples to read
1165     if (pDecompressionBuffer->Size < assumedsize) {
1166     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168     remainingsamples = SampleCount;
1169     assumedsize = GuessSize(SampleCount);
1170 schoenebeck 2 }
1171    
1172 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177 persson 365 while (remainingsamples && remainingbytes) {
1178 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1179     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180 schoenebeck 2
1181 persson 365 int mode_l = *pSrc++, mode_r = 0;
1182    
1183     if (Channels == 2) {
1184     mode_r = *pSrc++;
1185     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188     if (remainingbytes < framebytes) { // last frame in sample
1189     framesamples = SamplesInLastFrame;
1190     if (mode_l == 4 && (framesamples & 1)) {
1191     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192     }
1193     else {
1194     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195     }
1196 schoenebeck 2 }
1197     }
1198 persson 365 else {
1199     framebytes = bytesPerFrame[mode_l] + 1;
1200     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201     if (remainingbytes < framebytes) {
1202     framesamples = SamplesInLastFrame;
1203     }
1204     }
1205 schoenebeck 2
1206     // determine how many samples in this frame to skip and read
1207 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1208     if (currentframeoffset <= framesamples) {
1209     copysamples = framesamples - currentframeoffset;
1210     skipsamples = currentframeoffset;
1211     }
1212     else {
1213     copysamples = 0;
1214     skipsamples = framesamples;
1215     }
1216 schoenebeck 2 }
1217     else {
1218 persson 365 // This frame has enough data for pBuffer, but not
1219     // all of the frame is needed. Set file position
1220     // to start of this frame for next call to Read.
1221 schoenebeck 2 copysamples = remainingsamples;
1222 persson 365 skipsamples = currentframeoffset;
1223     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224     this->FrameOffset = currentframeoffset + copysamples;
1225     }
1226     remainingsamples -= copysamples;
1227    
1228     if (remainingbytes > framebytes) {
1229     remainingbytes -= framebytes;
1230     if (remainingsamples == 0 &&
1231     currentframeoffset + copysamples == framesamples) {
1232     // This frame has enough data for pBuffer, and
1233     // all of the frame is needed. Set file
1234     // position to start of next frame for next
1235     // call to Read. FrameOffset is 0.
1236 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237     }
1238     }
1239 persson 365 else remainingbytes = 0;
1240 schoenebeck 2
1241 persson 365 currentframeoffset -= skipsamples;
1242 schoenebeck 2
1243 persson 365 if (copysamples == 0) {
1244     // skip this frame
1245     pSrc += framebytes - Channels;
1246     }
1247     else {
1248     const unsigned char* const param_l = pSrc;
1249     if (BitDepth == 24) {
1250     if (mode_l != 2) pSrc += 12;
1251 schoenebeck 2
1252 persson 365 if (Channels == 2) { // Stereo
1253     const unsigned char* const param_r = pSrc;
1254     if (mode_r != 2) pSrc += 12;
1255    
1256 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 persson 437 skipsamples, copysamples, TruncatedBits);
1258 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 persson 437 skipsamples, copysamples, TruncatedBits);
1260 persson 902 pDst24 += copysamples * 6;
1261 schoenebeck 2 }
1262 persson 365 else { // Mono
1263 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 persson 437 skipsamples, copysamples, TruncatedBits);
1265 persson 902 pDst24 += copysamples * 3;
1266 schoenebeck 2 }
1267 persson 365 }
1268     else { // 16 bit
1269     if (mode_l) pSrc += 4;
1270 schoenebeck 2
1271 persson 365 int step;
1272     if (Channels == 2) { // Stereo
1273     const unsigned char* const param_r = pSrc;
1274     if (mode_r) pSrc += 4;
1275    
1276     step = (2 - mode_l) + (2 - mode_r);
1277 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 persson 365 skipsamples, copysamples);
1280     pDst += copysamples << 1;
1281 schoenebeck 2 }
1282 persson 365 else { // Mono
1283     step = 2 - mode_l;
1284 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 persson 365 pDst += copysamples;
1286 schoenebeck 2 }
1287 persson 365 }
1288     pSrc += nextFrameOffset;
1289     }
1290 schoenebeck 2
1291 persson 365 // reload from disk to local buffer if needed
1292     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293     assumedsize = GuessSize(remainingsamples);
1294     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 schoenebeck 2 }
1299 persson 365 } // while
1300    
1301 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1302 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 schoenebeck 2 return (SampleCount - remainingsamples);
1304     }
1305     }
1306    
1307 schoenebeck 809 /** @brief Write sample wave data.
1308     *
1309     * Writes \a SampleCount number of sample points from the buffer pointed
1310     * by \a pBuffer and increments the position within the sample. Use this
1311     * method to directly write the sample data to disk, i.e. if you don't
1312     * want or cannot load the whole sample data into RAM.
1313     *
1314     * You have to Resize() the sample to the desired size and call
1315     * File::Save() <b>before</b> using Write().
1316     *
1317     * Note: there is currently no support for writing compressed samples.
1318     *
1319 persson 1264 * For 16 bit samples, the data in the source buffer should be
1320     * int16_t (using native endianness). For 24 bit, the buffer
1321     * should contain three bytes per sample, little-endian.
1322     *
1323 schoenebeck 809 * @param pBuffer - source buffer
1324     * @param SampleCount - number of sample points to write
1325     * @throws DLS::Exception if current sample size is too small
1326     * @throws gig::Exception if sample is compressed
1327     * @see DLS::LoadSampleData()
1328     */
1329 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331 persson 1207
1332     // if this is the first write in this sample, reset the
1333     // checksum calculator
1334 persson 1199 if (pCkData->GetPos() == 0) {
1335 schoenebeck 1381 __resetCRC(crc);
1336 persson 1199 }
1337 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 schoenebeck 2912 file_offset_t res;
1339 persson 1264 if (BitDepth == 24) {
1340     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341     } else { // 16 bit
1342     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343     : pCkData->Write(pBuffer, SampleCount, 2);
1344     }
1345 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346 persson 1199
1347 persson 1207 // if this is the last write, update the checksum chunk in the
1348     // file
1349 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 schoenebeck 3115 __finalizeCRC(crc);
1351 persson 1199 File* pFile = static_cast<File*>(GetParent());
1352 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1353 persson 1199 }
1354     return res;
1355 schoenebeck 809 }
1356    
1357 schoenebeck 384 /**
1358     * Allocates a decompression buffer for streaming (compressed) samples
1359     * with Sample::Read(). If you are using more than one streaming thread
1360     * in your application you <b>HAVE</b> to create a decompression buffer
1361     * for <b>EACH</b> of your streaming threads and provide it with the
1362     * Sample::Read() call in order to avoid race conditions and crashes.
1363     *
1364     * You should free the memory occupied by the allocated buffer(s) once
1365     * you don't need one of your streaming threads anymore by calling
1366     * DestroyDecompressionBuffer().
1367     *
1368     * @param MaxReadSize - the maximum size (in sample points) you ever
1369     * expect to read with one Read() call
1370     * @returns allocated decompression buffer
1371     * @see DestroyDecompressionBuffer()
1372     */
1373 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 schoenebeck 384 buffer_t result;
1375     const double worstCaseHeaderOverhead =
1376     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 schoenebeck 384 result.pStart = new int8_t[result.Size];
1379     result.NullExtensionSize = 0;
1380     return result;
1381     }
1382    
1383     /**
1384     * Free decompression buffer, previously created with
1385     * CreateDecompressionBuffer().
1386     *
1387     * @param DecompressionBuffer - previously allocated decompression
1388     * buffer to free
1389     */
1390     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392     delete[] (int8_t*) DecompressionBuffer.pStart;
1393     DecompressionBuffer.pStart = NULL;
1394     DecompressionBuffer.Size = 0;
1395     DecompressionBuffer.NullExtensionSize = 0;
1396     }
1397     }
1398    
1399 schoenebeck 930 /**
1400     * Returns pointer to the Group this Sample belongs to. In the .gig
1401     * format a sample always belongs to one group. If it wasn't explicitly
1402     * assigned to a certain group, it will be automatically assigned to a
1403     * default group.
1404     *
1405     * @returns Sample's Group (never NULL)
1406     */
1407     Group* Sample::GetGroup() const {
1408     return pGroup;
1409     }
1410    
1411 schoenebeck 2985 /**
1412 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413     * time when this sample's wave form data was modified for the last time
1414     * by calling Write(). This checksum only covers the raw wave form data,
1415     * not any meta informations like i.e. bit depth or loop points. Since
1416     * this method just returns the checksum stored for this sample i.e. when
1417     * the gig file was loaded, this method returns immediately. So it does no
1418     * recalcuation of the checksum with the currently available sample wave
1419     * form data.
1420     *
1421     * @see VerifyWaveData()
1422     */
1423     uint32_t Sample::GetWaveDataCRC32Checksum() {
1424     return crc;
1425     }
1426    
1427     /**
1428 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429     * Sample's raw wave data is intentionally modified (i.e. by calling
1430     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431     * is calculated and stored/updated for this sample, along to the sample's
1432     * meta informations.
1433     *
1434     * Now by calling this method the current raw audio wave data is checked
1435     * against the already stored CRC32 check sum in order to check whether the
1436     * sample data had been damaged unintentionally for some reason. Since by
1437     * calling this method always the entire raw audio wave data has to be
1438     * read, verifying all samples this way may take a long time accordingly.
1439     * And that's also the reason why the sample integrity is not checked by
1440     * default whenever a gig file is loaded. So this method must be called
1441     * explicitly to fulfill this task.
1442     *
1443 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1444     * calculated checksum of the current raw wave form data,
1445     * you can get the expected checksum instead by calling
1446     * GetWaveDataCRC32Checksum()
1447 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1448     * @throws Exception if no checksum had been stored to disk for this
1449     * sample yet, or on I/O issues
1450 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1451 schoenebeck 2985 */
1452 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1454 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1455 schoenebeck 2989 if (pActually) *pActually = crc;
1456     return crc == this->crc;
1457 schoenebeck 2985 }
1458    
1459     uint32_t Sample::CalculateWaveDataChecksum() {
1460     const size_t sz = 20*1024; // 20kB buffer size
1461     std::vector<uint8_t> buffer(sz);
1462     buffer.resize(sz);
1463    
1464     const size_t n = sz / FrameSize;
1465     SetPos(0);
1466     uint32_t crc = 0;
1467     __resetCRC(crc);
1468     while (true) {
1469     file_offset_t nRead = Read(&buffer[0], n);
1470     if (nRead <= 0) break;
1471     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472     }
1473 schoenebeck 3115 __finalizeCRC(crc);
1474 schoenebeck 2985 return crc;
1475     }
1476    
1477 schoenebeck 2 Sample::~Sample() {
1478     Instances--;
1479 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1480     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481     InternalDecompressionBuffer.pStart = NULL;
1482     InternalDecompressionBuffer.Size = 0;
1483 schoenebeck 355 }
1484 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1485     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486     }
1487    
1488    
1489    
1490     // *************** DimensionRegion ***************
1491     // *
1492    
1493 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1494 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 schoenebeck 16 Instances++;
1498    
1499 schoenebeck 823 pSample = NULL;
1500 schoenebeck 1316 pRegion = pParent;
1501 schoenebeck 823
1502 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503     else memset(&Crossfade, 0, 4);
1504    
1505 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506 schoenebeck 2
1507     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1509 schoenebeck 3478 _3ewa->SetPos(0);
1510    
1511 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514     _3ewa->ReadInt16(); // unknown
1515     LFO1InternalDepth = _3ewa->ReadUint16();
1516     _3ewa->ReadInt16(); // unknown
1517     LFO3InternalDepth = _3ewa->ReadInt16();
1518     _3ewa->ReadInt16(); // unknown
1519     LFO1ControlDepth = _3ewa->ReadUint16();
1520     _3ewa->ReadInt16(); // unknown
1521     LFO3ControlDepth = _3ewa->ReadInt16();
1522     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524     _3ewa->ReadInt16(); // unknown
1525     EG1Sustain = _3ewa->ReadUint16();
1526     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529     EG1ControllerInvert = eg1ctrloptions & 0x01;
1530     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535     EG2ControllerInvert = eg2ctrloptions & 0x01;
1536     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542     _3ewa->ReadInt16(); // unknown
1543     EG2Sustain = _3ewa->ReadUint16();
1544     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545     _3ewa->ReadInt16(); // unknown
1546     LFO2ControlDepth = _3ewa->ReadUint16();
1547     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548     _3ewa->ReadInt16(); // unknown
1549     LFO2InternalDepth = _3ewa->ReadUint16();
1550     int32_t eg1decay2 = _3ewa->ReadInt32();
1551     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553     _3ewa->ReadInt16(); // unknown
1554     EG1PreAttack = _3ewa->ReadUint16();
1555     int32_t eg2decay2 = _3ewa->ReadInt32();
1556     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558     _3ewa->ReadInt16(); // unknown
1559     EG2PreAttack = _3ewa->ReadUint16();
1560     uint8_t velocityresponse = _3ewa->ReadUint8();
1561     if (velocityresponse < 5) {
1562     VelocityResponseCurve = curve_type_nonlinear;
1563     VelocityResponseDepth = velocityresponse;
1564     } else if (velocityresponse < 10) {
1565     VelocityResponseCurve = curve_type_linear;
1566     VelocityResponseDepth = velocityresponse - 5;
1567     } else if (velocityresponse < 15) {
1568     VelocityResponseCurve = curve_type_special;
1569     VelocityResponseDepth = velocityresponse - 10;
1570     } else {
1571     VelocityResponseCurve = curve_type_unknown;
1572     VelocityResponseDepth = 0;
1573     }
1574     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575     if (releasevelocityresponse < 5) {
1576     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577     ReleaseVelocityResponseDepth = releasevelocityresponse;
1578     } else if (releasevelocityresponse < 10) {
1579     ReleaseVelocityResponseCurve = curve_type_linear;
1580     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581     } else if (releasevelocityresponse < 15) {
1582     ReleaseVelocityResponseCurve = curve_type_special;
1583     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584     } else {
1585     ReleaseVelocityResponseCurve = curve_type_unknown;
1586     ReleaseVelocityResponseDepth = 0;
1587     }
1588     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589     AttenuationControllerThreshold = _3ewa->ReadInt8();
1590     _3ewa->ReadInt32(); // unknown
1591     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592     _3ewa->ReadInt16(); // unknown
1593     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597     else DimensionBypass = dim_bypass_ctrl_none;
1598     uint8_t pan = _3ewa->ReadUint8();
1599     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600     SelfMask = _3ewa->ReadInt8() & 0x01;
1601     _3ewa->ReadInt8(); // unknown
1602     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617     : vcf_res_ctrl_none;
1618     uint16_t eg3depth = _3ewa->ReadUint16();
1619     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1622     ChannelOffset = _3ewa->ReadUint8() / 4;
1623     uint8_t regoptions = _3ewa->ReadUint8();
1624     MSDecode = regoptions & 0x01; // bit 0
1625     SustainDefeat = regoptions & 0x02; // bit 1
1626     _3ewa->ReadInt16(); // unknown
1627     VelocityUpperLimit = _3ewa->ReadInt8();
1628     _3ewa->ReadInt8(); // unknown
1629     _3ewa->ReadInt16(); // unknown
1630     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631     _3ewa->ReadInt8(); // unknown
1632     _3ewa->ReadInt8(); // unknown
1633     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634     uint8_t vcfcutoff = _3ewa->ReadUint8();
1635     VCFEnabled = vcfcutoff & 0x80; // bit 7
1636     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638     uint8_t vcfvelscale = _3ewa->ReadUint8();
1639     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641     _3ewa->ReadInt8(); // unknown
1642     uint8_t vcfresonance = _3ewa->ReadUint8();
1643     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648     uint8_t vcfvelocity = _3ewa->ReadUint8();
1649     VCFVelocityDynamicRange = vcfvelocity % 5;
1650     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652     if (VCFType == vcf_type_lowpass) {
1653     if (lfo3ctrl & 0x40) // bit 6
1654     VCFType = vcf_type_lowpassturbo;
1655     }
1656 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1657     _3ewa->Read(DimensionUpperLimits, 1, 8);
1658     } else {
1659     memset(DimensionUpperLimits, 0, 8);
1660     }
1661 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1662     // use default values
1663     LFO3Frequency = 1.0;
1664     EG3Attack = 0.0;
1665     LFO1InternalDepth = 0;
1666     LFO3InternalDepth = 0;
1667     LFO1ControlDepth = 0;
1668     LFO3ControlDepth = 0;
1669     EG1Attack = 0.0;
1670 persson 1218 EG1Decay1 = 0.005;
1671     EG1Sustain = 1000;
1672     EG1Release = 0.3;
1673 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1674     EG1Controller.controller_number = 0;
1675     EG1ControllerInvert = false;
1676     EG1ControllerAttackInfluence = 0;
1677     EG1ControllerDecayInfluence = 0;
1678     EG1ControllerReleaseInfluence = 0;
1679     EG2Controller.type = eg2_ctrl_t::type_none;
1680     EG2Controller.controller_number = 0;
1681     EG2ControllerInvert = false;
1682     EG2ControllerAttackInfluence = 0;
1683     EG2ControllerDecayInfluence = 0;
1684     EG2ControllerReleaseInfluence = 0;
1685     LFO1Frequency = 1.0;
1686     EG2Attack = 0.0;
1687 persson 1218 EG2Decay1 = 0.005;
1688     EG2Sustain = 1000;
1689 schoenebeck 2990 EG2Release = 60;
1690 schoenebeck 809 LFO2ControlDepth = 0;
1691     LFO2Frequency = 1.0;
1692     LFO2InternalDepth = 0;
1693     EG1Decay2 = 0.0;
1694 persson 1218 EG1InfiniteSustain = true;
1695     EG1PreAttack = 0;
1696 schoenebeck 809 EG2Decay2 = 0.0;
1697 persson 1218 EG2InfiniteSustain = true;
1698     EG2PreAttack = 0;
1699 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1700     VelocityResponseDepth = 3;
1701     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702     ReleaseVelocityResponseDepth = 3;
1703     VelocityResponseCurveScaling = 32;
1704     AttenuationControllerThreshold = 0;
1705     SampleStartOffset = 0;
1706     PitchTrack = true;
1707     DimensionBypass = dim_bypass_ctrl_none;
1708     Pan = 0;
1709     SelfMask = true;
1710     LFO3Controller = lfo3_ctrl_modwheel;
1711     LFO3Sync = false;
1712     InvertAttenuationController = false;
1713     AttenuationController.type = attenuation_ctrl_t::type_none;
1714     AttenuationController.controller_number = 0;
1715     LFO2Controller = lfo2_ctrl_internal;
1716     LFO2FlipPhase = false;
1717     LFO2Sync = false;
1718     LFO1Controller = lfo1_ctrl_internal;
1719     LFO1FlipPhase = false;
1720     LFO1Sync = false;
1721     VCFResonanceController = vcf_res_ctrl_none;
1722     EG3Depth = 0;
1723     ChannelOffset = 0;
1724     MSDecode = false;
1725     SustainDefeat = false;
1726     VelocityUpperLimit = 0;
1727     ReleaseTriggerDecay = 0;
1728     EG1Hold = false;
1729     VCFEnabled = false;
1730     VCFCutoff = 0;
1731     VCFCutoffController = vcf_cutoff_ctrl_none;
1732     VCFCutoffControllerInvert = false;
1733     VCFVelocityScale = 0;
1734     VCFResonance = 0;
1735     VCFResonanceDynamic = false;
1736     VCFKeyboardTracking = false;
1737     VCFKeyboardTrackingBreakpoint = 0;
1738     VCFVelocityDynamicRange = 0x04;
1739     VCFVelocityCurve = curve_type_linear;
1740     VCFType = vcf_type_lowpass;
1741 persson 1247 memset(DimensionUpperLimits, 127, 8);
1742 schoenebeck 2 }
1743 schoenebeck 3623
1744 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 schoenebeck 3323 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 schoenebeck 3442 if (lsde) { // format extension for EG behavior options
1747 schoenebeck 3478 lsde->SetPos(0);
1748    
1749 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 schoenebeck 3327 unsigned char byte = lsde->ReadUint8();
1752     pEGOpts[i]->AttackCancel = byte & 1;
1753     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757     }
1758 schoenebeck 3323 }
1759 schoenebeck 3442 // format extension for sustain pedal up effect on release trigger samples
1760     if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761     lsde->SetPos(3);
1762 schoenebeck 3446 uint8_t byte = lsde->ReadUint8();
1763     SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764     NoNoteOffReleaseTrigger = byte >> 7;
1765     } else {
1766     SustainReleaseTrigger = sust_rel_trg_none;
1767     NoNoteOffReleaseTrigger = false;
1768     }
1769 schoenebeck 3623 // format extension for LFOs' wave form, phase displacement and for
1770     // LFO3's flip phase
1771     if (lsde && lsde->GetSize() > 4) {
1772     lsde->SetPos(4);
1773     LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774     LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775     LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776     lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777     LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778     LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779     LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780     const uint32_t flags = lsde->ReadInt32();
1781     LFO3FlipPhase = flags & 1;
1782     } else {
1783     LFO1WaveForm = lfo_wave_sine;
1784     LFO2WaveForm = lfo_wave_sine;
1785     LFO3WaveForm = lfo_wave_sine;
1786     LFO1Phase = 0.0;
1787     LFO2Phase = 0.0;
1788     LFO3Phase = 0.0;
1789     LFO3FlipPhase = false;
1790     }
1791 schoenebeck 16
1792 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793     VelocityResponseDepth,
1794     VelocityResponseCurveScaling);
1795    
1796 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1797     ReleaseVelocityResponseCurve,
1798     ReleaseVelocityResponseDepth
1799     );
1800 persson 613
1801 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802     VCFVelocityDynamicRange,
1803     VCFVelocityScale,
1804     VCFCutoffController);
1805 persson 613
1806     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 persson 858 VelocityTable = 0;
1808 persson 613 }
1809    
1810 persson 1301 /*
1811     * Constructs a DimensionRegion by copying all parameters from
1812     * another DimensionRegion
1813     */
1814     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815     Instances++;
1816 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1818     pParentList = _3ewl; // restore the chunk pointer
1819    
1820     // deep copy of owned structures
1821     if (src.VelocityTable) {
1822     VelocityTable = new uint8_t[128];
1823     for (int k = 0 ; k < 128 ; k++)
1824     VelocityTable[k] = src.VelocityTable[k];
1825     }
1826     if (src.pSampleLoops) {
1827     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828     for (int k = 0 ; k < src.SampleLoops ; k++)
1829     pSampleLoops[k] = src.pSampleLoops[k];
1830     }
1831     }
1832 schoenebeck 2394
1833     /**
1834     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835     * and assign it to this object.
1836     *
1837     * Note that all sample pointers referenced by @a orig are simply copied as
1838     * memory address. Thus the respective samples are shared, not duplicated!
1839     *
1840     * @param orig - original DimensionRegion object to be copied from
1841     */
1842     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 schoenebeck 2482 CopyAssign(orig, NULL);
1844     }
1845    
1846     /**
1847     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848     * and assign it to this object.
1849     *
1850     * @param orig - original DimensionRegion object to be copied from
1851     * @param mSamples - crosslink map between the foreign file's samples and
1852     * this file's samples
1853     */
1854     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 schoenebeck 2394 // delete all allocated data first
1856     if (VelocityTable) delete [] VelocityTable;
1857     if (pSampleLoops) delete [] pSampleLoops;
1858    
1859     // backup parent list pointer
1860     RIFF::List* p = pParentList;
1861    
1862 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1863     gig::Region* pOriginalRegion = pRegion;
1864    
1865 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866    
1867     *this = *orig; // default memberwise shallow copy of all parameters
1868 schoenebeck 2547
1869     // restore members that shall not be altered
1870 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1871 schoenebeck 2547 pRegion = pOriginalRegion;
1872 schoenebeck 2482
1873 schoenebeck 2547 // only take the raw sample reference reference if the
1874 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1875     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876     pSample = pOriginalSample;
1877     }
1878    
1879     if (mSamples && mSamples->count(orig->pSample)) {
1880     pSample = mSamples->find(orig->pSample)->second;
1881     }
1882 persson 1301
1883 schoenebeck 2394 // deep copy of owned structures
1884     if (orig->VelocityTable) {
1885     VelocityTable = new uint8_t[128];
1886     for (int k = 0 ; k < 128 ; k++)
1887     VelocityTable[k] = orig->VelocityTable[k];
1888     }
1889     if (orig->pSampleLoops) {
1890     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891     for (int k = 0 ; k < orig->SampleLoops ; k++)
1892     pSampleLoops[k] = orig->pSampleLoops[k];
1893     }
1894     }
1895    
1896 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 schoenebeck 3182 // in case this class will become backward incompatible one day,
1898     // then set a version and minimum version for this class like:
1899     //archive->setVersion(*this, 2);
1900     //archive->setMinVersion(*this, 1);
1901    
1902 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1903     SRLZ(EG1PreAttack);
1904     SRLZ(EG1Attack);
1905     SRLZ(EG1Decay1);
1906     SRLZ(EG1Decay2);
1907     SRLZ(EG1InfiniteSustain);
1908     SRLZ(EG1Sustain);
1909     SRLZ(EG1Release);
1910     SRLZ(EG1Hold);
1911     SRLZ(EG1Controller);
1912     SRLZ(EG1ControllerInvert);
1913     SRLZ(EG1ControllerAttackInfluence);
1914     SRLZ(EG1ControllerDecayInfluence);
1915     SRLZ(EG1ControllerReleaseInfluence);
1916 schoenebeck 3623 SRLZ(LFO1WaveForm);
1917 schoenebeck 3138 SRLZ(LFO1Frequency);
1918 schoenebeck 3623 SRLZ(LFO1Phase);
1919 schoenebeck 3138 SRLZ(LFO1InternalDepth);
1920     SRLZ(LFO1ControlDepth);
1921     SRLZ(LFO1Controller);
1922     SRLZ(LFO1FlipPhase);
1923     SRLZ(LFO1Sync);
1924     SRLZ(EG2PreAttack);
1925     SRLZ(EG2Attack);
1926     SRLZ(EG2Decay1);
1927     SRLZ(EG2Decay2);
1928     SRLZ(EG2InfiniteSustain);
1929     SRLZ(EG2Sustain);
1930     SRLZ(EG2Release);
1931     SRLZ(EG2Controller);
1932     SRLZ(EG2ControllerInvert);
1933     SRLZ(EG2ControllerAttackInfluence);
1934     SRLZ(EG2ControllerDecayInfluence);
1935     SRLZ(EG2ControllerReleaseInfluence);
1936 schoenebeck 3623 SRLZ(LFO2WaveForm);
1937 schoenebeck 3138 SRLZ(LFO2Frequency);
1938 schoenebeck 3623 SRLZ(LFO2Phase);
1939 schoenebeck 3138 SRLZ(LFO2InternalDepth);
1940     SRLZ(LFO2ControlDepth);
1941     SRLZ(LFO2Controller);
1942     SRLZ(LFO2FlipPhase);
1943     SRLZ(LFO2Sync);
1944     SRLZ(EG3Attack);
1945     SRLZ(EG3Depth);
1946 schoenebeck 3623 SRLZ(LFO3WaveForm);
1947 schoenebeck 3138 SRLZ(LFO3Frequency);
1948 schoenebeck 3623 SRLZ(LFO3Phase);
1949 schoenebeck 3138 SRLZ(LFO3InternalDepth);
1950     SRLZ(LFO3ControlDepth);
1951     SRLZ(LFO3Controller);
1952 schoenebeck 3623 SRLZ(LFO3FlipPhase);
1953 schoenebeck 3138 SRLZ(LFO3Sync);
1954     SRLZ(VCFEnabled);
1955     SRLZ(VCFType);
1956     SRLZ(VCFCutoffController);
1957     SRLZ(VCFCutoffControllerInvert);
1958     SRLZ(VCFCutoff);
1959     SRLZ(VCFVelocityCurve);
1960     SRLZ(VCFVelocityScale);
1961     SRLZ(VCFVelocityDynamicRange);
1962     SRLZ(VCFResonance);
1963     SRLZ(VCFResonanceDynamic);
1964     SRLZ(VCFResonanceController);
1965     SRLZ(VCFKeyboardTracking);
1966     SRLZ(VCFKeyboardTrackingBreakpoint);
1967     SRLZ(VelocityResponseCurve);
1968     SRLZ(VelocityResponseDepth);
1969     SRLZ(VelocityResponseCurveScaling);
1970     SRLZ(ReleaseVelocityResponseCurve);
1971     SRLZ(ReleaseVelocityResponseDepth);
1972     SRLZ(ReleaseTriggerDecay);
1973     SRLZ(Crossfade);
1974     SRLZ(PitchTrack);
1975     SRLZ(DimensionBypass);
1976     SRLZ(Pan);
1977     SRLZ(SelfMask);
1978     SRLZ(AttenuationController);
1979     SRLZ(InvertAttenuationController);
1980     SRLZ(AttenuationControllerThreshold);
1981     SRLZ(ChannelOffset);
1982     SRLZ(SustainDefeat);
1983     SRLZ(MSDecode);
1984     //SRLZ(SampleStartOffset);
1985     SRLZ(SampleAttenuation);
1986 schoenebeck 3327 SRLZ(EG1Options);
1987     SRLZ(EG2Options);
1988 schoenebeck 3442 SRLZ(SustainReleaseTrigger);
1989 schoenebeck 3446 SRLZ(NoNoteOffReleaseTrigger);
1990 schoenebeck 3138
1991     // derived attributes from DLS::Sampler
1992     SRLZ(FineTune);
1993     SRLZ(Gain);
1994     }
1995    
1996 schoenebeck 809 /**
1997 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1998     * which depends on this value.
1999     */
2000     void DimensionRegion::SetGain(int32_t gain) {
2001     DLS::Sampler::SetGain(gain);
2002     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003     }
2004    
2005     /**
2006 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
2007     * have to call File::Save() to make changes persistent.
2008     *
2009     * Usually there is absolutely no need to call this method explicitly.
2010     * It will be called automatically when File::Save() was called.
2011 schoenebeck 2682 *
2012     * @param pProgress - callback function for progress notification
2013 schoenebeck 809 */
2014 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 schoenebeck 809 // first update base class's chunk
2016 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
2017 schoenebeck 809
2018 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020     pData[12] = Crossfade.in_start;
2021     pData[13] = Crossfade.in_end;
2022     pData[14] = Crossfade.out_start;
2023     pData[15] = Crossfade.out_end;
2024    
2025 schoenebeck 809 // make sure '3ewa' chunk exists
2026     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 persson 1317 if (!_3ewa) {
2028     File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 persson 1264 }
2032 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
2033 schoenebeck 809
2034     // update '3ewa' chunk with DimensionRegion's current settings
2035    
2036 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
2038 schoenebeck 809
2039     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 persson 1179 store32(&pData[4], lfo3freq);
2041 schoenebeck 809
2042     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 persson 1179 store32(&pData[8], eg3attack);
2044 schoenebeck 809
2045     // next 2 bytes unknown
2046    
2047 persson 1179 store16(&pData[14], LFO1InternalDepth);
2048 schoenebeck 809
2049     // next 2 bytes unknown
2050    
2051 persson 1179 store16(&pData[18], LFO3InternalDepth);
2052 schoenebeck 809
2053     // next 2 bytes unknown
2054    
2055 persson 1179 store16(&pData[22], LFO1ControlDepth);
2056 schoenebeck 809
2057     // next 2 bytes unknown
2058    
2059 persson 1179 store16(&pData[26], LFO3ControlDepth);
2060 schoenebeck 809
2061     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 persson 1179 store32(&pData[28], eg1attack);
2063 schoenebeck 809
2064     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 persson 1179 store32(&pData[32], eg1decay1);
2066 schoenebeck 809
2067     // next 2 bytes unknown
2068    
2069 persson 1179 store16(&pData[38], EG1Sustain);
2070 schoenebeck 809
2071     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 persson 1179 store32(&pData[40], eg1release);
2073 schoenebeck 809
2074     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 persson 1179 pData[44] = eg1ctl;
2076 schoenebeck 809
2077     const uint8_t eg1ctrloptions =
2078 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 persson 1179 pData[45] = eg1ctrloptions;
2083 schoenebeck 809
2084     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 persson 1179 pData[46] = eg2ctl;
2086 schoenebeck 809
2087     const uint8_t eg2ctrloptions =
2088 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 persson 1179 pData[47] = eg2ctrloptions;
2093 schoenebeck 809
2094     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 persson 1179 store32(&pData[48], lfo1freq);
2096 schoenebeck 809
2097     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 persson 1179 store32(&pData[52], eg2attack);
2099 schoenebeck 809
2100     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 persson 1179 store32(&pData[56], eg2decay1);
2102 schoenebeck 809
2103     // next 2 bytes unknown
2104    
2105 persson 1179 store16(&pData[62], EG2Sustain);
2106 schoenebeck 809
2107     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 persson 1179 store32(&pData[64], eg2release);
2109 schoenebeck 809
2110     // next 2 bytes unknown
2111    
2112 persson 1179 store16(&pData[70], LFO2ControlDepth);
2113 schoenebeck 809
2114     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 persson 1179 store32(&pData[72], lfo2freq);
2116 schoenebeck 809
2117     // next 2 bytes unknown
2118    
2119 persson 1179 store16(&pData[78], LFO2InternalDepth);
2120 schoenebeck 809
2121     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 persson 1179 store32(&pData[80], eg1decay2);
2123 schoenebeck 809
2124     // next 2 bytes unknown
2125    
2126 persson 1179 store16(&pData[86], EG1PreAttack);
2127 schoenebeck 809
2128     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 persson 1179 store32(&pData[88], eg2decay2);
2130 schoenebeck 809
2131     // next 2 bytes unknown
2132    
2133 persson 1179 store16(&pData[94], EG2PreAttack);
2134 schoenebeck 809
2135     {
2136     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137     uint8_t velocityresponse = VelocityResponseDepth;
2138     switch (VelocityResponseCurve) {
2139     case curve_type_nonlinear:
2140     break;
2141     case curve_type_linear:
2142     velocityresponse += 5;
2143     break;
2144     case curve_type_special:
2145     velocityresponse += 10;
2146     break;
2147     case curve_type_unknown:
2148     default:
2149     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150     }
2151 persson 1179 pData[96] = velocityresponse;
2152 schoenebeck 809 }
2153    
2154     {
2155     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157     switch (ReleaseVelocityResponseCurve) {
2158     case curve_type_nonlinear:
2159     break;
2160     case curve_type_linear:
2161     releasevelocityresponse += 5;
2162     break;
2163     case curve_type_special:
2164     releasevelocityresponse += 10;
2165     break;
2166     case curve_type_unknown:
2167     default:
2168     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169     }
2170 persson 1179 pData[97] = releasevelocityresponse;
2171 schoenebeck 809 }
2172    
2173 persson 1179 pData[98] = VelocityResponseCurveScaling;
2174 schoenebeck 809
2175 persson 1179 pData[99] = AttenuationControllerThreshold;
2176 schoenebeck 809
2177     // next 4 bytes unknown
2178    
2179 persson 1179 store16(&pData[104], SampleStartOffset);
2180 schoenebeck 809
2181     // next 2 bytes unknown
2182    
2183     {
2184     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185     switch (DimensionBypass) {
2186     case dim_bypass_ctrl_94:
2187     pitchTrackDimensionBypass |= 0x10;
2188     break;
2189     case dim_bypass_ctrl_95:
2190     pitchTrackDimensionBypass |= 0x20;
2191     break;
2192     case dim_bypass_ctrl_none:
2193     //FIXME: should we set anything here?
2194     break;
2195     default:
2196     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197     }
2198 persson 1179 pData[108] = pitchTrackDimensionBypass;
2199 schoenebeck 809 }
2200    
2201     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 persson 1179 pData[109] = pan;
2203 schoenebeck 809
2204     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 persson 1179 pData[110] = selfmask;
2206 schoenebeck 809
2207     // next byte unknown
2208    
2209     {
2210     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 persson 1179 pData[112] = lfo3ctrl;
2215 schoenebeck 809 }
2216    
2217     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 persson 1179 pData[113] = attenctl;
2219 schoenebeck 809
2220     {
2221     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 persson 1179 pData[114] = lfo2ctrl;
2226 schoenebeck 809 }
2227    
2228     {
2229     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232     if (VCFResonanceController != vcf_res_ctrl_none)
2233     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 persson 1179 pData[115] = lfo1ctrl;
2235 schoenebeck 809 }
2236    
2237     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 persson 1869 store16(&pData[116], eg3depth);
2240 schoenebeck 809
2241     // next 2 bytes unknown
2242    
2243     const uint8_t channeloffset = ChannelOffset * 4;
2244 persson 1179 pData[120] = channeloffset;
2245 schoenebeck 809
2246     {
2247     uint8_t regoptions = 0;
2248     if (MSDecode) regoptions |= 0x01; // bit 0
2249     if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 persson 1179 pData[121] = regoptions;
2251 schoenebeck 809 }
2252    
2253     // next 2 bytes unknown
2254    
2255 persson 1179 pData[124] = VelocityUpperLimit;
2256 schoenebeck 809
2257     // next 3 bytes unknown
2258    
2259 persson 1179 pData[128] = ReleaseTriggerDecay;
2260 schoenebeck 809
2261     // next 2 bytes unknown
2262    
2263     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 persson 1179 pData[131] = eg1hold;
2265 schoenebeck 809
2266 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 persson 1179 pData[132] = vcfcutoff;
2269 schoenebeck 809
2270 persson 1179 pData[133] = VCFCutoffController;
2271 schoenebeck 809
2272 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 persson 1179 pData[134] = vcfvelscale;
2275 schoenebeck 809
2276     // next byte unknown
2277    
2278 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2280 persson 1179 pData[136] = vcfresonance;
2281 schoenebeck 809
2282 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 persson 1179 pData[137] = vcfbreakpoint;
2285 schoenebeck 809
2286 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 schoenebeck 809 VCFVelocityCurve * 5;
2288 persson 1179 pData[138] = vcfvelocity;
2289 schoenebeck 809
2290     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 persson 1179 pData[139] = vcftype;
2292 persson 1070
2293     if (chunksize >= 148) {
2294     memcpy(&pData[140], DimensionUpperLimits, 8);
2295     }
2296 schoenebeck 3323
2297 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with
2298 schoenebeck 3323 // Gigasampler/GigaStudio !
2299     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 schoenebeck 3623 const int lsdeSize =
2301     3 /* EG cancel options */ +
2302     1 /* sustain pedal up on release trigger option */ +
2303     8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304     if (!lsde && UsesAnyGigFormatExtension()) {
2305     // only add this "LSDE" chunk if there is some (format extension)
2306     // setting effective that would require our "LSDE" format extension
2307     // chunk to be stored
2308     lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309     // move LSDE chunk to the end of parent list
2310     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 schoenebeck 3323 }
2312     if (lsde) {
2313 schoenebeck 3442 if (lsde->GetNewSize() < lsdeSize)
2314     lsde->Resize(lsdeSize);
2315     // format extension for EG behavior options
2316 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 schoenebeck 3327 pData[i] =
2320     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325     }
2326 schoenebeck 3446 // format extension for release trigger options
2327     pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 schoenebeck 3623 // format extension for LFOs' wave form, phase displacement and for
2329     // LFO3's flip phase
2330     store16(&pData[4], LFO1WaveForm);
2331     store16(&pData[6], LFO2WaveForm);
2332     store16(&pData[8], LFO3WaveForm);
2333     //NOTE: 16 bits reserved here for potential future use !
2334     const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335     const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336     const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337     store32(&pData[12], lfo1Phase);
2338     store32(&pData[16], lfo2Phase);
2339     store32(&pData[20], lfo3Phase);
2340     const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341     store32(&pData[24], flags);
2342    
2343     // compile time sanity check: is our last store access here
2344     // consistent with the initial lsdeSize value assignment?
2345     static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 schoenebeck 3323 }
2347 schoenebeck 809 }
2348    
2349 schoenebeck 3623 /**
2350     * Returns @c true in case this DimensionRegion object uses any gig format
2351     * extension, that is whether this DimensionRegion object currently has any
2352     * setting effective that would require our "LSDE" RIFF chunk to be stored
2353     * to the gig file.
2354     *
2355     * Right now this is a private method. It is considerable though this method
2356     * to become (in slightly modified form) a public API method in future, i.e.
2357     * to allow instrument editors to visualize and/or warn the user of any
2358     * format extension being used. Right now this method really just serves to
2359     * answer the question whether an LSDE chunk is required, for the public API
2360     * purpose this method would also need to check whether any other setting
2361     * stored to the regular value '3ewa' chunk, is actually a format extension
2362     * as well.
2363     */
2364     bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365     eg_opt_t defaultOpt;
2366     return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367     memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368     SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369     LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370     LFO1Phase || LFO2Phase || LFO3Phase ||
2371     LFO3FlipPhase;
2372     }
2373    
2374 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375     curve_type_t curveType = releaseVelocityResponseCurve;
2376     uint8_t depth = releaseVelocityResponseDepth;
2377     // this models a strange behaviour or bug in GSt: two of the
2378     // velocity response curves for release time are not used even
2379     // if specified, instead another curve is chosen.
2380     if ((curveType == curve_type_nonlinear && depth == 0) ||
2381     (curveType == curve_type_special && depth == 4)) {
2382     curveType = curve_type_nonlinear;
2383     depth = 3;
2384     }
2385     return GetVelocityTable(curveType, depth, 0);
2386     }
2387    
2388     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389     uint8_t vcfVelocityDynamicRange,
2390     uint8_t vcfVelocityScale,
2391     vcf_cutoff_ctrl_t vcfCutoffController)
2392     {
2393     curve_type_t curveType = vcfVelocityCurve;
2394     uint8_t depth = vcfVelocityDynamicRange;
2395     // even stranger GSt: two of the velocity response curves for
2396     // filter cutoff are not used, instead another special curve
2397     // is chosen. This curve is not used anywhere else.
2398     if ((curveType == curve_type_nonlinear && depth == 0) ||
2399     (curveType == curve_type_special && depth == 4)) {
2400     curveType = curve_type_special;
2401     depth = 5;
2402     }
2403     return GetVelocityTable(curveType, depth,
2404     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405     ? vcfVelocityScale : 0);
2406     }
2407    
2408 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410     {
2411 schoenebeck 3349 // sanity check input parameters
2412     // (fallback to some default parameters on ill input)
2413     switch (curveType) {
2414     case curve_type_nonlinear:
2415     case curve_type_linear:
2416     if (depth > 4) {
2417     printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418     depth = 0;
2419     scaling = 0;
2420     }
2421     break;
2422     case curve_type_special:
2423     if (depth > 5) {
2424     printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425     depth = 0;
2426     scaling = 0;
2427     }
2428     break;
2429     case curve_type_unknown:
2430     default:
2431     printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432     curveType = curve_type_linear;
2433     depth = 0;
2434     scaling = 0;
2435     break;
2436     }
2437    
2438 persson 613 double* table;
2439     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2441 persson 613 table = (*pVelocityTables)[tableKey];
2442 schoenebeck 16 }
2443     else {
2444 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2445     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446 schoenebeck 16 }
2447 persson 613 return table;
2448 schoenebeck 2 }
2449 schoenebeck 55
2450 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2451     return pRegion;
2452     }
2453    
2454 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457     //#pragma GCC diagnostic push
2458     //#pragma GCC diagnostic error "-Wswitch"
2459    
2460 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461     leverage_ctrl_t decodedcontroller;
2462     switch (EncodedController) {
2463     // special controller
2464     case _lev_ctrl_none:
2465     decodedcontroller.type = leverage_ctrl_t::type_none;
2466     decodedcontroller.controller_number = 0;
2467     break;
2468     case _lev_ctrl_velocity:
2469     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2470     decodedcontroller.controller_number = 0;
2471     break;
2472     case _lev_ctrl_channelaftertouch:
2473     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2474     decodedcontroller.controller_number = 0;
2475     break;
2476 schoenebeck 55
2477 schoenebeck 36 // ordinary MIDI control change controller
2478     case _lev_ctrl_modwheel:
2479     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2480     decodedcontroller.controller_number = 1;
2481     break;
2482     case _lev_ctrl_breath:
2483     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2484     decodedcontroller.controller_number = 2;
2485     break;
2486     case _lev_ctrl_foot:
2487     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2488     decodedcontroller.controller_number = 4;
2489     break;
2490     case _lev_ctrl_effect1:
2491     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2492     decodedcontroller.controller_number = 12;
2493     break;
2494     case _lev_ctrl_effect2:
2495     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2496     decodedcontroller.controller_number = 13;
2497     break;
2498     case _lev_ctrl_genpurpose1:
2499     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2500     decodedcontroller.controller_number = 16;
2501     break;
2502     case _lev_ctrl_genpurpose2:
2503     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2504     decodedcontroller.controller_number = 17;
2505     break;
2506     case _lev_ctrl_genpurpose3:
2507     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2508     decodedcontroller.controller_number = 18;
2509     break;
2510     case _lev_ctrl_genpurpose4:
2511     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2512     decodedcontroller.controller_number = 19;
2513     break;
2514     case _lev_ctrl_portamentotime:
2515     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2516     decodedcontroller.controller_number = 5;
2517     break;
2518     case _lev_ctrl_sustainpedal:
2519     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2520     decodedcontroller.controller_number = 64;
2521     break;
2522     case _lev_ctrl_portamento:
2523     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2524     decodedcontroller.controller_number = 65;
2525     break;
2526     case _lev_ctrl_sostenutopedal:
2527     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2528     decodedcontroller.controller_number = 66;
2529     break;
2530     case _lev_ctrl_softpedal:
2531     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2532     decodedcontroller.controller_number = 67;
2533     break;
2534     case _lev_ctrl_genpurpose5:
2535     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2536     decodedcontroller.controller_number = 80;
2537     break;
2538     case _lev_ctrl_genpurpose6:
2539     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2540     decodedcontroller.controller_number = 81;
2541     break;
2542     case _lev_ctrl_genpurpose7:
2543     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2544     decodedcontroller.controller_number = 82;
2545     break;
2546     case _lev_ctrl_genpurpose8:
2547     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2548     decodedcontroller.controller_number = 83;
2549     break;
2550     case _lev_ctrl_effect1depth:
2551     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2552     decodedcontroller.controller_number = 91;
2553     break;
2554     case _lev_ctrl_effect2depth:
2555     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2556     decodedcontroller.controller_number = 92;
2557     break;
2558     case _lev_ctrl_effect3depth:
2559     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2560     decodedcontroller.controller_number = 93;
2561     break;
2562     case _lev_ctrl_effect4depth:
2563     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2564     decodedcontroller.controller_number = 94;
2565     break;
2566     case _lev_ctrl_effect5depth:
2567     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2568     decodedcontroller.controller_number = 95;
2569     break;
2570 schoenebeck 55
2571 schoenebeck 2540 // format extension (these controllers are so far only supported by
2572     // LinuxSampler & gigedit) they will *NOT* work with
2573     // Gigasampler/GigaStudio !
2574     case _lev_ctrl_CC3_EXT:
2575     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576     decodedcontroller.controller_number = 3;
2577     break;
2578     case _lev_ctrl_CC6_EXT:
2579     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580     decodedcontroller.controller_number = 6;
2581     break;
2582     case _lev_ctrl_CC7_EXT:
2583     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584     decodedcontroller.controller_number = 7;
2585     break;
2586     case _lev_ctrl_CC8_EXT:
2587     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588     decodedcontroller.controller_number = 8;
2589     break;
2590     case _lev_ctrl_CC9_EXT:
2591     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592     decodedcontroller.controller_number = 9;
2593     break;
2594     case _lev_ctrl_CC10_EXT:
2595     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596     decodedcontroller.controller_number = 10;
2597     break;
2598     case _lev_ctrl_CC11_EXT:
2599     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600     decodedcontroller.controller_number = 11;
2601     break;
2602     case _lev_ctrl_CC14_EXT:
2603     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604     decodedcontroller.controller_number = 14;
2605     break;
2606     case _lev_ctrl_CC15_EXT:
2607     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608     decodedcontroller.controller_number = 15;
2609     break;
2610     case _lev_ctrl_CC20_EXT:
2611     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612     decodedcontroller.controller_number = 20;
2613     break;
2614     case _lev_ctrl_CC21_EXT:
2615     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616     decodedcontroller.controller_number = 21;
2617     break;
2618     case _lev_ctrl_CC22_EXT:
2619     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620     decodedcontroller.controller_number = 22;
2621     break;
2622     case _lev_ctrl_CC23_EXT:
2623     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624     decodedcontroller.controller_number = 23;
2625     break;
2626     case _lev_ctrl_CC24_EXT:
2627     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628     decodedcontroller.controller_number = 24;
2629     break;
2630     case _lev_ctrl_CC25_EXT:
2631     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632     decodedcontroller.controller_number = 25;
2633     break;
2634     case _lev_ctrl_CC26_EXT:
2635     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636     decodedcontroller.controller_number = 26;
2637     break;
2638     case _lev_ctrl_CC27_EXT:
2639     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640     decodedcontroller.controller_number = 27;
2641     break;
2642     case _lev_ctrl_CC28_EXT:
2643     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644     decodedcontroller.controller_number = 28;
2645     break;
2646     case _lev_ctrl_CC29_EXT:
2647     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648     decodedcontroller.controller_number = 29;
2649     break;
2650     case _lev_ctrl_CC30_EXT:
2651     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652     decodedcontroller.controller_number = 30;
2653     break;
2654     case _lev_ctrl_CC31_EXT:
2655     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656     decodedcontroller.controller_number = 31;
2657     break;
2658     case _lev_ctrl_CC68_EXT:
2659     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660     decodedcontroller.controller_number = 68;
2661     break;
2662     case _lev_ctrl_CC69_EXT:
2663     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664     decodedcontroller.controller_number = 69;
2665     break;
2666     case _lev_ctrl_CC70_EXT:
2667     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668     decodedcontroller.controller_number = 70;
2669     break;
2670     case _lev_ctrl_CC71_EXT:
2671     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672     decodedcontroller.controller_number = 71;
2673     break;
2674     case _lev_ctrl_CC72_EXT:
2675     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676     decodedcontroller.controller_number = 72;
2677     break;
2678     case _lev_ctrl_CC73_EXT:
2679     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680     decodedcontroller.controller_number = 73;
2681     break;
2682     case _lev_ctrl_CC74_EXT:
2683     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684     decodedcontroller.controller_number = 74;
2685     break;
2686     case _lev_ctrl_CC75_EXT:
2687     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688     decodedcontroller.controller_number = 75;
2689     break;
2690     case _lev_ctrl_CC76_EXT:
2691     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692     decodedcontroller.controller_number = 76;
2693     break;
2694     case _lev_ctrl_CC77_EXT:
2695     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696     decodedcontroller.controller_number = 77;
2697     break;
2698     case _lev_ctrl_CC78_EXT:
2699     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700     decodedcontroller.controller_number = 78;
2701     break;
2702     case _lev_ctrl_CC79_EXT:
2703     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704     decodedcontroller.controller_number = 79;
2705     break;
2706     case _lev_ctrl_CC84_EXT:
2707     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708     decodedcontroller.controller_number = 84;
2709     break;
2710     case _lev_ctrl_CC85_EXT:
2711     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712     decodedcontroller.controller_number = 85;
2713     break;
2714     case _lev_ctrl_CC86_EXT:
2715     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716     decodedcontroller.controller_number = 86;
2717     break;
2718     case _lev_ctrl_CC87_EXT:
2719     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720     decodedcontroller.controller_number = 87;
2721     break;
2722     case _lev_ctrl_CC89_EXT:
2723     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724     decodedcontroller.controller_number = 89;
2725     break;
2726     case _lev_ctrl_CC90_EXT:
2727     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728     decodedcontroller.controller_number = 90;
2729     break;
2730     case _lev_ctrl_CC96_EXT:
2731     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732     decodedcontroller.controller_number = 96;
2733     break;
2734     case _lev_ctrl_CC97_EXT:
2735     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736     decodedcontroller.controller_number = 97;
2737     break;
2738     case _lev_ctrl_CC102_EXT:
2739     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740     decodedcontroller.controller_number = 102;
2741     break;
2742     case _lev_ctrl_CC103_EXT:
2743     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744     decodedcontroller.controller_number = 103;
2745     break;
2746     case _lev_ctrl_CC104_EXT:
2747     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748     decodedcontroller.controller_number = 104;
2749     break;
2750     case _lev_ctrl_CC105_EXT:
2751     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752     decodedcontroller.controller_number = 105;
2753     break;
2754     case _lev_ctrl_CC106_EXT:
2755     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756     decodedcontroller.controller_number = 106;
2757     break;
2758     case _lev_ctrl_CC107_EXT:
2759     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760     decodedcontroller.controller_number = 107;
2761     break;
2762     case _lev_ctrl_CC108_EXT:
2763     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764     decodedcontroller.controller_number = 108;
2765     break;
2766     case _lev_ctrl_CC109_EXT:
2767     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768     decodedcontroller.controller_number = 109;
2769     break;
2770     case _lev_ctrl_CC110_EXT:
2771     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772     decodedcontroller.controller_number = 110;
2773     break;
2774     case _lev_ctrl_CC111_EXT:
2775     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776     decodedcontroller.controller_number = 111;
2777     break;
2778     case _lev_ctrl_CC112_EXT:
2779     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780     decodedcontroller.controller_number = 112;
2781     break;
2782     case _lev_ctrl_CC113_EXT:
2783     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784     decodedcontroller.controller_number = 113;
2785     break;
2786     case _lev_ctrl_CC114_EXT:
2787     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788     decodedcontroller.controller_number = 114;
2789     break;
2790     case _lev_ctrl_CC115_EXT:
2791     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792     decodedcontroller.controller_number = 115;
2793     break;
2794     case _lev_ctrl_CC116_EXT:
2795     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796     decodedcontroller.controller_number = 116;
2797     break;
2798     case _lev_ctrl_CC117_EXT:
2799     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800     decodedcontroller.controller_number = 117;
2801     break;
2802     case _lev_ctrl_CC118_EXT:
2803     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804     decodedcontroller.controller_number = 118;
2805     break;
2806     case _lev_ctrl_CC119_EXT:
2807     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808     decodedcontroller.controller_number = 119;
2809     break;
2810    
2811 schoenebeck 36 // unknown controller type
2812     default:
2813 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2814     decodedcontroller.controller_number = 0;
2815     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816     break;
2817 schoenebeck 36 }
2818     return decodedcontroller;
2819     }
2820 schoenebeck 2540
2821     // see above (diagnostic push not supported prior GCC 4.6)
2822     //#pragma GCC diagnostic pop
2823 schoenebeck 2
2824 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825     _lev_ctrl_t encodedcontroller;
2826     switch (DecodedController.type) {
2827     // special controller
2828     case leverage_ctrl_t::type_none:
2829     encodedcontroller = _lev_ctrl_none;
2830     break;
2831     case leverage_ctrl_t::type_velocity:
2832     encodedcontroller = _lev_ctrl_velocity;
2833     break;
2834     case leverage_ctrl_t::type_channelaftertouch:
2835     encodedcontroller = _lev_ctrl_channelaftertouch;
2836     break;
2837    
2838     // ordinary MIDI control change controller
2839     case leverage_ctrl_t::type_controlchange:
2840     switch (DecodedController.controller_number) {
2841     case 1:
2842     encodedcontroller = _lev_ctrl_modwheel;
2843     break;
2844     case 2:
2845     encodedcontroller = _lev_ctrl_breath;
2846     break;
2847     case 4:
2848     encodedcontroller = _lev_ctrl_foot;
2849     break;
2850     case 12:
2851     encodedcontroller = _lev_ctrl_effect1;
2852     break;
2853     case 13:
2854     encodedcontroller = _lev_ctrl_effect2;
2855     break;
2856     case 16:
2857     encodedcontroller = _lev_ctrl_genpurpose1;
2858     break;
2859     case 17:
2860     encodedcontroller = _lev_ctrl_genpurpose2;
2861     break;
2862     case 18:
2863     encodedcontroller = _lev_ctrl_genpurpose3;
2864     break;
2865     case 19:
2866     encodedcontroller = _lev_ctrl_genpurpose4;
2867     break;
2868     case 5:
2869     encodedcontroller = _lev_ctrl_portamentotime;
2870     break;
2871     case 64:
2872     encodedcontroller = _lev_ctrl_sustainpedal;
2873     break;
2874     case 65:
2875     encodedcontroller = _lev_ctrl_portamento;
2876     break;
2877     case 66:
2878     encodedcontroller = _lev_ctrl_sostenutopedal;
2879     break;
2880     case 67:
2881     encodedcontroller = _lev_ctrl_softpedal;
2882     break;
2883     case 80:
2884     encodedcontroller = _lev_ctrl_genpurpose5;
2885     break;
2886     case 81:
2887     encodedcontroller = _lev_ctrl_genpurpose6;
2888     break;
2889     case 82:
2890     encodedcontroller = _lev_ctrl_genpurpose7;
2891     break;
2892     case 83:
2893     encodedcontroller = _lev_ctrl_genpurpose8;
2894     break;
2895     case 91:
2896     encodedcontroller = _lev_ctrl_effect1depth;
2897     break;
2898     case 92:
2899     encodedcontroller = _lev_ctrl_effect2depth;
2900     break;
2901     case 93:
2902     encodedcontroller = _lev_ctrl_effect3depth;
2903     break;
2904     case 94:
2905     encodedcontroller = _lev_ctrl_effect4depth;
2906     break;
2907     case 95:
2908     encodedcontroller = _lev_ctrl_effect5depth;
2909     break;
2910 schoenebeck 2540
2911     // format extension (these controllers are so far only
2912     // supported by LinuxSampler & gigedit) they will *NOT*
2913     // work with Gigasampler/GigaStudio !
2914     case 3:
2915     encodedcontroller = _lev_ctrl_CC3_EXT;
2916     break;
2917     case 6:
2918     encodedcontroller = _lev_ctrl_CC6_EXT;
2919     break;
2920     case 7:
2921     encodedcontroller = _lev_ctrl_CC7_EXT;
2922     break;
2923     case 8:
2924     encodedcontroller = _lev_ctrl_CC8_EXT;
2925     break;
2926     case 9:
2927     encodedcontroller = _lev_ctrl_CC9_EXT;
2928     break;
2929     case 10:
2930     encodedcontroller = _lev_ctrl_CC10_EXT;
2931     break;
2932     case 11:
2933     encodedcontroller = _lev_ctrl_CC11_EXT;
2934     break;
2935     case 14:
2936     encodedcontroller = _lev_ctrl_CC14_EXT;
2937     break;
2938     case 15:
2939     encodedcontroller = _lev_ctrl_CC15_EXT;
2940     break;
2941     case 20:
2942     encodedcontroller = _lev_ctrl_CC20_EXT;
2943     break;
2944     case 21:
2945     encodedcontroller = _lev_ctrl_CC21_EXT;
2946     break;
2947     case 22:
2948     encodedcontroller = _lev_ctrl_CC22_EXT;
2949     break;
2950     case 23:
2951     encodedcontroller = _lev_ctrl_CC23_EXT;
2952     break;
2953     case 24:
2954     encodedcontroller = _lev_ctrl_CC24_EXT;
2955     break;
2956     case 25:
2957     encodedcontroller = _lev_ctrl_CC25_EXT;
2958     break;
2959     case 26:
2960     encodedcontroller = _lev_ctrl_CC26_EXT;
2961     break;
2962     case 27:
2963     encodedcontroller = _lev_ctrl_CC27_EXT;
2964     break;
2965     case 28:
2966     encodedcontroller = _lev_ctrl_CC28_EXT;
2967     break;
2968     case 29:
2969     encodedcontroller = _lev_ctrl_CC29_EXT;
2970     break;
2971     case 30:
2972     encodedcontroller = _lev_ctrl_CC30_EXT;
2973     break;
2974     case 31:
2975     encodedcontroller = _lev_ctrl_CC31_EXT;
2976     break;
2977     case 68:
2978     encodedcontroller = _lev_ctrl_CC68_EXT;
2979     break;
2980     case 69:
2981     encodedcontroller = _lev_ctrl_CC69_EXT;
2982     break;
2983     case 70:
2984     encodedcontroller = _lev_ctrl_CC70_EXT;
2985     break;
2986     case 71:
2987     encodedcontroller = _lev_ctrl_CC71_EXT;
2988     break;
2989     case 72:
2990     encodedcontroller = _lev_ctrl_CC72_EXT;
2991     break;
2992     case 73:
2993     encodedcontroller = _lev_ctrl_CC73_EXT;
2994     break;
2995     case 74:
2996     encodedcontroller = _lev_ctrl_CC74_EXT;
2997     break;
2998     case 75:
2999     encodedcontroller = _lev_ctrl_CC75_EXT;
3000     break;
3001     case 76:
3002     encodedcontroller = _lev_ctrl_CC76_EXT;
3003     break;
3004     case 77:
3005     encodedcontroller = _lev_ctrl_CC77_EXT;
3006     break;
3007     case 78:
3008     encodedcontroller = _lev_ctrl_CC78_EXT;
3009     break;
3010     case 79:
3011     encodedcontroller = _lev_ctrl_CC79_EXT;
3012     break;
3013     case 84:
3014     encodedcontroller = _lev_ctrl_CC84_EXT;
3015     break;
3016     case 85:
3017     encodedcontroller = _lev_ctrl_CC85_EXT;
3018     break;
3019     case 86:
3020     encodedcontroller = _lev_ctrl_CC86_EXT;
3021     break;
3022     case 87:
3023     encodedcontroller = _lev_ctrl_CC87_EXT;
3024     break;
3025     case 89:
3026     encodedcontroller = _lev_ctrl_CC89_EXT;
3027     break;
3028     case 90:
3029     encodedcontroller = _lev_ctrl_CC90_EXT;
3030     break;
3031     case 96:
3032     encodedcontroller = _lev_ctrl_CC96_EXT;
3033     break;
3034     case 97:
3035     encodedcontroller = _lev_ctrl_CC97_EXT;
3036     break;
3037     case 102:
3038     encodedcontroller = _lev_ctrl_CC102_EXT;
3039     break;
3040     case 103:
3041     encodedcontroller = _lev_ctrl_CC103_EXT;
3042     break;
3043     case 104:
3044     encodedcontroller = _lev_ctrl_CC104_EXT;
3045     break;
3046     case 105:
3047     encodedcontroller = _lev_ctrl_CC105_EXT;
3048     break;
3049     case 106:
3050     encodedcontroller = _lev_ctrl_CC106_EXT;
3051     break;
3052     case 107:
3053     encodedcontroller = _lev_ctrl_CC107_EXT;
3054     break;
3055     case 108:
3056     encodedcontroller = _lev_ctrl_CC108_EXT;
3057     break;
3058     case 109:
3059     encodedcontroller = _lev_ctrl_CC109_EXT;
3060     break;
3061     case 110:
3062     encodedcontroller = _lev_ctrl_CC110_EXT;
3063     break;
3064     case 111:
3065     encodedcontroller = _lev_ctrl_CC111_EXT;
3066     break;
3067     case 112:
3068     encodedcontroller = _lev_ctrl_CC112_EXT;
3069     break;
3070     case 113:
3071     encodedcontroller = _lev_ctrl_CC113_EXT;
3072     break;
3073     case 114:
3074     encodedcontroller = _lev_ctrl_CC114_EXT;
3075     break;
3076     case 115:
3077     encodedcontroller = _lev_ctrl_CC115_EXT;
3078     break;
3079     case 116:
3080     encodedcontroller = _lev_ctrl_CC116_EXT;
3081     break;
3082     case 117:
3083     encodedcontroller = _lev_ctrl_CC117_EXT;
3084     break;
3085     case 118:
3086     encodedcontroller = _lev_ctrl_CC118_EXT;
3087     break;
3088     case 119:
3089     encodedcontroller = _lev_ctrl_CC119_EXT;
3090     break;
3091    
3092 schoenebeck 809 default:
3093     throw gig::Exception("leverage controller number is not supported by the gig format");
3094     }
3095 persson 1182 break;
3096 schoenebeck 809 default:
3097     throw gig::Exception("Unknown leverage controller type.");
3098     }
3099     return encodedcontroller;
3100     }
3101    
3102 schoenebeck 16 DimensionRegion::~DimensionRegion() {
3103     Instances--;
3104     if (!Instances) {
3105     // delete the velocity->volume tables
3106     VelocityTableMap::iterator iter;
3107     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3108     double* pTable = iter->second;
3109     if (pTable) delete[] pTable;
3110     }
3111     pVelocityTables->clear();
3112     delete pVelocityTables;
3113     pVelocityTables = NULL;
3114     }
3115 persson 858 if (VelocityTable) delete[] VelocityTable;
3116 schoenebeck 16 }
3117 schoenebeck 2
3118 schoenebeck 16 /**
3119     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3120     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3121     * and VelocityResponseCurveScaling) involved are taken into account to
3122     * calculate the amplitude factor. Use this method when a key was
3123     * triggered to get the volume with which the sample should be played
3124     * back.
3125     *
3126 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3127     * @returns amplitude factor (between 0.0 and 1.0)
3128 schoenebeck 16 */
3129     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3130     return pVelocityAttenuationTable[MIDIKeyVelocity];
3131     }
3132 schoenebeck 2
3133 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134     return pVelocityReleaseTable[MIDIKeyVelocity];
3135     }
3136    
3137 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138     return pVelocityCutoffTable[MIDIKeyVelocity];
3139     }
3140    
3141 schoenebeck 1358 /**
3142     * Updates the respective member variable and the lookup table / cache
3143     * that depends on this value.
3144     */
3145     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146     pVelocityAttenuationTable =
3147     GetVelocityTable(
3148     curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149     );
3150     VelocityResponseCurve = curve;
3151     }
3152    
3153     /**
3154     * Updates the respective member variable and the lookup table / cache
3155     * that depends on this value.
3156     */
3157     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158     pVelocityAttenuationTable =
3159     GetVelocityTable(
3160     VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161     );
3162     VelocityResponseDepth = depth;
3163     }
3164    
3165     /**
3166     * Updates the respective member variable and the lookup table / cache
3167     * that depends on this value.
3168     */
3169     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170     pVelocityAttenuationTable =
3171     GetVelocityTable(
3172     VelocityResponseCurve, VelocityResponseDepth, scaling
3173     );
3174     VelocityResponseCurveScaling = scaling;
3175     }
3176    
3177     /**
3178     * Updates the respective member variable and the lookup table / cache
3179     * that depends on this value.
3180     */
3181     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183     ReleaseVelocityResponseCurve = curve;
3184     }
3185    
3186     /**
3187     * Updates the respective member variable and the lookup table / cache
3188     * that depends on this value.
3189     */
3190     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192     ReleaseVelocityResponseDepth = depth;
3193     }
3194    
3195     /**
3196     * Updates the respective member variable and the lookup table / cache
3197     * that depends on this value.
3198     */
3199     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201     VCFCutoffController = controller;
3202     }
3203    
3204     /**
3205     * Updates the respective member variable and the lookup table / cache
3206     * that depends on this value.
3207     */
3208     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210     VCFVelocityCurve = curve;
3211     }
3212    
3213     /**
3214     * Updates the respective member variable and the lookup table / cache
3215     * that depends on this value.
3216     */
3217     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219     VCFVelocityDynamicRange = range;
3220     }
3221    
3222     /**
3223     * Updates the respective member variable and the lookup table / cache
3224     * that depends on this value.
3225     */
3226     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228     VCFVelocityScale = scaling;
3229     }
3230    
3231 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232 schoenebeck 317
3233 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3234 schoenebeck 16
3235 schoenebeck 308 // linear
3236     const int lin0[] = { 1, 1, 127, 127 };
3237     const int lin1[] = { 1, 21, 127, 127 };
3238     const int lin2[] = { 1, 45, 127, 127 };
3239     const int lin3[] = { 1, 74, 127, 127 };
3240     const int lin4[] = { 1, 127, 127, 127 };
3241 schoenebeck 16
3242 schoenebeck 308 // non-linear
3243     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3244 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3245 schoenebeck 308 127, 127 };
3246     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3247     127, 127 };
3248     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3249     127, 127 };
3250     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3251 schoenebeck 317
3252 schoenebeck 308 // special
3253 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3254 schoenebeck 308 113, 127, 127, 127 };
3255     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3256     118, 127, 127, 127 };
3257 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3258 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3259 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3260 schoenebeck 308 117, 127, 127, 127 };
3261 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262 schoenebeck 308 127, 127 };
3263 schoenebeck 317
3264 persson 728 // this is only used by the VCF velocity curve
3265     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266     91, 127, 127, 127 };
3267    
3268 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3269 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3270 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3271 schoenebeck 317
3272 schoenebeck 308 double* const table = new double[128];
3273    
3274     const int* curve = curves[curveType * 5 + depth];
3275     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3276 schoenebeck 317
3277 schoenebeck 308 table[0] = 0;
3278     for (int x = 1 ; x < 128 ; x++) {
3279    
3280     if (x > curve[2]) curve += 2;
3281 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3282 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3283     y = y / 127;
3284    
3285     // Scale up for s > 20, down for s < 20. When
3286     // down-scaling, the curve still ends at 1.0.
3287     if (s < 20 && y >= 0.5)
3288     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3289     else
3290     y = y * (s / 20.0);
3291     if (y > 1) y = 1;
3292    
3293     table[x] = y;
3294     }
3295     return table;
3296     }
3297    
3298    
3299 schoenebeck 2 // *************** Region ***************
3300     // *
3301    
3302     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3303     // Initialization
3304     Dimensions = 0;
3305 schoenebeck 347 for (int i = 0; i < 256; i++) {
3306 schoenebeck 2 pDimensionRegions[i] = NULL;
3307     }
3308 schoenebeck 282 Layers = 1;
3309 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3310 schoenebeck 3440 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311 schoenebeck 2
3312     // Actual Loading
3313    
3314 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3315    
3316 schoenebeck 2 LoadDimensionRegions(rgnList);
3317    
3318     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319     if (_3lnk) {
3320 schoenebeck 3478 _3lnk->SetPos(0);
3321    
3322 schoenebeck 2 DimensionRegions = _3lnk->ReadUint32();
3323 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3324 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325     uint8_t bits = _3lnk->ReadUint8();
3326 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3330     pDimensionDefinitions[i].dimension = dimension_none;
3331     pDimensionDefinitions[i].bits = 0;
3332     pDimensionDefinitions[i].zones = 0;
3333     pDimensionDefinitions[i].split_type = split_type_bit;
3334     pDimensionDefinitions[i].zone_size = 0;
3335     }
3336     else { // active dimension
3337     pDimensionDefinitions[i].dimension = dimension;
3338     pDimensionDefinitions[i].bits = bits;
3339 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3342 schoenebeck 2 Dimensions++;
3343 schoenebeck 282
3344     // if this is a layer dimension, remember the amount of layers
3345     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346 schoenebeck 2 }
3347 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348 schoenebeck 2 }
3349 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350 schoenebeck 2
3351 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3352     // update the VelocityTables in the dimension regions
3353     UpdateVelocityTable();
3354 schoenebeck 2
3355 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3356 schoenebeck 3440 if (file->pVersion && file->pVersion->major > 2)
3357 schoenebeck 317 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358     else
3359     _3lnk->SetPos(44);
3360    
3361 schoenebeck 1524 // load sample references (if auto loading is enabled)
3362     if (file->GetAutoLoad()) {
3363     for (uint i = 0; i < DimensionRegions; i++) {
3364     uint32_t wavepoolindex = _3lnk->ReadUint32();
3365 schoenebeck 3348 if (file->pWavePoolTable && pDimensionRegions[i])
3366     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367 schoenebeck 1524 }
3368     GetSample(); // load global region sample reference
3369 schoenebeck 2 }
3370 persson 1102 } else {
3371     DimensionRegions = 0;
3372 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3373     pDimensionDefinitions[i].dimension = dimension_none;
3374     pDimensionDefinitions[i].bits = 0;
3375     pDimensionDefinitions[i].zones = 0;
3376     }
3377 schoenebeck 2 }
3378 schoenebeck 823
3379     // make sure there is at least one dimension region
3380     if (!DimensionRegions) {
3381     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385 schoenebeck 823 DimensionRegions = 1;
3386     }
3387 schoenebeck 2 }
3388    
3389 schoenebeck 809 /**
3390     * Apply Region settings and all its DimensionRegions to the respective
3391     * RIFF chunks. You have to call File::Save() to make changes persistent.
3392     *
3393     * Usually there is absolutely no need to call this method explicitly.
3394     * It will be called automatically when File::Save() was called.
3395     *
3396 schoenebeck 2682 * @param pProgress - callback function for progress notification
3397 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3398     */
3399 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3400 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3401     // but we still have to provide some existing one to not corrupt the
3402     // file, so to avoid the latter we simply always assign the sample of
3403     // the first dimension region of this region
3404     pSample = pDimensionRegions[0]->pSample;
3405    
3406 schoenebeck 809 // first update base class's chunks
3407 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3408 schoenebeck 809
3409     // update dimension region's chunks
3410 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3411 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3412 schoenebeck 823 }
3413 schoenebeck 809
3414 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3415 schoenebeck 3657 const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416 schoenebeck 3440 const int iMaxDimensions = versiongt2 ? 8 : 5;
3417     const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418 schoenebeck 809
3419     // make sure '3lnk' chunk exists
3420     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421     if (!_3lnk) {
3422 schoenebeck 3440 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425 persson 1192
3426     // move 3prg to last position
3427 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428 schoenebeck 809 }
3429    
3430     // update dimension definitions in '3lnk' chunk
3431     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432 persson 1179 store32(&pData[0], DimensionRegions);
3433 persson 1199 int shift = 0;
3434 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3435 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440 persson 1199 // next 3 bytes unknown, always zero?
3441    
3442     shift += pDimensionDefinitions[i].bits;
3443 schoenebeck 809 }
3444    
3445     // update wave pool table in '3lnk' chunk
3446 schoenebeck 3440 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448     int iWaveIndex = -1;
3449     if (i < DimensionRegions) {
3450 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451     File::SampleList::iterator iter = pFile->pSamples->begin();
3452     File::SampleList::iterator end = pFile->pSamples->end();
3453 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3454 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3455     iWaveIndex = index;
3456     break;
3457     }
3458 schoenebeck 809 }
3459     }
3460 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461 schoenebeck 809 }
3462 schoenebeck 3657
3463 schoenebeck 3710 // The following chunks are just added for compatibility with the
3464     // GigaStudio software, which would show a warning if these were
3465     // missing. However currently these chunks don't cover any useful
3466     // data. So if this gig file uses any of our own gig format
3467     // extensions which would cause this gig file to be unloadable
3468     // with GSt software anyway, then just skip these GSt compatibility
3469     // chunks here as well.
3470     if (versiongt2 && !UsesAnyGigFormatExtension()) {
3471 schoenebeck 3657 // add 3dnm list which always seems to be empty
3472     RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3473     if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3474    
3475     // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3476     RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3477     if (!_3ddp) _3ddp = pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3478     uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3479     for (int i = 0; i < 16; i += 4) {
3480     store32(&pData[i], 0xFFFFFFFF);
3481     }
3482    
3483     // move 3dnm and 3ddp to the end of the region list
3484     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3485     pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3486     } else {
3487     // this is intended for the user switching from GSt >= 3 version
3488     // back to an older format version, delete GSt3 chunks ...
3489     RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3490     if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3491    
3492     RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3493     if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3494     }
3495 schoenebeck 809 }
3496    
3497 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3498     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3499     if (_3prg) {
3500     int dimensionRegionNr = 0;
3501 schoenebeck 3924 size_t i = 0;
3502     for (RIFF::List* _3ewl = _3prg->GetSubListAt(i); _3ewl;
3503     _3ewl = _3prg->GetSubListAt(++i))
3504     {
3505 schoenebeck 2 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3506 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3507 schoenebeck 2 dimensionRegionNr++;
3508     }
3509     }
3510     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3511     }
3512     }
3513    
3514 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3515     // update KeyRange struct and make sure regions are in correct order
3516     DLS::Region::SetKeyRange(Low, High);
3517     // update Region key table for fast lookup
3518     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3519     }
3520    
3521 persson 858 void Region::UpdateVelocityTable() {
3522     // get velocity dimension's index
3523     int veldim = -1;
3524     for (int i = 0 ; i < Dimensions ; i++) {
3525     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3526     veldim = i;
3527 schoenebeck 809 break;
3528     }
3529     }
3530 persson 858 if (veldim == -1) return;
3531 schoenebeck 809
3532 persson 858 int step = 1;
3533     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3534     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3535 schoenebeck 809
3536 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3537     int dim[8] = { 0 };
3538     for (int i = 0 ; i < DimensionRegions ; i++) {
3539 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3540 persson 858
3541 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3542 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3543     pDimensionRegions[i]->VelocityUpperLimit) {
3544 persson 858 // create the velocity table
3545     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3546     if (!table) {
3547     table = new uint8_t[128];
3548     pDimensionRegions[i]->VelocityTable = table;
3549     }
3550     int tableidx = 0;
3551     int velocityZone = 0;
3552 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3553     for (int k = i ; k < end ; k += step) {
3554     DimensionRegion *d = pDimensionRegions[k];
3555     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3556     velocityZone++;
3557     }
3558     } else { // gig2
3559     for (int k = i ; k < end ; k += step) {
3560     DimensionRegion *d = pDimensionRegions[k];
3561     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3562     velocityZone++;
3563     }
3564 persson 858 }
3565     } else {
3566     if (pDimensionRegions[i]->VelocityTable) {
3567     delete[] pDimensionRegions[i]->VelocityTable;
3568     pDimensionRegions[i]->VelocityTable = 0;
3569     }
3570 schoenebeck 809 }
3571 persson 858
3572 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3573 persson 858 int j;
3574     int shift = 0;
3575     for (j = 0 ; j < Dimensions ; j++) {
3576     if (j == veldim) i += skipveldim; // skip velocity dimension
3577     else {
3578     dim[j]++;
3579     if (dim[j] < pDimensionDefinitions[j].zones) break;
3580     else {
3581     // skip unused dimension regions
3582     dim[j] = 0;
3583     i += ((1 << pDimensionDefinitions[j].bits) -
3584     pDimensionDefinitions[j].zones) << shift;
3585     }
3586     }
3587     shift += pDimensionDefinitions[j].bits;
3588     }
3589     if (j == Dimensions) break;
3590 schoenebeck 809 }
3591     }
3592    
3593     /** @brief Einstein would have dreamed of it - create a new dimension.
3594     *
3595     * Creates a new dimension with the dimension definition given by
3596     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3597     * There is a hard limit of dimensions and total amount of "bits" all
3598     * dimensions can have. This limit is dependant to what gig file format
3599     * version this file refers to. The gig v2 (and lower) format has a
3600     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3601     * format has a limit of 8.
3602     *
3603     * @param pDimDef - defintion of the new dimension
3604     * @throws gig::Exception if dimension of the same type exists already
3605     * @throws gig::Exception if amount of dimensions or total amount of
3606     * dimension bits limit is violated
3607     */
3608     void Region::AddDimension(dimension_def_t* pDimDef) {
3609 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3610     if (pDimDef->zones < 2)
3611     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3612     if (pDimDef->bits < 1)
3613     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3614     if (pDimDef->dimension == dimension_samplechannel) {
3615     if (pDimDef->zones != 2)
3616     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3617     if (pDimDef->bits != 1)
3618     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3619     }
3620    
3621 schoenebeck 809 // check if max. amount of dimensions reached
3622     File* file = (File*) GetParent()->GetParent();
3623 schoenebeck 3440 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3624 schoenebeck 809 if (Dimensions >= iMaxDimensions)
3625     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3626     // check if max. amount of dimension bits reached
3627     int iCurrentBits = 0;
3628     for (int i = 0; i < Dimensions; i++)
3629     iCurrentBits += pDimensionDefinitions[i].bits;
3630     if (iCurrentBits >= iMaxDimensions)
3631     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3632     const int iNewBits = iCurrentBits + pDimDef->bits;
3633     if (iNewBits > iMaxDimensions)
3634     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3635     // check if there's already a dimensions of the same type
3636     for (int i = 0; i < Dimensions; i++)
3637     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3638     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3639    
3640 persson 1301 // pos is where the new dimension should be placed, normally
3641     // last in list, except for the samplechannel dimension which
3642     // has to be first in list
3643     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3644     int bitpos = 0;
3645     for (int i = 0 ; i < pos ; i++)
3646     bitpos += pDimensionDefinitions[i].bits;
3647    
3648     // make room for the new dimension
3649     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3650     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3651     for (int j = Dimensions ; j > pos ; j--) {
3652     pDimensionRegions[i]->DimensionUpperLimits[j] =
3653     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3654     }
3655     }
3656    
3657 schoenebeck 809 // assign definition of new dimension
3658 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3659 schoenebeck 809
3660 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3661 persson 1301 pDimensionDefinitions[pos].split_type =
3662     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3663     pDimensionDefinitions[pos].zone_size =
3664     __resolveZoneSize(pDimensionDefinitions[pos]);
3665 schoenebeck 1113
3666 persson 1301 // create new dimension region(s) for this new dimension, and make
3667     // sure that the dimension regions are placed correctly in both the
3668     // RIFF list and the pDimensionRegions array
3669     RIFF::Chunk* moveTo = NULL;
3670     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3671     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3672     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3673     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3674     }
3675     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3676     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3677     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3678     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3679     // create a new dimension region and copy all parameter values from
3680     // an existing dimension region
3681     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3682     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3683 persson 1247
3684 persson 1301 DimensionRegions++;
3685     }
3686     }
3687     moveTo = pDimensionRegions[i]->pParentList;
3688 schoenebeck 809 }
3689    
3690 persson 1247 // initialize the upper limits for this dimension
3691 persson 1301 int mask = (1 << bitpos) - 1;
3692     for (int z = 0 ; z < pDimDef->zones ; z++) {
3693 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3694 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3695 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3696     (z << bitpos) |
3697     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3698 persson 1247 }
3699     }
3700    
3701 schoenebeck 809 Dimensions++;
3702    
3703     // if this is a layer dimension, update 'Layers' attribute
3704     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3705    
3706 persson 858 UpdateVelocityTable();
3707 schoenebeck 809 }
3708    
3709     /** @brief Delete an existing dimension.
3710     *
3711     * Deletes the dimension given by \a pDimDef and deletes all respective
3712     * dimension regions, that is all dimension regions where the dimension's
3713     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3714     * for example this would delete all dimension regions for the case(s)
3715     * where the sustain pedal is pressed down.
3716     *
3717     * @param pDimDef - dimension to delete
3718     * @throws gig::Exception if given dimension cannot be found
3719     */
3720     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3721     // get dimension's index
3722     int iDimensionNr = -1;
3723     for (int i = 0; i < Dimensions; i++) {
3724     if (&pDimensionDefinitions[i] == pDimDef) {
3725     iDimensionNr = i;
3726     break;
3727     }
3728     }
3729     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3730    
3731     // get amount of bits below the dimension to delete
3732     int iLowerBits = 0;
3733     for (int i = 0; i < iDimensionNr; i++)
3734     iLowerBits += pDimensionDefinitions[i].bits;
3735    
3736     // get amount ot bits above the dimension to delete
3737     int iUpperBits = 0;
3738     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3739     iUpperBits += pDimensionDefinitions[i].bits;
3740    
3741 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3742    
3743 schoenebeck 809 // delete dimension regions which belong to the given dimension
3744     // (that is where the dimension's bit > 0)
3745     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3746     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3747     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3748     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3749     iObsoleteBit << iLowerBits |
3750     iLowerBit;
3751 persson 1247
3752     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3753 schoenebeck 809 delete pDimensionRegions[iToDelete];
3754     pDimensionRegions[iToDelete] = NULL;
3755     DimensionRegions--;
3756     }
3757     }
3758     }
3759    
3760     // defrag pDimensionRegions array
3761     // (that is remove the NULL spaces within the pDimensionRegions array)
3762     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3763     if (!pDimensionRegions[iTo]) {
3764     if (iFrom <= iTo) iFrom = iTo + 1;
3765     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3766     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3767     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3768     pDimensionRegions[iFrom] = NULL;
3769     }
3770     }
3771     }
3772    
3773 persson 1247 // remove the this dimension from the upper limits arrays
3774     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3775     DimensionRegion* d = pDimensionRegions[j];
3776     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3777     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3778     }
3779     d->DimensionUpperLimits[Dimensions - 1] = 127;
3780     }
3781    
3782 schoenebeck 809 // 'remove' dimension definition
3783     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3784     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3785     }
3786     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3787     pDimensionDefinitions[Dimensions - 1].bits = 0;
3788     pDimensionDefinitions[Dimensions - 1].zones = 0;
3789    
3790     Dimensions--;
3791    
3792     // if this was a layer dimension, update 'Layers' attribute
3793     if (pDimDef->dimension == dimension_layer) Layers = 1;
3794     }
3795    
3796 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3797     *
3798     * Instead of deleting an entire dimensions, this method will only delete
3799     * one particular split zone given by @a zone of the Region's dimension
3800     * given by @a type. So this method will simply decrement the amount of
3801     * zones by one of the dimension in question. To be able to do that, the
3802     * respective dimension must exist on this Region and it must have at least
3803     * 3 zones. All DimensionRegion objects associated with the zone will be
3804     * deleted.
3805     *
3806     * @param type - identifies the dimension where a zone shall be deleted
3807     * @param zone - index of the dimension split zone that shall be deleted
3808     * @throws gig::Exception if requested zone could not be deleted
3809     */
3810     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3811 schoenebeck 3903 if (!Dimensions)
3812     throw gig::Exception("Could not delete dimension zone, because there is no dimension at all.");
3813 schoenebeck 2555 dimension_def_t* oldDef = GetDimensionDefinition(type);
3814     if (!oldDef)
3815     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3816     if (oldDef->zones <= 2)
3817     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3818     if (zone < 0 || zone >= oldDef->zones)
3819     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3820    
3821     const int newZoneSize = oldDef->zones - 1;
3822    
3823     // create a temporary Region which just acts as a temporary copy
3824     // container and will be deleted at the end of this function and will
3825     // also not be visible through the API during this process
3826     gig::Region* tempRgn = NULL;
3827     {
3828     // adding these temporary chunks is probably not even necessary
3829     Instrument* instr = static_cast<Instrument*>(GetParent());
3830     RIFF::List* pCkInstrument = instr->pCkInstrument;
3831     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3832     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3833     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3834     tempRgn = new Region(instr, rgn);
3835     }
3836    
3837     // copy this region's dimensions (with already the dimension split size
3838     // requested by the arguments of this method call) to the temporary
3839     // region, and don't use Region::CopyAssign() here for this task, since
3840     // it would also alter fast lookup helper variables here and there
3841 schoenebeck 3903 dimension_def_t newDef = {};
3842 schoenebeck 2555 for (int i = 0; i < Dimensions; ++i) {
3843     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3844     // is this the dimension requested by the method arguments? ...
3845     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3846     def.zones = newZoneSize;
3847     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3848     newDef = def;
3849     }
3850     tempRgn->AddDimension(&def);
3851     }
3852 schoenebeck 3903 // silence clang sanitizer warning
3853     if (newDef.dimension == dimension_none)
3854     throw gig::Exception("Unexpected internal failure resolving dimension in DeleteDimensionZone() [this is a bug].");
3855 schoenebeck 2555
3856     // find the dimension index in the tempRegion which is the dimension
3857     // type passed to this method (paranoidly expecting different order)
3858     int tempReducedDimensionIndex = -1;
3859     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3860     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3861     tempReducedDimensionIndex = d;
3862     break;
3863     }
3864     }
3865    
3866     // copy dimension regions from this region to the temporary region
3867     for (int iDst = 0; iDst < 256; ++iDst) {
3868     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3869     if (!dstDimRgn) continue;
3870     std::map<dimension_t,int> dimCase;
3871     bool isValidZone = true;
3872     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3873     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3874     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3875     (iDst >> baseBits) & ((1 << dstBits) - 1);
3876     baseBits += dstBits;
3877     // there are also DimensionRegion objects of unused zones, skip them
3878     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3879     isValidZone = false;
3880     break;
3881     }
3882     }
3883     if (!isValidZone) continue;
3884     // a bit paranoid: cope with the chance that the dimensions would
3885     // have different order in source and destination regions
3886     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3887     if (dimCase[type] >= zone) dimCase[type]++;
3888     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3889     dstDimRgn->CopyAssign(srcDimRgn);
3890     // if this is the upper most zone of the dimension passed to this
3891     // method, then correct (raise) its upper limit to 127
3892     if (newDef.split_type == split_type_normal && isLastZone)
3893     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3894     }
3895    
3896     // now tempRegion's dimensions and DimensionRegions basically reflect
3897     // what we wanted to get for this actual Region here, so we now just
3898     // delete and recreate the dimension in question with the new amount
3899 schoenebeck 3720 // zones and then copy back from tempRegion. we're actually deleting and
3900     // recreating all dimensions here, to avoid altering the precise order
3901     // of the dimensions (which would not be an error per se, but it would
3902     // cause usability issues with instrument editors)
3903     {
3904     std::vector<dimension_def_t> oldDefs;
3905     for (int i = 0; i < Dimensions; ++i)
3906     oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
3907     for (int i = Dimensions - 1; i >= 0; --i)
3908     DeleteDimension(&pDimensionDefinitions[i]);
3909     for (int i = 0; i < oldDefs.size(); ++i) {
3910     dimension_def_t& def = oldDefs[i];
3911     AddDimension(
3912     (def.dimension == newDef.dimension) ? &newDef : &def
3913     );
3914     }
3915     }
3916 schoenebeck 2555 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3917     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3918     if (!srcDimRgn) continue;
3919     std::map<dimension_t,int> dimCase;
3920     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3921     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3922     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3923     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3924     baseBits += srcBits;
3925     }
3926     // a bit paranoid: cope with the chance that the dimensions would
3927     // have different order in source and destination regions
3928     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3929     if (!dstDimRgn) continue;
3930     dstDimRgn->CopyAssign(srcDimRgn);
3931     }
3932    
3933     // delete temporary region
3934 schoenebeck 3478 tempRgn->DeleteChunks();
3935 schoenebeck 2555 delete tempRgn;
3936 schoenebeck 2557
3937     UpdateVelocityTable();
3938 schoenebeck 2555 }
3939    
3940     /** @brief Divide split zone of a dimension in two (increment zone amount).
3941     *
3942     * This will increment the amount of zones for the dimension (given by
3943     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3944     * in the middle of its zone range in two. So the two zones resulting from
3945     * the zone being splitted, will be an equivalent copy regarding all their
3946     * articulation informations and sample reference. The two zones will only
3947     * differ in their zone's upper limit
3948     * (DimensionRegion::DimensionUpperLimits).
3949     *
3950     * @param type - identifies the dimension where a zone shall be splitted
3951     * @param zone - index of the dimension split zone that shall be splitted
3952     * @throws gig::Exception if requested zone could not be splitted
3953     */
3954     void Region::SplitDimensionZone(dimension_t type, int zone) {
3955 schoenebeck 3904 if (!Dimensions)
3956     throw gig::Exception("Could not split dimension zone, because there is no dimension at all.");
3957 schoenebeck 2555 dimension_def_t* oldDef = GetDimensionDefinition(type);
3958     if (!oldDef)
3959     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3960     if (zone < 0 || zone >= oldDef->zones)
3961     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3962    
3963     const int newZoneSize = oldDef->zones + 1;
3964    
3965     // create a temporary Region which just acts as a temporary copy
3966     // container and will be deleted at the end of this function and will
3967     // also not be visible through the API during this process
3968     gig::Region* tempRgn = NULL;
3969     {
3970     // adding these temporary chunks is probably not even necessary
3971     Instrument* instr = static_cast<Instrument*>(GetParent());
3972     RIFF::List* pCkInstrument = instr->pCkInstrument;
3973     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3974     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3975     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3976     tempRgn = new Region(instr, rgn);
3977     }
3978    
3979     // copy this region's dimensions (with already the dimension split size
3980     // requested by the arguments of this method call) to the temporary
3981     // region, and don't use Region::CopyAssign() here for this task, since
3982     // it would also alter fast lookup helper variables here and there
3983 schoenebeck 3904 dimension_def_t newDef = {};
3984 schoenebeck 2555 for (int i = 0; i < Dimensions; ++i) {
3985     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3986     // is this the dimension requested by the method arguments? ...
3987     if (def.dimension == type) { // ... if yes, increment zone amount by one
3988     def.zones = newZoneSize;
3989     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3990     newDef = def;
3991     }
3992     tempRgn->AddDimension(&def);
3993     }
3994 schoenebeck 3904 // silence clang sanitizer warning
3995     if (newDef.dimension == dimension_none)
3996     throw gig::Exception("Unexpected internal failure resolving dimension in SplitDimensionZone() [this is a bug].");
3997 schoenebeck 2555
3998     // find the dimension index in the tempRegion which is the dimension
3999     // type passed to this method (paranoidly expecting different order)
4000     int tempIncreasedDimensionIndex = -1;
4001     for (int d = 0; d < tempRgn->Dimensions; ++d) {
4002     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
4003     tempIncreasedDimensionIndex = d;
4004     break;
4005     }
4006     }
4007    
4008     // copy dimension regions from this region to the temporary region
4009     for (int iSrc = 0; iSrc < 256; ++iSrc) {
4010     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
4011     if (!srcDimRgn) continue;
4012     std::map<dimension_t,int> dimCase;
4013     bool isValidZone = true;
4014     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
4015     const int srcBits = pDimensionDefinitions[d].bits;
4016     dimCase[pDimensionDefinitions[d].dimension] =
4017     (iSrc >> baseBits) & ((1 << srcBits) - 1);
4018     // there are also DimensionRegion objects for unused zones, skip them
4019     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
4020     isValidZone = false;
4021     break;
4022     }
4023     baseBits += srcBits;
4024     }
4025     if (!isValidZone) continue;
4026     // a bit paranoid: cope with the chance that the dimensions would
4027     // have different order in source and destination regions
4028     if (dimCase[type] > zone) dimCase[type]++;
4029     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4030     dstDimRgn->CopyAssign(srcDimRgn);
4031     // if this is the requested zone to be splitted, then also copy
4032     // the source DimensionRegion to the newly created target zone
4033     // and set the old zones upper limit lower
4034     if (dimCase[type] == zone) {
4035     // lower old zones upper limit
4036     if (newDef.split_type == split_type_normal) {
4037     const int high =
4038     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4039     int low = 0;
4040     if (zone > 0) {
4041     std::map<dimension_t,int> lowerCase = dimCase;
4042     lowerCase[type]--;
4043     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4044     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4045     }
4046     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4047     }
4048     // fill the newly created zone of the divided zone as well
4049     dimCase[type]++;
4050     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4051     dstDimRgn->CopyAssign(srcDimRgn);
4052     }
4053     }
4054    
4055     // now tempRegion's dimensions and DimensionRegions basically reflect
4056     // what we wanted to get for this actual Region here, so we now just
4057     // delete and recreate the dimension in question with the new amount
4058 schoenebeck 3709 // zones and then copy back from tempRegion. we're actually deleting and
4059     // recreating all dimensions here, to avoid altering the precise order
4060 schoenebeck 3720 // of the dimensions (which would not be an error per se, but it would
4061 schoenebeck 3709 // cause usability issues with instrument editors)
4062     {
4063     std::vector<dimension_def_t> oldDefs;
4064     for (int i = 0; i < Dimensions; ++i)
4065     oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4066     for (int i = Dimensions - 1; i >= 0; --i)
4067     DeleteDimension(&pDimensionDefinitions[i]);
4068     for (int i = 0; i < oldDefs.size(); ++i) {
4069     dimension_def_t& def = oldDefs[i];
4070     AddDimension(
4071     (def.dimension == newDef.dimension) ? &newDef : &def
4072     );
4073     }
4074     }
4075 schoenebeck 2555 for (int iSrc = 0; iSrc < 256; ++iSrc) {
4076     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4077     if (!srcDimRgn) continue;
4078     std::map<dimension_t,int> dimCase;
4079     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4080     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4081     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4082     (iSrc >> baseBits) & ((1 << srcBits) - 1);
4083     baseBits += srcBits;
4084     }
4085     // a bit paranoid: cope with the chance that the dimensions would
4086     // have different order in source and destination regions
4087     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4088     if (!dstDimRgn) continue;
4089     dstDimRgn->CopyAssign(srcDimRgn);
4090     }
4091    
4092     // delete temporary region
4093 schoenebeck 3478 tempRgn->DeleteChunks();
4094 schoenebeck 2555 delete tempRgn;
4095 schoenebeck 2557
4096     UpdateVelocityTable();
4097 schoenebeck 2555 }
4098    
4099 schoenebeck 2639 /** @brief Change type of an existing dimension.
4100     *
4101     * Alters the dimension type of a dimension already existing on this
4102     * region. If there is currently no dimension on this Region with type
4103     * @a oldType, then this call with throw an Exception. Likewise there are
4104     * cases where the requested dimension type cannot be performed. For example
4105     * if the new dimension type shall be gig::dimension_samplechannel, and the
4106     * current dimension has more than 2 zones. In such cases an Exception is
4107     * thrown as well.
4108     *
4109     * @param oldType - identifies the existing dimension to be changed
4110     * @param newType - to which dimension type it should be changed to
4111     * @throws gig::Exception if requested change cannot be performed
4112     */
4113     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4114     if (oldType == newType) return;
4115     dimension_def_t* def = GetDimensionDefinition(oldType);
4116     if (!def)
4117     throw gig::Exception("No dimension with provided old dimension type exists on this region");
4118     if (newType == dimension_samplechannel && def->zones != 2)
4119     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4120 schoenebeck 2640 if (GetDimensionDefinition(newType))
4121     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4122     def->dimension = newType;
4123 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
4124     }
4125    
4126 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4127     uint8_t bits[8] = {};
4128     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4129     it != DimCase.end(); ++it)
4130     {
4131     for (int d = 0; d < Dimensions; ++d) {
4132     if (pDimensionDefinitions[d].dimension == it->first) {
4133     bits[d] = it->second;
4134     goto nextDimCaseSlice;
4135     }
4136     }
4137     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4138     nextDimCaseSlice:
4139     ; // noop
4140     }
4141     return GetDimensionRegionByBit(bits);
4142     }
4143    
4144 schoenebeck 2547 /**
4145     * Searches in the current Region for a dimension of the given dimension
4146     * type and returns the precise configuration of that dimension in this
4147     * Region.
4148     *
4149     * @param type - dimension type of the sought dimension
4150     * @returns dimension definition or NULL if there is no dimension with
4151     * sought type in this Region.
4152     */
4153     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4154     for (int i = 0; i < Dimensions; ++i)
4155     if (pDimensionDefinitions[i].dimension == type)
4156     return &pDimensionDefinitions[i];
4157     return NULL;
4158     }
4159    
4160 schoenebeck 2 Region::~Region() {
4161 schoenebeck 350 for (int i = 0; i < 256; i++) {
4162 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4163     }
4164     }
4165    
4166     /**
4167     * Use this method in your audio engine to get the appropriate dimension
4168     * region with it's articulation data for the current situation. Just
4169     * call the method with the current MIDI controller values and you'll get
4170     * the DimensionRegion with the appropriate articulation data for the
4171     * current situation (for this Region of course only). To do that you'll
4172     * first have to look which dimensions with which controllers and in
4173     * which order are defined for this Region when you load the .gig file.
4174     * Special cases are e.g. layer or channel dimensions where you just put
4175     * in the index numbers instead of a MIDI controller value (means 0 for
4176     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4177     * etc.).
4178     *
4179 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4180 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
4181     * @see pDimensionDefinitions
4182     * @see Dimensions
4183     */
4184 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4185 persson 858 uint8_t bits;
4186     int veldim = -1;
4187 schoenebeck 3053 int velbitpos = 0;
4188 persson 858 int bitpos = 0;
4189     int dimregidx = 0;
4190 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
4191 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4192     // the velocity dimension must be handled after the other dimensions
4193     veldim = i;
4194     velbitpos = bitpos;
4195     } else {
4196     switch (pDimensionDefinitions[i].split_type) {
4197     case split_type_normal:
4198 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4199     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4200     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4201     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4202     }
4203     } else {
4204     // gig2: evenly sized zones
4205     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4206     }
4207 persson 858 break;
4208     case split_type_bit: // the value is already the sought dimension bit number
4209     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4210     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4211     break;
4212     }
4213     dimregidx |= bits << bitpos;
4214 schoenebeck 2 }
4215 persson 858 bitpos += pDimensionDefinitions[i].bits;
4216 schoenebeck 2 }
4217 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4218     if (!dimreg) return NULL;
4219 persson 858 if (veldim != -1) {
4220     // (dimreg is now the dimension region for the lowest velocity)
4221 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
4222 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4223 persson 858 else // normal split type
4224 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4225 persson 858
4226 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4227     dimregidx |= (bits & limiter_mask) << velbitpos;
4228     dimreg = pDimensionRegions[dimregidx & 255];
4229 persson 858 }
4230     return dimreg;
4231 schoenebeck 2 }
4232    
4233 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4234     uint8_t bits;
4235     int veldim = -1;
4236 schoenebeck 3053 int velbitpos = 0;
4237 schoenebeck 2599 int bitpos = 0;
4238     int dimregidx = 0;
4239     for (uint i = 0; i < Dimensions; i++) {
4240     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4241     // the velocity dimension must be handled after the other dimensions
4242     veldim = i;
4243     velbitpos = bitpos;
4244     } else {
4245     switch (pDimensionDefinitions[i].split_type) {
4246     case split_type_normal:
4247     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4248     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4249     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4250     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4251     }
4252     } else {
4253     // gig2: evenly sized zones
4254     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4255     }
4256     break;
4257     case split_type_bit: // the value is already the sought dimension bit number
4258     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4259     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4260     break;
4261     }
4262     dimregidx |= bits << bitpos;
4263     }
4264     bitpos += pDimensionDefinitions[i].bits;
4265     }
4266     dimregidx &= 255;
4267     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4268     if (!dimreg) return -1;
4269     if (veldim != -1) {
4270     // (dimreg is now the dimension region for the lowest velocity)
4271     if (dimreg->VelocityTable) // custom defined zone ranges
4272     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4273     else // normal split type
4274     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4275    
4276     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4277     dimregidx |= (bits & limiter_mask) << velbitpos;
4278     dimregidx &= 255;
4279     }
4280     return dimregidx;
4281     }
4282    
4283 schoenebeck 2 /**
4284     * Returns the appropriate DimensionRegion for the given dimension bit
4285     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4286     * instead of calling this method directly!
4287     *
4288 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4289 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4290     * bit numbers
4291     * @see GetDimensionRegionByValue()
4292     */
4293 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4294     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4295     << pDimensionDefinitions[5].bits | DimBits[5])
4296     << pDimensionDefinitions[4].bits | DimBits[4])
4297     << pDimensionDefinitions[3].bits | DimBits[3])
4298     << pDimensionDefinitions[2].bits | DimBits[2])
4299     << pDimensionDefinitions[1].bits | DimBits[1])
4300     << pDimensionDefinitions[0].bits | DimBits[0]];
4301 schoenebeck 2 }
4302    
4303     /**
4304     * Returns pointer address to the Sample referenced with this region.
4305     * This is the global Sample for the entire Region (not sure if this is
4306     * actually used by the Gigasampler engine - I would only use the Sample
4307     * referenced by the appropriate DimensionRegion instead of this sample).
4308     *
4309     * @returns address to Sample or NULL if there is no reference to a
4310     * sample saved in the .gig file
4311     */
4312     Sample* Region::GetSample() {
4313     if (pSample) return static_cast<gig::Sample*>(pSample);
4314     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4315     }
4316    
4317 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4318 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4319 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4320 persson 902 if (!file->pWavePoolTable) return NULL;
4321 schoenebeck 3350 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4322 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4323     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4324     // use 64 bit wave pool offsets (treating this as large file)
4325 schoenebeck 2912 uint64_t soughtoffset =
4326     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4327     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4328 schoenebeck 3929 size_t i = 0;
4329     for (Sample* sample = file->GetSample(i, pProgress); sample;
4330     sample = file->GetSample(++i))
4331     {
4332 schoenebeck 2912 if (sample->ullWavePoolOffset == soughtoffset)
4333 schoenebeck 3929 return sample;
4334 schoenebeck 2912 }
4335     } else {
4336 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4337 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4338     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4339 schoenebeck 3929 size_t i = 0;
4340     for (Sample* sample = file->GetSample(i, pProgress); sample;
4341     sample = file->GetSample(++i))
4342     {
4343 schoenebeck 2912 if (sample->ullWavePoolOffset == soughtoffset &&
4344 schoenebeck 3929 sample->FileNo == soughtfileno) return sample;
4345 schoenebeck 2912 }
4346 schoenebeck 2 }
4347     return NULL;
4348     }
4349 schoenebeck 2394
4350     /**
4351     * Make a (semi) deep copy of the Region object given by @a orig
4352     * and assign it to this object.
4353     *
4354     * Note that all sample pointers referenced by @a orig are simply copied as
4355     * memory address. Thus the respective samples are shared, not duplicated!
4356     *
4357     * @param orig - original Region object to be copied from
4358     */
4359     void Region::CopyAssign(const Region* orig) {
4360 schoenebeck 2482 CopyAssign(orig, NULL);
4361     }
4362    
4363     /**
4364     * Make a (semi) deep copy of the Region object given by @a orig and
4365     * assign it to this object
4366     *
4367     * @param mSamples - crosslink map between the foreign file's samples and
4368     * this file's samples
4369     */
4370     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4371 schoenebeck 2394 // handle base classes
4372     DLS::Region::CopyAssign(orig);
4373    
4374 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4375     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4376     }
4377    
4378 schoenebeck 2394 // handle own member variables
4379     for (int i = Dimensions - 1; i >= 0; --i) {
4380     DeleteDimension(&pDimensionDefinitions[i]);
4381     }
4382     Layers = 0; // just to be sure
4383     for (int i = 0; i < orig->Dimensions; i++) {
4384     // we need to copy the dim definition here, to avoid the compiler
4385     // complaining about const-ness issue
4386     dimension_def_t def = orig->pDimensionDefinitions[i];
4387     AddDimension(&def);
4388     }
4389     for (int i = 0; i < 256; i++) {
4390     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4391     pDimensionRegions[i]->CopyAssign(
4392 schoenebeck 2482 orig->pDimensionRegions[i],
4393     mSamples
4394 schoenebeck 2394 );
4395     }
4396     }
4397     Layers = orig->Layers;
4398     }
4399 schoenebeck 2
4400 schoenebeck 3710 /**
4401     * Returns @c true in case this Region object uses any gig format
4402     * extension, that is e.g. whether any DimensionRegion object currently
4403     * has any setting effective that would require our "LSDE" RIFF chunk to
4404     * be stored to the gig file.
4405     *
4406     * Right now this is a private method. It is considerable though this method
4407     * to become (in slightly modified form) a public API method in future, i.e.
4408     * to allow instrument editors to visualize and/or warn the user of any gig
4409     * format extension being used. See also comments on
4410     * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
4411     * potential public API change in future.
4412     */
4413     bool Region::UsesAnyGigFormatExtension() const {
4414     for (int i = 0; i < 256; i++) {
4415     if (pDimensionRegions[i]) {
4416     if (pDimensionRegions[i]->UsesAnyGigFormatExtension())
4417     return true;
4418     }
4419     }
4420     return false;
4421     }
4422 schoenebeck 2
4423 schoenebeck 3710
4424 persson 1627 // *************** MidiRule ***************
4425     // *
4426 schoenebeck 2
4427 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4428     _3ewg->SetPos(36);
4429     Triggers = _3ewg->ReadUint8();
4430     _3ewg->SetPos(40);
4431     ControllerNumber = _3ewg->ReadUint8();
4432     _3ewg->SetPos(46);
4433     for (int i = 0 ; i < Triggers ; i++) {
4434     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4435     pTriggers[i].Descending = _3ewg->ReadUint8();
4436     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4437     pTriggers[i].Key = _3ewg->ReadUint8();
4438     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4439     pTriggers[i].Velocity = _3ewg->ReadUint8();
4440     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4441     _3ewg->ReadUint8();
4442     }
4443 persson 1627 }
4444    
4445 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4446     ControllerNumber(0),
4447     Triggers(0) {
4448     }
4449 persson 1627
4450 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4451     pData[32] = 4;
4452     pData[33] = 16;
4453     pData[36] = Triggers;
4454     pData[40] = ControllerNumber;
4455     for (int i = 0 ; i < Triggers ; i++) {
4456     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4457     pData[47 + i * 8] = pTriggers[i].Descending;
4458     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4459     pData[49 + i * 8] = pTriggers[i].Key;
4460     pData[50 + i * 8] = pTriggers[i].NoteOff;
4461     pData[51 + i * 8] = pTriggers[i].Velocity;
4462     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4463     }
4464     }
4465    
4466     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4467     _3ewg->SetPos(36);
4468     LegatoSamples = _3ewg->ReadUint8(); // always 12
4469     _3ewg->SetPos(40);
4470     BypassUseController = _3ewg->ReadUint8();
4471     BypassKey = _3ewg->ReadUint8();
4472     BypassController = _3ewg->ReadUint8();
4473     ThresholdTime = _3ewg->ReadUint16();
4474     _3ewg->ReadInt16();
4475     ReleaseTime = _3ewg->ReadUint16();
4476     _3ewg->ReadInt16();
4477     KeyRange.low = _3ewg->ReadUint8();
4478     KeyRange.high = _3ewg->ReadUint8();
4479     _3ewg->SetPos(64);
4480     ReleaseTriggerKey = _3ewg->ReadUint8();
4481     AltSustain1Key = _3ewg->ReadUint8();
4482     AltSustain2Key = _3ewg->ReadUint8();
4483     }
4484    
4485     MidiRuleLegato::MidiRuleLegato() :
4486     LegatoSamples(12),
4487     BypassUseController(false),
4488     BypassKey(0),
4489     BypassController(1),
4490     ThresholdTime(20),
4491     ReleaseTime(20),
4492     ReleaseTriggerKey(0),
4493     AltSustain1Key(0),
4494     AltSustain2Key(0)
4495     {
4496     KeyRange.low = KeyRange.high = 0;
4497     }
4498    
4499     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4500     pData[32] = 0;
4501     pData[33] = 16;
4502     pData[36] = LegatoSamples;
4503     pData[40] = BypassUseController;
4504     pData[41] = BypassKey;
4505     pData[42] = BypassController;
4506     store16(&pData[43], ThresholdTime);
4507     store16(&pData[47], ReleaseTime);
4508     pData[51] = KeyRange.low;
4509     pData[52] = KeyRange.high;
4510     pData[64] = ReleaseTriggerKey;
4511     pData[65] = AltSustain1Key;
4512     pData[66] = AltSustain2Key;
4513     }
4514    
4515     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4516     _3ewg->SetPos(36);
4517     Articulations = _3ewg->ReadUint8();
4518     int flags = _3ewg->ReadUint8();
4519     Polyphonic = flags & 8;
4520     Chained = flags & 4;
4521     Selector = (flags & 2) ? selector_controller :
4522     (flags & 1) ? selector_key_switch : selector_none;
4523     Patterns = _3ewg->ReadUint8();
4524     _3ewg->ReadUint8(); // chosen row
4525     _3ewg->ReadUint8(); // unknown
4526     _3ewg->ReadUint8(); // unknown
4527     _3ewg->ReadUint8(); // unknown
4528     KeySwitchRange.low = _3ewg->ReadUint8();
4529     KeySwitchRange.high = _3ewg->ReadUint8();
4530     Controller = _3ewg->ReadUint8();
4531     PlayRange.low = _3ewg->ReadUint8();
4532     PlayRange.high = _3ewg->ReadUint8();
4533    
4534     int n = std::min(int(Articulations), 32);
4535     for (int i = 0 ; i < n ; i++) {
4536     _3ewg->ReadString(pArticulations[i], 32);
4537     }
4538     _3ewg->SetPos(1072);
4539     n = std::min(int(Patterns), 32);
4540     for (int i = 0 ; i < n ; i++) {
4541     _3ewg->ReadString(pPatterns[i].Name, 16);
4542     pPatterns[i].Size = _3ewg->ReadUint8();
4543     _3ewg->Read(&pPatterns[i][0], 1, 32);
4544     }
4545     }
4546    
4547     MidiRuleAlternator::MidiRuleAlternator() :
4548     Articulations(0),
4549     Patterns(0),
4550     Selector(selector_none),
4551     Controller(0),
4552     Polyphonic(false),
4553     Chained(false)
4554     {
4555     PlayRange.low = PlayRange.high = 0;
4556     KeySwitchRange.low = KeySwitchRange.high = 0;
4557     }
4558    
4559     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4560     pData[32] = 3;
4561     pData[33] = 16;
4562     pData[36] = Articulations;
4563     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4564     (Selector == selector_controller ? 2 :
4565     (Selector == selector_key_switch ? 1 : 0));
4566     pData[38] = Patterns;
4567    
4568     pData[43] = KeySwitchRange.low;
4569     pData[44] = KeySwitchRange.high;
4570     pData[45] = Controller;
4571     pData[46] = PlayRange.low;
4572     pData[47] = PlayRange.high;
4573    
4574     char* str = reinterpret_cast<char*>(pData);
4575     int pos = 48;
4576     int n = std::min(int(Articulations), 32);
4577     for (int i = 0 ; i < n ; i++, pos += 32) {
4578     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4579     }
4580    
4581     pos = 1072;
4582     n = std::min(int(Patterns), 32);
4583     for (int i = 0 ; i < n ; i++, pos += 49) {
4584     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4585     pData[pos + 16] = pPatterns[i].Size;
4586     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4587     }
4588     }
4589    
4590 schoenebeck 2584 // *************** Script ***************
4591     // *
4592    
4593     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4594     pGroup = group;
4595     pChunk = ckScri;
4596     if (ckScri) { // object is loaded from file ...
4597 schoenebeck 3478 ckScri->SetPos(0);
4598    
4599 schoenebeck 2584 // read header
4600     uint32_t headerSize = ckScri->ReadUint32();
4601     Compression = (Compression_t) ckScri->ReadUint32();
4602     Encoding = (Encoding_t) ckScri->ReadUint32();
4603     Language = (Language_t) ckScri->ReadUint32();
4604 schoenebeck 3722 Bypass = ckScri->ReadUint32() & 1;
4605 schoenebeck 2584 crc = ckScri->ReadUint32();
4606     uint32_t nameSize = ckScri->ReadUint32();
4607     Name.resize(nameSize, ' ');
4608     for (int i = 0; i < nameSize; ++i)
4609     Name[i] = ckScri->ReadUint8();
4610 schoenebeck 3723 // check if an uuid was already stored along with this script
4611     if (headerSize >= 6*sizeof(int32_t) + nameSize + 16) { // yes ...
4612     for (uint i = 0; i < 16; ++i) {
4613     Uuid[i] = ckScri->ReadUint8();
4614     }
4615     } else { // no uuid yet, generate one now ...
4616     GenerateUuid();
4617     }
4618 schoenebeck 2584 // to handle potential future extensions of the header
4619 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4620 schoenebeck 2584 // read actual script data
4621 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4622 schoenebeck 2584 data.resize(scriptSize);
4623     for (int i = 0; i < scriptSize; ++i)
4624     data[i] = ckScri->ReadUint8();
4625     } else { // this is a new script object, so just initialize it as such ...
4626     Compression = COMPRESSION_NONE;
4627     Encoding = ENCODING_ASCII;
4628     Language = LANGUAGE_NKSP;
4629     Bypass = false;
4630     crc = 0;
4631     Name = "Unnamed Script";
4632 schoenebeck 3723 GenerateUuid();
4633 schoenebeck 2584 }
4634     }
4635    
4636     Script::~Script() {
4637     }
4638    
4639     /**
4640     * Returns the current script (i.e. as source code) in text format.
4641     */
4642     String Script::GetScriptAsText() {
4643     String s;
4644     s.resize(data.size(), ' ');
4645     memcpy(&s[0], &data[0], data.size());
4646     return s;
4647     }
4648    
4649     /**
4650     * Replaces the current script with the new script source code text given
4651     * by @a text.
4652     *
4653     * @param text - new script source code
4654     */
4655     void Script::SetScriptAsText(const String& text) {
4656     data.resize(text.size());
4657     memcpy(&data[0], &text[0], text.size());
4658     }
4659    
4660 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this Script object.
4661     *
4662     * At the moment Script::DeleteChunks() does nothing. It is
4663     * recommended to call this method explicitly though from deriving classes's
4664     * own overridden implementation of this method to avoid potential future
4665     * compatiblity issues.
4666     *
4667     * See DLS::Storage::DeleteChunks() for details.
4668     */
4669     void Script::DeleteChunks() {
4670     }
4671    
4672 schoenebeck 2682 /**
4673     * Apply this script to the respective RIFF chunks. You have to call
4674     * File::Save() to make changes persistent.
4675     *
4676     * Usually there is absolutely no need to call this method explicitly.
4677     * It will be called automatically when File::Save() was called.
4678     *
4679     * @param pProgress - callback function for progress notification
4680     */
4681     void Script::UpdateChunks(progress_t* pProgress) {
4682 schoenebeck 2584 // recalculate CRC32 check sum
4683     __resetCRC(crc);
4684     __calculateCRC(&data[0], data.size(), crc);
4685 schoenebeck 3115 __finalizeCRC(crc);
4686 schoenebeck 2584 // make sure chunk exists and has the required size
4687 schoenebeck 3723 const file_offset_t chunkSize =
4688     (file_offset_t) 7*sizeof(int32_t) + Name.size() + 16 + data.size();
4689 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4690     else pChunk->Resize(chunkSize);
4691     // fill the chunk data to be written to disk
4692     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4693     int pos = 0;
4694 schoenebeck 3723 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size() + 16)); // total header size
4695 schoenebeck 2584 pos += sizeof(int32_t);
4696     store32(&pData[pos], Compression);
4697     pos += sizeof(int32_t);
4698     store32(&pData[pos], Encoding);
4699     pos += sizeof(int32_t);
4700     store32(&pData[pos], Language);
4701     pos += sizeof(int32_t);
4702     store32(&pData[pos], Bypass ? 1 : 0);
4703     pos += sizeof(int32_t);
4704     store32(&pData[pos], crc);
4705     pos += sizeof(int32_t);
4706 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4707 schoenebeck 2584 pos += sizeof(int32_t);
4708     for (int i = 0; i < Name.size(); ++i, ++pos)
4709     pData[pos] = Name[i];
4710 schoenebeck 3723 for (int i = 0; i < 16; ++i, ++pos)
4711     pData[pos] = Uuid[i];
4712 schoenebeck 2584 for (int i = 0; i < data.size(); ++i, ++pos)
4713     pData[pos] = data[i];
4714     }
4715    
4716     /**
4717 schoenebeck 3723 * Generate a new Universally Unique Identifier (UUID) for this script.
4718     */
4719     void Script::GenerateUuid() {
4720     DLS::dlsid_t dlsid;
4721     DLS::Resource::GenerateDLSID(&dlsid);
4722     Uuid[0] = dlsid.ulData1 & 0xff;
4723     Uuid[1] = dlsid.ulData1 >> 8 & 0xff;
4724     Uuid[2] = dlsid.ulData1 >> 16 & 0xff;
4725     Uuid[3] = dlsid.ulData1 >> 24 & 0xff;
4726     Uuid[4] = dlsid.usData2 & 0xff;
4727     Uuid[5] = dlsid.usData2 >> 8 & 0xff;
4728     Uuid[6] = dlsid.usData3 & 0xff;
4729     Uuid[7] = dlsid.usData3 >> 8 & 0xff;
4730     Uuid[8] = dlsid.abData[0];
4731     Uuid[9] = dlsid.abData[1];
4732     Uuid[10] = dlsid.abData[2];
4733     Uuid[11] = dlsid.abData[3];
4734     Uuid[12] = dlsid.abData[4];
4735     Uuid[13] = dlsid.abData[5];
4736     Uuid[14] = dlsid.abData[6];
4737     Uuid[15] = dlsid.abData[7];
4738     }
4739    
4740     /**
4741 schoenebeck 2584 * Move this script from its current ScriptGroup to another ScriptGroup
4742     * given by @a pGroup.
4743     *
4744     * @param pGroup - script's new group
4745     */
4746     void Script::SetGroup(ScriptGroup* pGroup) {
4747 persson 2836 if (this->pGroup == pGroup) return;
4748 schoenebeck 2584 if (pChunk)
4749     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4750     this->pGroup = pGroup;
4751     }
4752    
4753 schoenebeck 2601 /**
4754     * Returns the script group this script currently belongs to. Each script
4755     * is a member of exactly one ScriptGroup.
4756     *
4757     * @returns current script group
4758     */
4759     ScriptGroup* Script::GetGroup() const {
4760     return pGroup;
4761     }
4762    
4763 schoenebeck 3117 /**
4764     * Make a (semi) deep copy of the Script object given by @a orig
4765     * and assign it to this object. Note: the ScriptGroup this Script
4766     * object belongs to remains untouched by this call.
4767     *
4768     * @param orig - original Script object to be copied from
4769     */
4770     void Script::CopyAssign(const Script* orig) {
4771     Name = orig->Name;
4772     Compression = orig->Compression;
4773     Encoding = orig->Encoding;
4774     Language = orig->Language;
4775     Bypass = orig->Bypass;
4776     data = orig->data;
4777     }
4778    
4779 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4780     File* pFile = pGroup->pFile;
4781     for (int i = 0; pFile->GetInstrument(i); ++i) {
4782     Instrument* instr = pFile->GetInstrument(i);
4783     instr->RemoveScript(this);
4784     }
4785     }
4786    
4787     // *************** ScriptGroup ***************
4788     // *
4789    
4790     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4791     pFile = file;
4792     pList = lstRTIS;
4793     pScripts = NULL;
4794     if (lstRTIS) {
4795     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4796     ::LoadString(ckName, Name);
4797     } else {
4798     Name = "Default Group";
4799     }
4800     }
4801    
4802     ScriptGroup::~ScriptGroup() {
4803     if (pScripts) {
4804     std::list<Script*>::iterator iter = pScripts->begin();
4805     std::list<Script*>::iterator end = pScripts->end();
4806     while (iter != end) {
4807     delete *iter;
4808     ++iter;
4809     }
4810     delete pScripts;
4811     }
4812     }
4813    
4814 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4815     *
4816     * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4817     * recommended to call this method explicitly though from deriving classes's
4818     * own overridden implementation of this method to avoid potential future
4819     * compatiblity issues.
4820     *
4821     * See DLS::Storage::DeleteChunks() for details.
4822     */
4823     void ScriptGroup::DeleteChunks() {
4824     }
4825    
4826 schoenebeck 2682 /**
4827     * Apply this script group to the respective RIFF chunks. You have to call
4828     * File::Save() to make changes persistent.
4829     *
4830     * Usually there is absolutely no need to call this method explicitly.
4831     * It will be called automatically when File::Save() was called.
4832     *
4833     * @param pProgress - callback function for progress notification
4834     */
4835     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4836 schoenebeck 2584 if (pScripts) {
4837     if (!pList)
4838     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4839    
4840     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4841     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4842    
4843     for (std::list<Script*>::iterator it = pScripts->begin();
4844     it != pScripts->end(); ++it)
4845     {
4846 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4847 schoenebeck 2584 }
4848     }
4849     }
4850    
4851     /** @brief Get instrument script.
4852     *
4853     * Returns the real-time instrument script with the given index.
4854     *
4855     * @param index - number of the sought script (0..n)
4856     * @returns sought script or NULL if there's no such script
4857     */
4858     Script* ScriptGroup::GetScript(uint index) {
4859     if (!pScripts) LoadScripts();
4860     std::list<Script*>::iterator it = pScripts->begin();
4861     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4862     if (i == index) return *it;
4863     return NULL;
4864     }
4865    
4866     /** @brief Add new instrument script.
4867     *
4868     * Adds a new real-time instrument script to the file. The script is not
4869     * actually used / executed unless it is referenced by an instrument to be
4870     * used. This is similar to samples, which you can add to a file, without
4871     * an instrument necessarily actually using it.
4872     *
4873     * You have to call Save() to make this persistent to the file.
4874     *
4875     * @return new empty script object
4876     */
4877     Script* ScriptGroup::AddScript() {
4878     if (!pScripts) LoadScripts();
4879     Script* pScript = new Script(this, NULL);
4880     pScripts->push_back(pScript);
4881     return pScript;
4882     }
4883    
4884     /** @brief Delete an instrument script.
4885     *
4886     * This will delete the given real-time instrument script. References of
4887     * instruments that are using that script will be removed accordingly.
4888     *
4889     * You have to call Save() to make this persistent to the file.
4890     *
4891     * @param pScript - script to delete
4892     * @throws gig::Exception if given script could not be found
4893     */
4894     void ScriptGroup::DeleteScript(Script* pScript) {
4895     if (!pScripts) LoadScripts();
4896     std::list<Script*>::iterator iter =
4897     find(pScripts->begin(), pScripts->end(), pScript);
4898     if (iter == pScripts->end())
4899     throw gig::Exception("Could not delete script, could not find given script");
4900     pScripts->erase(iter);
4901     pScript->RemoveAllScriptReferences();
4902     if (pScript->pChunk)
4903     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4904     delete pScript;
4905     }
4906    
4907     void ScriptGroup::LoadScripts() {
4908     if (pScripts) return;
4909     pScripts = new std::list<Script*>;
4910     if (!pList) return;
4911    
4912 schoenebeck 3924 size_t i = 0;
4913     for (RIFF::Chunk* ck = pList->GetSubChunkAt(i); ck;
4914     ck = pList->GetSubChunkAt(++i))
4915 schoenebeck 2584 {
4916     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4917     pScripts->push_back(new Script(this, ck));
4918     }
4919     }
4920     }
4921    
4922 schoenebeck 2 // *************** Instrument ***************
4923     // *
4924    
4925 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4926 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4927 persson 1180 { CHUNK_ID_INAM, 64 },
4928     { CHUNK_ID_ISFT, 12 },
4929     { 0, 0 }
4930     };
4931 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4932 persson 918
4933 schoenebeck 2 // Initialization
4934     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4935 persson 1182 EffectSend = 0;
4936     Attenuation = 0;
4937     FineTune = 0;
4938 schoenebeck 3112 PitchbendRange = 2;
4939 persson 1182 PianoReleaseMode = false;
4940     DimensionKeyRange.low = 0;
4941     DimensionKeyRange.high = 0;
4942 persson 1678 pMidiRules = new MidiRule*[3];
4943     pMidiRules[0] = NULL;
4944 schoenebeck 2584 pScriptRefs = NULL;
4945 schoenebeck 2
4946     // Loading
4947     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4948     if (lart) {
4949     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4950     if (_3ewg) {
4951 schoenebeck 3478 _3ewg->SetPos(0);
4952    
4953 schoenebeck 2 EffectSend = _3ewg->ReadUint16();
4954     Attenuation = _3ewg->ReadInt32();
4955     FineTune = _3ewg->ReadInt16();
4956     PitchbendRange = _3ewg->ReadInt16();
4957     uint8_t dimkeystart = _3ewg->ReadUint8();
4958     PianoReleaseMode = dimkeystart & 0x01;
4959     DimensionKeyRange.low = dimkeystart >> 1;
4960     DimensionKeyRange.high = _3ewg->ReadUint8();
4961 persson 1627
4962     if (_3ewg->GetSize() > 32) {
4963     // read MIDI rules
4964 persson 1678 int i = 0;
4965 persson 1627 _3ewg->SetPos(32);
4966     uint8_t id1 = _3ewg->ReadUint8();
4967     uint8_t id2 = _3ewg->ReadUint8();
4968    
4969 persson 2450 if (id2 == 16) {
4970     if (id1 == 4) {
4971     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4972     } else if (id1 == 0) {
4973     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4974     } else if (id1 == 3) {
4975     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4976     } else {
4977     pMidiRules[i++] = new MidiRuleUnknown;
4978     }
4979 persson 1627 }
4980 persson 2450 else if (id1 != 0 || id2 != 0) {
4981     pMidiRules[i++] = new MidiRuleUnknown;
4982     }
4983 persson 1627 //TODO: all the other types of rules
4984 persson 1678
4985     pMidiRules[i] = NULL;
4986 persson 1627 }
4987 schoenebeck 2 }
4988     }
4989    
4990 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4991     if (!pRegions) pRegions = new RegionList;
4992     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4993     if (lrgn) {
4994 schoenebeck 3924 size_t i = 0;
4995     for (RIFF::List* rgn = lrgn->GetSubListAt(i); rgn;
4996     rgn = lrgn->GetSubListAt(++i))
4997     {
4998 schoenebeck 1524 if (rgn->GetListType() == LIST_TYPE_RGN) {
4999 schoenebeck 3488 if (pProgress)
5000     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
5001 schoenebeck 1524 pRegions->push_back(new Region(this, rgn));
5002     }
5003 schoenebeck 809 }
5004 schoenebeck 1524 // Creating Region Key Table for fast lookup
5005     UpdateRegionKeyTable();
5006 schoenebeck 2 }
5007     }
5008    
5009 schoenebeck 2584 // own gig format extensions
5010     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
5011     if (lst3LS) {
5012 schoenebeck 3731 // script slots (that is references to instrument scripts)
5013 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5014     if (ckSCSL) {
5015 schoenebeck 3478 ckSCSL->SetPos(0);
5016    
5017 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
5018     int slotCount = ckSCSL->ReadUint32();
5019     if (slotCount) {
5020     int slotSize = ckSCSL->ReadUint32();
5021     ckSCSL->SetPos(headerSize); // in case of future header extensions
5022     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
5023     for (int i = 0; i < slotCount; ++i) {
5024     _ScriptPooolEntry e;
5025     e.fileOffset = ckSCSL->ReadUint32();
5026     e.bypass = ckSCSL->ReadUint32() & 1;
5027     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
5028     scriptPoolFileOffsets.push_back(e);
5029     }
5030 schoenebeck 2584 }
5031     }
5032 schoenebeck 3731
5033     // overridden script 'patch' variables
5034     RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5035     if (ckSCPV) {
5036     ckSCPV->SetPos(0);
5037    
5038     int nScripts = ckSCPV->ReadUint32();
5039     for (int iScript = 0; iScript < nScripts; ++iScript) {
5040     _UUID uuid;
5041     for (int i = 0; i < 16; ++i)
5042     uuid[i] = ckSCPV->ReadUint8();
5043     uint slot = ckSCPV->ReadUint32();
5044     ckSCPV->ReadUint32(); // unused, reserved 32 bit
5045     int nVars = ckSCPV->ReadUint32();
5046     for (int iVar = 0; iVar < nVars; ++iVar) {
5047     uint8_t type = ckSCPV->ReadUint8();
5048     ckSCPV->ReadUint8(); // unused, reserved byte
5049     int blobSize = ckSCPV->ReadUint16();
5050     RIFF::file_offset_t pos = ckSCPV->GetPos();
5051     // assuming 1st bit is set in 'type', otherwise blob not
5052     // supported for decoding
5053     if (type & 1) {
5054     String name, value;
5055     int len = ckSCPV->ReadUint16();
5056     for (int i = 0; i < len; ++i)
5057     name += (char) ckSCPV->ReadUint8();
5058     len = ckSCPV->ReadUint16();
5059     for (int i = 0; i < len; ++i)
5060     value += (char) ckSCPV->ReadUint8();
5061     if (!name.empty()) // 'name' should never be empty, but just to be sure
5062     scriptVars[uuid][slot][name] = value;
5063     }
5064     // also for potential future extensions: seek forward
5065     // according to blob size
5066     ckSCPV->SetPos(pos + blobSize);
5067     }
5068     }
5069     }
5070 schoenebeck 2584 }
5071    
5072 schoenebeck 3488 if (pProgress)
5073     __notify_progress(pProgress, 1.0f); // notify done
5074 schoenebeck 809 }
5075    
5076     void Instrument::UpdateRegionKeyTable() {
5077 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
5078 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
5079     RegionList::iterator end = pRegions->end();
5080     for (; iter != end; ++iter) {
5081     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
5082 schoenebeck 3348 const int low = std::max(int(pRegion->KeyRange.low), 0);
5083     const int high = std::min(int(pRegion->KeyRange.high), 127);
5084     for (int iKey = low; iKey <= high; iKey++) {
5085 schoenebeck 823 RegionKeyTable[iKey] = pRegion;
5086 schoenebeck 2 }
5087     }
5088     }
5089    
5090     Instrument::~Instrument() {
5091 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
5092     delete pMidiRules[i];
5093     }
5094 persson 1678 delete[] pMidiRules;
5095 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
5096 schoenebeck 2 }
5097    
5098     /**
5099 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
5100     * You have to call File::Save() to make changes persistent.
5101     *
5102     * Usually there is absolutely no need to call this method explicitly.
5103     * It will be called automatically when File::Save() was called.
5104     *
5105 schoenebeck 2682 * @param pProgress - callback function for progress notification
5106 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
5107     */
5108 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
5109 schoenebeck 809 // first update base classes' chunks
5110 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
5111 schoenebeck 809
5112     // update Regions' chunks
5113 schoenebeck 823 {
5114     RegionList::iterator iter = pRegions->begin();
5115     RegionList::iterator end = pRegions->end();
5116     for (; iter != end; ++iter)
5117 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
5118 schoenebeck 823 }
5119 schoenebeck 809
5120     // make sure 'lart' RIFF list chunk exists
5121     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
5122     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
5123     // make sure '3ewg' RIFF chunk exists
5124     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
5125 persson 1264 if (!_3ewg) {
5126     File* pFile = (File*) GetParent();
5127    
5128     // 3ewg is bigger in gig3, as it includes the iMIDI rules
5129 schoenebeck 3440 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
5130 persson 1264 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
5131     memset(_3ewg->LoadChunkData(), 0, size);
5132     }
5133 schoenebeck 809 // update '3ewg' RIFF chunk
5134     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5135 persson 1179 store16(&pData[0], EffectSend);
5136     store32(&pData[2], Attenuation);
5137     store16(&pData[6], FineTune);
5138     store16(&pData[8], PitchbendRange);
5139 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5140 schoenebeck 809 DimensionKeyRange.low << 1;
5141 persson 1179 pData[10] = dimkeystart;
5142     pData[11] = DimensionKeyRange.high;
5143 persson 2450
5144     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5145     pData[32] = 0;
5146     pData[33] = 0;
5147     } else {
5148     for (int i = 0 ; pMidiRules[i] ; i++) {
5149     pMidiRules[i]->UpdateChunks(pData);
5150     }
5151     }
5152 schoenebeck 2584
5153     // own gig format extensions
5154 schoenebeck 2648 if (ScriptSlotCount()) {
5155     // make sure we have converted the original loaded script file
5156     // offsets into valid Script object pointers
5157     LoadScripts();
5158    
5159 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5160     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5161 schoenebeck 3731
5162     // save script slots (that is references to instrument scripts)
5163 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
5164 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
5165     const int slotSize = 2 * sizeof(uint32_t);
5166     const int totalChunkSize = headerSize + slotCount * slotSize;
5167 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5168 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5169     else ckSCSL->Resize(totalChunkSize);
5170 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5171 schoenebeck 2609 int pos = 0;
5172     store32(&pData[pos], headerSize);
5173     pos += sizeof(uint32_t);
5174     store32(&pData[pos], slotCount);
5175     pos += sizeof(uint32_t);
5176     store32(&pData[pos], slotSize);
5177     pos += sizeof(uint32_t);
5178     for (int i = 0; i < slotCount; ++i) {
5179     // arbitrary value, the actual file offset will be updated in
5180     // UpdateScriptFileOffsets() after the file has been resized
5181     int bogusFileOffset = 0;
5182     store32(&pData[pos], bogusFileOffset);
5183 schoenebeck 2584 pos += sizeof(uint32_t);
5184     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5185     pos += sizeof(uint32_t);
5186     }
5187 schoenebeck 3731
5188     // save overridden script 'patch' variables ...
5189    
5190     // the actual 'scriptVars' member variable might contain variables of
5191     // scripts which are currently no longer assigned to any script slot
5192     // of this instrument, we need to get rid of these variables here to
5193     // prevent saving those persistently, however instead of touching the
5194     // member variable 'scriptVars' directly, rather strip a separate
5195     // copy such that the overridden values are not lost during an
5196     // instrument editor session (i.e. if script might be re-assigned)
5197     _VarsByScript vars = stripScriptVars();
5198     if (!vars.empty()) {
5199     // determine total size required for 'SCPV' RIFF chunk, and the
5200     // total amount of scripts being overridden (the latter is
5201     // required because a script might be used on several script
5202     // slots, hence vars.size() could then not be used here instead)
5203     size_t totalChunkSize = 4;
5204     size_t totalScriptsOverridden = 0;
5205     for (const auto& script : vars) {
5206     for (const auto& slot : script.second) {
5207     totalScriptsOverridden++;
5208     totalChunkSize += 16 + 4 + 4 + 4;
5209     for (const auto& var : slot.second) {
5210     totalChunkSize += 4 + 2 + var.first.length() +
5211     2 + var.second.length();
5212     }
5213     }
5214     }
5215    
5216     // ensure 'SCPV' RIFF chunk exists (with required size)
5217     RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5218     if (!ckSCPV) ckSCPV = lst3LS->AddSubChunk(CHUNK_ID_SCPV, totalChunkSize);
5219     else ckSCPV->Resize(totalChunkSize);
5220    
5221     // store the actual data to 'SCPV' RIFF chunk
5222     uint8_t* pData = (uint8_t*) ckSCPV->LoadChunkData();
5223     int pos = 0;
5224     store32(&pData[pos], (uint32_t) totalScriptsOverridden); // scripts count
5225     pos += 4;
5226     for (const auto& script : vars) {
5227     for (const auto& slot : script.second) {
5228     for (int i = 0; i < 16; ++i)
5229     pData[pos+i] = script.first[i]; // uuid
5230     pos += 16;
5231     store32(&pData[pos], (uint32_t) slot.first); // slot index
5232     pos += 4;
5233     store32(&pData[pos], (uint32_t) 0); // unused, reserved 32 bit
5234     pos += 4;
5235     store32(&pData[pos], (uint32_t) slot.second.size()); // variables count
5236     pos += 4;
5237     for (const auto& var : slot.second) {
5238     pData[pos++] = 1; // type
5239     pData[pos++] = 0; // reserved byte
5240     store16(&pData[pos], 2 + var.first.size() + 2 + var.second.size()); // blob size
5241     pos += 2;
5242     store16(&pData[pos], var.first.size()); // variable name length
5243     pos += 2;
5244     for (int i = 0; i < var.first.size(); ++i)
5245     pData[pos++] = var.first[i];
5246     store16(&pData[pos], var.second.size()); // variable value length
5247     pos += 2;
5248     for (int i = 0; i < var.second.size(); ++i)
5249     pData[pos++] = var.second[i];
5250     }
5251     }
5252     }
5253     } else {
5254     // no script variable overridden by this instrument, so get rid
5255     // of 'SCPV' RIFF chunk (if any)
5256     RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5257     if (ckSCPV) lst3LS->DeleteSubChunk(ckSCPV);
5258     }
5259 schoenebeck 2648 } else {
5260     // no script slots, so get rid of any LS custom RIFF chunks (if any)
5261     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5262     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5263 schoenebeck 2584 }
5264 schoenebeck 809 }
5265    
5266 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
5267     // own gig format extensions
5268 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
5269 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5270     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5271 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
5272 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
5273     ckSCSL->SetPos(headerSize);
5274     for (int i = 0; i < slotCount; ++i) {
5275 schoenebeck 3053 uint32_t fileOffset = uint32_t(
5276 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5277     (*pScriptRefs)[i].script->pChunk->GetPos() -
5278 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5279     );
5280 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
5281     // jump over flags entry (containing the bypass flag)
5282     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5283     }
5284     }
5285     }
5286    
5287 schoenebeck 809 /**
5288 schoenebeck 2 * Returns the appropriate Region for a triggered note.
5289     *
5290     * @param Key MIDI Key number of triggered note / key (0 - 127)
5291     * @returns pointer adress to the appropriate Region or NULL if there
5292     * there is no Region defined for the given \a Key
5293     */
5294     Region* Instrument::GetRegion(unsigned int Key) {
5295 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5296 schoenebeck 2 return RegionKeyTable[Key];
5297 schoenebeck 823
5298 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
5299     if (Key <= pRegions[i]->KeyRange.high &&
5300     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
5301     }
5302     return NULL;*/
5303     }
5304    
5305     /**
5306 schoenebeck 3926 * Returns Region at supplied @a pos position within the region list of
5307     * this instrument. If supplied @a pos is out of bounds then @c NULL is
5308     * returned.
5309     *
5310     * @param pos - position of sought Region in region list
5311     * @returns pointer address to requested region or @c NULL if @a pos is
5312     * out of bounds
5313     */
5314     Region* Instrument::GetRegionAt(size_t pos) {
5315     if (!pRegions) return NULL;
5316     if (pos >= pRegions->size()) return NULL;
5317     return static_cast<gig::Region*>( (*pRegions)[pos] );
5318     }
5319    
5320     /**
5321 schoenebeck 2 * Returns the first Region of the instrument. You have to call this
5322     * method once before you use GetNextRegion().
5323     *
5324     * @returns pointer address to first region or NULL if there is none
5325     * @see GetNextRegion()
5326 schoenebeck 3926 * @deprecated This method is not reentrant-safe, use GetRegionAt()
5327     * instead.
5328 schoenebeck 2 */
5329     Region* Instrument::GetFirstRegion() {
5330 schoenebeck 823 if (!pRegions) return NULL;
5331     RegionsIterator = pRegions->begin();
5332     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5333 schoenebeck 2 }
5334    
5335     /**
5336     * Returns the next Region of the instrument. You have to call
5337     * GetFirstRegion() once before you can use this method. By calling this
5338     * method multiple times it iterates through the available Regions.
5339     *
5340     * @returns pointer address to the next region or NULL if end reached
5341     * @see GetFirstRegion()
5342 schoenebeck 3926 * @deprecated This method is not reentrant-safe, use GetRegionAt()
5343     * instead.
5344 schoenebeck 2 */
5345     Region* Instrument::GetNextRegion() {
5346 schoenebeck 823 if (!pRegions) return NULL;
5347     RegionsIterator++;
5348     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5349 schoenebeck 2 }
5350    
5351 schoenebeck 809 Region* Instrument::AddRegion() {
5352     // create new Region object (and its RIFF chunks)
5353     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5354     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5355     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5356     Region* pNewRegion = new Region(this, rgn);
5357 schoenebeck 823 pRegions->push_back(pNewRegion);
5358 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
5359 schoenebeck 809 // update Region key table for fast lookup
5360     UpdateRegionKeyTable();
5361     // done
5362     return pNewRegion;
5363     }
5364 schoenebeck 2
5365 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
5366     if (!pRegions) return;
5367 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5368 schoenebeck 809 // update Region key table for fast lookup
5369     UpdateRegionKeyTable();
5370     }
5371 schoenebeck 2
5372 persson 1627 /**
5373 schoenebeck 2700 * Move this instrument at the position before @arg dst.
5374     *
5375     * This method can be used to reorder the sequence of instruments in a
5376     * .gig file. This might be helpful especially on large .gig files which
5377     * contain a large number of instruments within the same .gig file. So
5378     * grouping such instruments to similar ones, can help to keep track of them
5379     * when working with such complex .gig files.
5380     *
5381     * When calling this method, this instrument will be removed from in its
5382     * current position in the instruments list and moved to the requested
5383     * target position provided by @param dst. You may also pass NULL as
5384     * argument to this method, in that case this intrument will be moved to the
5385     * very end of the .gig file's instrument list.
5386     *
5387     * You have to call Save() to make the order change persistent to the .gig
5388     * file.
5389     *
5390     * Currently this method is limited to moving the instrument within the same
5391     * .gig file. Trying to move it to another .gig file by calling this method
5392     * will throw an exception.
5393     *
5394     * @param dst - destination instrument at which this instrument will be
5395     * moved to, or pass NULL for moving to end of list
5396     * @throw gig::Exception if this instrument and target instrument are not
5397     * part of the same file
5398     */
5399     void Instrument::MoveTo(Instrument* dst) {
5400     if (dst && GetParent() != dst->GetParent())
5401     throw Exception(
5402     "gig::Instrument::MoveTo() can only be used for moving within "
5403     "the same gig file."
5404     );
5405    
5406     File* pFile = (File*) GetParent();
5407    
5408     // move this instrument within the instrument list
5409     {
5410 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
5411 schoenebeck 2700
5412 persson 2836 File::InstrumentList::iterator itFrom =
5413 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5414    
5415 persson 2836 File::InstrumentList::iterator itTo =
5416 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5417    
5418     list.splice(itTo, list, itFrom);
5419     }
5420    
5421     // move the instrument's actual list RIFF chunk appropriately
5422     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5423     lstCkInstruments->MoveSubChunk(
5424     this->pCkInstrument,
5425 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5426 schoenebeck 2700 );
5427     }
5428    
5429     /**
5430 persson 1678 * Returns a MIDI rule of the instrument.
5431 persson 1627 *
5432     * The list of MIDI rules, at least in gig v3, always contains at
5433     * most two rules. The second rule can only be the DEF filter
5434     * (which currently isn't supported by libgig).
5435     *
5436 persson 1678 * @param i - MIDI rule number
5437     * @returns pointer address to MIDI rule number i or NULL if there is none
5438 persson 1627 */
5439 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
5440     return pMidiRules[i];
5441 persson 1627 }
5442 persson 2450
5443 schoenebeck 2394 /**
5444 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
5445     *
5446     * @returns the new MIDI rule
5447     */
5448     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5449     delete pMidiRules[0];
5450     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5451     pMidiRules[0] = r;
5452     pMidiRules[1] = 0;
5453     return r;
5454     }
5455    
5456     /**
5457     * Adds the legato MIDI rule to the instrument.
5458     *
5459     * @returns the new MIDI rule
5460     */
5461     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5462     delete pMidiRules[0];
5463     MidiRuleLegato* r = new MidiRuleLegato;
5464     pMidiRules[0] = r;
5465     pMidiRules[1] = 0;
5466     return r;
5467     }
5468    
5469     /**
5470     * Adds the alternator MIDI rule to the instrument.
5471     *
5472     * @returns the new MIDI rule
5473     */
5474     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5475     delete pMidiRules[0];
5476     MidiRuleAlternator* r = new MidiRuleAlternator;
5477     pMidiRules[0] = r;
5478     pMidiRules[1] = 0;
5479     return r;
5480     }
5481    
5482     /**
5483     * Deletes a MIDI rule from the instrument.
5484     *
5485     * @param i - MIDI rule number
5486     */
5487     void Instrument::DeleteMidiRule(int i) {
5488     delete pMidiRules[i];
5489     pMidiRules[i] = 0;
5490     }
5491    
5492 schoenebeck 2584 void Instrument::LoadScripts() {
5493     if (pScriptRefs) return;
5494     pScriptRefs = new std::vector<_ScriptPooolRef>;
5495     if (scriptPoolFileOffsets.empty()) return;
5496     File* pFile = (File*) GetParent();
5497     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5498 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5499 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5500     ScriptGroup* group = pFile->GetScriptGroup(i);
5501     for (uint s = 0; group->GetScript(s); ++s) {
5502     Script* script = group->GetScript(s);
5503     if (script->pChunk) {
5504 schoenebeck 3053 uint32_t offset = uint32_t(
5505     script->pChunk->GetFilePos() -
5506     script->pChunk->GetPos() -
5507     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5508     );
5509 schoenebeck 2609 if (offset == soughtOffset)
5510 schoenebeck 2584 {
5511     _ScriptPooolRef ref;
5512     ref.script = script;
5513     ref.bypass = scriptPoolFileOffsets[k].bypass;
5514     pScriptRefs->push_back(ref);
5515     break;
5516     }
5517     }
5518     }
5519     }
5520     }
5521     // we don't need that anymore
5522     scriptPoolFileOffsets.clear();
5523     }
5524    
5525 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5526 schoenebeck 2584 *
5527 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5528     * @a index.
5529     *
5530     * @note This is an own format extension which did not exist i.e. in the
5531     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5532     * gigedit.
5533     *
5534     * @param index - instrument script slot index
5535     * @returns script or NULL if index is out of bounds
5536     */
5537     Script* Instrument::GetScriptOfSlot(uint index) {
5538     LoadScripts();
5539     if (index >= pScriptRefs->size()) return NULL;
5540     return pScriptRefs->at(index).script;
5541     }
5542    
5543     /** @brief Add new instrument script slot (gig format extension).
5544     *
5545 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5546     * which shall be executed by the sampler for for this instrument. The
5547     * script will be added to the end of the script list of this instrument.
5548     * The positions of the scripts in the Instrument's Script list are
5549     * relevant, because they define in which order they shall be executed by
5550     * the sampler. For this reason it is also legal to add the same script
5551     * twice to an instrument, for example you might have a script called
5552     * "MyFilter" which performs an event filter task, and you might have
5553     * another script called "MyNoteTrigger" which triggers new notes, then you
5554     * might for example have the following list of scripts on the instrument:
5555     *
5556     * 1. Script "MyFilter"
5557     * 2. Script "MyNoteTrigger"
5558     * 3. Script "MyFilter"
5559     *
5560     * Which would make sense, because the 2nd script launched new events, which
5561     * you might need to filter as well.
5562     *
5563     * There are two ways to disable / "bypass" scripts. You can either disable
5564     * a script locally for the respective script slot on an instrument (i.e. by
5565     * passing @c false to the 2nd argument of this method, or by calling
5566     * SetScriptBypassed()). Or you can disable a script globally for all slots
5567     * and all instruments by setting Script::Bypass.
5568     *
5569     * @note This is an own format extension which did not exist i.e. in the
5570     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5571     * gigedit.
5572     *
5573     * @param pScript - script that shall be executed for this instrument
5574     * @param bypass - if enabled, the sampler shall skip executing this
5575     * script (in the respective list position)
5576     * @see SetScriptBypassed()
5577     */
5578     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5579     LoadScripts();
5580     _ScriptPooolRef ref = { pScript, bypass };
5581     pScriptRefs->push_back(ref);
5582     }
5583    
5584     /** @brief Flip two script slots with each other (gig format extension).
5585     *
5586     * Swaps the position of the two given scripts in the Instrument's Script
5587     * list. The positions of the scripts in the Instrument's Script list are
5588     * relevant, because they define in which order they shall be executed by
5589     * the sampler.
5590     *
5591     * @note This is an own format extension which did not exist i.e. in the
5592     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5593     * gigedit.
5594     *
5595     * @param index1 - index of the first script slot to swap
5596     * @param index2 - index of the second script slot to swap
5597     */
5598     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5599     LoadScripts();
5600     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5601     return;
5602     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5603     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5604     (*pScriptRefs)[index2] = tmp;
5605     }
5606    
5607     /** @brief Remove script slot.
5608     *
5609     * Removes the script slot with the given slot index.
5610     *
5611     * @param index - index of script slot to remove
5612     */
5613     void Instrument::RemoveScriptSlot(uint index) {
5614     LoadScripts();
5615     if (index >= pScriptRefs->size()) return;
5616     pScriptRefs->erase( pScriptRefs->begin() + index );
5617     }
5618    
5619     /** @brief Remove reference to given Script (gig format extension).
5620     *
5621     * This will remove all script slots on the instrument which are referencing
5622     * the given script.
5623     *
5624     * @note This is an own format extension which did not exist i.e. in the
5625     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5626     * gigedit.
5627     *
5628     * @param pScript - script reference to remove from this instrument
5629     * @see RemoveScriptSlot()
5630     */
5631     void Instrument::RemoveScript(Script* pScript) {
5632     LoadScripts();
5633 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5634 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5635     pScriptRefs->erase( pScriptRefs->begin() + i );
5636     }
5637     }
5638     }
5639    
5640     /** @brief Instrument's amount of script slots.
5641     *
5642     * This method returns the amount of script slots this instrument currently
5643     * uses.
5644     *
5645     * A script slot is a reference of a real-time instrument script to be
5646     * executed by the sampler. The scripts will be executed by the sampler in
5647     * sequence of the slots. One (same) script may be referenced multiple
5648     * times in different slots.
5649     *
5650     * @note This is an own format extension which did not exist i.e. in the
5651     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5652     * gigedit.
5653     */
5654     uint Instrument::ScriptSlotCount() const {
5655 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5656 schoenebeck 2584 }
5657    
5658     /** @brief Whether script execution shall be skipped.
5659     *
5660     * Defines locally for the Script reference slot in the Instrument's Script
5661     * list, whether the script shall be skipped by the sampler regarding
5662     * execution.
5663     *
5664     * It is also possible to ignore exeuction of the script globally, for all
5665     * slots and for all instruments by setting Script::Bypass.
5666     *
5667     * @note This is an own format extension which did not exist i.e. in the
5668     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5669     * gigedit.
5670     *
5671     * @param index - index of the script slot on this instrument
5672     * @see Script::Bypass
5673     */
5674     bool Instrument::IsScriptSlotBypassed(uint index) {
5675     if (index >= ScriptSlotCount()) return false;
5676     return pScriptRefs ? pScriptRefs->at(index).bypass
5677     : scriptPoolFileOffsets.at(index).bypass;
5678    
5679     }
5680    
5681     /** @brief Defines whether execution shall be skipped.
5682     *
5683     * You can call this method to define locally whether or whether not the
5684     * given script slot shall be executed by the sampler.
5685     *
5686     * @note This is an own format extension which did not exist i.e. in the
5687     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5688     * gigedit.
5689     *
5690     * @param index - script slot index on this instrument
5691     * @param bBypass - if true, the script slot will be skipped by the sampler
5692     * @see Script::Bypass
5693     */
5694     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5695     if (index >= ScriptSlotCount()) return;
5696     if (pScriptRefs)
5697     pScriptRefs->at(index).bypass = bBypass;
5698     else
5699     scriptPoolFileOffsets.at(index).bypass = bBypass;
5700     }
5701    
5702 schoenebeck 3731 /// type cast (by copy) uint8_t[16] -> std::array<uint8_t,16>
5703     inline std::array<uint8_t,16> _UUIDFromCArray(const uint8_t* pData) {
5704     std::array<uint8_t,16> uuid;
5705     memcpy(&uuid[0], pData, 16);
5706     return uuid;
5707     }
5708    
5709 persson 2450 /**
5710 schoenebeck 3731 * Returns true if this @c Instrument has any script slot which references
5711     * the @c Script identified by passed @p uuid.
5712     */
5713     bool Instrument::ReferencesScriptWithUuid(const _UUID& uuid) {
5714     const uint nSlots = ScriptSlotCount();
5715     for (uint iSlot = 0; iSlot < nSlots; ++iSlot)
5716     if (_UUIDFromCArray(&GetScriptOfSlot(iSlot)->Uuid[0]) == uuid)
5717     return true;
5718     return false;
5719     }
5720    
5721     /** @brief Checks whether a certain script 'patch' variable value is set.
5722     *
5723     * Returns @c true if the initial value for the requested script variable is
5724     * currently overridden by this instrument.
5725     *
5726     * @remarks Real-time instrument scripts allow to declare special 'patch'
5727     * variables, which essentially behave like regular variables of their data
5728     * type, however their initial value may optionally be overridden on a per
5729     * instrument basis. That allows to share scripts between instruments while
5730     * still being able to fine tune certain aspects of the script for each
5731     * instrument individually.
5732     *
5733 schoenebeck 3732 * @note This is an own format extension which did not exist i.e. in the
5734     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5735     * Gigedit.
5736     *
5737 schoenebeck 3731 * @param slot - script slot index of the variable to be retrieved
5738     * @param variable - name of the 'patch' variable in that script
5739     */
5740     bool Instrument::IsScriptPatchVariableSet(int slot, String variable) {
5741     if (variable.empty()) return false;
5742     Script* script = GetScriptOfSlot(slot);
5743     if (!script) return false;
5744     const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5745     if (!scriptVars.count(uuid)) return false;
5746     const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5747     if (slots.empty()) return false;
5748     if (slots.count(slot))
5749     return slots.find(slot)->second.count(variable);
5750     else
5751     return slots.begin()->second.count(variable);
5752     }
5753    
5754     /** @brief Get all overridden script 'patch' variables.
5755     *
5756     * Returns map of key-value pairs reflecting all patch variables currently
5757     * being overridden by this instrument for the given script @p slot, where
5758     * key is the variable name and value is the hereby currently overridden
5759     * value for that variable.
5760     *
5761     * @remarks Real-time instrument scripts allow to declare special 'patch'
5762     * variables, which essentially behave like regular variables of their data
5763     * type, however their initial value may optionally be overridden on a per
5764     * instrument basis. That allows to share scripts between instruments while
5765     * still being able to fine tune certain aspects of the script for each
5766     * instrument individually.
5767     *
5768 schoenebeck 3732 * @note This is an own format extension which did not exist i.e. in the
5769     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5770     * Gigedit.
5771     *
5772 schoenebeck 3731 * @param slot - script slot index of the variable to be retrieved
5773     */
5774     std::map<String,String> Instrument::GetScriptPatchVariables(int slot) {
5775     Script* script = GetScriptOfSlot(slot);
5776     if (!script) return std::map<String,String>();
5777     const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5778     if (!scriptVars.count(uuid)) return std::map<String,String>();
5779     const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5780     if (slots.empty()) return std::map<String,String>();
5781     const _PatchVars& vars =
5782     (slots.count(slot)) ?
5783     slots.find(slot)->second : slots.begin()->second;
5784     return vars;
5785     }
5786    
5787     /** @brief Get overridden initial value for 'patch' variable.
5788     *
5789     * Returns current initial value for the requested script variable being
5790     * overridden by this instrument.
5791     *
5792     * @remarks Real-time instrument scripts allow to declare special 'patch'
5793     * variables, which essentially behave like regular variables of their data
5794     * type, however their initial value may optionally be overridden on a per
5795     * instrument basis. That allows to share scripts between instruments while
5796     * still being able to fine tune certain aspects of the script for each
5797     * instrument individually.
5798     *
5799 schoenebeck 3732 * @note This is an own format extension which did not exist i.e. in the
5800     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5801     * Gigedit.
5802     *
5803 schoenebeck 3731 * @param slot - script slot index of the variable to be retrieved
5804     * @param variable - name of the 'patch' variable in that script
5805     */
5806     String Instrument::GetScriptPatchVariable(int slot, String variable) {
5807     std::map<String,String> vars = GetScriptPatchVariables(slot);
5808     return (vars.count(variable)) ? vars.find(variable)->second : "";
5809     }
5810    
5811     /** @brief Override initial value for 'patch' variable.
5812     *
5813     * Overrides initial value for the requested script variable for this
5814     * instrument with the passed value.
5815     *
5816     * @remarks Real-time instrument scripts allow to declare special 'patch'
5817     * variables, which essentially behave like regular variables of their data
5818     * type, however their initial value may optionally be overridden on a per
5819     * instrument basis. That allows to share scripts between instruments while
5820     * still being able to fine tune certain aspects of the script for each
5821     * instrument individually.
5822     *
5823 schoenebeck 3732 * @note This is an own format extension which did not exist i.e. in the
5824     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5825     * Gigedit.
5826     *
5827 schoenebeck 3731 * @param slot - script slot index of the variable to be set
5828     * @param variable - name of the 'patch' variable in that script
5829     * @param value - overridden initial value for that script variable
5830     * @throws gig::Exception if given script @p slot index is invalid or given
5831     * @p variable name is empty
5832     */
5833     void Instrument::SetScriptPatchVariable(int slot, String variable, String value) {
5834     if (variable.empty())
5835     throw Exception("Variable name must not be empty");
5836     Script* script = GetScriptOfSlot(slot);
5837     if (!script)
5838     throw Exception("No script slot with index " + ToString(slot));
5839     const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5840     scriptVars[uuid][slot][variable] = value;
5841     }
5842    
5843     /** @brief Drop overridden initial value(s) for 'patch' variable(s).
5844     *
5845     * Reverts initial value(s) for requested script variable(s) back to their
5846     * default initial value(s) defined in the script itself.
5847     *
5848     * Both arguments of this method are optional. The most obvious use case of
5849     * this method would be passing a valid script @p slot index and a
5850     * (non-emtpy string as) @p variable name to this method, which would cause
5851     * that single variable to be unset for that specific script slot (on this
5852     * @c Instrument level).
5853     *
5854     * Not passing a value (or @c -1 for @p slot and/or empty string for
5855     * @p variable) means 'wildcard'. So accordingly absence of argument(s) will
5856     * cause all variables and/or for all script slots being unset. Hence this
5857     * method serves 2^2 = 4 possible use cases in total and accordingly covers
5858     * 4 different behaviours in one method.
5859     *
5860     * @remarks Real-time instrument scripts allow to declare special 'patch'
5861     * variables, which essentially behave like regular variables of their data
5862     * type, however their initial value may optionally be overridden on a per
5863     * instrument basis. That allows to share scripts between instruments while
5864     * still being able to fine tune certain aspects of the script for each
5865     * instrument individually.
5866     *
5867 schoenebeck 3732 * @note This is an own format extension which did not exist i.e. in the
5868     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5869     * Gigedit.
5870     *
5871 schoenebeck 3731 * @param slot - script slot index of the variable to be unset
5872     * @param variable - name of the 'patch' variable in that script
5873     */
5874     void Instrument::UnsetScriptPatchVariable(int slot, String variable) {
5875     Script* script = GetScriptOfSlot(slot);
5876    
5877     // option 1: unset a particular variable of one particular script slot
5878     if (slot != -1 && !variable.empty()) {
5879     if (!script) return;
5880     const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5881     if (!scriptVars.count(uuid)) return;
5882     if (!scriptVars[uuid].count(slot)) return;
5883     if (scriptVars[uuid][slot].count(variable))
5884     scriptVars[uuid][slot].erase(
5885     scriptVars[uuid][slot].find(variable)
5886     );
5887     if (scriptVars[uuid][slot].empty())
5888     scriptVars[uuid].erase( scriptVars[uuid].find(slot) );
5889     if (scriptVars[uuid].empty())
5890     scriptVars.erase( scriptVars.find(uuid) );
5891     return;
5892     }
5893    
5894     // option 2: unset all variables of all script slots
5895     if (slot == -1 && variable.empty()) {
5896     scriptVars.clear();
5897     return;
5898     }
5899    
5900     // option 3: unset all variables of one particular script slot only
5901     if (slot != -1) {
5902     if (!script) return;
5903     const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5904     if (scriptVars.count(uuid))
5905     scriptVars.erase( scriptVars.find(uuid) );
5906     return;
5907     }
5908    
5909     // option 4: unset a particular variable of all script slots
5910     _VarsByScript::iterator itScript = scriptVars.begin();
5911     _VarsByScript::iterator endScript = scriptVars.end();
5912     while (itScript != endScript) {
5913     _VarsBySlot& slots = itScript->second;
5914     _VarsBySlot::iterator itSlot = slots.begin();
5915     _VarsBySlot::iterator endSlot = slots.end();
5916     while (itSlot != endSlot) {
5917     _PatchVars& vars = itSlot->second;
5918     if (vars.count(variable))
5919     vars.erase( vars.find(variable) );
5920     if (vars.empty())
5921     slots.erase(itSlot++); // postfix increment to avoid iterator invalidation
5922     else
5923     ++itSlot;
5924     }
5925     if (slots.empty())
5926     scriptVars.erase(itScript++); // postfix increment to avoid iterator invalidation
5927     else
5928     ++itScript;
5929     }
5930     }
5931    
5932     /**
5933     * Returns stripped version of member variable @c scriptVars, where scripts
5934     * no longer referenced by this @c Instrument are filtered out, and so are
5935     * variables of meanwhile obsolete slots (i.e. a script still being
5936     * referenced, but previously overridden on a script slot which either no
5937     * longer exists or is hosting another script now).
5938     */
5939     Instrument::_VarsByScript Instrument::stripScriptVars() {
5940     _VarsByScript vars;
5941     _VarsByScript::const_iterator itScript = scriptVars.begin();
5942     _VarsByScript::const_iterator endScript = scriptVars.end();
5943     for (; itScript != endScript; ++itScript) {
5944     const _UUID& uuid = itScript->first;
5945     if (!ReferencesScriptWithUuid(uuid))
5946     continue;
5947     const _VarsBySlot& slots = itScript->second;
5948     _VarsBySlot::const_iterator itSlot = slots.begin();
5949     _VarsBySlot::const_iterator endSlot = slots.end();
5950     for (; itSlot != endSlot; ++itSlot) {
5951     Script* script = GetScriptOfSlot(itSlot->first);
5952     if (!script) continue;
5953     if (_UUIDFromCArray(&script->Uuid[0]) != uuid) continue;
5954     if (itSlot->second.empty()) continue;
5955     vars[uuid][itSlot->first] = itSlot->second;
5956     }
5957     }
5958     return vars;
5959     }
5960    
5961     /**
5962 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5963     * and assign it to this object.
5964     *
5965     * Note that all sample pointers referenced by @a orig are simply copied as
5966     * memory address. Thus the respective samples are shared, not duplicated!
5967     *
5968     * @param orig - original Instrument object to be copied from
5969     */
5970     void Instrument::CopyAssign(const Instrument* orig) {
5971 schoenebeck 2482 CopyAssign(orig, NULL);
5972     }
5973    
5974     /**
5975     * Make a (semi) deep copy of the Instrument object given by @a orig
5976     * and assign it to this object.
5977     *
5978     * @param orig - original Instrument object to be copied from
5979     * @param mSamples - crosslink map between the foreign file's samples and
5980     * this file's samples
5981     */
5982     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5983 schoenebeck 2394 // handle base class
5984     // (without copying DLS region stuff)
5985     DLS::Instrument::CopyAssignCore(orig);
5986    
5987     // handle own member variables
5988     Attenuation = orig->Attenuation;
5989     EffectSend = orig->EffectSend;
5990     FineTune = orig->FineTune;
5991     PitchbendRange = orig->PitchbendRange;
5992     PianoReleaseMode = orig->PianoReleaseMode;
5993     DimensionKeyRange = orig->DimensionKeyRange;
5994 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5995 schoenebeck 3799 // deep copy of pScriptRefs required (to avoid undefined behaviour)
5996     if (pScriptRefs) delete pScriptRefs;
5997     pScriptRefs = new std::vector<_ScriptPooolRef>;
5998     if (orig->pScriptRefs)
5999     *pScriptRefs = *orig->pScriptRefs;
6000 schoenebeck 3731 scriptVars = orig->scriptVars;
6001 schoenebeck 2394
6002     // free old midi rules
6003     for (int i = 0 ; pMidiRules[i] ; i++) {
6004     delete pMidiRules[i];
6005     }
6006     //TODO: MIDI rule copying
6007     pMidiRules[0] = NULL;
6008    
6009     // delete all old regions
6010 schoenebeck 3927 while (Regions) DeleteRegion(GetRegionAt(0));
6011 schoenebeck 2394 // create new regions and copy them from original
6012     {
6013     RegionList::const_iterator it = orig->pRegions->begin();
6014     for (int i = 0; i < orig->Regions; ++i, ++it) {
6015     Region* dstRgn = AddRegion();
6016     //NOTE: Region does semi-deep copy !
6017     dstRgn->CopyAssign(
6018 schoenebeck 2482 static_cast<gig::Region*>(*it),
6019     mSamples
6020 schoenebeck 2394 );
6021     }
6022     }
6023 schoenebeck 809
6024 schoenebeck 2394 UpdateRegionKeyTable();
6025     }
6026 schoenebeck 809
6027 schoenebeck 3710 /**
6028     * Returns @c true in case this Instrument object uses any gig format
6029     * extension, that is e.g. whether any DimensionRegion object currently
6030     * has any setting effective that would require our "LSDE" RIFF chunk to
6031     * be stored to the gig file.
6032     *
6033     * Right now this is a private method. It is considerable though this method
6034     * to become (in slightly modified form) a public API method in future, i.e.
6035     * to allow instrument editors to visualize and/or warn the user of any gig
6036     * format extension being used. See also comments on
6037     * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
6038     * potential public API change in future.
6039     */
6040     bool Instrument::UsesAnyGigFormatExtension() const {
6041     if (!pRegions) return false;
6042 schoenebeck 3731 if (!scriptVars.empty()) return true;
6043 schoenebeck 3710 RegionList::const_iterator iter = pRegions->begin();
6044     RegionList::const_iterator end = pRegions->end();
6045     for (; iter != end; ++iter) {
6046     gig::Region* rgn = static_cast<gig::Region*>(*iter);
6047     if (rgn->UsesAnyGigFormatExtension())
6048     return true;
6049     }
6050     return false;
6051     }
6052 schoenebeck 2394
6053 schoenebeck 3710
6054 schoenebeck 929 // *************** Group ***************
6055     // *
6056    
6057     /** @brief Constructor.
6058     *
6059 schoenebeck 930 * @param file - pointer to the gig::File object
6060     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
6061     * NULL if this is a new Group
6062 schoenebeck 929 */
6063 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
6064 schoenebeck 929 pFile = file;
6065     pNameChunk = ck3gnm;
6066 schoenebeck 3929 SamplesIterator = 0;
6067 schoenebeck 929 ::LoadString(pNameChunk, Name);
6068     }
6069    
6070 schoenebeck 3478 /** @brief Destructor.
6071     *
6072     * Currently this destructor implementation does nothing.
6073     */
6074 schoenebeck 929 Group::~Group() {
6075     }
6076    
6077 schoenebeck 3478 /** @brief Remove all RIFF chunks associated with this Group object.
6078     *
6079     * See DLS::Storage::DeleteChunks() for details.
6080     */
6081     void Group::DeleteChunks() {
6082     // handle own RIFF chunks
6083     if (pNameChunk) {
6084     pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
6085     pNameChunk = NULL;
6086     }
6087     }
6088    
6089 schoenebeck 929 /** @brief Update chunks with current group settings.
6090     *
6091 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
6092     * to call File::Save() to make changes persistent.
6093     *
6094     * Usually there is absolutely no need to call this method explicitly.
6095     * It will be called automatically when File::Save() was called.
6096 schoenebeck 2682 *
6097     * @param pProgress - callback function for progress notification
6098 schoenebeck 929 */
6099 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
6100 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
6101 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
6102 persson 1192 if (!_3gri) {
6103     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
6104     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6105     }
6106 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6107 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6108 persson 1266
6109 schoenebeck 3440 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
6110 persson 1266 // v3 has a fixed list of 128 strings, find a free one
6111 schoenebeck 3924 size_t i = 0;
6112     for (RIFF::Chunk* ck = _3gnl->GetSubChunkAt(i); ck; ck = _3gnl->GetSubChunkAt(++i)) {
6113 persson 1266 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
6114     pNameChunk = ck;
6115     break;
6116     }
6117     }
6118     }
6119    
6120 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
6121     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
6122     }
6123    
6124 schoenebeck 930 /**
6125 schoenebeck 3933 * Returns Sample object at @a index of this sample group.
6126     *
6127     * @param index - position of sample in this sample group's sample list
6128     * (0..n)
6129     * @returns sample object or NULL if index is out of bounds
6130     */
6131     Sample* Group::GetSample(size_t index) {
6132     if (pFile->pSamples && index >= pFile->pSamples->size()) return NULL;
6133     size_t indexInFile = 0;
6134     size_t indexInGroup = 0;
6135     for (Sample* pSample = pFile->GetSample(indexInFile); pSample;
6136     pSample = pFile->GetSample(++indexInFile))
6137     {
6138     if (pSample->GetGroup() != this) continue;
6139     if (indexInGroup++ == index) return pSample;
6140     }
6141     return NULL;
6142     }
6143    
6144     /**
6145 schoenebeck 930 * Returns the first Sample of this Group. You have to call this method
6146     * once before you use GetNextSample().
6147     *
6148     * <b>Notice:</b> this method might block for a long time, in case the
6149     * samples of this .gig file were not scanned yet
6150     *
6151     * @returns pointer address to first Sample or NULL if there is none
6152     * applied to this Group
6153     * @see GetNextSample()
6154 schoenebeck 3933 * @deprecated This method is not reentrant-safe, use GetSample()
6155     * instead.
6156 schoenebeck 930 */
6157     Sample* Group::GetFirstSample() {
6158 schoenebeck 3929 size_t& i = this->SamplesIterator;
6159     i = 0;
6160     for (Sample* pSample = pFile->GetSample(i); pSample;
6161     pSample = pFile->GetSample(++i))
6162     {
6163     if (pSample->GetGroup() == this)
6164     return pSample;
6165 schoenebeck 930 }
6166     return NULL;
6167     }
6168 schoenebeck 929
6169 schoenebeck 930 /**
6170     * Returns the next Sample of the Group. You have to call
6171     * GetFirstSample() once before you can use this method. By calling this
6172     * method multiple times it iterates through the Samples assigned to
6173     * this Group.
6174     *
6175     * @returns pointer address to the next Sample of this Group or NULL if
6176     * end reached
6177     * @see GetFirstSample()
6178 schoenebeck 3933 * @deprecated This method is not reentrant-safe, use GetSample()
6179     * instead.
6180 schoenebeck 930 */
6181     Sample* Group::GetNextSample() {
6182 schoenebeck 3929 size_t& i = this->SamplesIterator;
6183     for (Sample* pSample = pFile->GetSample(++i); pSample;
6184     pSample = pFile->GetSample(++i))
6185     {
6186     if (pSample->GetGroup() == this)
6187     return pSample;
6188 schoenebeck 930 }
6189     return NULL;
6190     }
6191 schoenebeck 929
6192 schoenebeck 930 /**
6193     * Move Sample given by \a pSample from another Group to this Group.
6194     */
6195     void Group::AddSample(Sample* pSample) {
6196     pSample->pGroup = this;
6197     }
6198    
6199     /**
6200     * Move all members of this group to another group (preferably the 1st
6201     * one except this). This method is called explicitly by
6202     * File::DeleteGroup() thus when a Group was deleted. This code was
6203     * intentionally not placed in the destructor!
6204     */
6205     void Group::MoveAll() {
6206     // get "that" other group first
6207     Group* pOtherGroup = NULL;
6208     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
6209     if (pOtherGroup != this) break;
6210     }
6211     if (!pOtherGroup) throw Exception(
6212     "Could not move samples to another group, since there is no "
6213     "other Group. This is a bug, report it!"
6214     );
6215     // now move all samples of this group to the other group
6216 schoenebeck 3934 Sample* pSample;
6217     while ((pSample = GetSample(0))) {
6218 schoenebeck 930 pOtherGroup->AddSample(pSample);
6219     }
6220     }
6221    
6222    
6223    
6224 schoenebeck 2 // *************** File ***************
6225     // *
6226    
6227 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
6228 persson 1199 const DLS::version_t File::VERSION_2 = {
6229     0, 2, 19980628 & 0xffff, 19980628 >> 16
6230     };
6231    
6232 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
6233 persson 1199 const DLS::version_t File::VERSION_3 = {
6234     0, 3, 20030331 & 0xffff, 20030331 >> 16
6235     };
6236    
6237 schoenebeck 3440 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
6238     const DLS::version_t File::VERSION_4 = {
6239     0, 4, 20071012 & 0xffff, 20071012 >> 16
6240     };
6241    
6242 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
6243 persson 1180 { CHUNK_ID_IARL, 256 },
6244     { CHUNK_ID_IART, 128 },
6245     { CHUNK_ID_ICMS, 128 },
6246     { CHUNK_ID_ICMT, 1024 },
6247     { CHUNK_ID_ICOP, 128 },
6248     { CHUNK_ID_ICRD, 128 },
6249     { CHUNK_ID_IENG, 128 },
6250     { CHUNK_ID_IGNR, 128 },
6251     { CHUNK_ID_IKEY, 128 },
6252     { CHUNK_ID_IMED, 128 },
6253     { CHUNK_ID_INAM, 128 },
6254     { CHUNK_ID_IPRD, 128 },
6255     { CHUNK_ID_ISBJ, 128 },
6256     { CHUNK_ID_ISFT, 128 },
6257     { CHUNK_ID_ISRC, 128 },
6258     { CHUNK_ID_ISRF, 128 },
6259     { CHUNK_ID_ITCH, 128 },
6260     { 0, 0 }
6261     };
6262    
6263 schoenebeck 809 File::File() : DLS::File() {
6264 schoenebeck 1524 bAutoLoad = true;
6265 persson 1264 *pVersion = VERSION_3;
6266 schoenebeck 929 pGroups = NULL;
6267 schoenebeck 2584 pScriptGroups = NULL;
6268 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6269 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
6270 persson 1192
6271     // add some mandatory chunks to get the file chunks in right
6272     // order (INFO chunk will be moved to first position later)
6273     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
6274     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
6275 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
6276    
6277     GenerateDLSID();
6278 schoenebeck 809 }
6279    
6280 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
6281 schoenebeck 1524 bAutoLoad = true;
6282 schoenebeck 929 pGroups = NULL;
6283 schoenebeck 2584 pScriptGroups = NULL;
6284 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6285 schoenebeck 2 }
6286    
6287 schoenebeck 929 File::~File() {
6288     if (pGroups) {
6289 schoenebeck 3936 std::vector<Group*>::iterator iter = pGroups->begin();
6290     std::vector<Group*>::iterator end = pGroups->end();
6291 schoenebeck 929 while (iter != end) {
6292     delete *iter;
6293     ++iter;
6294     }
6295     delete pGroups;
6296     }
6297 schoenebeck 2584 if (pScriptGroups) {
6298     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
6299     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
6300     while (iter != end) {
6301     delete *iter;
6302     ++iter;
6303     }
6304     delete pScriptGroups;
6305     }
6306 schoenebeck 929 }
6307    
6308 schoenebeck 3928 /**
6309     * Returns a pointer to the first <i>Sample</i> object of the file,
6310     * <i>NULL</i> otherwise.
6311     *
6312     * @param pProgress - optional: callback function for progress notification
6313     * @deprecated This method is not reentrant-safe, use GetSample()
6314     * instead.
6315     */
6316 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
6317     if (!pSamples) LoadSamples(pProgress);
6318 schoenebeck 2 if (!pSamples) return NULL;
6319     SamplesIterator = pSamples->begin();
6320     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6321     }
6322    
6323 schoenebeck 3928 /**
6324     * Returns a pointer to the next <i>Sample</i> object of the file,
6325     * <i>NULL</i> otherwise.
6326     *
6327     * @deprecated This method is not reentrant-safe, use GetSample()
6328     * instead.
6329     */
6330 schoenebeck 2 Sample* File::GetNextSample() {
6331     if (!pSamples) return NULL;
6332     SamplesIterator++;
6333     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6334     }
6335 schoenebeck 2482
6336     /**
6337     * Returns Sample object of @a index.
6338     *
6339 schoenebeck 3928 * @param index - position of sample in sample list (0..n)
6340     * @param pProgress - optional: callback function for progress notification
6341 schoenebeck 2482 * @returns sample object or NULL if index is out of bounds
6342     */
6343 schoenebeck 3928 Sample* File::GetSample(size_t index, progress_t* pProgress) {
6344     if (!pSamples) LoadSamples(pProgress);
6345 schoenebeck 2482 if (!pSamples) return NULL;
6346 schoenebeck 3928 if (index >= pSamples->size()) return NULL;
6347     return static_cast<gig::Sample*>( (*pSamples)[index] );
6348 schoenebeck 2482 }
6349 schoenebeck 2
6350 schoenebeck 3414 /**
6351     * Returns the total amount of samples of this gig file.
6352     *
6353     * Note that this method might block for a long time in case it is required
6354     * to load the sample info for the first time.
6355     *
6356     * @returns total amount of samples
6357     */
6358     size_t File::CountSamples() {
6359     if (!pSamples) LoadSamples();
6360     if (!pSamples) return 0;
6361     return pSamples->size();
6362     }
6363    
6364 schoenebeck 809 /** @brief Add a new sample.
6365     *
6366     * This will create a new Sample object for the gig file. You have to
6367     * call Save() to make this persistent to the file.
6368     *
6369     * @returns pointer to new Sample object
6370     */
6371     Sample* File::AddSample() {
6372     if (!pSamples) LoadSamples();
6373     __ensureMandatoryChunksExist();
6374     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
6375     // create new Sample object and its respective 'wave' list chunk
6376     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
6377     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
6378 persson 1192
6379     // add mandatory chunks to get the chunks in right order
6380     wave->AddSubChunk(CHUNK_ID_FMT, 16);
6381     wave->AddSubList(LIST_TYPE_INFO);
6382    
6383 schoenebeck 809 pSamples->push_back(pSample);
6384     return pSample;
6385     }
6386    
6387     /** @brief Delete a sample.
6388     *
6389 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
6390     * references to this sample from Regions and DimensionRegions will be
6391     * removed. You have to call Save() to make this persistent to the file.
6392 schoenebeck 809 *
6393     * @param pSample - sample to delete
6394     * @throws gig::Exception if given sample could not be found
6395     */
6396     void File::DeleteSample(Sample* pSample) {
6397 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
6398     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
6399 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
6400 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
6401 schoenebeck 809 pSamples->erase(iter);
6402 schoenebeck 3478 pSample->DeleteChunks();
6403 schoenebeck 809 delete pSample;
6404 persson 1266
6405 persson 1678 SampleList::iterator tmp = SamplesIterator;
6406 persson 1266 // remove all references to the sample
6407     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6408     instrument = GetNextInstrument()) {
6409 schoenebeck 3927 size_t iRgn = 0;
6410     for (Region* region = instrument->GetRegionAt(iRgn); region;
6411     region = instrument->GetRegionAt(++iRgn))
6412     {
6413 persson 1266 if (region->GetSample() == pSample) region->SetSample(NULL);
6414    
6415     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6416     gig::DimensionRegion *d = region->pDimensionRegions[i];
6417     if (d->pSample == pSample) d->pSample = NULL;
6418     }
6419     }
6420     }
6421 persson 1678 SamplesIterator = tmp; // restore iterator
6422 schoenebeck 809 }
6423    
6424 schoenebeck 823 void File::LoadSamples() {
6425     LoadSamples(NULL);
6426     }
6427    
6428 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
6429 schoenebeck 930 // Groups must be loaded before samples, because samples will try
6430     // to resolve the group they belong to
6431 schoenebeck 1158 if (!pGroups) LoadGroups();
6432 schoenebeck 930
6433 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
6434    
6435 persson 666 // just for progress calculation
6436     int iSampleIndex = 0;
6437     int iTotalSamples = WavePoolCount;
6438 schoenebeck 515
6439 schoenebeck 3474 // just for assembling path of optional extension files to be read
6440     const std::string folder = parentPath(pRIFF->GetFileName());
6441     const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
6442    
6443     // the main gig file and the extension files (.gx01, ... , .gx98) may
6444     // contain wave data (wave pool)
6445     std::vector<RIFF::File*> poolFiles;
6446     poolFiles.push_back(pRIFF);
6447    
6448     // get info about all extension files
6449     RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
6450     if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
6451     const uint32_t n = ckXfil->ReadInt32();
6452     for (int i = 0; i < n; i++) {
6453     // read the filename and load the extension file
6454     std::string name;
6455     ckXfil->ReadString(name, 128);
6456     std::string path = concatPath(folder, name);
6457     RIFF::File* pExtFile = new RIFF::File(path);
6458     // check that the dlsids match
6459     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6460     if (ckDLSID) {
6461     ::DLS::dlsid_t idExpected;
6462     idExpected.ulData1 = ckXfil->ReadInt32();
6463     idExpected.usData2 = ckXfil->ReadInt16();
6464     idExpected.usData3 = ckXfil->ReadInt16();
6465     ckXfil->Read(idExpected.abData, 8, 1);
6466     ::DLS::dlsid_t idFound;
6467     ckDLSID->Read(&idFound.ulData1, 1, 4);
6468     ckDLSID->Read(&idFound.usData2, 1, 2);
6469     ckDLSID->Read(&idFound.usData3, 1, 2);
6470     ckDLSID->Read(idFound.abData, 8, 1);
6471     if (memcmp(&idExpected, &idFound, 16) != 0)
6472     throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
6473     }
6474     poolFiles.push_back(pExtFile);
6475     ExtensionFiles.push_back(pExtFile);
6476 schoenebeck 2912 }
6477 persson 666 }
6478 schoenebeck 515
6479 schoenebeck 3474 // check if a .gx99 (GigaPulse) file exists
6480     RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
6481     if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
6482     std::string path = baseName + ".gx99";
6483     RIFF::File* pExtFile = new RIFF::File(path);
6484    
6485     // skip unused int and filename
6486 schoenebeck 3475 ckDoxf->SetPos(132, RIFF::stream_curpos);
6487 schoenebeck 3474
6488     // check that the dlsids match
6489     RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6490     if (ckDLSID) {
6491     ::DLS::dlsid_t idExpected;
6492     idExpected.ulData1 = ckDoxf->ReadInt32();
6493     idExpected.usData2 = ckDoxf->ReadInt16();
6494     idExpected.usData3 = ckDoxf->ReadInt16();
6495     ckDoxf->Read(idExpected.abData, 8, 1);
6496     ::DLS::dlsid_t idFound;
6497     ckDLSID->Read(&idFound.ulData1, 1, 4);
6498     ckDLSID->Read(&idFound.usData2, 1, 2);
6499     ckDLSID->Read(&idFound.usData3, 1, 2);
6500     ckDLSID->Read(idFound.abData, 8, 1);
6501     if (memcmp(&idExpected, &idFound, 16) != 0)
6502     throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
6503     }
6504     poolFiles.push_back(pExtFile);
6505     ExtensionFiles.push_back(pExtFile);
6506     }
6507    
6508     // load samples from extension files (if required)
6509     for (int i = 0; i < poolFiles.size(); i++) {
6510     RIFF::File* file = poolFiles[i];
6511 persson 666 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
6512     if (wvpl) {
6513 schoenebeck 3478 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
6514     wvpl->GetPos(); // should be zero, but just to be sure
6515 schoenebeck 3924 size_t i = 0;
6516     for (RIFF::List* wave = wvpl->GetSubListAt(i); wave;
6517     wave = wvpl->GetSubListAt(++i))
6518     {
6519 persson 666 if (wave->GetListType() == LIST_TYPE_WAVE) {
6520     // notify current progress
6521 schoenebeck 3488 if (pProgress) {
6522     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
6523     __notify_progress(pProgress, subprogress);
6524     }
6525 persson 666
6526 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
6527 schoenebeck 3474 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
6528 persson 666
6529     iSampleIndex++;
6530     }
6531 schoenebeck 2 }
6532 schoenebeck 3474 }
6533 schoenebeck 2 }
6534 persson 666
6535 schoenebeck 3488 if (pProgress)
6536     __notify_progress(pProgress, 1.0); // notify done
6537 schoenebeck 2 }
6538    
6539     Instrument* File::GetFirstInstrument() {
6540     if (!pInstruments) LoadInstruments();
6541     if (!pInstruments) return NULL;
6542     InstrumentsIterator = pInstruments->begin();
6543 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6544 schoenebeck 2 }
6545    
6546     Instrument* File::GetNextInstrument() {
6547     if (!pInstruments) return NULL;
6548     InstrumentsIterator++;
6549 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6550 schoenebeck 2 }
6551    
6552 schoenebeck 21 /**
6553 schoenebeck 3414 * Returns the total amount of instruments of this gig file.
6554     *
6555     * Note that this method might block for a long time in case it is required
6556     * to load the instruments info for the first time.
6557     *
6558     * @returns total amount of instruments
6559     */
6560     size_t File::CountInstruments() {
6561     if (!pInstruments) LoadInstruments();
6562     if (!pInstruments) return 0;
6563     return pInstruments->size();
6564     }
6565    
6566     /**
6567 schoenebeck 21 * Returns the instrument with the given index.
6568     *
6569 schoenebeck 515 * @param index - number of the sought instrument (0..n)
6570     * @param pProgress - optional: callback function for progress notification
6571 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
6572     */
6573 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
6574     if (!pInstruments) {
6575     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6576    
6577 schoenebeck 3488 if (pProgress) {
6578     // sample loading subtask
6579     progress_t subprogress;
6580     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6581     __notify_progress(&subprogress, 0.0f);
6582     if (GetAutoLoad())
6583 schoenebeck 3929 GetSample(0, &subprogress); // now force all samples to be loaded
6584 schoenebeck 3488 __notify_progress(&subprogress, 1.0f);
6585 schoenebeck 515
6586 schoenebeck 3488 // instrument loading subtask
6587     if (pProgress->callback) {
6588     subprogress.__range_min = subprogress.__range_max;
6589     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6590     }
6591     __notify_progress(&subprogress, 0.0f);
6592     LoadInstruments(&subprogress);
6593     __notify_progress(&subprogress, 1.0f);
6594     } else {
6595     // sample loading subtask
6596     if (GetAutoLoad())
6597 schoenebeck 3929 GetSample(0); // now force all samples to be loaded
6598 schoenebeck 3488
6599     // instrument loading subtask
6600     LoadInstruments();
6601 schoenebeck 515 }
6602     }
6603 schoenebeck 21 if (!pInstruments) return NULL;
6604     InstrumentsIterator = pInstruments->begin();
6605     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6606 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6607 schoenebeck 21 InstrumentsIterator++;
6608     }
6609     return NULL;
6610     }
6611    
6612 schoenebeck 809 /** @brief Add a new instrument definition.
6613     *
6614     * This will create a new Instrument object for the gig file. You have
6615     * to call Save() to make this persistent to the file.
6616     *
6617     * @returns pointer to new Instrument object
6618     */
6619     Instrument* File::AddInstrument() {
6620     if (!pInstruments) LoadInstruments();
6621     __ensureMandatoryChunksExist();
6622     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6623     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6624 persson 1192
6625     // add mandatory chunks to get the chunks in right order
6626     lstInstr->AddSubList(LIST_TYPE_INFO);
6627 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6628 persson 1192
6629 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
6630 persson 1209 pInstrument->GenerateDLSID();
6631 persson 1182
6632 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6633    
6634 persson 1182 // this string is needed for the gig to be loadable in GSt:
6635     pInstrument->pInfo->Software = "Endless Wave";
6636    
6637 schoenebeck 809 pInstruments->push_back(pInstrument);
6638     return pInstrument;
6639     }
6640 schoenebeck 2394
6641     /** @brief Add a duplicate of an existing instrument.
6642     *
6643     * Duplicates the instrument definition given by @a orig and adds it
6644     * to this file. This allows in an instrument editor application to
6645     * easily create variations of an instrument, which will be stored in
6646     * the same .gig file, sharing i.e. the same samples.
6647     *
6648     * Note that all sample pointers referenced by @a orig are simply copied as
6649     * memory address. Thus the respective samples are shared, not duplicated!
6650     *
6651     * You have to call Save() to make this persistent to the file.
6652     *
6653     * @param orig - original instrument to be copied
6654     * @returns duplicated copy of the given instrument
6655     */
6656     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6657     Instrument* instr = AddInstrument();
6658     instr->CopyAssign(orig);
6659     return instr;
6660     }
6661 schoenebeck 2482
6662     /** @brief Add content of another existing file.
6663     *
6664     * Duplicates the samples, groups and instruments of the original file
6665     * given by @a pFile and adds them to @c this File. In case @c this File is
6666     * a new one that you haven't saved before, then you have to call
6667     * SetFileName() before calling AddContentOf(), because this method will
6668     * automatically save this file during operation, which is required for
6669     * writing the sample waveform data by disk streaming.
6670     *
6671     * @param pFile - original file whose's content shall be copied from
6672     */
6673     void File::AddContentOf(File* pFile) {
6674     static int iCallCount = -1;
6675     iCallCount++;
6676     std::map<Group*,Group*> mGroups;
6677     std::map<Sample*,Sample*> mSamples;
6678    
6679     // clone sample groups
6680     for (int i = 0; pFile->GetGroup(i); ++i) {
6681     Group* g = AddGroup();
6682     g->Name =
6683     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6684     mGroups[pFile->GetGroup(i)] = g;
6685     }
6686    
6687     // clone samples (not waveform data here yet)
6688     for (int i = 0; pFile->GetSample(i); ++i) {
6689     Sample* s = AddSample();
6690     s->CopyAssignMeta(pFile->GetSample(i));
6691     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6692     mSamples[pFile->GetSample(i)] = s;
6693     }
6694 schoenebeck 3117
6695     // clone script groups and their scripts
6696     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6697     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6698     ScriptGroup* dg = AddScriptGroup();
6699     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6700     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6701     Script* ss = sg->GetScript(iScript);
6702     Script* ds = dg->AddScript();
6703     ds->CopyAssign(ss);
6704     }
6705     }
6706    
6707 schoenebeck 2482 //BUG: For some reason this method only works with this additional
6708     // Save() call in between here.
6709     //
6710     // Important: The correct one of the 2 Save() methods has to be called
6711     // here, depending on whether the file is completely new or has been
6712     // saved to disk already, otherwise it will result in data corruption.
6713     if (pRIFF->IsNew())
6714     Save(GetFileName());
6715     else
6716     Save();
6717    
6718     // clone instruments
6719     // (passing the crosslink table here for the cloned samples)
6720     for (int i = 0; pFile->GetInstrument(i); ++i) {
6721     Instrument* instr = AddInstrument();
6722     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6723     }
6724    
6725     // Mandatory: file needs to be saved to disk at this point, so this
6726     // file has the correct size and data layout for writing the samples'
6727     // waveform data to disk.
6728     Save();
6729    
6730     // clone samples' waveform data
6731     // (using direct read & write disk streaming)
6732     for (int i = 0; pFile->GetSample(i); ++i) {
6733     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6734     }
6735     }
6736 schoenebeck 809
6737     /** @brief Delete an instrument.
6738     *
6739     * This will delete the given Instrument object from the gig file. You
6740     * have to call Save() to make this persistent to the file.
6741     *
6742     * @param pInstrument - instrument to delete
6743 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
6744 schoenebeck 809 */
6745     void File::DeleteInstrument(Instrument* pInstrument) {
6746     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6747 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6748 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6749     pInstruments->erase(iter);
6750 schoenebeck 3478 pInstrument->DeleteChunks();
6751 schoenebeck 809 delete pInstrument;
6752     }
6753    
6754 schoenebeck 823 void File::LoadInstruments() {
6755     LoadInstruments(NULL);
6756     }
6757    
6758 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
6759 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
6760 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6761     if (lstInstruments) {
6762 schoenebeck 515 int iInstrumentIndex = 0;
6763 schoenebeck 3924 size_t i = 0;
6764     for (RIFF::List* lstInstr = lstInstruments->GetSubListAt(i);
6765     lstInstr; lstInstr = lstInstruments->GetSubListAt(++i))
6766     {
6767 schoenebeck 2 if (lstInstr->GetListType() == LIST_TYPE_INS) {
6768 schoenebeck 3488 if (pProgress) {
6769     // notify current progress
6770     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6771     __notify_progress(pProgress, localProgress);
6772 schoenebeck 515
6773 schoenebeck 3488 // divide local progress into subprogress for loading current Instrument
6774     progress_t subprogress;
6775     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6776 schoenebeck 515
6777 schoenebeck 3488 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6778     } else {
6779     pInstruments->push_back(new Instrument(this, lstInstr));
6780     }
6781 schoenebeck 515
6782     iInstrumentIndex++;
6783 schoenebeck 2 }
6784     }
6785 schoenebeck 3488 if (pProgress)
6786     __notify_progress(pProgress, 1.0); // notify done
6787 schoenebeck 2 }
6788     }
6789    
6790 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
6791     /// update is done directly to disk, as this method is called
6792     /// after File::Save()
6793 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6794     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6795     if (!_3crc) return;
6796 persson 1207
6797     // get the index of the sample
6798 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
6799 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6800    
6801 persson 1207 // write the CRC-32 checksum to disk
6802 persson 1199 _3crc->SetPos(iWaveIndex * 8);
6803 schoenebeck 2985 uint32_t one = 1;
6804     _3crc->WriteUint32(&one); // always 1
6805 persson 1199 _3crc->WriteUint32(&crc);
6806 schoenebeck 2989 }
6807 schoenebeck 2985
6808 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
6809     // get the index of the sample
6810     int iWaveIndex = GetWaveTableIndexOf(pSample);
6811     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6812    
6813     return GetSampleChecksumByIndex(iWaveIndex);
6814 persson 1199 }
6815    
6816 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
6817     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6818    
6819 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6820     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6821     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6822     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6823    
6824     // read the CRC-32 checksum directly from disk
6825 schoenebeck 2989 size_t pos = index * 8;
6826 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
6827     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6828    
6829     uint32_t one = load32(&pData[pos]); // always 1
6830     if (one != 1)
6831 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6832 schoenebeck 2985
6833     return load32(&pData[pos+4]);
6834     }
6835 schoenebeck 2989
6836 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6837 schoenebeck 3929 if (!pSamples) GetSample(0); // make sure sample chunks were scanned
6838 schoenebeck 2985 File::SampleList::iterator iter = pSamples->begin();
6839     File::SampleList::iterator end = pSamples->end();
6840     for (int index = 0; iter != end; ++iter, ++index)
6841     if (*iter == pSample)
6842     return index;
6843     return -1;
6844     }
6845    
6846     /**
6847     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6848     * the CRC32 check sums of all samples' raw wave data.
6849     *
6850     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6851     */
6852     bool File::VerifySampleChecksumTable() {
6853     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6854     if (!_3crc) return false;
6855     if (_3crc->GetNewSize() <= 0) return false;
6856     if (_3crc->GetNewSize() % 8) return false;
6857 schoenebeck 3929 if (!pSamples) GetSample(0); // make sure sample chunks were scanned
6858 schoenebeck 2985 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6859    
6860 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
6861 schoenebeck 2985
6862     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6863     if (!pData) return false;
6864    
6865 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
6866 schoenebeck 2985 uint32_t one = pData[i*2];
6867     if (one != 1) return false;
6868     }
6869    
6870     return true;
6871     }
6872    
6873     /**
6874     * Recalculates CRC32 checksums for all samples and rebuilds this gig
6875     * file's checksum table with those new checksums. This might usually
6876     * just be necessary if the checksum table was damaged.
6877     *
6878     * @e IMPORTANT: The current implementation of this method only works
6879     * with files that have not been modified since it was loaded, because
6880     * it expects that no externally caused file structure changes are
6881     * required!
6882     *
6883     * Due to the expectation above, this method is currently protected
6884     * and actually only used by the command line tool "gigdump" yet.
6885     *
6886     * @returns true if Save() is required to be called after this call,
6887     * false if no further action is required
6888     */
6889     bool File::RebuildSampleChecksumTable() {
6890     // make sure sample chunks were scanned
6891 schoenebeck 3929 if (!pSamples) GetSample(0);
6892 schoenebeck 2985
6893     bool bRequiresSave = false;
6894    
6895     // make sure "3CRC" chunk exists with required size
6896     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6897     if (!_3crc) {
6898     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6899 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
6900     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6901 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6902 schoenebeck 2985 bRequiresSave = true;
6903     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6904     _3crc->Resize(pSamples->size() * 8);
6905     bRequiresSave = true;
6906     }
6907    
6908     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6909     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6910     {
6911     File::SampleList::iterator iter = pSamples->begin();
6912     File::SampleList::iterator end = pSamples->end();
6913     for (; iter != end; ++iter) {
6914     gig::Sample* pSample = (gig::Sample*) *iter;
6915     int index = GetWaveTableIndexOf(pSample);
6916     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6917     pData[index*2] = 1; // always 1
6918     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6919     }
6920     }
6921     } else { // no file structure changes necessary, so directly write to disk and we are done ...
6922     // make sure file is in write mode
6923     pRIFF->SetMode(RIFF::stream_mode_read_write);
6924     {
6925     File::SampleList::iterator iter = pSamples->begin();
6926     File::SampleList::iterator end = pSamples->end();
6927     for (; iter != end; ++iter) {
6928     gig::Sample* pSample = (gig::Sample*) *iter;
6929     int index = GetWaveTableIndexOf(pSample);
6930     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6931 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
6932     SetSampleChecksum(pSample, pSample->crc);
6933 schoenebeck 2985 }
6934     }
6935     }
6936    
6937     return bRequiresSave;
6938     }
6939    
6940 schoenebeck 929 Group* File::GetFirstGroup() {
6941     if (!pGroups) LoadGroups();
6942 schoenebeck 930 // there must always be at least one group
6943 schoenebeck 929 GroupsIterator = pGroups->begin();
6944 schoenebeck 930 return *GroupsIterator;
6945 schoenebeck 929 }
6946 schoenebeck 2
6947 schoenebeck 929 Group* File::GetNextGroup() {
6948     if (!pGroups) return NULL;
6949     ++GroupsIterator;
6950     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6951     }
6952 schoenebeck 2
6953 schoenebeck 929 /**
6954     * Returns the group with the given index.
6955     *
6956     * @param index - number of the sought group (0..n)
6957     * @returns sought group or NULL if there's no such group
6958     */
6959 schoenebeck 3935 Group* File::GetGroup(size_t index) {
6960 schoenebeck 929 if (!pGroups) LoadGroups();
6961 schoenebeck 3936 if (index >= pGroups->size()) return NULL;
6962     return (*pGroups)[index];
6963 schoenebeck 929 }
6964    
6965 schoenebeck 2543 /**
6966     * Returns the group with the given group name.
6967     *
6968     * Note: group names don't have to be unique in the gig format! So there
6969     * can be multiple groups with the same name. This method will simply
6970     * return the first group found with the given name.
6971     *
6972     * @param name - name of the sought group
6973     * @returns sought group or NULL if there's no group with that name
6974     */
6975     Group* File::GetGroup(String name) {
6976     if (!pGroups) LoadGroups();
6977     GroupsIterator = pGroups->begin();
6978     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6979     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6980     return NULL;
6981     }
6982    
6983 schoenebeck 929 Group* File::AddGroup() {
6984     if (!pGroups) LoadGroups();
6985 schoenebeck 930 // there must always be at least one group
6986 schoenebeck 929 __ensureMandatoryChunksExist();
6987 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6988 schoenebeck 929 pGroups->push_back(pGroup);
6989     return pGroup;
6990     }
6991    
6992 schoenebeck 1081 /** @brief Delete a group and its samples.
6993     *
6994     * This will delete the given Group object and all the samples that
6995     * belong to this group from the gig file. You have to call Save() to
6996     * make this persistent to the file.
6997     *
6998     * @param pGroup - group to delete
6999     * @throws gig::Exception if given group could not be found
7000     */
7001 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
7002 schoenebeck 930 if (!pGroups) LoadGroups();
7003 schoenebeck 3936 std::vector<Group*>::iterator iter =
7004     find(pGroups->begin(), pGroups->end(), pGroup);
7005 schoenebeck 929 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
7006 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
7007 schoenebeck 1081 // delete all members of this group
7008 schoenebeck 3934 Sample* pSample;
7009     while ((pSample = pGroup->GetSample(0))) {
7010 schoenebeck 1081 DeleteSample(pSample);
7011     }
7012     // now delete this group object
7013     pGroups->erase(iter);
7014 schoenebeck 3478 pGroup->DeleteChunks();
7015 schoenebeck 1081 delete pGroup;
7016     }
7017    
7018     /** @brief Delete a group.
7019     *
7020     * This will delete the given Group object from the gig file. All the
7021     * samples that belong to this group will not be deleted, but instead
7022     * be moved to another group. You have to call Save() to make this
7023     * persistent to the file.
7024     *
7025     * @param pGroup - group to delete
7026     * @throws gig::Exception if given group could not be found
7027     */
7028     void File::DeleteGroupOnly(Group* pGroup) {
7029     if (!pGroups) LoadGroups();
7030 schoenebeck 3936 std::vector<Group*>::iterator iter =
7031     find(pGroups->begin(), pGroups->end(), pGroup);
7032 schoenebeck 1081 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
7033     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
7034 schoenebeck 930 // move all members of this group to another group
7035     pGroup->MoveAll();
7036 schoenebeck 929 pGroups->erase(iter);
7037 schoenebeck 3478 pGroup->DeleteChunks();
7038 schoenebeck 929 delete pGroup;
7039     }
7040    
7041     void File::LoadGroups() {
7042 schoenebeck 3936 if (!pGroups) pGroups = new std::vector<Group*>;
7043 schoenebeck 930 // try to read defined groups from file
7044 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
7045 schoenebeck 930 if (lst3gri) {
7046     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
7047     if (lst3gnl) {
7048 schoenebeck 3924 size_t i = 0;
7049     for (RIFF::Chunk* ck = lst3gnl->GetSubChunkAt(i); ck;
7050     ck = lst3gnl->GetSubChunkAt(++i))
7051     {
7052 schoenebeck 930 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
7053 schoenebeck 3440 if (pVersion && pVersion->major > 2 &&
7054 persson 1266 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
7055    
7056 schoenebeck 930 pGroups->push_back(new Group(this, ck));
7057     }
7058 schoenebeck 929 }
7059     }
7060     }
7061 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
7062     if (!pGroups->size()) {
7063     Group* pGroup = new Group(this, NULL);
7064     pGroup->Name = "Default Group";
7065     pGroups->push_back(pGroup);
7066     }
7067 schoenebeck 929 }
7068    
7069 schoenebeck 2584 /** @brief Get instrument script group (by index).
7070     *
7071     * Returns the real-time instrument script group with the given index.
7072     *
7073     * @param index - number of the sought group (0..n)
7074     * @returns sought script group or NULL if there's no such group
7075     */
7076     ScriptGroup* File::GetScriptGroup(uint index) {
7077     if (!pScriptGroups) LoadScriptGroups();
7078     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7079     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7080     if (i == index) return *it;
7081     return NULL;
7082     }
7083    
7084     /** @brief Get instrument script group (by name).
7085     *
7086     * Returns the first real-time instrument script group found with the given
7087     * group name. Note that group names may not necessarily be unique.
7088     *
7089     * @param name - name of the sought script group
7090     * @returns sought script group or NULL if there's no such group
7091     */
7092     ScriptGroup* File::GetScriptGroup(const String& name) {
7093     if (!pScriptGroups) LoadScriptGroups();
7094     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7095     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7096     if ((*it)->Name == name) return *it;
7097     return NULL;
7098     }
7099    
7100     /** @brief Add new instrument script group.
7101     *
7102     * Adds a new, empty real-time instrument script group to the file.
7103     *
7104     * You have to call Save() to make this persistent to the file.
7105     *
7106     * @return new empty script group
7107     */
7108     ScriptGroup* File::AddScriptGroup() {
7109     if (!pScriptGroups) LoadScriptGroups();
7110     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
7111     pScriptGroups->push_back(pScriptGroup);
7112     return pScriptGroup;
7113     }
7114    
7115     /** @brief Delete an instrument script group.
7116     *
7117     * This will delete the given real-time instrument script group and all its
7118     * instrument scripts it contains. References inside instruments that are
7119     * using the deleted scripts will be removed from the respective instruments
7120     * accordingly.
7121     *
7122     * You have to call Save() to make this persistent to the file.
7123     *
7124     * @param pScriptGroup - script group to delete
7125     * @throws gig::Exception if given script group could not be found
7126     */
7127     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
7128     if (!pScriptGroups) LoadScriptGroups();
7129     std::list<ScriptGroup*>::iterator iter =
7130     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
7131     if (iter == pScriptGroups->end())
7132     throw gig::Exception("Could not delete script group, could not find given script group");
7133     pScriptGroups->erase(iter);
7134     for (int i = 0; pScriptGroup->GetScript(i); ++i)
7135     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
7136     if (pScriptGroup->pList)
7137     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
7138 schoenebeck 3478 pScriptGroup->DeleteChunks();
7139 schoenebeck 2584 delete pScriptGroup;
7140     }
7141    
7142     void File::LoadScriptGroups() {
7143     if (pScriptGroups) return;
7144     pScriptGroups = new std::list<ScriptGroup*>;
7145     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
7146     if (lstLS) {
7147 schoenebeck 3924 size_t i = 0;
7148     for (RIFF::List* lst = lstLS->GetSubListAt(i); lst;
7149     lst = lstLS->GetSubListAt(++i))
7150 schoenebeck 2584 {
7151     if (lst->GetListType() == LIST_TYPE_RTIS) {
7152     pScriptGroups->push_back(new ScriptGroup(this, lst));
7153     }
7154     }
7155     }
7156     }
7157    
7158 schoenebeck 1098 /**
7159     * Apply all the gig file's current instruments, samples, groups and settings
7160     * to the respective RIFF chunks. You have to call Save() to make changes
7161     * persistent.
7162     *
7163     * Usually there is absolutely no need to call this method explicitly.
7164     * It will be called automatically when File::Save() was called.
7165     *
7166 schoenebeck 2682 * @param pProgress - callback function for progress notification
7167 schoenebeck 1098 * @throws Exception - on errors
7168     */
7169 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
7170 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
7171 persson 1192
7172 schoenebeck 2584 // update own gig format extension chunks
7173     // (not part of the GigaStudio 4 format)
7174 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
7175     if (!lst3LS) {
7176     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
7177     }
7178     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
7179 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
7180     // before the actual wave data
7181 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
7182     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
7183    
7184 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
7185     // because the instruments' script slots will write the file offsets
7186     // of the respective instrument script chunk as reference.
7187     if (pScriptGroups) {
7188 schoenebeck 2912 // Update instrument script (group) chunks.
7189     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7190     it != pScriptGroups->end(); ++it)
7191     {
7192     (*it)->UpdateChunks(pProgress);
7193 schoenebeck 2584 }
7194     }
7195    
7196 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
7197     // custom "3LS " chunk again
7198     if (!lst3LS->CountSubChunks()) {
7199     pRIFF->DeleteSubChunk(lst3LS);
7200     lst3LS = NULL;
7201     }
7202    
7203 schoenebeck 1098 // first update base class's chunks
7204 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
7205 schoenebeck 929
7206 persson 1199 if (newFile) {
7207 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
7208     // is placed first in file
7209 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
7210 schoenebeck 3924 RIFF::Chunk* first = pRIFF->GetSubChunkAt(0);
7211 persson 1192 if (first != info) {
7212     pRIFF->MoveSubChunk(info, first);
7213     }
7214     }
7215    
7216 schoenebeck 1098 // update group's chunks
7217     if (pGroups) {
7218 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
7219     // (before updating the Group chunks)
7220     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
7221     if (!_3gri) {
7222     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
7223     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
7224 schoenebeck 1098 }
7225 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
7226     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
7227 persson 1266
7228     // v3: make sure the file has 128 3gnm chunks
7229 schoenebeck 2467 // (before updating the Group chunks)
7230 schoenebeck 3440 if (pVersion && pVersion->major > 2) {
7231 schoenebeck 3924 size_t i = 0;
7232     for (RIFF::Chunk* _3gnm = _3gnl->GetSubChunkAt(i); i < 128;
7233     _3gnm = _3gnl->GetSubChunkAt(++i))
7234     {
7235 schoenebeck 3656 // create 128 empty placeholder strings which will either
7236     // be filled by Group::UpdateChunks below or left empty.
7237     ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
7238 persson 1266 }
7239     }
7240 schoenebeck 2467
7241 schoenebeck 3936 std::vector<Group*>::iterator iter = pGroups->begin();
7242     std::vector<Group*>::iterator end = pGroups->end();
7243 schoenebeck 2467 for (; iter != end; ++iter) {
7244 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
7245 schoenebeck 2467 }
7246 schoenebeck 1098 }
7247 persson 1199
7248     // update einf chunk
7249    
7250     // The einf chunk contains statistics about the gig file, such
7251     // as the number of regions and samples used by each
7252     // instrument. It is divided in equally sized parts, where the
7253     // first part contains information about the whole gig file,
7254     // and the rest of the parts map to each instrument in the
7255     // file.
7256     //
7257     // At the end of each part there is a bit map of each sample
7258     // in the file, where a set bit means that the sample is used
7259     // by the file/instrument.
7260     //
7261     // Note that there are several fields with unknown use. These
7262     // are set to zero.
7263    
7264 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
7265 persson 1199 int einfSize = (Instruments + 1) * sublen;
7266    
7267     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
7268     if (einf) {
7269     if (einf->GetSize() != einfSize) {
7270     einf->Resize(einfSize);
7271     memset(einf->LoadChunkData(), 0, einfSize);
7272     }
7273     } else if (newFile) {
7274     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
7275     }
7276     if (einf) {
7277     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
7278    
7279     std::map<gig::Sample*,int> sampleMap;
7280 schoenebeck 3929 size_t sampleIdx = 0;
7281     for (Sample* pSample = GetSample(0); pSample;
7282     pSample = GetSample(++sampleIdx))
7283     {
7284     sampleMap[pSample] = sampleIdx;
7285 persson 1199 }
7286    
7287     int totnbusedsamples = 0;
7288     int totnbusedchannels = 0;
7289     int totnbregions = 0;
7290     int totnbdimregions = 0;
7291 persson 1264 int totnbloops = 0;
7292 persson 1199 int instrumentIdx = 0;
7293    
7294     memset(&pData[48], 0, sublen - 48);
7295    
7296     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
7297     instrument = GetNextInstrument()) {
7298     int nbusedsamples = 0;
7299     int nbusedchannels = 0;
7300     int nbdimregions = 0;
7301 persson 1264 int nbloops = 0;
7302 persson 1199
7303     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
7304    
7305 schoenebeck 3927 size_t iRgn = 0;
7306     for (Region* region = instrument->GetRegionAt(iRgn); region;
7307     region = instrument->GetRegionAt(++iRgn))
7308     {
7309 persson 1199 for (int i = 0 ; i < region->DimensionRegions ; i++) {
7310     gig::DimensionRegion *d = region->pDimensionRegions[i];
7311     if (d->pSample) {
7312     int sampleIdx = sampleMap[d->pSample];
7313     int byte = 48 + sampleIdx / 8;
7314     int bit = 1 << (sampleIdx & 7);
7315     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
7316     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
7317     nbusedsamples++;
7318     nbusedchannels += d->pSample->Channels;
7319    
7320     if ((pData[byte] & bit) == 0) {
7321     pData[byte] |= bit;
7322     totnbusedsamples++;
7323     totnbusedchannels += d->pSample->Channels;
7324     }
7325     }
7326     }
7327 persson 1264 if (d->SampleLoops) nbloops++;
7328 persson 1199 }
7329     nbdimregions += region->DimensionRegions;
7330     }
7331     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7332     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
7333     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
7334     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
7335     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
7336     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
7337     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
7338 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
7339     // next 8 bytes unknown
7340 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
7341 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
7342 persson 1199 // next 4 bytes unknown
7343    
7344     totnbregions += instrument->Regions;
7345     totnbdimregions += nbdimregions;
7346 persson 1264 totnbloops += nbloops;
7347 persson 1199 instrumentIdx++;
7348     }
7349     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7350     // store32(&pData[0], sublen);
7351     store32(&pData[4], totnbusedchannels);
7352     store32(&pData[8], totnbusedsamples);
7353     store32(&pData[12], Instruments);
7354     store32(&pData[16], totnbregions);
7355     store32(&pData[20], totnbdimregions);
7356 persson 1264 store32(&pData[24], totnbloops);
7357     // next 8 bytes unknown
7358     // next 4 bytes unknown, not always 0
7359 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
7360 persson 1199 // next 4 bytes unknown
7361     }
7362    
7363     // update 3crc chunk
7364    
7365     // The 3crc chunk contains CRC-32 checksums for the
7366 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
7367     // chunk here (in RAM) with the old crc values which we read from the
7368     // 3CRC chunk when we opened the file (available with gig::Sample::crc
7369     // member variable). This step is required, because samples might have
7370     // been deleted by the user since the file was opened, which in turn
7371     // changes the order of the (i.e. old) checksums within the 3crc chunk.
7372     // If a sample was conciously modified by the user (that is if
7373     // Sample::Write() was called later on) then Sample::Write() will just
7374     // update the respective individual checksum(s) directly on disk and
7375     // leaves all other sample checksums untouched.
7376 persson 1199
7377 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
7378 persson 1199 if (_3crc) {
7379     _3crc->Resize(pSamples->size() * 8);
7380 schoenebeck 2989 } else /*if (newFile)*/ {
7381 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
7382 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
7383 schoenebeck 3440 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
7384 persson 1199 }
7385 schoenebeck 2989 { // must be performed in RAM here ...
7386     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
7387     if (pData) {
7388     File::SampleList::iterator iter = pSamples->begin();
7389     File::SampleList::iterator end = pSamples->end();
7390     for (int index = 0; iter != end; ++iter, ++index) {
7391     gig::Sample* pSample = (gig::Sample*) *iter;
7392     pData[index*2] = 1; // always 1
7393     pData[index*2+1] = pSample->crc;
7394     }
7395     }
7396     }
7397 schoenebeck 1098 }
7398 schoenebeck 2609
7399     void File::UpdateFileOffsets() {
7400     DLS::File::UpdateFileOffsets();
7401 schoenebeck 929
7402 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
7403     instrument = GetNextInstrument())
7404     {
7405     instrument->UpdateScriptFileOffsets();
7406     }
7407     }
7408    
7409 schoenebeck 1524 /**
7410 schoenebeck 3481 * Enable / disable automatic loading. By default this property is
7411     * enabled and every information is loaded automatically. However
7412 schoenebeck 1524 * loading all Regions, DimensionRegions and especially samples might
7413     * take a long time for large .gig files, and sometimes one might only
7414     * be interested in retrieving very superficial informations like the
7415     * amount of instruments and their names. In this case one might disable
7416     * automatic loading to avoid very slow response times.
7417     *
7418     * @e CAUTION: by disabling this property many pointers (i.e. sample
7419 schoenebeck 3481 * references) and attributes will have invalid or even undefined
7420 schoenebeck 1524 * data! This feature is currently only intended for retrieving very
7421 schoenebeck 3481 * superficial information in a very fast way. Don't use it to retrieve
7422     * details like synthesis information or even to modify .gig files!
7423 schoenebeck 1524 */
7424     void File::SetAutoLoad(bool b) {
7425     bAutoLoad = b;
7426     }
7427 schoenebeck 1098
7428 schoenebeck 1524 /**
7429     * Returns whether automatic loading is enabled.
7430     * @see SetAutoLoad()
7431     */
7432     bool File::GetAutoLoad() {
7433     return bAutoLoad;
7434     }
7435 schoenebeck 1098
7436 schoenebeck 3710 /**
7437     * Returns @c true in case this gig File object uses any gig format
7438     * extension, that is e.g. whether any DimensionRegion object currently
7439     * has any setting effective that would require our "LSDE" RIFF chunk to
7440     * be stored to the gig file.
7441     *
7442     * Right now this is a private method. It is considerable though this method
7443     * to become (in slightly modified form) a public API method in future, i.e.
7444     * to allow instrument editors to visualize and/or warn the user of any gig
7445     * format extension being used. See also comments on
7446     * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
7447     * potential public API change in future.
7448     */
7449     bool File::UsesAnyGigFormatExtension() const {
7450     if (!pInstruments) return false;
7451     InstrumentList::iterator iter = pInstruments->begin();
7452     InstrumentList::iterator end = pInstruments->end();
7453     for (; iter != end; ++iter) {
7454     Instrument* pInstrument = static_cast<gig::Instrument*>(*iter);
7455     if (pInstrument->UsesAnyGigFormatExtension())
7456     return true;
7457     }
7458     return false;
7459     }
7460 schoenebeck 1524
7461    
7462 schoenebeck 2 // *************** Exception ***************
7463     // *
7464    
7465 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
7466 schoenebeck 2 }
7467    
7468 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
7469     va_list arg;
7470     va_start(arg, format);
7471     Message = assemble(format, arg);
7472     va_end(arg);
7473     }
7474    
7475     Exception::Exception(String format, va_list arg) : DLS::Exception() {
7476     Message = assemble(format, arg);
7477     }
7478    
7479 schoenebeck 2 void Exception::PrintMessage() {
7480     std::cout << "gig::Exception: " << Message << std::endl;
7481     }
7482    
7483 schoenebeck 518
7484     // *************** functions ***************
7485     // *
7486    
7487     /**
7488     * Returns the name of this C++ library. This is usually "libgig" of
7489     * course. This call is equivalent to RIFF::libraryName() and
7490     * DLS::libraryName().
7491     */
7492     String libraryName() {
7493     return PACKAGE;
7494     }
7495    
7496     /**
7497     * Returns version of this C++ library. This call is equivalent to
7498     * RIFF::libraryVersion() and DLS::libraryVersion().
7499     */
7500     String libraryVersion() {
7501     return VERSION;
7502     }
7503    
7504 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC