/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1070 by persson, Mon Mar 5 17:42:35 2007 UTC revision 3327 by schoenebeck, Sun Jul 23 18:18:30 2017 UTC
# Line 2  Line 2 
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file access library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 24  Line 24 
24  #include "gig.h"  #include "gig.h"
25    
26  #include "helper.h"  #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30  #include <math.h>  #include <math.h>
31  #include <iostream>  #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38  /// Initial size of the sample buffer which is used for decompression of  /// Initial size of the sample buffer which is used for decompression of
39  /// compressed sample wave streams - this value should always be bigger than  /// compressed sample wave streams - this value should always be bigger than
# Line 49  Line 56 
56  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59  namespace gig {  #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
 // *************** progress_t ***************  
 // *  
   
     progress_t::progress_t() {  
         callback    = NULL;  
         custom      = NULL;  
         __range_min = 0.0f;  
         __range_max = 1.0f;  
     }  
   
     // private helper function to convert progress of a subprocess into the global progress  
     static void __notify_progress(progress_t* pProgress, float subprogress) {  
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
   
     // private helper function to divide a progress into subprogresses  
     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  
         if (pParentProgress && pParentProgress->callback) {  
             const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
             pSubProgress->callback    = pParentProgress->callback;  
             pSubProgress->custom      = pParentProgress->custom;  
             pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  
             pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  
         }  
     }  
61    
62    namespace gig {
63    
64  // *************** Internal functions for sample decompression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
# Line 121  namespace { Line 99  namespace {
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 158  namespace { Line 136  namespace {
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
141      {      {
142          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
143    
# Line 254  namespace { Line 232  namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
369      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
370    
371      /** @brief Constructor.      /** @brief Constructor.
# Line 277  namespace { Line 385  namespace {
385       *                         ('wvpl') list chunk       *                         ('wvpl') list chunk
386       * @param fileNo         - number of an extension file where this sample       * @param fileNo         - number of an extension file where this sample
387       *                         is located, 0 otherwise       *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389       */       */
390      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391          pInfo->UseFixedLengthStrings = true;          : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399          FileNo = fileNo;          FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          if (pCk3gix) {          if (pCk3gix) {
415              uint16_t iSampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
# Line 314  namespace { Line 441  namespace {
441              Manufacturer  = 0;              Manufacturer  = 0;
442              Product       = 0;              Product       = 0;
443              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444              MIDIUnityNote = 64;              MIDIUnityNote = 60;
445              FineTune      = 0;              FineTune      = 0;
446                SMPTEFormat   = smpte_format_no_offset;
447              SMPTEOffset   = 0;              SMPTEOffset   = 0;
448              Loops         = 0;              Loops         = 0;
449              LoopID        = 0;              LoopID        = 0;
450                LoopType      = loop_type_normal;
451              LoopStart     = 0;              LoopStart     = 0;
452              LoopEnd       = 0;              LoopEnd       = 0;
453              LoopFraction  = 0;              LoopFraction  = 0;
# Line 358  namespace { Line 487  namespace {
487      }      }
488    
489      /**      /**
490         * Make a (semi) deep copy of the Sample object given by @a orig (without
491         * the actual waveform data) and assign it to this object.
492         *
493         * Discussion: copying .gig samples is a bit tricky. It requires three
494         * steps:
495         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496         *    its new sample waveform data size.
497         * 2. Saving the file (done by File::Save()) so that it gains correct size
498         *    and layout for writing the actual wave form data directly to disc
499         *    in next step.
500         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501         *
502         * @param orig - original Sample object to be copied from
503         */
504        void Sample::CopyAssignMeta(const Sample* orig) {
505            // handle base classes
506            DLS::Sample::CopyAssignCore(orig);
507            
508            // handle actual own attributes of this class
509            Manufacturer = orig->Manufacturer;
510            Product = orig->Product;
511            SamplePeriod = orig->SamplePeriod;
512            MIDIUnityNote = orig->MIDIUnityNote;
513            FineTune = orig->FineTune;
514            SMPTEFormat = orig->SMPTEFormat;
515            SMPTEOffset = orig->SMPTEOffset;
516            Loops = orig->Loops;
517            LoopID = orig->LoopID;
518            LoopType = orig->LoopType;
519            LoopStart = orig->LoopStart;
520            LoopEnd = orig->LoopEnd;
521            LoopSize = orig->LoopSize;
522            LoopFraction = orig->LoopFraction;
523            LoopPlayCount = orig->LoopPlayCount;
524            
525            // schedule resizing this sample to the given sample's size
526            Resize(orig->GetSize());
527        }
528    
529        /**
530         * Should be called after CopyAssignMeta() and File::Save() sequence.
531         * Read more about it in the discussion of CopyAssignMeta(). This method
532         * copies the actual waveform data by disk streaming.
533         *
534         * @e CAUTION: this method is currently not thread safe! During this
535         * operation the sample must not be used for other purposes by other
536         * threads!
537         *
538         * @param orig - original Sample object to be copied from
539         */
540        void Sample::CopyAssignWave(const Sample* orig) {
541            const int iReadAtOnce = 32*1024;
542            char* buf = new char[iReadAtOnce * orig->FrameSize];
543            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544            file_offset_t restorePos = pOrig->GetPos();
545            pOrig->SetPos(0);
546            SetPos(0);
547            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548                               n = pOrig->Read(buf, iReadAtOnce))
549            {
550                Write(buf, n);
551            }
552            pOrig->SetPos(restorePos);
553            delete [] buf;
554        }
555    
556        /**
557       * Apply sample and its settings to the respective RIFF chunks. You have       * Apply sample and its settings to the respective RIFF chunks. You have
558       * to call File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
559       *       *
560       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
561       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
562       *       *
563         * @param pProgress - callback function for progress notification
564       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565       *                        was provided yet       *                        was provided yet
566       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
567       */       */
568      void Sample::UpdateChunks() {      void Sample::UpdateChunks(progress_t* pProgress) {
569          // first update base class's chunks          // first update base class's chunks
570          DLS::Sample::UpdateChunks();          DLS::Sample::UpdateChunks(pProgress);
571    
572          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
573          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
575                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576                memset(pCkSmpl->LoadChunkData(), 0, 60);
577            }
578          // update 'smpl' chunk          // update 'smpl' chunk
579          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
582          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
583          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
584          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
585          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
586          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
587          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
588          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
589    
590          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
591    
592          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
593          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
594          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
595          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
596          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
597          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
598    
599          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
600          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 614  namespace {
614          }          }
615          // update '3gix' chunk          // update '3gix' chunk
616          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
617          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
618    
619            // if the library user toggled the "Compressed" attribute from true to
620            // false, then the EWAV chunk associated with compressed samples needs
621            // to be deleted
622            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623            if (ewav && !Compressed) {
624                pWaveList->DeleteSubChunk(ewav);
625            }
626      }      }
627    
628      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
630          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
631          this->SamplesTotal = 0;          this->SamplesTotal = 0;
632          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
633    
634          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 437  namespace { Line 645  namespace {
645                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
646                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
647                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649    
650                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
651                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 456  namespace { Line 664  namespace {
664    
665                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
666                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
667                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
668    
669                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
670                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 472  namespace { Line 680  namespace {
680    
681          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
683          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
684          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
685          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
687              FrameTable[i] = *iter;              FrameTable[i] = *iter;
688          }          }
# Line 515  namespace { Line 723  namespace {
723       *                      the cached sample data in bytes       *                      the cached sample data in bytes
724       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
725       */       */
726      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728      }      }
729    
# Line 574  namespace { Line 782  namespace {
782       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
783       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
784       */       */
785      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789            SetPos(0); // reset read position to begin of sample
790          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
791          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 615  namespace { Line 824  namespace {
824          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
826          RAMCache.Size   = 0;          RAMCache.Size   = 0;
827            RAMCache.NullExtensionSize = 0;
828      }      }
829    
830      /** @brief Resize sample.      /** @brief Resize sample.
# Line 639  namespace { Line 849  namespace {
849       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850       * other formats will fail!       * other formats will fail!
851       *       *
852       * @param iNewSize - new sample wave data size in sample points (must be       * @param NewSize - new sample wave data size in sample points (must be
853       *                   greater than zero)       *                  greater than zero)
854       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855       *                         or if \a iNewSize is less than 1       * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
857       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858       *      DLS::Sample::FormatTag, File::Save()       *      DLS::Sample::FormatTag, File::Save()
859       */       */
860      void Sample::Resize(int iNewSize) {      void Sample::Resize(file_offset_t NewSize) {
861          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862          DLS::Sample::Resize(iNewSize);          DLS::Sample::Resize(NewSize);
863      }      }
864    
865      /**      /**
# Line 673  namespace { Line 883  namespace {
883       * @returns            the new sample position       * @returns            the new sample position
884       * @see                Read()       * @see                Read()
885       */       */
886      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887          if (Compressed) {          if (Compressed) {
888              switch (Whence) {              switch (Whence) {
889                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 691  namespace { Line 901  namespace {
901              }              }
902              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
906              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
907              return this->SamplePos;              return this->SamplePos;
908          }          }
909          else { // not compressed          else { // not compressed
910              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
911              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
913                                              : result / this->FrameSize;                                              : result / this->FrameSize;
914          }          }
# Line 707  namespace { Line 917  namespace {
917      /**      /**
918       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
919       */       */
920      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
921          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
922          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
923      }      }
# Line 746  namespace { Line 956  namespace {
956       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
957       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
958       */       */
959      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
963    
964          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
# Line 786  namespace { Line 996  namespace {
996                                  // reading, swap all sample frames so it reflects                                  // reading, swap all sample frames so it reflects
997                                  // backward playback                                  // backward playback
998    
999                                  unsigned long swapareastart       = totalreadsamples;                                  file_offset_t swapareastart       = totalreadsamples;
1000                                  unsigned long loopoffset          = GetPos() - loop.LoopStart;                                  file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1001                                  unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                  file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002                                  unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                  file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1003    
1004                                  SetPos(reverseplaybackend);                                  SetPos(reverseplaybackend);
1005    
# Line 809  namespace { Line 1019  namespace {
1019                                  }                                  }
1020    
1021                                  // reverse the sample frames for backward playback                                  // reverse the sample frames for backward playback
1022                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023                                        SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024                              }                              }
1025                          } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1026                          break;                          break;
# Line 836  namespace { Line 1047  namespace {
1047                          // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1048                          // backward playback                          // backward playback
1049    
1050                          unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1051                          unsigned long loopoffset          = GetPos() - loop.LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1052                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053                                                                                    : samplestoread;                                                                                    : samplestoread;
1054                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055    
1056                          SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1057    
# Line 920  namespace { Line 1131  namespace {
1131       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1132       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1133       */       */
1134      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1136          if (!Compressed) {          if (!Compressed) {
1137              if (BitDepth == 24) {              if (BitDepth == 24) {
# Line 935  namespace { Line 1146  namespace {
1146          else {          else {
1147              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1148              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1149              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1150                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1151                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1152                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 958  namespace { Line 1169  namespace {
1169              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1172                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1173                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174    
1175                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1176    
# Line 1099  namespace { Line 1310  namespace {
1310       *       *
1311       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1312       *       *
1313         * For 16 bit samples, the data in the source buffer should be
1314         * int16_t (using native endianness). For 24 bit, the buffer
1315         * should contain three bytes per sample, little-endian.
1316         *
1317       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1318       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1319       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
1320       * @throws gig::Exception if sample is compressed       * @throws gig::Exception if sample is compressed
1321       * @see DLS::LoadSampleData()       * @see DLS::LoadSampleData()
1322       */       */
1323      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325          return DLS::Sample::Write(pBuffer, SampleCount);  
1326            // if this is the first write in this sample, reset the
1327            // checksum calculator
1328            if (pCkData->GetPos() == 0) {
1329                __resetCRC(crc);
1330            }
1331            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332            file_offset_t res;
1333            if (BitDepth == 24) {
1334                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335            } else { // 16 bit
1336                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337                                    : pCkData->Write(pBuffer, SampleCount, 2);
1338            }
1339            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340    
1341            // if this is the last write, update the checksum chunk in the
1342            // file
1343            if (pCkData->GetPos() == pCkData->GetSize()) {
1344                __finalizeCRC(crc);
1345                File* pFile = static_cast<File*>(GetParent());
1346                pFile->SetSampleChecksum(this, crc);
1347            }
1348            return res;
1349      }      }
1350    
1351      /**      /**
# Line 1126  namespace { Line 1364  namespace {
1364       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1365       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1366       */       */
1367      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368          buffer_t result;          buffer_t result;
1369          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1370                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1373          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1374          return result;          return result;
# Line 1164  namespace { Line 1402  namespace {
1402          return pGroup;          return pGroup;
1403      }      }
1404    
1405        /**
1406         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407         * time when this sample's wave form data was modified for the last time
1408         * by calling Write(). This checksum only covers the raw wave form data,
1409         * not any meta informations like i.e. bit depth or loop points. Since
1410         * this method just returns the checksum stored for this sample i.e. when
1411         * the gig file was loaded, this method returns immediately. So it does no
1412         * recalcuation of the checksum with the currently available sample wave
1413         * form data.
1414         *
1415         * @see VerifyWaveData()
1416         */
1417        uint32_t Sample::GetWaveDataCRC32Checksum() {
1418            return crc;
1419        }
1420    
1421        /**
1422         * Checks the integrity of this sample's raw audio wave data. Whenever a
1423         * Sample's raw wave data is intentionally modified (i.e. by calling
1424         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425         * is calculated and stored/updated for this sample, along to the sample's
1426         * meta informations.
1427         *
1428         * Now by calling this method the current raw audio wave data is checked
1429         * against the already stored CRC32 check sum in order to check whether the
1430         * sample data had been damaged unintentionally for some reason. Since by
1431         * calling this method always the entire raw audio wave data has to be
1432         * read, verifying all samples this way may take a long time accordingly.
1433         * And that's also the reason why the sample integrity is not checked by
1434         * default whenever a gig file is loaded. So this method must be called
1435         * explicitly to fulfill this task.
1436         *
1437         * @param pActually - (optional) if provided, will be set to the actually
1438         *                    calculated checksum of the current raw wave form data,
1439         *                    you can get the expected checksum instead by calling
1440         *                    GetWaveDataCRC32Checksum()
1441         * @returns true if sample is OK or false if the sample is damaged
1442         * @throws Exception if no checksum had been stored to disk for this
1443         *         sample yet, or on I/O issues
1444         * @see GetWaveDataCRC32Checksum()
1445         */
1446        bool Sample::VerifyWaveData(uint32_t* pActually) {
1447            //File* pFile = static_cast<File*>(GetParent());
1448            uint32_t crc = CalculateWaveDataChecksum();
1449            if (pActually) *pActually = crc;
1450            return crc == this->crc;
1451        }
1452    
1453        uint32_t Sample::CalculateWaveDataChecksum() {
1454            const size_t sz = 20*1024; // 20kB buffer size
1455            std::vector<uint8_t> buffer(sz);
1456            buffer.resize(sz);
1457    
1458            const size_t n = sz / FrameSize;
1459            SetPos(0);
1460            uint32_t crc = 0;
1461            __resetCRC(crc);
1462            while (true) {
1463                file_offset_t nRead = Read(&buffer[0], n);
1464                if (nRead <= 0) break;
1465                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466            }
1467            __finalizeCRC(crc);
1468            return crc;
1469        }
1470    
1471      Sample::~Sample() {      Sample::~Sample() {
1472          Instances--;          Instances--;
1473          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1180  namespace { Line 1484  namespace {
1484  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1485  // *  // *
1486    
1487      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1488      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491          Instances++;          Instances++;
1492    
1493          pSample = NULL;          pSample = NULL;
1494            pRegion = pParent;
1495    
1496            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497            else memset(&Crossfade, 0, 4);
1498    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1499          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500    
1501          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
# Line 1302  namespace { Line 1609  namespace {
1609                                                          : vcf_res_ctrl_none;                                                          : vcf_res_ctrl_none;
1610              uint16_t eg3depth = _3ewa->ReadUint16();              uint16_t eg3depth = _3ewa->ReadUint16();
1611              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612                                          : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */                                          : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1614              ChannelOffset = _3ewa->ReadUint8() / 4;              ChannelOffset = _3ewa->ReadUint8() / 4;
1615              uint8_t regoptions = _3ewa->ReadUint8();              uint8_t regoptions = _3ewa->ReadUint8();
# Line 1352  namespace { Line 1659  namespace {
1659              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1660              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1661              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1662              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1663              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1664              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1665              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1666              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1667              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1369  namespace { Line 1676  namespace {
1676              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1677              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1678              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1679              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1680              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1681              EG2Release                      = 0.0;              EG2Release                      = 60;
1682              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1683              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1684              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1685              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1686              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1687              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1688              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1689              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1690              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1691              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1692              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1693              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1423  namespace { Line 1730  namespace {
1730              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1731              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1732              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1733              memset(DimensionUpperLimits, 0, 8);              memset(DimensionUpperLimits, 127, 8);
1734            }
1735            // format extension for EG behavior options, these will *NOT* work with
1736            // Gigasampler/GigaStudio !
1737            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738            if (lsde) {
1739                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1740                for (int i = 0; i < 2; ++i) {
1741                    unsigned char byte = lsde->ReadUint8();
1742                    pEGOpts[i]->AttackCancel     = byte & 1;
1743                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1744                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1745                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1746                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1747                }
1748          }          }
1749    
1750          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1751                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1752                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1753    
1754          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1755          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1756                                        ReleaseVelocityResponseDepth
1757                                    );
1758    
1759            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1760                                                          VCFVelocityDynamicRange,
1761                                                          VCFVelocityScale,
1762                                                          VCFCutoffController);
1763    
1764          // this models a strange behaviour or bug in GSt: two of the          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765          // velocity response curves for release time are not used even          VelocityTable = 0;
1766          // if specified, instead another curve is chosen.      }
         if ((curveType == curve_type_nonlinear && depth == 0) ||  
             (curveType == curve_type_special   && depth == 4)) {  
             curveType = curve_type_nonlinear;  
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
   
         curveType = VCFVelocityCurve;  
         depth = VCFVelocityDynamicRange;  
1767    
1768          // even stranger GSt: two of the velocity response curves for      /*
1769          // filter cutoff are not used, instead another special curve       * Constructs a DimensionRegion by copying all parameters from
1770          // is chosen. This curve is not used anywhere else.       * another DimensionRegion
1771          if ((curveType == curve_type_nonlinear && depth == 0) ||       */
1772              (curveType == curve_type_special   && depth == 4)) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1773              curveType = curve_type_special;          Instances++;
1774              depth = 5;          //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1775            *this = src; // default memberwise shallow copy of all parameters
1776            pParentList = _3ewl; // restore the chunk pointer
1777    
1778            // deep copy of owned structures
1779            if (src.VelocityTable) {
1780                VelocityTable = new uint8_t[128];
1781                for (int k = 0 ; k < 128 ; k++)
1782                    VelocityTable[k] = src.VelocityTable[k];
1783            }
1784            if (src.pSampleLoops) {
1785                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1786                for (int k = 0 ; k < src.SampleLoops ; k++)
1787                    pSampleLoops[k] = src.pSampleLoops[k];
1788          }          }
1789          pVelocityCutoffTable = GetVelocityTable(curveType, depth,      }
1790                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);      
1791        /**
1792         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1793         * and assign it to this object.
1794         *
1795         * Note that all sample pointers referenced by @a orig are simply copied as
1796         * memory address. Thus the respective samples are shared, not duplicated!
1797         *
1798         * @param orig - original DimensionRegion object to be copied from
1799         */
1800        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1801            CopyAssign(orig, NULL);
1802        }
1803    
1804        /**
1805         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1806         * and assign it to this object.
1807         *
1808         * @param orig - original DimensionRegion object to be copied from
1809         * @param mSamples - crosslink map between the foreign file's samples and
1810         *                   this file's samples
1811         */
1812        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1813            // delete all allocated data first
1814            if (VelocityTable) delete [] VelocityTable;
1815            if (pSampleLoops) delete [] pSampleLoops;
1816            
1817            // backup parent list pointer
1818            RIFF::List* p = pParentList;
1819            
1820            gig::Sample* pOriginalSample = pSample;
1821            gig::Region* pOriginalRegion = pRegion;
1822            
1823            //NOTE: copy code copied from assignment constructor above, see comment there as well
1824            
1825            *this = *orig; // default memberwise shallow copy of all parameters
1826            
1827            // restore members that shall not be altered
1828            pParentList = p; // restore the chunk pointer
1829            pRegion = pOriginalRegion;
1830            
1831            // only take the raw sample reference reference if the
1832            // two DimensionRegion objects are part of the same file
1833            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1834                pSample = pOriginalSample;
1835            }
1836            
1837            if (mSamples && mSamples->count(orig->pSample)) {
1838                pSample = mSamples->find(orig->pSample)->second;
1839            }
1840    
1841            // deep copy of owned structures
1842            if (orig->VelocityTable) {
1843                VelocityTable = new uint8_t[128];
1844                for (int k = 0 ; k < 128 ; k++)
1845                    VelocityTable[k] = orig->VelocityTable[k];
1846            }
1847            if (orig->pSampleLoops) {
1848                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1849                for (int k = 0 ; k < orig->SampleLoops ; k++)
1850                    pSampleLoops[k] = orig->pSampleLoops[k];
1851            }
1852        }
1853    
1854        void DimensionRegion::serialize(Serialization::Archive* archive) {
1855            // in case this class will become backward incompatible one day,
1856            // then set a version and minimum version for this class like:
1857            //archive->setVersion(*this, 2);
1858            //archive->setMinVersion(*this, 1);
1859    
1860            SRLZ(VelocityUpperLimit);
1861            SRLZ(EG1PreAttack);
1862            SRLZ(EG1Attack);
1863            SRLZ(EG1Decay1);
1864            SRLZ(EG1Decay2);
1865            SRLZ(EG1InfiniteSustain);
1866            SRLZ(EG1Sustain);
1867            SRLZ(EG1Release);
1868            SRLZ(EG1Hold);
1869            SRLZ(EG1Controller);
1870            SRLZ(EG1ControllerInvert);
1871            SRLZ(EG1ControllerAttackInfluence);
1872            SRLZ(EG1ControllerDecayInfluence);
1873            SRLZ(EG1ControllerReleaseInfluence);
1874            SRLZ(LFO1Frequency);
1875            SRLZ(LFO1InternalDepth);
1876            SRLZ(LFO1ControlDepth);
1877            SRLZ(LFO1Controller);
1878            SRLZ(LFO1FlipPhase);
1879            SRLZ(LFO1Sync);
1880            SRLZ(EG2PreAttack);
1881            SRLZ(EG2Attack);
1882            SRLZ(EG2Decay1);
1883            SRLZ(EG2Decay2);
1884            SRLZ(EG2InfiniteSustain);
1885            SRLZ(EG2Sustain);
1886            SRLZ(EG2Release);
1887            SRLZ(EG2Controller);
1888            SRLZ(EG2ControllerInvert);
1889            SRLZ(EG2ControllerAttackInfluence);
1890            SRLZ(EG2ControllerDecayInfluence);
1891            SRLZ(EG2ControllerReleaseInfluence);
1892            SRLZ(LFO2Frequency);
1893            SRLZ(LFO2InternalDepth);
1894            SRLZ(LFO2ControlDepth);
1895            SRLZ(LFO2Controller);
1896            SRLZ(LFO2FlipPhase);
1897            SRLZ(LFO2Sync);
1898            SRLZ(EG3Attack);
1899            SRLZ(EG3Depth);
1900            SRLZ(LFO3Frequency);
1901            SRLZ(LFO3InternalDepth);
1902            SRLZ(LFO3ControlDepth);
1903            SRLZ(LFO3Controller);
1904            SRLZ(LFO3Sync);
1905            SRLZ(VCFEnabled);
1906            SRLZ(VCFType);
1907            SRLZ(VCFCutoffController);
1908            SRLZ(VCFCutoffControllerInvert);
1909            SRLZ(VCFCutoff);
1910            SRLZ(VCFVelocityCurve);
1911            SRLZ(VCFVelocityScale);
1912            SRLZ(VCFVelocityDynamicRange);
1913            SRLZ(VCFResonance);
1914            SRLZ(VCFResonanceDynamic);
1915            SRLZ(VCFResonanceController);
1916            SRLZ(VCFKeyboardTracking);
1917            SRLZ(VCFKeyboardTrackingBreakpoint);
1918            SRLZ(VelocityResponseCurve);
1919            SRLZ(VelocityResponseDepth);
1920            SRLZ(VelocityResponseCurveScaling);
1921            SRLZ(ReleaseVelocityResponseCurve);
1922            SRLZ(ReleaseVelocityResponseDepth);
1923            SRLZ(ReleaseTriggerDecay);
1924            SRLZ(Crossfade);
1925            SRLZ(PitchTrack);
1926            SRLZ(DimensionBypass);
1927            SRLZ(Pan);
1928            SRLZ(SelfMask);
1929            SRLZ(AttenuationController);
1930            SRLZ(InvertAttenuationController);
1931            SRLZ(AttenuationControllerThreshold);
1932            SRLZ(ChannelOffset);
1933            SRLZ(SustainDefeat);
1934            SRLZ(MSDecode);
1935            //SRLZ(SampleStartOffset);
1936            SRLZ(SampleAttenuation);
1937            SRLZ(EG1Options);
1938            SRLZ(EG2Options);
1939    
1940            // derived attributes from DLS::Sampler
1941            SRLZ(FineTune);
1942            SRLZ(Gain);
1943        }
1944    
1945        /**
1946         * Updates the respective member variable and updates @c SampleAttenuation
1947         * which depends on this value.
1948         */
1949        void DimensionRegion::SetGain(int32_t gain) {
1950            DLS::Sampler::SetGain(gain);
1951          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
         VelocityTable = 0;  
1952      }      }
1953    
1954      /**      /**
# Line 1467  namespace { Line 1957  namespace {
1957       *       *
1958       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
1959       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
1960         *
1961         * @param pProgress - callback function for progress notification
1962       */       */
1963      void DimensionRegion::UpdateChunks() {      void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1964          // first update base class's chunk          // first update base class's chunk
1965          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks(pProgress);
1966    
1967            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1968            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1969            pData[12] = Crossfade.in_start;
1970            pData[13] = Crossfade.in_end;
1971            pData[14] = Crossfade.out_start;
1972            pData[15] = Crossfade.out_end;
1973    
1974          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1975          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1976          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
1977          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
1978                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1979                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1980            }
1981            pData = (uint8_t*) _3ewa->LoadChunkData();
1982    
1983          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1984    
1985          const uint32_t chunksize = _3ewa->GetSize();          const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1986          memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?          store32(&pData[0], chunksize); // unknown, always chunk size?
1987    
1988          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1989          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1990    
1991          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1992          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1993    
1994          // next 2 bytes unknown          // next 2 bytes unknown
1995    
1996          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1997    
1998          // next 2 bytes unknown          // next 2 bytes unknown
1999    
2000          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
2001    
2002          // next 2 bytes unknown          // next 2 bytes unknown
2003    
2004          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
2005    
2006          // next 2 bytes unknown          // next 2 bytes unknown
2007    
2008          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
2009    
2010          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2011          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
2012    
2013          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2014          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
2015    
2016          // next 2 bytes unknown          // next 2 bytes unknown
2017    
2018          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
2019    
2020          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2021          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
2022    
2023          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2024          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
2025    
2026          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
2027              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
2028              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2029              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2030              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2031          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
2032    
2033          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2034          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
2035    
2036          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
2037              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
2038              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2039              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2040              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2041          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
2042    
2043          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2044          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
2045    
2046          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2047          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
2048    
2049          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2050          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
2051    
2052          // next 2 bytes unknown          // next 2 bytes unknown
2053    
2054          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
2055    
2056          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2057          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
2058    
2059          // next 2 bytes unknown          // next 2 bytes unknown
2060    
2061          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
2062    
2063          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2064          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
2065    
2066          // next 2 bytes unknown          // next 2 bytes unknown
2067    
2068          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
2069    
2070          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2071          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
2072    
2073          // next 2 bytes unknown          // next 2 bytes unknown
2074    
2075          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
2076    
2077          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2078          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
2079    
2080          // next 2 bytes unknown          // next 2 bytes unknown
2081    
2082          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
2083    
2084          {          {
2085              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1594  namespace { Line 2097  namespace {
2097                  default:                  default:
2098                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2099              }              }
2100              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
2101          }          }
2102    
2103          {          {
# Line 1613  namespace { Line 2116  namespace {
2116                  default:                  default:
2117                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2118              }              }
2119              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
2120          }          }
2121    
2122          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
2123    
2124          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
2125    
2126          // next 4 bytes unknown          // next 4 bytes unknown
2127    
2128          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
2129    
2130          // next 2 bytes unknown          // next 2 bytes unknown
2131    
# Line 1641  namespace { Line 2144  namespace {
2144                  default:                  default:
2145                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2146              }              }
2147              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
2148          }          }
2149    
2150          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2151          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
2152    
2153          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2154          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
2155    
2156          // next byte unknown          // next byte unknown
2157    
# Line 1657  namespace { Line 2160  namespace {
2160              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2161              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2162              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2163              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
2164          }          }
2165    
2166          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2167          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
2168    
2169          {          {
2170              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2171              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2172              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2173              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2174              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
2175          }          }
2176    
2177          {          {
# Line 1677  namespace { Line 2180  namespace {
2180              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2181              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
2182                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2183              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
2184          }          }
2185    
2186          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2187                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2188          memcpy(&pData[116], &eg3depth, 1);          store16(&pData[116], eg3depth);
2189    
2190          // next 2 bytes unknown          // next 2 bytes unknown
2191    
2192          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
2193          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
2194    
2195          {          {
2196              uint8_t regoptions = 0;              uint8_t regoptions = 0;
2197              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
2198              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
2199              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
2200          }          }
2201    
2202          // next 2 bytes unknown          // next 2 bytes unknown
2203    
2204          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
2205    
2206          // next 3 bytes unknown          // next 3 bytes unknown
2207    
2208          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
2209    
2210          // next 2 bytes unknown          // next 2 bytes unknown
2211    
2212          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2213          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
2214    
2215          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2216                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
2217          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
2218    
2219          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
2220    
2221          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2222                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
2223          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
2224    
2225          // next byte unknown          // next byte unknown
2226    
2227          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2228                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
2229          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
2230    
2231          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2232                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2233          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
2234    
2235          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2236                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
2237          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
2238    
2239          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2240          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
2241    
2242          if (chunksize >= 148) {          if (chunksize >= 148) {
2243              memcpy(&pData[140], DimensionUpperLimits, 8);              memcpy(&pData[140], DimensionUpperLimits, 8);
2244          }          }
2245    
2246            // format extension for EG behavior options, these will *NOT* work with
2247            // Gigasampler/GigaStudio !
2248            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2249            if (!lsde) {
2250                // only add this "LSDE" chunk if the EG options do not match the
2251                // default EG behavior
2252                eg_opt_t defaultOpt;
2253                if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2254                    memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)))
2255                {
2256                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 2);
2257                    // move LSDE chunk to the end of parent list
2258                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2259                }
2260            }
2261            if (lsde) {
2262                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2263                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2264                for (int i = 0; i < 2; ++i) {
2265                    pData[i] =
2266                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2267                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2268                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2269                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2270                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2271                }
2272            }
2273        }
2274    
2275        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2276            curve_type_t curveType = releaseVelocityResponseCurve;
2277            uint8_t depth = releaseVelocityResponseDepth;
2278            // this models a strange behaviour or bug in GSt: two of the
2279            // velocity response curves for release time are not used even
2280            // if specified, instead another curve is chosen.
2281            if ((curveType == curve_type_nonlinear && depth == 0) ||
2282                (curveType == curve_type_special   && depth == 4)) {
2283                curveType = curve_type_nonlinear;
2284                depth = 3;
2285            }
2286            return GetVelocityTable(curveType, depth, 0);
2287        }
2288    
2289        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2290                                                        uint8_t vcfVelocityDynamicRange,
2291                                                        uint8_t vcfVelocityScale,
2292                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2293        {
2294            curve_type_t curveType = vcfVelocityCurve;
2295            uint8_t depth = vcfVelocityDynamicRange;
2296            // even stranger GSt: two of the velocity response curves for
2297            // filter cutoff are not used, instead another special curve
2298            // is chosen. This curve is not used anywhere else.
2299            if ((curveType == curve_type_nonlinear && depth == 0) ||
2300                (curveType == curve_type_special   && depth == 4)) {
2301                curveType = curve_type_special;
2302                depth = 5;
2303            }
2304            return GetVelocityTable(curveType, depth,
2305                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2306                                        ? vcfVelocityScale : 0);
2307      }      }
2308    
2309      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1756  namespace { Line 2321  namespace {
2321          return table;          return table;
2322      }      }
2323    
2324        Region* DimensionRegion::GetParent() const {
2325            return pRegion;
2326        }
2327    
2328    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2329    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2330    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2331    //#pragma GCC diagnostic push
2332    //#pragma GCC diagnostic error "-Wswitch"
2333    
2334      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2335          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2336          switch (EncodedController) {          switch (EncodedController) {
# Line 1867  namespace { Line 2442  namespace {
2442                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2443                  break;                  break;
2444    
2445                // format extension (these controllers are so far only supported by
2446                // LinuxSampler & gigedit) they will *NOT* work with
2447                // Gigasampler/GigaStudio !
2448                case _lev_ctrl_CC3_EXT:
2449                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450                    decodedcontroller.controller_number = 3;
2451                    break;
2452                case _lev_ctrl_CC6_EXT:
2453                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454                    decodedcontroller.controller_number = 6;
2455                    break;
2456                case _lev_ctrl_CC7_EXT:
2457                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458                    decodedcontroller.controller_number = 7;
2459                    break;
2460                case _lev_ctrl_CC8_EXT:
2461                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462                    decodedcontroller.controller_number = 8;
2463                    break;
2464                case _lev_ctrl_CC9_EXT:
2465                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466                    decodedcontroller.controller_number = 9;
2467                    break;
2468                case _lev_ctrl_CC10_EXT:
2469                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470                    decodedcontroller.controller_number = 10;
2471                    break;
2472                case _lev_ctrl_CC11_EXT:
2473                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474                    decodedcontroller.controller_number = 11;
2475                    break;
2476                case _lev_ctrl_CC14_EXT:
2477                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478                    decodedcontroller.controller_number = 14;
2479                    break;
2480                case _lev_ctrl_CC15_EXT:
2481                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482                    decodedcontroller.controller_number = 15;
2483                    break;
2484                case _lev_ctrl_CC20_EXT:
2485                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486                    decodedcontroller.controller_number = 20;
2487                    break;
2488                case _lev_ctrl_CC21_EXT:
2489                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490                    decodedcontroller.controller_number = 21;
2491                    break;
2492                case _lev_ctrl_CC22_EXT:
2493                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494                    decodedcontroller.controller_number = 22;
2495                    break;
2496                case _lev_ctrl_CC23_EXT:
2497                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498                    decodedcontroller.controller_number = 23;
2499                    break;
2500                case _lev_ctrl_CC24_EXT:
2501                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502                    decodedcontroller.controller_number = 24;
2503                    break;
2504                case _lev_ctrl_CC25_EXT:
2505                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2506                    decodedcontroller.controller_number = 25;
2507                    break;
2508                case _lev_ctrl_CC26_EXT:
2509                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2510                    decodedcontroller.controller_number = 26;
2511                    break;
2512                case _lev_ctrl_CC27_EXT:
2513                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2514                    decodedcontroller.controller_number = 27;
2515                    break;
2516                case _lev_ctrl_CC28_EXT:
2517                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2518                    decodedcontroller.controller_number = 28;
2519                    break;
2520                case _lev_ctrl_CC29_EXT:
2521                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2522                    decodedcontroller.controller_number = 29;
2523                    break;
2524                case _lev_ctrl_CC30_EXT:
2525                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2526                    decodedcontroller.controller_number = 30;
2527                    break;
2528                case _lev_ctrl_CC31_EXT:
2529                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2530                    decodedcontroller.controller_number = 31;
2531                    break;
2532                case _lev_ctrl_CC68_EXT:
2533                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2534                    decodedcontroller.controller_number = 68;
2535                    break;
2536                case _lev_ctrl_CC69_EXT:
2537                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2538                    decodedcontroller.controller_number = 69;
2539                    break;
2540                case _lev_ctrl_CC70_EXT:
2541                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2542                    decodedcontroller.controller_number = 70;
2543                    break;
2544                case _lev_ctrl_CC71_EXT:
2545                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2546                    decodedcontroller.controller_number = 71;
2547                    break;
2548                case _lev_ctrl_CC72_EXT:
2549                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2550                    decodedcontroller.controller_number = 72;
2551                    break;
2552                case _lev_ctrl_CC73_EXT:
2553                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2554                    decodedcontroller.controller_number = 73;
2555                    break;
2556                case _lev_ctrl_CC74_EXT:
2557                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2558                    decodedcontroller.controller_number = 74;
2559                    break;
2560                case _lev_ctrl_CC75_EXT:
2561                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2562                    decodedcontroller.controller_number = 75;
2563                    break;
2564                case _lev_ctrl_CC76_EXT:
2565                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2566                    decodedcontroller.controller_number = 76;
2567                    break;
2568                case _lev_ctrl_CC77_EXT:
2569                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2570                    decodedcontroller.controller_number = 77;
2571                    break;
2572                case _lev_ctrl_CC78_EXT:
2573                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2574                    decodedcontroller.controller_number = 78;
2575                    break;
2576                case _lev_ctrl_CC79_EXT:
2577                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2578                    decodedcontroller.controller_number = 79;
2579                    break;
2580                case _lev_ctrl_CC84_EXT:
2581                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2582                    decodedcontroller.controller_number = 84;
2583                    break;
2584                case _lev_ctrl_CC85_EXT:
2585                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2586                    decodedcontroller.controller_number = 85;
2587                    break;
2588                case _lev_ctrl_CC86_EXT:
2589                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2590                    decodedcontroller.controller_number = 86;
2591                    break;
2592                case _lev_ctrl_CC87_EXT:
2593                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2594                    decodedcontroller.controller_number = 87;
2595                    break;
2596                case _lev_ctrl_CC89_EXT:
2597                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2598                    decodedcontroller.controller_number = 89;
2599                    break;
2600                case _lev_ctrl_CC90_EXT:
2601                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2602                    decodedcontroller.controller_number = 90;
2603                    break;
2604                case _lev_ctrl_CC96_EXT:
2605                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2606                    decodedcontroller.controller_number = 96;
2607                    break;
2608                case _lev_ctrl_CC97_EXT:
2609                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2610                    decodedcontroller.controller_number = 97;
2611                    break;
2612                case _lev_ctrl_CC102_EXT:
2613                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2614                    decodedcontroller.controller_number = 102;
2615                    break;
2616                case _lev_ctrl_CC103_EXT:
2617                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2618                    decodedcontroller.controller_number = 103;
2619                    break;
2620                case _lev_ctrl_CC104_EXT:
2621                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2622                    decodedcontroller.controller_number = 104;
2623                    break;
2624                case _lev_ctrl_CC105_EXT:
2625                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2626                    decodedcontroller.controller_number = 105;
2627                    break;
2628                case _lev_ctrl_CC106_EXT:
2629                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2630                    decodedcontroller.controller_number = 106;
2631                    break;
2632                case _lev_ctrl_CC107_EXT:
2633                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2634                    decodedcontroller.controller_number = 107;
2635                    break;
2636                case _lev_ctrl_CC108_EXT:
2637                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2638                    decodedcontroller.controller_number = 108;
2639                    break;
2640                case _lev_ctrl_CC109_EXT:
2641                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2642                    decodedcontroller.controller_number = 109;
2643                    break;
2644                case _lev_ctrl_CC110_EXT:
2645                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2646                    decodedcontroller.controller_number = 110;
2647                    break;
2648                case _lev_ctrl_CC111_EXT:
2649                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2650                    decodedcontroller.controller_number = 111;
2651                    break;
2652                case _lev_ctrl_CC112_EXT:
2653                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2654                    decodedcontroller.controller_number = 112;
2655                    break;
2656                case _lev_ctrl_CC113_EXT:
2657                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2658                    decodedcontroller.controller_number = 113;
2659                    break;
2660                case _lev_ctrl_CC114_EXT:
2661                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2662                    decodedcontroller.controller_number = 114;
2663                    break;
2664                case _lev_ctrl_CC115_EXT:
2665                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2666                    decodedcontroller.controller_number = 115;
2667                    break;
2668                case _lev_ctrl_CC116_EXT:
2669                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2670                    decodedcontroller.controller_number = 116;
2671                    break;
2672                case _lev_ctrl_CC117_EXT:
2673                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2674                    decodedcontroller.controller_number = 117;
2675                    break;
2676                case _lev_ctrl_CC118_EXT:
2677                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2678                    decodedcontroller.controller_number = 118;
2679                    break;
2680                case _lev_ctrl_CC119_EXT:
2681                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2682                    decodedcontroller.controller_number = 119;
2683                    break;
2684    
2685              // unknown controller type              // unknown controller type
2686              default:              default:
2687                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2688                    decodedcontroller.controller_number = 0;
2689                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2690                    break;
2691          }          }
2692          return decodedcontroller;          return decodedcontroller;
2693      }      }
2694        
2695    // see above (diagnostic push not supported prior GCC 4.6)
2696    //#pragma GCC diagnostic pop
2697    
2698      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2699          _lev_ctrl_t encodedcontroller;          _lev_ctrl_t encodedcontroller;
# Line 1960  namespace { Line 2781  namespace {
2781                      case 95:                      case 95:
2782                          encodedcontroller = _lev_ctrl_effect5depth;                          encodedcontroller = _lev_ctrl_effect5depth;
2783                          break;                          break;
2784    
2785                        // format extension (these controllers are so far only
2786                        // supported by LinuxSampler & gigedit) they will *NOT*
2787                        // work with Gigasampler/GigaStudio !
2788                        case 3:
2789                            encodedcontroller = _lev_ctrl_CC3_EXT;
2790                            break;
2791                        case 6:
2792                            encodedcontroller = _lev_ctrl_CC6_EXT;
2793                            break;
2794                        case 7:
2795                            encodedcontroller = _lev_ctrl_CC7_EXT;
2796                            break;
2797                        case 8:
2798                            encodedcontroller = _lev_ctrl_CC8_EXT;
2799                            break;
2800                        case 9:
2801                            encodedcontroller = _lev_ctrl_CC9_EXT;
2802                            break;
2803                        case 10:
2804                            encodedcontroller = _lev_ctrl_CC10_EXT;
2805                            break;
2806                        case 11:
2807                            encodedcontroller = _lev_ctrl_CC11_EXT;
2808                            break;
2809                        case 14:
2810                            encodedcontroller = _lev_ctrl_CC14_EXT;
2811                            break;
2812                        case 15:
2813                            encodedcontroller = _lev_ctrl_CC15_EXT;
2814                            break;
2815                        case 20:
2816                            encodedcontroller = _lev_ctrl_CC20_EXT;
2817                            break;
2818                        case 21:
2819                            encodedcontroller = _lev_ctrl_CC21_EXT;
2820                            break;
2821                        case 22:
2822                            encodedcontroller = _lev_ctrl_CC22_EXT;
2823                            break;
2824                        case 23:
2825                            encodedcontroller = _lev_ctrl_CC23_EXT;
2826                            break;
2827                        case 24:
2828                            encodedcontroller = _lev_ctrl_CC24_EXT;
2829                            break;
2830                        case 25:
2831                            encodedcontroller = _lev_ctrl_CC25_EXT;
2832                            break;
2833                        case 26:
2834                            encodedcontroller = _lev_ctrl_CC26_EXT;
2835                            break;
2836                        case 27:
2837                            encodedcontroller = _lev_ctrl_CC27_EXT;
2838                            break;
2839                        case 28:
2840                            encodedcontroller = _lev_ctrl_CC28_EXT;
2841                            break;
2842                        case 29:
2843                            encodedcontroller = _lev_ctrl_CC29_EXT;
2844                            break;
2845                        case 30:
2846                            encodedcontroller = _lev_ctrl_CC30_EXT;
2847                            break;
2848                        case 31:
2849                            encodedcontroller = _lev_ctrl_CC31_EXT;
2850                            break;
2851                        case 68:
2852                            encodedcontroller = _lev_ctrl_CC68_EXT;
2853                            break;
2854                        case 69:
2855                            encodedcontroller = _lev_ctrl_CC69_EXT;
2856                            break;
2857                        case 70:
2858                            encodedcontroller = _lev_ctrl_CC70_EXT;
2859                            break;
2860                        case 71:
2861                            encodedcontroller = _lev_ctrl_CC71_EXT;
2862                            break;
2863                        case 72:
2864                            encodedcontroller = _lev_ctrl_CC72_EXT;
2865                            break;
2866                        case 73:
2867                            encodedcontroller = _lev_ctrl_CC73_EXT;
2868                            break;
2869                        case 74:
2870                            encodedcontroller = _lev_ctrl_CC74_EXT;
2871                            break;
2872                        case 75:
2873                            encodedcontroller = _lev_ctrl_CC75_EXT;
2874                            break;
2875                        case 76:
2876                            encodedcontroller = _lev_ctrl_CC76_EXT;
2877                            break;
2878                        case 77:
2879                            encodedcontroller = _lev_ctrl_CC77_EXT;
2880                            break;
2881                        case 78:
2882                            encodedcontroller = _lev_ctrl_CC78_EXT;
2883                            break;
2884                        case 79:
2885                            encodedcontroller = _lev_ctrl_CC79_EXT;
2886                            break;
2887                        case 84:
2888                            encodedcontroller = _lev_ctrl_CC84_EXT;
2889                            break;
2890                        case 85:
2891                            encodedcontroller = _lev_ctrl_CC85_EXT;
2892                            break;
2893                        case 86:
2894                            encodedcontroller = _lev_ctrl_CC86_EXT;
2895                            break;
2896                        case 87:
2897                            encodedcontroller = _lev_ctrl_CC87_EXT;
2898                            break;
2899                        case 89:
2900                            encodedcontroller = _lev_ctrl_CC89_EXT;
2901                            break;
2902                        case 90:
2903                            encodedcontroller = _lev_ctrl_CC90_EXT;
2904                            break;
2905                        case 96:
2906                            encodedcontroller = _lev_ctrl_CC96_EXT;
2907                            break;
2908                        case 97:
2909                            encodedcontroller = _lev_ctrl_CC97_EXT;
2910                            break;
2911                        case 102:
2912                            encodedcontroller = _lev_ctrl_CC102_EXT;
2913                            break;
2914                        case 103:
2915                            encodedcontroller = _lev_ctrl_CC103_EXT;
2916                            break;
2917                        case 104:
2918                            encodedcontroller = _lev_ctrl_CC104_EXT;
2919                            break;
2920                        case 105:
2921                            encodedcontroller = _lev_ctrl_CC105_EXT;
2922                            break;
2923                        case 106:
2924                            encodedcontroller = _lev_ctrl_CC106_EXT;
2925                            break;
2926                        case 107:
2927                            encodedcontroller = _lev_ctrl_CC107_EXT;
2928                            break;
2929                        case 108:
2930                            encodedcontroller = _lev_ctrl_CC108_EXT;
2931                            break;
2932                        case 109:
2933                            encodedcontroller = _lev_ctrl_CC109_EXT;
2934                            break;
2935                        case 110:
2936                            encodedcontroller = _lev_ctrl_CC110_EXT;
2937                            break;
2938                        case 111:
2939                            encodedcontroller = _lev_ctrl_CC111_EXT;
2940                            break;
2941                        case 112:
2942                            encodedcontroller = _lev_ctrl_CC112_EXT;
2943                            break;
2944                        case 113:
2945                            encodedcontroller = _lev_ctrl_CC113_EXT;
2946                            break;
2947                        case 114:
2948                            encodedcontroller = _lev_ctrl_CC114_EXT;
2949                            break;
2950                        case 115:
2951                            encodedcontroller = _lev_ctrl_CC115_EXT;
2952                            break;
2953                        case 116:
2954                            encodedcontroller = _lev_ctrl_CC116_EXT;
2955                            break;
2956                        case 117:
2957                            encodedcontroller = _lev_ctrl_CC117_EXT;
2958                            break;
2959                        case 118:
2960                            encodedcontroller = _lev_ctrl_CC118_EXT;
2961                            break;
2962                        case 119:
2963                            encodedcontroller = _lev_ctrl_CC119_EXT;
2964                            break;
2965    
2966                      default:                      default:
2967                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2968                  }                  }
2969                    break;
2970              default:              default:
2971                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2972          }          }
# Line 2008  namespace { Line 3012  namespace {
3012          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
3013      }      }
3014    
3015        /**
3016         * Updates the respective member variable and the lookup table / cache
3017         * that depends on this value.
3018         */
3019        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3020            pVelocityAttenuationTable =
3021                GetVelocityTable(
3022                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3023                );
3024            VelocityResponseCurve = curve;
3025        }
3026    
3027        /**
3028         * Updates the respective member variable and the lookup table / cache
3029         * that depends on this value.
3030         */
3031        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3032            pVelocityAttenuationTable =
3033                GetVelocityTable(
3034                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3035                );
3036            VelocityResponseDepth = depth;
3037        }
3038    
3039        /**
3040         * Updates the respective member variable and the lookup table / cache
3041         * that depends on this value.
3042         */
3043        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3044            pVelocityAttenuationTable =
3045                GetVelocityTable(
3046                    VelocityResponseCurve, VelocityResponseDepth, scaling
3047                );
3048            VelocityResponseCurveScaling = scaling;
3049        }
3050    
3051        /**
3052         * Updates the respective member variable and the lookup table / cache
3053         * that depends on this value.
3054         */
3055        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3056            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3057            ReleaseVelocityResponseCurve = curve;
3058        }
3059    
3060        /**
3061         * Updates the respective member variable and the lookup table / cache
3062         * that depends on this value.
3063         */
3064        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3065            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3066            ReleaseVelocityResponseDepth = depth;
3067        }
3068    
3069        /**
3070         * Updates the respective member variable and the lookup table / cache
3071         * that depends on this value.
3072         */
3073        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3074            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3075            VCFCutoffController = controller;
3076        }
3077    
3078        /**
3079         * Updates the respective member variable and the lookup table / cache
3080         * that depends on this value.
3081         */
3082        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3083            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3084            VCFVelocityCurve = curve;
3085        }
3086    
3087        /**
3088         * Updates the respective member variable and the lookup table / cache
3089         * that depends on this value.
3090         */
3091        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3092            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3093            VCFVelocityDynamicRange = range;
3094        }
3095    
3096        /**
3097         * Updates the respective member variable and the lookup table / cache
3098         * that depends on this value.
3099         */
3100        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3101            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3102            VCFVelocityScale = scaling;
3103        }
3104    
3105      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3106    
3107          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2080  namespace { Line 3174  namespace {
3174  // *  // *
3175    
3176      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
3177          // Initialization          // Initialization
3178          Dimensions = 0;          Dimensions = 0;
3179          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2093  namespace { Line 3185  namespace {
3185    
3186          // Actual Loading          // Actual Loading
3187    
3188            if (!file->GetAutoLoad()) return;
3189    
3190          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3191    
3192          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 2101  namespace { Line 3195  namespace {
3195              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3196                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3197                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3198                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3199                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3200                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3201                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3202                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2115  namespace { Line 3209  namespace {
3209                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3210                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3211                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3212                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3213                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3214                      Dimensions++;                      Dimensions++;
3215    
3216                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2144  namespace { Line 3230  namespace {
3230              else              else
3231                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3232    
3233              // load sample references              // load sample references (if auto loading is enabled)
3234              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3235                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3236                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3237                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3238                    }
3239                    GetSample(); // load global region sample reference
3240                }
3241            } else {
3242                DimensionRegions = 0;
3243                for (int i = 0 ; i < 8 ; i++) {
3244                    pDimensionDefinitions[i].dimension  = dimension_none;
3245                    pDimensionDefinitions[i].bits       = 0;
3246                    pDimensionDefinitions[i].zones      = 0;
3247              }              }
             GetSample(); // load global region sample reference  
3248          }          }
3249    
3250          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2157  namespace { Line 3252  namespace {
3252              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3253              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3254              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3255              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3256              DimensionRegions = 1;              DimensionRegions = 1;
3257          }          }
3258      }      }
# Line 2169  namespace { Line 3264  namespace {
3264       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
3265       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
3266       *       *
3267         * @param pProgress - callback function for progress notification
3268       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
3269       */       */
3270      void Region::UpdateChunks() {      void Region::UpdateChunks(progress_t* pProgress) {
3271            // in the gig format we don't care about the Region's sample reference
3272            // but we still have to provide some existing one to not corrupt the
3273            // file, so to avoid the latter we simply always assign the sample of
3274            // the first dimension region of this region
3275            pSample = pDimensionRegions[0]->pSample;
3276    
3277          // first update base class's chunks          // first update base class's chunks
3278          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks(pProgress);
3279    
3280          // update dimension region's chunks          // update dimension region's chunks
3281          for (int i = 0; i < DimensionRegions; i++) {          for (int i = 0; i < DimensionRegions; i++) {
3282              pDimensionRegions[i]->UpdateChunks();              pDimensionRegions[i]->UpdateChunks(pProgress);
3283          }          }
3284    
3285          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
3286          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3287          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  version3 ? 8 : 5;
3288            const int iMaxDimensionRegions = version3 ? 256 : 32;
3289    
3290          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
3291          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3292          if (!_3lnk) {          if (!_3lnk) {
3293              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
3294              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3295                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3296    
3297                // move 3prg to last position
3298                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3299          }          }
3300    
3301          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
3302          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3303          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
3304            int shift = 0;
3305          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
3306              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3307              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3308              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3309                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3310              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3311              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
3312    
3313                shift += pDimensionDefinitions[i].bits;
3314          }          }
3315    
3316          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
3317          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
3318          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
3319              int iWaveIndex = -1;              int iWaveIndex = -1;
3320              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2216  namespace { Line 3327  namespace {
3327                          break;                          break;
3328                      }                      }
3329                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
3330              }              }
3331              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3332          }          }
3333      }      }
3334    
# Line 2229  namespace { Line 3339  namespace {
3339              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3340              while (_3ewl) {              while (_3ewl) {
3341                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3342                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3343                      dimensionRegionNr++;                      dimensionRegionNr++;
3344                  }                  }
3345                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2238  namespace { Line 3348  namespace {
3348          }          }
3349      }      }
3350    
3351        void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3352            // update KeyRange struct and make sure regions are in correct order
3353            DLS::Region::SetKeyRange(Low, High);
3354            // update Region key table for fast lookup
3355            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3356        }
3357    
3358      void Region::UpdateVelocityTable() {      void Region::UpdateVelocityTable() {
3359          // get velocity dimension's index          // get velocity dimension's index
3360          int veldim = -1;          int veldim = -1;
# Line 2252  namespace { Line 3369  namespace {
3369          int step = 1;          int step = 1;
3370          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3371          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
         int end = step * pDimensionDefinitions[veldim].zones;  
3372    
3373          // loop through all dimension regions for all dimensions except the velocity dimension          // loop through all dimension regions for all dimensions except the velocity dimension
3374          int dim[8] = { 0 };          int dim[8] = { 0 };
3375          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
3376                const int end = i + step * pDimensionDefinitions[veldim].zones;
3377    
3378                // create a velocity table for all cases where the velocity zone is zero
3379              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3380                  pDimensionRegions[i]->VelocityUpperLimit) {                  pDimensionRegions[i]->VelocityUpperLimit) {
3381                  // create the velocity table                  // create the velocity table
# Line 2288  namespace { Line 3406  namespace {
3406                  }                  }
3407              }              }
3408    
3409                // jump to the next case where the velocity zone is zero
3410              int j;              int j;
3411              int shift = 0;              int shift = 0;
3412              for (j = 0 ; j < Dimensions ; j++) {              for (j = 0 ; j < Dimensions ; j++) {
# Line 2324  namespace { Line 3443  namespace {
3443       *                        dimension bits limit is violated       *                        dimension bits limit is violated
3444       */       */
3445      void Region::AddDimension(dimension_def_t* pDimDef) {      void Region::AddDimension(dimension_def_t* pDimDef) {
3446            // some initial sanity checks of the given dimension definition
3447            if (pDimDef->zones < 2)
3448                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3449            if (pDimDef->bits < 1)
3450                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3451            if (pDimDef->dimension == dimension_samplechannel) {
3452                if (pDimDef->zones != 2)
3453                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3454                if (pDimDef->bits != 1)
3455                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3456            }
3457    
3458          // check if max. amount of dimensions reached          // check if max. amount of dimensions reached
3459          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3460          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
# Line 2343  namespace { Line 3474  namespace {
3474              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3475                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3476    
3477            // pos is where the new dimension should be placed, normally
3478            // last in list, except for the samplechannel dimension which
3479            // has to be first in list
3480            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3481            int bitpos = 0;
3482            for (int i = 0 ; i < pos ; i++)
3483                bitpos += pDimensionDefinitions[i].bits;
3484    
3485            // make room for the new dimension
3486            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3487            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3488                for (int j = Dimensions ; j > pos ; j--) {
3489                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3490                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3491                }
3492            }
3493    
3494          // assign definition of new dimension          // assign definition of new dimension
3495          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
3496    
3497            // auto correct certain dimension definition fields (where possible)
3498            pDimensionDefinitions[pos].split_type  =
3499                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3500            pDimensionDefinitions[pos].zone_size =
3501                __resolveZoneSize(pDimensionDefinitions[pos]);
3502    
3503            // create new dimension region(s) for this new dimension, and make
3504            // sure that the dimension regions are placed correctly in both the
3505            // RIFF list and the pDimensionRegions array
3506            RIFF::Chunk* moveTo = NULL;
3507            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3508            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3509                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3510                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3511                }
3512                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3513                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3514                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3515                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3516                        // create a new dimension region and copy all parameter values from
3517                        // an existing dimension region
3518                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3519                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3520    
3521          // create new dimension region(s) for this new dimension                      DimensionRegions++;
3522          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {                  }
3523              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              }
3524              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              moveTo = pDimensionRegions[i]->pParentList;
3525              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);          }
3526              DimensionRegions++;  
3527            // initialize the upper limits for this dimension
3528            int mask = (1 << bitpos) - 1;
3529            for (int z = 0 ; z < pDimDef->zones ; z++) {
3530                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3531                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3532                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3533                                      (z << bitpos) |
3534                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3535                }
3536          }          }
3537    
3538          Dimensions++;          Dimensions++;
# Line 2394  namespace { Line 3575  namespace {
3575          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
3576              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
3577    
3578            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3579    
3580          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
3581          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
3582          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2402  namespace { Line 3585  namespace {
3585                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3586                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
3587                                      iLowerBit;                                      iLowerBit;
3588    
3589                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3590                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
3591                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
3592                      DimensionRegions--;                      DimensionRegions--;
# Line 2422  namespace { Line 3607  namespace {
3607              }              }
3608          }          }
3609    
3610            // remove the this dimension from the upper limits arrays
3611            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3612                DimensionRegion* d = pDimensionRegions[j];
3613                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3614                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3615                }
3616                d->DimensionUpperLimits[Dimensions - 1] = 127;
3617            }
3618    
3619          // 'remove' dimension definition          // 'remove' dimension definition
3620          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3621              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2436  namespace { Line 3630  namespace {
3630          if (pDimDef->dimension == dimension_layer) Layers = 1;          if (pDimDef->dimension == dimension_layer) Layers = 1;
3631      }      }
3632    
3633        /** @brief Delete one split zone of a dimension (decrement zone amount).
3634         *
3635         * Instead of deleting an entire dimensions, this method will only delete
3636         * one particular split zone given by @a zone of the Region's dimension
3637         * given by @a type. So this method will simply decrement the amount of
3638         * zones by one of the dimension in question. To be able to do that, the
3639         * respective dimension must exist on this Region and it must have at least
3640         * 3 zones. All DimensionRegion objects associated with the zone will be
3641         * deleted.
3642         *
3643         * @param type - identifies the dimension where a zone shall be deleted
3644         * @param zone - index of the dimension split zone that shall be deleted
3645         * @throws gig::Exception if requested zone could not be deleted
3646         */
3647        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3648            dimension_def_t* oldDef = GetDimensionDefinition(type);
3649            if (!oldDef)
3650                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3651            if (oldDef->zones <= 2)
3652                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3653            if (zone < 0 || zone >= oldDef->zones)
3654                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3655    
3656            const int newZoneSize = oldDef->zones - 1;
3657    
3658            // create a temporary Region which just acts as a temporary copy
3659            // container and will be deleted at the end of this function and will
3660            // also not be visible through the API during this process
3661            gig::Region* tempRgn = NULL;
3662            {
3663                // adding these temporary chunks is probably not even necessary
3664                Instrument* instr = static_cast<Instrument*>(GetParent());
3665                RIFF::List* pCkInstrument = instr->pCkInstrument;
3666                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3667                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3668                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3669                tempRgn = new Region(instr, rgn);
3670            }
3671    
3672            // copy this region's dimensions (with already the dimension split size
3673            // requested by the arguments of this method call) to the temporary
3674            // region, and don't use Region::CopyAssign() here for this task, since
3675            // it would also alter fast lookup helper variables here and there
3676            dimension_def_t newDef;
3677            for (int i = 0; i < Dimensions; ++i) {
3678                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3679                // is this the dimension requested by the method arguments? ...
3680                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3681                    def.zones = newZoneSize;
3682                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3683                    newDef = def;
3684                }
3685                tempRgn->AddDimension(&def);
3686            }
3687    
3688            // find the dimension index in the tempRegion which is the dimension
3689            // type passed to this method (paranoidly expecting different order)
3690            int tempReducedDimensionIndex = -1;
3691            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3692                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3693                    tempReducedDimensionIndex = d;
3694                    break;
3695                }
3696            }
3697    
3698            // copy dimension regions from this region to the temporary region
3699            for (int iDst = 0; iDst < 256; ++iDst) {
3700                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3701                if (!dstDimRgn) continue;
3702                std::map<dimension_t,int> dimCase;
3703                bool isValidZone = true;
3704                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3705                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3706                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3707                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3708                    baseBits += dstBits;
3709                    // there are also DimensionRegion objects of unused zones, skip them
3710                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3711                        isValidZone = false;
3712                        break;
3713                    }
3714                }
3715                if (!isValidZone) continue;
3716                // a bit paranoid: cope with the chance that the dimensions would
3717                // have different order in source and destination regions
3718                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3719                if (dimCase[type] >= zone) dimCase[type]++;
3720                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3721                dstDimRgn->CopyAssign(srcDimRgn);
3722                // if this is the upper most zone of the dimension passed to this
3723                // method, then correct (raise) its upper limit to 127
3724                if (newDef.split_type == split_type_normal && isLastZone)
3725                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3726            }
3727    
3728            // now tempRegion's dimensions and DimensionRegions basically reflect
3729            // what we wanted to get for this actual Region here, so we now just
3730            // delete and recreate the dimension in question with the new amount
3731            // zones and then copy back from tempRegion      
3732            DeleteDimension(oldDef);
3733            AddDimension(&newDef);
3734            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3735                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3736                if (!srcDimRgn) continue;
3737                std::map<dimension_t,int> dimCase;
3738                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3739                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3740                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3741                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3742                    baseBits += srcBits;
3743                }
3744                // a bit paranoid: cope with the chance that the dimensions would
3745                // have different order in source and destination regions
3746                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3747                if (!dstDimRgn) continue;
3748                dstDimRgn->CopyAssign(srcDimRgn);
3749            }
3750    
3751            // delete temporary region
3752            delete tempRgn;
3753    
3754            UpdateVelocityTable();
3755        }
3756    
3757        /** @brief Divide split zone of a dimension in two (increment zone amount).
3758         *
3759         * This will increment the amount of zones for the dimension (given by
3760         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3761         * in the middle of its zone range in two. So the two zones resulting from
3762         * the zone being splitted, will be an equivalent copy regarding all their
3763         * articulation informations and sample reference. The two zones will only
3764         * differ in their zone's upper limit
3765         * (DimensionRegion::DimensionUpperLimits).
3766         *
3767         * @param type - identifies the dimension where a zone shall be splitted
3768         * @param zone - index of the dimension split zone that shall be splitted
3769         * @throws gig::Exception if requested zone could not be splitted
3770         */
3771        void Region::SplitDimensionZone(dimension_t type, int zone) {
3772            dimension_def_t* oldDef = GetDimensionDefinition(type);
3773            if (!oldDef)
3774                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3775            if (zone < 0 || zone >= oldDef->zones)
3776                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3777    
3778            const int newZoneSize = oldDef->zones + 1;
3779    
3780            // create a temporary Region which just acts as a temporary copy
3781            // container and will be deleted at the end of this function and will
3782            // also not be visible through the API during this process
3783            gig::Region* tempRgn = NULL;
3784            {
3785                // adding these temporary chunks is probably not even necessary
3786                Instrument* instr = static_cast<Instrument*>(GetParent());
3787                RIFF::List* pCkInstrument = instr->pCkInstrument;
3788                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3789                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3790                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3791                tempRgn = new Region(instr, rgn);
3792            }
3793    
3794            // copy this region's dimensions (with already the dimension split size
3795            // requested by the arguments of this method call) to the temporary
3796            // region, and don't use Region::CopyAssign() here for this task, since
3797            // it would also alter fast lookup helper variables here and there
3798            dimension_def_t newDef;
3799            for (int i = 0; i < Dimensions; ++i) {
3800                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3801                // is this the dimension requested by the method arguments? ...
3802                if (def.dimension == type) { // ... if yes, increment zone amount by one
3803                    def.zones = newZoneSize;
3804                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3805                    newDef = def;
3806                }
3807                tempRgn->AddDimension(&def);
3808            }
3809    
3810            // find the dimension index in the tempRegion which is the dimension
3811            // type passed to this method (paranoidly expecting different order)
3812            int tempIncreasedDimensionIndex = -1;
3813            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3814                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3815                    tempIncreasedDimensionIndex = d;
3816                    break;
3817                }
3818            }
3819    
3820            // copy dimension regions from this region to the temporary region
3821            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3822                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3823                if (!srcDimRgn) continue;
3824                std::map<dimension_t,int> dimCase;
3825                bool isValidZone = true;
3826                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3827                    const int srcBits = pDimensionDefinitions[d].bits;
3828                    dimCase[pDimensionDefinitions[d].dimension] =
3829                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3830                    // there are also DimensionRegion objects for unused zones, skip them
3831                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3832                        isValidZone = false;
3833                        break;
3834                    }
3835                    baseBits += srcBits;
3836                }
3837                if (!isValidZone) continue;
3838                // a bit paranoid: cope with the chance that the dimensions would
3839                // have different order in source and destination regions            
3840                if (dimCase[type] > zone) dimCase[type]++;
3841                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3842                dstDimRgn->CopyAssign(srcDimRgn);
3843                // if this is the requested zone to be splitted, then also copy
3844                // the source DimensionRegion to the newly created target zone
3845                // and set the old zones upper limit lower
3846                if (dimCase[type] == zone) {
3847                    // lower old zones upper limit
3848                    if (newDef.split_type == split_type_normal) {
3849                        const int high =
3850                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3851                        int low = 0;
3852                        if (zone > 0) {
3853                            std::map<dimension_t,int> lowerCase = dimCase;
3854                            lowerCase[type]--;
3855                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3856                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3857                        }
3858                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3859                    }
3860                    // fill the newly created zone of the divided zone as well
3861                    dimCase[type]++;
3862                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3863                    dstDimRgn->CopyAssign(srcDimRgn);
3864                }
3865            }
3866    
3867            // now tempRegion's dimensions and DimensionRegions basically reflect
3868            // what we wanted to get for this actual Region here, so we now just
3869            // delete and recreate the dimension in question with the new amount
3870            // zones and then copy back from tempRegion      
3871            DeleteDimension(oldDef);
3872            AddDimension(&newDef);
3873            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3874                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3875                if (!srcDimRgn) continue;
3876                std::map<dimension_t,int> dimCase;
3877                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3878                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3879                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3880                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3881                    baseBits += srcBits;
3882                }
3883                // a bit paranoid: cope with the chance that the dimensions would
3884                // have different order in source and destination regions
3885                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3886                if (!dstDimRgn) continue;
3887                dstDimRgn->CopyAssign(srcDimRgn);
3888            }
3889    
3890            // delete temporary region
3891            delete tempRgn;
3892    
3893            UpdateVelocityTable();
3894        }
3895    
3896        /** @brief Change type of an existing dimension.
3897         *
3898         * Alters the dimension type of a dimension already existing on this
3899         * region. If there is currently no dimension on this Region with type
3900         * @a oldType, then this call with throw an Exception. Likewise there are
3901         * cases where the requested dimension type cannot be performed. For example
3902         * if the new dimension type shall be gig::dimension_samplechannel, and the
3903         * current dimension has more than 2 zones. In such cases an Exception is
3904         * thrown as well.
3905         *
3906         * @param oldType - identifies the existing dimension to be changed
3907         * @param newType - to which dimension type it should be changed to
3908         * @throws gig::Exception if requested change cannot be performed
3909         */
3910        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3911            if (oldType == newType) return;
3912            dimension_def_t* def = GetDimensionDefinition(oldType);
3913            if (!def)
3914                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3915            if (newType == dimension_samplechannel && def->zones != 2)
3916                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3917            if (GetDimensionDefinition(newType))
3918                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3919            def->dimension  = newType;
3920            def->split_type = __resolveSplitType(newType);
3921        }
3922    
3923        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3924            uint8_t bits[8] = {};
3925            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3926                 it != DimCase.end(); ++it)
3927            {
3928                for (int d = 0; d < Dimensions; ++d) {
3929                    if (pDimensionDefinitions[d].dimension == it->first) {
3930                        bits[d] = it->second;
3931                        goto nextDimCaseSlice;
3932                    }
3933                }
3934                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3935                nextDimCaseSlice:
3936                ; // noop
3937            }
3938            return GetDimensionRegionByBit(bits);
3939        }
3940    
3941        /**
3942         * Searches in the current Region for a dimension of the given dimension
3943         * type and returns the precise configuration of that dimension in this
3944         * Region.
3945         *
3946         * @param type - dimension type of the sought dimension
3947         * @returns dimension definition or NULL if there is no dimension with
3948         *          sought type in this Region.
3949         */
3950        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3951            for (int i = 0; i < Dimensions; ++i)
3952                if (pDimensionDefinitions[i].dimension == type)
3953                    return &pDimensionDefinitions[i];
3954            return NULL;
3955        }
3956    
3957      Region::~Region() {      Region::~Region() {
3958          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3959              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
# Line 2463  namespace { Line 3981  namespace {
3981      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3982          uint8_t bits;          uint8_t bits;
3983          int veldim = -1;          int veldim = -1;
3984          int velbitpos;          int velbitpos = 0;
3985          int bitpos = 0;          int bitpos = 0;
3986          int dimregidx = 0;          int dimregidx = 0;
3987          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
# Line 2493  namespace { Line 4011  namespace {
4011              }              }
4012              bitpos += pDimensionDefinitions[i].bits;              bitpos += pDimensionDefinitions[i].bits;
4013          }          }
4014          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4015            if (!dimreg) return NULL;
4016          if (veldim != -1) {          if (veldim != -1) {
4017              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
4018              if (dimreg->VelocityTable) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
4019                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4020              else // normal split type              else // normal split type
4021                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4022    
4023              dimregidx |= bits << velbitpos;              const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4024              dimreg = pDimensionRegions[dimregidx];              dimregidx |= (bits & limiter_mask) << velbitpos;
4025                dimreg = pDimensionRegions[dimregidx & 255];
4026          }          }
4027          return dimreg;          return dimreg;
4028      }      }
4029    
4030        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4031            uint8_t bits;
4032            int veldim = -1;
4033            int velbitpos = 0;
4034            int bitpos = 0;
4035            int dimregidx = 0;
4036            for (uint i = 0; i < Dimensions; i++) {
4037                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4038                    // the velocity dimension must be handled after the other dimensions
4039                    veldim = i;
4040                    velbitpos = bitpos;
4041                } else {
4042                    switch (pDimensionDefinitions[i].split_type) {
4043                        case split_type_normal:
4044                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4045                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4046                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4047                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4048                                }
4049                            } else {
4050                                // gig2: evenly sized zones
4051                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4052                            }
4053                            break;
4054                        case split_type_bit: // the value is already the sought dimension bit number
4055                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4056                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4057                            break;
4058                    }
4059                    dimregidx |= bits << bitpos;
4060                }
4061                bitpos += pDimensionDefinitions[i].bits;
4062            }
4063            dimregidx &= 255;
4064            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4065            if (!dimreg) return -1;
4066            if (veldim != -1) {
4067                // (dimreg is now the dimension region for the lowest velocity)
4068                if (dimreg->VelocityTable) // custom defined zone ranges
4069                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4070                else // normal split type
4071                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4072    
4073                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4074                dimregidx |= (bits & limiter_mask) << velbitpos;
4075                dimregidx &= 255;
4076            }
4077            return dimregidx;
4078        }
4079    
4080      /**      /**
4081       * Returns the appropriate DimensionRegion for the given dimension bit       * Returns the appropriate DimensionRegion for the given dimension bit
4082       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
# Line 2545  namespace { Line 4115  namespace {
4115          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4116          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4117          if (!file->pWavePoolTable) return NULL;          if (!file->pWavePoolTable) return NULL;
4118          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          // for new files or files >= 2 GB use 64 bit wave pool offsets
4119          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4120          Sample* sample = file->GetFirstSample(pProgress);              // use 64 bit wave pool offsets (treating this as large file)
4121          while (sample) {              uint64_t soughtoffset =
4122              if (sample->ulWavePoolOffset == soughtoffset &&                  uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4123                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);                  uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4124              sample = file->GetNextSample();              Sample* sample = file->GetFirstSample(pProgress);
4125                while (sample) {
4126                    if (sample->ullWavePoolOffset == soughtoffset)
4127                        return static_cast<gig::Sample*>(sample);
4128                    sample = file->GetNextSample();
4129                }
4130            } else {
4131                // use extension files and 32 bit wave pool offsets
4132                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4133                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4134                Sample* sample = file->GetFirstSample(pProgress);
4135                while (sample) {
4136                    if (sample->ullWavePoolOffset == soughtoffset &&
4137                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4138                    sample = file->GetNextSample();
4139                }
4140          }          }
4141          return NULL;          return NULL;
4142      }      }
4143        
4144        /**
4145         * Make a (semi) deep copy of the Region object given by @a orig
4146         * and assign it to this object.
4147         *
4148         * Note that all sample pointers referenced by @a orig are simply copied as
4149         * memory address. Thus the respective samples are shared, not duplicated!
4150         *
4151         * @param orig - original Region object to be copied from
4152         */
4153        void Region::CopyAssign(const Region* orig) {
4154            CopyAssign(orig, NULL);
4155        }
4156        
4157        /**
4158         * Make a (semi) deep copy of the Region object given by @a orig and
4159         * assign it to this object
4160         *
4161         * @param mSamples - crosslink map between the foreign file's samples and
4162         *                   this file's samples
4163         */
4164        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4165            // handle base classes
4166            DLS::Region::CopyAssign(orig);
4167            
4168            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4169                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4170            }
4171            
4172            // handle own member variables
4173            for (int i = Dimensions - 1; i >= 0; --i) {
4174                DeleteDimension(&pDimensionDefinitions[i]);
4175            }
4176            Layers = 0; // just to be sure
4177            for (int i = 0; i < orig->Dimensions; i++) {
4178                // we need to copy the dim definition here, to avoid the compiler
4179                // complaining about const-ness issue
4180                dimension_def_t def = orig->pDimensionDefinitions[i];
4181                AddDimension(&def);
4182            }
4183            for (int i = 0; i < 256; i++) {
4184                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4185                    pDimensionRegions[i]->CopyAssign(
4186                        orig->pDimensionRegions[i],
4187                        mSamples
4188                    );
4189                }
4190            }
4191            Layers = orig->Layers;
4192        }
4193    
4194    
4195    // *************** MidiRule ***************
4196    // *
4197    
4198        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4199            _3ewg->SetPos(36);
4200            Triggers = _3ewg->ReadUint8();
4201            _3ewg->SetPos(40);
4202            ControllerNumber = _3ewg->ReadUint8();
4203            _3ewg->SetPos(46);
4204            for (int i = 0 ; i < Triggers ; i++) {
4205                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4206                pTriggers[i].Descending = _3ewg->ReadUint8();
4207                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4208                pTriggers[i].Key = _3ewg->ReadUint8();
4209                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4210                pTriggers[i].Velocity = _3ewg->ReadUint8();
4211                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4212                _3ewg->ReadUint8();
4213            }
4214        }
4215    
4216        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4217            ControllerNumber(0),
4218            Triggers(0) {
4219        }
4220    
4221        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4222            pData[32] = 4;
4223            pData[33] = 16;
4224            pData[36] = Triggers;
4225            pData[40] = ControllerNumber;
4226            for (int i = 0 ; i < Triggers ; i++) {
4227                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4228                pData[47 + i * 8] = pTriggers[i].Descending;
4229                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4230                pData[49 + i * 8] = pTriggers[i].Key;
4231                pData[50 + i * 8] = pTriggers[i].NoteOff;
4232                pData[51 + i * 8] = pTriggers[i].Velocity;
4233                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4234            }
4235        }
4236    
4237        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4238            _3ewg->SetPos(36);
4239            LegatoSamples = _3ewg->ReadUint8(); // always 12
4240            _3ewg->SetPos(40);
4241            BypassUseController = _3ewg->ReadUint8();
4242            BypassKey = _3ewg->ReadUint8();
4243            BypassController = _3ewg->ReadUint8();
4244            ThresholdTime = _3ewg->ReadUint16();
4245            _3ewg->ReadInt16();
4246            ReleaseTime = _3ewg->ReadUint16();
4247            _3ewg->ReadInt16();
4248            KeyRange.low = _3ewg->ReadUint8();
4249            KeyRange.high = _3ewg->ReadUint8();
4250            _3ewg->SetPos(64);
4251            ReleaseTriggerKey = _3ewg->ReadUint8();
4252            AltSustain1Key = _3ewg->ReadUint8();
4253            AltSustain2Key = _3ewg->ReadUint8();
4254        }
4255    
4256        MidiRuleLegato::MidiRuleLegato() :
4257            LegatoSamples(12),
4258            BypassUseController(false),
4259            BypassKey(0),
4260            BypassController(1),
4261            ThresholdTime(20),
4262            ReleaseTime(20),
4263            ReleaseTriggerKey(0),
4264            AltSustain1Key(0),
4265            AltSustain2Key(0)
4266        {
4267            KeyRange.low = KeyRange.high = 0;
4268        }
4269    
4270        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4271            pData[32] = 0;
4272            pData[33] = 16;
4273            pData[36] = LegatoSamples;
4274            pData[40] = BypassUseController;
4275            pData[41] = BypassKey;
4276            pData[42] = BypassController;
4277            store16(&pData[43], ThresholdTime);
4278            store16(&pData[47], ReleaseTime);
4279            pData[51] = KeyRange.low;
4280            pData[52] = KeyRange.high;
4281            pData[64] = ReleaseTriggerKey;
4282            pData[65] = AltSustain1Key;
4283            pData[66] = AltSustain2Key;
4284        }
4285    
4286        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4287            _3ewg->SetPos(36);
4288            Articulations = _3ewg->ReadUint8();
4289            int flags = _3ewg->ReadUint8();
4290            Polyphonic = flags & 8;
4291            Chained = flags & 4;
4292            Selector = (flags & 2) ? selector_controller :
4293                (flags & 1) ? selector_key_switch : selector_none;
4294            Patterns = _3ewg->ReadUint8();
4295            _3ewg->ReadUint8(); // chosen row
4296            _3ewg->ReadUint8(); // unknown
4297            _3ewg->ReadUint8(); // unknown
4298            _3ewg->ReadUint8(); // unknown
4299            KeySwitchRange.low = _3ewg->ReadUint8();
4300            KeySwitchRange.high = _3ewg->ReadUint8();
4301            Controller = _3ewg->ReadUint8();
4302            PlayRange.low = _3ewg->ReadUint8();
4303            PlayRange.high = _3ewg->ReadUint8();
4304    
4305            int n = std::min(int(Articulations), 32);
4306            for (int i = 0 ; i < n ; i++) {
4307                _3ewg->ReadString(pArticulations[i], 32);
4308            }
4309            _3ewg->SetPos(1072);
4310            n = std::min(int(Patterns), 32);
4311            for (int i = 0 ; i < n ; i++) {
4312                _3ewg->ReadString(pPatterns[i].Name, 16);
4313                pPatterns[i].Size = _3ewg->ReadUint8();
4314                _3ewg->Read(&pPatterns[i][0], 1, 32);
4315            }
4316        }
4317    
4318        MidiRuleAlternator::MidiRuleAlternator() :
4319            Articulations(0),
4320            Patterns(0),
4321            Selector(selector_none),
4322            Controller(0),
4323            Polyphonic(false),
4324            Chained(false)
4325        {
4326            PlayRange.low = PlayRange.high = 0;
4327            KeySwitchRange.low = KeySwitchRange.high = 0;
4328        }
4329    
4330        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4331            pData[32] = 3;
4332            pData[33] = 16;
4333            pData[36] = Articulations;
4334            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4335                (Selector == selector_controller ? 2 :
4336                 (Selector == selector_key_switch ? 1 : 0));
4337            pData[38] = Patterns;
4338    
4339            pData[43] = KeySwitchRange.low;
4340            pData[44] = KeySwitchRange.high;
4341            pData[45] = Controller;
4342            pData[46] = PlayRange.low;
4343            pData[47] = PlayRange.high;
4344    
4345            char* str = reinterpret_cast<char*>(pData);
4346            int pos = 48;
4347            int n = std::min(int(Articulations), 32);
4348            for (int i = 0 ; i < n ; i++, pos += 32) {
4349                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4350            }
4351    
4352            pos = 1072;
4353            n = std::min(int(Patterns), 32);
4354            for (int i = 0 ; i < n ; i++, pos += 49) {
4355                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4356                pData[pos + 16] = pPatterns[i].Size;
4357                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4358            }
4359        }
4360    
4361    // *************** Script ***************
4362    // *
4363    
4364        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4365            pGroup = group;
4366            pChunk = ckScri;
4367            if (ckScri) { // object is loaded from file ...
4368                // read header
4369                uint32_t headerSize = ckScri->ReadUint32();
4370                Compression = (Compression_t) ckScri->ReadUint32();
4371                Encoding    = (Encoding_t) ckScri->ReadUint32();
4372                Language    = (Language_t) ckScri->ReadUint32();
4373                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4374                crc         = ckScri->ReadUint32();
4375                uint32_t nameSize = ckScri->ReadUint32();
4376                Name.resize(nameSize, ' ');
4377                for (int i = 0; i < nameSize; ++i)
4378                    Name[i] = ckScri->ReadUint8();
4379                // to handle potential future extensions of the header
4380                ckScri->SetPos(sizeof(int32_t) + headerSize);
4381                // read actual script data
4382                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4383                data.resize(scriptSize);
4384                for (int i = 0; i < scriptSize; ++i)
4385                    data[i] = ckScri->ReadUint8();
4386            } else { // this is a new script object, so just initialize it as such ...
4387                Compression = COMPRESSION_NONE;
4388                Encoding = ENCODING_ASCII;
4389                Language = LANGUAGE_NKSP;
4390                Bypass   = false;
4391                crc      = 0;
4392                Name     = "Unnamed Script";
4393            }
4394        }
4395    
4396        Script::~Script() {
4397        }
4398    
4399        /**
4400         * Returns the current script (i.e. as source code) in text format.
4401         */
4402        String Script::GetScriptAsText() {
4403            String s;
4404            s.resize(data.size(), ' ');
4405            memcpy(&s[0], &data[0], data.size());
4406            return s;
4407        }
4408    
4409        /**
4410         * Replaces the current script with the new script source code text given
4411         * by @a text.
4412         *
4413         * @param text - new script source code
4414         */
4415        void Script::SetScriptAsText(const String& text) {
4416            data.resize(text.size());
4417            memcpy(&data[0], &text[0], text.size());
4418        }
4419    
4420        /**
4421         * Apply this script to the respective RIFF chunks. You have to call
4422         * File::Save() to make changes persistent.
4423         *
4424         * Usually there is absolutely no need to call this method explicitly.
4425         * It will be called automatically when File::Save() was called.
4426         *
4427         * @param pProgress - callback function for progress notification
4428         */
4429        void Script::UpdateChunks(progress_t* pProgress) {
4430            // recalculate CRC32 check sum
4431            __resetCRC(crc);
4432            __calculateCRC(&data[0], data.size(), crc);
4433            __finalizeCRC(crc);
4434            // make sure chunk exists and has the required size
4435            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4436            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4437            else pChunk->Resize(chunkSize);
4438            // fill the chunk data to be written to disk
4439            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4440            int pos = 0;
4441            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4442            pos += sizeof(int32_t);
4443            store32(&pData[pos], Compression);
4444            pos += sizeof(int32_t);
4445            store32(&pData[pos], Encoding);
4446            pos += sizeof(int32_t);
4447            store32(&pData[pos], Language);
4448            pos += sizeof(int32_t);
4449            store32(&pData[pos], Bypass ? 1 : 0);
4450            pos += sizeof(int32_t);
4451            store32(&pData[pos], crc);
4452            pos += sizeof(int32_t);
4453            store32(&pData[pos], (uint32_t) Name.size());
4454            pos += sizeof(int32_t);
4455            for (int i = 0; i < Name.size(); ++i, ++pos)
4456                pData[pos] = Name[i];
4457            for (int i = 0; i < data.size(); ++i, ++pos)
4458                pData[pos] = data[i];
4459        }
4460    
4461        /**
4462         * Move this script from its current ScriptGroup to another ScriptGroup
4463         * given by @a pGroup.
4464         *
4465         * @param pGroup - script's new group
4466         */
4467        void Script::SetGroup(ScriptGroup* pGroup) {
4468            if (this->pGroup == pGroup) return;
4469            if (pChunk)
4470                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4471            this->pGroup = pGroup;
4472        }
4473    
4474        /**
4475         * Returns the script group this script currently belongs to. Each script
4476         * is a member of exactly one ScriptGroup.
4477         *
4478         * @returns current script group
4479         */
4480        ScriptGroup* Script::GetGroup() const {
4481            return pGroup;
4482        }
4483    
4484        /**
4485         * Make a (semi) deep copy of the Script object given by @a orig
4486         * and assign it to this object. Note: the ScriptGroup this Script
4487         * object belongs to remains untouched by this call.
4488         *
4489         * @param orig - original Script object to be copied from
4490         */
4491        void Script::CopyAssign(const Script* orig) {
4492            Name        = orig->Name;
4493            Compression = orig->Compression;
4494            Encoding    = orig->Encoding;
4495            Language    = orig->Language;
4496            Bypass      = orig->Bypass;
4497            data        = orig->data;
4498        }
4499    
4500        void Script::RemoveAllScriptReferences() {
4501            File* pFile = pGroup->pFile;
4502            for (int i = 0; pFile->GetInstrument(i); ++i) {
4503                Instrument* instr = pFile->GetInstrument(i);
4504                instr->RemoveScript(this);
4505            }
4506        }
4507    
4508    // *************** ScriptGroup ***************
4509    // *
4510    
4511        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4512            pFile = file;
4513            pList = lstRTIS;
4514            pScripts = NULL;
4515            if (lstRTIS) {
4516                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4517                ::LoadString(ckName, Name);
4518            } else {
4519                Name = "Default Group";
4520            }
4521        }
4522    
4523        ScriptGroup::~ScriptGroup() {
4524            if (pScripts) {
4525                std::list<Script*>::iterator iter = pScripts->begin();
4526                std::list<Script*>::iterator end  = pScripts->end();
4527                while (iter != end) {
4528                    delete *iter;
4529                    ++iter;
4530                }
4531                delete pScripts;
4532            }
4533        }
4534    
4535        /**
4536         * Apply this script group to the respective RIFF chunks. You have to call
4537         * File::Save() to make changes persistent.
4538         *
4539         * Usually there is absolutely no need to call this method explicitly.
4540         * It will be called automatically when File::Save() was called.
4541         *
4542         * @param pProgress - callback function for progress notification
4543         */
4544        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4545            if (pScripts) {
4546                if (!pList)
4547                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4548    
4549                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4550                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4551    
4552                for (std::list<Script*>::iterator it = pScripts->begin();
4553                     it != pScripts->end(); ++it)
4554                {
4555                    (*it)->UpdateChunks(pProgress);
4556                }
4557            }
4558        }
4559    
4560        /** @brief Get instrument script.
4561         *
4562         * Returns the real-time instrument script with the given index.
4563         *
4564         * @param index - number of the sought script (0..n)
4565         * @returns sought script or NULL if there's no such script
4566         */
4567        Script* ScriptGroup::GetScript(uint index) {
4568            if (!pScripts) LoadScripts();
4569            std::list<Script*>::iterator it = pScripts->begin();
4570            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4571                if (i == index) return *it;
4572            return NULL;
4573        }
4574    
4575        /** @brief Add new instrument script.
4576         *
4577         * Adds a new real-time instrument script to the file. The script is not
4578         * actually used / executed unless it is referenced by an instrument to be
4579         * used. This is similar to samples, which you can add to a file, without
4580         * an instrument necessarily actually using it.
4581         *
4582         * You have to call Save() to make this persistent to the file.
4583         *
4584         * @return new empty script object
4585         */
4586        Script* ScriptGroup::AddScript() {
4587            if (!pScripts) LoadScripts();
4588            Script* pScript = new Script(this, NULL);
4589            pScripts->push_back(pScript);
4590            return pScript;
4591        }
4592    
4593        /** @brief Delete an instrument script.
4594         *
4595         * This will delete the given real-time instrument script. References of
4596         * instruments that are using that script will be removed accordingly.
4597         *
4598         * You have to call Save() to make this persistent to the file.
4599         *
4600         * @param pScript - script to delete
4601         * @throws gig::Exception if given script could not be found
4602         */
4603        void ScriptGroup::DeleteScript(Script* pScript) {
4604            if (!pScripts) LoadScripts();
4605            std::list<Script*>::iterator iter =
4606                find(pScripts->begin(), pScripts->end(), pScript);
4607            if (iter == pScripts->end())
4608                throw gig::Exception("Could not delete script, could not find given script");
4609            pScripts->erase(iter);
4610            pScript->RemoveAllScriptReferences();
4611            if (pScript->pChunk)
4612                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4613            delete pScript;
4614        }
4615    
4616        void ScriptGroup::LoadScripts() {
4617            if (pScripts) return;
4618            pScripts = new std::list<Script*>;
4619            if (!pList) return;
4620    
4621            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4622                 ck = pList->GetNextSubChunk())
4623            {
4624                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4625                    pScripts->push_back(new Script(this, ck));
4626                }
4627            }
4628        }
4629    
4630  // *************** Instrument ***************  // *************** Instrument ***************
4631  // *  // *
4632    
4633      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4634          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
4635                { CHUNK_ID_INAM, 64 },
4636                { CHUNK_ID_ISFT, 12 },
4637                { 0, 0 }
4638            };
4639            pInfo->SetFixedStringLengths(fixedStringLengths);
4640    
4641          // Initialization          // Initialization
4642          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4643            EffectSend = 0;
4644            Attenuation = 0;
4645            FineTune = 0;
4646            PitchbendRange = 2;
4647            PianoReleaseMode = false;
4648            DimensionKeyRange.low = 0;
4649            DimensionKeyRange.high = 0;
4650            pMidiRules = new MidiRule*[3];
4651            pMidiRules[0] = NULL;
4652            pScriptRefs = NULL;
4653    
4654          // Loading          // Loading
4655          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2580  namespace { Line 4664  namespace {
4664                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4665                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4666                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4667    
4668                    if (_3ewg->GetSize() > 32) {
4669                        // read MIDI rules
4670                        int i = 0;
4671                        _3ewg->SetPos(32);
4672                        uint8_t id1 = _3ewg->ReadUint8();
4673                        uint8_t id2 = _3ewg->ReadUint8();
4674    
4675                        if (id2 == 16) {
4676                            if (id1 == 4) {
4677                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4678                            } else if (id1 == 0) {
4679                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4680                            } else if (id1 == 3) {
4681                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4682                            } else {
4683                                pMidiRules[i++] = new MidiRuleUnknown;
4684                            }
4685                        }
4686                        else if (id1 != 0 || id2 != 0) {
4687                            pMidiRules[i++] = new MidiRuleUnknown;
4688                        }
4689                        //TODO: all the other types of rules
4690    
4691                        pMidiRules[i] = NULL;
4692                    }
4693                }
4694            }
4695    
4696            if (pFile->GetAutoLoad()) {
4697                if (!pRegions) pRegions = new RegionList;
4698                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4699                if (lrgn) {
4700                    RIFF::List* rgn = lrgn->GetFirstSubList();
4701                    while (rgn) {
4702                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4703                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4704                            pRegions->push_back(new Region(this, rgn));
4705                        }
4706                        rgn = lrgn->GetNextSubList();
4707                    }
4708                    // Creating Region Key Table for fast lookup
4709                    UpdateRegionKeyTable();
4710              }              }
4711          }          }
4712    
4713          if (!pRegions) pRegions = new RegionList;          // own gig format extensions
4714          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4715          if (lrgn) {          if (lst3LS) {
4716              RIFF::List* rgn = lrgn->GetFirstSubList();              RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4717              while (rgn) {              if (ckSCSL) {
4718                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  int headerSize = ckSCSL->ReadUint32();
4719                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);                  int slotCount  = ckSCSL->ReadUint32();
4720                      pRegions->push_back(new Region(this, rgn));                  if (slotCount) {
4721                        int slotSize  = ckSCSL->ReadUint32();
4722                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4723                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4724                        for (int i = 0; i < slotCount; ++i) {
4725                            _ScriptPooolEntry e;
4726                            e.fileOffset = ckSCSL->ReadUint32();
4727                            e.bypass     = ckSCSL->ReadUint32() & 1;
4728                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4729                            scriptPoolFileOffsets.push_back(e);
4730                        }
4731                  }                  }
                 rgn = lrgn->GetNextSubList();  
4732              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
4733          }          }
4734    
4735          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
4736      }      }
4737    
4738      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
4739            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4740          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
4741          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
4742          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
# Line 2613  namespace { Line 4748  namespace {
4748      }      }
4749    
4750      Instrument::~Instrument() {      Instrument::~Instrument() {
4751            for (int i = 0 ; pMidiRules[i] ; i++) {
4752                delete pMidiRules[i];
4753            }
4754            delete[] pMidiRules;
4755            if (pScriptRefs) delete pScriptRefs;
4756      }      }
4757    
4758      /**      /**
# Line 2622  namespace { Line 4762  namespace {
4762       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
4763       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
4764       *       *
4765         * @param pProgress - callback function for progress notification
4766       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
4767       */       */
4768      void Instrument::UpdateChunks() {      void Instrument::UpdateChunks(progress_t* pProgress) {
4769          // first update base classes' chunks          // first update base classes' chunks
4770          DLS::Instrument::UpdateChunks();          DLS::Instrument::UpdateChunks(pProgress);
4771    
4772          // update Regions' chunks          // update Regions' chunks
4773          {          {
4774              RegionList::iterator iter = pRegions->begin();              RegionList::iterator iter = pRegions->begin();
4775              RegionList::iterator end  = pRegions->end();              RegionList::iterator end  = pRegions->end();
4776              for (; iter != end; ++iter)              for (; iter != end; ++iter)
4777                  (*iter)->UpdateChunks();                  (*iter)->UpdateChunks(pProgress);
4778          }          }
4779    
4780          // make sure 'lart' RIFF list chunk exists          // make sure 'lart' RIFF list chunk exists
# Line 2641  namespace { Line 4782  namespace {
4782          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4783          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
4784          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4785          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
4786                File* pFile = (File*) GetParent();
4787    
4788                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4789                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4790                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4791                memset(_3ewg->LoadChunkData(), 0, size);
4792            }
4793          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
4794          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4795          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
4796          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
4797          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
4798          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
4799          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4800                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
4801          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
4802          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
4803    
4804            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4805                pData[32] = 0;
4806                pData[33] = 0;
4807            } else {
4808                for (int i = 0 ; pMidiRules[i] ; i++) {
4809                    pMidiRules[i]->UpdateChunks(pData);
4810                }
4811            }
4812    
4813            // own gig format extensions
4814           if (ScriptSlotCount()) {
4815               // make sure we have converted the original loaded script file
4816               // offsets into valid Script object pointers
4817               LoadScripts();
4818    
4819               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4820               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4821               const int slotCount = (int) pScriptRefs->size();
4822               const int headerSize = 3 * sizeof(uint32_t);
4823               const int slotSize  = 2 * sizeof(uint32_t);
4824               const int totalChunkSize = headerSize + slotCount * slotSize;
4825               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4826               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4827               else ckSCSL->Resize(totalChunkSize);
4828               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4829               int pos = 0;
4830               store32(&pData[pos], headerSize);
4831               pos += sizeof(uint32_t);
4832               store32(&pData[pos], slotCount);
4833               pos += sizeof(uint32_t);
4834               store32(&pData[pos], slotSize);
4835               pos += sizeof(uint32_t);
4836               for (int i = 0; i < slotCount; ++i) {
4837                   // arbitrary value, the actual file offset will be updated in
4838                   // UpdateScriptFileOffsets() after the file has been resized
4839                   int bogusFileOffset = 0;
4840                   store32(&pData[pos], bogusFileOffset);
4841                   pos += sizeof(uint32_t);
4842                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4843                   pos += sizeof(uint32_t);
4844               }
4845           } else {
4846               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4847               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4848               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4849           }
4850        }
4851    
4852        void Instrument::UpdateScriptFileOffsets() {
4853           // own gig format extensions
4854           if (pScriptRefs && pScriptRefs->size() > 0) {
4855               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4856               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4857               const int slotCount = (int) pScriptRefs->size();
4858               const int headerSize = 3 * sizeof(uint32_t);
4859               ckSCSL->SetPos(headerSize);
4860               for (int i = 0; i < slotCount; ++i) {
4861                   uint32_t fileOffset = uint32_t(
4862                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4863                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4864                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4865                   );
4866                   ckSCSL->WriteUint32(&fileOffset);
4867                   // jump over flags entry (containing the bypass flag)
4868                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4869               }
4870           }        
4871      }      }
4872    
4873      /**      /**
# Line 2662  namespace { Line 4878  namespace {
4878       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4879       */       */
4880      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4881          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4882          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4883    
4884          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2706  namespace { Line 4922  namespace {
4922          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4923          Region* pNewRegion = new Region(this, rgn);          Region* pNewRegion = new Region(this, rgn);
4924          pRegions->push_back(pNewRegion);          pRegions->push_back(pNewRegion);
4925          Regions = pRegions->size();          Regions = (uint32_t) pRegions->size();
4926          // update Region key table for fast lookup          // update Region key table for fast lookup
4927          UpdateRegionKeyTable();          UpdateRegionKeyTable();
4928          // done          // done
# Line 2720  namespace { Line 4936  namespace {
4936          UpdateRegionKeyTable();          UpdateRegionKeyTable();
4937      }      }
4938    
4939        /**
4940         * Move this instrument at the position before @arg dst.
4941         *
4942         * This method can be used to reorder the sequence of instruments in a
4943         * .gig file. This might be helpful especially on large .gig files which
4944         * contain a large number of instruments within the same .gig file. So
4945         * grouping such instruments to similar ones, can help to keep track of them
4946         * when working with such complex .gig files.
4947         *
4948         * When calling this method, this instrument will be removed from in its
4949         * current position in the instruments list and moved to the requested
4950         * target position provided by @param dst. You may also pass NULL as
4951         * argument to this method, in that case this intrument will be moved to the
4952         * very end of the .gig file's instrument list.
4953         *
4954         * You have to call Save() to make the order change persistent to the .gig
4955         * file.
4956         *
4957         * Currently this method is limited to moving the instrument within the same
4958         * .gig file. Trying to move it to another .gig file by calling this method
4959         * will throw an exception.
4960         *
4961         * @param dst - destination instrument at which this instrument will be
4962         *              moved to, or pass NULL for moving to end of list
4963         * @throw gig::Exception if this instrument and target instrument are not
4964         *                       part of the same file
4965         */
4966        void Instrument::MoveTo(Instrument* dst) {
4967            if (dst && GetParent() != dst->GetParent())
4968                throw Exception(
4969                    "gig::Instrument::MoveTo() can only be used for moving within "
4970                    "the same gig file."
4971                );
4972    
4973            File* pFile = (File*) GetParent();
4974    
4975            // move this instrument within the instrument list
4976            {
4977                File::InstrumentList& list = *pFile->pInstruments;
4978    
4979                File::InstrumentList::iterator itFrom =
4980                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4981    
4982                File::InstrumentList::iterator itTo =
4983                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4984    
4985                list.splice(itTo, list, itFrom);
4986            }
4987    
4988            // move the instrument's actual list RIFF chunk appropriately
4989            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4990            lstCkInstruments->MoveSubChunk(
4991                this->pCkInstrument,
4992                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4993            );
4994        }
4995    
4996        /**
4997         * Returns a MIDI rule of the instrument.
4998         *
4999         * The list of MIDI rules, at least in gig v3, always contains at
5000         * most two rules. The second rule can only be the DEF filter
5001         * (which currently isn't supported by libgig).
5002         *
5003         * @param i - MIDI rule number
5004         * @returns   pointer address to MIDI rule number i or NULL if there is none
5005         */
5006        MidiRule* Instrument::GetMidiRule(int i) {
5007            return pMidiRules[i];
5008        }
5009    
5010        /**
5011         * Adds the "controller trigger" MIDI rule to the instrument.
5012         *
5013         * @returns the new MIDI rule
5014         */
5015        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5016            delete pMidiRules[0];
5017            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5018            pMidiRules[0] = r;
5019            pMidiRules[1] = 0;
5020            return r;
5021        }
5022    
5023        /**
5024         * Adds the legato MIDI rule to the instrument.
5025         *
5026         * @returns the new MIDI rule
5027         */
5028        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5029            delete pMidiRules[0];
5030            MidiRuleLegato* r = new MidiRuleLegato;
5031            pMidiRules[0] = r;
5032            pMidiRules[1] = 0;
5033            return r;
5034        }
5035    
5036        /**
5037         * Adds the alternator MIDI rule to the instrument.
5038         *
5039         * @returns the new MIDI rule
5040         */
5041        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5042            delete pMidiRules[0];
5043            MidiRuleAlternator* r = new MidiRuleAlternator;
5044            pMidiRules[0] = r;
5045            pMidiRules[1] = 0;
5046            return r;
5047        }
5048    
5049        /**
5050         * Deletes a MIDI rule from the instrument.
5051         *
5052         * @param i - MIDI rule number
5053         */
5054        void Instrument::DeleteMidiRule(int i) {
5055            delete pMidiRules[i];
5056            pMidiRules[i] = 0;
5057        }
5058    
5059        void Instrument::LoadScripts() {
5060            if (pScriptRefs) return;
5061            pScriptRefs = new std::vector<_ScriptPooolRef>;
5062            if (scriptPoolFileOffsets.empty()) return;
5063            File* pFile = (File*) GetParent();
5064            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5065                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5066                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5067                    ScriptGroup* group = pFile->GetScriptGroup(i);
5068                    for (uint s = 0; group->GetScript(s); ++s) {
5069                        Script* script = group->GetScript(s);
5070                        if (script->pChunk) {
5071                            uint32_t offset = uint32_t(
5072                                script->pChunk->GetFilePos() -
5073                                script->pChunk->GetPos() -
5074                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5075                            );
5076                            if (offset == soughtOffset)
5077                            {
5078                                _ScriptPooolRef ref;
5079                                ref.script = script;
5080                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5081                                pScriptRefs->push_back(ref);
5082                                break;
5083                            }
5084                        }
5085                    }
5086                }
5087            }
5088            // we don't need that anymore
5089            scriptPoolFileOffsets.clear();
5090        }
5091    
5092        /** @brief Get instrument script (gig format extension).
5093         *
5094         * Returns the real-time instrument script of instrument script slot
5095         * @a index.
5096         *
5097         * @note This is an own format extension which did not exist i.e. in the
5098         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5099         * gigedit.
5100         *
5101         * @param index - instrument script slot index
5102         * @returns script or NULL if index is out of bounds
5103         */
5104        Script* Instrument::GetScriptOfSlot(uint index) {
5105            LoadScripts();
5106            if (index >= pScriptRefs->size()) return NULL;
5107            return pScriptRefs->at(index).script;
5108        }
5109    
5110        /** @brief Add new instrument script slot (gig format extension).
5111         *
5112         * Add the given real-time instrument script reference to this instrument,
5113         * which shall be executed by the sampler for for this instrument. The
5114         * script will be added to the end of the script list of this instrument.
5115         * The positions of the scripts in the Instrument's Script list are
5116         * relevant, because they define in which order they shall be executed by
5117         * the sampler. For this reason it is also legal to add the same script
5118         * twice to an instrument, for example you might have a script called
5119         * "MyFilter" which performs an event filter task, and you might have
5120         * another script called "MyNoteTrigger" which triggers new notes, then you
5121         * might for example have the following list of scripts on the instrument:
5122         *
5123         * 1. Script "MyFilter"
5124         * 2. Script "MyNoteTrigger"
5125         * 3. Script "MyFilter"
5126         *
5127         * Which would make sense, because the 2nd script launched new events, which
5128         * you might need to filter as well.
5129         *
5130         * There are two ways to disable / "bypass" scripts. You can either disable
5131         * a script locally for the respective script slot on an instrument (i.e. by
5132         * passing @c false to the 2nd argument of this method, or by calling
5133         * SetScriptBypassed()). Or you can disable a script globally for all slots
5134         * and all instruments by setting Script::Bypass.
5135         *
5136         * @note This is an own format extension which did not exist i.e. in the
5137         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5138         * gigedit.
5139         *
5140         * @param pScript - script that shall be executed for this instrument
5141         * @param bypass  - if enabled, the sampler shall skip executing this
5142         *                  script (in the respective list position)
5143         * @see SetScriptBypassed()
5144         */
5145        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5146            LoadScripts();
5147            _ScriptPooolRef ref = { pScript, bypass };
5148            pScriptRefs->push_back(ref);
5149        }
5150    
5151        /** @brief Flip two script slots with each other (gig format extension).
5152         *
5153         * Swaps the position of the two given scripts in the Instrument's Script
5154         * list. The positions of the scripts in the Instrument's Script list are
5155         * relevant, because they define in which order they shall be executed by
5156         * the sampler.
5157         *
5158         * @note This is an own format extension which did not exist i.e. in the
5159         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5160         * gigedit.
5161         *
5162         * @param index1 - index of the first script slot to swap
5163         * @param index2 - index of the second script slot to swap
5164         */
5165        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5166            LoadScripts();
5167            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5168                return;
5169            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5170            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5171            (*pScriptRefs)[index2] = tmp;
5172        }
5173    
5174        /** @brief Remove script slot.
5175         *
5176         * Removes the script slot with the given slot index.
5177         *
5178         * @param index - index of script slot to remove
5179         */
5180        void Instrument::RemoveScriptSlot(uint index) {
5181            LoadScripts();
5182            if (index >= pScriptRefs->size()) return;
5183            pScriptRefs->erase( pScriptRefs->begin() + index );
5184        }
5185    
5186        /** @brief Remove reference to given Script (gig format extension).
5187         *
5188         * This will remove all script slots on the instrument which are referencing
5189         * the given script.
5190         *
5191         * @note This is an own format extension which did not exist i.e. in the
5192         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5193         * gigedit.
5194         *
5195         * @param pScript - script reference to remove from this instrument
5196         * @see RemoveScriptSlot()
5197         */
5198        void Instrument::RemoveScript(Script* pScript) {
5199            LoadScripts();
5200            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5201                if ((*pScriptRefs)[i].script == pScript) {
5202                    pScriptRefs->erase( pScriptRefs->begin() + i );
5203                }
5204            }
5205        }
5206    
5207        /** @brief Instrument's amount of script slots.
5208         *
5209         * This method returns the amount of script slots this instrument currently
5210         * uses.
5211         *
5212         * A script slot is a reference of a real-time instrument script to be
5213         * executed by the sampler. The scripts will be executed by the sampler in
5214         * sequence of the slots. One (same) script may be referenced multiple
5215         * times in different slots.
5216         *
5217         * @note This is an own format extension which did not exist i.e. in the
5218         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5219         * gigedit.
5220         */
5221        uint Instrument::ScriptSlotCount() const {
5222            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5223        }
5224    
5225        /** @brief Whether script execution shall be skipped.
5226         *
5227         * Defines locally for the Script reference slot in the Instrument's Script
5228         * list, whether the script shall be skipped by the sampler regarding
5229         * execution.
5230         *
5231         * It is also possible to ignore exeuction of the script globally, for all
5232         * slots and for all instruments by setting Script::Bypass.
5233         *
5234         * @note This is an own format extension which did not exist i.e. in the
5235         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5236         * gigedit.
5237         *
5238         * @param index - index of the script slot on this instrument
5239         * @see Script::Bypass
5240         */
5241        bool Instrument::IsScriptSlotBypassed(uint index) {
5242            if (index >= ScriptSlotCount()) return false;
5243            return pScriptRefs ? pScriptRefs->at(index).bypass
5244                               : scriptPoolFileOffsets.at(index).bypass;
5245            
5246        }
5247    
5248        /** @brief Defines whether execution shall be skipped.
5249         *
5250         * You can call this method to define locally whether or whether not the
5251         * given script slot shall be executed by the sampler.
5252         *
5253         * @note This is an own format extension which did not exist i.e. in the
5254         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5255         * gigedit.
5256         *
5257         * @param index - script slot index on this instrument
5258         * @param bBypass - if true, the script slot will be skipped by the sampler
5259         * @see Script::Bypass
5260         */
5261        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5262            if (index >= ScriptSlotCount()) return;
5263            if (pScriptRefs)
5264                pScriptRefs->at(index).bypass = bBypass;
5265            else
5266                scriptPoolFileOffsets.at(index).bypass = bBypass;
5267        }
5268    
5269        /**
5270         * Make a (semi) deep copy of the Instrument object given by @a orig
5271         * and assign it to this object.
5272         *
5273         * Note that all sample pointers referenced by @a orig are simply copied as
5274         * memory address. Thus the respective samples are shared, not duplicated!
5275         *
5276         * @param orig - original Instrument object to be copied from
5277         */
5278        void Instrument::CopyAssign(const Instrument* orig) {
5279            CopyAssign(orig, NULL);
5280        }
5281            
5282        /**
5283         * Make a (semi) deep copy of the Instrument object given by @a orig
5284         * and assign it to this object.
5285         *
5286         * @param orig - original Instrument object to be copied from
5287         * @param mSamples - crosslink map between the foreign file's samples and
5288         *                   this file's samples
5289         */
5290        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5291            // handle base class
5292            // (without copying DLS region stuff)
5293            DLS::Instrument::CopyAssignCore(orig);
5294            
5295            // handle own member variables
5296            Attenuation = orig->Attenuation;
5297            EffectSend = orig->EffectSend;
5298            FineTune = orig->FineTune;
5299            PitchbendRange = orig->PitchbendRange;
5300            PianoReleaseMode = orig->PianoReleaseMode;
5301            DimensionKeyRange = orig->DimensionKeyRange;
5302            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5303            pScriptRefs = orig->pScriptRefs;
5304            
5305            // free old midi rules
5306            for (int i = 0 ; pMidiRules[i] ; i++) {
5307                delete pMidiRules[i];
5308            }
5309            //TODO: MIDI rule copying
5310            pMidiRules[0] = NULL;
5311            
5312            // delete all old regions
5313            while (Regions) DeleteRegion(GetFirstRegion());
5314            // create new regions and copy them from original
5315            {
5316                RegionList::const_iterator it = orig->pRegions->begin();
5317                for (int i = 0; i < orig->Regions; ++i, ++it) {
5318                    Region* dstRgn = AddRegion();
5319                    //NOTE: Region does semi-deep copy !
5320                    dstRgn->CopyAssign(
5321                        static_cast<gig::Region*>(*it),
5322                        mSamples
5323                    );
5324                }
5325            }
5326    
5327            UpdateRegionKeyTable();
5328        }
5329    
5330    
5331  // *************** Group ***************  // *************** Group ***************
# Line 2738  namespace { Line 5344  namespace {
5344      }      }
5345    
5346      Group::~Group() {      Group::~Group() {
5347            // remove the chunk associated with this group (if any)
5348            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5349      }      }
5350    
5351      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
5352       *       *
5353       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
5354       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
5355         *
5356         * Usually there is absolutely no need to call this method explicitly.
5357         * It will be called automatically when File::Save() was called.
5358         *
5359         * @param pProgress - callback function for progress notification
5360       */       */
5361      void Group::UpdateChunks() {      void Group::UpdateChunks(progress_t* pProgress) {
5362          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
5363          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5364          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
5365                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5366                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5367            }
5368          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5369          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5370    
5371            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5372                // v3 has a fixed list of 128 strings, find a free one
5373                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5374                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5375                        pNameChunk = ck;
5376                        break;
5377                    }
5378                }
5379            }
5380    
5381          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5382          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5383      }      }
# Line 2826  namespace { Line 5453  namespace {
5453  // *************** File ***************  // *************** File ***************
5454  // *  // *
5455    
5456        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5457        const DLS::version_t File::VERSION_2 = {
5458            0, 2, 19980628 & 0xffff, 19980628 >> 16
5459        };
5460    
5461        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5462        const DLS::version_t File::VERSION_3 = {
5463            0, 3, 20030331 & 0xffff, 20030331 >> 16
5464        };
5465    
5466        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5467            { CHUNK_ID_IARL, 256 },
5468            { CHUNK_ID_IART, 128 },
5469            { CHUNK_ID_ICMS, 128 },
5470            { CHUNK_ID_ICMT, 1024 },
5471            { CHUNK_ID_ICOP, 128 },
5472            { CHUNK_ID_ICRD, 128 },
5473            { CHUNK_ID_IENG, 128 },
5474            { CHUNK_ID_IGNR, 128 },
5475            { CHUNK_ID_IKEY, 128 },
5476            { CHUNK_ID_IMED, 128 },
5477            { CHUNK_ID_INAM, 128 },
5478            { CHUNK_ID_IPRD, 128 },
5479            { CHUNK_ID_ISBJ, 128 },
5480            { CHUNK_ID_ISFT, 128 },
5481            { CHUNK_ID_ISRC, 128 },
5482            { CHUNK_ID_ISRF, 128 },
5483            { CHUNK_ID_ITCH, 128 },
5484            { 0, 0 }
5485        };
5486    
5487      File::File() : DLS::File() {      File::File() : DLS::File() {
5488            bAutoLoad = true;
5489            *pVersion = VERSION_3;
5490          pGroups = NULL;          pGroups = NULL;
5491          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
5492            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5493            pInfo->ArchivalLocation = String(256, ' ');
5494    
5495            // add some mandatory chunks to get the file chunks in right
5496            // order (INFO chunk will be moved to first position later)
5497            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5498            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5499            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5500    
5501            GenerateDLSID();
5502      }      }
5503    
5504      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5505            bAutoLoad = true;
5506          pGroups = NULL;          pGroups = NULL;
5507          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
5508            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5509      }      }
5510    
5511      File::~File() {      File::~File() {
# Line 2846  namespace { Line 5518  namespace {
5518              }              }
5519              delete pGroups;              delete pGroups;
5520          }          }
5521            if (pScriptGroups) {
5522                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5523                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5524                while (iter != end) {
5525                    delete *iter;
5526                    ++iter;
5527                }
5528                delete pScriptGroups;
5529            }
5530      }      }
5531    
5532      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2860  namespace { Line 5541  namespace {
5541          SamplesIterator++;          SamplesIterator++;
5542          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5543      }      }
5544        
5545        /**
5546         * Returns Sample object of @a index.
5547         *
5548         * @returns sample object or NULL if index is out of bounds
5549         */
5550        Sample* File::GetSample(uint index) {
5551            if (!pSamples) LoadSamples();
5552            if (!pSamples) return NULL;
5553            DLS::File::SampleList::iterator it = pSamples->begin();
5554            for (int i = 0; i < index; ++i) {
5555                ++it;
5556                if (it == pSamples->end()) return NULL;
5557            }
5558            if (it == pSamples->end()) return NULL;
5559            return static_cast<gig::Sample*>( *it );
5560        }
5561    
5562      /** @brief Add a new sample.      /** @brief Add a new sample.
5563       *       *
# Line 2875  namespace { Line 5573  namespace {
5573         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
5574         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5575         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5576    
5577           // add mandatory chunks to get the chunks in right order
5578           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5579           wave->AddSubList(LIST_TYPE_INFO);
5580    
5581         pSamples->push_back(pSample);         pSamples->push_back(pSample);
5582         return pSample;         return pSample;
5583      }      }
5584    
5585      /** @brief Delete a sample.      /** @brief Delete a sample.
5586       *       *
5587       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
5588       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
5589         * removed. You have to call Save() to make this persistent to the file.
5590       *       *
5591       * @param pSample - sample to delete       * @param pSample - sample to delete
5592       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2891  namespace { Line 5595  namespace {
5595          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5596          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5597          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5598            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5599          pSamples->erase(iter);          pSamples->erase(iter);
5600          delete pSample;          delete pSample;
5601    
5602            SampleList::iterator tmp = SamplesIterator;
5603            // remove all references to the sample
5604            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5605                 instrument = GetNextInstrument()) {
5606                for (Region* region = instrument->GetFirstRegion() ; region ;
5607                     region = instrument->GetNextRegion()) {
5608    
5609                    if (region->GetSample() == pSample) region->SetSample(NULL);
5610    
5611                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5612                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5613                        if (d->pSample == pSample) d->pSample = NULL;
5614                    }
5615                }
5616            }
5617            SamplesIterator = tmp; // restore iterator
5618      }      }
5619    
5620      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2902  namespace { Line 5624  namespace {
5624      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
5625          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
5626          // to resolve the group they belong to          // to resolve the group they belong to
5627          LoadGroups();          if (!pGroups) LoadGroups();
5628    
5629          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
5630    
# Line 2913  namespace { Line 5635  namespace {
5635          int iTotalSamples = WavePoolCount;          int iTotalSamples = WavePoolCount;
5636    
5637          // check if samples should be loaded from extension files          // check if samples should be loaded from extension files
5638            // (only for old gig files < 2 GB)
5639          int lastFileNo = 0;          int lastFileNo = 0;
5640          for (int i = 0 ; i < WavePoolCount ; i++) {          if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5641              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];              for (int i = 0 ; i < WavePoolCount ; i++) {
5642                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5643                }
5644          }          }
5645          String name(pRIFF->GetFileName());          String name(pRIFF->GetFileName());
5646          int nameLen = name.length();          int nameLen = (int) name.length();
5647          char suffix[6];          char suffix[6];
5648          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5649    
5650          for (int fileNo = 0 ; ; ) {          for (int fileNo = 0 ; ; ) {
5651              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5652              if (wvpl) {              if (wvpl) {
5653                  unsigned long wvplFileOffset = wvpl->GetFilePos();                  file_offset_t wvplFileOffset = wvpl->GetFilePos();
5654                  RIFF::List* wave = wvpl->GetFirstSubList();                  RIFF::List* wave = wvpl->GetFirstSubList();
5655                  while (wave) {                  while (wave) {
5656                      if (wave->GetListType() == LIST_TYPE_WAVE) {                      if (wave->GetListType() == LIST_TYPE_WAVE) {
# Line 2933  namespace { Line 5658  namespace {
5658                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5659                          __notify_progress(pProgress, subprogress);                          __notify_progress(pProgress, subprogress);
5660    
5661                          unsigned long waveFileOffset = wave->GetFilePos();                          file_offset_t waveFileOffset = wave->GetFilePos();
5662                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5663    
5664                          iSampleIndex++;                          iSampleIndex++;
5665                      }                      }
# Line 2983  namespace { Line 5708  namespace {
5708              progress_t subprogress;              progress_t subprogress;
5709              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5710              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
5711              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
5712                    GetFirstSample(&subprogress); // now force all samples to be loaded
5713              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
5714    
5715              // instrument loading subtask              // instrument loading subtask
# Line 3016  namespace { Line 5742  namespace {
5742         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
5743         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5744         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5745    
5746           // add mandatory chunks to get the chunks in right order
5747           lstInstr->AddSubList(LIST_TYPE_INFO);
5748           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5749    
5750         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
5751           pInstrument->GenerateDLSID();
5752    
5753           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5754    
5755           // this string is needed for the gig to be loadable in GSt:
5756           pInstrument->pInfo->Software = "Endless Wave";
5757    
5758         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
5759         return pInstrument;         return pInstrument;
5760      }      }
5761        
5762        /** @brief Add a duplicate of an existing instrument.
5763         *
5764         * Duplicates the instrument definition given by @a orig and adds it
5765         * to this file. This allows in an instrument editor application to
5766         * easily create variations of an instrument, which will be stored in
5767         * the same .gig file, sharing i.e. the same samples.
5768         *
5769         * Note that all sample pointers referenced by @a orig are simply copied as
5770         * memory address. Thus the respective samples are shared, not duplicated!
5771         *
5772         * You have to call Save() to make this persistent to the file.
5773         *
5774         * @param orig - original instrument to be copied
5775         * @returns duplicated copy of the given instrument
5776         */
5777        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5778            Instrument* instr = AddInstrument();
5779            instr->CopyAssign(orig);
5780            return instr;
5781        }
5782        
5783        /** @brief Add content of another existing file.
5784         *
5785         * Duplicates the samples, groups and instruments of the original file
5786         * given by @a pFile and adds them to @c this File. In case @c this File is
5787         * a new one that you haven't saved before, then you have to call
5788         * SetFileName() before calling AddContentOf(), because this method will
5789         * automatically save this file during operation, which is required for
5790         * writing the sample waveform data by disk streaming.
5791         *
5792         * @param pFile - original file whose's content shall be copied from
5793         */
5794        void File::AddContentOf(File* pFile) {
5795            static int iCallCount = -1;
5796            iCallCount++;
5797            std::map<Group*,Group*> mGroups;
5798            std::map<Sample*,Sample*> mSamples;
5799            
5800            // clone sample groups
5801            for (int i = 0; pFile->GetGroup(i); ++i) {
5802                Group* g = AddGroup();
5803                g->Name =
5804                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5805                mGroups[pFile->GetGroup(i)] = g;
5806            }
5807            
5808            // clone samples (not waveform data here yet)
5809            for (int i = 0; pFile->GetSample(i); ++i) {
5810                Sample* s = AddSample();
5811                s->CopyAssignMeta(pFile->GetSample(i));
5812                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5813                mSamples[pFile->GetSample(i)] = s;
5814            }
5815    
5816            // clone script groups and their scripts
5817            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5818                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5819                ScriptGroup* dg = AddScriptGroup();
5820                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5821                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5822                    Script* ss = sg->GetScript(iScript);
5823                    Script* ds = dg->AddScript();
5824                    ds->CopyAssign(ss);
5825                }
5826            }
5827    
5828            //BUG: For some reason this method only works with this additional
5829            //     Save() call in between here.
5830            //
5831            // Important: The correct one of the 2 Save() methods has to be called
5832            // here, depending on whether the file is completely new or has been
5833            // saved to disk already, otherwise it will result in data corruption.
5834            if (pRIFF->IsNew())
5835                Save(GetFileName());
5836            else
5837                Save();
5838            
5839            // clone instruments
5840            // (passing the crosslink table here for the cloned samples)
5841            for (int i = 0; pFile->GetInstrument(i); ++i) {
5842                Instrument* instr = AddInstrument();
5843                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5844            }
5845            
5846            // Mandatory: file needs to be saved to disk at this point, so this
5847            // file has the correct size and data layout for writing the samples'
5848            // waveform data to disk.
5849            Save();
5850            
5851            // clone samples' waveform data
5852            // (using direct read & write disk streaming)
5853            for (int i = 0; pFile->GetSample(i); ++i) {
5854                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5855            }
5856        }
5857    
5858      /** @brief Delete an instrument.      /** @brief Delete an instrument.
5859       *       *
# Line 3027  namespace { Line 5861  namespace {
5861       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
5862       *       *
5863       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
5864       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
5865       */       */
5866      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
5867          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 3067  namespace { Line 5901  namespace {
5901          }          }
5902      }      }
5903    
5904        /// Updates the 3crc chunk with the checksum of a sample. The
5905        /// update is done directly to disk, as this method is called
5906        /// after File::Save()
5907        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5908            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5909            if (!_3crc) return;
5910    
5911            // get the index of the sample
5912            int iWaveIndex = GetWaveTableIndexOf(pSample);
5913            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5914    
5915            // write the CRC-32 checksum to disk
5916            _3crc->SetPos(iWaveIndex * 8);
5917            uint32_t one = 1;
5918            _3crc->WriteUint32(&one); // always 1
5919            _3crc->WriteUint32(&crc);
5920        }
5921    
5922        uint32_t File::GetSampleChecksum(Sample* pSample) {
5923            // get the index of the sample
5924            int iWaveIndex = GetWaveTableIndexOf(pSample);
5925            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5926    
5927            return GetSampleChecksumByIndex(iWaveIndex);
5928        }
5929    
5930        uint32_t File::GetSampleChecksumByIndex(int index) {
5931            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5932    
5933            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5934            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5935            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5936            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5937    
5938            // read the CRC-32 checksum directly from disk
5939            size_t pos = index * 8;
5940            if (pos + 8 > _3crc->GetNewSize())
5941                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5942    
5943            uint32_t one = load32(&pData[pos]); // always 1
5944            if (one != 1)
5945                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5946    
5947            return load32(&pData[pos+4]);
5948        }
5949    
5950        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5951            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5952            File::SampleList::iterator iter = pSamples->begin();
5953            File::SampleList::iterator end  = pSamples->end();
5954            for (int index = 0; iter != end; ++iter, ++index)
5955                if (*iter == pSample)
5956                    return index;
5957            return -1;
5958        }
5959    
5960        /**
5961         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5962         * the CRC32 check sums of all samples' raw wave data.
5963         *
5964         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5965         */
5966        bool File::VerifySampleChecksumTable() {
5967            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5968            if (!_3crc) return false;
5969            if (_3crc->GetNewSize() <= 0) return false;
5970            if (_3crc->GetNewSize() % 8) return false;
5971            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5972            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5973    
5974            const file_offset_t n = _3crc->GetNewSize() / 8;
5975    
5976            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5977            if (!pData) return false;
5978    
5979            for (file_offset_t i = 0; i < n; ++i) {
5980                uint32_t one = pData[i*2];
5981                if (one != 1) return false;
5982            }
5983    
5984            return true;
5985        }
5986    
5987        /**
5988         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5989         * file's checksum table with those new checksums. This might usually
5990         * just be necessary if the checksum table was damaged.
5991         *
5992         * @e IMPORTANT: The current implementation of this method only works
5993         * with files that have not been modified since it was loaded, because
5994         * it expects that no externally caused file structure changes are
5995         * required!
5996         *
5997         * Due to the expectation above, this method is currently protected
5998         * and actually only used by the command line tool "gigdump" yet.
5999         *
6000         * @returns true if Save() is required to be called after this call,
6001         *          false if no further action is required
6002         */
6003        bool File::RebuildSampleChecksumTable() {
6004            // make sure sample chunks were scanned
6005            if (!pSamples) GetFirstSample();
6006    
6007            bool bRequiresSave = false;
6008    
6009            // make sure "3CRC" chunk exists with required size
6010            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6011            if (!_3crc) {
6012                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6013                // the order of einf and 3crc is not the same in v2 and v3
6014                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6015                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6016                bRequiresSave = true;
6017            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6018                _3crc->Resize(pSamples->size() * 8);
6019                bRequiresSave = true;
6020            }
6021    
6022            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6023                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6024                {
6025                    File::SampleList::iterator iter = pSamples->begin();
6026                    File::SampleList::iterator end  = pSamples->end();
6027                    for (; iter != end; ++iter) {
6028                        gig::Sample* pSample = (gig::Sample*) *iter;
6029                        int index = GetWaveTableIndexOf(pSample);
6030                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6031                        pData[index*2]   = 1; // always 1
6032                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6033                    }
6034                }
6035            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6036                // make sure file is in write mode
6037                pRIFF->SetMode(RIFF::stream_mode_read_write);
6038                {
6039                    File::SampleList::iterator iter = pSamples->begin();
6040                    File::SampleList::iterator end  = pSamples->end();
6041                    for (; iter != end; ++iter) {
6042                        gig::Sample* pSample = (gig::Sample*) *iter;
6043                        int index = GetWaveTableIndexOf(pSample);
6044                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6045                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6046                        SetSampleChecksum(pSample, pSample->crc);
6047                    }
6048                }
6049            }
6050    
6051            return bRequiresSave;
6052        }
6053    
6054      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
6055          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6056          // there must always be at least one group          // there must always be at least one group
# Line 3096  namespace { Line 6080  namespace {
6080          return NULL;          return NULL;
6081      }      }
6082    
6083        /**
6084         * Returns the group with the given group name.
6085         *
6086         * Note: group names don't have to be unique in the gig format! So there
6087         * can be multiple groups with the same name. This method will simply
6088         * return the first group found with the given name.
6089         *
6090         * @param name - name of the sought group
6091         * @returns sought group or NULL if there's no group with that name
6092         */
6093        Group* File::GetGroup(String name) {
6094            if (!pGroups) LoadGroups();
6095            GroupsIterator = pGroups->begin();
6096            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6097                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6098            return NULL;
6099        }
6100    
6101      Group* File::AddGroup() {      Group* File::AddGroup() {
6102          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6103          // there must always be at least one group          // there must always be at least one group
# Line 3105  namespace { Line 6107  namespace {
6107          return pGroup;          return pGroup;
6108      }      }
6109    
6110        /** @brief Delete a group and its samples.
6111         *
6112         * This will delete the given Group object and all the samples that
6113         * belong to this group from the gig file. You have to call Save() to
6114         * make this persistent to the file.
6115         *
6116         * @param pGroup - group to delete
6117         * @throws gig::Exception if given group could not be found
6118         */
6119      void File::DeleteGroup(Group* pGroup) {      void File::DeleteGroup(Group* pGroup) {
6120          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6121          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6122          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6123          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6124            // delete all members of this group
6125            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6126                DeleteSample(pSample);
6127            }
6128            // now delete this group object
6129            pGroups->erase(iter);
6130            delete pGroup;
6131        }
6132    
6133        /** @brief Delete a group.
6134         *
6135         * This will delete the given Group object from the gig file. All the
6136         * samples that belong to this group will not be deleted, but instead
6137         * be moved to another group. You have to call Save() to make this
6138         * persistent to the file.
6139         *
6140         * @param pGroup - group to delete
6141         * @throws gig::Exception if given group could not be found
6142         */
6143        void File::DeleteGroupOnly(Group* pGroup) {
6144            if (!pGroups) LoadGroups();
6145            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6146            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6147            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6148          // move all members of this group to another group          // move all members of this group to another group
6149          pGroup->MoveAll();          pGroup->MoveAll();
6150          pGroups->erase(iter);          pGroups->erase(iter);
# Line 3126  namespace { Line 6161  namespace {
6161                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6162                  while (ck) {                  while (ck) {
6163                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6164                            if (pVersion && pVersion->major == 3 &&
6165                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6166    
6167                          pGroups->push_back(new Group(this, ck));                          pGroups->push_back(new Group(this, ck));
6168                      }                      }
6169                      ck = lst3gnl->GetNextSubChunk();                      ck = lst3gnl->GetNextSubChunk();
# Line 3140  namespace { Line 6178  namespace {
6178          }          }
6179      }      }
6180    
6181        /** @brief Get instrument script group (by index).
6182         *
6183         * Returns the real-time instrument script group with the given index.
6184         *
6185         * @param index - number of the sought group (0..n)
6186         * @returns sought script group or NULL if there's no such group
6187         */
6188        ScriptGroup* File::GetScriptGroup(uint index) {
6189            if (!pScriptGroups) LoadScriptGroups();
6190            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6191            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6192                if (i == index) return *it;
6193            return NULL;
6194        }
6195    
6196        /** @brief Get instrument script group (by name).
6197         *
6198         * Returns the first real-time instrument script group found with the given
6199         * group name. Note that group names may not necessarily be unique.
6200         *
6201         * @param name - name of the sought script group
6202         * @returns sought script group or NULL if there's no such group
6203         */
6204        ScriptGroup* File::GetScriptGroup(const String& name) {
6205            if (!pScriptGroups) LoadScriptGroups();
6206            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6207            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6208                if ((*it)->Name == name) return *it;
6209            return NULL;
6210        }
6211    
6212        /** @brief Add new instrument script group.
6213         *
6214         * Adds a new, empty real-time instrument script group to the file.
6215         *
6216         * You have to call Save() to make this persistent to the file.
6217         *
6218         * @return new empty script group
6219         */
6220        ScriptGroup* File::AddScriptGroup() {
6221            if (!pScriptGroups) LoadScriptGroups();
6222            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6223            pScriptGroups->push_back(pScriptGroup);
6224            return pScriptGroup;
6225        }
6226    
6227        /** @brief Delete an instrument script group.
6228         *
6229         * This will delete the given real-time instrument script group and all its
6230         * instrument scripts it contains. References inside instruments that are
6231         * using the deleted scripts will be removed from the respective instruments
6232         * accordingly.
6233         *
6234         * You have to call Save() to make this persistent to the file.
6235         *
6236         * @param pScriptGroup - script group to delete
6237         * @throws gig::Exception if given script group could not be found
6238         */
6239        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6240            if (!pScriptGroups) LoadScriptGroups();
6241            std::list<ScriptGroup*>::iterator iter =
6242                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6243            if (iter == pScriptGroups->end())
6244                throw gig::Exception("Could not delete script group, could not find given script group");
6245            pScriptGroups->erase(iter);
6246            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6247                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6248            if (pScriptGroup->pList)
6249                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6250            delete pScriptGroup;
6251        }
6252    
6253        void File::LoadScriptGroups() {
6254            if (pScriptGroups) return;
6255            pScriptGroups = new std::list<ScriptGroup*>;
6256            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6257            if (lstLS) {
6258                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6259                     lst = lstLS->GetNextSubList())
6260                {
6261                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6262                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6263                    }
6264                }
6265            }
6266        }
6267    
6268        /**
6269         * Apply all the gig file's current instruments, samples, groups and settings
6270         * to the respective RIFF chunks. You have to call Save() to make changes
6271         * persistent.
6272         *
6273         * Usually there is absolutely no need to call this method explicitly.
6274         * It will be called automatically when File::Save() was called.
6275         *
6276         * @param pProgress - callback function for progress notification
6277         * @throws Exception - on errors
6278         */
6279        void File::UpdateChunks(progress_t* pProgress) {
6280            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6281    
6282            // update own gig format extension chunks
6283            // (not part of the GigaStudio 4 format)
6284            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6285            if (!lst3LS) {
6286                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6287            }
6288            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6289            // location of <3LS > is irrelevant, however it should be located
6290            // before  the actual wave data
6291            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6292            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6293    
6294            // This must be performed before writing the chunks for instruments,
6295            // because the instruments' script slots will write the file offsets
6296            // of the respective instrument script chunk as reference.
6297            if (pScriptGroups) {
6298                // Update instrument script (group) chunks.
6299                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6300                     it != pScriptGroups->end(); ++it)
6301                {
6302                    (*it)->UpdateChunks(pProgress);
6303                }
6304            }
6305    
6306            // in case no libgig custom format data was added, then remove the
6307            // custom "3LS " chunk again
6308            if (!lst3LS->CountSubChunks()) {
6309                pRIFF->DeleteSubChunk(lst3LS);
6310                lst3LS = NULL;
6311            }
6312    
6313            // first update base class's chunks
6314            DLS::File::UpdateChunks(pProgress);
6315    
6316            if (newFile) {
6317                // INFO was added by Resource::UpdateChunks - make sure it
6318                // is placed first in file
6319                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6320                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6321                if (first != info) {
6322                    pRIFF->MoveSubChunk(info, first);
6323                }
6324            }
6325    
6326            // update group's chunks
6327            if (pGroups) {
6328                // make sure '3gri' and '3gnl' list chunks exist
6329                // (before updating the Group chunks)
6330                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6331                if (!_3gri) {
6332                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6333                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6334                }
6335                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6336                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6337    
6338                // v3: make sure the file has 128 3gnm chunks
6339                // (before updating the Group chunks)
6340                if (pVersion && pVersion->major == 3) {
6341                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6342                    for (int i = 0 ; i < 128 ; i++) {
6343                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6344                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6345                    }
6346                }
6347    
6348                std::list<Group*>::iterator iter = pGroups->begin();
6349                std::list<Group*>::iterator end  = pGroups->end();
6350                for (; iter != end; ++iter) {
6351                    (*iter)->UpdateChunks(pProgress);
6352                }
6353            }
6354    
6355            // update einf chunk
6356    
6357            // The einf chunk contains statistics about the gig file, such
6358            // as the number of regions and samples used by each
6359            // instrument. It is divided in equally sized parts, where the
6360            // first part contains information about the whole gig file,
6361            // and the rest of the parts map to each instrument in the
6362            // file.
6363            //
6364            // At the end of each part there is a bit map of each sample
6365            // in the file, where a set bit means that the sample is used
6366            // by the file/instrument.
6367            //
6368            // Note that there are several fields with unknown use. These
6369            // are set to zero.
6370    
6371            int sublen = int(pSamples->size() / 8 + 49);
6372            int einfSize = (Instruments + 1) * sublen;
6373    
6374            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6375            if (einf) {
6376                if (einf->GetSize() != einfSize) {
6377                    einf->Resize(einfSize);
6378                    memset(einf->LoadChunkData(), 0, einfSize);
6379                }
6380            } else if (newFile) {
6381                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6382            }
6383            if (einf) {
6384                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6385    
6386                std::map<gig::Sample*,int> sampleMap;
6387                int sampleIdx = 0;
6388                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6389                    sampleMap[pSample] = sampleIdx++;
6390                }
6391    
6392                int totnbusedsamples = 0;
6393                int totnbusedchannels = 0;
6394                int totnbregions = 0;
6395                int totnbdimregions = 0;
6396                int totnbloops = 0;
6397                int instrumentIdx = 0;
6398    
6399                memset(&pData[48], 0, sublen - 48);
6400    
6401                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6402                     instrument = GetNextInstrument()) {
6403                    int nbusedsamples = 0;
6404                    int nbusedchannels = 0;
6405                    int nbdimregions = 0;
6406                    int nbloops = 0;
6407    
6408                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6409    
6410                    for (Region* region = instrument->GetFirstRegion() ; region ;
6411                         region = instrument->GetNextRegion()) {
6412                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6413                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6414                            if (d->pSample) {
6415                                int sampleIdx = sampleMap[d->pSample];
6416                                int byte = 48 + sampleIdx / 8;
6417                                int bit = 1 << (sampleIdx & 7);
6418                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6419                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6420                                    nbusedsamples++;
6421                                    nbusedchannels += d->pSample->Channels;
6422    
6423                                    if ((pData[byte] & bit) == 0) {
6424                                        pData[byte] |= bit;
6425                                        totnbusedsamples++;
6426                                        totnbusedchannels += d->pSample->Channels;
6427                                    }
6428                                }
6429                            }
6430                            if (d->SampleLoops) nbloops++;
6431                        }
6432                        nbdimregions += region->DimensionRegions;
6433                    }
6434                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6435                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6436                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6437                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6438                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6439                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6440                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6441                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6442                    // next 8 bytes unknown
6443                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6444                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6445                    // next 4 bytes unknown
6446    
6447                    totnbregions += instrument->Regions;
6448                    totnbdimregions += nbdimregions;
6449                    totnbloops += nbloops;
6450                    instrumentIdx++;
6451                }
6452                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6453                // store32(&pData[0], sublen);
6454                store32(&pData[4], totnbusedchannels);
6455                store32(&pData[8], totnbusedsamples);
6456                store32(&pData[12], Instruments);
6457                store32(&pData[16], totnbregions);
6458                store32(&pData[20], totnbdimregions);
6459                store32(&pData[24], totnbloops);
6460                // next 8 bytes unknown
6461                // next 4 bytes unknown, not always 0
6462                store32(&pData[40], (uint32_t) pSamples->size());
6463                // next 4 bytes unknown
6464            }
6465    
6466            // update 3crc chunk
6467    
6468            // The 3crc chunk contains CRC-32 checksums for the
6469            // samples. When saving a gig file to disk, we first update the 3CRC
6470            // chunk here (in RAM) with the old crc values which we read from the
6471            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6472            // member variable). This step is required, because samples might have
6473            // been deleted by the user since the file was opened, which in turn
6474            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6475            // If a sample was conciously modified by the user (that is if
6476            // Sample::Write() was called later on) then Sample::Write() will just
6477            // update the respective individual checksum(s) directly on disk and
6478            // leaves all other sample checksums untouched.
6479    
6480            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6481            if (_3crc) {
6482                _3crc->Resize(pSamples->size() * 8);
6483            } else /*if (newFile)*/ {
6484                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6485                // the order of einf and 3crc is not the same in v2 and v3
6486                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6487            }
6488            { // must be performed in RAM here ...
6489                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6490                if (pData) {
6491                    File::SampleList::iterator iter = pSamples->begin();
6492                    File::SampleList::iterator end  = pSamples->end();
6493                    for (int index = 0; iter != end; ++iter, ++index) {
6494                        gig::Sample* pSample = (gig::Sample*) *iter;
6495                        pData[index*2]   = 1; // always 1
6496                        pData[index*2+1] = pSample->crc;
6497                    }
6498                }
6499            }
6500        }
6501        
6502        void File::UpdateFileOffsets() {
6503            DLS::File::UpdateFileOffsets();
6504    
6505            for (Instrument* instrument = GetFirstInstrument(); instrument;
6506                 instrument = GetNextInstrument())
6507            {
6508                instrument->UpdateScriptFileOffsets();
6509            }
6510        }
6511    
6512        /**
6513         * Enable / disable automatic loading. By default this properyt is
6514         * enabled and all informations are loaded automatically. However
6515         * loading all Regions, DimensionRegions and especially samples might
6516         * take a long time for large .gig files, and sometimes one might only
6517         * be interested in retrieving very superficial informations like the
6518         * amount of instruments and their names. In this case one might disable
6519         * automatic loading to avoid very slow response times.
6520         *
6521         * @e CAUTION: by disabling this property many pointers (i.e. sample
6522         * references) and informations will have invalid or even undefined
6523         * data! This feature is currently only intended for retrieving very
6524         * superficial informations in a very fast way. Don't use it to retrieve
6525         * details like synthesis informations or even to modify .gig files!
6526         */
6527        void File::SetAutoLoad(bool b) {
6528            bAutoLoad = b;
6529        }
6530    
6531        /**
6532         * Returns whether automatic loading is enabled.
6533         * @see SetAutoLoad()
6534         */
6535        bool File::GetAutoLoad() {
6536            return bAutoLoad;
6537        }
6538    
6539    
6540    
6541  // *************** Exception ***************  // *************** Exception ***************
6542  // *  // *
6543    
6544      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6545        }
6546    
6547        Exception::Exception(String format, ...) : DLS::Exception() {
6548            va_list arg;
6549            va_start(arg, format);
6550            Message = assemble(format, arg);
6551            va_end(arg);
6552        }
6553    
6554        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6555            Message = assemble(format, arg);
6556      }      }
6557    
6558      void Exception::PrintMessage() {      void Exception::PrintMessage() {

Legend:
Removed from v.1070  
changed lines
  Added in v.3327

  ViewVC Help
Powered by ViewVC