/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 16 by schoenebeck, Sat Nov 29 14:56:16 2003 UTC revision 3138 by schoenebeck, Wed May 3 14:41:58 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    #include <assert.h>
32    
33    /// libgig's current file format version (for extending the original Giga file
34    /// format with libgig's own custom data / custom features).
35    #define GIG_FILE_EXT_VERSION    2
36    
37    /// Initial size of the sample buffer which is used for decompression of
38    /// compressed sample wave streams - this value should always be bigger than
39    /// the biggest sample piece expected to be read by the sampler engine,
40    /// otherwise the buffer size will be raised at runtime and thus the buffer
41    /// reallocated which is time consuming and unefficient.
42    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
43    
44    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
46    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
47    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
48    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
49    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
50    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
51    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
52    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
53    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
55    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
56    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
57    
58    #define SRLZ(member) \
59        archive->serializeMember(*this, member, #member);
60    
61  namespace gig {  namespace gig {
62    
63    // *************** Internal functions for sample decompression ***************
64    // *
65    
66    namespace {
67    
68        inline int get12lo(const unsigned char* pSrc)
69        {
70            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
71            return x & 0x800 ? x - 0x1000 : x;
72        }
73    
74        inline int get12hi(const unsigned char* pSrc)
75        {
76            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
77            return x & 0x800 ? x - 0x1000 : x;
78        }
79    
80        inline int16_t get16(const unsigned char* pSrc)
81        {
82            return int16_t(pSrc[0] | pSrc[1] << 8);
83        }
84    
85        inline int get24(const unsigned char* pSrc)
86        {
87            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
88            return x & 0x800000 ? x - 0x1000000 : x;
89        }
90    
91        inline void store24(unsigned char* pDst, int x)
92        {
93            pDst[0] = x;
94            pDst[1] = x >> 8;
95            pDst[2] = x >> 16;
96        }
97    
98        void Decompress16(int compressionmode, const unsigned char* params,
99                          int srcStep, int dstStep,
100                          const unsigned char* pSrc, int16_t* pDst,
101                          file_offset_t currentframeoffset,
102                          file_offset_t copysamples)
103        {
104            switch (compressionmode) {
105                case 0: // 16 bit uncompressed
106                    pSrc += currentframeoffset * srcStep;
107                    while (copysamples) {
108                        *pDst = get16(pSrc);
109                        pDst += dstStep;
110                        pSrc += srcStep;
111                        copysamples--;
112                    }
113                    break;
114    
115                case 1: // 16 bit compressed to 8 bit
116                    int y  = get16(params);
117                    int dy = get16(params + 2);
118                    while (currentframeoffset) {
119                        dy -= int8_t(*pSrc);
120                        y  -= dy;
121                        pSrc += srcStep;
122                        currentframeoffset--;
123                    }
124                    while (copysamples) {
125                        dy -= int8_t(*pSrc);
126                        y  -= dy;
127                        *pDst = y;
128                        pDst += dstStep;
129                        pSrc += srcStep;
130                        copysamples--;
131                    }
132                    break;
133            }
134        }
135    
136        void Decompress24(int compressionmode, const unsigned char* params,
137                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
138                          file_offset_t currentframeoffset,
139                          file_offset_t copysamples, int truncatedBits)
140        {
141            int y, dy, ddy, dddy;
142    
143    #define GET_PARAMS(params)                      \
144            y    = get24(params);                   \
145            dy   = y - get24((params) + 3);         \
146            ddy  = get24((params) + 6);             \
147            dddy = get24((params) + 9)
148    
149    #define SKIP_ONE(x)                             \
150            dddy -= (x);                            \
151            ddy  -= dddy;                           \
152            dy   =  -dy - ddy;                      \
153            y    += dy
154    
155    #define COPY_ONE(x)                             \
156            SKIP_ONE(x);                            \
157            store24(pDst, y << truncatedBits);      \
158            pDst += dstStep
159    
160            switch (compressionmode) {
161                case 2: // 24 bit uncompressed
162                    pSrc += currentframeoffset * 3;
163                    while (copysamples) {
164                        store24(pDst, get24(pSrc) << truncatedBits);
165                        pDst += dstStep;
166                        pSrc += 3;
167                        copysamples--;
168                    }
169                    break;
170    
171                case 3: // 24 bit compressed to 16 bit
172                    GET_PARAMS(params);
173                    while (currentframeoffset) {
174                        SKIP_ONE(get16(pSrc));
175                        pSrc += 2;
176                        currentframeoffset--;
177                    }
178                    while (copysamples) {
179                        COPY_ONE(get16(pSrc));
180                        pSrc += 2;
181                        copysamples--;
182                    }
183                    break;
184    
185                case 4: // 24 bit compressed to 12 bit
186                    GET_PARAMS(params);
187                    while (currentframeoffset > 1) {
188                        SKIP_ONE(get12lo(pSrc));
189                        SKIP_ONE(get12hi(pSrc));
190                        pSrc += 3;
191                        currentframeoffset -= 2;
192                    }
193                    if (currentframeoffset) {
194                        SKIP_ONE(get12lo(pSrc));
195                        currentframeoffset--;
196                        if (copysamples) {
197                            COPY_ONE(get12hi(pSrc));
198                            pSrc += 3;
199                            copysamples--;
200                        }
201                    }
202                    while (copysamples > 1) {
203                        COPY_ONE(get12lo(pSrc));
204                        COPY_ONE(get12hi(pSrc));
205                        pSrc += 3;
206                        copysamples -= 2;
207                    }
208                    if (copysamples) {
209                        COPY_ONE(get12lo(pSrc));
210                    }
211                    break;
212    
213                case 5: // 24 bit compressed to 8 bit
214                    GET_PARAMS(params);
215                    while (currentframeoffset) {
216                        SKIP_ONE(int8_t(*pSrc++));
217                        currentframeoffset--;
218                    }
219                    while (copysamples) {
220                        COPY_ONE(int8_t(*pSrc++));
221                        copysamples--;
222                    }
223                    break;
224            }
225        }
226    
227        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
228        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
229        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
230        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
231    }
232    
233    
234    
235    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
236    // *
237    
238        static uint32_t* __initCRCTable() {
239            static uint32_t res[256];
240    
241            for (int i = 0 ; i < 256 ; i++) {
242                uint32_t c = i;
243                for (int j = 0 ; j < 8 ; j++) {
244                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
245                }
246                res[i] = c;
247            }
248            return res;
249        }
250    
251        static const uint32_t* __CRCTable = __initCRCTable();
252    
253        /**
254         * Initialize a CRC variable.
255         *
256         * @param crc - variable to be initialized
257         */
258        inline static void __resetCRC(uint32_t& crc) {
259            crc = 0xffffffff;
260        }
261    
262        /**
263         * Used to calculate checksums of the sample data in a gig file. The
264         * checksums are stored in the 3crc chunk of the gig file and
265         * automatically updated when a sample is written with Sample::Write().
266         *
267         * One should call __resetCRC() to initialize the CRC variable to be
268         * used before calling this function the first time.
269         *
270         * After initializing the CRC variable one can call this function
271         * arbitrary times, i.e. to split the overall CRC calculation into
272         * steps.
273         *
274         * Once the whole data was processed by __calculateCRC(), one should
275         * call __finalizeCRC() to get the final CRC result.
276         *
277         * @param buf     - pointer to data the CRC shall be calculated of
278         * @param bufSize - size of the data to be processed
279         * @param crc     - variable the CRC sum shall be stored to
280         */
281        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
282            for (size_t i = 0 ; i < bufSize ; i++) {
283                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
284            }
285        }
286    
287        /**
288         * Returns the final CRC result.
289         *
290         * @param crc - variable previously passed to __calculateCRC()
291         */
292        inline static void __finalizeCRC(uint32_t& crc) {
293            crc ^= 0xffffffff;
294        }
295    
296    
297    
298    // *************** Other Internal functions  ***************
299    // *
300    
301        static split_type_t __resolveSplitType(dimension_t dimension) {
302            return (
303                dimension == dimension_layer ||
304                dimension == dimension_samplechannel ||
305                dimension == dimension_releasetrigger ||
306                dimension == dimension_keyboard ||
307                dimension == dimension_roundrobin ||
308                dimension == dimension_random ||
309                dimension == dimension_smartmidi ||
310                dimension == dimension_roundrobinkeyboard
311            ) ? split_type_bit : split_type_normal;
312        }
313    
314        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
315            return (dimension_definition.split_type == split_type_normal)
316            ? int(128.0 / dimension_definition.zones) : 0;
317        }
318    
319    
320    
321    // *************** leverage_ctrl_t ***************
322    // *
323    
324        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
325            SRLZ(type);
326            SRLZ(controller_number);
327        }
328    
329    
330    
331    // *************** crossfade_t ***************
332    // *
333    
334        void crossfade_t::serialize(Serialization::Archive* archive) {
335            SRLZ(in_start);
336            SRLZ(in_end);
337            SRLZ(out_start);
338            SRLZ(out_end);
339        }
340    
341    
342    
343  // *************** Sample ***************  // *************** Sample ***************
344  // *  // *
345    
346      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
347      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
348    
349      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
350         *
351         * Load an existing sample or create a new one. A 'wave' list chunk must
352         * be given to this constructor. In case the given 'wave' list chunk
353         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
354         * format and sample data will be loaded from there, otherwise default
355         * values will be used and those chunks will be created when
356         * File::Save() will be called later on.
357         *
358         * @param pFile          - pointer to gig::File where this sample is
359         *                         located (or will be located)
360         * @param waveList       - pointer to 'wave' list chunk which is (or
361         *                         will be) associated with this sample
362         * @param WavePoolOffset - offset of this sample data from wave pool
363         *                         ('wvpl') list chunk
364         * @param fileNo         - number of an extension file where this sample
365         *                         is located, 0 otherwise
366         * @param index          - wave pool index of sample (may be -1 on new sample)
367         */
368        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
369            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
370        {
371            static const DLS::Info::string_length_t fixedStringLengths[] = {
372                { CHUNK_ID_INAM, 64 },
373                { 0, 0 }
374            };
375            pInfo->SetFixedStringLengths(fixedStringLengths);
376          Instances++;          Instances++;
377            FileNo = fileNo;
378    
379            __resetCRC(crc);
380            // if this is not a new sample, try to get the sample's already existing
381            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
382            // checksum of the time when the sample was consciously modified by the
383            // user for the last time (by calling Sample::Write() that is).
384            if (index >= 0) { // not a new file ...
385                try {
386                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
387                    this->crc = crc;
388                } catch (...) {}
389            }
390    
391            pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
392            if (pCk3gix) {
393                uint16_t iSampleGroup = pCk3gix->ReadInt16();
394                pGroup = pFile->GetGroup(iSampleGroup);
395            } else { // '3gix' chunk missing
396                // by default assigned to that mandatory "Default Group"
397                pGroup = pFile->GetGroup(0);
398            }
399    
400          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
401          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCkSmpl) {
402          SampleGroup = _3gix->ReadInt16();              Manufacturer  = pCkSmpl->ReadInt32();
403                Product       = pCkSmpl->ReadInt32();
404          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              SamplePeriod  = pCkSmpl->ReadInt32();
405          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              MIDIUnityNote = pCkSmpl->ReadInt32();
406          Manufacturer      = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
407          Product           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
408          SamplePeriod      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
409          MIDIUnityNote     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
410          MIDIPitchFraction = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
411          smpl->Read(&SMPTEFormat, 1, 4);              LoopID        = pCkSmpl->ReadInt32();
412          SMPTEOffset       = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
413          Loops             = smpl->ReadInt32();              LoopStart     = pCkSmpl->ReadInt32();
414          LoopID            = smpl->ReadInt32();              LoopEnd       = pCkSmpl->ReadInt32();
415          smpl->Read(&LoopType, 1, 4);              LoopFraction  = pCkSmpl->ReadInt32();
416          LoopStart         = smpl->ReadInt32();              LoopPlayCount = pCkSmpl->ReadInt32();
417          LoopEnd           = smpl->ReadInt32();          } else { // 'smpl' chunk missing
418          LoopFraction      = smpl->ReadInt32();              // use default values
419          LoopPlayCount     = smpl->ReadInt32();              Manufacturer  = 0;
420                Product       = 0;
421                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
422                MIDIUnityNote = 60;
423                FineTune      = 0;
424                SMPTEFormat   = smpte_format_no_offset;
425                SMPTEOffset   = 0;
426                Loops         = 0;
427                LoopID        = 0;
428                LoopType      = loop_type_normal;
429                LoopStart     = 0;
430                LoopEnd       = 0;
431                LoopFraction  = 0;
432                LoopPlayCount = 0;
433            }
434    
435          FrameTable                 = NULL;          FrameTable                 = NULL;
436          SamplePos                  = 0;          SamplePos                  = 0;
# Line 62  namespace gig { Line 438  namespace gig {
438          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
439          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
440    
441          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
442    
443            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
444            Compressed        = ewav;
445            Dithered          = false;
446            TruncatedBits     = 0;
447          if (Compressed) {          if (Compressed) {
448                uint32_t version = ewav->ReadInt32();
449                if (version == 3 && BitDepth == 24) {
450                    Dithered = ewav->ReadInt32();
451                    ewav->SetPos(Channels == 2 ? 84 : 64);
452                    TruncatedBits = ewav->ReadInt32();
453                }
454              ScanCompressedSample();              ScanCompressedSample();
455              if (!pDecompressionBuffer) {          }
456                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];  
457                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
458            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
459                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
460                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
461            }
462            FrameOffset = 0; // just for streaming compressed samples
463    
464            LoopSize = LoopEnd - LoopStart + 1;
465        }
466    
467        /**
468         * Make a (semi) deep copy of the Sample object given by @a orig (without
469         * the actual waveform data) and assign it to this object.
470         *
471         * Discussion: copying .gig samples is a bit tricky. It requires three
472         * steps:
473         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
474         *    its new sample waveform data size.
475         * 2. Saving the file (done by File::Save()) so that it gains correct size
476         *    and layout for writing the actual wave form data directly to disc
477         *    in next step.
478         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
479         *
480         * @param orig - original Sample object to be copied from
481         */
482        void Sample::CopyAssignMeta(const Sample* orig) {
483            // handle base classes
484            DLS::Sample::CopyAssignCore(orig);
485            
486            // handle actual own attributes of this class
487            Manufacturer = orig->Manufacturer;
488            Product = orig->Product;
489            SamplePeriod = orig->SamplePeriod;
490            MIDIUnityNote = orig->MIDIUnityNote;
491            FineTune = orig->FineTune;
492            SMPTEFormat = orig->SMPTEFormat;
493            SMPTEOffset = orig->SMPTEOffset;
494            Loops = orig->Loops;
495            LoopID = orig->LoopID;
496            LoopType = orig->LoopType;
497            LoopStart = orig->LoopStart;
498            LoopEnd = orig->LoopEnd;
499            LoopSize = orig->LoopSize;
500            LoopFraction = orig->LoopFraction;
501            LoopPlayCount = orig->LoopPlayCount;
502            
503            // schedule resizing this sample to the given sample's size
504            Resize(orig->GetSize());
505        }
506    
507        /**
508         * Should be called after CopyAssignMeta() and File::Save() sequence.
509         * Read more about it in the discussion of CopyAssignMeta(). This method
510         * copies the actual waveform data by disk streaming.
511         *
512         * @e CAUTION: this method is currently not thread safe! During this
513         * operation the sample must not be used for other purposes by other
514         * threads!
515         *
516         * @param orig - original Sample object to be copied from
517         */
518        void Sample::CopyAssignWave(const Sample* orig) {
519            const int iReadAtOnce = 32*1024;
520            char* buf = new char[iReadAtOnce * orig->FrameSize];
521            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
522            file_offset_t restorePos = pOrig->GetPos();
523            pOrig->SetPos(0);
524            SetPos(0);
525            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
526                               n = pOrig->Read(buf, iReadAtOnce))
527            {
528                Write(buf, n);
529            }
530            pOrig->SetPos(restorePos);
531            delete [] buf;
532        }
533    
534        /**
535         * Apply sample and its settings to the respective RIFF chunks. You have
536         * to call File::Save() to make changes persistent.
537         *
538         * Usually there is absolutely no need to call this method explicitly.
539         * It will be called automatically when File::Save() was called.
540         *
541         * @param pProgress - callback function for progress notification
542         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
543         *                        was provided yet
544         * @throws gig::Exception if there is any invalid sample setting
545         */
546        void Sample::UpdateChunks(progress_t* pProgress) {
547            // first update base class's chunks
548            DLS::Sample::UpdateChunks(pProgress);
549    
550            // make sure 'smpl' chunk exists
551            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
552            if (!pCkSmpl) {
553                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
554                memset(pCkSmpl->LoadChunkData(), 0, 60);
555            }
556            // update 'smpl' chunk
557            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
558            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
559            store32(&pData[0], Manufacturer);
560            store32(&pData[4], Product);
561            store32(&pData[8], SamplePeriod);
562            store32(&pData[12], MIDIUnityNote);
563            store32(&pData[16], FineTune);
564            store32(&pData[20], SMPTEFormat);
565            store32(&pData[24], SMPTEOffset);
566            store32(&pData[28], Loops);
567    
568            // we skip 'manufByt' for now (4 bytes)
569    
570            store32(&pData[36], LoopID);
571            store32(&pData[40], LoopType);
572            store32(&pData[44], LoopStart);
573            store32(&pData[48], LoopEnd);
574            store32(&pData[52], LoopFraction);
575            store32(&pData[56], LoopPlayCount);
576    
577            // make sure '3gix' chunk exists
578            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
579            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
580            // determine appropriate sample group index (to be stored in chunk)
581            uint16_t iSampleGroup = 0; // 0 refers to default sample group
582            File* pFile = static_cast<File*>(pParent);
583            if (pFile->pGroups) {
584                std::list<Group*>::iterator iter = pFile->pGroups->begin();
585                std::list<Group*>::iterator end  = pFile->pGroups->end();
586                for (int i = 0; iter != end; i++, iter++) {
587                    if (*iter == pGroup) {
588                        iSampleGroup = i;
589                        break; // found
590                    }
591              }              }
592          }          }
593          FrameOffset = 0; // just for streaming compressed samples          // update '3gix' chunk
594            pData = (uint8_t*) pCk3gix->LoadChunkData();
595            store16(&pData[0], iSampleGroup);
596    
597            // if the library user toggled the "Compressed" attribute from true to
598            // false, then the EWAV chunk associated with compressed samples needs
599            // to be deleted
600            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
601            if (ewav && !Compressed) {
602                pWaveList->DeleteSubChunk(ewav);
603            }
604      }      }
605    
606      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
607      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
608          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
609          this->SamplesTotal = 0;          this->SamplesTotal = 0;
610          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
611    
612            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
613            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
614    
615          // Scanning          // Scanning
616          pCkData->SetPos(0);          pCkData->SetPos(0);
617          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
618              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
619              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
620              this->SamplesTotal += 2048;                  // stored, to save some memory
621              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
622                  case 1:   // left channel compressed  
623                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
624                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
625                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
626                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
627    
628                    if (pCkData->RemainingBytes() <= frameSize) {
629                        SamplesInLastFrame =
630                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
631                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
632                        SamplesTotal += SamplesInLastFrame;
633                      break;                      break;
634                  case 257: // both channels compressed                  }
635                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
636                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
637                }
638            }
639            else { // Mono
640                for (int i = 0 ; ; i++) {
641                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
642    
643                    const int mode = pCkData->ReadUint8();
644                    if (mode > 5) throw gig::Exception("Unknown compression mode");
645                    const file_offset_t frameSize = bytesPerFrame[mode];
646    
647                    if (pCkData->RemainingBytes() <= frameSize) {
648                        SamplesInLastFrame =
649                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
650                        SamplesTotal += SamplesInLastFrame;
651                      break;                      break;
652                  default: // both channels uncompressed                  }
653                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
654                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
655              }              }
656          }          }
657          pCkData->SetPos(0);          pCkData->SetPos(0);
658    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
659          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
660          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
661          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
662          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
663          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
664          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
665              FrameTable[i] = *iter;              FrameTable[i] = *iter;
666          }          }
# Line 138  namespace gig { Line 691  namespace gig {
691       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
692       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
693       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
694       *       * @code
695       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
696       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
697         * @endcode
698       *       *
699       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
700       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
701       *                      the cached sample data in bytes       *                      the cached sample data in bytes
702       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
703       */       */
704      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
705          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
706      }      }
707    
# Line 186  namespace gig { Line 740  namespace gig {
740       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
741       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
742       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
743       *       * @code
744       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
745       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
746       *       * @endcode
747       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
748       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
749       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 206  namespace gig { Line 760  namespace gig {
760       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
761       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
762       */       */
763      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
764          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
765          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
766          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
767            SetPos(0); // reset read position to begin of sample
768          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
769          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
770          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 247  namespace gig { Line 802  namespace gig {
802          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
803          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
804          RAMCache.Size   = 0;          RAMCache.Size   = 0;
805            RAMCache.NullExtensionSize = 0;
806        }
807    
808        /** @brief Resize sample.
809         *
810         * Resizes the sample's wave form data, that is the actual size of
811         * sample wave data possible to be written for this sample. This call
812         * will return immediately and just schedule the resize operation. You
813         * should call File::Save() to actually perform the resize operation(s)
814         * "physically" to the file. As this can take a while on large files, it
815         * is recommended to call Resize() first on all samples which have to be
816         * resized and finally to call File::Save() to perform all those resize
817         * operations in one rush.
818         *
819         * The actual size (in bytes) is dependant to the current FrameSize
820         * value. You may want to set FrameSize before calling Resize().
821         *
822         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
823         * enlarged samples before calling File::Save() as this might exceed the
824         * current sample's boundary!
825         *
826         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
827         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
828         * other formats will fail!
829         *
830         * @param NewSize - new sample wave data size in sample points (must be
831         *                  greater than zero)
832         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
833         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
834         * @throws gig::Exception if existing sample is compressed
835         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
836         *      DLS::Sample::FormatTag, File::Save()
837         */
838        void Sample::Resize(file_offset_t NewSize) {
839            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
840            DLS::Sample::Resize(NewSize);
841      }      }
842    
843      /**      /**
# Line 270  namespace gig { Line 861  namespace gig {
861       * @returns            the new sample position       * @returns            the new sample position
862       * @see                Read()       * @see                Read()
863       */       */
864      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
865          if (Compressed) {          if (Compressed) {
866              switch (Whence) {              switch (Whence) {
867                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 288  namespace gig { Line 879  namespace gig {
879              }              }
880              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
881    
882              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
883              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
884              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
885              return this->SamplePos;              return this->SamplePos;
886          }          }
887          else { // not compressed          else { // not compressed
888              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
889              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
890              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
891                                              : result / this->FrameSize;                                              : result / this->FrameSize;
892          }          }
# Line 304  namespace gig { Line 895  namespace gig {
895      /**      /**
896       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
897       */       */
898      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
899          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
900          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
901      }      }
902    
903      /**      /**
904         * Reads \a SampleCount number of sample points from the position stored
905         * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
906         * the position within the sample respectively, this method honors the
907         * looping informations of the sample (if any). The sample wave stream
908         * will be decompressed on the fly if using a compressed sample. Use this
909         * method if you don't want to load the sample into RAM, thus for disk
910         * streaming. All this methods needs to know to proceed with streaming
911         * for the next time you call this method is stored in \a pPlaybackState.
912         * You have to allocate and initialize the playback_state_t structure by
913         * yourself before you use it to stream a sample:
914         * @code
915         * gig::playback_state_t playbackstate;
916         * playbackstate.position         = 0;
917         * playbackstate.reverse          = false;
918         * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
919         * @endcode
920         * You don't have to take care of things like if there is actually a loop
921         * defined or if the current read position is located within a loop area.
922         * The method already handles such cases by itself.
923         *
924         * <b>Caution:</b> If you are using more than one streaming thread, you
925         * have to use an external decompression buffer for <b>EACH</b>
926         * streaming thread to avoid race conditions and crashes!
927         *
928         * @param pBuffer          destination buffer
929         * @param SampleCount      number of sample points to read
930         * @param pPlaybackState   will be used to store and reload the playback
931         *                         state for the next ReadAndLoop() call
932         * @param pDimRgn          dimension region with looping information
933         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
934         * @returns                number of successfully read sample points
935         * @see                    CreateDecompressionBuffer()
936         */
937        file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
938                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
939            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
940            uint8_t* pDst = (uint8_t*) pBuffer;
941    
942            SetPos(pPlaybackState->position); // recover position from the last time
943    
944            if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
945    
946                const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
947                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
948    
949                if (GetPos() <= loopEnd) {
950                    switch (loop.LoopType) {
951    
952                        case loop_type_bidirectional: { //TODO: not tested yet!
953                            do {
954                                // if not endless loop check if max. number of loop cycles have been passed
955                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
956    
957                                if (!pPlaybackState->reverse) { // forward playback
958                                    do {
959                                        samplestoloopend  = loopEnd - GetPos();
960                                        readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
961                                        samplestoread    -= readsamples;
962                                        totalreadsamples += readsamples;
963                                        if (readsamples == samplestoloopend) {
964                                            pPlaybackState->reverse = true;
965                                            break;
966                                        }
967                                    } while (samplestoread && readsamples);
968                                }
969                                else { // backward playback
970    
971                                    // as we can only read forward from disk, we have to
972                                    // determine the end position within the loop first,
973                                    // read forward from that 'end' and finally after
974                                    // reading, swap all sample frames so it reflects
975                                    // backward playback
976    
977                                    file_offset_t swapareastart       = totalreadsamples;
978                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
979                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
980                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
981    
982                                    SetPos(reverseplaybackend);
983    
984                                    // read samples for backward playback
985                                    do {
986                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
987                                        samplestoreadinloop -= readsamples;
988                                        samplestoread       -= readsamples;
989                                        totalreadsamples    += readsamples;
990                                    } while (samplestoreadinloop && readsamples);
991    
992                                    SetPos(reverseplaybackend); // pretend we really read backwards
993    
994                                    if (reverseplaybackend == loop.LoopStart) {
995                                        pPlaybackState->loop_cycles_left--;
996                                        pPlaybackState->reverse = false;
997                                    }
998    
999                                    // reverse the sample frames for backward playback
1000                                    if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1001                                        SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1002                                }
1003                            } while (samplestoread && readsamples);
1004                            break;
1005                        }
1006    
1007                        case loop_type_backward: { // TODO: not tested yet!
1008                            // forward playback (not entered the loop yet)
1009                            if (!pPlaybackState->reverse) do {
1010                                samplestoloopend  = loopEnd - GetPos();
1011                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1012                                samplestoread    -= readsamples;
1013                                totalreadsamples += readsamples;
1014                                if (readsamples == samplestoloopend) {
1015                                    pPlaybackState->reverse = true;
1016                                    break;
1017                                }
1018                            } while (samplestoread && readsamples);
1019    
1020                            if (!samplestoread) break;
1021    
1022                            // as we can only read forward from disk, we have to
1023                            // determine the end position within the loop first,
1024                            // read forward from that 'end' and finally after
1025                            // reading, swap all sample frames so it reflects
1026                            // backward playback
1027    
1028                            file_offset_t swapareastart       = totalreadsamples;
1029                            file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1030                            file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1031                                                                                      : samplestoread;
1032                            file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1033    
1034                            SetPos(reverseplaybackend);
1035    
1036                            // read samples for backward playback
1037                            do {
1038                                // if not endless loop check if max. number of loop cycles have been passed
1039                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1040                                samplestoloopend     = loopEnd - GetPos();
1041                                readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1042                                samplestoreadinloop -= readsamples;
1043                                samplestoread       -= readsamples;
1044                                totalreadsamples    += readsamples;
1045                                if (readsamples == samplestoloopend) {
1046                                    pPlaybackState->loop_cycles_left--;
1047                                    SetPos(loop.LoopStart);
1048                                }
1049                            } while (samplestoreadinloop && readsamples);
1050    
1051                            SetPos(reverseplaybackend); // pretend we really read backwards
1052    
1053                            // reverse the sample frames for backward playback
1054                            SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1055                            break;
1056                        }
1057    
1058                        default: case loop_type_normal: {
1059                            do {
1060                                // if not endless loop check if max. number of loop cycles have been passed
1061                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062                                samplestoloopend  = loopEnd - GetPos();
1063                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1064                                samplestoread    -= readsamples;
1065                                totalreadsamples += readsamples;
1066                                if (readsamples == samplestoloopend) {
1067                                    pPlaybackState->loop_cycles_left--;
1068                                    SetPos(loop.LoopStart);
1069                                }
1070                            } while (samplestoread && readsamples);
1071                            break;
1072                        }
1073                    }
1074                }
1075            }
1076    
1077            // read on without looping
1078            if (samplestoread) do {
1079                readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1080                samplestoread    -= readsamples;
1081                totalreadsamples += readsamples;
1082            } while (readsamples && samplestoread);
1083    
1084            // store current position
1085            pPlaybackState->position = GetPos();
1086    
1087            return totalreadsamples;
1088        }
1089    
1090        /**
1091       * Reads \a SampleCount number of sample points from the current       * Reads \a SampleCount number of sample points from the current
1092       * position into the buffer pointed by \a pBuffer and increments the       * position into the buffer pointed by \a pBuffer and increments the
1093       * position within the sample. The sample wave stream will be       * position within the sample. The sample wave stream will be
# Line 317  namespace gig { Line 1095  namespace gig {
1095       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1096       * thus for disk streaming.       * thus for disk streaming.
1097       *       *
1098         * <b>Caution:</b> If you are using more than one streaming thread, you
1099         * have to use an external decompression buffer for <b>EACH</b>
1100         * streaming thread to avoid race conditions and crashes!
1101         *
1102         * For 16 bit samples, the data in the buffer will be int16_t
1103         * (using native endianness). For 24 bit, the buffer will
1104         * contain three bytes per sample, little-endian.
1105         *
1106       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1107       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1108         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1109       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1110       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1111       */       */
1112      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1113          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (SampleCount == 0) return 0;
1114          else { //FIXME: no support for mono compressed samples yet, are there any?          if (!Compressed) {
1115                if (BitDepth == 24) {
1116                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1117                }
1118                else { // 16 bit
1119                    // (pCkData->Read does endian correction)
1120                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1121                                         : pCkData->Read(pBuffer, SampleCount, 2);
1122                }
1123            }
1124            else {
1125              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1126              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1127              // best case needed buffer size (all frames compressed)              file_offset_t assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1128                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1129                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1130                            copysamples;                            copysamples, skipsamples,
1131              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1132              this->FrameOffset = 0;              this->FrameOffset = 0;
1133    
1134              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1135                  // local buffer reallocation - hope this won't happen  
1136                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1137                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1138                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1139                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1140                    remainingsamples = SampleCount;
1141                    assumedsize      = GuessSize(SampleCount);
1142              }              }
1143    
1144              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1145              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1146              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1147              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1148    
1149              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1150                    file_offset_t framesamples = SamplesPerFrame;
1151                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1152                  if (remainingbytes < 8194) {  
1153                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1154                          this->SamplePos = this->SamplesTotal;  
1155                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1156                      }                      mode_r = *pSrc++;
1157                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1158                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1159                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1160                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1161                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1162                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1163                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1164                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1165                            else {
1166                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1167                            }
1168                        }
1169                    }
1170                    else {
1171                        framebytes = bytesPerFrame[mode_l] + 1;
1172                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1173                        if (remainingbytes < framebytes) {
1174                            framesamples = SamplesInLastFrame;
1175                        }
1176                  }                  }
1177    
1178                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1179                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1180                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1181                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1182                            skipsamples = currentframeoffset;
1183                        }
1184                        else {
1185                            copysamples = 0;
1186                            skipsamples = framesamples;
1187                        }
1188                  }                  }
1189                  else {                  else {
1190                        // This frame has enough data for pBuffer, but not
1191                        // all of the frame is needed. Set file position
1192                        // to start of this frame for next call to Read.
1193                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1194                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1195                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1196                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1197                      }                  }
1198                      else {                  remainingsamples -= copysamples;
1199    
1200                    if (remainingbytes > framebytes) {
1201                        remainingbytes -= framebytes;
1202                        if (remainingsamples == 0 &&
1203                            currentframeoffset + copysamples == framesamples) {
1204                            // This frame has enough data for pBuffer, and
1205                            // all of the frame is needed. Set file
1206                            // position to start of next frame for next
1207                            // call to Read. FrameOffset is 0.
1208                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1209                      }                      }
1210                  }                  }
1211                    else remainingbytes = 0;
1212    
1213                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1214                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1215                  switch (compressionmode) {                  if (copysamples == 0) {
1216                      case 1: // left channel compressed                      // skip this frame
1217                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1218                          if (!remainingsamples && copysamples == 2048)                  }
1219                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1220                        const unsigned char* const param_l = pSrc;
1221                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1222                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1223                          while (currentframeoffset) {  
1224                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1225                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1226                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1227                              currentframeoffset--;  
1228                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1229                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1230                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1231                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1232                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1233                          }                          }
1234                          while (copysamples) {                          else { // Mono
1235                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1236                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1237                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1238                          }                          }
1239                          break;                      }
1240                      case 257: // both channels compressed                      else { // 16 bit
1241                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1242                          if (!remainingsamples && copysamples == 2048)  
1243                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1244                            if (Channels == 2) { // Stereo
1245                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1246                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1247                          right  = *(int16_t*)pSrc; pSrc+=2;  
1248                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1249                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1250                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1251                              left   -= dleft;                                           skipsamples, copysamples);
1252                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1253                          }                          }
1254                          while (copysamples) {                          else { // Mono
1255                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1256                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1257                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1258                          }                          }
1259                          break;                      }
1260                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1261                  }                  }
1262              }  
1263                    // reload from disk to local buffer if needed
1264                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1265                        assumedsize    = GuessSize(remainingsamples);
1266                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1267                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1268                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1269                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1270                    }
1271                } // while
1272    
1273              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1274              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1275              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1276          }          }
1277      }      }
1278    
1279        /** @brief Write sample wave data.
1280         *
1281         * Writes \a SampleCount number of sample points from the buffer pointed
1282         * by \a pBuffer and increments the position within the sample. Use this
1283         * method to directly write the sample data to disk, i.e. if you don't
1284         * want or cannot load the whole sample data into RAM.
1285         *
1286         * You have to Resize() the sample to the desired size and call
1287         * File::Save() <b>before</b> using Write().
1288         *
1289         * Note: there is currently no support for writing compressed samples.
1290         *
1291         * For 16 bit samples, the data in the source buffer should be
1292         * int16_t (using native endianness). For 24 bit, the buffer
1293         * should contain three bytes per sample, little-endian.
1294         *
1295         * @param pBuffer     - source buffer
1296         * @param SampleCount - number of sample points to write
1297         * @throws DLS::Exception if current sample size is too small
1298         * @throws gig::Exception if sample is compressed
1299         * @see DLS::LoadSampleData()
1300         */
1301        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1302            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1303    
1304            // if this is the first write in this sample, reset the
1305            // checksum calculator
1306            if (pCkData->GetPos() == 0) {
1307                __resetCRC(crc);
1308            }
1309            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1310            file_offset_t res;
1311            if (BitDepth == 24) {
1312                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1313            } else { // 16 bit
1314                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1315                                    : pCkData->Write(pBuffer, SampleCount, 2);
1316            }
1317            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1318    
1319            // if this is the last write, update the checksum chunk in the
1320            // file
1321            if (pCkData->GetPos() == pCkData->GetSize()) {
1322                __finalizeCRC(crc);
1323                File* pFile = static_cast<File*>(GetParent());
1324                pFile->SetSampleChecksum(this, crc);
1325            }
1326            return res;
1327        }
1328    
1329        /**
1330         * Allocates a decompression buffer for streaming (compressed) samples
1331         * with Sample::Read(). If you are using more than one streaming thread
1332         * in your application you <b>HAVE</b> to create a decompression buffer
1333         * for <b>EACH</b> of your streaming threads and provide it with the
1334         * Sample::Read() call in order to avoid race conditions and crashes.
1335         *
1336         * You should free the memory occupied by the allocated buffer(s) once
1337         * you don't need one of your streaming threads anymore by calling
1338         * DestroyDecompressionBuffer().
1339         *
1340         * @param MaxReadSize - the maximum size (in sample points) you ever
1341         *                      expect to read with one Read() call
1342         * @returns allocated decompression buffer
1343         * @see DestroyDecompressionBuffer()
1344         */
1345        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1346            buffer_t result;
1347            const double worstCaseHeaderOverhead =
1348                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1349            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1350            result.pStart            = new int8_t[result.Size];
1351            result.NullExtensionSize = 0;
1352            return result;
1353        }
1354    
1355        /**
1356         * Free decompression buffer, previously created with
1357         * CreateDecompressionBuffer().
1358         *
1359         * @param DecompressionBuffer - previously allocated decompression
1360         *                              buffer to free
1361         */
1362        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1363            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1364                delete[] (int8_t*) DecompressionBuffer.pStart;
1365                DecompressionBuffer.pStart = NULL;
1366                DecompressionBuffer.Size   = 0;
1367                DecompressionBuffer.NullExtensionSize = 0;
1368            }
1369        }
1370    
1371        /**
1372         * Returns pointer to the Group this Sample belongs to. In the .gig
1373         * format a sample always belongs to one group. If it wasn't explicitly
1374         * assigned to a certain group, it will be automatically assigned to a
1375         * default group.
1376         *
1377         * @returns Sample's Group (never NULL)
1378         */
1379        Group* Sample::GetGroup() const {
1380            return pGroup;
1381        }
1382    
1383        /**
1384         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1385         * time when this sample's wave form data was modified for the last time
1386         * by calling Write(). This checksum only covers the raw wave form data,
1387         * not any meta informations like i.e. bit depth or loop points. Since
1388         * this method just returns the checksum stored for this sample i.e. when
1389         * the gig file was loaded, this method returns immediately. So it does no
1390         * recalcuation of the checksum with the currently available sample wave
1391         * form data.
1392         *
1393         * @see VerifyWaveData()
1394         */
1395        uint32_t Sample::GetWaveDataCRC32Checksum() {
1396            return crc;
1397        }
1398    
1399        /**
1400         * Checks the integrity of this sample's raw audio wave data. Whenever a
1401         * Sample's raw wave data is intentionally modified (i.e. by calling
1402         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1403         * is calculated and stored/updated for this sample, along to the sample's
1404         * meta informations.
1405         *
1406         * Now by calling this method the current raw audio wave data is checked
1407         * against the already stored CRC32 check sum in order to check whether the
1408         * sample data had been damaged unintentionally for some reason. Since by
1409         * calling this method always the entire raw audio wave data has to be
1410         * read, verifying all samples this way may take a long time accordingly.
1411         * And that's also the reason why the sample integrity is not checked by
1412         * default whenever a gig file is loaded. So this method must be called
1413         * explicitly to fulfill this task.
1414         *
1415         * @param pActually - (optional) if provided, will be set to the actually
1416         *                    calculated checksum of the current raw wave form data,
1417         *                    you can get the expected checksum instead by calling
1418         *                    GetWaveDataCRC32Checksum()
1419         * @returns true if sample is OK or false if the sample is damaged
1420         * @throws Exception if no checksum had been stored to disk for this
1421         *         sample yet, or on I/O issues
1422         * @see GetWaveDataCRC32Checksum()
1423         */
1424        bool Sample::VerifyWaveData(uint32_t* pActually) {
1425            //File* pFile = static_cast<File*>(GetParent());
1426            uint32_t crc = CalculateWaveDataChecksum();
1427            if (pActually) *pActually = crc;
1428            return crc == this->crc;
1429        }
1430    
1431        uint32_t Sample::CalculateWaveDataChecksum() {
1432            const size_t sz = 20*1024; // 20kB buffer size
1433            std::vector<uint8_t> buffer(sz);
1434            buffer.resize(sz);
1435    
1436            const size_t n = sz / FrameSize;
1437            SetPos(0);
1438            uint32_t crc = 0;
1439            __resetCRC(crc);
1440            while (true) {
1441                file_offset_t nRead = Read(&buffer[0], n);
1442                if (nRead <= 0) break;
1443                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1444            }
1445            __finalizeCRC(crc);
1446            return crc;
1447        }
1448    
1449      Sample::~Sample() {      Sample::~Sample() {
1450          Instances--;          Instances--;
1451          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1452                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1453                InternalDecompressionBuffer.pStart = NULL;
1454                InternalDecompressionBuffer.Size   = 0;
1455            }
1456          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1457          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1458      }      }
# Line 491  namespace gig { Line 1462  namespace gig {
1462  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1463  // *  // *
1464    
1465      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1466      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1467    
1468      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1469          Instances++;          Instances++;
1470    
1471          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1472            pRegion = pParent;
1473    
1474            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1475            else memset(&Crossfade, 0, 4);
1476    
1477          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1478    
1479          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1480          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1481          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1482          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1483          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1485          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1486          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1487          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1488          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1489          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1490          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1491          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1492          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1493          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1494          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1495          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1496          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1497          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1498          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1499          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1500          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1501          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1502          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1503          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1504          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1505          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1506          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1507          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1508          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1509          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1510          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1511          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1512          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1513          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1514          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1516          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1517          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1518          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1519          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1520          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1521          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1522          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1523          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1524          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1525          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1526          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1527          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1528          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1529          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1530          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1531              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1532              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1533          }                  VelocityResponseDepth = velocityresponse;
1534          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1535              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1536              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1537          }              } else if (velocityresponse < 15) {
1538          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1539              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1540              VelocityResponseDepth = velocityresponse - 10;              } else {
1541                    VelocityResponseCurve = curve_type_unknown;
1542                    VelocityResponseDepth = 0;
1543                }
1544                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1545                if (releasevelocityresponse < 5) {
1546                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1547                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1548                } else if (releasevelocityresponse < 10) {
1549                    ReleaseVelocityResponseCurve = curve_type_linear;
1550                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1551                } else if (releasevelocityresponse < 15) {
1552                    ReleaseVelocityResponseCurve = curve_type_special;
1553                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1554                } else {
1555                    ReleaseVelocityResponseCurve = curve_type_unknown;
1556                    ReleaseVelocityResponseDepth = 0;
1557                }
1558                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1559                AttenuationControllerThreshold = _3ewa->ReadInt8();
1560                _3ewa->ReadInt32(); // unknown
1561                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1562                _3ewa->ReadInt16(); // unknown
1563                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1564                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1565                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1566                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1567                else                                       DimensionBypass = dim_bypass_ctrl_none;
1568                uint8_t pan = _3ewa->ReadUint8();
1569                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1570                SelfMask = _3ewa->ReadInt8() & 0x01;
1571                _3ewa->ReadInt8(); // unknown
1572                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1573                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1574                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1575                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1576                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1577                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1578                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1579                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1580                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1581                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1582                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1583                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1584                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1585                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1586                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1587                                                            : vcf_res_ctrl_none;
1588                uint16_t eg3depth = _3ewa->ReadUint16();
1589                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1590                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1591                _3ewa->ReadInt16(); // unknown
1592                ChannelOffset = _3ewa->ReadUint8() / 4;
1593                uint8_t regoptions = _3ewa->ReadUint8();
1594                MSDecode           = regoptions & 0x01; // bit 0
1595                SustainDefeat      = regoptions & 0x02; // bit 1
1596                _3ewa->ReadInt16(); // unknown
1597                VelocityUpperLimit = _3ewa->ReadInt8();
1598                _3ewa->ReadInt8(); // unknown
1599                _3ewa->ReadInt16(); // unknown
1600                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1601                _3ewa->ReadInt8(); // unknown
1602                _3ewa->ReadInt8(); // unknown
1603                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1604                uint8_t vcfcutoff = _3ewa->ReadUint8();
1605                VCFEnabled = vcfcutoff & 0x80; // bit 7
1606                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1607                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1608                uint8_t vcfvelscale = _3ewa->ReadUint8();
1609                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1610                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1611                _3ewa->ReadInt8(); // unknown
1612                uint8_t vcfresonance = _3ewa->ReadUint8();
1613                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1614                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1615                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1616                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1617                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1618                uint8_t vcfvelocity = _3ewa->ReadUint8();
1619                VCFVelocityDynamicRange = vcfvelocity % 5;
1620                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1621                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1622                if (VCFType == vcf_type_lowpass) {
1623                    if (lfo3ctrl & 0x40) // bit 6
1624                        VCFType = vcf_type_lowpassturbo;
1625                }
1626                if (_3ewa->RemainingBytes() >= 8) {
1627                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1628                } else {
1629                    memset(DimensionUpperLimits, 0, 8);
1630                }
1631            } else { // '3ewa' chunk does not exist yet
1632                // use default values
1633                LFO3Frequency                   = 1.0;
1634                EG3Attack                       = 0.0;
1635                LFO1InternalDepth               = 0;
1636                LFO3InternalDepth               = 0;
1637                LFO1ControlDepth                = 0;
1638                LFO3ControlDepth                = 0;
1639                EG1Attack                       = 0.0;
1640                EG1Decay1                       = 0.005;
1641                EG1Sustain                      = 1000;
1642                EG1Release                      = 0.3;
1643                EG1Controller.type              = eg1_ctrl_t::type_none;
1644                EG1Controller.controller_number = 0;
1645                EG1ControllerInvert             = false;
1646                EG1ControllerAttackInfluence    = 0;
1647                EG1ControllerDecayInfluence     = 0;
1648                EG1ControllerReleaseInfluence   = 0;
1649                EG2Controller.type              = eg2_ctrl_t::type_none;
1650                EG2Controller.controller_number = 0;
1651                EG2ControllerInvert             = false;
1652                EG2ControllerAttackInfluence    = 0;
1653                EG2ControllerDecayInfluence     = 0;
1654                EG2ControllerReleaseInfluence   = 0;
1655                LFO1Frequency                   = 1.0;
1656                EG2Attack                       = 0.0;
1657                EG2Decay1                       = 0.005;
1658                EG2Sustain                      = 1000;
1659                EG2Release                      = 60;
1660                LFO2ControlDepth                = 0;
1661                LFO2Frequency                   = 1.0;
1662                LFO2InternalDepth               = 0;
1663                EG1Decay2                       = 0.0;
1664                EG1InfiniteSustain              = true;
1665                EG1PreAttack                    = 0;
1666                EG2Decay2                       = 0.0;
1667                EG2InfiniteSustain              = true;
1668                EG2PreAttack                    = 0;
1669                VelocityResponseCurve           = curve_type_nonlinear;
1670                VelocityResponseDepth           = 3;
1671                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1672                ReleaseVelocityResponseDepth    = 3;
1673                VelocityResponseCurveScaling    = 32;
1674                AttenuationControllerThreshold  = 0;
1675                SampleStartOffset               = 0;
1676                PitchTrack                      = true;
1677                DimensionBypass                 = dim_bypass_ctrl_none;
1678                Pan                             = 0;
1679                SelfMask                        = true;
1680                LFO3Controller                  = lfo3_ctrl_modwheel;
1681                LFO3Sync                        = false;
1682                InvertAttenuationController     = false;
1683                AttenuationController.type      = attenuation_ctrl_t::type_none;
1684                AttenuationController.controller_number = 0;
1685                LFO2Controller                  = lfo2_ctrl_internal;
1686                LFO2FlipPhase                   = false;
1687                LFO2Sync                        = false;
1688                LFO1Controller                  = lfo1_ctrl_internal;
1689                LFO1FlipPhase                   = false;
1690                LFO1Sync                        = false;
1691                VCFResonanceController          = vcf_res_ctrl_none;
1692                EG3Depth                        = 0;
1693                ChannelOffset                   = 0;
1694                MSDecode                        = false;
1695                SustainDefeat                   = false;
1696                VelocityUpperLimit              = 0;
1697                ReleaseTriggerDecay             = 0;
1698                EG1Hold                         = false;
1699                VCFEnabled                      = false;
1700                VCFCutoff                       = 0;
1701                VCFCutoffController             = vcf_cutoff_ctrl_none;
1702                VCFCutoffControllerInvert       = false;
1703                VCFVelocityScale                = 0;
1704                VCFResonance                    = 0;
1705                VCFResonanceDynamic             = false;
1706                VCFKeyboardTracking             = false;
1707                VCFKeyboardTrackingBreakpoint   = 0;
1708                VCFVelocityDynamicRange         = 0x04;
1709                VCFVelocityCurve                = curve_type_linear;
1710                VCFType                         = vcf_type_lowpass;
1711                memset(DimensionUpperLimits, 127, 8);
1712          }          }
1713          else {  
1714              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1715              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1716                                                         VelocityResponseCurveScaling);
1717    
1718            pVelocityReleaseTable = GetReleaseVelocityTable(
1719                                        ReleaseVelocityResponseCurve,
1720                                        ReleaseVelocityResponseDepth
1721                                    );
1722    
1723            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1724                                                          VCFVelocityDynamicRange,
1725                                                          VCFVelocityScale,
1726                                                          VCFCutoffController);
1727    
1728            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1729            VelocityTable = 0;
1730        }
1731    
1732        /*
1733         * Constructs a DimensionRegion by copying all parameters from
1734         * another DimensionRegion
1735         */
1736        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1737            Instances++;
1738            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1739            *this = src; // default memberwise shallow copy of all parameters
1740            pParentList = _3ewl; // restore the chunk pointer
1741    
1742            // deep copy of owned structures
1743            if (src.VelocityTable) {
1744                VelocityTable = new uint8_t[128];
1745                for (int k = 0 ; k < 128 ; k++)
1746                    VelocityTable[k] = src.VelocityTable[k];
1747          }          }
1748          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1749          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1750              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1751              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1752          }          }
1753          else {      }
1754              ReleaseVelocityResponseCurve = curve_type_unknown;      
1755              ReleaseVelocityResponseDepth = 0;      /**
1756         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1757         * and assign it to this object.
1758         *
1759         * Note that all sample pointers referenced by @a orig are simply copied as
1760         * memory address. Thus the respective samples are shared, not duplicated!
1761         *
1762         * @param orig - original DimensionRegion object to be copied from
1763         */
1764        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1765            CopyAssign(orig, NULL);
1766        }
1767    
1768        /**
1769         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1770         * and assign it to this object.
1771         *
1772         * @param orig - original DimensionRegion object to be copied from
1773         * @param mSamples - crosslink map between the foreign file's samples and
1774         *                   this file's samples
1775         */
1776        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1777            // delete all allocated data first
1778            if (VelocityTable) delete [] VelocityTable;
1779            if (pSampleLoops) delete [] pSampleLoops;
1780            
1781            // backup parent list pointer
1782            RIFF::List* p = pParentList;
1783            
1784            gig::Sample* pOriginalSample = pSample;
1785            gig::Region* pOriginalRegion = pRegion;
1786            
1787            //NOTE: copy code copied from assignment constructor above, see comment there as well
1788            
1789            *this = *orig; // default memberwise shallow copy of all parameters
1790            
1791            // restore members that shall not be altered
1792            pParentList = p; // restore the chunk pointer
1793            pRegion = pOriginalRegion;
1794            
1795            // only take the raw sample reference reference if the
1796            // two DimensionRegion objects are part of the same file
1797            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1798                pSample = pOriginalSample;
1799            }
1800            
1801            if (mSamples && mSamples->count(orig->pSample)) {
1802                pSample = mSamples->find(orig->pSample)->second;
1803          }          }
         VelocityResponseCurveScaling = _3ewa->ReadUint8();  
         AttenuationControlTreshold   = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1804    
1805          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // deep copy of owned structures
1806          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          if (orig->VelocityTable) {
1807          if (pVelocityTables->count(tableKey)) { // if key exists              VelocityTable = new uint8_t[128];
1808              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              for (int k = 0 ; k < 128 ; k++)
1809                    VelocityTable[k] = orig->VelocityTable[k];
1810          }          }
1811          else {          if (orig->pSampleLoops) {
1812              pVelocityAttenuationTable = new double[128];              pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1813              switch (VelocityResponseCurve) { // calculate the new table              for (int k = 0 ; k < orig->SampleLoops ; k++)
1814                    pSampleLoops[k] = orig->pSampleLoops[k];
1815            }
1816        }
1817    
1818        void DimensionRegion::serialize(Serialization::Archive* archive) {
1819            SRLZ(VelocityUpperLimit);
1820            SRLZ(EG1PreAttack);
1821            SRLZ(EG1Attack);
1822            SRLZ(EG1Decay1);
1823            SRLZ(EG1Decay2);
1824            SRLZ(EG1InfiniteSustain);
1825            SRLZ(EG1Sustain);
1826            SRLZ(EG1Release);
1827            SRLZ(EG1Hold);
1828            SRLZ(EG1Controller);
1829            SRLZ(EG1ControllerInvert);
1830            SRLZ(EG1ControllerAttackInfluence);
1831            SRLZ(EG1ControllerDecayInfluence);
1832            SRLZ(EG1ControllerReleaseInfluence);
1833            SRLZ(LFO1Frequency);
1834            SRLZ(LFO1InternalDepth);
1835            SRLZ(LFO1ControlDepth);
1836            SRLZ(LFO1Controller);
1837            SRLZ(LFO1FlipPhase);
1838            SRLZ(LFO1Sync);
1839            SRLZ(EG2PreAttack);
1840            SRLZ(EG2Attack);
1841            SRLZ(EG2Decay1);
1842            SRLZ(EG2Decay2);
1843            SRLZ(EG2InfiniteSustain);
1844            SRLZ(EG2Sustain);
1845            SRLZ(EG2Release);
1846            SRLZ(EG2Controller);
1847            SRLZ(EG2ControllerInvert);
1848            SRLZ(EG2ControllerAttackInfluence);
1849            SRLZ(EG2ControllerDecayInfluence);
1850            SRLZ(EG2ControllerReleaseInfluence);
1851            SRLZ(LFO2Frequency);
1852            SRLZ(LFO2InternalDepth);
1853            SRLZ(LFO2ControlDepth);
1854            SRLZ(LFO2Controller);
1855            SRLZ(LFO2FlipPhase);
1856            SRLZ(LFO2Sync);
1857            SRLZ(EG3Attack);
1858            SRLZ(EG3Depth);
1859            SRLZ(LFO3Frequency);
1860            SRLZ(LFO3InternalDepth);
1861            SRLZ(LFO3ControlDepth);
1862            SRLZ(LFO3Controller);
1863            SRLZ(LFO3Sync);
1864            SRLZ(VCFEnabled);
1865            SRLZ(VCFType);
1866            SRLZ(VCFCutoffController);
1867            SRLZ(VCFCutoffControllerInvert);
1868            SRLZ(VCFCutoff);
1869            SRLZ(VCFVelocityCurve);
1870            SRLZ(VCFVelocityScale);
1871            SRLZ(VCFVelocityDynamicRange);
1872            SRLZ(VCFResonance);
1873            SRLZ(VCFResonanceDynamic);
1874            SRLZ(VCFResonanceController);
1875            SRLZ(VCFKeyboardTracking);
1876            SRLZ(VCFKeyboardTrackingBreakpoint);
1877            SRLZ(VelocityResponseCurve);
1878            SRLZ(VelocityResponseDepth);
1879            SRLZ(VelocityResponseCurveScaling);
1880            SRLZ(ReleaseVelocityResponseCurve);
1881            SRLZ(ReleaseVelocityResponseDepth);
1882            SRLZ(ReleaseTriggerDecay);
1883            SRLZ(Crossfade);
1884            SRLZ(PitchTrack);
1885            SRLZ(DimensionBypass);
1886            SRLZ(Pan);
1887            SRLZ(SelfMask);
1888            SRLZ(AttenuationController);
1889            SRLZ(InvertAttenuationController);
1890            SRLZ(AttenuationControllerThreshold);
1891            SRLZ(ChannelOffset);
1892            SRLZ(SustainDefeat);
1893            SRLZ(MSDecode);
1894            //SRLZ(SampleStartOffset);
1895            SRLZ(SampleAttenuation);
1896    
1897            // derived attributes from DLS::Sampler
1898            SRLZ(FineTune);
1899            SRLZ(Gain);
1900        }
1901    
1902        /**
1903         * Updates the respective member variable and updates @c SampleAttenuation
1904         * which depends on this value.
1905         */
1906        void DimensionRegion::SetGain(int32_t gain) {
1907            DLS::Sampler::SetGain(gain);
1908            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1909        }
1910    
1911        /**
1912         * Apply dimension region settings to the respective RIFF chunks. You
1913         * have to call File::Save() to make changes persistent.
1914         *
1915         * Usually there is absolutely no need to call this method explicitly.
1916         * It will be called automatically when File::Save() was called.
1917         *
1918         * @param pProgress - callback function for progress notification
1919         */
1920        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1921            // first update base class's chunk
1922            DLS::Sampler::UpdateChunks(pProgress);
1923    
1924            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1925            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1926            pData[12] = Crossfade.in_start;
1927            pData[13] = Crossfade.in_end;
1928            pData[14] = Crossfade.out_start;
1929            pData[15] = Crossfade.out_end;
1930    
1931            // make sure '3ewa' chunk exists
1932            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1933            if (!_3ewa) {
1934                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1935                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1936                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1937            }
1938            pData = (uint8_t*) _3ewa->LoadChunkData();
1939    
1940            // update '3ewa' chunk with DimensionRegion's current settings
1941    
1942            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1943            store32(&pData[0], chunksize); // unknown, always chunk size?
1944    
1945            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1946            store32(&pData[4], lfo3freq);
1947    
1948            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1949            store32(&pData[8], eg3attack);
1950    
1951            // next 2 bytes unknown
1952    
1953            store16(&pData[14], LFO1InternalDepth);
1954    
1955            // next 2 bytes unknown
1956    
1957            store16(&pData[18], LFO3InternalDepth);
1958    
1959            // next 2 bytes unknown
1960    
1961            store16(&pData[22], LFO1ControlDepth);
1962    
1963            // next 2 bytes unknown
1964    
1965            store16(&pData[26], LFO3ControlDepth);
1966    
1967            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1968            store32(&pData[28], eg1attack);
1969    
1970            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1971            store32(&pData[32], eg1decay1);
1972    
1973            // next 2 bytes unknown
1974    
1975            store16(&pData[38], EG1Sustain);
1976    
1977            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1978            store32(&pData[40], eg1release);
1979    
1980            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1981            pData[44] = eg1ctl;
1982    
1983            const uint8_t eg1ctrloptions =
1984                (EG1ControllerInvert ? 0x01 : 0x00) |
1985                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1986                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1987                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1988            pData[45] = eg1ctrloptions;
1989    
1990            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1991            pData[46] = eg2ctl;
1992    
1993            const uint8_t eg2ctrloptions =
1994                (EG2ControllerInvert ? 0x01 : 0x00) |
1995                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1996                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1997                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1998            pData[47] = eg2ctrloptions;
1999    
2000            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2001            store32(&pData[48], lfo1freq);
2002    
2003            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2004            store32(&pData[52], eg2attack);
2005    
2006            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2007            store32(&pData[56], eg2decay1);
2008    
2009            // next 2 bytes unknown
2010    
2011            store16(&pData[62], EG2Sustain);
2012    
2013            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2014            store32(&pData[64], eg2release);
2015    
2016            // next 2 bytes unknown
2017    
2018            store16(&pData[70], LFO2ControlDepth);
2019    
2020            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2021            store32(&pData[72], lfo2freq);
2022    
2023            // next 2 bytes unknown
2024    
2025            store16(&pData[78], LFO2InternalDepth);
2026    
2027            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2028            store32(&pData[80], eg1decay2);
2029    
2030            // next 2 bytes unknown
2031    
2032            store16(&pData[86], EG1PreAttack);
2033    
2034            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2035            store32(&pData[88], eg2decay2);
2036    
2037            // next 2 bytes unknown
2038    
2039            store16(&pData[94], EG2PreAttack);
2040    
2041            {
2042                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2043                uint8_t velocityresponse = VelocityResponseDepth;
2044                switch (VelocityResponseCurve) {
2045                  case curve_type_nonlinear:                  case curve_type_nonlinear:
2046                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
2047                  case curve_type_linear:                  case curve_type_linear:
2048                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
2049                      break;                      break;
2050                  case curve_type_special:                  case curve_type_special:
2051                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
2052                          pVelocityAttenuationTable[velocity] =                      break;
2053                              GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);                  case curve_type_unknown:
2054                          if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;                  default:
2055                          else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2056                      }              }
2057                pData[96] = velocityresponse;
2058            }
2059    
2060            {
2061                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2062                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2063                switch (ReleaseVelocityResponseCurve) {
2064                    case curve_type_nonlinear:
2065                        break;
2066                    case curve_type_linear:
2067                        releasevelocityresponse += 5;
2068                        break;
2069                    case curve_type_special:
2070                        releasevelocityresponse += 10;
2071                      break;                      break;
2072                  case curve_type_unknown:                  case curve_type_unknown:
2073                  default:                  default:
2074                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2075                }
2076                pData[97] = releasevelocityresponse;
2077            }
2078    
2079            pData[98] = VelocityResponseCurveScaling;
2080    
2081            pData[99] = AttenuationControllerThreshold;
2082    
2083            // next 4 bytes unknown
2084    
2085            store16(&pData[104], SampleStartOffset);
2086    
2087            // next 2 bytes unknown
2088    
2089            {
2090                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2091                switch (DimensionBypass) {
2092                    case dim_bypass_ctrl_94:
2093                        pitchTrackDimensionBypass |= 0x10;
2094                        break;
2095                    case dim_bypass_ctrl_95:
2096                        pitchTrackDimensionBypass |= 0x20;
2097                        break;
2098                    case dim_bypass_ctrl_none:
2099                        //FIXME: should we set anything here?
2100                        break;
2101                    default:
2102                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2103              }              }
2104              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[108] = pitchTrackDimensionBypass;
2105            }
2106    
2107            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2108            pData[109] = pan;
2109    
2110            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2111            pData[110] = selfmask;
2112    
2113            // next byte unknown
2114    
2115            {
2116                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2117                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2118                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2119                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2120                pData[112] = lfo3ctrl;
2121            }
2122    
2123            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2124            pData[113] = attenctl;
2125    
2126            {
2127                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2128                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2129                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2130                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2131                pData[114] = lfo2ctrl;
2132            }
2133    
2134            {
2135                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2136                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2137                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2138                if (VCFResonanceController != vcf_res_ctrl_none)
2139                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2140                pData[115] = lfo1ctrl;
2141            }
2142    
2143            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2144                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2145            store16(&pData[116], eg3depth);
2146    
2147            // next 2 bytes unknown
2148    
2149            const uint8_t channeloffset = ChannelOffset * 4;
2150            pData[120] = channeloffset;
2151    
2152            {
2153                uint8_t regoptions = 0;
2154                if (MSDecode)      regoptions |= 0x01; // bit 0
2155                if (SustainDefeat) regoptions |= 0x02; // bit 1
2156                pData[121] = regoptions;
2157            }
2158    
2159            // next 2 bytes unknown
2160    
2161            pData[124] = VelocityUpperLimit;
2162    
2163            // next 3 bytes unknown
2164    
2165            pData[128] = ReleaseTriggerDecay;
2166    
2167            // next 2 bytes unknown
2168    
2169            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2170            pData[131] = eg1hold;
2171    
2172            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2173                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2174            pData[132] = vcfcutoff;
2175    
2176            pData[133] = VCFCutoffController;
2177    
2178            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2179                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2180            pData[134] = vcfvelscale;
2181    
2182            // next byte unknown
2183    
2184            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2185                                         (VCFResonance & 0x7f); /* lower 7 bits */
2186            pData[136] = vcfresonance;
2187    
2188            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2189                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2190            pData[137] = vcfbreakpoint;
2191    
2192            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2193                                        VCFVelocityCurve * 5;
2194            pData[138] = vcfvelocity;
2195    
2196            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2197            pData[139] = vcftype;
2198    
2199            if (chunksize >= 148) {
2200                memcpy(&pData[140], DimensionUpperLimits, 8);
2201            }
2202        }
2203    
2204        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2205            curve_type_t curveType = releaseVelocityResponseCurve;
2206            uint8_t depth = releaseVelocityResponseDepth;
2207            // this models a strange behaviour or bug in GSt: two of the
2208            // velocity response curves for release time are not used even
2209            // if specified, instead another curve is chosen.
2210            if ((curveType == curve_type_nonlinear && depth == 0) ||
2211                (curveType == curve_type_special   && depth == 4)) {
2212                curveType = curve_type_nonlinear;
2213                depth = 3;
2214            }
2215            return GetVelocityTable(curveType, depth, 0);
2216        }
2217    
2218        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2219                                                        uint8_t vcfVelocityDynamicRange,
2220                                                        uint8_t vcfVelocityScale,
2221                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2222        {
2223            curve_type_t curveType = vcfVelocityCurve;
2224            uint8_t depth = vcfVelocityDynamicRange;
2225            // even stranger GSt: two of the velocity response curves for
2226            // filter cutoff are not used, instead another special curve
2227            // is chosen. This curve is not used anywhere else.
2228            if ((curveType == curve_type_nonlinear && depth == 0) ||
2229                (curveType == curve_type_special   && depth == 4)) {
2230                curveType = curve_type_special;
2231                depth = 5;
2232          }          }
2233            return GetVelocityTable(curveType, depth,
2234                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2235                                        ? vcfVelocityScale : 0);
2236        }
2237    
2238        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2239        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2240        {
2241            double* table;
2242            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2243            if (pVelocityTables->count(tableKey)) { // if key exists
2244                table = (*pVelocityTables)[tableKey];
2245            }
2246            else {
2247                table = CreateVelocityTable(curveType, depth, scaling);
2248                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2249            }
2250            return table;
2251        }
2252    
2253        Region* DimensionRegion::GetParent() const {
2254            return pRegion;
2255        }
2256    
2257    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2258    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2259    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2260    //#pragma GCC diagnostic push
2261    //#pragma GCC diagnostic error "-Wswitch"
2262    
2263        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2264            leverage_ctrl_t decodedcontroller;
2265            switch (EncodedController) {
2266                // special controller
2267                case _lev_ctrl_none:
2268                    decodedcontroller.type = leverage_ctrl_t::type_none;
2269                    decodedcontroller.controller_number = 0;
2270                    break;
2271                case _lev_ctrl_velocity:
2272                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
2273                    decodedcontroller.controller_number = 0;
2274                    break;
2275                case _lev_ctrl_channelaftertouch:
2276                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2277                    decodedcontroller.controller_number = 0;
2278                    break;
2279    
2280                // ordinary MIDI control change controller
2281                case _lev_ctrl_modwheel:
2282                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283                    decodedcontroller.controller_number = 1;
2284                    break;
2285                case _lev_ctrl_breath:
2286                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287                    decodedcontroller.controller_number = 2;
2288                    break;
2289                case _lev_ctrl_foot:
2290                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291                    decodedcontroller.controller_number = 4;
2292                    break;
2293                case _lev_ctrl_effect1:
2294                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295                    decodedcontroller.controller_number = 12;
2296                    break;
2297                case _lev_ctrl_effect2:
2298                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299                    decodedcontroller.controller_number = 13;
2300                    break;
2301                case _lev_ctrl_genpurpose1:
2302                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303                    decodedcontroller.controller_number = 16;
2304                    break;
2305                case _lev_ctrl_genpurpose2:
2306                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307                    decodedcontroller.controller_number = 17;
2308                    break;
2309                case _lev_ctrl_genpurpose3:
2310                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311                    decodedcontroller.controller_number = 18;
2312                    break;
2313                case _lev_ctrl_genpurpose4:
2314                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315                    decodedcontroller.controller_number = 19;
2316                    break;
2317                case _lev_ctrl_portamentotime:
2318                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319                    decodedcontroller.controller_number = 5;
2320                    break;
2321                case _lev_ctrl_sustainpedal:
2322                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323                    decodedcontroller.controller_number = 64;
2324                    break;
2325                case _lev_ctrl_portamento:
2326                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327                    decodedcontroller.controller_number = 65;
2328                    break;
2329                case _lev_ctrl_sostenutopedal:
2330                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331                    decodedcontroller.controller_number = 66;
2332                    break;
2333                case _lev_ctrl_softpedal:
2334                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335                    decodedcontroller.controller_number = 67;
2336                    break;
2337                case _lev_ctrl_genpurpose5:
2338                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339                    decodedcontroller.controller_number = 80;
2340                    break;
2341                case _lev_ctrl_genpurpose6:
2342                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343                    decodedcontroller.controller_number = 81;
2344                    break;
2345                case _lev_ctrl_genpurpose7:
2346                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347                    decodedcontroller.controller_number = 82;
2348                    break;
2349                case _lev_ctrl_genpurpose8:
2350                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351                    decodedcontroller.controller_number = 83;
2352                    break;
2353                case _lev_ctrl_effect1depth:
2354                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355                    decodedcontroller.controller_number = 91;
2356                    break;
2357                case _lev_ctrl_effect2depth:
2358                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359                    decodedcontroller.controller_number = 92;
2360                    break;
2361                case _lev_ctrl_effect3depth:
2362                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363                    decodedcontroller.controller_number = 93;
2364                    break;
2365                case _lev_ctrl_effect4depth:
2366                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367                    decodedcontroller.controller_number = 94;
2368                    break;
2369                case _lev_ctrl_effect5depth:
2370                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371                    decodedcontroller.controller_number = 95;
2372                    break;
2373    
2374                // format extension (these controllers are so far only supported by
2375                // LinuxSampler & gigedit) they will *NOT* work with
2376                // Gigasampler/GigaStudio !
2377                case _lev_ctrl_CC3_EXT:
2378                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379                    decodedcontroller.controller_number = 3;
2380                    break;
2381                case _lev_ctrl_CC6_EXT:
2382                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383                    decodedcontroller.controller_number = 6;
2384                    break;
2385                case _lev_ctrl_CC7_EXT:
2386                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387                    decodedcontroller.controller_number = 7;
2388                    break;
2389                case _lev_ctrl_CC8_EXT:
2390                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391                    decodedcontroller.controller_number = 8;
2392                    break;
2393                case _lev_ctrl_CC9_EXT:
2394                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395                    decodedcontroller.controller_number = 9;
2396                    break;
2397                case _lev_ctrl_CC10_EXT:
2398                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399                    decodedcontroller.controller_number = 10;
2400                    break;
2401                case _lev_ctrl_CC11_EXT:
2402                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403                    decodedcontroller.controller_number = 11;
2404                    break;
2405                case _lev_ctrl_CC14_EXT:
2406                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407                    decodedcontroller.controller_number = 14;
2408                    break;
2409                case _lev_ctrl_CC15_EXT:
2410                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411                    decodedcontroller.controller_number = 15;
2412                    break;
2413                case _lev_ctrl_CC20_EXT:
2414                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415                    decodedcontroller.controller_number = 20;
2416                    break;
2417                case _lev_ctrl_CC21_EXT:
2418                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419                    decodedcontroller.controller_number = 21;
2420                    break;
2421                case _lev_ctrl_CC22_EXT:
2422                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423                    decodedcontroller.controller_number = 22;
2424                    break;
2425                case _lev_ctrl_CC23_EXT:
2426                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427                    decodedcontroller.controller_number = 23;
2428                    break;
2429                case _lev_ctrl_CC24_EXT:
2430                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431                    decodedcontroller.controller_number = 24;
2432                    break;
2433                case _lev_ctrl_CC25_EXT:
2434                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435                    decodedcontroller.controller_number = 25;
2436                    break;
2437                case _lev_ctrl_CC26_EXT:
2438                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439                    decodedcontroller.controller_number = 26;
2440                    break;
2441                case _lev_ctrl_CC27_EXT:
2442                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443                    decodedcontroller.controller_number = 27;
2444                    break;
2445                case _lev_ctrl_CC28_EXT:
2446                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447                    decodedcontroller.controller_number = 28;
2448                    break;
2449                case _lev_ctrl_CC29_EXT:
2450                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2451                    decodedcontroller.controller_number = 29;
2452                    break;
2453                case _lev_ctrl_CC30_EXT:
2454                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2455                    decodedcontroller.controller_number = 30;
2456                    break;
2457                case _lev_ctrl_CC31_EXT:
2458                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2459                    decodedcontroller.controller_number = 31;
2460                    break;
2461                case _lev_ctrl_CC68_EXT:
2462                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2463                    decodedcontroller.controller_number = 68;
2464                    break;
2465                case _lev_ctrl_CC69_EXT:
2466                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2467                    decodedcontroller.controller_number = 69;
2468                    break;
2469                case _lev_ctrl_CC70_EXT:
2470                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2471                    decodedcontroller.controller_number = 70;
2472                    break;
2473                case _lev_ctrl_CC71_EXT:
2474                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2475                    decodedcontroller.controller_number = 71;
2476                    break;
2477                case _lev_ctrl_CC72_EXT:
2478                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2479                    decodedcontroller.controller_number = 72;
2480                    break;
2481                case _lev_ctrl_CC73_EXT:
2482                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2483                    decodedcontroller.controller_number = 73;
2484                    break;
2485                case _lev_ctrl_CC74_EXT:
2486                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2487                    decodedcontroller.controller_number = 74;
2488                    break;
2489                case _lev_ctrl_CC75_EXT:
2490                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2491                    decodedcontroller.controller_number = 75;
2492                    break;
2493                case _lev_ctrl_CC76_EXT:
2494                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2495                    decodedcontroller.controller_number = 76;
2496                    break;
2497                case _lev_ctrl_CC77_EXT:
2498                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2499                    decodedcontroller.controller_number = 77;
2500                    break;
2501                case _lev_ctrl_CC78_EXT:
2502                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2503                    decodedcontroller.controller_number = 78;
2504                    break;
2505                case _lev_ctrl_CC79_EXT:
2506                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2507                    decodedcontroller.controller_number = 79;
2508                    break;
2509                case _lev_ctrl_CC84_EXT:
2510                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2511                    decodedcontroller.controller_number = 84;
2512                    break;
2513                case _lev_ctrl_CC85_EXT:
2514                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2515                    decodedcontroller.controller_number = 85;
2516                    break;
2517                case _lev_ctrl_CC86_EXT:
2518                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2519                    decodedcontroller.controller_number = 86;
2520                    break;
2521                case _lev_ctrl_CC87_EXT:
2522                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2523                    decodedcontroller.controller_number = 87;
2524                    break;
2525                case _lev_ctrl_CC89_EXT:
2526                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2527                    decodedcontroller.controller_number = 89;
2528                    break;
2529                case _lev_ctrl_CC90_EXT:
2530                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2531                    decodedcontroller.controller_number = 90;
2532                    break;
2533                case _lev_ctrl_CC96_EXT:
2534                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2535                    decodedcontroller.controller_number = 96;
2536                    break;
2537                case _lev_ctrl_CC97_EXT:
2538                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2539                    decodedcontroller.controller_number = 97;
2540                    break;
2541                case _lev_ctrl_CC102_EXT:
2542                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2543                    decodedcontroller.controller_number = 102;
2544                    break;
2545                case _lev_ctrl_CC103_EXT:
2546                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2547                    decodedcontroller.controller_number = 103;
2548                    break;
2549                case _lev_ctrl_CC104_EXT:
2550                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2551                    decodedcontroller.controller_number = 104;
2552                    break;
2553                case _lev_ctrl_CC105_EXT:
2554                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2555                    decodedcontroller.controller_number = 105;
2556                    break;
2557                case _lev_ctrl_CC106_EXT:
2558                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2559                    decodedcontroller.controller_number = 106;
2560                    break;
2561                case _lev_ctrl_CC107_EXT:
2562                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2563                    decodedcontroller.controller_number = 107;
2564                    break;
2565                case _lev_ctrl_CC108_EXT:
2566                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2567                    decodedcontroller.controller_number = 108;
2568                    break;
2569                case _lev_ctrl_CC109_EXT:
2570                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2571                    decodedcontroller.controller_number = 109;
2572                    break;
2573                case _lev_ctrl_CC110_EXT:
2574                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2575                    decodedcontroller.controller_number = 110;
2576                    break;
2577                case _lev_ctrl_CC111_EXT:
2578                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2579                    decodedcontroller.controller_number = 111;
2580                    break;
2581                case _lev_ctrl_CC112_EXT:
2582                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2583                    decodedcontroller.controller_number = 112;
2584                    break;
2585                case _lev_ctrl_CC113_EXT:
2586                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2587                    decodedcontroller.controller_number = 113;
2588                    break;
2589                case _lev_ctrl_CC114_EXT:
2590                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2591                    decodedcontroller.controller_number = 114;
2592                    break;
2593                case _lev_ctrl_CC115_EXT:
2594                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2595                    decodedcontroller.controller_number = 115;
2596                    break;
2597                case _lev_ctrl_CC116_EXT:
2598                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2599                    decodedcontroller.controller_number = 116;
2600                    break;
2601                case _lev_ctrl_CC117_EXT:
2602                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2603                    decodedcontroller.controller_number = 117;
2604                    break;
2605                case _lev_ctrl_CC118_EXT:
2606                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2607                    decodedcontroller.controller_number = 118;
2608                    break;
2609                case _lev_ctrl_CC119_EXT:
2610                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2611                    decodedcontroller.controller_number = 119;
2612                    break;
2613    
2614                // unknown controller type
2615                default:
2616                    throw gig::Exception("Unknown leverage controller type.");
2617            }
2618            return decodedcontroller;
2619        }
2620        
2621    // see above (diagnostic push not supported prior GCC 4.6)
2622    //#pragma GCC diagnostic pop
2623    
2624        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2625            _lev_ctrl_t encodedcontroller;
2626            switch (DecodedController.type) {
2627                // special controller
2628                case leverage_ctrl_t::type_none:
2629                    encodedcontroller = _lev_ctrl_none;
2630                    break;
2631                case leverage_ctrl_t::type_velocity:
2632                    encodedcontroller = _lev_ctrl_velocity;
2633                    break;
2634                case leverage_ctrl_t::type_channelaftertouch:
2635                    encodedcontroller = _lev_ctrl_channelaftertouch;
2636                    break;
2637    
2638                // ordinary MIDI control change controller
2639                case leverage_ctrl_t::type_controlchange:
2640                    switch (DecodedController.controller_number) {
2641                        case 1:
2642                            encodedcontroller = _lev_ctrl_modwheel;
2643                            break;
2644                        case 2:
2645                            encodedcontroller = _lev_ctrl_breath;
2646                            break;
2647                        case 4:
2648                            encodedcontroller = _lev_ctrl_foot;
2649                            break;
2650                        case 12:
2651                            encodedcontroller = _lev_ctrl_effect1;
2652                            break;
2653                        case 13:
2654                            encodedcontroller = _lev_ctrl_effect2;
2655                            break;
2656                        case 16:
2657                            encodedcontroller = _lev_ctrl_genpurpose1;
2658                            break;
2659                        case 17:
2660                            encodedcontroller = _lev_ctrl_genpurpose2;
2661                            break;
2662                        case 18:
2663                            encodedcontroller = _lev_ctrl_genpurpose3;
2664                            break;
2665                        case 19:
2666                            encodedcontroller = _lev_ctrl_genpurpose4;
2667                            break;
2668                        case 5:
2669                            encodedcontroller = _lev_ctrl_portamentotime;
2670                            break;
2671                        case 64:
2672                            encodedcontroller = _lev_ctrl_sustainpedal;
2673                            break;
2674                        case 65:
2675                            encodedcontroller = _lev_ctrl_portamento;
2676                            break;
2677                        case 66:
2678                            encodedcontroller = _lev_ctrl_sostenutopedal;
2679                            break;
2680                        case 67:
2681                            encodedcontroller = _lev_ctrl_softpedal;
2682                            break;
2683                        case 80:
2684                            encodedcontroller = _lev_ctrl_genpurpose5;
2685                            break;
2686                        case 81:
2687                            encodedcontroller = _lev_ctrl_genpurpose6;
2688                            break;
2689                        case 82:
2690                            encodedcontroller = _lev_ctrl_genpurpose7;
2691                            break;
2692                        case 83:
2693                            encodedcontroller = _lev_ctrl_genpurpose8;
2694                            break;
2695                        case 91:
2696                            encodedcontroller = _lev_ctrl_effect1depth;
2697                            break;
2698                        case 92:
2699                            encodedcontroller = _lev_ctrl_effect2depth;
2700                            break;
2701                        case 93:
2702                            encodedcontroller = _lev_ctrl_effect3depth;
2703                            break;
2704                        case 94:
2705                            encodedcontroller = _lev_ctrl_effect4depth;
2706                            break;
2707                        case 95:
2708                            encodedcontroller = _lev_ctrl_effect5depth;
2709                            break;
2710    
2711                        // format extension (these controllers are so far only
2712                        // supported by LinuxSampler & gigedit) they will *NOT*
2713                        // work with Gigasampler/GigaStudio !
2714                        case 3:
2715                            encodedcontroller = _lev_ctrl_CC3_EXT;
2716                            break;
2717                        case 6:
2718                            encodedcontroller = _lev_ctrl_CC6_EXT;
2719                            break;
2720                        case 7:
2721                            encodedcontroller = _lev_ctrl_CC7_EXT;
2722                            break;
2723                        case 8:
2724                            encodedcontroller = _lev_ctrl_CC8_EXT;
2725                            break;
2726                        case 9:
2727                            encodedcontroller = _lev_ctrl_CC9_EXT;
2728                            break;
2729                        case 10:
2730                            encodedcontroller = _lev_ctrl_CC10_EXT;
2731                            break;
2732                        case 11:
2733                            encodedcontroller = _lev_ctrl_CC11_EXT;
2734                            break;
2735                        case 14:
2736                            encodedcontroller = _lev_ctrl_CC14_EXT;
2737                            break;
2738                        case 15:
2739                            encodedcontroller = _lev_ctrl_CC15_EXT;
2740                            break;
2741                        case 20:
2742                            encodedcontroller = _lev_ctrl_CC20_EXT;
2743                            break;
2744                        case 21:
2745                            encodedcontroller = _lev_ctrl_CC21_EXT;
2746                            break;
2747                        case 22:
2748                            encodedcontroller = _lev_ctrl_CC22_EXT;
2749                            break;
2750                        case 23:
2751                            encodedcontroller = _lev_ctrl_CC23_EXT;
2752                            break;
2753                        case 24:
2754                            encodedcontroller = _lev_ctrl_CC24_EXT;
2755                            break;
2756                        case 25:
2757                            encodedcontroller = _lev_ctrl_CC25_EXT;
2758                            break;
2759                        case 26:
2760                            encodedcontroller = _lev_ctrl_CC26_EXT;
2761                            break;
2762                        case 27:
2763                            encodedcontroller = _lev_ctrl_CC27_EXT;
2764                            break;
2765                        case 28:
2766                            encodedcontroller = _lev_ctrl_CC28_EXT;
2767                            break;
2768                        case 29:
2769                            encodedcontroller = _lev_ctrl_CC29_EXT;
2770                            break;
2771                        case 30:
2772                            encodedcontroller = _lev_ctrl_CC30_EXT;
2773                            break;
2774                        case 31:
2775                            encodedcontroller = _lev_ctrl_CC31_EXT;
2776                            break;
2777                        case 68:
2778                            encodedcontroller = _lev_ctrl_CC68_EXT;
2779                            break;
2780                        case 69:
2781                            encodedcontroller = _lev_ctrl_CC69_EXT;
2782                            break;
2783                        case 70:
2784                            encodedcontroller = _lev_ctrl_CC70_EXT;
2785                            break;
2786                        case 71:
2787                            encodedcontroller = _lev_ctrl_CC71_EXT;
2788                            break;
2789                        case 72:
2790                            encodedcontroller = _lev_ctrl_CC72_EXT;
2791                            break;
2792                        case 73:
2793                            encodedcontroller = _lev_ctrl_CC73_EXT;
2794                            break;
2795                        case 74:
2796                            encodedcontroller = _lev_ctrl_CC74_EXT;
2797                            break;
2798                        case 75:
2799                            encodedcontroller = _lev_ctrl_CC75_EXT;
2800                            break;
2801                        case 76:
2802                            encodedcontroller = _lev_ctrl_CC76_EXT;
2803                            break;
2804                        case 77:
2805                            encodedcontroller = _lev_ctrl_CC77_EXT;
2806                            break;
2807                        case 78:
2808                            encodedcontroller = _lev_ctrl_CC78_EXT;
2809                            break;
2810                        case 79:
2811                            encodedcontroller = _lev_ctrl_CC79_EXT;
2812                            break;
2813                        case 84:
2814                            encodedcontroller = _lev_ctrl_CC84_EXT;
2815                            break;
2816                        case 85:
2817                            encodedcontroller = _lev_ctrl_CC85_EXT;
2818                            break;
2819                        case 86:
2820                            encodedcontroller = _lev_ctrl_CC86_EXT;
2821                            break;
2822                        case 87:
2823                            encodedcontroller = _lev_ctrl_CC87_EXT;
2824                            break;
2825                        case 89:
2826                            encodedcontroller = _lev_ctrl_CC89_EXT;
2827                            break;
2828                        case 90:
2829                            encodedcontroller = _lev_ctrl_CC90_EXT;
2830                            break;
2831                        case 96:
2832                            encodedcontroller = _lev_ctrl_CC96_EXT;
2833                            break;
2834                        case 97:
2835                            encodedcontroller = _lev_ctrl_CC97_EXT;
2836                            break;
2837                        case 102:
2838                            encodedcontroller = _lev_ctrl_CC102_EXT;
2839                            break;
2840                        case 103:
2841                            encodedcontroller = _lev_ctrl_CC103_EXT;
2842                            break;
2843                        case 104:
2844                            encodedcontroller = _lev_ctrl_CC104_EXT;
2845                            break;
2846                        case 105:
2847                            encodedcontroller = _lev_ctrl_CC105_EXT;
2848                            break;
2849                        case 106:
2850                            encodedcontroller = _lev_ctrl_CC106_EXT;
2851                            break;
2852                        case 107:
2853                            encodedcontroller = _lev_ctrl_CC107_EXT;
2854                            break;
2855                        case 108:
2856                            encodedcontroller = _lev_ctrl_CC108_EXT;
2857                            break;
2858                        case 109:
2859                            encodedcontroller = _lev_ctrl_CC109_EXT;
2860                            break;
2861                        case 110:
2862                            encodedcontroller = _lev_ctrl_CC110_EXT;
2863                            break;
2864                        case 111:
2865                            encodedcontroller = _lev_ctrl_CC111_EXT;
2866                            break;
2867                        case 112:
2868                            encodedcontroller = _lev_ctrl_CC112_EXT;
2869                            break;
2870                        case 113:
2871                            encodedcontroller = _lev_ctrl_CC113_EXT;
2872                            break;
2873                        case 114:
2874                            encodedcontroller = _lev_ctrl_CC114_EXT;
2875                            break;
2876                        case 115:
2877                            encodedcontroller = _lev_ctrl_CC115_EXT;
2878                            break;
2879                        case 116:
2880                            encodedcontroller = _lev_ctrl_CC116_EXT;
2881                            break;
2882                        case 117:
2883                            encodedcontroller = _lev_ctrl_CC117_EXT;
2884                            break;
2885                        case 118:
2886                            encodedcontroller = _lev_ctrl_CC118_EXT;
2887                            break;
2888                        case 119:
2889                            encodedcontroller = _lev_ctrl_CC119_EXT;
2890                            break;
2891    
2892                        default:
2893                            throw gig::Exception("leverage controller number is not supported by the gig format");
2894                    }
2895                    break;
2896                default:
2897                    throw gig::Exception("Unknown leverage controller type.");
2898            }
2899            return encodedcontroller;
2900      }      }
2901    
2902      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
# Line 704  namespace gig { Line 2912  namespace gig {
2912              delete pVelocityTables;              delete pVelocityTables;
2913              pVelocityTables = NULL;              pVelocityTables = NULL;
2914          }          }
2915            if (VelocityTable) delete[] VelocityTable;
2916      }      }
2917    
2918      /**      /**
# Line 714  namespace gig { Line 2923  namespace gig {
2923       * triggered to get the volume with which the sample should be played       * triggered to get the volume with which the sample should be played
2924       * back.       * back.
2925       *       *
2926       * @param    MIDI velocity value of the triggered key (between 0 and 127)       * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
2927       * @returns  amplitude factor (between 0.0 and 1.0)       * @returns                amplitude factor (between 0.0 and 1.0)
2928       */       */
2929      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2930          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2931      }      }
2932    
2933        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2934            return pVelocityReleaseTable[MIDIKeyVelocity];
2935        }
2936    
2937        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2938            return pVelocityCutoffTable[MIDIKeyVelocity];
2939        }
2940    
2941        /**
2942         * Updates the respective member variable and the lookup table / cache
2943         * that depends on this value.
2944         */
2945        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2946            pVelocityAttenuationTable =
2947                GetVelocityTable(
2948                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2949                );
2950            VelocityResponseCurve = curve;
2951        }
2952    
2953        /**
2954         * Updates the respective member variable and the lookup table / cache
2955         * that depends on this value.
2956         */
2957        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2958            pVelocityAttenuationTable =
2959                GetVelocityTable(
2960                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2961                );
2962            VelocityResponseDepth = depth;
2963        }
2964    
2965        /**
2966         * Updates the respective member variable and the lookup table / cache
2967         * that depends on this value.
2968         */
2969        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2970            pVelocityAttenuationTable =
2971                GetVelocityTable(
2972                    VelocityResponseCurve, VelocityResponseDepth, scaling
2973                );
2974            VelocityResponseCurveScaling = scaling;
2975        }
2976    
2977        /**
2978         * Updates the respective member variable and the lookup table / cache
2979         * that depends on this value.
2980         */
2981        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2982            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2983            ReleaseVelocityResponseCurve = curve;
2984        }
2985    
2986        /**
2987         * Updates the respective member variable and the lookup table / cache
2988         * that depends on this value.
2989         */
2990        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2991            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2992            ReleaseVelocityResponseDepth = depth;
2993        }
2994    
2995        /**
2996         * Updates the respective member variable and the lookup table / cache
2997         * that depends on this value.
2998         */
2999        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3000            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3001            VCFCutoffController = controller;
3002        }
3003    
3004        /**
3005         * Updates the respective member variable and the lookup table / cache
3006         * that depends on this value.
3007         */
3008        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3009            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3010            VCFVelocityCurve = curve;
3011        }
3012    
3013        /**
3014         * Updates the respective member variable and the lookup table / cache
3015         * that depends on this value.
3016         */
3017        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3018            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3019            VCFVelocityDynamicRange = range;
3020        }
3021    
3022        /**
3023         * Updates the respective member variable and the lookup table / cache
3024         * that depends on this value.
3025         */
3026        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3027            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3028            VCFVelocityScale = scaling;
3029        }
3030    
3031        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3032    
3033            // line-segment approximations of the 15 velocity curves
3034    
3035            // linear
3036            const int lin0[] = { 1, 1, 127, 127 };
3037            const int lin1[] = { 1, 21, 127, 127 };
3038            const int lin2[] = { 1, 45, 127, 127 };
3039            const int lin3[] = { 1, 74, 127, 127 };
3040            const int lin4[] = { 1, 127, 127, 127 };
3041    
3042            // non-linear
3043            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3044            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3045                                 127, 127 };
3046            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3047                                 127, 127 };
3048            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3049                                 127, 127 };
3050            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3051    
3052            // special
3053            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3054                                 113, 127, 127, 127 };
3055            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3056                                 118, 127, 127, 127 };
3057            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3058                                 85, 90, 91, 127, 127, 127 };
3059            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3060                                 117, 127, 127, 127 };
3061            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3062                                 127, 127 };
3063    
3064            // this is only used by the VCF velocity curve
3065            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3066                                 91, 127, 127, 127 };
3067    
3068            const int* const curves[] = { non0, non1, non2, non3, non4,
3069                                          lin0, lin1, lin2, lin3, lin4,
3070                                          spe0, spe1, spe2, spe3, spe4, spe5 };
3071    
3072            double* const table = new double[128];
3073    
3074            const int* curve = curves[curveType * 5 + depth];
3075            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3076    
3077            table[0] = 0;
3078            for (int x = 1 ; x < 128 ; x++) {
3079    
3080                if (x > curve[2]) curve += 2;
3081                double y = curve[1] + (x - curve[0]) *
3082                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3083                y = y / 127;
3084    
3085                // Scale up for s > 20, down for s < 20. When
3086                // down-scaling, the curve still ends at 1.0.
3087                if (s < 20 && y >= 0.5)
3088                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3089                else
3090                    y = y * (s / 20.0);
3091                if (y > 1) y = 1;
3092    
3093                table[x] = y;
3094            }
3095            return table;
3096        }
3097    
3098    
3099  // *************** Region ***************  // *************** Region ***************
# Line 729  namespace gig { Line 3102  namespace gig {
3102      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3103          // Initialization          // Initialization
3104          Dimensions = 0;          Dimensions = 0;
3105          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
3106              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
3107          }          }
3108            Layers = 1;
3109            File* file = (File*) GetParent()->GetParent();
3110            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3111    
3112          // Actual Loading          // Actual Loading
3113    
3114            if (!file->GetAutoLoad()) return;
3115    
3116          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3117    
3118          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3119          if (_3lnk) {          if (_3lnk) {
3120              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3121              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
3122                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3123                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3124                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3125                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3126                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3127                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3128                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3129                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3130                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3131                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3132                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3133                  }                  }
3134                  else { // active dimension                  else { // active dimension
3135                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3136                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3137                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3138                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3139                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3140                      Dimensions++;                      Dimensions++;
3141    
3142                        // if this is a layer dimension, remember the amount of layers
3143                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3144                  }                  }
3145                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3146              }              }
3147                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3148    
3149              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3150              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3151                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
3152                  if (pDimDef->dimension == dimension_velocity) {  
3153                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
3154                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
3155                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3156                          pDimDef->ranges     = NULL;              else
3157                      }                  _3lnk->SetPos(44);
3158                      else { // custom defined ranges  
3159                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
3160                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
3161                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
3162                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3163                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
3164                  }                  }
3165                    GetSample(); // load global region sample reference
3166                }
3167            } else {
3168                DimensionRegions = 0;
3169                for (int i = 0 ; i < 8 ; i++) {
3170                    pDimensionDefinitions[i].dimension  = dimension_none;
3171                    pDimensionDefinitions[i].bits       = 0;
3172                    pDimensionDefinitions[i].zones      = 0;
3173              }              }
3174            }
3175    
3176            // make sure there is at least one dimension region
3177            if (!DimensionRegions) {
3178                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3179                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3180                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3181                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3182                DimensionRegions = 1;
3183            }
3184        }
3185    
3186        /**
3187         * Apply Region settings and all its DimensionRegions to the respective
3188         * RIFF chunks. You have to call File::Save() to make changes persistent.
3189         *
3190         * Usually there is absolutely no need to call this method explicitly.
3191         * It will be called automatically when File::Save() was called.
3192         *
3193         * @param pProgress - callback function for progress notification
3194         * @throws gig::Exception if samples cannot be dereferenced
3195         */
3196        void Region::UpdateChunks(progress_t* pProgress) {
3197            // in the gig format we don't care about the Region's sample reference
3198            // but we still have to provide some existing one to not corrupt the
3199            // file, so to avoid the latter we simply always assign the sample of
3200            // the first dimension region of this region
3201            pSample = pDimensionRegions[0]->pSample;
3202    
3203            // first update base class's chunks
3204            DLS::Region::UpdateChunks(pProgress);
3205    
3206            // update dimension region's chunks
3207            for (int i = 0; i < DimensionRegions; i++) {
3208                pDimensionRegions[i]->UpdateChunks(pProgress);
3209            }
3210    
3211            File* pFile = (File*) GetParent()->GetParent();
3212            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3213            const int iMaxDimensions =  version3 ? 8 : 5;
3214            const int iMaxDimensionRegions = version3 ? 256 : 32;
3215    
3216            // make sure '3lnk' chunk exists
3217            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3218            if (!_3lnk) {
3219                const int _3lnkChunkSize = version3 ? 1092 : 172;
3220                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3221                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3222    
3223                // move 3prg to last position
3224                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3225            }
3226    
3227            // update dimension definitions in '3lnk' chunk
3228            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3229            store32(&pData[0], DimensionRegions);
3230            int shift = 0;
3231            for (int i = 0; i < iMaxDimensions; i++) {
3232                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3233                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3234                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3235                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3236                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3237                // next 3 bytes unknown, always zero?
3238    
3239                shift += pDimensionDefinitions[i].bits;
3240            }
3241    
3242              // load sample references          // update wave pool table in '3lnk' chunk
3243              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          const int iWavePoolOffset = version3 ? 68 : 44;
3244              for (uint i = 0; i < DimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
3245                  uint32_t wavepoolindex = _3lnk->ReadUint32();              int iWaveIndex = -1;
3246                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);              if (i < DimensionRegions) {
3247                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3248                    File::SampleList::iterator iter = pFile->pSamples->begin();
3249                    File::SampleList::iterator end  = pFile->pSamples->end();
3250                    for (int index = 0; iter != end; ++iter, ++index) {
3251                        if (*iter == pDimensionRegions[i]->pSample) {
3252                            iWaveIndex = index;
3253                            break;
3254                        }
3255                    }
3256              }              }
3257                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3258          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3259      }      }
3260    
3261      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 814  namespace gig { Line 3265  namespace gig {
3265              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3266              while (_3ewl) {              while (_3ewl) {
3267                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3268                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3269                      dimensionRegionNr++;                      dimensionRegionNr++;
3270                  }                  }
3271                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 823  namespace gig { Line 3274  namespace gig {
3274          }          }
3275      }      }
3276    
3277      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3278          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3279              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3280            // update Region key table for fast lookup
3281            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3282        }
3283    
3284        void Region::UpdateVelocityTable() {
3285            // get velocity dimension's index
3286            int veldim = -1;
3287            for (int i = 0 ; i < Dimensions ; i++) {
3288                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3289                    veldim = i;
3290                    break;
3291                }
3292            }
3293            if (veldim == -1) return;
3294    
3295            int step = 1;
3296            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3297            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3298    
3299            // loop through all dimension regions for all dimensions except the velocity dimension
3300            int dim[8] = { 0 };
3301            for (int i = 0 ; i < DimensionRegions ; i++) {
3302                const int end = i + step * pDimensionDefinitions[veldim].zones;
3303    
3304                // create a velocity table for all cases where the velocity zone is zero
3305                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3306                    pDimensionRegions[i]->VelocityUpperLimit) {
3307                    // create the velocity table
3308                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3309                    if (!table) {
3310                        table = new uint8_t[128];
3311                        pDimensionRegions[i]->VelocityTable = table;
3312                    }
3313                    int tableidx = 0;
3314                    int velocityZone = 0;
3315                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3316                        for (int k = i ; k < end ; k += step) {
3317                            DimensionRegion *d = pDimensionRegions[k];
3318                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3319                            velocityZone++;
3320                        }
3321                    } else { // gig2
3322                        for (int k = i ; k < end ; k += step) {
3323                            DimensionRegion *d = pDimensionRegions[k];
3324                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3325                            velocityZone++;
3326                        }
3327                    }
3328                } else {
3329                    if (pDimensionRegions[i]->VelocityTable) {
3330                        delete[] pDimensionRegions[i]->VelocityTable;
3331                        pDimensionRegions[i]->VelocityTable = 0;
3332                    }
3333                }
3334    
3335                // jump to the next case where the velocity zone is zero
3336                int j;
3337                int shift = 0;
3338                for (j = 0 ; j < Dimensions ; j++) {
3339                    if (j == veldim) i += skipveldim; // skip velocity dimension
3340                    else {
3341                        dim[j]++;
3342                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3343                        else {
3344                            // skip unused dimension regions
3345                            dim[j] = 0;
3346                            i += ((1 << pDimensionDefinitions[j].bits) -
3347                                  pDimensionDefinitions[j].zones) << shift;
3348                        }
3349                    }
3350                    shift += pDimensionDefinitions[j].bits;
3351                }
3352                if (j == Dimensions) break;
3353            }
3354        }
3355    
3356        /** @brief Einstein would have dreamed of it - create a new dimension.
3357         *
3358         * Creates a new dimension with the dimension definition given by
3359         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3360         * There is a hard limit of dimensions and total amount of "bits" all
3361         * dimensions can have. This limit is dependant to what gig file format
3362         * version this file refers to. The gig v2 (and lower) format has a
3363         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3364         * format has a limit of 8.
3365         *
3366         * @param pDimDef - defintion of the new dimension
3367         * @throws gig::Exception if dimension of the same type exists already
3368         * @throws gig::Exception if amount of dimensions or total amount of
3369         *                        dimension bits limit is violated
3370         */
3371        void Region::AddDimension(dimension_def_t* pDimDef) {
3372            // some initial sanity checks of the given dimension definition
3373            if (pDimDef->zones < 2)
3374                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3375            if (pDimDef->bits < 1)
3376                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3377            if (pDimDef->dimension == dimension_samplechannel) {
3378                if (pDimDef->zones != 2)
3379                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3380                if (pDimDef->bits != 1)
3381                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3382            }
3383    
3384            // check if max. amount of dimensions reached
3385            File* file = (File*) GetParent()->GetParent();
3386            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3387            if (Dimensions >= iMaxDimensions)
3388                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3389            // check if max. amount of dimension bits reached
3390            int iCurrentBits = 0;
3391            for (int i = 0; i < Dimensions; i++)
3392                iCurrentBits += pDimensionDefinitions[i].bits;
3393            if (iCurrentBits >= iMaxDimensions)
3394                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3395            const int iNewBits = iCurrentBits + pDimDef->bits;
3396            if (iNewBits > iMaxDimensions)
3397                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3398            // check if there's already a dimensions of the same type
3399            for (int i = 0; i < Dimensions; i++)
3400                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3401                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3402    
3403            // pos is where the new dimension should be placed, normally
3404            // last in list, except for the samplechannel dimension which
3405            // has to be first in list
3406            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3407            int bitpos = 0;
3408            for (int i = 0 ; i < pos ; i++)
3409                bitpos += pDimensionDefinitions[i].bits;
3410    
3411            // make room for the new dimension
3412            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3413            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3414                for (int j = Dimensions ; j > pos ; j--) {
3415                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3416                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3417                }
3418            }
3419    
3420            // assign definition of new dimension
3421            pDimensionDefinitions[pos] = *pDimDef;
3422    
3423            // auto correct certain dimension definition fields (where possible)
3424            pDimensionDefinitions[pos].split_type  =
3425                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3426            pDimensionDefinitions[pos].zone_size =
3427                __resolveZoneSize(pDimensionDefinitions[pos]);
3428    
3429            // create new dimension region(s) for this new dimension, and make
3430            // sure that the dimension regions are placed correctly in both the
3431            // RIFF list and the pDimensionRegions array
3432            RIFF::Chunk* moveTo = NULL;
3433            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3434            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3435                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3436                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3437                }
3438                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3439                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3440                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3441                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3442                        // create a new dimension region and copy all parameter values from
3443                        // an existing dimension region
3444                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3445                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3446    
3447                        DimensionRegions++;
3448                    }
3449                }
3450                moveTo = pDimensionRegions[i]->pParentList;
3451            }
3452    
3453            // initialize the upper limits for this dimension
3454            int mask = (1 << bitpos) - 1;
3455            for (int z = 0 ; z < pDimDef->zones ; z++) {
3456                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3457                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3458                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3459                                      (z << bitpos) |
3460                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3461                }
3462            }
3463    
3464            Dimensions++;
3465    
3466            // if this is a layer dimension, update 'Layers' attribute
3467            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3468    
3469            UpdateVelocityTable();
3470        }
3471    
3472        /** @brief Delete an existing dimension.
3473         *
3474         * Deletes the dimension given by \a pDimDef and deletes all respective
3475         * dimension regions, that is all dimension regions where the dimension's
3476         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3477         * for example this would delete all dimension regions for the case(s)
3478         * where the sustain pedal is pressed down.
3479         *
3480         * @param pDimDef - dimension to delete
3481         * @throws gig::Exception if given dimension cannot be found
3482         */
3483        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3484            // get dimension's index
3485            int iDimensionNr = -1;
3486            for (int i = 0; i < Dimensions; i++) {
3487                if (&pDimensionDefinitions[i] == pDimDef) {
3488                    iDimensionNr = i;
3489                    break;
3490                }
3491            }
3492            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3493    
3494            // get amount of bits below the dimension to delete
3495            int iLowerBits = 0;
3496            for (int i = 0; i < iDimensionNr; i++)
3497                iLowerBits += pDimensionDefinitions[i].bits;
3498    
3499            // get amount ot bits above the dimension to delete
3500            int iUpperBits = 0;
3501            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3502                iUpperBits += pDimensionDefinitions[i].bits;
3503    
3504            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3505    
3506            // delete dimension regions which belong to the given dimension
3507            // (that is where the dimension's bit > 0)
3508            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3509                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3510                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3511                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3512                                        iObsoleteBit << iLowerBits |
3513                                        iLowerBit;
3514    
3515                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3516                        delete pDimensionRegions[iToDelete];
3517                        pDimensionRegions[iToDelete] = NULL;
3518                        DimensionRegions--;
3519                    }
3520                }
3521            }
3522    
3523            // defrag pDimensionRegions array
3524            // (that is remove the NULL spaces within the pDimensionRegions array)
3525            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3526                if (!pDimensionRegions[iTo]) {
3527                    if (iFrom <= iTo) iFrom = iTo + 1;
3528                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3529                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3530                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3531                        pDimensionRegions[iFrom] = NULL;
3532                    }
3533                }
3534            }
3535    
3536            // remove the this dimension from the upper limits arrays
3537            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3538                DimensionRegion* d = pDimensionRegions[j];
3539                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3540                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3541                }
3542                d->DimensionUpperLimits[Dimensions - 1] = 127;
3543            }
3544    
3545            // 'remove' dimension definition
3546            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3547                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3548            }
3549            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3550            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3551            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3552    
3553            Dimensions--;
3554    
3555            // if this was a layer dimension, update 'Layers' attribute
3556            if (pDimDef->dimension == dimension_layer) Layers = 1;
3557        }
3558    
3559        /** @brief Delete one split zone of a dimension (decrement zone amount).
3560         *
3561         * Instead of deleting an entire dimensions, this method will only delete
3562         * one particular split zone given by @a zone of the Region's dimension
3563         * given by @a type. So this method will simply decrement the amount of
3564         * zones by one of the dimension in question. To be able to do that, the
3565         * respective dimension must exist on this Region and it must have at least
3566         * 3 zones. All DimensionRegion objects associated with the zone will be
3567         * deleted.
3568         *
3569         * @param type - identifies the dimension where a zone shall be deleted
3570         * @param zone - index of the dimension split zone that shall be deleted
3571         * @throws gig::Exception if requested zone could not be deleted
3572         */
3573        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3574            dimension_def_t* oldDef = GetDimensionDefinition(type);
3575            if (!oldDef)
3576                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3577            if (oldDef->zones <= 2)
3578                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3579            if (zone < 0 || zone >= oldDef->zones)
3580                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3581    
3582            const int newZoneSize = oldDef->zones - 1;
3583    
3584            // create a temporary Region which just acts as a temporary copy
3585            // container and will be deleted at the end of this function and will
3586            // also not be visible through the API during this process
3587            gig::Region* tempRgn = NULL;
3588            {
3589                // adding these temporary chunks is probably not even necessary
3590                Instrument* instr = static_cast<Instrument*>(GetParent());
3591                RIFF::List* pCkInstrument = instr->pCkInstrument;
3592                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3593                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3594                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3595                tempRgn = new Region(instr, rgn);
3596            }
3597    
3598            // copy this region's dimensions (with already the dimension split size
3599            // requested by the arguments of this method call) to the temporary
3600            // region, and don't use Region::CopyAssign() here for this task, since
3601            // it would also alter fast lookup helper variables here and there
3602            dimension_def_t newDef;
3603            for (int i = 0; i < Dimensions; ++i) {
3604                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3605                // is this the dimension requested by the method arguments? ...
3606                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3607                    def.zones = newZoneSize;
3608                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3609                    newDef = def;
3610                }
3611                tempRgn->AddDimension(&def);
3612            }
3613    
3614            // find the dimension index in the tempRegion which is the dimension
3615            // type passed to this method (paranoidly expecting different order)
3616            int tempReducedDimensionIndex = -1;
3617            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3618                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3619                    tempReducedDimensionIndex = d;
3620                    break;
3621                }
3622            }
3623    
3624            // copy dimension regions from this region to the temporary region
3625            for (int iDst = 0; iDst < 256; ++iDst) {
3626                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3627                if (!dstDimRgn) continue;
3628                std::map<dimension_t,int> dimCase;
3629                bool isValidZone = true;
3630                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3631                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3632                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3633                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3634                    baseBits += dstBits;
3635                    // there are also DimensionRegion objects of unused zones, skip them
3636                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3637                        isValidZone = false;
3638                        break;
3639                    }
3640                }
3641                if (!isValidZone) continue;
3642                // a bit paranoid: cope with the chance that the dimensions would
3643                // have different order in source and destination regions
3644                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3645                if (dimCase[type] >= zone) dimCase[type]++;
3646                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3647                dstDimRgn->CopyAssign(srcDimRgn);
3648                // if this is the upper most zone of the dimension passed to this
3649                // method, then correct (raise) its upper limit to 127
3650                if (newDef.split_type == split_type_normal && isLastZone)
3651                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3652            }
3653    
3654            // now tempRegion's dimensions and DimensionRegions basically reflect
3655            // what we wanted to get for this actual Region here, so we now just
3656            // delete and recreate the dimension in question with the new amount
3657            // zones and then copy back from tempRegion      
3658            DeleteDimension(oldDef);
3659            AddDimension(&newDef);
3660            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3661                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3662                if (!srcDimRgn) continue;
3663                std::map<dimension_t,int> dimCase;
3664                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3665                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3666                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3667                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3668                    baseBits += srcBits;
3669                }
3670                // a bit paranoid: cope with the chance that the dimensions would
3671                // have different order in source and destination regions
3672                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3673                if (!dstDimRgn) continue;
3674                dstDimRgn->CopyAssign(srcDimRgn);
3675            }
3676    
3677            // delete temporary region
3678            delete tempRgn;
3679    
3680            UpdateVelocityTable();
3681        }
3682    
3683        /** @brief Divide split zone of a dimension in two (increment zone amount).
3684         *
3685         * This will increment the amount of zones for the dimension (given by
3686         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3687         * in the middle of its zone range in two. So the two zones resulting from
3688         * the zone being splitted, will be an equivalent copy regarding all their
3689         * articulation informations and sample reference. The two zones will only
3690         * differ in their zone's upper limit
3691         * (DimensionRegion::DimensionUpperLimits).
3692         *
3693         * @param type - identifies the dimension where a zone shall be splitted
3694         * @param zone - index of the dimension split zone that shall be splitted
3695         * @throws gig::Exception if requested zone could not be splitted
3696         */
3697        void Region::SplitDimensionZone(dimension_t type, int zone) {
3698            dimension_def_t* oldDef = GetDimensionDefinition(type);
3699            if (!oldDef)
3700                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3701            if (zone < 0 || zone >= oldDef->zones)
3702                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3703    
3704            const int newZoneSize = oldDef->zones + 1;
3705    
3706            // create a temporary Region which just acts as a temporary copy
3707            // container and will be deleted at the end of this function and will
3708            // also not be visible through the API during this process
3709            gig::Region* tempRgn = NULL;
3710            {
3711                // adding these temporary chunks is probably not even necessary
3712                Instrument* instr = static_cast<Instrument*>(GetParent());
3713                RIFF::List* pCkInstrument = instr->pCkInstrument;
3714                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3715                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3716                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3717                tempRgn = new Region(instr, rgn);
3718            }
3719    
3720            // copy this region's dimensions (with already the dimension split size
3721            // requested by the arguments of this method call) to the temporary
3722            // region, and don't use Region::CopyAssign() here for this task, since
3723            // it would also alter fast lookup helper variables here and there
3724            dimension_def_t newDef;
3725            for (int i = 0; i < Dimensions; ++i) {
3726                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3727                // is this the dimension requested by the method arguments? ...
3728                if (def.dimension == type) { // ... if yes, increment zone amount by one
3729                    def.zones = newZoneSize;
3730                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3731                    newDef = def;
3732                }
3733                tempRgn->AddDimension(&def);
3734            }
3735    
3736            // find the dimension index in the tempRegion which is the dimension
3737            // type passed to this method (paranoidly expecting different order)
3738            int tempIncreasedDimensionIndex = -1;
3739            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3740                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3741                    tempIncreasedDimensionIndex = d;
3742                    break;
3743                }
3744            }
3745    
3746            // copy dimension regions from this region to the temporary region
3747            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3748                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3749                if (!srcDimRgn) continue;
3750                std::map<dimension_t,int> dimCase;
3751                bool isValidZone = true;
3752                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3753                    const int srcBits = pDimensionDefinitions[d].bits;
3754                    dimCase[pDimensionDefinitions[d].dimension] =
3755                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3756                    // there are also DimensionRegion objects for unused zones, skip them
3757                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3758                        isValidZone = false;
3759                        break;
3760                    }
3761                    baseBits += srcBits;
3762                }
3763                if (!isValidZone) continue;
3764                // a bit paranoid: cope with the chance that the dimensions would
3765                // have different order in source and destination regions            
3766                if (dimCase[type] > zone) dimCase[type]++;
3767                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3768                dstDimRgn->CopyAssign(srcDimRgn);
3769                // if this is the requested zone to be splitted, then also copy
3770                // the source DimensionRegion to the newly created target zone
3771                // and set the old zones upper limit lower
3772                if (dimCase[type] == zone) {
3773                    // lower old zones upper limit
3774                    if (newDef.split_type == split_type_normal) {
3775                        const int high =
3776                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3777                        int low = 0;
3778                        if (zone > 0) {
3779                            std::map<dimension_t,int> lowerCase = dimCase;
3780                            lowerCase[type]--;
3781                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3782                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3783                        }
3784                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3785                    }
3786                    // fill the newly created zone of the divided zone as well
3787                    dimCase[type]++;
3788                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3789                    dstDimRgn->CopyAssign(srcDimRgn);
3790                }
3791            }
3792    
3793            // now tempRegion's dimensions and DimensionRegions basically reflect
3794            // what we wanted to get for this actual Region here, so we now just
3795            // delete and recreate the dimension in question with the new amount
3796            // zones and then copy back from tempRegion      
3797            DeleteDimension(oldDef);
3798            AddDimension(&newDef);
3799            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3800                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3801                if (!srcDimRgn) continue;
3802                std::map<dimension_t,int> dimCase;
3803                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3804                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3805                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3806                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3807                    baseBits += srcBits;
3808                }
3809                // a bit paranoid: cope with the chance that the dimensions would
3810                // have different order in source and destination regions
3811                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3812                if (!dstDimRgn) continue;
3813                dstDimRgn->CopyAssign(srcDimRgn);
3814            }
3815    
3816            // delete temporary region
3817            delete tempRgn;
3818    
3819            UpdateVelocityTable();
3820        }
3821    
3822        /** @brief Change type of an existing dimension.
3823         *
3824         * Alters the dimension type of a dimension already existing on this
3825         * region. If there is currently no dimension on this Region with type
3826         * @a oldType, then this call with throw an Exception. Likewise there are
3827         * cases where the requested dimension type cannot be performed. For example
3828         * if the new dimension type shall be gig::dimension_samplechannel, and the
3829         * current dimension has more than 2 zones. In such cases an Exception is
3830         * thrown as well.
3831         *
3832         * @param oldType - identifies the existing dimension to be changed
3833         * @param newType - to which dimension type it should be changed to
3834         * @throws gig::Exception if requested change cannot be performed
3835         */
3836        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3837            if (oldType == newType) return;
3838            dimension_def_t* def = GetDimensionDefinition(oldType);
3839            if (!def)
3840                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3841            if (newType == dimension_samplechannel && def->zones != 2)
3842                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3843            if (GetDimensionDefinition(newType))
3844                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3845            def->dimension  = newType;
3846            def->split_type = __resolveSplitType(newType);
3847        }
3848    
3849        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3850            uint8_t bits[8] = {};
3851            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3852                 it != DimCase.end(); ++it)
3853            {
3854                for (int d = 0; d < Dimensions; ++d) {
3855                    if (pDimensionDefinitions[d].dimension == it->first) {
3856                        bits[d] = it->second;
3857                        goto nextDimCaseSlice;
3858                    }
3859                }
3860                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3861                nextDimCaseSlice:
3862                ; // noop
3863          }          }
3864          for (int i = 0; i < 32; i++) {          return GetDimensionRegionByBit(bits);
3865        }
3866    
3867        /**
3868         * Searches in the current Region for a dimension of the given dimension
3869         * type and returns the precise configuration of that dimension in this
3870         * Region.
3871         *
3872         * @param type - dimension type of the sought dimension
3873         * @returns dimension definition or NULL if there is no dimension with
3874         *          sought type in this Region.
3875         */
3876        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3877            for (int i = 0; i < Dimensions; ++i)
3878                if (pDimensionDefinitions[i].dimension == type)
3879                    return &pDimensionDefinitions[i];
3880            return NULL;
3881        }
3882    
3883        Region::~Region() {
3884            for (int i = 0; i < 256; i++) {
3885              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3886          }          }
3887      }      }
# Line 845  namespace gig { Line 3899  namespace gig {
3899       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3900       * etc.).       * etc.).
3901       *       *
3902       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
3903       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
3904       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
3905       * @see             Dimensions       * @see             Dimensions
3906       */       */
3907      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3908          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
3909            int veldim = -1;
3910            int velbitpos = 0;
3911            int bitpos = 0;
3912            int dimregidx = 0;
3913          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3914              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3915                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
3916                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
3917                      break;                  velbitpos = bitpos;
3918                  case split_type_customvelocity:              } else {
3919                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
3920                      break;                      case split_type_normal:
3921                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3922                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3923                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3924                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3925                                }
3926                            } else {
3927                                // gig2: evenly sized zones
3928                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3929                            }
3930                            break;
3931                        case split_type_bit: // the value is already the sought dimension bit number
3932                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3933                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3934                            break;
3935                    }
3936                    dimregidx |= bits << bitpos;
3937                }
3938                bitpos += pDimensionDefinitions[i].bits;
3939            }
3940            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3941            if (!dimreg) return NULL;
3942            if (veldim != -1) {
3943                // (dimreg is now the dimension region for the lowest velocity)
3944                if (dimreg->VelocityTable) // custom defined zone ranges
3945                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3946                else // normal split type
3947                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3948    
3949                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3950                dimregidx |= (bits & limiter_mask) << velbitpos;
3951                dimreg = pDimensionRegions[dimregidx & 255];
3952            }
3953            return dimreg;
3954        }
3955    
3956        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3957            uint8_t bits;
3958            int veldim = -1;
3959            int velbitpos = 0;
3960            int bitpos = 0;
3961            int dimregidx = 0;
3962            for (uint i = 0; i < Dimensions; i++) {
3963                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3964                    // the velocity dimension must be handled after the other dimensions
3965                    veldim = i;
3966                    velbitpos = bitpos;
3967                } else {
3968                    switch (pDimensionDefinitions[i].split_type) {
3969                        case split_type_normal:
3970                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3971                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3972                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3973                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3974                                }
3975                            } else {
3976                                // gig2: evenly sized zones
3977                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3978                            }
3979                            break;
3980                        case split_type_bit: // the value is already the sought dimension bit number
3981                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3982                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3983                            break;
3984                    }
3985                    dimregidx |= bits << bitpos;
3986              }              }
3987                bitpos += pDimensionDefinitions[i].bits;
3988            }
3989            dimregidx &= 255;
3990            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3991            if (!dimreg) return -1;
3992            if (veldim != -1) {
3993                // (dimreg is now the dimension region for the lowest velocity)
3994                if (dimreg->VelocityTable) // custom defined zone ranges
3995                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3996                else // normal split type
3997                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3998    
3999                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4000                dimregidx |= (bits & limiter_mask) << velbitpos;
4001                dimregidx &= 255;
4002          }          }
4003          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimregidx;
4004      }      }
4005    
4006      /**      /**
# Line 875  namespace gig { Line 4008  namespace gig {
4008       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4009       * instead of calling this method directly!       * instead of calling this method directly!
4010       *       *
4011       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
4012       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
4013       *                 bit numbers       *                 bit numbers
4014       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
4015       */       */
4016      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4017          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4018                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
4019                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
4020                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
4021                                                      << pDimensionDefinitions[2].bits | DimBits[2])
4022                                                      << pDimensionDefinitions[1].bits | DimBits[1])
4023                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
4024      }      }
4025    
4026      /**      /**
# Line 905  namespace gig { Line 4037  namespace gig {
4037          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4038      }      }
4039    
4040      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4041            if ((int32_t)WavePoolTableIndex == -1) return NULL;
4042          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4043          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4044          Sample* sample = file->GetFirstSample();          // for new files or files >= 2 GB use 64 bit wave pool offsets
4045          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4046              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
4047              sample = file->GetNextSample();              uint64_t soughtoffset =
4048                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4049                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4050                Sample* sample = file->GetFirstSample(pProgress);
4051                while (sample) {
4052                    if (sample->ullWavePoolOffset == soughtoffset)
4053                        return static_cast<gig::Sample*>(sample);
4054                    sample = file->GetNextSample();
4055                }
4056            } else {
4057                // use extension files and 32 bit wave pool offsets
4058                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4059                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4060                Sample* sample = file->GetFirstSample(pProgress);
4061                while (sample) {
4062                    if (sample->ullWavePoolOffset == soughtoffset &&
4063                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4064                    sample = file->GetNextSample();
4065                }
4066          }          }
4067          return NULL;          return NULL;
4068      }      }
4069        
4070        /**
4071         * Make a (semi) deep copy of the Region object given by @a orig
4072         * and assign it to this object.
4073         *
4074         * Note that all sample pointers referenced by @a orig are simply copied as
4075         * memory address. Thus the respective samples are shared, not duplicated!
4076         *
4077         * @param orig - original Region object to be copied from
4078         */
4079        void Region::CopyAssign(const Region* orig) {
4080            CopyAssign(orig, NULL);
4081        }
4082        
4083        /**
4084         * Make a (semi) deep copy of the Region object given by @a orig and
4085         * assign it to this object
4086         *
4087         * @param mSamples - crosslink map between the foreign file's samples and
4088         *                   this file's samples
4089         */
4090        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4091            // handle base classes
4092            DLS::Region::CopyAssign(orig);
4093            
4094            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4095                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4096            }
4097            
4098            // handle own member variables
4099            for (int i = Dimensions - 1; i >= 0; --i) {
4100                DeleteDimension(&pDimensionDefinitions[i]);
4101            }
4102            Layers = 0; // just to be sure
4103            for (int i = 0; i < orig->Dimensions; i++) {
4104                // we need to copy the dim definition here, to avoid the compiler
4105                // complaining about const-ness issue
4106                dimension_def_t def = orig->pDimensionDefinitions[i];
4107                AddDimension(&def);
4108            }
4109            for (int i = 0; i < 256; i++) {
4110                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4111                    pDimensionRegions[i]->CopyAssign(
4112                        orig->pDimensionRegions[i],
4113                        mSamples
4114                    );
4115                }
4116            }
4117            Layers = orig->Layers;
4118        }
4119    
4120    
4121    // *************** MidiRule ***************
4122    // *
4123    
4124        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4125            _3ewg->SetPos(36);
4126            Triggers = _3ewg->ReadUint8();
4127            _3ewg->SetPos(40);
4128            ControllerNumber = _3ewg->ReadUint8();
4129            _3ewg->SetPos(46);
4130            for (int i = 0 ; i < Triggers ; i++) {
4131                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4132                pTriggers[i].Descending = _3ewg->ReadUint8();
4133                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4134                pTriggers[i].Key = _3ewg->ReadUint8();
4135                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4136                pTriggers[i].Velocity = _3ewg->ReadUint8();
4137                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4138                _3ewg->ReadUint8();
4139            }
4140        }
4141    
4142        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4143            ControllerNumber(0),
4144            Triggers(0) {
4145        }
4146    
4147        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4148            pData[32] = 4;
4149            pData[33] = 16;
4150            pData[36] = Triggers;
4151            pData[40] = ControllerNumber;
4152            for (int i = 0 ; i < Triggers ; i++) {
4153                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4154                pData[47 + i * 8] = pTriggers[i].Descending;
4155                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4156                pData[49 + i * 8] = pTriggers[i].Key;
4157                pData[50 + i * 8] = pTriggers[i].NoteOff;
4158                pData[51 + i * 8] = pTriggers[i].Velocity;
4159                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4160            }
4161        }
4162    
4163        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4164            _3ewg->SetPos(36);
4165            LegatoSamples = _3ewg->ReadUint8(); // always 12
4166            _3ewg->SetPos(40);
4167            BypassUseController = _3ewg->ReadUint8();
4168            BypassKey = _3ewg->ReadUint8();
4169            BypassController = _3ewg->ReadUint8();
4170            ThresholdTime = _3ewg->ReadUint16();
4171            _3ewg->ReadInt16();
4172            ReleaseTime = _3ewg->ReadUint16();
4173            _3ewg->ReadInt16();
4174            KeyRange.low = _3ewg->ReadUint8();
4175            KeyRange.high = _3ewg->ReadUint8();
4176            _3ewg->SetPos(64);
4177            ReleaseTriggerKey = _3ewg->ReadUint8();
4178            AltSustain1Key = _3ewg->ReadUint8();
4179            AltSustain2Key = _3ewg->ReadUint8();
4180        }
4181    
4182        MidiRuleLegato::MidiRuleLegato() :
4183            LegatoSamples(12),
4184            BypassUseController(false),
4185            BypassKey(0),
4186            BypassController(1),
4187            ThresholdTime(20),
4188            ReleaseTime(20),
4189            ReleaseTriggerKey(0),
4190            AltSustain1Key(0),
4191            AltSustain2Key(0)
4192        {
4193            KeyRange.low = KeyRange.high = 0;
4194        }
4195    
4196        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4197            pData[32] = 0;
4198            pData[33] = 16;
4199            pData[36] = LegatoSamples;
4200            pData[40] = BypassUseController;
4201            pData[41] = BypassKey;
4202            pData[42] = BypassController;
4203            store16(&pData[43], ThresholdTime);
4204            store16(&pData[47], ReleaseTime);
4205            pData[51] = KeyRange.low;
4206            pData[52] = KeyRange.high;
4207            pData[64] = ReleaseTriggerKey;
4208            pData[65] = AltSustain1Key;
4209            pData[66] = AltSustain2Key;
4210        }
4211    
4212        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4213            _3ewg->SetPos(36);
4214            Articulations = _3ewg->ReadUint8();
4215            int flags = _3ewg->ReadUint8();
4216            Polyphonic = flags & 8;
4217            Chained = flags & 4;
4218            Selector = (flags & 2) ? selector_controller :
4219                (flags & 1) ? selector_key_switch : selector_none;
4220            Patterns = _3ewg->ReadUint8();
4221            _3ewg->ReadUint8(); // chosen row
4222            _3ewg->ReadUint8(); // unknown
4223            _3ewg->ReadUint8(); // unknown
4224            _3ewg->ReadUint8(); // unknown
4225            KeySwitchRange.low = _3ewg->ReadUint8();
4226            KeySwitchRange.high = _3ewg->ReadUint8();
4227            Controller = _3ewg->ReadUint8();
4228            PlayRange.low = _3ewg->ReadUint8();
4229            PlayRange.high = _3ewg->ReadUint8();
4230    
4231            int n = std::min(int(Articulations), 32);
4232            for (int i = 0 ; i < n ; i++) {
4233                _3ewg->ReadString(pArticulations[i], 32);
4234            }
4235            _3ewg->SetPos(1072);
4236            n = std::min(int(Patterns), 32);
4237            for (int i = 0 ; i < n ; i++) {
4238                _3ewg->ReadString(pPatterns[i].Name, 16);
4239                pPatterns[i].Size = _3ewg->ReadUint8();
4240                _3ewg->Read(&pPatterns[i][0], 1, 32);
4241            }
4242        }
4243    
4244        MidiRuleAlternator::MidiRuleAlternator() :
4245            Articulations(0),
4246            Patterns(0),
4247            Selector(selector_none),
4248            Controller(0),
4249            Polyphonic(false),
4250            Chained(false)
4251        {
4252            PlayRange.low = PlayRange.high = 0;
4253            KeySwitchRange.low = KeySwitchRange.high = 0;
4254        }
4255    
4256        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4257            pData[32] = 3;
4258            pData[33] = 16;
4259            pData[36] = Articulations;
4260            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4261                (Selector == selector_controller ? 2 :
4262                 (Selector == selector_key_switch ? 1 : 0));
4263            pData[38] = Patterns;
4264    
4265            pData[43] = KeySwitchRange.low;
4266            pData[44] = KeySwitchRange.high;
4267            pData[45] = Controller;
4268            pData[46] = PlayRange.low;
4269            pData[47] = PlayRange.high;
4270    
4271            char* str = reinterpret_cast<char*>(pData);
4272            int pos = 48;
4273            int n = std::min(int(Articulations), 32);
4274            for (int i = 0 ; i < n ; i++, pos += 32) {
4275                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4276            }
4277    
4278            pos = 1072;
4279            n = std::min(int(Patterns), 32);
4280            for (int i = 0 ; i < n ; i++, pos += 49) {
4281                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4282                pData[pos + 16] = pPatterns[i].Size;
4283                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4284            }
4285        }
4286    
4287    // *************** Script ***************
4288    // *
4289    
4290        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4291            pGroup = group;
4292            pChunk = ckScri;
4293            if (ckScri) { // object is loaded from file ...
4294                // read header
4295                uint32_t headerSize = ckScri->ReadUint32();
4296                Compression = (Compression_t) ckScri->ReadUint32();
4297                Encoding    = (Encoding_t) ckScri->ReadUint32();
4298                Language    = (Language_t) ckScri->ReadUint32();
4299                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4300                crc         = ckScri->ReadUint32();
4301                uint32_t nameSize = ckScri->ReadUint32();
4302                Name.resize(nameSize, ' ');
4303                for (int i = 0; i < nameSize; ++i)
4304                    Name[i] = ckScri->ReadUint8();
4305                // to handle potential future extensions of the header
4306                ckScri->SetPos(sizeof(int32_t) + headerSize);
4307                // read actual script data
4308                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4309                data.resize(scriptSize);
4310                for (int i = 0; i < scriptSize; ++i)
4311                    data[i] = ckScri->ReadUint8();
4312            } else { // this is a new script object, so just initialize it as such ...
4313                Compression = COMPRESSION_NONE;
4314                Encoding = ENCODING_ASCII;
4315                Language = LANGUAGE_NKSP;
4316                Bypass   = false;
4317                crc      = 0;
4318                Name     = "Unnamed Script";
4319            }
4320        }
4321    
4322        Script::~Script() {
4323        }
4324    
4325        /**
4326         * Returns the current script (i.e. as source code) in text format.
4327         */
4328        String Script::GetScriptAsText() {
4329            String s;
4330            s.resize(data.size(), ' ');
4331            memcpy(&s[0], &data[0], data.size());
4332            return s;
4333        }
4334    
4335        /**
4336         * Replaces the current script with the new script source code text given
4337         * by @a text.
4338         *
4339         * @param text - new script source code
4340         */
4341        void Script::SetScriptAsText(const String& text) {
4342            data.resize(text.size());
4343            memcpy(&data[0], &text[0], text.size());
4344        }
4345    
4346        /**
4347         * Apply this script to the respective RIFF chunks. You have to call
4348         * File::Save() to make changes persistent.
4349         *
4350         * Usually there is absolutely no need to call this method explicitly.
4351         * It will be called automatically when File::Save() was called.
4352         *
4353         * @param pProgress - callback function for progress notification
4354         */
4355        void Script::UpdateChunks(progress_t* pProgress) {
4356            // recalculate CRC32 check sum
4357            __resetCRC(crc);
4358            __calculateCRC(&data[0], data.size(), crc);
4359            __finalizeCRC(crc);
4360            // make sure chunk exists and has the required size
4361            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4362            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4363            else pChunk->Resize(chunkSize);
4364            // fill the chunk data to be written to disk
4365            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4366            int pos = 0;
4367            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4368            pos += sizeof(int32_t);
4369            store32(&pData[pos], Compression);
4370            pos += sizeof(int32_t);
4371            store32(&pData[pos], Encoding);
4372            pos += sizeof(int32_t);
4373            store32(&pData[pos], Language);
4374            pos += sizeof(int32_t);
4375            store32(&pData[pos], Bypass ? 1 : 0);
4376            pos += sizeof(int32_t);
4377            store32(&pData[pos], crc);
4378            pos += sizeof(int32_t);
4379            store32(&pData[pos], (uint32_t) Name.size());
4380            pos += sizeof(int32_t);
4381            for (int i = 0; i < Name.size(); ++i, ++pos)
4382                pData[pos] = Name[i];
4383            for (int i = 0; i < data.size(); ++i, ++pos)
4384                pData[pos] = data[i];
4385        }
4386    
4387        /**
4388         * Move this script from its current ScriptGroup to another ScriptGroup
4389         * given by @a pGroup.
4390         *
4391         * @param pGroup - script's new group
4392         */
4393        void Script::SetGroup(ScriptGroup* pGroup) {
4394            if (this->pGroup == pGroup) return;
4395            if (pChunk)
4396                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4397            this->pGroup = pGroup;
4398        }
4399    
4400        /**
4401         * Returns the script group this script currently belongs to. Each script
4402         * is a member of exactly one ScriptGroup.
4403         *
4404         * @returns current script group
4405         */
4406        ScriptGroup* Script::GetGroup() const {
4407            return pGroup;
4408        }
4409    
4410        /**
4411         * Make a (semi) deep copy of the Script object given by @a orig
4412         * and assign it to this object. Note: the ScriptGroup this Script
4413         * object belongs to remains untouched by this call.
4414         *
4415         * @param orig - original Script object to be copied from
4416         */
4417        void Script::CopyAssign(const Script* orig) {
4418            Name        = orig->Name;
4419            Compression = orig->Compression;
4420            Encoding    = orig->Encoding;
4421            Language    = orig->Language;
4422            Bypass      = orig->Bypass;
4423            data        = orig->data;
4424        }
4425    
4426        void Script::RemoveAllScriptReferences() {
4427            File* pFile = pGroup->pFile;
4428            for (int i = 0; pFile->GetInstrument(i); ++i) {
4429                Instrument* instr = pFile->GetInstrument(i);
4430                instr->RemoveScript(this);
4431            }
4432        }
4433    
4434    // *************** ScriptGroup ***************
4435    // *
4436    
4437        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4438            pFile = file;
4439            pList = lstRTIS;
4440            pScripts = NULL;
4441            if (lstRTIS) {
4442                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4443                ::LoadString(ckName, Name);
4444            } else {
4445                Name = "Default Group";
4446            }
4447        }
4448    
4449        ScriptGroup::~ScriptGroup() {
4450            if (pScripts) {
4451                std::list<Script*>::iterator iter = pScripts->begin();
4452                std::list<Script*>::iterator end  = pScripts->end();
4453                while (iter != end) {
4454                    delete *iter;
4455                    ++iter;
4456                }
4457                delete pScripts;
4458            }
4459        }
4460    
4461        /**
4462         * Apply this script group to the respective RIFF chunks. You have to call
4463         * File::Save() to make changes persistent.
4464         *
4465         * Usually there is absolutely no need to call this method explicitly.
4466         * It will be called automatically when File::Save() was called.
4467         *
4468         * @param pProgress - callback function for progress notification
4469         */
4470        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4471            if (pScripts) {
4472                if (!pList)
4473                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4474    
4475                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4476                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4477    
4478                for (std::list<Script*>::iterator it = pScripts->begin();
4479                     it != pScripts->end(); ++it)
4480                {
4481                    (*it)->UpdateChunks(pProgress);
4482                }
4483            }
4484        }
4485    
4486        /** @brief Get instrument script.
4487         *
4488         * Returns the real-time instrument script with the given index.
4489         *
4490         * @param index - number of the sought script (0..n)
4491         * @returns sought script or NULL if there's no such script
4492         */
4493        Script* ScriptGroup::GetScript(uint index) {
4494            if (!pScripts) LoadScripts();
4495            std::list<Script*>::iterator it = pScripts->begin();
4496            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4497                if (i == index) return *it;
4498            return NULL;
4499        }
4500    
4501        /** @brief Add new instrument script.
4502         *
4503         * Adds a new real-time instrument script to the file. The script is not
4504         * actually used / executed unless it is referenced by an instrument to be
4505         * used. This is similar to samples, which you can add to a file, without
4506         * an instrument necessarily actually using it.
4507         *
4508         * You have to call Save() to make this persistent to the file.
4509         *
4510         * @return new empty script object
4511         */
4512        Script* ScriptGroup::AddScript() {
4513            if (!pScripts) LoadScripts();
4514            Script* pScript = new Script(this, NULL);
4515            pScripts->push_back(pScript);
4516            return pScript;
4517        }
4518    
4519        /** @brief Delete an instrument script.
4520         *
4521         * This will delete the given real-time instrument script. References of
4522         * instruments that are using that script will be removed accordingly.
4523         *
4524         * You have to call Save() to make this persistent to the file.
4525         *
4526         * @param pScript - script to delete
4527         * @throws gig::Exception if given script could not be found
4528         */
4529        void ScriptGroup::DeleteScript(Script* pScript) {
4530            if (!pScripts) LoadScripts();
4531            std::list<Script*>::iterator iter =
4532                find(pScripts->begin(), pScripts->end(), pScript);
4533            if (iter == pScripts->end())
4534                throw gig::Exception("Could not delete script, could not find given script");
4535            pScripts->erase(iter);
4536            pScript->RemoveAllScriptReferences();
4537            if (pScript->pChunk)
4538                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4539            delete pScript;
4540        }
4541    
4542        void ScriptGroup::LoadScripts() {
4543            if (pScripts) return;
4544            pScripts = new std::list<Script*>;
4545            if (!pList) return;
4546    
4547            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4548                 ck = pList->GetNextSubChunk())
4549            {
4550                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4551                    pScripts->push_back(new Script(this, ck));
4552                }
4553            }
4554        }
4555    
4556  // *************** Instrument ***************  // *************** Instrument ***************
4557  // *  // *
4558    
4559      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4560            static const DLS::Info::string_length_t fixedStringLengths[] = {
4561                { CHUNK_ID_INAM, 64 },
4562                { CHUNK_ID_ISFT, 12 },
4563                { 0, 0 }
4564            };
4565            pInfo->SetFixedStringLengths(fixedStringLengths);
4566    
4567          // Initialization          // Initialization
4568          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4569          RegionIndex = -1;          EffectSend = 0;
4570            Attenuation = 0;
4571            FineTune = 0;
4572            PitchbendRange = 2;
4573            PianoReleaseMode = false;
4574            DimensionKeyRange.low = 0;
4575            DimensionKeyRange.high = 0;
4576            pMidiRules = new MidiRule*[3];
4577            pMidiRules[0] = NULL;
4578            pScriptRefs = NULL;
4579    
4580          // Loading          // Loading
4581          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 939  namespace gig { Line 4590  namespace gig {
4590                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4591                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4592                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4593    
4594                    if (_3ewg->GetSize() > 32) {
4595                        // read MIDI rules
4596                        int i = 0;
4597                        _3ewg->SetPos(32);
4598                        uint8_t id1 = _3ewg->ReadUint8();
4599                        uint8_t id2 = _3ewg->ReadUint8();
4600    
4601                        if (id2 == 16) {
4602                            if (id1 == 4) {
4603                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4604                            } else if (id1 == 0) {
4605                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4606                            } else if (id1 == 3) {
4607                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4608                            } else {
4609                                pMidiRules[i++] = new MidiRuleUnknown;
4610                            }
4611                        }
4612                        else if (id1 != 0 || id2 != 0) {
4613                            pMidiRules[i++] = new MidiRuleUnknown;
4614                        }
4615                        //TODO: all the other types of rules
4616    
4617                        pMidiRules[i] = NULL;
4618                    }
4619              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4620          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4621    
4622          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4623          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4624          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4625          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4626          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
4627          while (rgn) {                  while (rgn) {
4628              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4629                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4630                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
4631              }                      }
4632              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
4633          }                  }
4634                    // Creating Region Key Table for fast lookup
4635          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
4636          for (uint iReg = 0; iReg < Regions; iReg++) {              }
4637              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          }
4638                  RegionKeyTable[iKey] = pRegions[iReg];  
4639            // own gig format extensions
4640            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4641            if (lst3LS) {
4642                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4643                if (ckSCSL) {
4644                    int headerSize = ckSCSL->ReadUint32();
4645                    int slotCount  = ckSCSL->ReadUint32();
4646                    if (slotCount) {
4647                        int slotSize  = ckSCSL->ReadUint32();
4648                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4649                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4650                        for (int i = 0; i < slotCount; ++i) {
4651                            _ScriptPooolEntry e;
4652                            e.fileOffset = ckSCSL->ReadUint32();
4653                            e.bypass     = ckSCSL->ReadUint32() & 1;
4654                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4655                            scriptPoolFileOffsets.push_back(e);
4656                        }
4657                    }
4658                }
4659            }
4660    
4661            __notify_progress(pProgress, 1.0f); // notify done
4662        }
4663    
4664        void Instrument::UpdateRegionKeyTable() {
4665            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4666            RegionList::iterator iter = pRegions->begin();
4667            RegionList::iterator end  = pRegions->end();
4668            for (; iter != end; ++iter) {
4669                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4670                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4671                    RegionKeyTable[iKey] = pRegion;
4672              }              }
4673          }          }
4674      }      }
4675    
4676      Instrument::~Instrument() {      Instrument::~Instrument() {
4677          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4678              if (pRegions) {              delete pMidiRules[i];
4679                  if (pRegions[i]) delete (pRegions[i]);          }
4680            delete[] pMidiRules;
4681            if (pScriptRefs) delete pScriptRefs;
4682        }
4683    
4684        /**
4685         * Apply Instrument with all its Regions to the respective RIFF chunks.
4686         * You have to call File::Save() to make changes persistent.
4687         *
4688         * Usually there is absolutely no need to call this method explicitly.
4689         * It will be called automatically when File::Save() was called.
4690         *
4691         * @param pProgress - callback function for progress notification
4692         * @throws gig::Exception if samples cannot be dereferenced
4693         */
4694        void Instrument::UpdateChunks(progress_t* pProgress) {
4695            // first update base classes' chunks
4696            DLS::Instrument::UpdateChunks(pProgress);
4697    
4698            // update Regions' chunks
4699            {
4700                RegionList::iterator iter = pRegions->begin();
4701                RegionList::iterator end  = pRegions->end();
4702                for (; iter != end; ++iter)
4703                    (*iter)->UpdateChunks(pProgress);
4704            }
4705    
4706            // make sure 'lart' RIFF list chunk exists
4707            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4708            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4709            // make sure '3ewg' RIFF chunk exists
4710            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4711            if (!_3ewg)  {
4712                File* pFile = (File*) GetParent();
4713    
4714                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4715                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4716                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4717                memset(_3ewg->LoadChunkData(), 0, size);
4718            }
4719            // update '3ewg' RIFF chunk
4720            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4721            store16(&pData[0], EffectSend);
4722            store32(&pData[2], Attenuation);
4723            store16(&pData[6], FineTune);
4724            store16(&pData[8], PitchbendRange);
4725            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4726                                        DimensionKeyRange.low << 1;
4727            pData[10] = dimkeystart;
4728            pData[11] = DimensionKeyRange.high;
4729    
4730            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4731                pData[32] = 0;
4732                pData[33] = 0;
4733            } else {
4734                for (int i = 0 ; pMidiRules[i] ; i++) {
4735                    pMidiRules[i]->UpdateChunks(pData);
4736              }              }
             delete[] pRegions;  
4737          }          }
4738    
4739            // own gig format extensions
4740           if (ScriptSlotCount()) {
4741               // make sure we have converted the original loaded script file
4742               // offsets into valid Script object pointers
4743               LoadScripts();
4744    
4745               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4746               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4747               const int slotCount = (int) pScriptRefs->size();
4748               const int headerSize = 3 * sizeof(uint32_t);
4749               const int slotSize  = 2 * sizeof(uint32_t);
4750               const int totalChunkSize = headerSize + slotCount * slotSize;
4751               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4752               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4753               else ckSCSL->Resize(totalChunkSize);
4754               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4755               int pos = 0;
4756               store32(&pData[pos], headerSize);
4757               pos += sizeof(uint32_t);
4758               store32(&pData[pos], slotCount);
4759               pos += sizeof(uint32_t);
4760               store32(&pData[pos], slotSize);
4761               pos += sizeof(uint32_t);
4762               for (int i = 0; i < slotCount; ++i) {
4763                   // arbitrary value, the actual file offset will be updated in
4764                   // UpdateScriptFileOffsets() after the file has been resized
4765                   int bogusFileOffset = 0;
4766                   store32(&pData[pos], bogusFileOffset);
4767                   pos += sizeof(uint32_t);
4768                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4769                   pos += sizeof(uint32_t);
4770               }
4771           } else {
4772               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4773               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4774               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4775           }
4776        }
4777    
4778        void Instrument::UpdateScriptFileOffsets() {
4779           // own gig format extensions
4780           if (pScriptRefs && pScriptRefs->size() > 0) {
4781               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4782               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4783               const int slotCount = (int) pScriptRefs->size();
4784               const int headerSize = 3 * sizeof(uint32_t);
4785               ckSCSL->SetPos(headerSize);
4786               for (int i = 0; i < slotCount; ++i) {
4787                   uint32_t fileOffset = uint32_t(
4788                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4789                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4790                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4791                   );
4792                   ckSCSL->WriteUint32(&fileOffset);
4793                   // jump over flags entry (containing the bypass flag)
4794                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4795               }
4796           }        
4797      }      }
4798    
4799      /**      /**
# Line 982  namespace gig { Line 4804  namespace gig {
4804       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4805       */       */
4806      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4807          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4808          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4809    
4810          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4811              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4812                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 999  namespace gig { Line 4822  namespace gig {
4822       * @see      GetNextRegion()       * @see      GetNextRegion()
4823       */       */
4824      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4825          if (!Regions) return NULL;          if (!pRegions) return NULL;
4826          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4827          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4828      }      }
4829    
4830      /**      /**
# Line 1013  namespace gig { Line 4836  namespace gig {
4836       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4837       */       */
4838      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4839          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
4840          return pRegions[RegionIndex++];          RegionsIterator++;
4841            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4842        }
4843    
4844        Region* Instrument::AddRegion() {
4845            // create new Region object (and its RIFF chunks)
4846            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4847            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4848            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4849            Region* pNewRegion = new Region(this, rgn);
4850            pRegions->push_back(pNewRegion);
4851            Regions = (uint32_t) pRegions->size();
4852            // update Region key table for fast lookup
4853            UpdateRegionKeyTable();
4854            // done
4855            return pNewRegion;
4856        }
4857    
4858        void Instrument::DeleteRegion(Region* pRegion) {
4859            if (!pRegions) return;
4860            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4861            // update Region key table for fast lookup
4862            UpdateRegionKeyTable();
4863        }
4864    
4865        /**
4866         * Move this instrument at the position before @arg dst.
4867         *
4868         * This method can be used to reorder the sequence of instruments in a
4869         * .gig file. This might be helpful especially on large .gig files which
4870         * contain a large number of instruments within the same .gig file. So
4871         * grouping such instruments to similar ones, can help to keep track of them
4872         * when working with such complex .gig files.
4873         *
4874         * When calling this method, this instrument will be removed from in its
4875         * current position in the instruments list and moved to the requested
4876         * target position provided by @param dst. You may also pass NULL as
4877         * argument to this method, in that case this intrument will be moved to the
4878         * very end of the .gig file's instrument list.
4879         *
4880         * You have to call Save() to make the order change persistent to the .gig
4881         * file.
4882         *
4883         * Currently this method is limited to moving the instrument within the same
4884         * .gig file. Trying to move it to another .gig file by calling this method
4885         * will throw an exception.
4886         *
4887         * @param dst - destination instrument at which this instrument will be
4888         *              moved to, or pass NULL for moving to end of list
4889         * @throw gig::Exception if this instrument and target instrument are not
4890         *                       part of the same file
4891         */
4892        void Instrument::MoveTo(Instrument* dst) {
4893            if (dst && GetParent() != dst->GetParent())
4894                throw Exception(
4895                    "gig::Instrument::MoveTo() can only be used for moving within "
4896                    "the same gig file."
4897                );
4898    
4899            File* pFile = (File*) GetParent();
4900    
4901            // move this instrument within the instrument list
4902            {
4903                File::InstrumentList& list = *pFile->pInstruments;
4904    
4905                File::InstrumentList::iterator itFrom =
4906                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4907    
4908                File::InstrumentList::iterator itTo =
4909                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4910    
4911                list.splice(itTo, list, itFrom);
4912            }
4913    
4914            // move the instrument's actual list RIFF chunk appropriately
4915            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4916            lstCkInstruments->MoveSubChunk(
4917                this->pCkInstrument,
4918                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4919            );
4920        }
4921    
4922        /**
4923         * Returns a MIDI rule of the instrument.
4924         *
4925         * The list of MIDI rules, at least in gig v3, always contains at
4926         * most two rules. The second rule can only be the DEF filter
4927         * (which currently isn't supported by libgig).
4928         *
4929         * @param i - MIDI rule number
4930         * @returns   pointer address to MIDI rule number i or NULL if there is none
4931         */
4932        MidiRule* Instrument::GetMidiRule(int i) {
4933            return pMidiRules[i];
4934        }
4935    
4936        /**
4937         * Adds the "controller trigger" MIDI rule to the instrument.
4938         *
4939         * @returns the new MIDI rule
4940         */
4941        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4942            delete pMidiRules[0];
4943            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4944            pMidiRules[0] = r;
4945            pMidiRules[1] = 0;
4946            return r;
4947        }
4948    
4949        /**
4950         * Adds the legato MIDI rule to the instrument.
4951         *
4952         * @returns the new MIDI rule
4953         */
4954        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4955            delete pMidiRules[0];
4956            MidiRuleLegato* r = new MidiRuleLegato;
4957            pMidiRules[0] = r;
4958            pMidiRules[1] = 0;
4959            return r;
4960        }
4961    
4962        /**
4963         * Adds the alternator MIDI rule to the instrument.
4964         *
4965         * @returns the new MIDI rule
4966         */
4967        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4968            delete pMidiRules[0];
4969            MidiRuleAlternator* r = new MidiRuleAlternator;
4970            pMidiRules[0] = r;
4971            pMidiRules[1] = 0;
4972            return r;
4973        }
4974    
4975        /**
4976         * Deletes a MIDI rule from the instrument.
4977         *
4978         * @param i - MIDI rule number
4979         */
4980        void Instrument::DeleteMidiRule(int i) {
4981            delete pMidiRules[i];
4982            pMidiRules[i] = 0;
4983        }
4984    
4985        void Instrument::LoadScripts() {
4986            if (pScriptRefs) return;
4987            pScriptRefs = new std::vector<_ScriptPooolRef>;
4988            if (scriptPoolFileOffsets.empty()) return;
4989            File* pFile = (File*) GetParent();
4990            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4991                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4992                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4993                    ScriptGroup* group = pFile->GetScriptGroup(i);
4994                    for (uint s = 0; group->GetScript(s); ++s) {
4995                        Script* script = group->GetScript(s);
4996                        if (script->pChunk) {
4997                            uint32_t offset = uint32_t(
4998                                script->pChunk->GetFilePos() -
4999                                script->pChunk->GetPos() -
5000                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5001                            );
5002                            if (offset == soughtOffset)
5003                            {
5004                                _ScriptPooolRef ref;
5005                                ref.script = script;
5006                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5007                                pScriptRefs->push_back(ref);
5008                                break;
5009                            }
5010                        }
5011                    }
5012                }
5013            }
5014            // we don't need that anymore
5015            scriptPoolFileOffsets.clear();
5016        }
5017    
5018        /** @brief Get instrument script (gig format extension).
5019         *
5020         * Returns the real-time instrument script of instrument script slot
5021         * @a index.
5022         *
5023         * @note This is an own format extension which did not exist i.e. in the
5024         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5025         * gigedit.
5026         *
5027         * @param index - instrument script slot index
5028         * @returns script or NULL if index is out of bounds
5029         */
5030        Script* Instrument::GetScriptOfSlot(uint index) {
5031            LoadScripts();
5032            if (index >= pScriptRefs->size()) return NULL;
5033            return pScriptRefs->at(index).script;
5034        }
5035    
5036        /** @brief Add new instrument script slot (gig format extension).
5037         *
5038         * Add the given real-time instrument script reference to this instrument,
5039         * which shall be executed by the sampler for for this instrument. The
5040         * script will be added to the end of the script list of this instrument.
5041         * The positions of the scripts in the Instrument's Script list are
5042         * relevant, because they define in which order they shall be executed by
5043         * the sampler. For this reason it is also legal to add the same script
5044         * twice to an instrument, for example you might have a script called
5045         * "MyFilter" which performs an event filter task, and you might have
5046         * another script called "MyNoteTrigger" which triggers new notes, then you
5047         * might for example have the following list of scripts on the instrument:
5048         *
5049         * 1. Script "MyFilter"
5050         * 2. Script "MyNoteTrigger"
5051         * 3. Script "MyFilter"
5052         *
5053         * Which would make sense, because the 2nd script launched new events, which
5054         * you might need to filter as well.
5055         *
5056         * There are two ways to disable / "bypass" scripts. You can either disable
5057         * a script locally for the respective script slot on an instrument (i.e. by
5058         * passing @c false to the 2nd argument of this method, or by calling
5059         * SetScriptBypassed()). Or you can disable a script globally for all slots
5060         * and all instruments by setting Script::Bypass.
5061         *
5062         * @note This is an own format extension which did not exist i.e. in the
5063         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5064         * gigedit.
5065         *
5066         * @param pScript - script that shall be executed for this instrument
5067         * @param bypass  - if enabled, the sampler shall skip executing this
5068         *                  script (in the respective list position)
5069         * @see SetScriptBypassed()
5070         */
5071        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5072            LoadScripts();
5073            _ScriptPooolRef ref = { pScript, bypass };
5074            pScriptRefs->push_back(ref);
5075        }
5076    
5077        /** @brief Flip two script slots with each other (gig format extension).
5078         *
5079         * Swaps the position of the two given scripts in the Instrument's Script
5080         * list. The positions of the scripts in the Instrument's Script list are
5081         * relevant, because they define in which order they shall be executed by
5082         * the sampler.
5083         *
5084         * @note This is an own format extension which did not exist i.e. in the
5085         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5086         * gigedit.
5087         *
5088         * @param index1 - index of the first script slot to swap
5089         * @param index2 - index of the second script slot to swap
5090         */
5091        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5092            LoadScripts();
5093            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5094                return;
5095            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5096            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5097            (*pScriptRefs)[index2] = tmp;
5098        }
5099    
5100        /** @brief Remove script slot.
5101         *
5102         * Removes the script slot with the given slot index.
5103         *
5104         * @param index - index of script slot to remove
5105         */
5106        void Instrument::RemoveScriptSlot(uint index) {
5107            LoadScripts();
5108            if (index >= pScriptRefs->size()) return;
5109            pScriptRefs->erase( pScriptRefs->begin() + index );
5110        }
5111    
5112        /** @brief Remove reference to given Script (gig format extension).
5113         *
5114         * This will remove all script slots on the instrument which are referencing
5115         * the given script.
5116         *
5117         * @note This is an own format extension which did not exist i.e. in the
5118         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5119         * gigedit.
5120         *
5121         * @param pScript - script reference to remove from this instrument
5122         * @see RemoveScriptSlot()
5123         */
5124        void Instrument::RemoveScript(Script* pScript) {
5125            LoadScripts();
5126            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5127                if ((*pScriptRefs)[i].script == pScript) {
5128                    pScriptRefs->erase( pScriptRefs->begin() + i );
5129                }
5130            }
5131        }
5132    
5133        /** @brief Instrument's amount of script slots.
5134         *
5135         * This method returns the amount of script slots this instrument currently
5136         * uses.
5137         *
5138         * A script slot is a reference of a real-time instrument script to be
5139         * executed by the sampler. The scripts will be executed by the sampler in
5140         * sequence of the slots. One (same) script may be referenced multiple
5141         * times in different slots.
5142         *
5143         * @note This is an own format extension which did not exist i.e. in the
5144         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5145         * gigedit.
5146         */
5147        uint Instrument::ScriptSlotCount() const {
5148            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5149        }
5150    
5151        /** @brief Whether script execution shall be skipped.
5152         *
5153         * Defines locally for the Script reference slot in the Instrument's Script
5154         * list, whether the script shall be skipped by the sampler regarding
5155         * execution.
5156         *
5157         * It is also possible to ignore exeuction of the script globally, for all
5158         * slots and for all instruments by setting Script::Bypass.
5159         *
5160         * @note This is an own format extension which did not exist i.e. in the
5161         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5162         * gigedit.
5163         *
5164         * @param index - index of the script slot on this instrument
5165         * @see Script::Bypass
5166         */
5167        bool Instrument::IsScriptSlotBypassed(uint index) {
5168            if (index >= ScriptSlotCount()) return false;
5169            return pScriptRefs ? pScriptRefs->at(index).bypass
5170                               : scriptPoolFileOffsets.at(index).bypass;
5171            
5172        }
5173    
5174        /** @brief Defines whether execution shall be skipped.
5175         *
5176         * You can call this method to define locally whether or whether not the
5177         * given script slot shall be executed by the sampler.
5178         *
5179         * @note This is an own format extension which did not exist i.e. in the
5180         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5181         * gigedit.
5182         *
5183         * @param index - script slot index on this instrument
5184         * @param bBypass - if true, the script slot will be skipped by the sampler
5185         * @see Script::Bypass
5186         */
5187        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5188            if (index >= ScriptSlotCount()) return;
5189            if (pScriptRefs)
5190                pScriptRefs->at(index).bypass = bBypass;
5191            else
5192                scriptPoolFileOffsets.at(index).bypass = bBypass;
5193        }
5194    
5195        /**
5196         * Make a (semi) deep copy of the Instrument object given by @a orig
5197         * and assign it to this object.
5198         *
5199         * Note that all sample pointers referenced by @a orig are simply copied as
5200         * memory address. Thus the respective samples are shared, not duplicated!
5201         *
5202         * @param orig - original Instrument object to be copied from
5203         */
5204        void Instrument::CopyAssign(const Instrument* orig) {
5205            CopyAssign(orig, NULL);
5206        }
5207            
5208        /**
5209         * Make a (semi) deep copy of the Instrument object given by @a orig
5210         * and assign it to this object.
5211         *
5212         * @param orig - original Instrument object to be copied from
5213         * @param mSamples - crosslink map between the foreign file's samples and
5214         *                   this file's samples
5215         */
5216        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5217            // handle base class
5218            // (without copying DLS region stuff)
5219            DLS::Instrument::CopyAssignCore(orig);
5220            
5221            // handle own member variables
5222            Attenuation = orig->Attenuation;
5223            EffectSend = orig->EffectSend;
5224            FineTune = orig->FineTune;
5225            PitchbendRange = orig->PitchbendRange;
5226            PianoReleaseMode = orig->PianoReleaseMode;
5227            DimensionKeyRange = orig->DimensionKeyRange;
5228            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5229            pScriptRefs = orig->pScriptRefs;
5230            
5231            // free old midi rules
5232            for (int i = 0 ; pMidiRules[i] ; i++) {
5233                delete pMidiRules[i];
5234            }
5235            //TODO: MIDI rule copying
5236            pMidiRules[0] = NULL;
5237            
5238            // delete all old regions
5239            while (Regions) DeleteRegion(GetFirstRegion());
5240            // create new regions and copy them from original
5241            {
5242                RegionList::const_iterator it = orig->pRegions->begin();
5243                for (int i = 0; i < orig->Regions; ++i, ++it) {
5244                    Region* dstRgn = AddRegion();
5245                    //NOTE: Region does semi-deep copy !
5246                    dstRgn->CopyAssign(
5247                        static_cast<gig::Region*>(*it),
5248                        mSamples
5249                    );
5250                }
5251            }
5252    
5253            UpdateRegionKeyTable();
5254        }
5255    
5256    
5257    // *************** Group ***************
5258    // *
5259    
5260        /** @brief Constructor.
5261         *
5262         * @param file   - pointer to the gig::File object
5263         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5264         *                 NULL if this is a new Group
5265         */
5266        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5267            pFile      = file;
5268            pNameChunk = ck3gnm;
5269            ::LoadString(pNameChunk, Name);
5270        }
5271    
5272        Group::~Group() {
5273            // remove the chunk associated with this group (if any)
5274            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5275        }
5276    
5277        /** @brief Update chunks with current group settings.
5278         *
5279         * Apply current Group field values to the respective chunks. You have
5280         * to call File::Save() to make changes persistent.
5281         *
5282         * Usually there is absolutely no need to call this method explicitly.
5283         * It will be called automatically when File::Save() was called.
5284         *
5285         * @param pProgress - callback function for progress notification
5286         */
5287        void Group::UpdateChunks(progress_t* pProgress) {
5288            // make sure <3gri> and <3gnl> list chunks exist
5289            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5290            if (!_3gri) {
5291                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5292                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5293            }
5294            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5295            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5296    
5297            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5298                // v3 has a fixed list of 128 strings, find a free one
5299                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5300                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5301                        pNameChunk = ck;
5302                        break;
5303                    }
5304                }
5305            }
5306    
5307            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5308            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5309        }
5310    
5311        /**
5312         * Returns the first Sample of this Group. You have to call this method
5313         * once before you use GetNextSample().
5314         *
5315         * <b>Notice:</b> this method might block for a long time, in case the
5316         * samples of this .gig file were not scanned yet
5317         *
5318         * @returns  pointer address to first Sample or NULL if there is none
5319         *           applied to this Group
5320         * @see      GetNextSample()
5321         */
5322        Sample* Group::GetFirstSample() {
5323            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5324            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5325                if (pSample->GetGroup() == this) return pSample;
5326            }
5327            return NULL;
5328        }
5329    
5330        /**
5331         * Returns the next Sample of the Group. You have to call
5332         * GetFirstSample() once before you can use this method. By calling this
5333         * method multiple times it iterates through the Samples assigned to
5334         * this Group.
5335         *
5336         * @returns  pointer address to the next Sample of this Group or NULL if
5337         *           end reached
5338         * @see      GetFirstSample()
5339         */
5340        Sample* Group::GetNextSample() {
5341            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5342            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5343                if (pSample->GetGroup() == this) return pSample;
5344            }
5345            return NULL;
5346        }
5347    
5348        /**
5349         * Move Sample given by \a pSample from another Group to this Group.
5350         */
5351        void Group::AddSample(Sample* pSample) {
5352            pSample->pGroup = this;
5353        }
5354    
5355        /**
5356         * Move all members of this group to another group (preferably the 1st
5357         * one except this). This method is called explicitly by
5358         * File::DeleteGroup() thus when a Group was deleted. This code was
5359         * intentionally not placed in the destructor!
5360         */
5361        void Group::MoveAll() {
5362            // get "that" other group first
5363            Group* pOtherGroup = NULL;
5364            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5365                if (pOtherGroup != this) break;
5366            }
5367            if (!pOtherGroup) throw Exception(
5368                "Could not move samples to another group, since there is no "
5369                "other Group. This is a bug, report it!"
5370            );
5371            // now move all samples of this group to the other group
5372            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5373                pOtherGroup->AddSample(pSample);
5374            }
5375      }      }
5376    
5377    
# Line 1022  namespace gig { Line 5379  namespace gig {
5379  // *************** File ***************  // *************** File ***************
5380  // *  // *
5381    
5382        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5383        const DLS::version_t File::VERSION_2 = {
5384            0, 2, 19980628 & 0xffff, 19980628 >> 16
5385        };
5386    
5387        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5388        const DLS::version_t File::VERSION_3 = {
5389            0, 3, 20030331 & 0xffff, 20030331 >> 16
5390        };
5391    
5392        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5393            { CHUNK_ID_IARL, 256 },
5394            { CHUNK_ID_IART, 128 },
5395            { CHUNK_ID_ICMS, 128 },
5396            { CHUNK_ID_ICMT, 1024 },
5397            { CHUNK_ID_ICOP, 128 },
5398            { CHUNK_ID_ICRD, 128 },
5399            { CHUNK_ID_IENG, 128 },
5400            { CHUNK_ID_IGNR, 128 },
5401            { CHUNK_ID_IKEY, 128 },
5402            { CHUNK_ID_IMED, 128 },
5403            { CHUNK_ID_INAM, 128 },
5404            { CHUNK_ID_IPRD, 128 },
5405            { CHUNK_ID_ISBJ, 128 },
5406            { CHUNK_ID_ISFT, 128 },
5407            { CHUNK_ID_ISRC, 128 },
5408            { CHUNK_ID_ISRF, 128 },
5409            { CHUNK_ID_ITCH, 128 },
5410            { 0, 0 }
5411        };
5412    
5413        File::File() : DLS::File() {
5414            bAutoLoad = true;
5415            *pVersion = VERSION_3;
5416            pGroups = NULL;
5417            pScriptGroups = NULL;
5418            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5419            pInfo->ArchivalLocation = String(256, ' ');
5420    
5421            // add some mandatory chunks to get the file chunks in right
5422            // order (INFO chunk will be moved to first position later)
5423            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5424            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5425            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5426    
5427            GenerateDLSID();
5428        }
5429    
5430      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5431          pSamples     = NULL;          bAutoLoad = true;
5432          pInstruments = NULL;          pGroups = NULL;
5433            pScriptGroups = NULL;
5434            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5435      }      }
5436    
5437      Sample* File::GetFirstSample() {      File::~File() {
5438          if (!pSamples) LoadSamples();          if (pGroups) {
5439                std::list<Group*>::iterator iter = pGroups->begin();
5440                std::list<Group*>::iterator end  = pGroups->end();
5441                while (iter != end) {
5442                    delete *iter;
5443                    ++iter;
5444                }
5445                delete pGroups;
5446            }
5447            if (pScriptGroups) {
5448                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5449                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5450                while (iter != end) {
5451                    delete *iter;
5452                    ++iter;
5453                }
5454                delete pScriptGroups;
5455            }
5456        }
5457    
5458        Sample* File::GetFirstSample(progress_t* pProgress) {
5459            if (!pSamples) LoadSamples(pProgress);
5460          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5461          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5462          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1039  namespace gig { Line 5467  namespace gig {
5467          SamplesIterator++;          SamplesIterator++;
5468          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5469      }      }
5470        
5471        /**
5472         * Returns Sample object of @a index.
5473         *
5474         * @returns sample object or NULL if index is out of bounds
5475         */
5476        Sample* File::GetSample(uint index) {
5477            if (!pSamples) LoadSamples();
5478            if (!pSamples) return NULL;
5479            DLS::File::SampleList::iterator it = pSamples->begin();
5480            for (int i = 0; i < index; ++i) {
5481                ++it;
5482                if (it == pSamples->end()) return NULL;
5483            }
5484            if (it == pSamples->end()) return NULL;
5485            return static_cast<gig::Sample*>( *it );
5486        }
5487    
5488      void File::LoadSamples() {      /** @brief Add a new sample.
5489          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5490          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5491              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5492              RIFF::List* wave = wvpl->GetFirstSubList();       *
5493              while (wave) {       * @returns pointer to new Sample object
5494                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5495                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5496                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5497                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5498           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5499           // create new Sample object and its respective 'wave' list chunk
5500           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5501           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5502    
5503           // add mandatory chunks to get the chunks in right order
5504           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5505           wave->AddSubList(LIST_TYPE_INFO);
5506    
5507           pSamples->push_back(pSample);
5508           return pSample;
5509        }
5510    
5511        /** @brief Delete a sample.
5512         *
5513         * This will delete the given Sample object from the gig file. Any
5514         * references to this sample from Regions and DimensionRegions will be
5515         * removed. You have to call Save() to make this persistent to the file.
5516         *
5517         * @param pSample - sample to delete
5518         * @throws gig::Exception if given sample could not be found
5519         */
5520        void File::DeleteSample(Sample* pSample) {
5521            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5522            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5523            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5524            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5525            pSamples->erase(iter);
5526            delete pSample;
5527    
5528            SampleList::iterator tmp = SamplesIterator;
5529            // remove all references to the sample
5530            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5531                 instrument = GetNextInstrument()) {
5532                for (Region* region = instrument->GetFirstRegion() ; region ;
5533                     region = instrument->GetNextRegion()) {
5534    
5535                    if (region->GetSample() == pSample) region->SetSample(NULL);
5536    
5537                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5538                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5539                        if (d->pSample == pSample) d->pSample = NULL;
5540                  }                  }
                 wave = wvpl->GetNextSubList();  
5541              }              }
5542          }          }
5543          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5544        }
5545    
5546        void File::LoadSamples() {
5547            LoadSamples(NULL);
5548        }
5549    
5550        void File::LoadSamples(progress_t* pProgress) {
5551            // Groups must be loaded before samples, because samples will try
5552            // to resolve the group they belong to
5553            if (!pGroups) LoadGroups();
5554    
5555            if (!pSamples) pSamples = new SampleList;
5556    
5557            RIFF::File* file = pRIFF;
5558    
5559            // just for progress calculation
5560            int iSampleIndex  = 0;
5561            int iTotalSamples = WavePoolCount;
5562    
5563            // check if samples should be loaded from extension files
5564            // (only for old gig files < 2 GB)
5565            int lastFileNo = 0;
5566            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5567                for (int i = 0 ; i < WavePoolCount ; i++) {
5568                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5569                }
5570            }
5571            String name(pRIFF->GetFileName());
5572            int nameLen = (int) name.length();
5573            char suffix[6];
5574            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5575    
5576            for (int fileNo = 0 ; ; ) {
5577                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5578                if (wvpl) {
5579                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5580                    RIFF::List* wave = wvpl->GetFirstSubList();
5581                    while (wave) {
5582                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5583                            // notify current progress
5584                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5585                            __notify_progress(pProgress, subprogress);
5586    
5587                            file_offset_t waveFileOffset = wave->GetFilePos();
5588                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5589    
5590                            iSampleIndex++;
5591                        }
5592                        wave = wvpl->GetNextSubList();
5593                    }
5594    
5595                    if (fileNo == lastFileNo) break;
5596    
5597                    // open extension file (*.gx01, *.gx02, ...)
5598                    fileNo++;
5599                    sprintf(suffix, ".gx%02d", fileNo);
5600                    name.replace(nameLen, 5, suffix);
5601                    file = new RIFF::File(name);
5602                    ExtensionFiles.push_back(file);
5603                } else break;
5604            }
5605    
5606            __notify_progress(pProgress, 1.0); // notify done
5607      }      }
5608    
5609      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5610          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5611          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5612          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5613          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5614      }      }
5615    
5616      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5617          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5618          InstrumentsIterator++;          InstrumentsIterator++;
5619          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5620        }
5621    
5622        /**
5623         * Returns the instrument with the given index.
5624         *
5625         * @param index     - number of the sought instrument (0..n)
5626         * @param pProgress - optional: callback function for progress notification
5627         * @returns  sought instrument or NULL if there's no such instrument
5628         */
5629        Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5630            if (!pInstruments) {
5631                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5632    
5633                // sample loading subtask
5634                progress_t subprogress;
5635                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5636                __notify_progress(&subprogress, 0.0f);
5637                if (GetAutoLoad())
5638                    GetFirstSample(&subprogress); // now force all samples to be loaded
5639                __notify_progress(&subprogress, 1.0f);
5640    
5641                // instrument loading subtask
5642                if (pProgress && pProgress->callback) {
5643                    subprogress.__range_min = subprogress.__range_max;
5644                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5645                }
5646                __notify_progress(&subprogress, 0.0f);
5647                LoadInstruments(&subprogress);
5648                __notify_progress(&subprogress, 1.0f);
5649            }
5650            if (!pInstruments) return NULL;
5651            InstrumentsIterator = pInstruments->begin();
5652            for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5653                if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5654                InstrumentsIterator++;
5655            }
5656            return NULL;
5657        }
5658    
5659        /** @brief Add a new instrument definition.
5660         *
5661         * This will create a new Instrument object for the gig file. You have
5662         * to call Save() to make this persistent to the file.
5663         *
5664         * @returns pointer to new Instrument object
5665         */
5666        Instrument* File::AddInstrument() {
5667           if (!pInstruments) LoadInstruments();
5668           __ensureMandatoryChunksExist();
5669           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5670           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5671    
5672           // add mandatory chunks to get the chunks in right order
5673           lstInstr->AddSubList(LIST_TYPE_INFO);
5674           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5675    
5676           Instrument* pInstrument = new Instrument(this, lstInstr);
5677           pInstrument->GenerateDLSID();
5678    
5679           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5680    
5681           // this string is needed for the gig to be loadable in GSt:
5682           pInstrument->pInfo->Software = "Endless Wave";
5683    
5684           pInstruments->push_back(pInstrument);
5685           return pInstrument;
5686        }
5687        
5688        /** @brief Add a duplicate of an existing instrument.
5689         *
5690         * Duplicates the instrument definition given by @a orig and adds it
5691         * to this file. This allows in an instrument editor application to
5692         * easily create variations of an instrument, which will be stored in
5693         * the same .gig file, sharing i.e. the same samples.
5694         *
5695         * Note that all sample pointers referenced by @a orig are simply copied as
5696         * memory address. Thus the respective samples are shared, not duplicated!
5697         *
5698         * You have to call Save() to make this persistent to the file.
5699         *
5700         * @param orig - original instrument to be copied
5701         * @returns duplicated copy of the given instrument
5702         */
5703        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5704            Instrument* instr = AddInstrument();
5705            instr->CopyAssign(orig);
5706            return instr;
5707        }
5708        
5709        /** @brief Add content of another existing file.
5710         *
5711         * Duplicates the samples, groups and instruments of the original file
5712         * given by @a pFile and adds them to @c this File. In case @c this File is
5713         * a new one that you haven't saved before, then you have to call
5714         * SetFileName() before calling AddContentOf(), because this method will
5715         * automatically save this file during operation, which is required for
5716         * writing the sample waveform data by disk streaming.
5717         *
5718         * @param pFile - original file whose's content shall be copied from
5719         */
5720        void File::AddContentOf(File* pFile) {
5721            static int iCallCount = -1;
5722            iCallCount++;
5723            std::map<Group*,Group*> mGroups;
5724            std::map<Sample*,Sample*> mSamples;
5725            
5726            // clone sample groups
5727            for (int i = 0; pFile->GetGroup(i); ++i) {
5728                Group* g = AddGroup();
5729                g->Name =
5730                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5731                mGroups[pFile->GetGroup(i)] = g;
5732            }
5733            
5734            // clone samples (not waveform data here yet)
5735            for (int i = 0; pFile->GetSample(i); ++i) {
5736                Sample* s = AddSample();
5737                s->CopyAssignMeta(pFile->GetSample(i));
5738                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5739                mSamples[pFile->GetSample(i)] = s;
5740            }
5741    
5742            // clone script groups and their scripts
5743            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5744                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5745                ScriptGroup* dg = AddScriptGroup();
5746                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5747                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5748                    Script* ss = sg->GetScript(iScript);
5749                    Script* ds = dg->AddScript();
5750                    ds->CopyAssign(ss);
5751                }
5752            }
5753    
5754            //BUG: For some reason this method only works with this additional
5755            //     Save() call in between here.
5756            //
5757            // Important: The correct one of the 2 Save() methods has to be called
5758            // here, depending on whether the file is completely new or has been
5759            // saved to disk already, otherwise it will result in data corruption.
5760            if (pRIFF->IsNew())
5761                Save(GetFileName());
5762            else
5763                Save();
5764            
5765            // clone instruments
5766            // (passing the crosslink table here for the cloned samples)
5767            for (int i = 0; pFile->GetInstrument(i); ++i) {
5768                Instrument* instr = AddInstrument();
5769                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5770            }
5771            
5772            // Mandatory: file needs to be saved to disk at this point, so this
5773            // file has the correct size and data layout for writing the samples'
5774            // waveform data to disk.
5775            Save();
5776            
5777            // clone samples' waveform data
5778            // (using direct read & write disk streaming)
5779            for (int i = 0; pFile->GetSample(i); ++i) {
5780                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5781            }
5782        }
5783    
5784        /** @brief Delete an instrument.
5785         *
5786         * This will delete the given Instrument object from the gig file. You
5787         * have to call Save() to make this persistent to the file.
5788         *
5789         * @param pInstrument - instrument to delete
5790         * @throws gig::Exception if given instrument could not be found
5791         */
5792        void File::DeleteInstrument(Instrument* pInstrument) {
5793            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5794            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5795            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5796            pInstruments->erase(iter);
5797            delete pInstrument;
5798      }      }
5799    
5800      void File::LoadInstruments() {      void File::LoadInstruments() {
5801            LoadInstruments(NULL);
5802        }
5803    
5804        void File::LoadInstruments(progress_t* pProgress) {
5805            if (!pInstruments) pInstruments = new InstrumentList;
5806          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5807          if (lstInstruments) {          if (lstInstruments) {
5808                int iInstrumentIndex = 0;
5809              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5810              while (lstInstr) {              while (lstInstr) {
5811                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5812                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5813                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5814                        __notify_progress(pProgress, localProgress);
5815    
5816                        // divide local progress into subprogress for loading current Instrument
5817                        progress_t subprogress;
5818                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5819    
5820                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5821    
5822                        iInstrumentIndex++;
5823                  }                  }
5824                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5825              }              }
5826                __notify_progress(pProgress, 1.0); // notify done
5827          }          }
5828          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5829    
5830        /// Updates the 3crc chunk with the checksum of a sample. The
5831        /// update is done directly to disk, as this method is called
5832        /// after File::Save()
5833        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5834            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5835            if (!_3crc) return;
5836    
5837            // get the index of the sample
5838            int iWaveIndex = GetWaveTableIndexOf(pSample);
5839            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5840    
5841            // write the CRC-32 checksum to disk
5842            _3crc->SetPos(iWaveIndex * 8);
5843            uint32_t one = 1;
5844            _3crc->WriteUint32(&one); // always 1
5845            _3crc->WriteUint32(&crc);
5846        }
5847    
5848        uint32_t File::GetSampleChecksum(Sample* pSample) {
5849            // get the index of the sample
5850            int iWaveIndex = GetWaveTableIndexOf(pSample);
5851            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5852    
5853            return GetSampleChecksumByIndex(iWaveIndex);
5854        }
5855    
5856        uint32_t File::GetSampleChecksumByIndex(int index) {
5857            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5858    
5859            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5860            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5861            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5862            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5863    
5864            // read the CRC-32 checksum directly from disk
5865            size_t pos = index * 8;
5866            if (pos + 8 > _3crc->GetNewSize())
5867                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5868    
5869            uint32_t one = load32(&pData[pos]); // always 1
5870            if (one != 1)
5871                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5872    
5873            return load32(&pData[pos+4]);
5874        }
5875    
5876        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5877            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5878            File::SampleList::iterator iter = pSamples->begin();
5879            File::SampleList::iterator end  = pSamples->end();
5880            for (int index = 0; iter != end; ++iter, ++index)
5881                if (*iter == pSample)
5882                    return index;
5883            return -1;
5884        }
5885    
5886        /**
5887         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5888         * the CRC32 check sums of all samples' raw wave data.
5889         *
5890         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5891         */
5892        bool File::VerifySampleChecksumTable() {
5893            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5894            if (!_3crc) return false;
5895            if (_3crc->GetNewSize() <= 0) return false;
5896            if (_3crc->GetNewSize() % 8) return false;
5897            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5898            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5899    
5900            const file_offset_t n = _3crc->GetNewSize() / 8;
5901    
5902            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5903            if (!pData) return false;
5904    
5905            for (file_offset_t i = 0; i < n; ++i) {
5906                uint32_t one = pData[i*2];
5907                if (one != 1) return false;
5908            }
5909    
5910            return true;
5911        }
5912    
5913        /**
5914         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5915         * file's checksum table with those new checksums. This might usually
5916         * just be necessary if the checksum table was damaged.
5917         *
5918         * @e IMPORTANT: The current implementation of this method only works
5919         * with files that have not been modified since it was loaded, because
5920         * it expects that no externally caused file structure changes are
5921         * required!
5922         *
5923         * Due to the expectation above, this method is currently protected
5924         * and actually only used by the command line tool "gigdump" yet.
5925         *
5926         * @returns true if Save() is required to be called after this call,
5927         *          false if no further action is required
5928         */
5929        bool File::RebuildSampleChecksumTable() {
5930            // make sure sample chunks were scanned
5931            if (!pSamples) GetFirstSample();
5932    
5933            bool bRequiresSave = false;
5934    
5935            // make sure "3CRC" chunk exists with required size
5936            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5937            if (!_3crc) {
5938                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5939                // the order of einf and 3crc is not the same in v2 and v3
5940                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5941                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5942                bRequiresSave = true;
5943            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5944                _3crc->Resize(pSamples->size() * 8);
5945                bRequiresSave = true;
5946            }
5947    
5948            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5949                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5950                {
5951                    File::SampleList::iterator iter = pSamples->begin();
5952                    File::SampleList::iterator end  = pSamples->end();
5953                    for (; iter != end; ++iter) {
5954                        gig::Sample* pSample = (gig::Sample*) *iter;
5955                        int index = GetWaveTableIndexOf(pSample);
5956                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5957                        pData[index*2]   = 1; // always 1
5958                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5959                    }
5960                }
5961            } else { // no file structure changes necessary, so directly write to disk and we are done ...
5962                // make sure file is in write mode
5963                pRIFF->SetMode(RIFF::stream_mode_read_write);
5964                {
5965                    File::SampleList::iterator iter = pSamples->begin();
5966                    File::SampleList::iterator end  = pSamples->end();
5967                    for (; iter != end; ++iter) {
5968                        gig::Sample* pSample = (gig::Sample*) *iter;
5969                        int index = GetWaveTableIndexOf(pSample);
5970                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5971                        pSample->crc  = pSample->CalculateWaveDataChecksum();
5972                        SetSampleChecksum(pSample, pSample->crc);
5973                    }
5974                }
5975            }
5976    
5977            return bRequiresSave;
5978        }
5979    
5980        Group* File::GetFirstGroup() {
5981            if (!pGroups) LoadGroups();
5982            // there must always be at least one group
5983            GroupsIterator = pGroups->begin();
5984            return *GroupsIterator;
5985        }
5986    
5987        Group* File::GetNextGroup() {
5988            if (!pGroups) return NULL;
5989            ++GroupsIterator;
5990            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5991        }
5992    
5993        /**
5994         * Returns the group with the given index.
5995         *
5996         * @param index - number of the sought group (0..n)
5997         * @returns sought group or NULL if there's no such group
5998         */
5999        Group* File::GetGroup(uint index) {
6000            if (!pGroups) LoadGroups();
6001            GroupsIterator = pGroups->begin();
6002            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6003                if (i == index) return *GroupsIterator;
6004                ++GroupsIterator;
6005            }
6006            return NULL;
6007        }
6008    
6009        /**
6010         * Returns the group with the given group name.
6011         *
6012         * Note: group names don't have to be unique in the gig format! So there
6013         * can be multiple groups with the same name. This method will simply
6014         * return the first group found with the given name.
6015         *
6016         * @param name - name of the sought group
6017         * @returns sought group or NULL if there's no group with that name
6018         */
6019        Group* File::GetGroup(String name) {
6020            if (!pGroups) LoadGroups();
6021            GroupsIterator = pGroups->begin();
6022            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6023                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6024            return NULL;
6025        }
6026    
6027        Group* File::AddGroup() {
6028            if (!pGroups) LoadGroups();
6029            // there must always be at least one group
6030            __ensureMandatoryChunksExist();
6031            Group* pGroup = new Group(this, NULL);
6032            pGroups->push_back(pGroup);
6033            return pGroup;
6034        }
6035    
6036        /** @brief Delete a group and its samples.
6037         *
6038         * This will delete the given Group object and all the samples that
6039         * belong to this group from the gig file. You have to call Save() to
6040         * make this persistent to the file.
6041         *
6042         * @param pGroup - group to delete
6043         * @throws gig::Exception if given group could not be found
6044         */
6045        void File::DeleteGroup(Group* pGroup) {
6046            if (!pGroups) LoadGroups();
6047            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6048            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6049            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6050            // delete all members of this group
6051            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6052                DeleteSample(pSample);
6053            }
6054            // now delete this group object
6055            pGroups->erase(iter);
6056            delete pGroup;
6057        }
6058    
6059        /** @brief Delete a group.
6060         *
6061         * This will delete the given Group object from the gig file. All the
6062         * samples that belong to this group will not be deleted, but instead
6063         * be moved to another group. You have to call Save() to make this
6064         * persistent to the file.
6065         *
6066         * @param pGroup - group to delete
6067         * @throws gig::Exception if given group could not be found
6068         */
6069        void File::DeleteGroupOnly(Group* pGroup) {
6070            if (!pGroups) LoadGroups();
6071            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6072            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6073            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6074            // move all members of this group to another group
6075            pGroup->MoveAll();
6076            pGroups->erase(iter);
6077            delete pGroup;
6078        }
6079    
6080        void File::LoadGroups() {
6081            if (!pGroups) pGroups = new std::list<Group*>;
6082            // try to read defined groups from file
6083            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6084            if (lst3gri) {
6085                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6086                if (lst3gnl) {
6087                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6088                    while (ck) {
6089                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6090                            if (pVersion && pVersion->major == 3 &&
6091                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6092    
6093                            pGroups->push_back(new Group(this, ck));
6094                        }
6095                        ck = lst3gnl->GetNextSubChunk();
6096                    }
6097                }
6098            }
6099            // if there were no group(s), create at least the mandatory default group
6100            if (!pGroups->size()) {
6101                Group* pGroup = new Group(this, NULL);
6102                pGroup->Name = "Default Group";
6103                pGroups->push_back(pGroup);
6104            }
6105        }
6106    
6107        /** @brief Get instrument script group (by index).
6108         *
6109         * Returns the real-time instrument script group with the given index.
6110         *
6111         * @param index - number of the sought group (0..n)
6112         * @returns sought script group or NULL if there's no such group
6113         */
6114        ScriptGroup* File::GetScriptGroup(uint index) {
6115            if (!pScriptGroups) LoadScriptGroups();
6116            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6117            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6118                if (i == index) return *it;
6119            return NULL;
6120        }
6121    
6122        /** @brief Get instrument script group (by name).
6123         *
6124         * Returns the first real-time instrument script group found with the given
6125         * group name. Note that group names may not necessarily be unique.
6126         *
6127         * @param name - name of the sought script group
6128         * @returns sought script group or NULL if there's no such group
6129         */
6130        ScriptGroup* File::GetScriptGroup(const String& name) {
6131            if (!pScriptGroups) LoadScriptGroups();
6132            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6133            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6134                if ((*it)->Name == name) return *it;
6135            return NULL;
6136        }
6137    
6138        /** @brief Add new instrument script group.
6139         *
6140         * Adds a new, empty real-time instrument script group to the file.
6141         *
6142         * You have to call Save() to make this persistent to the file.
6143         *
6144         * @return new empty script group
6145         */
6146        ScriptGroup* File::AddScriptGroup() {
6147            if (!pScriptGroups) LoadScriptGroups();
6148            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6149            pScriptGroups->push_back(pScriptGroup);
6150            return pScriptGroup;
6151        }
6152    
6153        /** @brief Delete an instrument script group.
6154         *
6155         * This will delete the given real-time instrument script group and all its
6156         * instrument scripts it contains. References inside instruments that are
6157         * using the deleted scripts will be removed from the respective instruments
6158         * accordingly.
6159         *
6160         * You have to call Save() to make this persistent to the file.
6161         *
6162         * @param pScriptGroup - script group to delete
6163         * @throws gig::Exception if given script group could not be found
6164         */
6165        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6166            if (!pScriptGroups) LoadScriptGroups();
6167            std::list<ScriptGroup*>::iterator iter =
6168                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6169            if (iter == pScriptGroups->end())
6170                throw gig::Exception("Could not delete script group, could not find given script group");
6171            pScriptGroups->erase(iter);
6172            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6173                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6174            if (pScriptGroup->pList)
6175                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6176            delete pScriptGroup;
6177        }
6178    
6179        void File::LoadScriptGroups() {
6180            if (pScriptGroups) return;
6181            pScriptGroups = new std::list<ScriptGroup*>;
6182            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6183            if (lstLS) {
6184                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6185                     lst = lstLS->GetNextSubList())
6186                {
6187                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6188                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6189                    }
6190                }
6191            }
6192        }
6193    
6194        /**
6195         * Apply all the gig file's current instruments, samples, groups and settings
6196         * to the respective RIFF chunks. You have to call Save() to make changes
6197         * persistent.
6198         *
6199         * Usually there is absolutely no need to call this method explicitly.
6200         * It will be called automatically when File::Save() was called.
6201         *
6202         * @param pProgress - callback function for progress notification
6203         * @throws Exception - on errors
6204         */
6205        void File::UpdateChunks(progress_t* pProgress) {
6206            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6207    
6208            // update own gig format extension chunks
6209            // (not part of the GigaStudio 4 format)
6210            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6211            if (!lst3LS) {
6212                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6213            }
6214            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6215            // location of <3LS > is irrelevant, however it should be located
6216            // before  the actual wave data
6217            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6218            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6219    
6220            // This must be performed before writing the chunks for instruments,
6221            // because the instruments' script slots will write the file offsets
6222            // of the respective instrument script chunk as reference.
6223            if (pScriptGroups) {
6224                // Update instrument script (group) chunks.
6225                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6226                     it != pScriptGroups->end(); ++it)
6227                {
6228                    (*it)->UpdateChunks(pProgress);
6229                }
6230            }
6231    
6232            // in case no libgig custom format data was added, then remove the
6233            // custom "3LS " chunk again
6234            if (!lst3LS->CountSubChunks()) {
6235                pRIFF->DeleteSubChunk(lst3LS);
6236                lst3LS = NULL;
6237            }
6238    
6239            // first update base class's chunks
6240            DLS::File::UpdateChunks(pProgress);
6241    
6242            if (newFile) {
6243                // INFO was added by Resource::UpdateChunks - make sure it
6244                // is placed first in file
6245                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6246                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6247                if (first != info) {
6248                    pRIFF->MoveSubChunk(info, first);
6249                }
6250            }
6251    
6252            // update group's chunks
6253            if (pGroups) {
6254                // make sure '3gri' and '3gnl' list chunks exist
6255                // (before updating the Group chunks)
6256                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6257                if (!_3gri) {
6258                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6259                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6260                }
6261                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6262                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6263    
6264                // v3: make sure the file has 128 3gnm chunks
6265                // (before updating the Group chunks)
6266                if (pVersion && pVersion->major == 3) {
6267                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6268                    for (int i = 0 ; i < 128 ; i++) {
6269                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6270                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6271                    }
6272                }
6273    
6274                std::list<Group*>::iterator iter = pGroups->begin();
6275                std::list<Group*>::iterator end  = pGroups->end();
6276                for (; iter != end; ++iter) {
6277                    (*iter)->UpdateChunks(pProgress);
6278                }
6279            }
6280    
6281            // update einf chunk
6282    
6283            // The einf chunk contains statistics about the gig file, such
6284            // as the number of regions and samples used by each
6285            // instrument. It is divided in equally sized parts, where the
6286            // first part contains information about the whole gig file,
6287            // and the rest of the parts map to each instrument in the
6288            // file.
6289            //
6290            // At the end of each part there is a bit map of each sample
6291            // in the file, where a set bit means that the sample is used
6292            // by the file/instrument.
6293            //
6294            // Note that there are several fields with unknown use. These
6295            // are set to zero.
6296    
6297            int sublen = int(pSamples->size() / 8 + 49);
6298            int einfSize = (Instruments + 1) * sublen;
6299    
6300            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6301            if (einf) {
6302                if (einf->GetSize() != einfSize) {
6303                    einf->Resize(einfSize);
6304                    memset(einf->LoadChunkData(), 0, einfSize);
6305                }
6306            } else if (newFile) {
6307                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6308            }
6309            if (einf) {
6310                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6311    
6312                std::map<gig::Sample*,int> sampleMap;
6313                int sampleIdx = 0;
6314                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6315                    sampleMap[pSample] = sampleIdx++;
6316                }
6317    
6318                int totnbusedsamples = 0;
6319                int totnbusedchannels = 0;
6320                int totnbregions = 0;
6321                int totnbdimregions = 0;
6322                int totnbloops = 0;
6323                int instrumentIdx = 0;
6324    
6325                memset(&pData[48], 0, sublen - 48);
6326    
6327                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6328                     instrument = GetNextInstrument()) {
6329                    int nbusedsamples = 0;
6330                    int nbusedchannels = 0;
6331                    int nbdimregions = 0;
6332                    int nbloops = 0;
6333    
6334                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6335    
6336                    for (Region* region = instrument->GetFirstRegion() ; region ;
6337                         region = instrument->GetNextRegion()) {
6338                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6339                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6340                            if (d->pSample) {
6341                                int sampleIdx = sampleMap[d->pSample];
6342                                int byte = 48 + sampleIdx / 8;
6343                                int bit = 1 << (sampleIdx & 7);
6344                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6345                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6346                                    nbusedsamples++;
6347                                    nbusedchannels += d->pSample->Channels;
6348    
6349                                    if ((pData[byte] & bit) == 0) {
6350                                        pData[byte] |= bit;
6351                                        totnbusedsamples++;
6352                                        totnbusedchannels += d->pSample->Channels;
6353                                    }
6354                                }
6355                            }
6356                            if (d->SampleLoops) nbloops++;
6357                        }
6358                        nbdimregions += region->DimensionRegions;
6359                    }
6360                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6361                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6362                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6363                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6364                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6365                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6366                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6367                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6368                    // next 8 bytes unknown
6369                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6370                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6371                    // next 4 bytes unknown
6372    
6373                    totnbregions += instrument->Regions;
6374                    totnbdimregions += nbdimregions;
6375                    totnbloops += nbloops;
6376                    instrumentIdx++;
6377                }
6378                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6379                // store32(&pData[0], sublen);
6380                store32(&pData[4], totnbusedchannels);
6381                store32(&pData[8], totnbusedsamples);
6382                store32(&pData[12], Instruments);
6383                store32(&pData[16], totnbregions);
6384                store32(&pData[20], totnbdimregions);
6385                store32(&pData[24], totnbloops);
6386                // next 8 bytes unknown
6387                // next 4 bytes unknown, not always 0
6388                store32(&pData[40], (uint32_t) pSamples->size());
6389                // next 4 bytes unknown
6390            }
6391    
6392            // update 3crc chunk
6393    
6394            // The 3crc chunk contains CRC-32 checksums for the
6395            // samples. When saving a gig file to disk, we first update the 3CRC
6396            // chunk here (in RAM) with the old crc values which we read from the
6397            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6398            // member variable). This step is required, because samples might have
6399            // been deleted by the user since the file was opened, which in turn
6400            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6401            // If a sample was conciously modified by the user (that is if
6402            // Sample::Write() was called later on) then Sample::Write() will just
6403            // update the respective individual checksum(s) directly on disk and
6404            // leaves all other sample checksums untouched.
6405    
6406            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6407            if (_3crc) {
6408                _3crc->Resize(pSamples->size() * 8);
6409            } else /*if (newFile)*/ {
6410                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6411                // the order of einf and 3crc is not the same in v2 and v3
6412                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6413            }
6414            { // must be performed in RAM here ...
6415                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6416                if (pData) {
6417                    File::SampleList::iterator iter = pSamples->begin();
6418                    File::SampleList::iterator end  = pSamples->end();
6419                    for (int index = 0; iter != end; ++iter, ++index) {
6420                        gig::Sample* pSample = (gig::Sample*) *iter;
6421                        pData[index*2]   = 1; // always 1
6422                        pData[index*2+1] = pSample->crc;
6423                    }
6424                }
6425            }
6426        }
6427        
6428        void File::UpdateFileOffsets() {
6429            DLS::File::UpdateFileOffsets();
6430    
6431            for (Instrument* instrument = GetFirstInstrument(); instrument;
6432                 instrument = GetNextInstrument())
6433            {
6434                instrument->UpdateScriptFileOffsets();
6435            }
6436        }
6437    
6438        /**
6439         * Enable / disable automatic loading. By default this properyt is
6440         * enabled and all informations are loaded automatically. However
6441         * loading all Regions, DimensionRegions and especially samples might
6442         * take a long time for large .gig files, and sometimes one might only
6443         * be interested in retrieving very superficial informations like the
6444         * amount of instruments and their names. In this case one might disable
6445         * automatic loading to avoid very slow response times.
6446         *
6447         * @e CAUTION: by disabling this property many pointers (i.e. sample
6448         * references) and informations will have invalid or even undefined
6449         * data! This feature is currently only intended for retrieving very
6450         * superficial informations in a very fast way. Don't use it to retrieve
6451         * details like synthesis informations or even to modify .gig files!
6452         */
6453        void File::SetAutoLoad(bool b) {
6454            bAutoLoad = b;
6455        }
6456    
6457        /**
6458         * Returns whether automatic loading is enabled.
6459         * @see SetAutoLoad()
6460         */
6461        bool File::GetAutoLoad() {
6462            return bAutoLoad;
6463      }      }
6464    
6465    
# Line 1097  namespace gig { Line 6474  namespace gig {
6474          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6475      }      }
6476    
6477    
6478    // *************** functions ***************
6479    // *
6480    
6481        /**
6482         * Returns the name of this C++ library. This is usually "libgig" of
6483         * course. This call is equivalent to RIFF::libraryName() and
6484         * DLS::libraryName().
6485         */
6486        String libraryName() {
6487            return PACKAGE;
6488        }
6489    
6490        /**
6491         * Returns version of this C++ library. This call is equivalent to
6492         * RIFF::libraryVersion() and DLS::libraryVersion().
6493         */
6494        String libraryVersion() {
6495            return VERSION;
6496        }
6497    
6498  } // namespace gig  } // namespace gig

Legend:
Removed from v.16  
changed lines
  Added in v.3138

  ViewVC Help
Powered by ViewVC