--- libgig/trunk/src/gig.cpp 2003/10/25 20:15:04 2 +++ libgig/trunk/src/gig.cpp 2004/12/04 14:13:49 317 @@ -2,8 +2,8 @@ * * * libgig - C++ cross-platform Gigasampler format file loader library * * * - * Copyright (C) 2003 by Christian Schoenebeck * - * * + * Copyright (C) 2003, 2004 by Christian Schoenebeck * + * * * * * This library is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * @@ -45,10 +45,11 @@ Product = smpl->ReadInt32(); SamplePeriod = smpl->ReadInt32(); MIDIUnityNote = smpl->ReadInt32(); - MIDIPitchFraction = smpl->ReadInt32(); + FineTune = smpl->ReadInt32(); smpl->Read(&SMPTEFormat, 1, 4); SMPTEOffset = smpl->ReadInt32(); Loops = smpl->ReadInt32(); + uint32_t manufByt = smpl->ReadInt32(); LoopID = smpl->ReadInt32(); smpl->Read(&LoopType, 1, 4); LoopStart = smpl->ReadInt32(); @@ -65,12 +66,20 @@ Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV)); if (Compressed) { ScanCompressedSample(); - if (!pDecompressionBuffer) { - pDecompressionBuffer = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE]; - DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE; - } + } + + if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported"); + if (Compressed && Channels == 1) throw gig::Exception("Mono compressed samples not yet supported"); + if (Compressed && BitDepth == 24) throw gig::Exception("24 bit compressed samples not yet supported"); + + // we use a buffer for decompression and for truncating 24 bit samples to 16 bit + if ((Compressed || BitDepth == 24) && !pDecompressionBuffer) { + pDecompressionBuffer = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE]; + DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE; } FrameOffset = 0; // just for streaming compressed samples + + LoopSize = LoopEnd - LoopStart; } /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points). @@ -310,6 +319,181 @@ } /** + * Reads \a SampleCount number of sample points from the position stored + * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves + * the position within the sample respectively, this method honors the + * looping informations of the sample (if any). The sample wave stream + * will be decompressed on the fly if using a compressed sample. Use this + * method if you don't want to load the sample into RAM, thus for disk + * streaming. All this methods needs to know to proceed with streaming + * for the next time you call this method is stored in \a pPlaybackState. + * You have to allocate and initialize the playback_state_t structure by + * yourself before you use it to stream a sample: + * + * + * gig::playback_state_t playbackstate;
+ * playbackstate.position = 0;
+ * playbackstate.reverse = false;
+ * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
+ *
+ * + * You don't have to take care of things like if there is actually a loop + * defined or if the current read position is located within a loop area. + * The method already handles such cases by itself. + * + * @param pBuffer destination buffer + * @param SampleCount number of sample points to read + * @param pPlaybackState will be used to store and reload the playback + * state for the next ReadAndLoop() call + * @returns number of successfully read sample points + */ + unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) { + unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend; + uint8_t* pDst = (uint8_t*) pBuffer; + + SetPos(pPlaybackState->position); // recover position from the last time + + if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined + + switch (this->LoopType) { + + case loop_type_bidirectional: { //TODO: not tested yet! + do { + // if not endless loop check if max. number of loop cycles have been passed + if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; + + if (!pPlaybackState->reverse) { // forward playback + do { + samplestoloopend = this->LoopEnd - GetPos(); + readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend)); + samplestoread -= readsamples; + totalreadsamples += readsamples; + if (readsamples == samplestoloopend) { + pPlaybackState->reverse = true; + break; + } + } while (samplestoread && readsamples); + } + else { // backward playback + + // as we can only read forward from disk, we have to + // determine the end position within the loop first, + // read forward from that 'end' and finally after + // reading, swap all sample frames so it reflects + // backward playback + + unsigned long swapareastart = totalreadsamples; + unsigned long loopoffset = GetPos() - this->LoopStart; + unsigned long samplestoreadinloop = Min(samplestoread, loopoffset); + unsigned long reverseplaybackend = GetPos() - samplestoreadinloop; + + SetPos(reverseplaybackend); + + // read samples for backward playback + do { + readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop); + samplestoreadinloop -= readsamples; + samplestoread -= readsamples; + totalreadsamples += readsamples; + } while (samplestoreadinloop && readsamples); + + SetPos(reverseplaybackend); // pretend we really read backwards + + if (reverseplaybackend == this->LoopStart) { + pPlaybackState->loop_cycles_left--; + pPlaybackState->reverse = false; + } + + // reverse the sample frames for backward playback + SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); + } + } while (samplestoread && readsamples); + break; + } + + case loop_type_backward: { // TODO: not tested yet! + // forward playback (not entered the loop yet) + if (!pPlaybackState->reverse) do { + samplestoloopend = this->LoopEnd - GetPos(); + readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend)); + samplestoread -= readsamples; + totalreadsamples += readsamples; + if (readsamples == samplestoloopend) { + pPlaybackState->reverse = true; + break; + } + } while (samplestoread && readsamples); + + if (!samplestoread) break; + + // as we can only read forward from disk, we have to + // determine the end position within the loop first, + // read forward from that 'end' and finally after + // reading, swap all sample frames so it reflects + // backward playback + + unsigned long swapareastart = totalreadsamples; + unsigned long loopoffset = GetPos() - this->LoopStart; + unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset) + : samplestoread; + unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize); + + SetPos(reverseplaybackend); + + // read samples for backward playback + do { + // if not endless loop check if max. number of loop cycles have been passed + if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; + samplestoloopend = this->LoopEnd - GetPos(); + readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend)); + samplestoreadinloop -= readsamples; + samplestoread -= readsamples; + totalreadsamples += readsamples; + if (readsamples == samplestoloopend) { + pPlaybackState->loop_cycles_left--; + SetPos(this->LoopStart); + } + } while (samplestoreadinloop && readsamples); + + SetPos(reverseplaybackend); // pretend we really read backwards + + // reverse the sample frames for backward playback + SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); + break; + } + + default: case loop_type_normal: { + do { + // if not endless loop check if max. number of loop cycles have been passed + if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; + samplestoloopend = this->LoopEnd - GetPos(); + readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend)); + samplestoread -= readsamples; + totalreadsamples += readsamples; + if (readsamples == samplestoloopend) { + pPlaybackState->loop_cycles_left--; + SetPos(this->LoopStart); + } + } while (samplestoread && readsamples); + break; + } + } + } + + // read on without looping + if (samplestoread) do { + readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread); + samplestoread -= readsamples; + totalreadsamples += readsamples; + } while (readsamples && samplestoread); + + // store current position + pPlaybackState->position = GetPos(); + + return totalreadsamples; + } + + /** * Reads \a SampleCount number of sample points from the current * position into the buffer pointed by \a pBuffer and increments the * position within the sample. The sample wave stream will be @@ -323,8 +507,25 @@ * @see SetPos() */ unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) { - if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); + if (SampleCount == 0) return 0; + if (!Compressed) { + if (BitDepth == 24) { + // 24 bit sample. For now just truncate to 16 bit. + int8_t* pSrc = (int8_t*)this->pDecompressionBuffer; + int8_t* pDst = (int8_t*)pBuffer; + unsigned long n = pCkData->Read(pSrc, SampleCount, FrameSize); + for (int i = SampleCount * (FrameSize / 3) ; i > 0 ; i--) { + pSrc++; + *pDst++ = *pSrc++; + *pDst++ = *pSrc++; + } + return SampleCount; + } else { + return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction? + } + } else { //FIXME: no support for mono compressed samples yet, are there any? + if (this->SamplePos >= this->SamplesTotal) return 0; //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate // best case needed buffer size (all frames compressed) unsigned long assumedsize = (SampleCount << 1) + // *2 (16 Bit, stereo, but assume all frames compressed) @@ -353,8 +554,7 @@ // reload from disk to local buffer if needed if (remainingbytes < 8194) { if (pCkData->GetState() != RIFF::stream_ready) { - this->SamplePos += (SampleCount - remainingsamples); - //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; + this->SamplePos = this->SamplesTotal; return (SampleCount - remainingsamples); } assumedsize = remainingsamples; @@ -474,7 +674,7 @@ } } this->SamplePos += (SampleCount - remainingsamples); - //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; + if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; return (SampleCount - remainingsamples); } } @@ -491,11 +691,17 @@ // *************** DimensionRegion *************** // * + uint DimensionRegion::Instances = 0; + DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL; + DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) { + Instances++; + memcpy(&Crossfade, &SamplerOptions, 4); + if (!pVelocityTables) pVelocityTables = new VelocityTableMap; RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA); - _3ewa->ReadInt32(); // unknown, allways 0x0000008C ? + _3ewa->ReadInt32(); // unknown, always 0x0000008C ? LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); _3ewa->ReadInt16(); // unknown @@ -511,13 +717,13 @@ _3ewa->ReadInt16(); // unknown EG1Sustain = _3ewa->ReadUint16(); EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); - EG1Controller = static_cast(_3ewa->ReadUint8()); + EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); uint8_t eg1ctrloptions = _3ewa->ReadUint8(); EG1ControllerInvert = eg1ctrloptions & 0x01; EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions); EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions); EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions); - EG2Controller = static_cast(_3ewa->ReadUint8()); + EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); uint8_t eg2ctrloptions = _3ewa->ReadUint8(); EG2ControllerInvert = eg2ctrloptions & 0x01; EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions); @@ -579,7 +785,7 @@ ReleaseVelocityResponseDepth = 0; } VelocityResponseCurveScaling = _3ewa->ReadUint8(); - AttenuationControlTreshold = _3ewa->ReadInt8(); + AttenuationControllerThreshold = _3ewa->ReadInt8(); _3ewa->ReadInt32(); // unknown SampleStartOffset = (uint16_t) _3ewa->ReadInt16(); _3ewa->ReadInt16(); // unknown @@ -589,18 +795,18 @@ else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95; else DimensionBypass = dim_bypass_ctrl_none; uint8_t pan = _3ewa->ReadUint8(); - Pan = (pan < 64) ? pan : (-1) * (int8_t)pan - 63; + Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit SelfMask = _3ewa->ReadInt8() & 0x01; _3ewa->ReadInt8(); // unknown uint8_t lfo3ctrl = _3ewa->ReadUint8(); LFO3Controller = static_cast(lfo3ctrl & 0x07); // lower 3 bits LFO3Sync = lfo3ctrl & 0x20; // bit 5 - InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7 + InvertAttenuationController = lfo3ctrl & 0x80; // bit 7 if (VCFType == vcf_type_lowpass) { if (lfo3ctrl & 0x40) // bit 6 VCFType = vcf_type_lowpassturbo; } - AttenuationControl = static_cast(_3ewa->ReadUint8()); + AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); uint8_t lfo2ctrl = _3ewa->ReadUint8(); LFO2Controller = static_cast(lfo2ctrl & 0x07); // lower 3 bits LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7 @@ -644,8 +850,231 @@ VCFVelocityDynamicRange = vcfvelocity % 5; VCFVelocityCurve = static_cast(vcfvelocity / 5); VCFType = static_cast(_3ewa->ReadUint8()); + + // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet + uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling; + if (pVelocityTables->count(tableKey)) { // if key exists + pVelocityAttenuationTable = (*pVelocityTables)[tableKey]; + } + else { + pVelocityAttenuationTable = + CreateVelocityTable(VelocityResponseCurve, + VelocityResponseDepth, + VelocityResponseCurveScaling); + (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map + } + } + + leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) { + leverage_ctrl_t decodedcontroller; + switch (EncodedController) { + // special controller + case _lev_ctrl_none: + decodedcontroller.type = leverage_ctrl_t::type_none; + decodedcontroller.controller_number = 0; + break; + case _lev_ctrl_velocity: + decodedcontroller.type = leverage_ctrl_t::type_velocity; + decodedcontroller.controller_number = 0; + break; + case _lev_ctrl_channelaftertouch: + decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch; + decodedcontroller.controller_number = 0; + break; + + // ordinary MIDI control change controller + case _lev_ctrl_modwheel: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 1; + break; + case _lev_ctrl_breath: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 2; + break; + case _lev_ctrl_foot: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 4; + break; + case _lev_ctrl_effect1: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 12; + break; + case _lev_ctrl_effect2: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 13; + break; + case _lev_ctrl_genpurpose1: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 16; + break; + case _lev_ctrl_genpurpose2: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 17; + break; + case _lev_ctrl_genpurpose3: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 18; + break; + case _lev_ctrl_genpurpose4: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 19; + break; + case _lev_ctrl_portamentotime: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 5; + break; + case _lev_ctrl_sustainpedal: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 64; + break; + case _lev_ctrl_portamento: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 65; + break; + case _lev_ctrl_sostenutopedal: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 66; + break; + case _lev_ctrl_softpedal: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 67; + break; + case _lev_ctrl_genpurpose5: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 80; + break; + case _lev_ctrl_genpurpose6: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 81; + break; + case _lev_ctrl_genpurpose7: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 82; + break; + case _lev_ctrl_genpurpose8: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 83; + break; + case _lev_ctrl_effect1depth: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 91; + break; + case _lev_ctrl_effect2depth: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 92; + break; + case _lev_ctrl_effect3depth: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 93; + break; + case _lev_ctrl_effect4depth: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 94; + break; + case _lev_ctrl_effect5depth: + decodedcontroller.type = leverage_ctrl_t::type_controlchange; + decodedcontroller.controller_number = 95; + break; + + // unknown controller type + default: + throw gig::Exception("Unknown leverage controller type."); + } + return decodedcontroller; + } + + DimensionRegion::~DimensionRegion() { + Instances--; + if (!Instances) { + // delete the velocity->volume tables + VelocityTableMap::iterator iter; + for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) { + double* pTable = iter->second; + if (pTable) delete[] pTable; + } + pVelocityTables->clear(); + delete pVelocityTables; + pVelocityTables = NULL; + } + } + + /** + * Returns the correct amplitude factor for the given \a MIDIKeyVelocity. + * All involved parameters (VelocityResponseCurve, VelocityResponseDepth + * and VelocityResponseCurveScaling) involved are taken into account to + * calculate the amplitude factor. Use this method when a key was + * triggered to get the volume with which the sample should be played + * back. + * + * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127) + * @returns amplitude factor (between 0.0 and 1.0) + */ + double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) { + return pVelocityAttenuationTable[MIDIKeyVelocity]; } + double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) { + + // line-segment approximations of the 15 velocity curves + + // linear + const int lin0[] = { 1, 1, 127, 127 }; + const int lin1[] = { 1, 21, 127, 127 }; + const int lin2[] = { 1, 45, 127, 127 }; + const int lin3[] = { 1, 74, 127, 127 }; + const int lin4[] = { 1, 127, 127, 127 }; + + // non-linear + const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 }; + const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127, + 127, 127 }; + const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127, + 127, 127 }; + const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127, + 127, 127 }; + const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 }; + + // special + const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44, + 113, 127, 127, 127 }; + const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67, + 118, 127, 127, 127 }; + const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74, + 85, 90, 91, 127, 127, 127 }; + const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73, + 117, 127, 127, 127 }; + const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127, + 127, 127 }; + + const int* const curves[] = { non0, non1, non2, non3, non4, + lin0, lin1, lin2, lin3, lin4, + spe0, spe1, spe2, spe3, spe4 }; + + double* const table = new double[128]; + + const int* curve = curves[curveType * 5 + depth]; + const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling + + table[0] = 0; + for (int x = 1 ; x < 128 ; x++) { + + if (x > curve[2]) curve += 2; + double y = curve[1] + (x - curve[0]) * + (double(curve[3] - curve[1]) / (curve[2] - curve[0])); + y = y / 127; + + // Scale up for s > 20, down for s < 20. When + // down-scaling, the curve still ends at 1.0. + if (s < 20 && y >= 0.5) + y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1); + else + y = y * (s / 20.0); + if (y > 1) y = 1; + + table[x] = y; + } + return table; + } // *************** Region *************** @@ -657,6 +1086,7 @@ for (int i = 0; i < 32; i++) { pDimensionRegions[i] = NULL; } + Layers = 1; // Actual Loading @@ -681,13 +1111,17 @@ pDimensionDefinitions[i].bits = bits; pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits) pDimensionDefinitions[i].split_type = (dimension == dimension_layer || - dimension == dimension_samplechannel) ? split_type_bit - : split_type_normal; + dimension == dimension_samplechannel || + dimension == dimension_releasetrigger) ? split_type_bit + : split_type_normal; pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point pDimensionDefinitions[i].zone_size = (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones : 0; Dimensions++; + + // if this is a layer dimension, remember the amount of layers + if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones; } _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition } @@ -722,8 +1156,14 @@ } } + // jump to start of the wave pool indices (if not already there) + File* file = (File*) GetParent()->GetParent(); + if (file->pVersion && file->pVersion->major == 3) + _3lnk->SetPos(68); // version 3 has a different 3lnk structure + else + _3lnk->SetPos(44); + // load sample references - _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there) for (uint i = 0; i < DimensionRegions; i++) { uint32_t wavepoolindex = _3lnk->ReadUint32(); pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex); @@ -780,7 +1220,7 @@ * @see Dimensions */ DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) { - unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val}; + uint8_t bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val}; for (uint i = 0; i < Dimensions; i++) { switch (pDimensionDefinitions[i].split_type) { case split_type_normal: @@ -789,7 +1229,10 @@ case split_type_customvelocity: bits[i] = VelocityTable[bits[i]]; break; - // else the value is already the sought dimension bit number + case split_type_bit: // the value is already the sought dimension bit number + const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff; + bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed + break; } } return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]); @@ -995,6 +1438,22 @@ return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL; } + /** + * Returns the instrument with the given index. + * + * @returns sought instrument or NULL if there's no such instrument + */ + Instrument* File::GetInstrument(uint index) { + if (!pInstruments) LoadInstruments(); + if (!pInstruments) return NULL; + InstrumentsIterator = pInstruments->begin(); + for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) { + if (i == index) return *InstrumentsIterator; + InstrumentsIterator++; + } + return NULL; + } + void File::LoadInstruments() { RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS); if (lstInstruments) {