/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2 by schoenebeck, Sat Oct 25 20:15:04 2003 UTC revision 3324 by schoenebeck, Fri Jul 21 13:05:39 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30    #include <math.h>
31    #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38    /// Initial size of the sample buffer which is used for decompression of
39    /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59    #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
61    
62  namespace gig {  namespace gig {
63    
64    // *************** Internal functions for sample decompression ***************
65    // *
66    
67    namespace {
68    
69        inline int get12lo(const unsigned char* pSrc)
70        {
71            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72            return x & 0x800 ? x - 0x1000 : x;
73        }
74    
75        inline int get12hi(const unsigned char* pSrc)
76        {
77            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78            return x & 0x800 ? x - 0x1000 : x;
79        }
80    
81        inline int16_t get16(const unsigned char* pSrc)
82        {
83            return int16_t(pSrc[0] | pSrc[1] << 8);
84        }
85    
86        inline int get24(const unsigned char* pSrc)
87        {
88            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89            return x & 0x800000 ? x - 0x1000000 : x;
90        }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99        void Decompress16(int compressionmode, const unsigned char* params,
100                          int srcStep, int dstStep,
101                          const unsigned char* pSrc, int16_t* pDst,
102                          file_offset_t currentframeoffset,
103                          file_offset_t copysamples)
104        {
105            switch (compressionmode) {
106                case 0: // 16 bit uncompressed
107                    pSrc += currentframeoffset * srcStep;
108                    while (copysamples) {
109                        *pDst = get16(pSrc);
110                        pDst += dstStep;
111                        pSrc += srcStep;
112                        copysamples--;
113                    }
114                    break;
115    
116                case 1: // 16 bit compressed to 8 bit
117                    int y  = get16(params);
118                    int dy = get16(params + 2);
119                    while (currentframeoffset) {
120                        dy -= int8_t(*pSrc);
121                        y  -= dy;
122                        pSrc += srcStep;
123                        currentframeoffset--;
124                    }
125                    while (copysamples) {
126                        dy -= int8_t(*pSrc);
127                        y  -= dy;
128                        *pDst = y;
129                        pDst += dstStep;
130                        pSrc += srcStep;
131                        copysamples--;
132                    }
133                    break;
134            }
135        }
136    
137        void Decompress24(int compressionmode, const unsigned char* params,
138                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                          file_offset_t currentframeoffset,
140                          file_offset_t copysamples, int truncatedBits)
141        {
142            int y, dy, ddy, dddy;
143    
144    #define GET_PARAMS(params)                      \
145            y    = get24(params);                   \
146            dy   = y - get24((params) + 3);         \
147            ddy  = get24((params) + 6);             \
148            dddy = get24((params) + 9)
149    
150    #define SKIP_ONE(x)                             \
151            dddy -= (x);                            \
152            ddy  -= dddy;                           \
153            dy   =  -dy - ddy;                      \
154            y    += dy
155    
156    #define COPY_ONE(x)                             \
157            SKIP_ONE(x);                            \
158            store24(pDst, y << truncatedBits);      \
159            pDst += dstStep
160    
161            switch (compressionmode) {
162                case 2: // 24 bit uncompressed
163                    pSrc += currentframeoffset * 3;
164                    while (copysamples) {
165                        store24(pDst, get24(pSrc) << truncatedBits);
166                        pDst += dstStep;
167                        pSrc += 3;
168                        copysamples--;
169                    }
170                    break;
171    
172                case 3: // 24 bit compressed to 16 bit
173                    GET_PARAMS(params);
174                    while (currentframeoffset) {
175                        SKIP_ONE(get16(pSrc));
176                        pSrc += 2;
177                        currentframeoffset--;
178                    }
179                    while (copysamples) {
180                        COPY_ONE(get16(pSrc));
181                        pSrc += 2;
182                        copysamples--;
183                    }
184                    break;
185    
186                case 4: // 24 bit compressed to 12 bit
187                    GET_PARAMS(params);
188                    while (currentframeoffset > 1) {
189                        SKIP_ONE(get12lo(pSrc));
190                        SKIP_ONE(get12hi(pSrc));
191                        pSrc += 3;
192                        currentframeoffset -= 2;
193                    }
194                    if (currentframeoffset) {
195                        SKIP_ONE(get12lo(pSrc));
196                        currentframeoffset--;
197                        if (copysamples) {
198                            COPY_ONE(get12hi(pSrc));
199                            pSrc += 3;
200                            copysamples--;
201                        }
202                    }
203                    while (copysamples > 1) {
204                        COPY_ONE(get12lo(pSrc));
205                        COPY_ONE(get12hi(pSrc));
206                        pSrc += 3;
207                        copysamples -= 2;
208                    }
209                    if (copysamples) {
210                        COPY_ONE(get12lo(pSrc));
211                    }
212                    break;
213    
214                case 5: // 24 bit compressed to 8 bit
215                    GET_PARAMS(params);
216                    while (currentframeoffset) {
217                        SKIP_ONE(int8_t(*pSrc++));
218                        currentframeoffset--;
219                    }
220                    while (copysamples) {
221                        COPY_ONE(int8_t(*pSrc++));
222                        copysamples--;
223                    }
224                    break;
225            }
226        }
227    
228        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
229        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
231        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
232    }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
369      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
370    
371      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
372         *
373         * Load an existing sample or create a new one. A 'wave' list chunk must
374         * be given to this constructor. In case the given 'wave' list chunk
375         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376         * format and sample data will be loaded from there, otherwise default
377         * values will be used and those chunks will be created when
378         * File::Save() will be called later on.
379         *
380         * @param pFile          - pointer to gig::File where this sample is
381         *                         located (or will be located)
382         * @param waveList       - pointer to 'wave' list chunk which is (or
383         *                         will be) associated with this sample
384         * @param WavePoolOffset - offset of this sample data from wave pool
385         *                         ('wvpl') list chunk
386         * @param fileNo         - number of an extension file where this sample
387         *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389         */
390        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399            FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
415          SampleGroup = _3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
416                pGroup = pFile->GetGroup(iSampleGroup);
417          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          } else { // '3gix' chunk missing
418          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              // by default assigned to that mandatory "Default Group"
419          Manufacturer      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
420          Product           = smpl->ReadInt32();          }
421          SamplePeriod      = smpl->ReadInt32();  
422          MIDIUnityNote     = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423          MIDIPitchFraction = smpl->ReadInt32();          if (pCkSmpl) {
424          smpl->Read(&SMPTEFormat, 1, 4);              Manufacturer  = pCkSmpl->ReadInt32();
425          SMPTEOffset       = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
426          Loops             = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
427          LoopID            = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
428          smpl->Read(&LoopType, 1, 4);              FineTune      = pCkSmpl->ReadInt32();
429          LoopStart         = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
430          LoopEnd           = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
431          LoopFraction      = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
432          LoopPlayCount     = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
433                LoopID        = pCkSmpl->ReadInt32();
434                pCkSmpl->Read(&LoopType, 1, 4);
435                LoopStart     = pCkSmpl->ReadInt32();
436                LoopEnd       = pCkSmpl->ReadInt32();
437                LoopFraction  = pCkSmpl->ReadInt32();
438                LoopPlayCount = pCkSmpl->ReadInt32();
439            } else { // 'smpl' chunk missing
440                // use default values
441                Manufacturer  = 0;
442                Product       = 0;
443                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444                MIDIUnityNote = 60;
445                FineTune      = 0;
446                SMPTEFormat   = smpte_format_no_offset;
447                SMPTEOffset   = 0;
448                Loops         = 0;
449                LoopID        = 0;
450                LoopType      = loop_type_normal;
451                LoopStart     = 0;
452                LoopEnd       = 0;
453                LoopFraction  = 0;
454                LoopPlayCount = 0;
455            }
456    
457          FrameTable                 = NULL;          FrameTable                 = NULL;
458          SamplePos                  = 0;          SamplePos                  = 0;
# Line 62  namespace gig { Line 460  namespace gig {
460          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
461          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
462    
463          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464    
465            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466            Compressed        = ewav;
467            Dithered          = false;
468            TruncatedBits     = 0;
469          if (Compressed) {          if (Compressed) {
470                uint32_t version = ewav->ReadInt32();
471                if (version == 3 && BitDepth == 24) {
472                    Dithered = ewav->ReadInt32();
473                    ewav->SetPos(Channels == 2 ? 84 : 64);
474                    TruncatedBits = ewav->ReadInt32();
475                }
476              ScanCompressedSample();              ScanCompressedSample();
477              if (!pDecompressionBuffer) {          }
478                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];  
479                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
483            }
484            FrameOffset = 0; // just for streaming compressed samples
485    
486            LoopSize = LoopEnd - LoopStart + 1;
487        }
488    
489        /**
490         * Make a (semi) deep copy of the Sample object given by @a orig (without
491         * the actual waveform data) and assign it to this object.
492         *
493         * Discussion: copying .gig samples is a bit tricky. It requires three
494         * steps:
495         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496         *    its new sample waveform data size.
497         * 2. Saving the file (done by File::Save()) so that it gains correct size
498         *    and layout for writing the actual wave form data directly to disc
499         *    in next step.
500         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501         *
502         * @param orig - original Sample object to be copied from
503         */
504        void Sample::CopyAssignMeta(const Sample* orig) {
505            // handle base classes
506            DLS::Sample::CopyAssignCore(orig);
507            
508            // handle actual own attributes of this class
509            Manufacturer = orig->Manufacturer;
510            Product = orig->Product;
511            SamplePeriod = orig->SamplePeriod;
512            MIDIUnityNote = orig->MIDIUnityNote;
513            FineTune = orig->FineTune;
514            SMPTEFormat = orig->SMPTEFormat;
515            SMPTEOffset = orig->SMPTEOffset;
516            Loops = orig->Loops;
517            LoopID = orig->LoopID;
518            LoopType = orig->LoopType;
519            LoopStart = orig->LoopStart;
520            LoopEnd = orig->LoopEnd;
521            LoopSize = orig->LoopSize;
522            LoopFraction = orig->LoopFraction;
523            LoopPlayCount = orig->LoopPlayCount;
524            
525            // schedule resizing this sample to the given sample's size
526            Resize(orig->GetSize());
527        }
528    
529        /**
530         * Should be called after CopyAssignMeta() and File::Save() sequence.
531         * Read more about it in the discussion of CopyAssignMeta(). This method
532         * copies the actual waveform data by disk streaming.
533         *
534         * @e CAUTION: this method is currently not thread safe! During this
535         * operation the sample must not be used for other purposes by other
536         * threads!
537         *
538         * @param orig - original Sample object to be copied from
539         */
540        void Sample::CopyAssignWave(const Sample* orig) {
541            const int iReadAtOnce = 32*1024;
542            char* buf = new char[iReadAtOnce * orig->FrameSize];
543            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544            file_offset_t restorePos = pOrig->GetPos();
545            pOrig->SetPos(0);
546            SetPos(0);
547            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548                               n = pOrig->Read(buf, iReadAtOnce))
549            {
550                Write(buf, n);
551            }
552            pOrig->SetPos(restorePos);
553            delete [] buf;
554        }
555    
556        /**
557         * Apply sample and its settings to the respective RIFF chunks. You have
558         * to call File::Save() to make changes persistent.
559         *
560         * Usually there is absolutely no need to call this method explicitly.
561         * It will be called automatically when File::Save() was called.
562         *
563         * @param pProgress - callback function for progress notification
564         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565         *                        was provided yet
566         * @throws gig::Exception if there is any invalid sample setting
567         */
568        void Sample::UpdateChunks(progress_t* pProgress) {
569            // first update base class's chunks
570            DLS::Sample::UpdateChunks(pProgress);
571    
572            // make sure 'smpl' chunk exists
573            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574            if (!pCkSmpl) {
575                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576                memset(pCkSmpl->LoadChunkData(), 0, 60);
577            }
578            // update 'smpl' chunk
579            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581            store32(&pData[0], Manufacturer);
582            store32(&pData[4], Product);
583            store32(&pData[8], SamplePeriod);
584            store32(&pData[12], MIDIUnityNote);
585            store32(&pData[16], FineTune);
586            store32(&pData[20], SMPTEFormat);
587            store32(&pData[24], SMPTEOffset);
588            store32(&pData[28], Loops);
589    
590            // we skip 'manufByt' for now (4 bytes)
591    
592            store32(&pData[36], LoopID);
593            store32(&pData[40], LoopType);
594            store32(&pData[44], LoopStart);
595            store32(&pData[48], LoopEnd);
596            store32(&pData[52], LoopFraction);
597            store32(&pData[56], LoopPlayCount);
598    
599            // make sure '3gix' chunk exists
600            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602            // determine appropriate sample group index (to be stored in chunk)
603            uint16_t iSampleGroup = 0; // 0 refers to default sample group
604            File* pFile = static_cast<File*>(pParent);
605            if (pFile->pGroups) {
606                std::list<Group*>::iterator iter = pFile->pGroups->begin();
607                std::list<Group*>::iterator end  = pFile->pGroups->end();
608                for (int i = 0; iter != end; i++, iter++) {
609                    if (*iter == pGroup) {
610                        iSampleGroup = i;
611                        break; // found
612                    }
613              }              }
614          }          }
615          FrameOffset = 0; // just for streaming compressed samples          // update '3gix' chunk
616            pData = (uint8_t*) pCk3gix->LoadChunkData();
617            store16(&pData[0], iSampleGroup);
618    
619            // if the library user toggled the "Compressed" attribute from true to
620            // false, then the EWAV chunk associated with compressed samples needs
621            // to be deleted
622            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623            if (ewav && !Compressed) {
624                pWaveList->DeleteSubChunk(ewav);
625            }
626      }      }
627    
628      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
630          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
631          this->SamplesTotal = 0;          this->SamplesTotal = 0;
632          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
633    
634            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636    
637          // Scanning          // Scanning
638          pCkData->SetPos(0);          pCkData->SetPos(0);
639          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
640              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
641              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
642              this->SamplesTotal += 2048;                  // stored, to save some memory
643              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644                  case 1:   // left channel compressed  
645                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
646                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
647                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649    
650                    if (pCkData->RemainingBytes() <= frameSize) {
651                        SamplesInLastFrame =
652                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654                        SamplesTotal += SamplesInLastFrame;
655                      break;                      break;
656                  case 257: // both channels compressed                  }
657                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
658                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
659                }
660            }
661            else { // Mono
662                for (int i = 0 ; ; i++) {
663                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664    
665                    const int mode = pCkData->ReadUint8();
666                    if (mode > 5) throw gig::Exception("Unknown compression mode");
667                    const file_offset_t frameSize = bytesPerFrame[mode];
668    
669                    if (pCkData->RemainingBytes() <= frameSize) {
670                        SamplesInLastFrame =
671                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672                        SamplesTotal += SamplesInLastFrame;
673                      break;                      break;
674                  default: // both channels uncompressed                  }
675                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
676                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
677              }              }
678          }          }
679          pCkData->SetPos(0);          pCkData->SetPos(0);
680    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
681          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
683          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
684          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
685          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
687              FrameTable[i] = *iter;              FrameTable[i] = *iter;
688          }          }
# Line 138  namespace gig { Line 713  namespace gig {
713       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
714       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
715       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
716       *       * @code
717       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
718       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
719         * @endcode
720       *       *
721       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
722       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
723       *                      the cached sample data in bytes       *                      the cached sample data in bytes
724       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
725       */       */
726      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728      }      }
729    
# Line 186  namespace gig { Line 762  namespace gig {
762       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
763       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
764       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
765       *       * @code
766       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
768       *       * @endcode
769       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
770       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
771       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 206  namespace gig { Line 782  namespace gig {
782       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
783       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
784       */       */
785      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789            SetPos(0); // reset read position to begin of sample
790          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
791          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 247  namespace gig { Line 824  namespace gig {
824          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
826          RAMCache.Size   = 0;          RAMCache.Size   = 0;
827            RAMCache.NullExtensionSize = 0;
828        }
829    
830        /** @brief Resize sample.
831         *
832         * Resizes the sample's wave form data, that is the actual size of
833         * sample wave data possible to be written for this sample. This call
834         * will return immediately and just schedule the resize operation. You
835         * should call File::Save() to actually perform the resize operation(s)
836         * "physically" to the file. As this can take a while on large files, it
837         * is recommended to call Resize() first on all samples which have to be
838         * resized and finally to call File::Save() to perform all those resize
839         * operations in one rush.
840         *
841         * The actual size (in bytes) is dependant to the current FrameSize
842         * value. You may want to set FrameSize before calling Resize().
843         *
844         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845         * enlarged samples before calling File::Save() as this might exceed the
846         * current sample's boundary!
847         *
848         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850         * other formats will fail!
851         *
852         * @param NewSize - new sample wave data size in sample points (must be
853         *                  greater than zero)
854         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856         * @throws gig::Exception if existing sample is compressed
857         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858         *      DLS::Sample::FormatTag, File::Save()
859         */
860        void Sample::Resize(file_offset_t NewSize) {
861            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862            DLS::Sample::Resize(NewSize);
863      }      }
864    
865      /**      /**
# Line 270  namespace gig { Line 883  namespace gig {
883       * @returns            the new sample position       * @returns            the new sample position
884       * @see                Read()       * @see                Read()
885       */       */
886      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887          if (Compressed) {          if (Compressed) {
888              switch (Whence) {              switch (Whence) {
889                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 288  namespace gig { Line 901  namespace gig {
901              }              }
902              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
906              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
907              return this->SamplePos;              return this->SamplePos;
908          }          }
909          else { // not compressed          else { // not compressed
910              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
911              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
913                                              : result / this->FrameSize;                                              : result / this->FrameSize;
914          }          }
# Line 304  namespace gig { Line 917  namespace gig {
917      /**      /**
918       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
919       */       */
920      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
921          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
922          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
923      }      }
924    
925      /**      /**
926         * Reads \a SampleCount number of sample points from the position stored
927         * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928         * the position within the sample respectively, this method honors the
929         * looping informations of the sample (if any). The sample wave stream
930         * will be decompressed on the fly if using a compressed sample. Use this
931         * method if you don't want to load the sample into RAM, thus for disk
932         * streaming. All this methods needs to know to proceed with streaming
933         * for the next time you call this method is stored in \a pPlaybackState.
934         * You have to allocate and initialize the playback_state_t structure by
935         * yourself before you use it to stream a sample:
936         * @code
937         * gig::playback_state_t playbackstate;
938         * playbackstate.position         = 0;
939         * playbackstate.reverse          = false;
940         * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941         * @endcode
942         * You don't have to take care of things like if there is actually a loop
943         * defined or if the current read position is located within a loop area.
944         * The method already handles such cases by itself.
945         *
946         * <b>Caution:</b> If you are using more than one streaming thread, you
947         * have to use an external decompression buffer for <b>EACH</b>
948         * streaming thread to avoid race conditions and crashes!
949         *
950         * @param pBuffer          destination buffer
951         * @param SampleCount      number of sample points to read
952         * @param pPlaybackState   will be used to store and reload the playback
953         *                         state for the next ReadAndLoop() call
954         * @param pDimRgn          dimension region with looping information
955         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
956         * @returns                number of successfully read sample points
957         * @see                    CreateDecompressionBuffer()
958         */
959        file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962            uint8_t* pDst = (uint8_t*) pBuffer;
963    
964            SetPos(pPlaybackState->position); // recover position from the last time
965    
966            if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967    
968                const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970    
971                if (GetPos() <= loopEnd) {
972                    switch (loop.LoopType) {
973    
974                        case loop_type_bidirectional: { //TODO: not tested yet!
975                            do {
976                                // if not endless loop check if max. number of loop cycles have been passed
977                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978    
979                                if (!pPlaybackState->reverse) { // forward playback
980                                    do {
981                                        samplestoloopend  = loopEnd - GetPos();
982                                        readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983                                        samplestoread    -= readsamples;
984                                        totalreadsamples += readsamples;
985                                        if (readsamples == samplestoloopend) {
986                                            pPlaybackState->reverse = true;
987                                            break;
988                                        }
989                                    } while (samplestoread && readsamples);
990                                }
991                                else { // backward playback
992    
993                                    // as we can only read forward from disk, we have to
994                                    // determine the end position within the loop first,
995                                    // read forward from that 'end' and finally after
996                                    // reading, swap all sample frames so it reflects
997                                    // backward playback
998    
999                                    file_offset_t swapareastart       = totalreadsamples;
1000                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1001                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1003    
1004                                    SetPos(reverseplaybackend);
1005    
1006                                    // read samples for backward playback
1007                                    do {
1008                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009                                        samplestoreadinloop -= readsamples;
1010                                        samplestoread       -= readsamples;
1011                                        totalreadsamples    += readsamples;
1012                                    } while (samplestoreadinloop && readsamples);
1013    
1014                                    SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016                                    if (reverseplaybackend == loop.LoopStart) {
1017                                        pPlaybackState->loop_cycles_left--;
1018                                        pPlaybackState->reverse = false;
1019                                    }
1020    
1021                                    // reverse the sample frames for backward playback
1022                                    if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023                                        SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024                                }
1025                            } while (samplestoread && readsamples);
1026                            break;
1027                        }
1028    
1029                        case loop_type_backward: { // TODO: not tested yet!
1030                            // forward playback (not entered the loop yet)
1031                            if (!pPlaybackState->reverse) do {
1032                                samplestoloopend  = loopEnd - GetPos();
1033                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034                                samplestoread    -= readsamples;
1035                                totalreadsamples += readsamples;
1036                                if (readsamples == samplestoloopend) {
1037                                    pPlaybackState->reverse = true;
1038                                    break;
1039                                }
1040                            } while (samplestoread && readsamples);
1041    
1042                            if (!samplestoread) break;
1043    
1044                            // as we can only read forward from disk, we have to
1045                            // determine the end position within the loop first,
1046                            // read forward from that 'end' and finally after
1047                            // reading, swap all sample frames so it reflects
1048                            // backward playback
1049    
1050                            file_offset_t swapareastart       = totalreadsamples;
1051                            file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1052                            file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053                                                                                      : samplestoread;
1054                            file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055    
1056                            SetPos(reverseplaybackend);
1057    
1058                            // read samples for backward playback
1059                            do {
1060                                // if not endless loop check if max. number of loop cycles have been passed
1061                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062                                samplestoloopend     = loopEnd - GetPos();
1063                                readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064                                samplestoreadinloop -= readsamples;
1065                                samplestoread       -= readsamples;
1066                                totalreadsamples    += readsamples;
1067                                if (readsamples == samplestoloopend) {
1068                                    pPlaybackState->loop_cycles_left--;
1069                                    SetPos(loop.LoopStart);
1070                                }
1071                            } while (samplestoreadinloop && readsamples);
1072    
1073                            SetPos(reverseplaybackend); // pretend we really read backwards
1074    
1075                            // reverse the sample frames for backward playback
1076                            SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077                            break;
1078                        }
1079    
1080                        default: case loop_type_normal: {
1081                            do {
1082                                // if not endless loop check if max. number of loop cycles have been passed
1083                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084                                samplestoloopend  = loopEnd - GetPos();
1085                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086                                samplestoread    -= readsamples;
1087                                totalreadsamples += readsamples;
1088                                if (readsamples == samplestoloopend) {
1089                                    pPlaybackState->loop_cycles_left--;
1090                                    SetPos(loop.LoopStart);
1091                                }
1092                            } while (samplestoread && readsamples);
1093                            break;
1094                        }
1095                    }
1096                }
1097            }
1098    
1099            // read on without looping
1100            if (samplestoread) do {
1101                readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102                samplestoread    -= readsamples;
1103                totalreadsamples += readsamples;
1104            } while (readsamples && samplestoread);
1105    
1106            // store current position
1107            pPlaybackState->position = GetPos();
1108    
1109            return totalreadsamples;
1110        }
1111    
1112        /**
1113       * Reads \a SampleCount number of sample points from the current       * Reads \a SampleCount number of sample points from the current
1114       * position into the buffer pointed by \a pBuffer and increments the       * position into the buffer pointed by \a pBuffer and increments the
1115       * position within the sample. The sample wave stream will be       * position within the sample. The sample wave stream will be
# Line 317  namespace gig { Line 1117  namespace gig {
1117       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118       * thus for disk streaming.       * thus for disk streaming.
1119       *       *
1120         * <b>Caution:</b> If you are using more than one streaming thread, you
1121         * have to use an external decompression buffer for <b>EACH</b>
1122         * streaming thread to avoid race conditions and crashes!
1123         *
1124         * For 16 bit samples, the data in the buffer will be int16_t
1125         * (using native endianness). For 24 bit, the buffer will
1126         * contain three bytes per sample, little-endian.
1127         *
1128       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1129       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1130         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1131       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1132       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1133       */       */
1134      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize);          if (SampleCount == 0) return 0;
1136          else { //FIXME: no support for mono compressed samples yet, are there any?          if (!Compressed) {
1137              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              if (BitDepth == 24) {
1138              // best case needed buffer size (all frames compressed)                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139              unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)              }
1140                                               (SampleCount >> 10) + // 10 bytes header per 2048 sample points              else { // 16 bit
1141                                               8194,                 // at least one worst case sample frame                  // (pCkData->Read does endian correction)
1142                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143                                         : pCkData->Read(pBuffer, SampleCount, 2);
1144                }
1145            }
1146            else {
1147                if (this->SamplePos >= this->SamplesTotal) return 0;
1148                //TODO: efficiency: maybe we should test for an average compression rate
1149                file_offset_t assumedsize      = GuessSize(SampleCount),
1150                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1151                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1152                            copysamples;                            copysamples, skipsamples,
1153              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1154              this->FrameOffset = 0;              this->FrameOffset = 0;
1155    
1156              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157                  // local buffer reallocation - hope this won't happen  
1158                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1159                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1160                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1162                    remainingsamples = SampleCount;
1163                    assumedsize      = GuessSize(SampleCount);
1164              }              }
1165    
1166              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1172                    file_offset_t framesamples = SamplesPerFrame;
1173                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174                  if (remainingbytes < 8194) {  
1175                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1176                          this->SamplePos += (SampleCount - remainingsamples);  
1177                          //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;                  if (Channels == 2) {
1178                          return (SampleCount - remainingsamples);                      mode_r = *pSrc++;
1179                      }                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180                      assumedsize    = remainingsamples;                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      if (remainingbytes < framebytes) { // last frame in sample
1183                                       8194;                 // at least one worst case sample frame                          framesamples = SamplesInLastFrame;
1184                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          if (mode_l == 4 && (framesamples & 1)) {
1185                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                          }
1187                      pSrc = (int8_t*) this->pDecompressionBuffer;                          else {
1188                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189                            }
1190                        }
1191                    }
1192                    else {
1193                        framebytes = bytesPerFrame[mode_l] + 1;
1194                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195                        if (remainingbytes < framebytes) {
1196                            framesamples = SamplesInLastFrame;
1197                        }
1198                  }                  }
1199    
1200                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1201                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1202                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1203                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1204                            skipsamples = currentframeoffset;
1205                        }
1206                        else {
1207                            copysamples = 0;
1208                            skipsamples = framesamples;
1209                        }
1210                  }                  }
1211                  else {                  else {
1212                        // This frame has enough data for pBuffer, but not
1213                        // all of the frame is needed. Set file position
1214                        // to start of this frame for next call to Read.
1215                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1216                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1217                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1219                      }                  }
1220                      else {                  remainingsamples -= copysamples;
1221    
1222                    if (remainingbytes > framebytes) {
1223                        remainingbytes -= framebytes;
1224                        if (remainingsamples == 0 &&
1225                            currentframeoffset + copysamples == framesamples) {
1226                            // This frame has enough data for pBuffer, and
1227                            // all of the frame is needed. Set file
1228                            // position to start of next frame for next
1229                            // call to Read. FrameOffset is 0.
1230                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1231                      }                      }
1232                  }                  }
1233                    else remainingbytes = 0;
1234    
1235                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1236                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1237                  switch (compressionmode) {                  if (copysamples == 0) {
1238                      case 1: // left channel compressed                      // skip this frame
1239                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1240                          if (!remainingsamples && copysamples == 2048)                  }
1241                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1242                        const unsigned char* const param_l = pSrc;
1243                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1244                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1245                          while (currentframeoffset) {  
1246                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1247                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1248                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1249                              currentframeoffset--;  
1250                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1252                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1254                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1255                          }                          }
1256                          while (copysamples) {                          else { // Mono
1257                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1259                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1260                          }                          }
1261                          break;                      }
1262                      case 257: // both channels compressed                      else { // 16 bit
1263                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1264                          if (!remainingsamples && copysamples == 2048)  
1265                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1266                            if (Channels == 2) { // Stereo
1267                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1268                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1269                          right  = *(int16_t*)pSrc; pSrc+=2;  
1270                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1271                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273                              left   -= dleft;                                           skipsamples, copysamples);
1274                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1275                          }                          }
1276                          while (copysamples) {                          else { // Mono
1277                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1278                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1280                          }                          }
1281                          break;                      }
1282                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1283                  }                  }
1284              }  
1285                    // reload from disk to local buffer if needed
1286                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287                        assumedsize    = GuessSize(remainingsamples);
1288                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292                    }
1293                } // while
1294    
1295              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1296              //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1298          }          }
1299      }      }
1300    
1301        /** @brief Write sample wave data.
1302         *
1303         * Writes \a SampleCount number of sample points from the buffer pointed
1304         * by \a pBuffer and increments the position within the sample. Use this
1305         * method to directly write the sample data to disk, i.e. if you don't
1306         * want or cannot load the whole sample data into RAM.
1307         *
1308         * You have to Resize() the sample to the desired size and call
1309         * File::Save() <b>before</b> using Write().
1310         *
1311         * Note: there is currently no support for writing compressed samples.
1312         *
1313         * For 16 bit samples, the data in the source buffer should be
1314         * int16_t (using native endianness). For 24 bit, the buffer
1315         * should contain three bytes per sample, little-endian.
1316         *
1317         * @param pBuffer     - source buffer
1318         * @param SampleCount - number of sample points to write
1319         * @throws DLS::Exception if current sample size is too small
1320         * @throws gig::Exception if sample is compressed
1321         * @see DLS::LoadSampleData()
1322         */
1323        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325    
1326            // if this is the first write in this sample, reset the
1327            // checksum calculator
1328            if (pCkData->GetPos() == 0) {
1329                __resetCRC(crc);
1330            }
1331            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332            file_offset_t res;
1333            if (BitDepth == 24) {
1334                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335            } else { // 16 bit
1336                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337                                    : pCkData->Write(pBuffer, SampleCount, 2);
1338            }
1339            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340    
1341            // if this is the last write, update the checksum chunk in the
1342            // file
1343            if (pCkData->GetPos() == pCkData->GetSize()) {
1344                __finalizeCRC(crc);
1345                File* pFile = static_cast<File*>(GetParent());
1346                pFile->SetSampleChecksum(this, crc);
1347            }
1348            return res;
1349        }
1350    
1351        /**
1352         * Allocates a decompression buffer for streaming (compressed) samples
1353         * with Sample::Read(). If you are using more than one streaming thread
1354         * in your application you <b>HAVE</b> to create a decompression buffer
1355         * for <b>EACH</b> of your streaming threads and provide it with the
1356         * Sample::Read() call in order to avoid race conditions and crashes.
1357         *
1358         * You should free the memory occupied by the allocated buffer(s) once
1359         * you don't need one of your streaming threads anymore by calling
1360         * DestroyDecompressionBuffer().
1361         *
1362         * @param MaxReadSize - the maximum size (in sample points) you ever
1363         *                      expect to read with one Read() call
1364         * @returns allocated decompression buffer
1365         * @see DestroyDecompressionBuffer()
1366         */
1367        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368            buffer_t result;
1369            const double worstCaseHeaderOverhead =
1370                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372            result.pStart            = new int8_t[result.Size];
1373            result.NullExtensionSize = 0;
1374            return result;
1375        }
1376    
1377        /**
1378         * Free decompression buffer, previously created with
1379         * CreateDecompressionBuffer().
1380         *
1381         * @param DecompressionBuffer - previously allocated decompression
1382         *                              buffer to free
1383         */
1384        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386                delete[] (int8_t*) DecompressionBuffer.pStart;
1387                DecompressionBuffer.pStart = NULL;
1388                DecompressionBuffer.Size   = 0;
1389                DecompressionBuffer.NullExtensionSize = 0;
1390            }
1391        }
1392    
1393        /**
1394         * Returns pointer to the Group this Sample belongs to. In the .gig
1395         * format a sample always belongs to one group. If it wasn't explicitly
1396         * assigned to a certain group, it will be automatically assigned to a
1397         * default group.
1398         *
1399         * @returns Sample's Group (never NULL)
1400         */
1401        Group* Sample::GetGroup() const {
1402            return pGroup;
1403        }
1404    
1405        /**
1406         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407         * time when this sample's wave form data was modified for the last time
1408         * by calling Write(). This checksum only covers the raw wave form data,
1409         * not any meta informations like i.e. bit depth or loop points. Since
1410         * this method just returns the checksum stored for this sample i.e. when
1411         * the gig file was loaded, this method returns immediately. So it does no
1412         * recalcuation of the checksum with the currently available sample wave
1413         * form data.
1414         *
1415         * @see VerifyWaveData()
1416         */
1417        uint32_t Sample::GetWaveDataCRC32Checksum() {
1418            return crc;
1419        }
1420    
1421        /**
1422         * Checks the integrity of this sample's raw audio wave data. Whenever a
1423         * Sample's raw wave data is intentionally modified (i.e. by calling
1424         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425         * is calculated and stored/updated for this sample, along to the sample's
1426         * meta informations.
1427         *
1428         * Now by calling this method the current raw audio wave data is checked
1429         * against the already stored CRC32 check sum in order to check whether the
1430         * sample data had been damaged unintentionally for some reason. Since by
1431         * calling this method always the entire raw audio wave data has to be
1432         * read, verifying all samples this way may take a long time accordingly.
1433         * And that's also the reason why the sample integrity is not checked by
1434         * default whenever a gig file is loaded. So this method must be called
1435         * explicitly to fulfill this task.
1436         *
1437         * @param pActually - (optional) if provided, will be set to the actually
1438         *                    calculated checksum of the current raw wave form data,
1439         *                    you can get the expected checksum instead by calling
1440         *                    GetWaveDataCRC32Checksum()
1441         * @returns true if sample is OK or false if the sample is damaged
1442         * @throws Exception if no checksum had been stored to disk for this
1443         *         sample yet, or on I/O issues
1444         * @see GetWaveDataCRC32Checksum()
1445         */
1446        bool Sample::VerifyWaveData(uint32_t* pActually) {
1447            //File* pFile = static_cast<File*>(GetParent());
1448            uint32_t crc = CalculateWaveDataChecksum();
1449            if (pActually) *pActually = crc;
1450            return crc == this->crc;
1451        }
1452    
1453        uint32_t Sample::CalculateWaveDataChecksum() {
1454            const size_t sz = 20*1024; // 20kB buffer size
1455            std::vector<uint8_t> buffer(sz);
1456            buffer.resize(sz);
1457    
1458            const size_t n = sz / FrameSize;
1459            SetPos(0);
1460            uint32_t crc = 0;
1461            __resetCRC(crc);
1462            while (true) {
1463                file_offset_t nRead = Read(&buffer[0], n);
1464                if (nRead <= 0) break;
1465                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466            }
1467            __finalizeCRC(crc);
1468            return crc;
1469        }
1470    
1471      Sample::~Sample() {      Sample::~Sample() {
1472          Instances--;          Instances--;
1473          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1474                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475                InternalDecompressionBuffer.pStart = NULL;
1476                InternalDecompressionBuffer.Size   = 0;
1477            }
1478          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1479          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480      }      }
# Line 491  namespace gig { Line 1484  namespace gig {
1484  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1485  // *  // *
1486    
1487      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      size_t                             DimensionRegion::Instances       = 0;
1488          memcpy(&Crossfade, &SamplerOptions, 4);      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490        DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491            Instances++;
1492    
1493            pSample = NULL;
1494            pRegion = pParent;
1495    
1496            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497            else memset(&Crossfade, 0, 4);
1498    
1499            if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500    
1501          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1503          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1507          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1508          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1509          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1510          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1511          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1512          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1513          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1514          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1517          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1518          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1521          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1522          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1527          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1528          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1535          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1536          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1538          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1539          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1541          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1542          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1543          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1544          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1546          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1547          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1548          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1549          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1551          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1552          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1553              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1554              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1555          }                  VelocityResponseDepth = velocityresponse;
1556          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1557              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1558              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1559          }              } else if (velocityresponse < 15) {
1560          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1561              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1562              VelocityResponseDepth = velocityresponse - 10;              } else {
1563                    VelocityResponseCurve = curve_type_unknown;
1564                    VelocityResponseDepth = 0;
1565                }
1566                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567                if (releasevelocityresponse < 5) {
1568                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1570                } else if (releasevelocityresponse < 10) {
1571                    ReleaseVelocityResponseCurve = curve_type_linear;
1572                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573                } else if (releasevelocityresponse < 15) {
1574                    ReleaseVelocityResponseCurve = curve_type_special;
1575                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576                } else {
1577                    ReleaseVelocityResponseCurve = curve_type_unknown;
1578                    ReleaseVelocityResponseDepth = 0;
1579                }
1580                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581                AttenuationControllerThreshold = _3ewa->ReadInt8();
1582                _3ewa->ReadInt32(); // unknown
1583                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584                _3ewa->ReadInt16(); // unknown
1585                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589                else                                       DimensionBypass = dim_bypass_ctrl_none;
1590                uint8_t pan = _3ewa->ReadUint8();
1591                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592                SelfMask = _3ewa->ReadInt8() & 0x01;
1593                _3ewa->ReadInt8(); // unknown
1594                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1597                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1600                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1602                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1603                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1604                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1605                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1607                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1608                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609                                                            : vcf_res_ctrl_none;
1610                uint16_t eg3depth = _3ewa->ReadUint16();
1611                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613                _3ewa->ReadInt16(); // unknown
1614                ChannelOffset = _3ewa->ReadUint8() / 4;
1615                uint8_t regoptions = _3ewa->ReadUint8();
1616                MSDecode           = regoptions & 0x01; // bit 0
1617                SustainDefeat      = regoptions & 0x02; // bit 1
1618                _3ewa->ReadInt16(); // unknown
1619                VelocityUpperLimit = _3ewa->ReadInt8();
1620                _3ewa->ReadInt8(); // unknown
1621                _3ewa->ReadInt16(); // unknown
1622                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623                _3ewa->ReadInt8(); // unknown
1624                _3ewa->ReadInt8(); // unknown
1625                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626                uint8_t vcfcutoff = _3ewa->ReadUint8();
1627                VCFEnabled = vcfcutoff & 0x80; // bit 7
1628                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1629                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630                uint8_t vcfvelscale = _3ewa->ReadUint8();
1631                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633                _3ewa->ReadInt8(); // unknown
1634                uint8_t vcfresonance = _3ewa->ReadUint8();
1635                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1638                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1639                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640                uint8_t vcfvelocity = _3ewa->ReadUint8();
1641                VCFVelocityDynamicRange = vcfvelocity % 5;
1642                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1643                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644                if (VCFType == vcf_type_lowpass) {
1645                    if (lfo3ctrl & 0x40) // bit 6
1646                        VCFType = vcf_type_lowpassturbo;
1647                }
1648                if (_3ewa->RemainingBytes() >= 8) {
1649                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1650                } else {
1651                    memset(DimensionUpperLimits, 0, 8);
1652                }
1653            } else { // '3ewa' chunk does not exist yet
1654                // use default values
1655                LFO3Frequency                   = 1.0;
1656                EG3Attack                       = 0.0;
1657                LFO1InternalDepth               = 0;
1658                LFO3InternalDepth               = 0;
1659                LFO1ControlDepth                = 0;
1660                LFO3ControlDepth                = 0;
1661                EG1Attack                       = 0.0;
1662                EG1Decay1                       = 0.005;
1663                EG1Sustain                      = 1000;
1664                EG1Release                      = 0.3;
1665                EG1Controller.type              = eg1_ctrl_t::type_none;
1666                EG1Controller.controller_number = 0;
1667                EG1ControllerInvert             = false;
1668                EG1ControllerAttackInfluence    = 0;
1669                EG1ControllerDecayInfluence     = 0;
1670                EG1ControllerReleaseInfluence   = 0;
1671                EG2Controller.type              = eg2_ctrl_t::type_none;
1672                EG2Controller.controller_number = 0;
1673                EG2ControllerInvert             = false;
1674                EG2ControllerAttackInfluence    = 0;
1675                EG2ControllerDecayInfluence     = 0;
1676                EG2ControllerReleaseInfluence   = 0;
1677                LFO1Frequency                   = 1.0;
1678                EG2Attack                       = 0.0;
1679                EG2Decay1                       = 0.005;
1680                EG2Sustain                      = 1000;
1681                EG2Release                      = 60;
1682                LFO2ControlDepth                = 0;
1683                LFO2Frequency                   = 1.0;
1684                LFO2InternalDepth               = 0;
1685                EG1Decay2                       = 0.0;
1686                EG1InfiniteSustain              = true;
1687                EG1PreAttack                    = 0;
1688                EG2Decay2                       = 0.0;
1689                EG2InfiniteSustain              = true;
1690                EG2PreAttack                    = 0;
1691                VelocityResponseCurve           = curve_type_nonlinear;
1692                VelocityResponseDepth           = 3;
1693                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1694                ReleaseVelocityResponseDepth    = 3;
1695                VelocityResponseCurveScaling    = 32;
1696                AttenuationControllerThreshold  = 0;
1697                SampleStartOffset               = 0;
1698                PitchTrack                      = true;
1699                DimensionBypass                 = dim_bypass_ctrl_none;
1700                Pan                             = 0;
1701                SelfMask                        = true;
1702                LFO3Controller                  = lfo3_ctrl_modwheel;
1703                LFO3Sync                        = false;
1704                InvertAttenuationController     = false;
1705                AttenuationController.type      = attenuation_ctrl_t::type_none;
1706                AttenuationController.controller_number = 0;
1707                LFO2Controller                  = lfo2_ctrl_internal;
1708                LFO2FlipPhase                   = false;
1709                LFO2Sync                        = false;
1710                LFO1Controller                  = lfo1_ctrl_internal;
1711                LFO1FlipPhase                   = false;
1712                LFO1Sync                        = false;
1713                VCFResonanceController          = vcf_res_ctrl_none;
1714                EG3Depth                        = 0;
1715                ChannelOffset                   = 0;
1716                MSDecode                        = false;
1717                SustainDefeat                   = false;
1718                VelocityUpperLimit              = 0;
1719                ReleaseTriggerDecay             = 0;
1720                EG1Hold                         = false;
1721                VCFEnabled                      = false;
1722                VCFCutoff                       = 0;
1723                VCFCutoffController             = vcf_cutoff_ctrl_none;
1724                VCFCutoffControllerInvert       = false;
1725                VCFVelocityScale                = 0;
1726                VCFResonance                    = 0;
1727                VCFResonanceDynamic             = false;
1728                VCFKeyboardTracking             = false;
1729                VCFKeyboardTrackingBreakpoint   = 0;
1730                VCFVelocityDynamicRange         = 0x04;
1731                VCFVelocityCurve                = curve_type_linear;
1732                VCFType                         = vcf_type_lowpass;
1733                memset(DimensionUpperLimits, 127, 8);
1734          }          }
1735          else {          // format extension for EG behavior options, these will *NOT* work with
1736              VelocityResponseCurve = curve_type_unknown;          // Gigasampler/GigaStudio !
1737              VelocityResponseDepth = 0;          RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738            if (lsde) {
1739                unsigned char byte = lsde->ReadUint8();
1740                EGOptions.AttackCancel     = byte & 1;
1741                EGOptions.AttackHoldCancel = byte & (1 << 1);
1742                EGOptions.Decay1Cancel     = byte & (1 << 2);
1743                EGOptions.Decay2Cancel     = byte & (1 << 3);
1744                EGOptions.ReleaseCancel    = byte & (1 << 4);
1745            }
1746    
1747            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1748                                                         VelocityResponseDepth,
1749                                                         VelocityResponseCurveScaling);
1750    
1751            pVelocityReleaseTable = GetReleaseVelocityTable(
1752                                        ReleaseVelocityResponseCurve,
1753                                        ReleaseVelocityResponseDepth
1754                                    );
1755    
1756            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1757                                                          VCFVelocityDynamicRange,
1758                                                          VCFVelocityScale,
1759                                                          VCFCutoffController);
1760    
1761            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1762            VelocityTable = 0;
1763        }
1764    
1765        /*
1766         * Constructs a DimensionRegion by copying all parameters from
1767         * another DimensionRegion
1768         */
1769        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1770            Instances++;
1771            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1772            *this = src; // default memberwise shallow copy of all parameters
1773            pParentList = _3ewl; // restore the chunk pointer
1774    
1775            // deep copy of owned structures
1776            if (src.VelocityTable) {
1777                VelocityTable = new uint8_t[128];
1778                for (int k = 0 ; k < 128 ; k++)
1779                    VelocityTable[k] = src.VelocityTable[k];
1780            }
1781            if (src.pSampleLoops) {
1782                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1783                for (int k = 0 ; k < src.SampleLoops ; k++)
1784                    pSampleLoops[k] = src.pSampleLoops[k];
1785            }
1786        }
1787        
1788        /**
1789         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1790         * and assign it to this object.
1791         *
1792         * Note that all sample pointers referenced by @a orig are simply copied as
1793         * memory address. Thus the respective samples are shared, not duplicated!
1794         *
1795         * @param orig - original DimensionRegion object to be copied from
1796         */
1797        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1798            CopyAssign(orig, NULL);
1799        }
1800    
1801        /**
1802         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1803         * and assign it to this object.
1804         *
1805         * @param orig - original DimensionRegion object to be copied from
1806         * @param mSamples - crosslink map between the foreign file's samples and
1807         *                   this file's samples
1808         */
1809        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1810            // delete all allocated data first
1811            if (VelocityTable) delete [] VelocityTable;
1812            if (pSampleLoops) delete [] pSampleLoops;
1813            
1814            // backup parent list pointer
1815            RIFF::List* p = pParentList;
1816            
1817            gig::Sample* pOriginalSample = pSample;
1818            gig::Region* pOriginalRegion = pRegion;
1819            
1820            //NOTE: copy code copied from assignment constructor above, see comment there as well
1821            
1822            *this = *orig; // default memberwise shallow copy of all parameters
1823            
1824            // restore members that shall not be altered
1825            pParentList = p; // restore the chunk pointer
1826            pRegion = pOriginalRegion;
1827            
1828            // only take the raw sample reference reference if the
1829            // two DimensionRegion objects are part of the same file
1830            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1831                pSample = pOriginalSample;
1832            }
1833            
1834            if (mSamples && mSamples->count(orig->pSample)) {
1835                pSample = mSamples->find(orig->pSample)->second;
1836            }
1837    
1838            // deep copy of owned structures
1839            if (orig->VelocityTable) {
1840                VelocityTable = new uint8_t[128];
1841                for (int k = 0 ; k < 128 ; k++)
1842                    VelocityTable[k] = orig->VelocityTable[k];
1843            }
1844            if (orig->pSampleLoops) {
1845                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1846                for (int k = 0 ; k < orig->SampleLoops ; k++)
1847                    pSampleLoops[k] = orig->pSampleLoops[k];
1848            }
1849        }
1850    
1851        void DimensionRegion::serialize(Serialization::Archive* archive) {
1852            // in case this class will become backward incompatible one day,
1853            // then set a version and minimum version for this class like:
1854            //archive->setVersion(*this, 2);
1855            //archive->setMinVersion(*this, 1);
1856    
1857            SRLZ(VelocityUpperLimit);
1858            SRLZ(EG1PreAttack);
1859            SRLZ(EG1Attack);
1860            SRLZ(EG1Decay1);
1861            SRLZ(EG1Decay2);
1862            SRLZ(EG1InfiniteSustain);
1863            SRLZ(EG1Sustain);
1864            SRLZ(EG1Release);
1865            SRLZ(EG1Hold);
1866            SRLZ(EG1Controller);
1867            SRLZ(EG1ControllerInvert);
1868            SRLZ(EG1ControllerAttackInfluence);
1869            SRLZ(EG1ControllerDecayInfluence);
1870            SRLZ(EG1ControllerReleaseInfluence);
1871            SRLZ(LFO1Frequency);
1872            SRLZ(LFO1InternalDepth);
1873            SRLZ(LFO1ControlDepth);
1874            SRLZ(LFO1Controller);
1875            SRLZ(LFO1FlipPhase);
1876            SRLZ(LFO1Sync);
1877            SRLZ(EG2PreAttack);
1878            SRLZ(EG2Attack);
1879            SRLZ(EG2Decay1);
1880            SRLZ(EG2Decay2);
1881            SRLZ(EG2InfiniteSustain);
1882            SRLZ(EG2Sustain);
1883            SRLZ(EG2Release);
1884            SRLZ(EG2Controller);
1885            SRLZ(EG2ControllerInvert);
1886            SRLZ(EG2ControllerAttackInfluence);
1887            SRLZ(EG2ControllerDecayInfluence);
1888            SRLZ(EG2ControllerReleaseInfluence);
1889            SRLZ(LFO2Frequency);
1890            SRLZ(LFO2InternalDepth);
1891            SRLZ(LFO2ControlDepth);
1892            SRLZ(LFO2Controller);
1893            SRLZ(LFO2FlipPhase);
1894            SRLZ(LFO2Sync);
1895            SRLZ(EG3Attack);
1896            SRLZ(EG3Depth);
1897            SRLZ(LFO3Frequency);
1898            SRLZ(LFO3InternalDepth);
1899            SRLZ(LFO3ControlDepth);
1900            SRLZ(LFO3Controller);
1901            SRLZ(LFO3Sync);
1902            SRLZ(VCFEnabled);
1903            SRLZ(VCFType);
1904            SRLZ(VCFCutoffController);
1905            SRLZ(VCFCutoffControllerInvert);
1906            SRLZ(VCFCutoff);
1907            SRLZ(VCFVelocityCurve);
1908            SRLZ(VCFVelocityScale);
1909            SRLZ(VCFVelocityDynamicRange);
1910            SRLZ(VCFResonance);
1911            SRLZ(VCFResonanceDynamic);
1912            SRLZ(VCFResonanceController);
1913            SRLZ(VCFKeyboardTracking);
1914            SRLZ(VCFKeyboardTrackingBreakpoint);
1915            SRLZ(VelocityResponseCurve);
1916            SRLZ(VelocityResponseDepth);
1917            SRLZ(VelocityResponseCurveScaling);
1918            SRLZ(ReleaseVelocityResponseCurve);
1919            SRLZ(ReleaseVelocityResponseDepth);
1920            SRLZ(ReleaseTriggerDecay);
1921            SRLZ(Crossfade);
1922            SRLZ(PitchTrack);
1923            SRLZ(DimensionBypass);
1924            SRLZ(Pan);
1925            SRLZ(SelfMask);
1926            SRLZ(AttenuationController);
1927            SRLZ(InvertAttenuationController);
1928            SRLZ(AttenuationControllerThreshold);
1929            SRLZ(ChannelOffset);
1930            SRLZ(SustainDefeat);
1931            SRLZ(MSDecode);
1932            //SRLZ(SampleStartOffset);
1933            SRLZ(SampleAttenuation);
1934            SRLZ(EGOptions);
1935    
1936            // derived attributes from DLS::Sampler
1937            SRLZ(FineTune);
1938            SRLZ(Gain);
1939        }
1940    
1941        /**
1942         * Updates the respective member variable and updates @c SampleAttenuation
1943         * which depends on this value.
1944         */
1945        void DimensionRegion::SetGain(int32_t gain) {
1946            DLS::Sampler::SetGain(gain);
1947            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1948        }
1949    
1950        /**
1951         * Apply dimension region settings to the respective RIFF chunks. You
1952         * have to call File::Save() to make changes persistent.
1953         *
1954         * Usually there is absolutely no need to call this method explicitly.
1955         * It will be called automatically when File::Save() was called.
1956         *
1957         * @param pProgress - callback function for progress notification
1958         */
1959        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1960            // first update base class's chunk
1961            DLS::Sampler::UpdateChunks(pProgress);
1962    
1963            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1964            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1965            pData[12] = Crossfade.in_start;
1966            pData[13] = Crossfade.in_end;
1967            pData[14] = Crossfade.out_start;
1968            pData[15] = Crossfade.out_end;
1969    
1970            // make sure '3ewa' chunk exists
1971            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1972            if (!_3ewa) {
1973                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1974                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1975                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1976            }
1977            pData = (uint8_t*) _3ewa->LoadChunkData();
1978    
1979            // update '3ewa' chunk with DimensionRegion's current settings
1980    
1981            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1982            store32(&pData[0], chunksize); // unknown, always chunk size?
1983    
1984            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1985            store32(&pData[4], lfo3freq);
1986    
1987            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1988            store32(&pData[8], eg3attack);
1989    
1990            // next 2 bytes unknown
1991    
1992            store16(&pData[14], LFO1InternalDepth);
1993    
1994            // next 2 bytes unknown
1995    
1996            store16(&pData[18], LFO3InternalDepth);
1997    
1998            // next 2 bytes unknown
1999    
2000            store16(&pData[22], LFO1ControlDepth);
2001    
2002            // next 2 bytes unknown
2003    
2004            store16(&pData[26], LFO3ControlDepth);
2005    
2006            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2007            store32(&pData[28], eg1attack);
2008    
2009            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2010            store32(&pData[32], eg1decay1);
2011    
2012            // next 2 bytes unknown
2013    
2014            store16(&pData[38], EG1Sustain);
2015    
2016            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2017            store32(&pData[40], eg1release);
2018    
2019            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2020            pData[44] = eg1ctl;
2021    
2022            const uint8_t eg1ctrloptions =
2023                (EG1ControllerInvert ? 0x01 : 0x00) |
2024                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2025                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2026                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2027            pData[45] = eg1ctrloptions;
2028    
2029            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2030            pData[46] = eg2ctl;
2031    
2032            const uint8_t eg2ctrloptions =
2033                (EG2ControllerInvert ? 0x01 : 0x00) |
2034                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2035                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2036                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2037            pData[47] = eg2ctrloptions;
2038    
2039            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2040            store32(&pData[48], lfo1freq);
2041    
2042            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2043            store32(&pData[52], eg2attack);
2044    
2045            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2046            store32(&pData[56], eg2decay1);
2047    
2048            // next 2 bytes unknown
2049    
2050            store16(&pData[62], EG2Sustain);
2051    
2052            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2053            store32(&pData[64], eg2release);
2054    
2055            // next 2 bytes unknown
2056    
2057            store16(&pData[70], LFO2ControlDepth);
2058    
2059            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2060            store32(&pData[72], lfo2freq);
2061    
2062            // next 2 bytes unknown
2063    
2064            store16(&pData[78], LFO2InternalDepth);
2065    
2066            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2067            store32(&pData[80], eg1decay2);
2068    
2069            // next 2 bytes unknown
2070    
2071            store16(&pData[86], EG1PreAttack);
2072    
2073            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2074            store32(&pData[88], eg2decay2);
2075    
2076            // next 2 bytes unknown
2077    
2078            store16(&pData[94], EG2PreAttack);
2079    
2080            {
2081                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2082                uint8_t velocityresponse = VelocityResponseDepth;
2083                switch (VelocityResponseCurve) {
2084                    case curve_type_nonlinear:
2085                        break;
2086                    case curve_type_linear:
2087                        velocityresponse += 5;
2088                        break;
2089                    case curve_type_special:
2090                        velocityresponse += 10;
2091                        break;
2092                    case curve_type_unknown:
2093                    default:
2094                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2095                }
2096                pData[96] = velocityresponse;
2097            }
2098    
2099            {
2100                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2101                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2102                switch (ReleaseVelocityResponseCurve) {
2103                    case curve_type_nonlinear:
2104                        break;
2105                    case curve_type_linear:
2106                        releasevelocityresponse += 5;
2107                        break;
2108                    case curve_type_special:
2109                        releasevelocityresponse += 10;
2110                        break;
2111                    case curve_type_unknown:
2112                    default:
2113                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2114                }
2115                pData[97] = releasevelocityresponse;
2116            }
2117    
2118            pData[98] = VelocityResponseCurveScaling;
2119    
2120            pData[99] = AttenuationControllerThreshold;
2121    
2122            // next 4 bytes unknown
2123    
2124            store16(&pData[104], SampleStartOffset);
2125    
2126            // next 2 bytes unknown
2127    
2128            {
2129                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2130                switch (DimensionBypass) {
2131                    case dim_bypass_ctrl_94:
2132                        pitchTrackDimensionBypass |= 0x10;
2133                        break;
2134                    case dim_bypass_ctrl_95:
2135                        pitchTrackDimensionBypass |= 0x20;
2136                        break;
2137                    case dim_bypass_ctrl_none:
2138                        //FIXME: should we set anything here?
2139                        break;
2140                    default:
2141                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2142                }
2143                pData[108] = pitchTrackDimensionBypass;
2144            }
2145    
2146            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2147            pData[109] = pan;
2148    
2149            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2150            pData[110] = selfmask;
2151    
2152            // next byte unknown
2153    
2154            {
2155                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2156                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2157                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2158                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2159                pData[112] = lfo3ctrl;
2160            }
2161    
2162            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2163            pData[113] = attenctl;
2164    
2165            {
2166                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2167                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2168                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2169                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2170                pData[114] = lfo2ctrl;
2171            }
2172    
2173            {
2174                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2175                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2176                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2177                if (VCFResonanceController != vcf_res_ctrl_none)
2178                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2179                pData[115] = lfo1ctrl;
2180            }
2181    
2182            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2183                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2184            store16(&pData[116], eg3depth);
2185    
2186            // next 2 bytes unknown
2187    
2188            const uint8_t channeloffset = ChannelOffset * 4;
2189            pData[120] = channeloffset;
2190    
2191            {
2192                uint8_t regoptions = 0;
2193                if (MSDecode)      regoptions |= 0x01; // bit 0
2194                if (SustainDefeat) regoptions |= 0x02; // bit 1
2195                pData[121] = regoptions;
2196            }
2197    
2198            // next 2 bytes unknown
2199    
2200            pData[124] = VelocityUpperLimit;
2201    
2202            // next 3 bytes unknown
2203    
2204            pData[128] = ReleaseTriggerDecay;
2205    
2206            // next 2 bytes unknown
2207    
2208            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2209            pData[131] = eg1hold;
2210    
2211            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2212                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2213            pData[132] = vcfcutoff;
2214    
2215            pData[133] = VCFCutoffController;
2216    
2217            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2218                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2219            pData[134] = vcfvelscale;
2220    
2221            // next byte unknown
2222    
2223            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2224                                         (VCFResonance & 0x7f); /* lower 7 bits */
2225            pData[136] = vcfresonance;
2226    
2227            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2228                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2229            pData[137] = vcfbreakpoint;
2230    
2231            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2232                                        VCFVelocityCurve * 5;
2233            pData[138] = vcfvelocity;
2234    
2235            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2236            pData[139] = vcftype;
2237    
2238            if (chunksize >= 148) {
2239                memcpy(&pData[140], DimensionUpperLimits, 8);
2240            }
2241    
2242            // format extension for EG behavior options, these will *NOT* work with
2243            // Gigasampler/GigaStudio !
2244            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2245            if (!lsde) {
2246                // only add this "LSDE" chunk if the EG options do not match the
2247                // default EG behavior
2248                eg_opt_t defaultOpt;
2249                if (memcmp(&EGOptions, &defaultOpt, sizeof(eg_opt_t))) {
2250                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 1);
2251                    // move LSDE chunk to the end of parent list
2252                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2253                }
2254          }          }
2255          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (lsde) {
2256          if (releasevelocityresponse < 5) {              unsigned char* pByte = (unsigned char*) lsde->LoadChunkData();
2257              ReleaseVelocityResponseCurve = curve_type_nonlinear;              *pByte =
2258              ReleaseVelocityResponseDepth = releasevelocityresponse;                  (EGOptions.AttackCancel     ? 1 : 0) |
2259          }                  (EGOptions.AttackHoldCancel ? (1<<1) : 0) |
2260          else if (releasevelocityresponse < 10) {                  (EGOptions.Decay1Cancel     ? (1<<2) : 0) |
2261              ReleaseVelocityResponseCurve = curve_type_linear;                  (EGOptions.Decay2Cancel     ? (1<<3) : 0) |
2262              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;                  (EGOptions.ReleaseCancel    ? (1<<4) : 0);
2263          }          }
2264          else if (releasevelocityresponse < 15) {      }
2265              ReleaseVelocityResponseCurve = curve_type_special;  
2266              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;      double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2267            curve_type_t curveType = releaseVelocityResponseCurve;
2268            uint8_t depth = releaseVelocityResponseDepth;
2269            // this models a strange behaviour or bug in GSt: two of the
2270            // velocity response curves for release time are not used even
2271            // if specified, instead another curve is chosen.
2272            if ((curveType == curve_type_nonlinear && depth == 0) ||
2273                (curveType == curve_type_special   && depth == 4)) {
2274                curveType = curve_type_nonlinear;
2275                depth = 3;
2276            }
2277            return GetVelocityTable(curveType, depth, 0);
2278        }
2279    
2280        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2281                                                        uint8_t vcfVelocityDynamicRange,
2282                                                        uint8_t vcfVelocityScale,
2283                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2284        {
2285            curve_type_t curveType = vcfVelocityCurve;
2286            uint8_t depth = vcfVelocityDynamicRange;
2287            // even stranger GSt: two of the velocity response curves for
2288            // filter cutoff are not used, instead another special curve
2289            // is chosen. This curve is not used anywhere else.
2290            if ((curveType == curve_type_nonlinear && depth == 0) ||
2291                (curveType == curve_type_special   && depth == 4)) {
2292                curveType = curve_type_special;
2293                depth = 5;
2294            }
2295            return GetVelocityTable(curveType, depth,
2296                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2297                                        ? vcfVelocityScale : 0);
2298        }
2299    
2300        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2301        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2302        {
2303            double* table;
2304            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2305            if (pVelocityTables->count(tableKey)) { // if key exists
2306                table = (*pVelocityTables)[tableKey];
2307          }          }
2308          else {          else {
2309              ReleaseVelocityResponseCurve = curve_type_unknown;              table = CreateVelocityTable(curveType, depth, scaling);
2310              ReleaseVelocityResponseDepth = 0;              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2311          }          }
2312          VelocityResponseCurveScaling = _3ewa->ReadUint8();          return table;
         AttenuationControlTreshold   = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
2313      }      }
2314    
2315        Region* DimensionRegion::GetParent() const {
2316            return pRegion;
2317        }
2318    
2319    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2320    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2321    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2322    //#pragma GCC diagnostic push
2323    //#pragma GCC diagnostic error "-Wswitch"
2324    
2325        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2326            leverage_ctrl_t decodedcontroller;
2327            switch (EncodedController) {
2328                // special controller
2329                case _lev_ctrl_none:
2330                    decodedcontroller.type = leverage_ctrl_t::type_none;
2331                    decodedcontroller.controller_number = 0;
2332                    break;
2333                case _lev_ctrl_velocity:
2334                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
2335                    decodedcontroller.controller_number = 0;
2336                    break;
2337                case _lev_ctrl_channelaftertouch:
2338                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2339                    decodedcontroller.controller_number = 0;
2340                    break;
2341    
2342                // ordinary MIDI control change controller
2343                case _lev_ctrl_modwheel:
2344                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345                    decodedcontroller.controller_number = 1;
2346                    break;
2347                case _lev_ctrl_breath:
2348                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349                    decodedcontroller.controller_number = 2;
2350                    break;
2351                case _lev_ctrl_foot:
2352                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353                    decodedcontroller.controller_number = 4;
2354                    break;
2355                case _lev_ctrl_effect1:
2356                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357                    decodedcontroller.controller_number = 12;
2358                    break;
2359                case _lev_ctrl_effect2:
2360                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361                    decodedcontroller.controller_number = 13;
2362                    break;
2363                case _lev_ctrl_genpurpose1:
2364                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365                    decodedcontroller.controller_number = 16;
2366                    break;
2367                case _lev_ctrl_genpurpose2:
2368                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369                    decodedcontroller.controller_number = 17;
2370                    break;
2371                case _lev_ctrl_genpurpose3:
2372                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373                    decodedcontroller.controller_number = 18;
2374                    break;
2375                case _lev_ctrl_genpurpose4:
2376                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377                    decodedcontroller.controller_number = 19;
2378                    break;
2379                case _lev_ctrl_portamentotime:
2380                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381                    decodedcontroller.controller_number = 5;
2382                    break;
2383                case _lev_ctrl_sustainpedal:
2384                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385                    decodedcontroller.controller_number = 64;
2386                    break;
2387                case _lev_ctrl_portamento:
2388                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389                    decodedcontroller.controller_number = 65;
2390                    break;
2391                case _lev_ctrl_sostenutopedal:
2392                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393                    decodedcontroller.controller_number = 66;
2394                    break;
2395                case _lev_ctrl_softpedal:
2396                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397                    decodedcontroller.controller_number = 67;
2398                    break;
2399                case _lev_ctrl_genpurpose5:
2400                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401                    decodedcontroller.controller_number = 80;
2402                    break;
2403                case _lev_ctrl_genpurpose6:
2404                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405                    decodedcontroller.controller_number = 81;
2406                    break;
2407                case _lev_ctrl_genpurpose7:
2408                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409                    decodedcontroller.controller_number = 82;
2410                    break;
2411                case _lev_ctrl_genpurpose8:
2412                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413                    decodedcontroller.controller_number = 83;
2414                    break;
2415                case _lev_ctrl_effect1depth:
2416                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417                    decodedcontroller.controller_number = 91;
2418                    break;
2419                case _lev_ctrl_effect2depth:
2420                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421                    decodedcontroller.controller_number = 92;
2422                    break;
2423                case _lev_ctrl_effect3depth:
2424                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425                    decodedcontroller.controller_number = 93;
2426                    break;
2427                case _lev_ctrl_effect4depth:
2428                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429                    decodedcontroller.controller_number = 94;
2430                    break;
2431                case _lev_ctrl_effect5depth:
2432                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433                    decodedcontroller.controller_number = 95;
2434                    break;
2435    
2436                // format extension (these controllers are so far only supported by
2437                // LinuxSampler & gigedit) they will *NOT* work with
2438                // Gigasampler/GigaStudio !
2439                case _lev_ctrl_CC3_EXT:
2440                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441                    decodedcontroller.controller_number = 3;
2442                    break;
2443                case _lev_ctrl_CC6_EXT:
2444                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445                    decodedcontroller.controller_number = 6;
2446                    break;
2447                case _lev_ctrl_CC7_EXT:
2448                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449                    decodedcontroller.controller_number = 7;
2450                    break;
2451                case _lev_ctrl_CC8_EXT:
2452                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453                    decodedcontroller.controller_number = 8;
2454                    break;
2455                case _lev_ctrl_CC9_EXT:
2456                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457                    decodedcontroller.controller_number = 9;
2458                    break;
2459                case _lev_ctrl_CC10_EXT:
2460                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461                    decodedcontroller.controller_number = 10;
2462                    break;
2463                case _lev_ctrl_CC11_EXT:
2464                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465                    decodedcontroller.controller_number = 11;
2466                    break;
2467                case _lev_ctrl_CC14_EXT:
2468                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469                    decodedcontroller.controller_number = 14;
2470                    break;
2471                case _lev_ctrl_CC15_EXT:
2472                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473                    decodedcontroller.controller_number = 15;
2474                    break;
2475                case _lev_ctrl_CC20_EXT:
2476                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477                    decodedcontroller.controller_number = 20;
2478                    break;
2479                case _lev_ctrl_CC21_EXT:
2480                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481                    decodedcontroller.controller_number = 21;
2482                    break;
2483                case _lev_ctrl_CC22_EXT:
2484                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485                    decodedcontroller.controller_number = 22;
2486                    break;
2487                case _lev_ctrl_CC23_EXT:
2488                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489                    decodedcontroller.controller_number = 23;
2490                    break;
2491                case _lev_ctrl_CC24_EXT:
2492                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493                    decodedcontroller.controller_number = 24;
2494                    break;
2495                case _lev_ctrl_CC25_EXT:
2496                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497                    decodedcontroller.controller_number = 25;
2498                    break;
2499                case _lev_ctrl_CC26_EXT:
2500                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501                    decodedcontroller.controller_number = 26;
2502                    break;
2503                case _lev_ctrl_CC27_EXT:
2504                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505                    decodedcontroller.controller_number = 27;
2506                    break;
2507                case _lev_ctrl_CC28_EXT:
2508                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509                    decodedcontroller.controller_number = 28;
2510                    break;
2511                case _lev_ctrl_CC29_EXT:
2512                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513                    decodedcontroller.controller_number = 29;
2514                    break;
2515                case _lev_ctrl_CC30_EXT:
2516                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517                    decodedcontroller.controller_number = 30;
2518                    break;
2519                case _lev_ctrl_CC31_EXT:
2520                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521                    decodedcontroller.controller_number = 31;
2522                    break;
2523                case _lev_ctrl_CC68_EXT:
2524                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525                    decodedcontroller.controller_number = 68;
2526                    break;
2527                case _lev_ctrl_CC69_EXT:
2528                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529                    decodedcontroller.controller_number = 69;
2530                    break;
2531                case _lev_ctrl_CC70_EXT:
2532                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533                    decodedcontroller.controller_number = 70;
2534                    break;
2535                case _lev_ctrl_CC71_EXT:
2536                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537                    decodedcontroller.controller_number = 71;
2538                    break;
2539                case _lev_ctrl_CC72_EXT:
2540                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541                    decodedcontroller.controller_number = 72;
2542                    break;
2543                case _lev_ctrl_CC73_EXT:
2544                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545                    decodedcontroller.controller_number = 73;
2546                    break;
2547                case _lev_ctrl_CC74_EXT:
2548                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549                    decodedcontroller.controller_number = 74;
2550                    break;
2551                case _lev_ctrl_CC75_EXT:
2552                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553                    decodedcontroller.controller_number = 75;
2554                    break;
2555                case _lev_ctrl_CC76_EXT:
2556                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557                    decodedcontroller.controller_number = 76;
2558                    break;
2559                case _lev_ctrl_CC77_EXT:
2560                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561                    decodedcontroller.controller_number = 77;
2562                    break;
2563                case _lev_ctrl_CC78_EXT:
2564                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565                    decodedcontroller.controller_number = 78;
2566                    break;
2567                case _lev_ctrl_CC79_EXT:
2568                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569                    decodedcontroller.controller_number = 79;
2570                    break;
2571                case _lev_ctrl_CC84_EXT:
2572                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573                    decodedcontroller.controller_number = 84;
2574                    break;
2575                case _lev_ctrl_CC85_EXT:
2576                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577                    decodedcontroller.controller_number = 85;
2578                    break;
2579                case _lev_ctrl_CC86_EXT:
2580                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581                    decodedcontroller.controller_number = 86;
2582                    break;
2583                case _lev_ctrl_CC87_EXT:
2584                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585                    decodedcontroller.controller_number = 87;
2586                    break;
2587                case _lev_ctrl_CC89_EXT:
2588                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589                    decodedcontroller.controller_number = 89;
2590                    break;
2591                case _lev_ctrl_CC90_EXT:
2592                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593                    decodedcontroller.controller_number = 90;
2594                    break;
2595                case _lev_ctrl_CC96_EXT:
2596                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597                    decodedcontroller.controller_number = 96;
2598                    break;
2599                case _lev_ctrl_CC97_EXT:
2600                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601                    decodedcontroller.controller_number = 97;
2602                    break;
2603                case _lev_ctrl_CC102_EXT:
2604                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605                    decodedcontroller.controller_number = 102;
2606                    break;
2607                case _lev_ctrl_CC103_EXT:
2608                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609                    decodedcontroller.controller_number = 103;
2610                    break;
2611                case _lev_ctrl_CC104_EXT:
2612                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613                    decodedcontroller.controller_number = 104;
2614                    break;
2615                case _lev_ctrl_CC105_EXT:
2616                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617                    decodedcontroller.controller_number = 105;
2618                    break;
2619                case _lev_ctrl_CC106_EXT:
2620                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621                    decodedcontroller.controller_number = 106;
2622                    break;
2623                case _lev_ctrl_CC107_EXT:
2624                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625                    decodedcontroller.controller_number = 107;
2626                    break;
2627                case _lev_ctrl_CC108_EXT:
2628                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629                    decodedcontroller.controller_number = 108;
2630                    break;
2631                case _lev_ctrl_CC109_EXT:
2632                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633                    decodedcontroller.controller_number = 109;
2634                    break;
2635                case _lev_ctrl_CC110_EXT:
2636                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637                    decodedcontroller.controller_number = 110;
2638                    break;
2639                case _lev_ctrl_CC111_EXT:
2640                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641                    decodedcontroller.controller_number = 111;
2642                    break;
2643                case _lev_ctrl_CC112_EXT:
2644                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645                    decodedcontroller.controller_number = 112;
2646                    break;
2647                case _lev_ctrl_CC113_EXT:
2648                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649                    decodedcontroller.controller_number = 113;
2650                    break;
2651                case _lev_ctrl_CC114_EXT:
2652                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653                    decodedcontroller.controller_number = 114;
2654                    break;
2655                case _lev_ctrl_CC115_EXT:
2656                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657                    decodedcontroller.controller_number = 115;
2658                    break;
2659                case _lev_ctrl_CC116_EXT:
2660                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661                    decodedcontroller.controller_number = 116;
2662                    break;
2663                case _lev_ctrl_CC117_EXT:
2664                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665                    decodedcontroller.controller_number = 117;
2666                    break;
2667                case _lev_ctrl_CC118_EXT:
2668                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669                    decodedcontroller.controller_number = 118;
2670                    break;
2671                case _lev_ctrl_CC119_EXT:
2672                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673                    decodedcontroller.controller_number = 119;
2674                    break;
2675    
2676                // unknown controller type
2677                default:
2678                    decodedcontroller.type = leverage_ctrl_t::type_none;
2679                    decodedcontroller.controller_number = 0;
2680                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2681                    break;
2682            }
2683            return decodedcontroller;
2684        }
2685        
2686    // see above (diagnostic push not supported prior GCC 4.6)
2687    //#pragma GCC diagnostic pop
2688    
2689        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2690            _lev_ctrl_t encodedcontroller;
2691            switch (DecodedController.type) {
2692                // special controller
2693                case leverage_ctrl_t::type_none:
2694                    encodedcontroller = _lev_ctrl_none;
2695                    break;
2696                case leverage_ctrl_t::type_velocity:
2697                    encodedcontroller = _lev_ctrl_velocity;
2698                    break;
2699                case leverage_ctrl_t::type_channelaftertouch:
2700                    encodedcontroller = _lev_ctrl_channelaftertouch;
2701                    break;
2702    
2703                // ordinary MIDI control change controller
2704                case leverage_ctrl_t::type_controlchange:
2705                    switch (DecodedController.controller_number) {
2706                        case 1:
2707                            encodedcontroller = _lev_ctrl_modwheel;
2708                            break;
2709                        case 2:
2710                            encodedcontroller = _lev_ctrl_breath;
2711                            break;
2712                        case 4:
2713                            encodedcontroller = _lev_ctrl_foot;
2714                            break;
2715                        case 12:
2716                            encodedcontroller = _lev_ctrl_effect1;
2717                            break;
2718                        case 13:
2719                            encodedcontroller = _lev_ctrl_effect2;
2720                            break;
2721                        case 16:
2722                            encodedcontroller = _lev_ctrl_genpurpose1;
2723                            break;
2724                        case 17:
2725                            encodedcontroller = _lev_ctrl_genpurpose2;
2726                            break;
2727                        case 18:
2728                            encodedcontroller = _lev_ctrl_genpurpose3;
2729                            break;
2730                        case 19:
2731                            encodedcontroller = _lev_ctrl_genpurpose4;
2732                            break;
2733                        case 5:
2734                            encodedcontroller = _lev_ctrl_portamentotime;
2735                            break;
2736                        case 64:
2737                            encodedcontroller = _lev_ctrl_sustainpedal;
2738                            break;
2739                        case 65:
2740                            encodedcontroller = _lev_ctrl_portamento;
2741                            break;
2742                        case 66:
2743                            encodedcontroller = _lev_ctrl_sostenutopedal;
2744                            break;
2745                        case 67:
2746                            encodedcontroller = _lev_ctrl_softpedal;
2747                            break;
2748                        case 80:
2749                            encodedcontroller = _lev_ctrl_genpurpose5;
2750                            break;
2751                        case 81:
2752                            encodedcontroller = _lev_ctrl_genpurpose6;
2753                            break;
2754                        case 82:
2755                            encodedcontroller = _lev_ctrl_genpurpose7;
2756                            break;
2757                        case 83:
2758                            encodedcontroller = _lev_ctrl_genpurpose8;
2759                            break;
2760                        case 91:
2761                            encodedcontroller = _lev_ctrl_effect1depth;
2762                            break;
2763                        case 92:
2764                            encodedcontroller = _lev_ctrl_effect2depth;
2765                            break;
2766                        case 93:
2767                            encodedcontroller = _lev_ctrl_effect3depth;
2768                            break;
2769                        case 94:
2770                            encodedcontroller = _lev_ctrl_effect4depth;
2771                            break;
2772                        case 95:
2773                            encodedcontroller = _lev_ctrl_effect5depth;
2774                            break;
2775    
2776                        // format extension (these controllers are so far only
2777                        // supported by LinuxSampler & gigedit) they will *NOT*
2778                        // work with Gigasampler/GigaStudio !
2779                        case 3:
2780                            encodedcontroller = _lev_ctrl_CC3_EXT;
2781                            break;
2782                        case 6:
2783                            encodedcontroller = _lev_ctrl_CC6_EXT;
2784                            break;
2785                        case 7:
2786                            encodedcontroller = _lev_ctrl_CC7_EXT;
2787                            break;
2788                        case 8:
2789                            encodedcontroller = _lev_ctrl_CC8_EXT;
2790                            break;
2791                        case 9:
2792                            encodedcontroller = _lev_ctrl_CC9_EXT;
2793                            break;
2794                        case 10:
2795                            encodedcontroller = _lev_ctrl_CC10_EXT;
2796                            break;
2797                        case 11:
2798                            encodedcontroller = _lev_ctrl_CC11_EXT;
2799                            break;
2800                        case 14:
2801                            encodedcontroller = _lev_ctrl_CC14_EXT;
2802                            break;
2803                        case 15:
2804                            encodedcontroller = _lev_ctrl_CC15_EXT;
2805                            break;
2806                        case 20:
2807                            encodedcontroller = _lev_ctrl_CC20_EXT;
2808                            break;
2809                        case 21:
2810                            encodedcontroller = _lev_ctrl_CC21_EXT;
2811                            break;
2812                        case 22:
2813                            encodedcontroller = _lev_ctrl_CC22_EXT;
2814                            break;
2815                        case 23:
2816                            encodedcontroller = _lev_ctrl_CC23_EXT;
2817                            break;
2818                        case 24:
2819                            encodedcontroller = _lev_ctrl_CC24_EXT;
2820                            break;
2821                        case 25:
2822                            encodedcontroller = _lev_ctrl_CC25_EXT;
2823                            break;
2824                        case 26:
2825                            encodedcontroller = _lev_ctrl_CC26_EXT;
2826                            break;
2827                        case 27:
2828                            encodedcontroller = _lev_ctrl_CC27_EXT;
2829                            break;
2830                        case 28:
2831                            encodedcontroller = _lev_ctrl_CC28_EXT;
2832                            break;
2833                        case 29:
2834                            encodedcontroller = _lev_ctrl_CC29_EXT;
2835                            break;
2836                        case 30:
2837                            encodedcontroller = _lev_ctrl_CC30_EXT;
2838                            break;
2839                        case 31:
2840                            encodedcontroller = _lev_ctrl_CC31_EXT;
2841                            break;
2842                        case 68:
2843                            encodedcontroller = _lev_ctrl_CC68_EXT;
2844                            break;
2845                        case 69:
2846                            encodedcontroller = _lev_ctrl_CC69_EXT;
2847                            break;
2848                        case 70:
2849                            encodedcontroller = _lev_ctrl_CC70_EXT;
2850                            break;
2851                        case 71:
2852                            encodedcontroller = _lev_ctrl_CC71_EXT;
2853                            break;
2854                        case 72:
2855                            encodedcontroller = _lev_ctrl_CC72_EXT;
2856                            break;
2857                        case 73:
2858                            encodedcontroller = _lev_ctrl_CC73_EXT;
2859                            break;
2860                        case 74:
2861                            encodedcontroller = _lev_ctrl_CC74_EXT;
2862                            break;
2863                        case 75:
2864                            encodedcontroller = _lev_ctrl_CC75_EXT;
2865                            break;
2866                        case 76:
2867                            encodedcontroller = _lev_ctrl_CC76_EXT;
2868                            break;
2869                        case 77:
2870                            encodedcontroller = _lev_ctrl_CC77_EXT;
2871                            break;
2872                        case 78:
2873                            encodedcontroller = _lev_ctrl_CC78_EXT;
2874                            break;
2875                        case 79:
2876                            encodedcontroller = _lev_ctrl_CC79_EXT;
2877                            break;
2878                        case 84:
2879                            encodedcontroller = _lev_ctrl_CC84_EXT;
2880                            break;
2881                        case 85:
2882                            encodedcontroller = _lev_ctrl_CC85_EXT;
2883                            break;
2884                        case 86:
2885                            encodedcontroller = _lev_ctrl_CC86_EXT;
2886                            break;
2887                        case 87:
2888                            encodedcontroller = _lev_ctrl_CC87_EXT;
2889                            break;
2890                        case 89:
2891                            encodedcontroller = _lev_ctrl_CC89_EXT;
2892                            break;
2893                        case 90:
2894                            encodedcontroller = _lev_ctrl_CC90_EXT;
2895                            break;
2896                        case 96:
2897                            encodedcontroller = _lev_ctrl_CC96_EXT;
2898                            break;
2899                        case 97:
2900                            encodedcontroller = _lev_ctrl_CC97_EXT;
2901                            break;
2902                        case 102:
2903                            encodedcontroller = _lev_ctrl_CC102_EXT;
2904                            break;
2905                        case 103:
2906                            encodedcontroller = _lev_ctrl_CC103_EXT;
2907                            break;
2908                        case 104:
2909                            encodedcontroller = _lev_ctrl_CC104_EXT;
2910                            break;
2911                        case 105:
2912                            encodedcontroller = _lev_ctrl_CC105_EXT;
2913                            break;
2914                        case 106:
2915                            encodedcontroller = _lev_ctrl_CC106_EXT;
2916                            break;
2917                        case 107:
2918                            encodedcontroller = _lev_ctrl_CC107_EXT;
2919                            break;
2920                        case 108:
2921                            encodedcontroller = _lev_ctrl_CC108_EXT;
2922                            break;
2923                        case 109:
2924                            encodedcontroller = _lev_ctrl_CC109_EXT;
2925                            break;
2926                        case 110:
2927                            encodedcontroller = _lev_ctrl_CC110_EXT;
2928                            break;
2929                        case 111:
2930                            encodedcontroller = _lev_ctrl_CC111_EXT;
2931                            break;
2932                        case 112:
2933                            encodedcontroller = _lev_ctrl_CC112_EXT;
2934                            break;
2935                        case 113:
2936                            encodedcontroller = _lev_ctrl_CC113_EXT;
2937                            break;
2938                        case 114:
2939                            encodedcontroller = _lev_ctrl_CC114_EXT;
2940                            break;
2941                        case 115:
2942                            encodedcontroller = _lev_ctrl_CC115_EXT;
2943                            break;
2944                        case 116:
2945                            encodedcontroller = _lev_ctrl_CC116_EXT;
2946                            break;
2947                        case 117:
2948                            encodedcontroller = _lev_ctrl_CC117_EXT;
2949                            break;
2950                        case 118:
2951                            encodedcontroller = _lev_ctrl_CC118_EXT;
2952                            break;
2953                        case 119:
2954                            encodedcontroller = _lev_ctrl_CC119_EXT;
2955                            break;
2956    
2957                        default:
2958                            throw gig::Exception("leverage controller number is not supported by the gig format");
2959                    }
2960                    break;
2961                default:
2962                    throw gig::Exception("Unknown leverage controller type.");
2963            }
2964            return encodedcontroller;
2965        }
2966    
2967        DimensionRegion::~DimensionRegion() {
2968            Instances--;
2969            if (!Instances) {
2970                // delete the velocity->volume tables
2971                VelocityTableMap::iterator iter;
2972                for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2973                    double* pTable = iter->second;
2974                    if (pTable) delete[] pTable;
2975                }
2976                pVelocityTables->clear();
2977                delete pVelocityTables;
2978                pVelocityTables = NULL;
2979            }
2980            if (VelocityTable) delete[] VelocityTable;
2981        }
2982    
2983        /**
2984         * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2985         * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2986         * and VelocityResponseCurveScaling) involved are taken into account to
2987         * calculate the amplitude factor. Use this method when a key was
2988         * triggered to get the volume with which the sample should be played
2989         * back.
2990         *
2991         * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
2992         * @returns                amplitude factor (between 0.0 and 1.0)
2993         */
2994        double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2995            return pVelocityAttenuationTable[MIDIKeyVelocity];
2996        }
2997    
2998        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2999            return pVelocityReleaseTable[MIDIKeyVelocity];
3000        }
3001    
3002        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3003            return pVelocityCutoffTable[MIDIKeyVelocity];
3004        }
3005    
3006        /**
3007         * Updates the respective member variable and the lookup table / cache
3008         * that depends on this value.
3009         */
3010        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3011            pVelocityAttenuationTable =
3012                GetVelocityTable(
3013                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3014                );
3015            VelocityResponseCurve = curve;
3016        }
3017    
3018        /**
3019         * Updates the respective member variable and the lookup table / cache
3020         * that depends on this value.
3021         */
3022        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3023            pVelocityAttenuationTable =
3024                GetVelocityTable(
3025                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3026                );
3027            VelocityResponseDepth = depth;
3028        }
3029    
3030        /**
3031         * Updates the respective member variable and the lookup table / cache
3032         * that depends on this value.
3033         */
3034        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3035            pVelocityAttenuationTable =
3036                GetVelocityTable(
3037                    VelocityResponseCurve, VelocityResponseDepth, scaling
3038                );
3039            VelocityResponseCurveScaling = scaling;
3040        }
3041    
3042        /**
3043         * Updates the respective member variable and the lookup table / cache
3044         * that depends on this value.
3045         */
3046        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3047            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3048            ReleaseVelocityResponseCurve = curve;
3049        }
3050    
3051        /**
3052         * Updates the respective member variable and the lookup table / cache
3053         * that depends on this value.
3054         */
3055        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3056            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3057            ReleaseVelocityResponseDepth = depth;
3058        }
3059    
3060        /**
3061         * Updates the respective member variable and the lookup table / cache
3062         * that depends on this value.
3063         */
3064        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3065            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3066            VCFCutoffController = controller;
3067        }
3068    
3069        /**
3070         * Updates the respective member variable and the lookup table / cache
3071         * that depends on this value.
3072         */
3073        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3074            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3075            VCFVelocityCurve = curve;
3076        }
3077    
3078        /**
3079         * Updates the respective member variable and the lookup table / cache
3080         * that depends on this value.
3081         */
3082        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3083            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3084            VCFVelocityDynamicRange = range;
3085        }
3086    
3087        /**
3088         * Updates the respective member variable and the lookup table / cache
3089         * that depends on this value.
3090         */
3091        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3092            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3093            VCFVelocityScale = scaling;
3094        }
3095    
3096        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3097    
3098            // line-segment approximations of the 15 velocity curves
3099    
3100            // linear
3101            const int lin0[] = { 1, 1, 127, 127 };
3102            const int lin1[] = { 1, 21, 127, 127 };
3103            const int lin2[] = { 1, 45, 127, 127 };
3104            const int lin3[] = { 1, 74, 127, 127 };
3105            const int lin4[] = { 1, 127, 127, 127 };
3106    
3107            // non-linear
3108            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3109            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3110                                 127, 127 };
3111            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3112                                 127, 127 };
3113            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3114                                 127, 127 };
3115            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3116    
3117            // special
3118            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3119                                 113, 127, 127, 127 };
3120            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3121                                 118, 127, 127, 127 };
3122            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3123                                 85, 90, 91, 127, 127, 127 };
3124            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3125                                 117, 127, 127, 127 };
3126            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3127                                 127, 127 };
3128    
3129            // this is only used by the VCF velocity curve
3130            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3131                                 91, 127, 127, 127 };
3132    
3133            const int* const curves[] = { non0, non1, non2, non3, non4,
3134                                          lin0, lin1, lin2, lin3, lin4,
3135                                          spe0, spe1, spe2, spe3, spe4, spe5 };
3136    
3137            double* const table = new double[128];
3138    
3139            const int* curve = curves[curveType * 5 + depth];
3140            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3141    
3142            table[0] = 0;
3143            for (int x = 1 ; x < 128 ; x++) {
3144    
3145                if (x > curve[2]) curve += 2;
3146                double y = curve[1] + (x - curve[0]) *
3147                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3148                y = y / 127;
3149    
3150                // Scale up for s > 20, down for s < 20. When
3151                // down-scaling, the curve still ends at 1.0.
3152                if (s < 20 && y >= 0.5)
3153                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3154                else
3155                    y = y * (s / 20.0);
3156                if (y > 1) y = 1;
3157    
3158                table[x] = y;
3159            }
3160            return table;
3161        }
3162    
3163    
3164  // *************** Region ***************  // *************** Region ***************
# Line 654  namespace gig { Line 3167  namespace gig {
3167      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3168          // Initialization          // Initialization
3169          Dimensions = 0;          Dimensions = 0;
3170          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
3171              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
3172          }          }
3173            Layers = 1;
3174            File* file = (File*) GetParent()->GetParent();
3175            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3176    
3177          // Actual Loading          // Actual Loading
3178    
3179            if (!file->GetAutoLoad()) return;
3180    
3181          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3182    
3183          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3184          if (_3lnk) {          if (_3lnk) {
3185              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3186              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
3187                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3188                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3189                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3190                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3191                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3192                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3193                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3194                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3195                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3196                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3197                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3198                  }                  }
3199                  else { // active dimension                  else { // active dimension
3200                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3201                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3202                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3203                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3204                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3205                      Dimensions++;                      Dimensions++;
3206    
3207                        // if this is a layer dimension, remember the amount of layers
3208                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3209                  }                  }
3210                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3211              }              }
3212                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3213    
3214              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3215              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3216                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
3217                  if (pDimDef->dimension == dimension_velocity) {  
3218                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
3219                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
3220                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3221                          pDimDef->ranges     = NULL;              else
3222                      }                  _3lnk->SetPos(44);
3223                      else { // custom defined ranges  
3224                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
3225                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
3226                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
3227                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3228                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
3229                  }                  }
3230                    GetSample(); // load global region sample reference
3231                }
3232            } else {
3233                DimensionRegions = 0;
3234                for (int i = 0 ; i < 8 ; i++) {
3235                    pDimensionDefinitions[i].dimension  = dimension_none;
3236                    pDimensionDefinitions[i].bits       = 0;
3237                    pDimensionDefinitions[i].zones      = 0;
3238              }              }
3239            }
3240    
3241              // load sample references          // make sure there is at least one dimension region
3242              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          if (!DimensionRegions) {
3243              for (uint i = 0; i < DimensionRegions; i++) {              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3244                  uint32_t wavepoolindex = _3lnk->ReadUint32();              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3245                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3246                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3247                DimensionRegions = 1;
3248            }
3249        }
3250    
3251        /**
3252         * Apply Region settings and all its DimensionRegions to the respective
3253         * RIFF chunks. You have to call File::Save() to make changes persistent.
3254         *
3255         * Usually there is absolutely no need to call this method explicitly.
3256         * It will be called automatically when File::Save() was called.
3257         *
3258         * @param pProgress - callback function for progress notification
3259         * @throws gig::Exception if samples cannot be dereferenced
3260         */
3261        void Region::UpdateChunks(progress_t* pProgress) {
3262            // in the gig format we don't care about the Region's sample reference
3263            // but we still have to provide some existing one to not corrupt the
3264            // file, so to avoid the latter we simply always assign the sample of
3265            // the first dimension region of this region
3266            pSample = pDimensionRegions[0]->pSample;
3267    
3268            // first update base class's chunks
3269            DLS::Region::UpdateChunks(pProgress);
3270    
3271            // update dimension region's chunks
3272            for (int i = 0; i < DimensionRegions; i++) {
3273                pDimensionRegions[i]->UpdateChunks(pProgress);
3274            }
3275    
3276            File* pFile = (File*) GetParent()->GetParent();
3277            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3278            const int iMaxDimensions =  version3 ? 8 : 5;
3279            const int iMaxDimensionRegions = version3 ? 256 : 32;
3280    
3281            // make sure '3lnk' chunk exists
3282            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3283            if (!_3lnk) {
3284                const int _3lnkChunkSize = version3 ? 1092 : 172;
3285                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3286                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3287    
3288                // move 3prg to last position
3289                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3290            }
3291    
3292            // update dimension definitions in '3lnk' chunk
3293            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3294            store32(&pData[0], DimensionRegions);
3295            int shift = 0;
3296            for (int i = 0; i < iMaxDimensions; i++) {
3297                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3298                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3299                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3300                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3301                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3302                // next 3 bytes unknown, always zero?
3303    
3304                shift += pDimensionDefinitions[i].bits;
3305            }
3306    
3307            // update wave pool table in '3lnk' chunk
3308            const int iWavePoolOffset = version3 ? 68 : 44;
3309            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3310                int iWaveIndex = -1;
3311                if (i < DimensionRegions) {
3312                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3313                    File::SampleList::iterator iter = pFile->pSamples->begin();
3314                    File::SampleList::iterator end  = pFile->pSamples->end();
3315                    for (int index = 0; iter != end; ++iter, ++index) {
3316                        if (*iter == pDimensionRegions[i]->pSample) {
3317                            iWaveIndex = index;
3318                            break;
3319                        }
3320                    }
3321              }              }
3322                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3323          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3324      }      }
3325    
3326      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 739  namespace gig { Line 3330  namespace gig {
3330              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3331              while (_3ewl) {              while (_3ewl) {
3332                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3333                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3334                      dimensionRegionNr++;                      dimensionRegionNr++;
3335                  }                  }
3336                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 748  namespace gig { Line 3339  namespace gig {
3339          }          }
3340      }      }
3341    
3342      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3343          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3344              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3345            // update Region key table for fast lookup
3346            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3347        }
3348    
3349        void Region::UpdateVelocityTable() {
3350            // get velocity dimension's index
3351            int veldim = -1;
3352            for (int i = 0 ; i < Dimensions ; i++) {
3353                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3354                    veldim = i;
3355                    break;
3356                }
3357            }
3358            if (veldim == -1) return;
3359    
3360            int step = 1;
3361            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3362            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3363    
3364            // loop through all dimension regions for all dimensions except the velocity dimension
3365            int dim[8] = { 0 };
3366            for (int i = 0 ; i < DimensionRegions ; i++) {
3367                const int end = i + step * pDimensionDefinitions[veldim].zones;
3368    
3369                // create a velocity table for all cases where the velocity zone is zero
3370                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3371                    pDimensionRegions[i]->VelocityUpperLimit) {
3372                    // create the velocity table
3373                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3374                    if (!table) {
3375                        table = new uint8_t[128];
3376                        pDimensionRegions[i]->VelocityTable = table;
3377                    }
3378                    int tableidx = 0;
3379                    int velocityZone = 0;
3380                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3381                        for (int k = i ; k < end ; k += step) {
3382                            DimensionRegion *d = pDimensionRegions[k];
3383                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3384                            velocityZone++;
3385                        }
3386                    } else { // gig2
3387                        for (int k = i ; k < end ; k += step) {
3388                            DimensionRegion *d = pDimensionRegions[k];
3389                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3390                            velocityZone++;
3391                        }
3392                    }
3393                } else {
3394                    if (pDimensionRegions[i]->VelocityTable) {
3395                        delete[] pDimensionRegions[i]->VelocityTable;
3396                        pDimensionRegions[i]->VelocityTable = 0;
3397                    }
3398                }
3399    
3400                // jump to the next case where the velocity zone is zero
3401                int j;
3402                int shift = 0;
3403                for (j = 0 ; j < Dimensions ; j++) {
3404                    if (j == veldim) i += skipveldim; // skip velocity dimension
3405                    else {
3406                        dim[j]++;
3407                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3408                        else {
3409                            // skip unused dimension regions
3410                            dim[j] = 0;
3411                            i += ((1 << pDimensionDefinitions[j].bits) -
3412                                  pDimensionDefinitions[j].zones) << shift;
3413                        }
3414                    }
3415                    shift += pDimensionDefinitions[j].bits;
3416                }
3417                if (j == Dimensions) break;
3418            }
3419        }
3420    
3421        /** @brief Einstein would have dreamed of it - create a new dimension.
3422         *
3423         * Creates a new dimension with the dimension definition given by
3424         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3425         * There is a hard limit of dimensions and total amount of "bits" all
3426         * dimensions can have. This limit is dependant to what gig file format
3427         * version this file refers to. The gig v2 (and lower) format has a
3428         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3429         * format has a limit of 8.
3430         *
3431         * @param pDimDef - defintion of the new dimension
3432         * @throws gig::Exception if dimension of the same type exists already
3433         * @throws gig::Exception if amount of dimensions or total amount of
3434         *                        dimension bits limit is violated
3435         */
3436        void Region::AddDimension(dimension_def_t* pDimDef) {
3437            // some initial sanity checks of the given dimension definition
3438            if (pDimDef->zones < 2)
3439                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3440            if (pDimDef->bits < 1)
3441                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3442            if (pDimDef->dimension == dimension_samplechannel) {
3443                if (pDimDef->zones != 2)
3444                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3445                if (pDimDef->bits != 1)
3446                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3447            }
3448    
3449            // check if max. amount of dimensions reached
3450            File* file = (File*) GetParent()->GetParent();
3451            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3452            if (Dimensions >= iMaxDimensions)
3453                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3454            // check if max. amount of dimension bits reached
3455            int iCurrentBits = 0;
3456            for (int i = 0; i < Dimensions; i++)
3457                iCurrentBits += pDimensionDefinitions[i].bits;
3458            if (iCurrentBits >= iMaxDimensions)
3459                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3460            const int iNewBits = iCurrentBits + pDimDef->bits;
3461            if (iNewBits > iMaxDimensions)
3462                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3463            // check if there's already a dimensions of the same type
3464            for (int i = 0; i < Dimensions; i++)
3465                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3466                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3467    
3468            // pos is where the new dimension should be placed, normally
3469            // last in list, except for the samplechannel dimension which
3470            // has to be first in list
3471            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3472            int bitpos = 0;
3473            for (int i = 0 ; i < pos ; i++)
3474                bitpos += pDimensionDefinitions[i].bits;
3475    
3476            // make room for the new dimension
3477            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3478            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3479                for (int j = Dimensions ; j > pos ; j--) {
3480                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3481                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3482                }
3483            }
3484    
3485            // assign definition of new dimension
3486            pDimensionDefinitions[pos] = *pDimDef;
3487    
3488            // auto correct certain dimension definition fields (where possible)
3489            pDimensionDefinitions[pos].split_type  =
3490                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3491            pDimensionDefinitions[pos].zone_size =
3492                __resolveZoneSize(pDimensionDefinitions[pos]);
3493    
3494            // create new dimension region(s) for this new dimension, and make
3495            // sure that the dimension regions are placed correctly in both the
3496            // RIFF list and the pDimensionRegions array
3497            RIFF::Chunk* moveTo = NULL;
3498            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3499            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3500                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3501                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3502                }
3503                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3504                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3505                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3506                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3507                        // create a new dimension region and copy all parameter values from
3508                        // an existing dimension region
3509                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3510                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3511    
3512                        DimensionRegions++;
3513                    }
3514                }
3515                moveTo = pDimensionRegions[i]->pParentList;
3516            }
3517    
3518            // initialize the upper limits for this dimension
3519            int mask = (1 << bitpos) - 1;
3520            for (int z = 0 ; z < pDimDef->zones ; z++) {
3521                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3522                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3523                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3524                                      (z << bitpos) |
3525                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3526                }
3527            }
3528    
3529            Dimensions++;
3530    
3531            // if this is a layer dimension, update 'Layers' attribute
3532            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3533    
3534            UpdateVelocityTable();
3535        }
3536    
3537        /** @brief Delete an existing dimension.
3538         *
3539         * Deletes the dimension given by \a pDimDef and deletes all respective
3540         * dimension regions, that is all dimension regions where the dimension's
3541         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3542         * for example this would delete all dimension regions for the case(s)
3543         * where the sustain pedal is pressed down.
3544         *
3545         * @param pDimDef - dimension to delete
3546         * @throws gig::Exception if given dimension cannot be found
3547         */
3548        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3549            // get dimension's index
3550            int iDimensionNr = -1;
3551            for (int i = 0; i < Dimensions; i++) {
3552                if (&pDimensionDefinitions[i] == pDimDef) {
3553                    iDimensionNr = i;
3554                    break;
3555                }
3556            }
3557            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3558    
3559            // get amount of bits below the dimension to delete
3560            int iLowerBits = 0;
3561            for (int i = 0; i < iDimensionNr; i++)
3562                iLowerBits += pDimensionDefinitions[i].bits;
3563    
3564            // get amount ot bits above the dimension to delete
3565            int iUpperBits = 0;
3566            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3567                iUpperBits += pDimensionDefinitions[i].bits;
3568    
3569            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3570    
3571            // delete dimension regions which belong to the given dimension
3572            // (that is where the dimension's bit > 0)
3573            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3574                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3575                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3576                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3577                                        iObsoleteBit << iLowerBits |
3578                                        iLowerBit;
3579    
3580                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3581                        delete pDimensionRegions[iToDelete];
3582                        pDimensionRegions[iToDelete] = NULL;
3583                        DimensionRegions--;
3584                    }
3585                }
3586            }
3587    
3588            // defrag pDimensionRegions array
3589            // (that is remove the NULL spaces within the pDimensionRegions array)
3590            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3591                if (!pDimensionRegions[iTo]) {
3592                    if (iFrom <= iTo) iFrom = iTo + 1;
3593                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3594                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3595                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3596                        pDimensionRegions[iFrom] = NULL;
3597                    }
3598                }
3599            }
3600    
3601            // remove the this dimension from the upper limits arrays
3602            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3603                DimensionRegion* d = pDimensionRegions[j];
3604                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3605                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3606                }
3607                d->DimensionUpperLimits[Dimensions - 1] = 127;
3608            }
3609    
3610            // 'remove' dimension definition
3611            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3612                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3613            }
3614            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3615            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3616            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3617    
3618            Dimensions--;
3619    
3620            // if this was a layer dimension, update 'Layers' attribute
3621            if (pDimDef->dimension == dimension_layer) Layers = 1;
3622        }
3623    
3624        /** @brief Delete one split zone of a dimension (decrement zone amount).
3625         *
3626         * Instead of deleting an entire dimensions, this method will only delete
3627         * one particular split zone given by @a zone of the Region's dimension
3628         * given by @a type. So this method will simply decrement the amount of
3629         * zones by one of the dimension in question. To be able to do that, the
3630         * respective dimension must exist on this Region and it must have at least
3631         * 3 zones. All DimensionRegion objects associated with the zone will be
3632         * deleted.
3633         *
3634         * @param type - identifies the dimension where a zone shall be deleted
3635         * @param zone - index of the dimension split zone that shall be deleted
3636         * @throws gig::Exception if requested zone could not be deleted
3637         */
3638        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3639            dimension_def_t* oldDef = GetDimensionDefinition(type);
3640            if (!oldDef)
3641                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3642            if (oldDef->zones <= 2)
3643                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3644            if (zone < 0 || zone >= oldDef->zones)
3645                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3646    
3647            const int newZoneSize = oldDef->zones - 1;
3648    
3649            // create a temporary Region which just acts as a temporary copy
3650            // container and will be deleted at the end of this function and will
3651            // also not be visible through the API during this process
3652            gig::Region* tempRgn = NULL;
3653            {
3654                // adding these temporary chunks is probably not even necessary
3655                Instrument* instr = static_cast<Instrument*>(GetParent());
3656                RIFF::List* pCkInstrument = instr->pCkInstrument;
3657                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3658                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3659                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3660                tempRgn = new Region(instr, rgn);
3661            }
3662    
3663            // copy this region's dimensions (with already the dimension split size
3664            // requested by the arguments of this method call) to the temporary
3665            // region, and don't use Region::CopyAssign() here for this task, since
3666            // it would also alter fast lookup helper variables here and there
3667            dimension_def_t newDef;
3668            for (int i = 0; i < Dimensions; ++i) {
3669                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3670                // is this the dimension requested by the method arguments? ...
3671                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3672                    def.zones = newZoneSize;
3673                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3674                    newDef = def;
3675                }
3676                tempRgn->AddDimension(&def);
3677            }
3678    
3679            // find the dimension index in the tempRegion which is the dimension
3680            // type passed to this method (paranoidly expecting different order)
3681            int tempReducedDimensionIndex = -1;
3682            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3683                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3684                    tempReducedDimensionIndex = d;
3685                    break;
3686                }
3687            }
3688    
3689            // copy dimension regions from this region to the temporary region
3690            for (int iDst = 0; iDst < 256; ++iDst) {
3691                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3692                if (!dstDimRgn) continue;
3693                std::map<dimension_t,int> dimCase;
3694                bool isValidZone = true;
3695                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3696                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3697                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3698                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3699                    baseBits += dstBits;
3700                    // there are also DimensionRegion objects of unused zones, skip them
3701                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3702                        isValidZone = false;
3703                        break;
3704                    }
3705                }
3706                if (!isValidZone) continue;
3707                // a bit paranoid: cope with the chance that the dimensions would
3708                // have different order in source and destination regions
3709                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3710                if (dimCase[type] >= zone) dimCase[type]++;
3711                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3712                dstDimRgn->CopyAssign(srcDimRgn);
3713                // if this is the upper most zone of the dimension passed to this
3714                // method, then correct (raise) its upper limit to 127
3715                if (newDef.split_type == split_type_normal && isLastZone)
3716                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3717            }
3718    
3719            // now tempRegion's dimensions and DimensionRegions basically reflect
3720            // what we wanted to get for this actual Region here, so we now just
3721            // delete and recreate the dimension in question with the new amount
3722            // zones and then copy back from tempRegion      
3723            DeleteDimension(oldDef);
3724            AddDimension(&newDef);
3725            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3726                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3727                if (!srcDimRgn) continue;
3728                std::map<dimension_t,int> dimCase;
3729                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3730                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3731                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3732                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3733                    baseBits += srcBits;
3734                }
3735                // a bit paranoid: cope with the chance that the dimensions would
3736                // have different order in source and destination regions
3737                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3738                if (!dstDimRgn) continue;
3739                dstDimRgn->CopyAssign(srcDimRgn);
3740            }
3741    
3742            // delete temporary region
3743            delete tempRgn;
3744    
3745            UpdateVelocityTable();
3746        }
3747    
3748        /** @brief Divide split zone of a dimension in two (increment zone amount).
3749         *
3750         * This will increment the amount of zones for the dimension (given by
3751         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3752         * in the middle of its zone range in two. So the two zones resulting from
3753         * the zone being splitted, will be an equivalent copy regarding all their
3754         * articulation informations and sample reference. The two zones will only
3755         * differ in their zone's upper limit
3756         * (DimensionRegion::DimensionUpperLimits).
3757         *
3758         * @param type - identifies the dimension where a zone shall be splitted
3759         * @param zone - index of the dimension split zone that shall be splitted
3760         * @throws gig::Exception if requested zone could not be splitted
3761         */
3762        void Region::SplitDimensionZone(dimension_t type, int zone) {
3763            dimension_def_t* oldDef = GetDimensionDefinition(type);
3764            if (!oldDef)
3765                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3766            if (zone < 0 || zone >= oldDef->zones)
3767                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3768    
3769            const int newZoneSize = oldDef->zones + 1;
3770    
3771            // create a temporary Region which just acts as a temporary copy
3772            // container and will be deleted at the end of this function and will
3773            // also not be visible through the API during this process
3774            gig::Region* tempRgn = NULL;
3775            {
3776                // adding these temporary chunks is probably not even necessary
3777                Instrument* instr = static_cast<Instrument*>(GetParent());
3778                RIFF::List* pCkInstrument = instr->pCkInstrument;
3779                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3780                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3781                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3782                tempRgn = new Region(instr, rgn);
3783            }
3784    
3785            // copy this region's dimensions (with already the dimension split size
3786            // requested by the arguments of this method call) to the temporary
3787            // region, and don't use Region::CopyAssign() here for this task, since
3788            // it would also alter fast lookup helper variables here and there
3789            dimension_def_t newDef;
3790            for (int i = 0; i < Dimensions; ++i) {
3791                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3792                // is this the dimension requested by the method arguments? ...
3793                if (def.dimension == type) { // ... if yes, increment zone amount by one
3794                    def.zones = newZoneSize;
3795                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3796                    newDef = def;
3797                }
3798                tempRgn->AddDimension(&def);
3799            }
3800    
3801            // find the dimension index in the tempRegion which is the dimension
3802            // type passed to this method (paranoidly expecting different order)
3803            int tempIncreasedDimensionIndex = -1;
3804            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3805                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3806                    tempIncreasedDimensionIndex = d;
3807                    break;
3808                }
3809          }          }
3810          for (int i = 0; i < 32; i++) {  
3811            // copy dimension regions from this region to the temporary region
3812            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3813                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3814                if (!srcDimRgn) continue;
3815                std::map<dimension_t,int> dimCase;
3816                bool isValidZone = true;
3817                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3818                    const int srcBits = pDimensionDefinitions[d].bits;
3819                    dimCase[pDimensionDefinitions[d].dimension] =
3820                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3821                    // there are also DimensionRegion objects for unused zones, skip them
3822                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3823                        isValidZone = false;
3824                        break;
3825                    }
3826                    baseBits += srcBits;
3827                }
3828                if (!isValidZone) continue;
3829                // a bit paranoid: cope with the chance that the dimensions would
3830                // have different order in source and destination regions            
3831                if (dimCase[type] > zone) dimCase[type]++;
3832                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3833                dstDimRgn->CopyAssign(srcDimRgn);
3834                // if this is the requested zone to be splitted, then also copy
3835                // the source DimensionRegion to the newly created target zone
3836                // and set the old zones upper limit lower
3837                if (dimCase[type] == zone) {
3838                    // lower old zones upper limit
3839                    if (newDef.split_type == split_type_normal) {
3840                        const int high =
3841                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3842                        int low = 0;
3843                        if (zone > 0) {
3844                            std::map<dimension_t,int> lowerCase = dimCase;
3845                            lowerCase[type]--;
3846                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3847                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3848                        }
3849                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3850                    }
3851                    // fill the newly created zone of the divided zone as well
3852                    dimCase[type]++;
3853                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3854                    dstDimRgn->CopyAssign(srcDimRgn);
3855                }
3856            }
3857    
3858            // now tempRegion's dimensions and DimensionRegions basically reflect
3859            // what we wanted to get for this actual Region here, so we now just
3860            // delete and recreate the dimension in question with the new amount
3861            // zones and then copy back from tempRegion      
3862            DeleteDimension(oldDef);
3863            AddDimension(&newDef);
3864            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3865                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3866                if (!srcDimRgn) continue;
3867                std::map<dimension_t,int> dimCase;
3868                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3869                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3870                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3871                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3872                    baseBits += srcBits;
3873                }
3874                // a bit paranoid: cope with the chance that the dimensions would
3875                // have different order in source and destination regions
3876                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3877                if (!dstDimRgn) continue;
3878                dstDimRgn->CopyAssign(srcDimRgn);
3879            }
3880    
3881            // delete temporary region
3882            delete tempRgn;
3883    
3884            UpdateVelocityTable();
3885        }
3886    
3887        /** @brief Change type of an existing dimension.
3888         *
3889         * Alters the dimension type of a dimension already existing on this
3890         * region. If there is currently no dimension on this Region with type
3891         * @a oldType, then this call with throw an Exception. Likewise there are
3892         * cases where the requested dimension type cannot be performed. For example
3893         * if the new dimension type shall be gig::dimension_samplechannel, and the
3894         * current dimension has more than 2 zones. In such cases an Exception is
3895         * thrown as well.
3896         *
3897         * @param oldType - identifies the existing dimension to be changed
3898         * @param newType - to which dimension type it should be changed to
3899         * @throws gig::Exception if requested change cannot be performed
3900         */
3901        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3902            if (oldType == newType) return;
3903            dimension_def_t* def = GetDimensionDefinition(oldType);
3904            if (!def)
3905                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3906            if (newType == dimension_samplechannel && def->zones != 2)
3907                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3908            if (GetDimensionDefinition(newType))
3909                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3910            def->dimension  = newType;
3911            def->split_type = __resolveSplitType(newType);
3912        }
3913    
3914        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3915            uint8_t bits[8] = {};
3916            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3917                 it != DimCase.end(); ++it)
3918            {
3919                for (int d = 0; d < Dimensions; ++d) {
3920                    if (pDimensionDefinitions[d].dimension == it->first) {
3921                        bits[d] = it->second;
3922                        goto nextDimCaseSlice;
3923                    }
3924                }
3925                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3926                nextDimCaseSlice:
3927                ; // noop
3928            }
3929            return GetDimensionRegionByBit(bits);
3930        }
3931    
3932        /**
3933         * Searches in the current Region for a dimension of the given dimension
3934         * type and returns the precise configuration of that dimension in this
3935         * Region.
3936         *
3937         * @param type - dimension type of the sought dimension
3938         * @returns dimension definition or NULL if there is no dimension with
3939         *          sought type in this Region.
3940         */
3941        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3942            for (int i = 0; i < Dimensions; ++i)
3943                if (pDimensionDefinitions[i].dimension == type)
3944                    return &pDimensionDefinitions[i];
3945            return NULL;
3946        }
3947    
3948        Region::~Region() {
3949            for (int i = 0; i < 256; i++) {
3950              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3951          }          }
3952      }      }
# Line 770  namespace gig { Line 3964  namespace gig {
3964       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3965       * etc.).       * etc.).
3966       *       *
3967       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
3968       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
3969       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
3970       * @see             Dimensions       * @see             Dimensions
3971       */       */
3972      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3973          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
3974            int veldim = -1;
3975            int velbitpos = 0;
3976            int bitpos = 0;
3977            int dimregidx = 0;
3978          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3979              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3980                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
3981                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
3982                      break;                  velbitpos = bitpos;
3983                  case split_type_customvelocity:              } else {
3984                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
3985                      break;                      case split_type_normal:
3986                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3987                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3988                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3989                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3990                                }
3991                            } else {
3992                                // gig2: evenly sized zones
3993                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3994                            }
3995                            break;
3996                        case split_type_bit: // the value is already the sought dimension bit number
3997                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3998                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3999                            break;
4000                    }
4001                    dimregidx |= bits << bitpos;
4002                }
4003                bitpos += pDimensionDefinitions[i].bits;
4004            }
4005            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4006            if (!dimreg) return NULL;
4007            if (veldim != -1) {
4008                // (dimreg is now the dimension region for the lowest velocity)
4009                if (dimreg->VelocityTable) // custom defined zone ranges
4010                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4011                else // normal split type
4012                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4013    
4014                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4015                dimregidx |= (bits & limiter_mask) << velbitpos;
4016                dimreg = pDimensionRegions[dimregidx & 255];
4017            }
4018            return dimreg;
4019        }
4020    
4021        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4022            uint8_t bits;
4023            int veldim = -1;
4024            int velbitpos = 0;
4025            int bitpos = 0;
4026            int dimregidx = 0;
4027            for (uint i = 0; i < Dimensions; i++) {
4028                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4029                    // the velocity dimension must be handled after the other dimensions
4030                    veldim = i;
4031                    velbitpos = bitpos;
4032                } else {
4033                    switch (pDimensionDefinitions[i].split_type) {
4034                        case split_type_normal:
4035                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4036                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4037                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4038                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4039                                }
4040                            } else {
4041                                // gig2: evenly sized zones
4042                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4043                            }
4044                            break;
4045                        case split_type_bit: // the value is already the sought dimension bit number
4046                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4047                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4048                            break;
4049                    }
4050                    dimregidx |= bits << bitpos;
4051              }              }
4052                bitpos += pDimensionDefinitions[i].bits;
4053            }
4054            dimregidx &= 255;
4055            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4056            if (!dimreg) return -1;
4057            if (veldim != -1) {
4058                // (dimreg is now the dimension region for the lowest velocity)
4059                if (dimreg->VelocityTable) // custom defined zone ranges
4060                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4061                else // normal split type
4062                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4063    
4064                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4065                dimregidx |= (bits & limiter_mask) << velbitpos;
4066                dimregidx &= 255;
4067          }          }
4068          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimregidx;
4069      }      }
4070    
4071      /**      /**
# Line 800  namespace gig { Line 4073  namespace gig {
4073       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4074       * instead of calling this method directly!       * instead of calling this method directly!
4075       *       *
4076       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
4077       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
4078       *                 bit numbers       *                 bit numbers
4079       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
4080       */       */
4081      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4082          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4083                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
4084                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
4085                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
4086                                                      << pDimensionDefinitions[2].bits | DimBits[2])
4087                                                      << pDimensionDefinitions[1].bits | DimBits[1])
4088                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
4089      }      }
4090    
4091      /**      /**
# Line 830  namespace gig { Line 4102  namespace gig {
4102          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4103      }      }
4104    
4105      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4106            if ((int32_t)WavePoolTableIndex == -1) return NULL;
4107          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4108          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4109          Sample* sample = file->GetFirstSample();          // for new files or files >= 2 GB use 64 bit wave pool offsets
4110          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4111              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
4112              sample = file->GetNextSample();              uint64_t soughtoffset =
4113                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4114                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4115                Sample* sample = file->GetFirstSample(pProgress);
4116                while (sample) {
4117                    if (sample->ullWavePoolOffset == soughtoffset)
4118                        return static_cast<gig::Sample*>(sample);
4119                    sample = file->GetNextSample();
4120                }
4121            } else {
4122                // use extension files and 32 bit wave pool offsets
4123                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4124                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4125                Sample* sample = file->GetFirstSample(pProgress);
4126                while (sample) {
4127                    if (sample->ullWavePoolOffset == soughtoffset &&
4128                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4129                    sample = file->GetNextSample();
4130                }
4131          }          }
4132          return NULL;          return NULL;
4133      }      }
4134        
4135        /**
4136         * Make a (semi) deep copy of the Region object given by @a orig
4137         * and assign it to this object.
4138         *
4139         * Note that all sample pointers referenced by @a orig are simply copied as
4140         * memory address. Thus the respective samples are shared, not duplicated!
4141         *
4142         * @param orig - original Region object to be copied from
4143         */
4144        void Region::CopyAssign(const Region* orig) {
4145            CopyAssign(orig, NULL);
4146        }
4147        
4148        /**
4149         * Make a (semi) deep copy of the Region object given by @a orig and
4150         * assign it to this object
4151         *
4152         * @param mSamples - crosslink map between the foreign file's samples and
4153         *                   this file's samples
4154         */
4155        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4156            // handle base classes
4157            DLS::Region::CopyAssign(orig);
4158            
4159            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4160                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4161            }
4162            
4163            // handle own member variables
4164            for (int i = Dimensions - 1; i >= 0; --i) {
4165                DeleteDimension(&pDimensionDefinitions[i]);
4166            }
4167            Layers = 0; // just to be sure
4168            for (int i = 0; i < orig->Dimensions; i++) {
4169                // we need to copy the dim definition here, to avoid the compiler
4170                // complaining about const-ness issue
4171                dimension_def_t def = orig->pDimensionDefinitions[i];
4172                AddDimension(&def);
4173            }
4174            for (int i = 0; i < 256; i++) {
4175                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4176                    pDimensionRegions[i]->CopyAssign(
4177                        orig->pDimensionRegions[i],
4178                        mSamples
4179                    );
4180                }
4181            }
4182            Layers = orig->Layers;
4183        }
4184    
4185    
4186    // *************** MidiRule ***************
4187    // *
4188    
4189        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4190            _3ewg->SetPos(36);
4191            Triggers = _3ewg->ReadUint8();
4192            _3ewg->SetPos(40);
4193            ControllerNumber = _3ewg->ReadUint8();
4194            _3ewg->SetPos(46);
4195            for (int i = 0 ; i < Triggers ; i++) {
4196                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4197                pTriggers[i].Descending = _3ewg->ReadUint8();
4198                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4199                pTriggers[i].Key = _3ewg->ReadUint8();
4200                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4201                pTriggers[i].Velocity = _3ewg->ReadUint8();
4202                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4203                _3ewg->ReadUint8();
4204            }
4205        }
4206    
4207        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4208            ControllerNumber(0),
4209            Triggers(0) {
4210        }
4211    
4212        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4213            pData[32] = 4;
4214            pData[33] = 16;
4215            pData[36] = Triggers;
4216            pData[40] = ControllerNumber;
4217            for (int i = 0 ; i < Triggers ; i++) {
4218                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4219                pData[47 + i * 8] = pTriggers[i].Descending;
4220                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4221                pData[49 + i * 8] = pTriggers[i].Key;
4222                pData[50 + i * 8] = pTriggers[i].NoteOff;
4223                pData[51 + i * 8] = pTriggers[i].Velocity;
4224                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4225            }
4226        }
4227    
4228        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4229            _3ewg->SetPos(36);
4230            LegatoSamples = _3ewg->ReadUint8(); // always 12
4231            _3ewg->SetPos(40);
4232            BypassUseController = _3ewg->ReadUint8();
4233            BypassKey = _3ewg->ReadUint8();
4234            BypassController = _3ewg->ReadUint8();
4235            ThresholdTime = _3ewg->ReadUint16();
4236            _3ewg->ReadInt16();
4237            ReleaseTime = _3ewg->ReadUint16();
4238            _3ewg->ReadInt16();
4239            KeyRange.low = _3ewg->ReadUint8();
4240            KeyRange.high = _3ewg->ReadUint8();
4241            _3ewg->SetPos(64);
4242            ReleaseTriggerKey = _3ewg->ReadUint8();
4243            AltSustain1Key = _3ewg->ReadUint8();
4244            AltSustain2Key = _3ewg->ReadUint8();
4245        }
4246    
4247        MidiRuleLegato::MidiRuleLegato() :
4248            LegatoSamples(12),
4249            BypassUseController(false),
4250            BypassKey(0),
4251            BypassController(1),
4252            ThresholdTime(20),
4253            ReleaseTime(20),
4254            ReleaseTriggerKey(0),
4255            AltSustain1Key(0),
4256            AltSustain2Key(0)
4257        {
4258            KeyRange.low = KeyRange.high = 0;
4259        }
4260    
4261        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4262            pData[32] = 0;
4263            pData[33] = 16;
4264            pData[36] = LegatoSamples;
4265            pData[40] = BypassUseController;
4266            pData[41] = BypassKey;
4267            pData[42] = BypassController;
4268            store16(&pData[43], ThresholdTime);
4269            store16(&pData[47], ReleaseTime);
4270            pData[51] = KeyRange.low;
4271            pData[52] = KeyRange.high;
4272            pData[64] = ReleaseTriggerKey;
4273            pData[65] = AltSustain1Key;
4274            pData[66] = AltSustain2Key;
4275        }
4276    
4277        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4278            _3ewg->SetPos(36);
4279            Articulations = _3ewg->ReadUint8();
4280            int flags = _3ewg->ReadUint8();
4281            Polyphonic = flags & 8;
4282            Chained = flags & 4;
4283            Selector = (flags & 2) ? selector_controller :
4284                (flags & 1) ? selector_key_switch : selector_none;
4285            Patterns = _3ewg->ReadUint8();
4286            _3ewg->ReadUint8(); // chosen row
4287            _3ewg->ReadUint8(); // unknown
4288            _3ewg->ReadUint8(); // unknown
4289            _3ewg->ReadUint8(); // unknown
4290            KeySwitchRange.low = _3ewg->ReadUint8();
4291            KeySwitchRange.high = _3ewg->ReadUint8();
4292            Controller = _3ewg->ReadUint8();
4293            PlayRange.low = _3ewg->ReadUint8();
4294            PlayRange.high = _3ewg->ReadUint8();
4295    
4296            int n = std::min(int(Articulations), 32);
4297            for (int i = 0 ; i < n ; i++) {
4298                _3ewg->ReadString(pArticulations[i], 32);
4299            }
4300            _3ewg->SetPos(1072);
4301            n = std::min(int(Patterns), 32);
4302            for (int i = 0 ; i < n ; i++) {
4303                _3ewg->ReadString(pPatterns[i].Name, 16);
4304                pPatterns[i].Size = _3ewg->ReadUint8();
4305                _3ewg->Read(&pPatterns[i][0], 1, 32);
4306            }
4307        }
4308    
4309        MidiRuleAlternator::MidiRuleAlternator() :
4310            Articulations(0),
4311            Patterns(0),
4312            Selector(selector_none),
4313            Controller(0),
4314            Polyphonic(false),
4315            Chained(false)
4316        {
4317            PlayRange.low = PlayRange.high = 0;
4318            KeySwitchRange.low = KeySwitchRange.high = 0;
4319        }
4320    
4321        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4322            pData[32] = 3;
4323            pData[33] = 16;
4324            pData[36] = Articulations;
4325            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4326                (Selector == selector_controller ? 2 :
4327                 (Selector == selector_key_switch ? 1 : 0));
4328            pData[38] = Patterns;
4329    
4330            pData[43] = KeySwitchRange.low;
4331            pData[44] = KeySwitchRange.high;
4332            pData[45] = Controller;
4333            pData[46] = PlayRange.low;
4334            pData[47] = PlayRange.high;
4335    
4336            char* str = reinterpret_cast<char*>(pData);
4337            int pos = 48;
4338            int n = std::min(int(Articulations), 32);
4339            for (int i = 0 ; i < n ; i++, pos += 32) {
4340                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4341            }
4342    
4343            pos = 1072;
4344            n = std::min(int(Patterns), 32);
4345            for (int i = 0 ; i < n ; i++, pos += 49) {
4346                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4347                pData[pos + 16] = pPatterns[i].Size;
4348                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4349            }
4350        }
4351    
4352    // *************** Script ***************
4353    // *
4354    
4355        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4356            pGroup = group;
4357            pChunk = ckScri;
4358            if (ckScri) { // object is loaded from file ...
4359                // read header
4360                uint32_t headerSize = ckScri->ReadUint32();
4361                Compression = (Compression_t) ckScri->ReadUint32();
4362                Encoding    = (Encoding_t) ckScri->ReadUint32();
4363                Language    = (Language_t) ckScri->ReadUint32();
4364                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4365                crc         = ckScri->ReadUint32();
4366                uint32_t nameSize = ckScri->ReadUint32();
4367                Name.resize(nameSize, ' ');
4368                for (int i = 0; i < nameSize; ++i)
4369                    Name[i] = ckScri->ReadUint8();
4370                // to handle potential future extensions of the header
4371                ckScri->SetPos(sizeof(int32_t) + headerSize);
4372                // read actual script data
4373                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4374                data.resize(scriptSize);
4375                for (int i = 0; i < scriptSize; ++i)
4376                    data[i] = ckScri->ReadUint8();
4377            } else { // this is a new script object, so just initialize it as such ...
4378                Compression = COMPRESSION_NONE;
4379                Encoding = ENCODING_ASCII;
4380                Language = LANGUAGE_NKSP;
4381                Bypass   = false;
4382                crc      = 0;
4383                Name     = "Unnamed Script";
4384            }
4385        }
4386    
4387        Script::~Script() {
4388        }
4389    
4390        /**
4391         * Returns the current script (i.e. as source code) in text format.
4392         */
4393        String Script::GetScriptAsText() {
4394            String s;
4395            s.resize(data.size(), ' ');
4396            memcpy(&s[0], &data[0], data.size());
4397            return s;
4398        }
4399    
4400        /**
4401         * Replaces the current script with the new script source code text given
4402         * by @a text.
4403         *
4404         * @param text - new script source code
4405         */
4406        void Script::SetScriptAsText(const String& text) {
4407            data.resize(text.size());
4408            memcpy(&data[0], &text[0], text.size());
4409        }
4410    
4411        /**
4412         * Apply this script to the respective RIFF chunks. You have to call
4413         * File::Save() to make changes persistent.
4414         *
4415         * Usually there is absolutely no need to call this method explicitly.
4416         * It will be called automatically when File::Save() was called.
4417         *
4418         * @param pProgress - callback function for progress notification
4419         */
4420        void Script::UpdateChunks(progress_t* pProgress) {
4421            // recalculate CRC32 check sum
4422            __resetCRC(crc);
4423            __calculateCRC(&data[0], data.size(), crc);
4424            __finalizeCRC(crc);
4425            // make sure chunk exists and has the required size
4426            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4427            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4428            else pChunk->Resize(chunkSize);
4429            // fill the chunk data to be written to disk
4430            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4431            int pos = 0;
4432            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4433            pos += sizeof(int32_t);
4434            store32(&pData[pos], Compression);
4435            pos += sizeof(int32_t);
4436            store32(&pData[pos], Encoding);
4437            pos += sizeof(int32_t);
4438            store32(&pData[pos], Language);
4439            pos += sizeof(int32_t);
4440            store32(&pData[pos], Bypass ? 1 : 0);
4441            pos += sizeof(int32_t);
4442            store32(&pData[pos], crc);
4443            pos += sizeof(int32_t);
4444            store32(&pData[pos], (uint32_t) Name.size());
4445            pos += sizeof(int32_t);
4446            for (int i = 0; i < Name.size(); ++i, ++pos)
4447                pData[pos] = Name[i];
4448            for (int i = 0; i < data.size(); ++i, ++pos)
4449                pData[pos] = data[i];
4450        }
4451    
4452        /**
4453         * Move this script from its current ScriptGroup to another ScriptGroup
4454         * given by @a pGroup.
4455         *
4456         * @param pGroup - script's new group
4457         */
4458        void Script::SetGroup(ScriptGroup* pGroup) {
4459            if (this->pGroup == pGroup) return;
4460            if (pChunk)
4461                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4462            this->pGroup = pGroup;
4463        }
4464    
4465        /**
4466         * Returns the script group this script currently belongs to. Each script
4467         * is a member of exactly one ScriptGroup.
4468         *
4469         * @returns current script group
4470         */
4471        ScriptGroup* Script::GetGroup() const {
4472            return pGroup;
4473        }
4474    
4475        /**
4476         * Make a (semi) deep copy of the Script object given by @a orig
4477         * and assign it to this object. Note: the ScriptGroup this Script
4478         * object belongs to remains untouched by this call.
4479         *
4480         * @param orig - original Script object to be copied from
4481         */
4482        void Script::CopyAssign(const Script* orig) {
4483            Name        = orig->Name;
4484            Compression = orig->Compression;
4485            Encoding    = orig->Encoding;
4486            Language    = orig->Language;
4487            Bypass      = orig->Bypass;
4488            data        = orig->data;
4489        }
4490    
4491        void Script::RemoveAllScriptReferences() {
4492            File* pFile = pGroup->pFile;
4493            for (int i = 0; pFile->GetInstrument(i); ++i) {
4494                Instrument* instr = pFile->GetInstrument(i);
4495                instr->RemoveScript(this);
4496            }
4497        }
4498    
4499    // *************** ScriptGroup ***************
4500    // *
4501    
4502        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4503            pFile = file;
4504            pList = lstRTIS;
4505            pScripts = NULL;
4506            if (lstRTIS) {
4507                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4508                ::LoadString(ckName, Name);
4509            } else {
4510                Name = "Default Group";
4511            }
4512        }
4513    
4514        ScriptGroup::~ScriptGroup() {
4515            if (pScripts) {
4516                std::list<Script*>::iterator iter = pScripts->begin();
4517                std::list<Script*>::iterator end  = pScripts->end();
4518                while (iter != end) {
4519                    delete *iter;
4520                    ++iter;
4521                }
4522                delete pScripts;
4523            }
4524        }
4525    
4526        /**
4527         * Apply this script group to the respective RIFF chunks. You have to call
4528         * File::Save() to make changes persistent.
4529         *
4530         * Usually there is absolutely no need to call this method explicitly.
4531         * It will be called automatically when File::Save() was called.
4532         *
4533         * @param pProgress - callback function for progress notification
4534         */
4535        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4536            if (pScripts) {
4537                if (!pList)
4538                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4539    
4540                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4541                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4542    
4543                for (std::list<Script*>::iterator it = pScripts->begin();
4544                     it != pScripts->end(); ++it)
4545                {
4546                    (*it)->UpdateChunks(pProgress);
4547                }
4548            }
4549        }
4550    
4551        /** @brief Get instrument script.
4552         *
4553         * Returns the real-time instrument script with the given index.
4554         *
4555         * @param index - number of the sought script (0..n)
4556         * @returns sought script or NULL if there's no such script
4557         */
4558        Script* ScriptGroup::GetScript(uint index) {
4559            if (!pScripts) LoadScripts();
4560            std::list<Script*>::iterator it = pScripts->begin();
4561            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4562                if (i == index) return *it;
4563            return NULL;
4564        }
4565    
4566        /** @brief Add new instrument script.
4567         *
4568         * Adds a new real-time instrument script to the file. The script is not
4569         * actually used / executed unless it is referenced by an instrument to be
4570         * used. This is similar to samples, which you can add to a file, without
4571         * an instrument necessarily actually using it.
4572         *
4573         * You have to call Save() to make this persistent to the file.
4574         *
4575         * @return new empty script object
4576         */
4577        Script* ScriptGroup::AddScript() {
4578            if (!pScripts) LoadScripts();
4579            Script* pScript = new Script(this, NULL);
4580            pScripts->push_back(pScript);
4581            return pScript;
4582        }
4583    
4584        /** @brief Delete an instrument script.
4585         *
4586         * This will delete the given real-time instrument script. References of
4587         * instruments that are using that script will be removed accordingly.
4588         *
4589         * You have to call Save() to make this persistent to the file.
4590         *
4591         * @param pScript - script to delete
4592         * @throws gig::Exception if given script could not be found
4593         */
4594        void ScriptGroup::DeleteScript(Script* pScript) {
4595            if (!pScripts) LoadScripts();
4596            std::list<Script*>::iterator iter =
4597                find(pScripts->begin(), pScripts->end(), pScript);
4598            if (iter == pScripts->end())
4599                throw gig::Exception("Could not delete script, could not find given script");
4600            pScripts->erase(iter);
4601            pScript->RemoveAllScriptReferences();
4602            if (pScript->pChunk)
4603                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4604            delete pScript;
4605        }
4606    
4607        void ScriptGroup::LoadScripts() {
4608            if (pScripts) return;
4609            pScripts = new std::list<Script*>;
4610            if (!pList) return;
4611    
4612            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4613                 ck = pList->GetNextSubChunk())
4614            {
4615                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4616                    pScripts->push_back(new Script(this, ck));
4617                }
4618            }
4619        }
4620    
4621  // *************** Instrument ***************  // *************** Instrument ***************
4622  // *  // *
4623    
4624      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4625            static const DLS::Info::string_length_t fixedStringLengths[] = {
4626                { CHUNK_ID_INAM, 64 },
4627                { CHUNK_ID_ISFT, 12 },
4628                { 0, 0 }
4629            };
4630            pInfo->SetFixedStringLengths(fixedStringLengths);
4631    
4632          // Initialization          // Initialization
4633          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4634          RegionIndex = -1;          EffectSend = 0;
4635            Attenuation = 0;
4636            FineTune = 0;
4637            PitchbendRange = 2;
4638            PianoReleaseMode = false;
4639            DimensionKeyRange.low = 0;
4640            DimensionKeyRange.high = 0;
4641            pMidiRules = new MidiRule*[3];
4642            pMidiRules[0] = NULL;
4643            pScriptRefs = NULL;
4644    
4645          // Loading          // Loading
4646          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 864  namespace gig { Line 4655  namespace gig {
4655                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4656                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4657                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4658    
4659                    if (_3ewg->GetSize() > 32) {
4660                        // read MIDI rules
4661                        int i = 0;
4662                        _3ewg->SetPos(32);
4663                        uint8_t id1 = _3ewg->ReadUint8();
4664                        uint8_t id2 = _3ewg->ReadUint8();
4665    
4666                        if (id2 == 16) {
4667                            if (id1 == 4) {
4668                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4669                            } else if (id1 == 0) {
4670                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4671                            } else if (id1 == 3) {
4672                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4673                            } else {
4674                                pMidiRules[i++] = new MidiRuleUnknown;
4675                            }
4676                        }
4677                        else if (id1 != 0 || id2 != 0) {
4678                            pMidiRules[i++] = new MidiRuleUnknown;
4679                        }
4680                        //TODO: all the other types of rules
4681    
4682                        pMidiRules[i] = NULL;
4683                    }
4684              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4685          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4686    
4687          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4688          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4689          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4690          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4691          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
4692          while (rgn) {                  while (rgn) {
4693              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4694                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4695                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
4696              }                      }
4697              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
4698          }                  }
4699                    // Creating Region Key Table for fast lookup
4700          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
4701          for (uint iReg = 0; iReg < Regions; iReg++) {              }
4702              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          }
4703                  RegionKeyTable[iKey] = pRegions[iReg];  
4704            // own gig format extensions
4705            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4706            if (lst3LS) {
4707                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4708                if (ckSCSL) {
4709                    int headerSize = ckSCSL->ReadUint32();
4710                    int slotCount  = ckSCSL->ReadUint32();
4711                    if (slotCount) {
4712                        int slotSize  = ckSCSL->ReadUint32();
4713                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4714                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4715                        for (int i = 0; i < slotCount; ++i) {
4716                            _ScriptPooolEntry e;
4717                            e.fileOffset = ckSCSL->ReadUint32();
4718                            e.bypass     = ckSCSL->ReadUint32() & 1;
4719                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4720                            scriptPoolFileOffsets.push_back(e);
4721                        }
4722                    }
4723                }
4724            }
4725    
4726            __notify_progress(pProgress, 1.0f); // notify done
4727        }
4728    
4729        void Instrument::UpdateRegionKeyTable() {
4730            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4731            RegionList::iterator iter = pRegions->begin();
4732            RegionList::iterator end  = pRegions->end();
4733            for (; iter != end; ++iter) {
4734                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4735                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4736                    RegionKeyTable[iKey] = pRegion;
4737              }              }
4738          }          }
4739      }      }
4740    
4741      Instrument::~Instrument() {      Instrument::~Instrument() {
4742          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4743              if (pRegions) {              delete pMidiRules[i];
4744                  if (pRegions[i]) delete (pRegions[i]);          }
4745            delete[] pMidiRules;
4746            if (pScriptRefs) delete pScriptRefs;
4747        }
4748    
4749        /**
4750         * Apply Instrument with all its Regions to the respective RIFF chunks.
4751         * You have to call File::Save() to make changes persistent.
4752         *
4753         * Usually there is absolutely no need to call this method explicitly.
4754         * It will be called automatically when File::Save() was called.
4755         *
4756         * @param pProgress - callback function for progress notification
4757         * @throws gig::Exception if samples cannot be dereferenced
4758         */
4759        void Instrument::UpdateChunks(progress_t* pProgress) {
4760            // first update base classes' chunks
4761            DLS::Instrument::UpdateChunks(pProgress);
4762    
4763            // update Regions' chunks
4764            {
4765                RegionList::iterator iter = pRegions->begin();
4766                RegionList::iterator end  = pRegions->end();
4767                for (; iter != end; ++iter)
4768                    (*iter)->UpdateChunks(pProgress);
4769            }
4770    
4771            // make sure 'lart' RIFF list chunk exists
4772            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4773            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4774            // make sure '3ewg' RIFF chunk exists
4775            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4776            if (!_3ewg)  {
4777                File* pFile = (File*) GetParent();
4778    
4779                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4780                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4781                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4782                memset(_3ewg->LoadChunkData(), 0, size);
4783            }
4784            // update '3ewg' RIFF chunk
4785            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4786            store16(&pData[0], EffectSend);
4787            store32(&pData[2], Attenuation);
4788            store16(&pData[6], FineTune);
4789            store16(&pData[8], PitchbendRange);
4790            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4791                                        DimensionKeyRange.low << 1;
4792            pData[10] = dimkeystart;
4793            pData[11] = DimensionKeyRange.high;
4794    
4795            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4796                pData[32] = 0;
4797                pData[33] = 0;
4798            } else {
4799                for (int i = 0 ; pMidiRules[i] ; i++) {
4800                    pMidiRules[i]->UpdateChunks(pData);
4801              }              }
             delete[] pRegions;  
4802          }          }
4803    
4804            // own gig format extensions
4805           if (ScriptSlotCount()) {
4806               // make sure we have converted the original loaded script file
4807               // offsets into valid Script object pointers
4808               LoadScripts();
4809    
4810               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4811               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4812               const int slotCount = (int) pScriptRefs->size();
4813               const int headerSize = 3 * sizeof(uint32_t);
4814               const int slotSize  = 2 * sizeof(uint32_t);
4815               const int totalChunkSize = headerSize + slotCount * slotSize;
4816               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4817               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4818               else ckSCSL->Resize(totalChunkSize);
4819               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4820               int pos = 0;
4821               store32(&pData[pos], headerSize);
4822               pos += sizeof(uint32_t);
4823               store32(&pData[pos], slotCount);
4824               pos += sizeof(uint32_t);
4825               store32(&pData[pos], slotSize);
4826               pos += sizeof(uint32_t);
4827               for (int i = 0; i < slotCount; ++i) {
4828                   // arbitrary value, the actual file offset will be updated in
4829                   // UpdateScriptFileOffsets() after the file has been resized
4830                   int bogusFileOffset = 0;
4831                   store32(&pData[pos], bogusFileOffset);
4832                   pos += sizeof(uint32_t);
4833                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4834                   pos += sizeof(uint32_t);
4835               }
4836           } else {
4837               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4838               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4839               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4840           }
4841        }
4842    
4843        void Instrument::UpdateScriptFileOffsets() {
4844           // own gig format extensions
4845           if (pScriptRefs && pScriptRefs->size() > 0) {
4846               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4847               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4848               const int slotCount = (int) pScriptRefs->size();
4849               const int headerSize = 3 * sizeof(uint32_t);
4850               ckSCSL->SetPos(headerSize);
4851               for (int i = 0; i < slotCount; ++i) {
4852                   uint32_t fileOffset = uint32_t(
4853                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4854                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4855                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4856                   );
4857                   ckSCSL->WriteUint32(&fileOffset);
4858                   // jump over flags entry (containing the bypass flag)
4859                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4860               }
4861           }        
4862      }      }
4863    
4864      /**      /**
# Line 907  namespace gig { Line 4869  namespace gig {
4869       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4870       */       */
4871      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4872          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4873          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4874    
4875          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4876              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4877                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 924  namespace gig { Line 4887  namespace gig {
4887       * @see      GetNextRegion()       * @see      GetNextRegion()
4888       */       */
4889      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4890          if (!Regions) return NULL;          if (!pRegions) return NULL;
4891          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4892          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4893      }      }
4894    
4895      /**      /**
# Line 938  namespace gig { Line 4901  namespace gig {
4901       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4902       */       */
4903      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4904          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
4905          return pRegions[RegionIndex++];          RegionsIterator++;
4906            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4907        }
4908    
4909        Region* Instrument::AddRegion() {
4910            // create new Region object (and its RIFF chunks)
4911            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4912            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4913            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4914            Region* pNewRegion = new Region(this, rgn);
4915            pRegions->push_back(pNewRegion);
4916            Regions = (uint32_t) pRegions->size();
4917            // update Region key table for fast lookup
4918            UpdateRegionKeyTable();
4919            // done
4920            return pNewRegion;
4921        }
4922    
4923        void Instrument::DeleteRegion(Region* pRegion) {
4924            if (!pRegions) return;
4925            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4926            // update Region key table for fast lookup
4927            UpdateRegionKeyTable();
4928        }
4929    
4930        /**
4931         * Move this instrument at the position before @arg dst.
4932         *
4933         * This method can be used to reorder the sequence of instruments in a
4934         * .gig file. This might be helpful especially on large .gig files which
4935         * contain a large number of instruments within the same .gig file. So
4936         * grouping such instruments to similar ones, can help to keep track of them
4937         * when working with such complex .gig files.
4938         *
4939         * When calling this method, this instrument will be removed from in its
4940         * current position in the instruments list and moved to the requested
4941         * target position provided by @param dst. You may also pass NULL as
4942         * argument to this method, in that case this intrument will be moved to the
4943         * very end of the .gig file's instrument list.
4944         *
4945         * You have to call Save() to make the order change persistent to the .gig
4946         * file.
4947         *
4948         * Currently this method is limited to moving the instrument within the same
4949         * .gig file. Trying to move it to another .gig file by calling this method
4950         * will throw an exception.
4951         *
4952         * @param dst - destination instrument at which this instrument will be
4953         *              moved to, or pass NULL for moving to end of list
4954         * @throw gig::Exception if this instrument and target instrument are not
4955         *                       part of the same file
4956         */
4957        void Instrument::MoveTo(Instrument* dst) {
4958            if (dst && GetParent() != dst->GetParent())
4959                throw Exception(
4960                    "gig::Instrument::MoveTo() can only be used for moving within "
4961                    "the same gig file."
4962                );
4963    
4964            File* pFile = (File*) GetParent();
4965    
4966            // move this instrument within the instrument list
4967            {
4968                File::InstrumentList& list = *pFile->pInstruments;
4969    
4970                File::InstrumentList::iterator itFrom =
4971                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4972    
4973                File::InstrumentList::iterator itTo =
4974                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4975    
4976                list.splice(itTo, list, itFrom);
4977            }
4978    
4979            // move the instrument's actual list RIFF chunk appropriately
4980            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4981            lstCkInstruments->MoveSubChunk(
4982                this->pCkInstrument,
4983                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4984            );
4985        }
4986    
4987        /**
4988         * Returns a MIDI rule of the instrument.
4989         *
4990         * The list of MIDI rules, at least in gig v3, always contains at
4991         * most two rules. The second rule can only be the DEF filter
4992         * (which currently isn't supported by libgig).
4993         *
4994         * @param i - MIDI rule number
4995         * @returns   pointer address to MIDI rule number i or NULL if there is none
4996         */
4997        MidiRule* Instrument::GetMidiRule(int i) {
4998            return pMidiRules[i];
4999        }
5000    
5001        /**
5002         * Adds the "controller trigger" MIDI rule to the instrument.
5003         *
5004         * @returns the new MIDI rule
5005         */
5006        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5007            delete pMidiRules[0];
5008            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5009            pMidiRules[0] = r;
5010            pMidiRules[1] = 0;
5011            return r;
5012        }
5013    
5014        /**
5015         * Adds the legato MIDI rule to the instrument.
5016         *
5017         * @returns the new MIDI rule
5018         */
5019        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5020            delete pMidiRules[0];
5021            MidiRuleLegato* r = new MidiRuleLegato;
5022            pMidiRules[0] = r;
5023            pMidiRules[1] = 0;
5024            return r;
5025        }
5026    
5027        /**
5028         * Adds the alternator MIDI rule to the instrument.
5029         *
5030         * @returns the new MIDI rule
5031         */
5032        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5033            delete pMidiRules[0];
5034            MidiRuleAlternator* r = new MidiRuleAlternator;
5035            pMidiRules[0] = r;
5036            pMidiRules[1] = 0;
5037            return r;
5038        }
5039    
5040        /**
5041         * Deletes a MIDI rule from the instrument.
5042         *
5043         * @param i - MIDI rule number
5044         */
5045        void Instrument::DeleteMidiRule(int i) {
5046            delete pMidiRules[i];
5047            pMidiRules[i] = 0;
5048        }
5049    
5050        void Instrument::LoadScripts() {
5051            if (pScriptRefs) return;
5052            pScriptRefs = new std::vector<_ScriptPooolRef>;
5053            if (scriptPoolFileOffsets.empty()) return;
5054            File* pFile = (File*) GetParent();
5055            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5056                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5057                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5058                    ScriptGroup* group = pFile->GetScriptGroup(i);
5059                    for (uint s = 0; group->GetScript(s); ++s) {
5060                        Script* script = group->GetScript(s);
5061                        if (script->pChunk) {
5062                            uint32_t offset = uint32_t(
5063                                script->pChunk->GetFilePos() -
5064                                script->pChunk->GetPos() -
5065                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5066                            );
5067                            if (offset == soughtOffset)
5068                            {
5069                                _ScriptPooolRef ref;
5070                                ref.script = script;
5071                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5072                                pScriptRefs->push_back(ref);
5073                                break;
5074                            }
5075                        }
5076                    }
5077                }
5078            }
5079            // we don't need that anymore
5080            scriptPoolFileOffsets.clear();
5081        }
5082    
5083        /** @brief Get instrument script (gig format extension).
5084         *
5085         * Returns the real-time instrument script of instrument script slot
5086         * @a index.
5087         *
5088         * @note This is an own format extension which did not exist i.e. in the
5089         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5090         * gigedit.
5091         *
5092         * @param index - instrument script slot index
5093         * @returns script or NULL if index is out of bounds
5094         */
5095        Script* Instrument::GetScriptOfSlot(uint index) {
5096            LoadScripts();
5097            if (index >= pScriptRefs->size()) return NULL;
5098            return pScriptRefs->at(index).script;
5099        }
5100    
5101        /** @brief Add new instrument script slot (gig format extension).
5102         *
5103         * Add the given real-time instrument script reference to this instrument,
5104         * which shall be executed by the sampler for for this instrument. The
5105         * script will be added to the end of the script list of this instrument.
5106         * The positions of the scripts in the Instrument's Script list are
5107         * relevant, because they define in which order they shall be executed by
5108         * the sampler. For this reason it is also legal to add the same script
5109         * twice to an instrument, for example you might have a script called
5110         * "MyFilter" which performs an event filter task, and you might have
5111         * another script called "MyNoteTrigger" which triggers new notes, then you
5112         * might for example have the following list of scripts on the instrument:
5113         *
5114         * 1. Script "MyFilter"
5115         * 2. Script "MyNoteTrigger"
5116         * 3. Script "MyFilter"
5117         *
5118         * Which would make sense, because the 2nd script launched new events, which
5119         * you might need to filter as well.
5120         *
5121         * There are two ways to disable / "bypass" scripts. You can either disable
5122         * a script locally for the respective script slot on an instrument (i.e. by
5123         * passing @c false to the 2nd argument of this method, or by calling
5124         * SetScriptBypassed()). Or you can disable a script globally for all slots
5125         * and all instruments by setting Script::Bypass.
5126         *
5127         * @note This is an own format extension which did not exist i.e. in the
5128         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5129         * gigedit.
5130         *
5131         * @param pScript - script that shall be executed for this instrument
5132         * @param bypass  - if enabled, the sampler shall skip executing this
5133         *                  script (in the respective list position)
5134         * @see SetScriptBypassed()
5135         */
5136        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5137            LoadScripts();
5138            _ScriptPooolRef ref = { pScript, bypass };
5139            pScriptRefs->push_back(ref);
5140        }
5141    
5142        /** @brief Flip two script slots with each other (gig format extension).
5143         *
5144         * Swaps the position of the two given scripts in the Instrument's Script
5145         * list. The positions of the scripts in the Instrument's Script list are
5146         * relevant, because they define in which order they shall be executed by
5147         * the sampler.
5148         *
5149         * @note This is an own format extension which did not exist i.e. in the
5150         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5151         * gigedit.
5152         *
5153         * @param index1 - index of the first script slot to swap
5154         * @param index2 - index of the second script slot to swap
5155         */
5156        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5157            LoadScripts();
5158            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5159                return;
5160            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5161            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5162            (*pScriptRefs)[index2] = tmp;
5163        }
5164    
5165        /** @brief Remove script slot.
5166         *
5167         * Removes the script slot with the given slot index.
5168         *
5169         * @param index - index of script slot to remove
5170         */
5171        void Instrument::RemoveScriptSlot(uint index) {
5172            LoadScripts();
5173            if (index >= pScriptRefs->size()) return;
5174            pScriptRefs->erase( pScriptRefs->begin() + index );
5175        }
5176    
5177        /** @brief Remove reference to given Script (gig format extension).
5178         *
5179         * This will remove all script slots on the instrument which are referencing
5180         * the given script.
5181         *
5182         * @note This is an own format extension which did not exist i.e. in the
5183         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5184         * gigedit.
5185         *
5186         * @param pScript - script reference to remove from this instrument
5187         * @see RemoveScriptSlot()
5188         */
5189        void Instrument::RemoveScript(Script* pScript) {
5190            LoadScripts();
5191            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5192                if ((*pScriptRefs)[i].script == pScript) {
5193                    pScriptRefs->erase( pScriptRefs->begin() + i );
5194                }
5195            }
5196        }
5197    
5198        /** @brief Instrument's amount of script slots.
5199         *
5200         * This method returns the amount of script slots this instrument currently
5201         * uses.
5202         *
5203         * A script slot is a reference of a real-time instrument script to be
5204         * executed by the sampler. The scripts will be executed by the sampler in
5205         * sequence of the slots. One (same) script may be referenced multiple
5206         * times in different slots.
5207         *
5208         * @note This is an own format extension which did not exist i.e. in the
5209         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5210         * gigedit.
5211         */
5212        uint Instrument::ScriptSlotCount() const {
5213            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5214        }
5215    
5216        /** @brief Whether script execution shall be skipped.
5217         *
5218         * Defines locally for the Script reference slot in the Instrument's Script
5219         * list, whether the script shall be skipped by the sampler regarding
5220         * execution.
5221         *
5222         * It is also possible to ignore exeuction of the script globally, for all
5223         * slots and for all instruments by setting Script::Bypass.
5224         *
5225         * @note This is an own format extension which did not exist i.e. in the
5226         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5227         * gigedit.
5228         *
5229         * @param index - index of the script slot on this instrument
5230         * @see Script::Bypass
5231         */
5232        bool Instrument::IsScriptSlotBypassed(uint index) {
5233            if (index >= ScriptSlotCount()) return false;
5234            return pScriptRefs ? pScriptRefs->at(index).bypass
5235                               : scriptPoolFileOffsets.at(index).bypass;
5236            
5237        }
5238    
5239        /** @brief Defines whether execution shall be skipped.
5240         *
5241         * You can call this method to define locally whether or whether not the
5242         * given script slot shall be executed by the sampler.
5243         *
5244         * @note This is an own format extension which did not exist i.e. in the
5245         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5246         * gigedit.
5247         *
5248         * @param index - script slot index on this instrument
5249         * @param bBypass - if true, the script slot will be skipped by the sampler
5250         * @see Script::Bypass
5251         */
5252        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5253            if (index >= ScriptSlotCount()) return;
5254            if (pScriptRefs)
5255                pScriptRefs->at(index).bypass = bBypass;
5256            else
5257                scriptPoolFileOffsets.at(index).bypass = bBypass;
5258        }
5259    
5260        /**
5261         * Make a (semi) deep copy of the Instrument object given by @a orig
5262         * and assign it to this object.
5263         *
5264         * Note that all sample pointers referenced by @a orig are simply copied as
5265         * memory address. Thus the respective samples are shared, not duplicated!
5266         *
5267         * @param orig - original Instrument object to be copied from
5268         */
5269        void Instrument::CopyAssign(const Instrument* orig) {
5270            CopyAssign(orig, NULL);
5271        }
5272            
5273        /**
5274         * Make a (semi) deep copy of the Instrument object given by @a orig
5275         * and assign it to this object.
5276         *
5277         * @param orig - original Instrument object to be copied from
5278         * @param mSamples - crosslink map between the foreign file's samples and
5279         *                   this file's samples
5280         */
5281        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5282            // handle base class
5283            // (without copying DLS region stuff)
5284            DLS::Instrument::CopyAssignCore(orig);
5285            
5286            // handle own member variables
5287            Attenuation = orig->Attenuation;
5288            EffectSend = orig->EffectSend;
5289            FineTune = orig->FineTune;
5290            PitchbendRange = orig->PitchbendRange;
5291            PianoReleaseMode = orig->PianoReleaseMode;
5292            DimensionKeyRange = orig->DimensionKeyRange;
5293            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5294            pScriptRefs = orig->pScriptRefs;
5295            
5296            // free old midi rules
5297            for (int i = 0 ; pMidiRules[i] ; i++) {
5298                delete pMidiRules[i];
5299            }
5300            //TODO: MIDI rule copying
5301            pMidiRules[0] = NULL;
5302            
5303            // delete all old regions
5304            while (Regions) DeleteRegion(GetFirstRegion());
5305            // create new regions and copy them from original
5306            {
5307                RegionList::const_iterator it = orig->pRegions->begin();
5308                for (int i = 0; i < orig->Regions; ++i, ++it) {
5309                    Region* dstRgn = AddRegion();
5310                    //NOTE: Region does semi-deep copy !
5311                    dstRgn->CopyAssign(
5312                        static_cast<gig::Region*>(*it),
5313                        mSamples
5314                    );
5315                }
5316            }
5317    
5318            UpdateRegionKeyTable();
5319        }
5320    
5321    
5322    // *************** Group ***************
5323    // *
5324    
5325        /** @brief Constructor.
5326         *
5327         * @param file   - pointer to the gig::File object
5328         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5329         *                 NULL if this is a new Group
5330         */
5331        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5332            pFile      = file;
5333            pNameChunk = ck3gnm;
5334            ::LoadString(pNameChunk, Name);
5335        }
5336    
5337        Group::~Group() {
5338            // remove the chunk associated with this group (if any)
5339            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5340        }
5341    
5342        /** @brief Update chunks with current group settings.
5343         *
5344         * Apply current Group field values to the respective chunks. You have
5345         * to call File::Save() to make changes persistent.
5346         *
5347         * Usually there is absolutely no need to call this method explicitly.
5348         * It will be called automatically when File::Save() was called.
5349         *
5350         * @param pProgress - callback function for progress notification
5351         */
5352        void Group::UpdateChunks(progress_t* pProgress) {
5353            // make sure <3gri> and <3gnl> list chunks exist
5354            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5355            if (!_3gri) {
5356                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5357                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5358            }
5359            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5360            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5361    
5362            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5363                // v3 has a fixed list of 128 strings, find a free one
5364                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5365                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5366                        pNameChunk = ck;
5367                        break;
5368                    }
5369                }
5370            }
5371    
5372            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5373            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5374        }
5375    
5376        /**
5377         * Returns the first Sample of this Group. You have to call this method
5378         * once before you use GetNextSample().
5379         *
5380         * <b>Notice:</b> this method might block for a long time, in case the
5381         * samples of this .gig file were not scanned yet
5382         *
5383         * @returns  pointer address to first Sample or NULL if there is none
5384         *           applied to this Group
5385         * @see      GetNextSample()
5386         */
5387        Sample* Group::GetFirstSample() {
5388            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5389            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5390                if (pSample->GetGroup() == this) return pSample;
5391            }
5392            return NULL;
5393        }
5394    
5395        /**
5396         * Returns the next Sample of the Group. You have to call
5397         * GetFirstSample() once before you can use this method. By calling this
5398         * method multiple times it iterates through the Samples assigned to
5399         * this Group.
5400         *
5401         * @returns  pointer address to the next Sample of this Group or NULL if
5402         *           end reached
5403         * @see      GetFirstSample()
5404         */
5405        Sample* Group::GetNextSample() {
5406            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5407            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5408                if (pSample->GetGroup() == this) return pSample;
5409            }
5410            return NULL;
5411        }
5412    
5413        /**
5414         * Move Sample given by \a pSample from another Group to this Group.
5415         */
5416        void Group::AddSample(Sample* pSample) {
5417            pSample->pGroup = this;
5418        }
5419    
5420        /**
5421         * Move all members of this group to another group (preferably the 1st
5422         * one except this). This method is called explicitly by
5423         * File::DeleteGroup() thus when a Group was deleted. This code was
5424         * intentionally not placed in the destructor!
5425         */
5426        void Group::MoveAll() {
5427            // get "that" other group first
5428            Group* pOtherGroup = NULL;
5429            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5430                if (pOtherGroup != this) break;
5431            }
5432            if (!pOtherGroup) throw Exception(
5433                "Could not move samples to another group, since there is no "
5434                "other Group. This is a bug, report it!"
5435            );
5436            // now move all samples of this group to the other group
5437            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5438                pOtherGroup->AddSample(pSample);
5439            }
5440      }      }
5441    
5442    
# Line 947  namespace gig { Line 5444  namespace gig {
5444  // *************** File ***************  // *************** File ***************
5445  // *  // *
5446    
5447        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5448        const DLS::version_t File::VERSION_2 = {
5449            0, 2, 19980628 & 0xffff, 19980628 >> 16
5450        };
5451    
5452        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5453        const DLS::version_t File::VERSION_3 = {
5454            0, 3, 20030331 & 0xffff, 20030331 >> 16
5455        };
5456    
5457        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5458            { CHUNK_ID_IARL, 256 },
5459            { CHUNK_ID_IART, 128 },
5460            { CHUNK_ID_ICMS, 128 },
5461            { CHUNK_ID_ICMT, 1024 },
5462            { CHUNK_ID_ICOP, 128 },
5463            { CHUNK_ID_ICRD, 128 },
5464            { CHUNK_ID_IENG, 128 },
5465            { CHUNK_ID_IGNR, 128 },
5466            { CHUNK_ID_IKEY, 128 },
5467            { CHUNK_ID_IMED, 128 },
5468            { CHUNK_ID_INAM, 128 },
5469            { CHUNK_ID_IPRD, 128 },
5470            { CHUNK_ID_ISBJ, 128 },
5471            { CHUNK_ID_ISFT, 128 },
5472            { CHUNK_ID_ISRC, 128 },
5473            { CHUNK_ID_ISRF, 128 },
5474            { CHUNK_ID_ITCH, 128 },
5475            { 0, 0 }
5476        };
5477    
5478        File::File() : DLS::File() {
5479            bAutoLoad = true;
5480            *pVersion = VERSION_3;
5481            pGroups = NULL;
5482            pScriptGroups = NULL;
5483            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5484            pInfo->ArchivalLocation = String(256, ' ');
5485    
5486            // add some mandatory chunks to get the file chunks in right
5487            // order (INFO chunk will be moved to first position later)
5488            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5489            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5490            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5491    
5492            GenerateDLSID();
5493        }
5494    
5495      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5496          pSamples     = NULL;          bAutoLoad = true;
5497          pInstruments = NULL;          pGroups = NULL;
5498            pScriptGroups = NULL;
5499            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5500      }      }
5501    
5502      Sample* File::GetFirstSample() {      File::~File() {
5503          if (!pSamples) LoadSamples();          if (pGroups) {
5504                std::list<Group*>::iterator iter = pGroups->begin();
5505                std::list<Group*>::iterator end  = pGroups->end();
5506                while (iter != end) {
5507                    delete *iter;
5508                    ++iter;
5509                }
5510                delete pGroups;
5511            }
5512            if (pScriptGroups) {
5513                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5514                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5515                while (iter != end) {
5516                    delete *iter;
5517                    ++iter;
5518                }
5519                delete pScriptGroups;
5520            }
5521        }
5522    
5523        Sample* File::GetFirstSample(progress_t* pProgress) {
5524            if (!pSamples) LoadSamples(pProgress);
5525          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5526          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5527          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 964  namespace gig { Line 5532  namespace gig {
5532          SamplesIterator++;          SamplesIterator++;
5533          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5534      }      }
5535        
5536        /**
5537         * Returns Sample object of @a index.
5538         *
5539         * @returns sample object or NULL if index is out of bounds
5540         */
5541        Sample* File::GetSample(uint index) {
5542            if (!pSamples) LoadSamples();
5543            if (!pSamples) return NULL;
5544            DLS::File::SampleList::iterator it = pSamples->begin();
5545            for (int i = 0; i < index; ++i) {
5546                ++it;
5547                if (it == pSamples->end()) return NULL;
5548            }
5549            if (it == pSamples->end()) return NULL;
5550            return static_cast<gig::Sample*>( *it );
5551        }
5552    
5553      void File::LoadSamples() {      /** @brief Add a new sample.
5554          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5555          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5556              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5557              RIFF::List* wave = wvpl->GetFirstSubList();       *
5558              while (wave) {       * @returns pointer to new Sample object
5559                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5560                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5561                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5562                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5563           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5564           // create new Sample object and its respective 'wave' list chunk
5565           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5566           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5567    
5568           // add mandatory chunks to get the chunks in right order
5569           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5570           wave->AddSubList(LIST_TYPE_INFO);
5571    
5572           pSamples->push_back(pSample);
5573           return pSample;
5574        }
5575    
5576        /** @brief Delete a sample.
5577         *
5578         * This will delete the given Sample object from the gig file. Any
5579         * references to this sample from Regions and DimensionRegions will be
5580         * removed. You have to call Save() to make this persistent to the file.
5581         *
5582         * @param pSample - sample to delete
5583         * @throws gig::Exception if given sample could not be found
5584         */
5585        void File::DeleteSample(Sample* pSample) {
5586            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5587            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5588            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5589            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5590            pSamples->erase(iter);
5591            delete pSample;
5592    
5593            SampleList::iterator tmp = SamplesIterator;
5594            // remove all references to the sample
5595            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5596                 instrument = GetNextInstrument()) {
5597                for (Region* region = instrument->GetFirstRegion() ; region ;
5598                     region = instrument->GetNextRegion()) {
5599    
5600                    if (region->GetSample() == pSample) region->SetSample(NULL);
5601    
5602                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5603                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5604                        if (d->pSample == pSample) d->pSample = NULL;
5605                  }                  }
                 wave = wvpl->GetNextSubList();  
5606              }              }
5607          }          }
5608          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5609        }
5610    
5611        void File::LoadSamples() {
5612            LoadSamples(NULL);
5613        }
5614    
5615        void File::LoadSamples(progress_t* pProgress) {
5616            // Groups must be loaded before samples, because samples will try
5617            // to resolve the group they belong to
5618            if (!pGroups) LoadGroups();
5619    
5620            if (!pSamples) pSamples = new SampleList;
5621    
5622            RIFF::File* file = pRIFF;
5623    
5624            // just for progress calculation
5625            int iSampleIndex  = 0;
5626            int iTotalSamples = WavePoolCount;
5627    
5628            // check if samples should be loaded from extension files
5629            // (only for old gig files < 2 GB)
5630            int lastFileNo = 0;
5631            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5632                for (int i = 0 ; i < WavePoolCount ; i++) {
5633                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5634                }
5635            }
5636            String name(pRIFF->GetFileName());
5637            int nameLen = (int) name.length();
5638            char suffix[6];
5639            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5640    
5641            for (int fileNo = 0 ; ; ) {
5642                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5643                if (wvpl) {
5644                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5645                    RIFF::List* wave = wvpl->GetFirstSubList();
5646                    while (wave) {
5647                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5648                            // notify current progress
5649                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5650                            __notify_progress(pProgress, subprogress);
5651    
5652                            file_offset_t waveFileOffset = wave->GetFilePos();
5653                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5654    
5655                            iSampleIndex++;
5656                        }
5657                        wave = wvpl->GetNextSubList();
5658                    }
5659    
5660                    if (fileNo == lastFileNo) break;
5661    
5662                    // open extension file (*.gx01, *.gx02, ...)
5663                    fileNo++;
5664                    sprintf(suffix, ".gx%02d", fileNo);
5665                    name.replace(nameLen, 5, suffix);
5666                    file = new RIFF::File(name);
5667                    ExtensionFiles.push_back(file);
5668                } else break;
5669            }
5670    
5671            __notify_progress(pProgress, 1.0); // notify done
5672      }      }
5673    
5674      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5675          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5676          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5677          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5678          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5679      }      }
5680    
5681      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5682          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5683          InstrumentsIterator++;          InstrumentsIterator++;
5684          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5685        }
5686    
5687        /**
5688         * Returns the instrument with the given index.
5689         *
5690         * @param index     - number of the sought instrument (0..n)
5691         * @param pProgress - optional: callback function for progress notification
5692         * @returns  sought instrument or NULL if there's no such instrument
5693         */
5694        Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5695            if (!pInstruments) {
5696                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5697    
5698                // sample loading subtask
5699                progress_t subprogress;
5700                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5701                __notify_progress(&subprogress, 0.0f);
5702                if (GetAutoLoad())
5703                    GetFirstSample(&subprogress); // now force all samples to be loaded
5704                __notify_progress(&subprogress, 1.0f);
5705    
5706                // instrument loading subtask
5707                if (pProgress && pProgress->callback) {
5708                    subprogress.__range_min = subprogress.__range_max;
5709                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5710                }
5711                __notify_progress(&subprogress, 0.0f);
5712                LoadInstruments(&subprogress);
5713                __notify_progress(&subprogress, 1.0f);
5714            }
5715            if (!pInstruments) return NULL;
5716            InstrumentsIterator = pInstruments->begin();
5717            for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5718                if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5719                InstrumentsIterator++;
5720            }
5721            return NULL;
5722        }
5723    
5724        /** @brief Add a new instrument definition.
5725         *
5726         * This will create a new Instrument object for the gig file. You have
5727         * to call Save() to make this persistent to the file.
5728         *
5729         * @returns pointer to new Instrument object
5730         */
5731        Instrument* File::AddInstrument() {
5732           if (!pInstruments) LoadInstruments();
5733           __ensureMandatoryChunksExist();
5734           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5735           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5736    
5737           // add mandatory chunks to get the chunks in right order
5738           lstInstr->AddSubList(LIST_TYPE_INFO);
5739           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5740    
5741           Instrument* pInstrument = new Instrument(this, lstInstr);
5742           pInstrument->GenerateDLSID();
5743    
5744           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5745    
5746           // this string is needed for the gig to be loadable in GSt:
5747           pInstrument->pInfo->Software = "Endless Wave";
5748    
5749           pInstruments->push_back(pInstrument);
5750           return pInstrument;
5751        }
5752        
5753        /** @brief Add a duplicate of an existing instrument.
5754         *
5755         * Duplicates the instrument definition given by @a orig and adds it
5756         * to this file. This allows in an instrument editor application to
5757         * easily create variations of an instrument, which will be stored in
5758         * the same .gig file, sharing i.e. the same samples.
5759         *
5760         * Note that all sample pointers referenced by @a orig are simply copied as
5761         * memory address. Thus the respective samples are shared, not duplicated!
5762         *
5763         * You have to call Save() to make this persistent to the file.
5764         *
5765         * @param orig - original instrument to be copied
5766         * @returns duplicated copy of the given instrument
5767         */
5768        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5769            Instrument* instr = AddInstrument();
5770            instr->CopyAssign(orig);
5771            return instr;
5772        }
5773        
5774        /** @brief Add content of another existing file.
5775         *
5776         * Duplicates the samples, groups and instruments of the original file
5777         * given by @a pFile and adds them to @c this File. In case @c this File is
5778         * a new one that you haven't saved before, then you have to call
5779         * SetFileName() before calling AddContentOf(), because this method will
5780         * automatically save this file during operation, which is required for
5781         * writing the sample waveform data by disk streaming.
5782         *
5783         * @param pFile - original file whose's content shall be copied from
5784         */
5785        void File::AddContentOf(File* pFile) {
5786            static int iCallCount = -1;
5787            iCallCount++;
5788            std::map<Group*,Group*> mGroups;
5789            std::map<Sample*,Sample*> mSamples;
5790            
5791            // clone sample groups
5792            for (int i = 0; pFile->GetGroup(i); ++i) {
5793                Group* g = AddGroup();
5794                g->Name =
5795                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5796                mGroups[pFile->GetGroup(i)] = g;
5797            }
5798            
5799            // clone samples (not waveform data here yet)
5800            for (int i = 0; pFile->GetSample(i); ++i) {
5801                Sample* s = AddSample();
5802                s->CopyAssignMeta(pFile->GetSample(i));
5803                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5804                mSamples[pFile->GetSample(i)] = s;
5805            }
5806    
5807            // clone script groups and their scripts
5808            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5809                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5810                ScriptGroup* dg = AddScriptGroup();
5811                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5812                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5813                    Script* ss = sg->GetScript(iScript);
5814                    Script* ds = dg->AddScript();
5815                    ds->CopyAssign(ss);
5816                }
5817            }
5818    
5819            //BUG: For some reason this method only works with this additional
5820            //     Save() call in between here.
5821            //
5822            // Important: The correct one of the 2 Save() methods has to be called
5823            // here, depending on whether the file is completely new or has been
5824            // saved to disk already, otherwise it will result in data corruption.
5825            if (pRIFF->IsNew())
5826                Save(GetFileName());
5827            else
5828                Save();
5829            
5830            // clone instruments
5831            // (passing the crosslink table here for the cloned samples)
5832            for (int i = 0; pFile->GetInstrument(i); ++i) {
5833                Instrument* instr = AddInstrument();
5834                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5835            }
5836            
5837            // Mandatory: file needs to be saved to disk at this point, so this
5838            // file has the correct size and data layout for writing the samples'
5839            // waveform data to disk.
5840            Save();
5841            
5842            // clone samples' waveform data
5843            // (using direct read & write disk streaming)
5844            for (int i = 0; pFile->GetSample(i); ++i) {
5845                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5846            }
5847        }
5848    
5849        /** @brief Delete an instrument.
5850         *
5851         * This will delete the given Instrument object from the gig file. You
5852         * have to call Save() to make this persistent to the file.
5853         *
5854         * @param pInstrument - instrument to delete
5855         * @throws gig::Exception if given instrument could not be found
5856         */
5857        void File::DeleteInstrument(Instrument* pInstrument) {
5858            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5859            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5860            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5861            pInstruments->erase(iter);
5862            delete pInstrument;
5863      }      }
5864    
5865      void File::LoadInstruments() {      void File::LoadInstruments() {
5866            LoadInstruments(NULL);
5867        }
5868    
5869        void File::LoadInstruments(progress_t* pProgress) {
5870            if (!pInstruments) pInstruments = new InstrumentList;
5871          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5872          if (lstInstruments) {          if (lstInstruments) {
5873                int iInstrumentIndex = 0;
5874              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5875              while (lstInstr) {              while (lstInstr) {
5876                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5877                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5878                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5879                        __notify_progress(pProgress, localProgress);
5880    
5881                        // divide local progress into subprogress for loading current Instrument
5882                        progress_t subprogress;
5883                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5884    
5885                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5886    
5887                        iInstrumentIndex++;
5888                  }                  }
5889                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5890              }              }
5891                __notify_progress(pProgress, 1.0); // notify done
5892          }          }
5893          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5894    
5895        /// Updates the 3crc chunk with the checksum of a sample. The
5896        /// update is done directly to disk, as this method is called
5897        /// after File::Save()
5898        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5899            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5900            if (!_3crc) return;
5901    
5902            // get the index of the sample
5903            int iWaveIndex = GetWaveTableIndexOf(pSample);
5904            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5905    
5906            // write the CRC-32 checksum to disk
5907            _3crc->SetPos(iWaveIndex * 8);
5908            uint32_t one = 1;
5909            _3crc->WriteUint32(&one); // always 1
5910            _3crc->WriteUint32(&crc);
5911        }
5912    
5913        uint32_t File::GetSampleChecksum(Sample* pSample) {
5914            // get the index of the sample
5915            int iWaveIndex = GetWaveTableIndexOf(pSample);
5916            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5917    
5918            return GetSampleChecksumByIndex(iWaveIndex);
5919        }
5920    
5921        uint32_t File::GetSampleChecksumByIndex(int index) {
5922            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5923    
5924            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5925            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5926            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5927            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5928    
5929            // read the CRC-32 checksum directly from disk
5930            size_t pos = index * 8;
5931            if (pos + 8 > _3crc->GetNewSize())
5932                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5933    
5934            uint32_t one = load32(&pData[pos]); // always 1
5935            if (one != 1)
5936                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5937    
5938            return load32(&pData[pos+4]);
5939        }
5940    
5941        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5942            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5943            File::SampleList::iterator iter = pSamples->begin();
5944            File::SampleList::iterator end  = pSamples->end();
5945            for (int index = 0; iter != end; ++iter, ++index)
5946                if (*iter == pSample)
5947                    return index;
5948            return -1;
5949        }
5950    
5951        /**
5952         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5953         * the CRC32 check sums of all samples' raw wave data.
5954         *
5955         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5956         */
5957        bool File::VerifySampleChecksumTable() {
5958            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5959            if (!_3crc) return false;
5960            if (_3crc->GetNewSize() <= 0) return false;
5961            if (_3crc->GetNewSize() % 8) return false;
5962            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5963            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5964    
5965            const file_offset_t n = _3crc->GetNewSize() / 8;
5966    
5967            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5968            if (!pData) return false;
5969    
5970            for (file_offset_t i = 0; i < n; ++i) {
5971                uint32_t one = pData[i*2];
5972                if (one != 1) return false;
5973            }
5974    
5975            return true;
5976        }
5977    
5978        /**
5979         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5980         * file's checksum table with those new checksums. This might usually
5981         * just be necessary if the checksum table was damaged.
5982         *
5983         * @e IMPORTANT: The current implementation of this method only works
5984         * with files that have not been modified since it was loaded, because
5985         * it expects that no externally caused file structure changes are
5986         * required!
5987         *
5988         * Due to the expectation above, this method is currently protected
5989         * and actually only used by the command line tool "gigdump" yet.
5990         *
5991         * @returns true if Save() is required to be called after this call,
5992         *          false if no further action is required
5993         */
5994        bool File::RebuildSampleChecksumTable() {
5995            // make sure sample chunks were scanned
5996            if (!pSamples) GetFirstSample();
5997    
5998            bool bRequiresSave = false;
5999    
6000            // make sure "3CRC" chunk exists with required size
6001            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6002            if (!_3crc) {
6003                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6004                // the order of einf and 3crc is not the same in v2 and v3
6005                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6006                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6007                bRequiresSave = true;
6008            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6009                _3crc->Resize(pSamples->size() * 8);
6010                bRequiresSave = true;
6011            }
6012    
6013            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6014                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6015                {
6016                    File::SampleList::iterator iter = pSamples->begin();
6017                    File::SampleList::iterator end  = pSamples->end();
6018                    for (; iter != end; ++iter) {
6019                        gig::Sample* pSample = (gig::Sample*) *iter;
6020                        int index = GetWaveTableIndexOf(pSample);
6021                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6022                        pData[index*2]   = 1; // always 1
6023                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6024                    }
6025                }
6026            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6027                // make sure file is in write mode
6028                pRIFF->SetMode(RIFF::stream_mode_read_write);
6029                {
6030                    File::SampleList::iterator iter = pSamples->begin();
6031                    File::SampleList::iterator end  = pSamples->end();
6032                    for (; iter != end; ++iter) {
6033                        gig::Sample* pSample = (gig::Sample*) *iter;
6034                        int index = GetWaveTableIndexOf(pSample);
6035                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6036                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6037                        SetSampleChecksum(pSample, pSample->crc);
6038                    }
6039                }
6040            }
6041    
6042            return bRequiresSave;
6043        }
6044    
6045        Group* File::GetFirstGroup() {
6046            if (!pGroups) LoadGroups();
6047            // there must always be at least one group
6048            GroupsIterator = pGroups->begin();
6049            return *GroupsIterator;
6050        }
6051    
6052        Group* File::GetNextGroup() {
6053            if (!pGroups) return NULL;
6054            ++GroupsIterator;
6055            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6056        }
6057    
6058        /**
6059         * Returns the group with the given index.
6060         *
6061         * @param index - number of the sought group (0..n)
6062         * @returns sought group or NULL if there's no such group
6063         */
6064        Group* File::GetGroup(uint index) {
6065            if (!pGroups) LoadGroups();
6066            GroupsIterator = pGroups->begin();
6067            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6068                if (i == index) return *GroupsIterator;
6069                ++GroupsIterator;
6070            }
6071            return NULL;
6072        }
6073    
6074        /**
6075         * Returns the group with the given group name.
6076         *
6077         * Note: group names don't have to be unique in the gig format! So there
6078         * can be multiple groups with the same name. This method will simply
6079         * return the first group found with the given name.
6080         *
6081         * @param name - name of the sought group
6082         * @returns sought group or NULL if there's no group with that name
6083         */
6084        Group* File::GetGroup(String name) {
6085            if (!pGroups) LoadGroups();
6086            GroupsIterator = pGroups->begin();
6087            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6088                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6089            return NULL;
6090        }
6091    
6092        Group* File::AddGroup() {
6093            if (!pGroups) LoadGroups();
6094            // there must always be at least one group
6095            __ensureMandatoryChunksExist();
6096            Group* pGroup = new Group(this, NULL);
6097            pGroups->push_back(pGroup);
6098            return pGroup;
6099        }
6100    
6101        /** @brief Delete a group and its samples.
6102         *
6103         * This will delete the given Group object and all the samples that
6104         * belong to this group from the gig file. You have to call Save() to
6105         * make this persistent to the file.
6106         *
6107         * @param pGroup - group to delete
6108         * @throws gig::Exception if given group could not be found
6109         */
6110        void File::DeleteGroup(Group* pGroup) {
6111            if (!pGroups) LoadGroups();
6112            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6113            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6114            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6115            // delete all members of this group
6116            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6117                DeleteSample(pSample);
6118            }
6119            // now delete this group object
6120            pGroups->erase(iter);
6121            delete pGroup;
6122        }
6123    
6124        /** @brief Delete a group.
6125         *
6126         * This will delete the given Group object from the gig file. All the
6127         * samples that belong to this group will not be deleted, but instead
6128         * be moved to another group. You have to call Save() to make this
6129         * persistent to the file.
6130         *
6131         * @param pGroup - group to delete
6132         * @throws gig::Exception if given group could not be found
6133         */
6134        void File::DeleteGroupOnly(Group* pGroup) {
6135            if (!pGroups) LoadGroups();
6136            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6137            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6138            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6139            // move all members of this group to another group
6140            pGroup->MoveAll();
6141            pGroups->erase(iter);
6142            delete pGroup;
6143        }
6144    
6145        void File::LoadGroups() {
6146            if (!pGroups) pGroups = new std::list<Group*>;
6147            // try to read defined groups from file
6148            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6149            if (lst3gri) {
6150                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6151                if (lst3gnl) {
6152                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6153                    while (ck) {
6154                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6155                            if (pVersion && pVersion->major == 3 &&
6156                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6157    
6158                            pGroups->push_back(new Group(this, ck));
6159                        }
6160                        ck = lst3gnl->GetNextSubChunk();
6161                    }
6162                }
6163            }
6164            // if there were no group(s), create at least the mandatory default group
6165            if (!pGroups->size()) {
6166                Group* pGroup = new Group(this, NULL);
6167                pGroup->Name = "Default Group";
6168                pGroups->push_back(pGroup);
6169            }
6170        }
6171    
6172        /** @brief Get instrument script group (by index).
6173         *
6174         * Returns the real-time instrument script group with the given index.
6175         *
6176         * @param index - number of the sought group (0..n)
6177         * @returns sought script group or NULL if there's no such group
6178         */
6179        ScriptGroup* File::GetScriptGroup(uint index) {
6180            if (!pScriptGroups) LoadScriptGroups();
6181            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6182            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6183                if (i == index) return *it;
6184            return NULL;
6185        }
6186    
6187        /** @brief Get instrument script group (by name).
6188         *
6189         * Returns the first real-time instrument script group found with the given
6190         * group name. Note that group names may not necessarily be unique.
6191         *
6192         * @param name - name of the sought script group
6193         * @returns sought script group or NULL if there's no such group
6194         */
6195        ScriptGroup* File::GetScriptGroup(const String& name) {
6196            if (!pScriptGroups) LoadScriptGroups();
6197            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6198            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6199                if ((*it)->Name == name) return *it;
6200            return NULL;
6201        }
6202    
6203        /** @brief Add new instrument script group.
6204         *
6205         * Adds a new, empty real-time instrument script group to the file.
6206         *
6207         * You have to call Save() to make this persistent to the file.
6208         *
6209         * @return new empty script group
6210         */
6211        ScriptGroup* File::AddScriptGroup() {
6212            if (!pScriptGroups) LoadScriptGroups();
6213            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6214            pScriptGroups->push_back(pScriptGroup);
6215            return pScriptGroup;
6216        }
6217    
6218        /** @brief Delete an instrument script group.
6219         *
6220         * This will delete the given real-time instrument script group and all its
6221         * instrument scripts it contains. References inside instruments that are
6222         * using the deleted scripts will be removed from the respective instruments
6223         * accordingly.
6224         *
6225         * You have to call Save() to make this persistent to the file.
6226         *
6227         * @param pScriptGroup - script group to delete
6228         * @throws gig::Exception if given script group could not be found
6229         */
6230        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6231            if (!pScriptGroups) LoadScriptGroups();
6232            std::list<ScriptGroup*>::iterator iter =
6233                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6234            if (iter == pScriptGroups->end())
6235                throw gig::Exception("Could not delete script group, could not find given script group");
6236            pScriptGroups->erase(iter);
6237            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6238                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6239            if (pScriptGroup->pList)
6240                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6241            delete pScriptGroup;
6242        }
6243    
6244        void File::LoadScriptGroups() {
6245            if (pScriptGroups) return;
6246            pScriptGroups = new std::list<ScriptGroup*>;
6247            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6248            if (lstLS) {
6249                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6250                     lst = lstLS->GetNextSubList())
6251                {
6252                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6253                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6254                    }
6255                }
6256            }
6257        }
6258    
6259        /**
6260         * Apply all the gig file's current instruments, samples, groups and settings
6261         * to the respective RIFF chunks. You have to call Save() to make changes
6262         * persistent.
6263         *
6264         * Usually there is absolutely no need to call this method explicitly.
6265         * It will be called automatically when File::Save() was called.
6266         *
6267         * @param pProgress - callback function for progress notification
6268         * @throws Exception - on errors
6269         */
6270        void File::UpdateChunks(progress_t* pProgress) {
6271            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6272    
6273            // update own gig format extension chunks
6274            // (not part of the GigaStudio 4 format)
6275            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6276            if (!lst3LS) {
6277                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6278            }
6279            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6280            // location of <3LS > is irrelevant, however it should be located
6281            // before  the actual wave data
6282            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6283            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6284    
6285            // This must be performed before writing the chunks for instruments,
6286            // because the instruments' script slots will write the file offsets
6287            // of the respective instrument script chunk as reference.
6288            if (pScriptGroups) {
6289                // Update instrument script (group) chunks.
6290                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6291                     it != pScriptGroups->end(); ++it)
6292                {
6293                    (*it)->UpdateChunks(pProgress);
6294                }
6295            }
6296    
6297            // in case no libgig custom format data was added, then remove the
6298            // custom "3LS " chunk again
6299            if (!lst3LS->CountSubChunks()) {
6300                pRIFF->DeleteSubChunk(lst3LS);
6301                lst3LS = NULL;
6302            }
6303    
6304            // first update base class's chunks
6305            DLS::File::UpdateChunks(pProgress);
6306    
6307            if (newFile) {
6308                // INFO was added by Resource::UpdateChunks - make sure it
6309                // is placed first in file
6310                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6311                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6312                if (first != info) {
6313                    pRIFF->MoveSubChunk(info, first);
6314                }
6315            }
6316    
6317            // update group's chunks
6318            if (pGroups) {
6319                // make sure '3gri' and '3gnl' list chunks exist
6320                // (before updating the Group chunks)
6321                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6322                if (!_3gri) {
6323                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6324                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6325                }
6326                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6327                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6328    
6329                // v3: make sure the file has 128 3gnm chunks
6330                // (before updating the Group chunks)
6331                if (pVersion && pVersion->major == 3) {
6332                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6333                    for (int i = 0 ; i < 128 ; i++) {
6334                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6335                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6336                    }
6337                }
6338    
6339                std::list<Group*>::iterator iter = pGroups->begin();
6340                std::list<Group*>::iterator end  = pGroups->end();
6341                for (; iter != end; ++iter) {
6342                    (*iter)->UpdateChunks(pProgress);
6343                }
6344            }
6345    
6346            // update einf chunk
6347    
6348            // The einf chunk contains statistics about the gig file, such
6349            // as the number of regions and samples used by each
6350            // instrument. It is divided in equally sized parts, where the
6351            // first part contains information about the whole gig file,
6352            // and the rest of the parts map to each instrument in the
6353            // file.
6354            //
6355            // At the end of each part there is a bit map of each sample
6356            // in the file, where a set bit means that the sample is used
6357            // by the file/instrument.
6358            //
6359            // Note that there are several fields with unknown use. These
6360            // are set to zero.
6361    
6362            int sublen = int(pSamples->size() / 8 + 49);
6363            int einfSize = (Instruments + 1) * sublen;
6364    
6365            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6366            if (einf) {
6367                if (einf->GetSize() != einfSize) {
6368                    einf->Resize(einfSize);
6369                    memset(einf->LoadChunkData(), 0, einfSize);
6370                }
6371            } else if (newFile) {
6372                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6373            }
6374            if (einf) {
6375                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6376    
6377                std::map<gig::Sample*,int> sampleMap;
6378                int sampleIdx = 0;
6379                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6380                    sampleMap[pSample] = sampleIdx++;
6381                }
6382    
6383                int totnbusedsamples = 0;
6384                int totnbusedchannels = 0;
6385                int totnbregions = 0;
6386                int totnbdimregions = 0;
6387                int totnbloops = 0;
6388                int instrumentIdx = 0;
6389    
6390                memset(&pData[48], 0, sublen - 48);
6391    
6392                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6393                     instrument = GetNextInstrument()) {
6394                    int nbusedsamples = 0;
6395                    int nbusedchannels = 0;
6396                    int nbdimregions = 0;
6397                    int nbloops = 0;
6398    
6399                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6400    
6401                    for (Region* region = instrument->GetFirstRegion() ; region ;
6402                         region = instrument->GetNextRegion()) {
6403                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6404                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6405                            if (d->pSample) {
6406                                int sampleIdx = sampleMap[d->pSample];
6407                                int byte = 48 + sampleIdx / 8;
6408                                int bit = 1 << (sampleIdx & 7);
6409                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6410                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6411                                    nbusedsamples++;
6412                                    nbusedchannels += d->pSample->Channels;
6413    
6414                                    if ((pData[byte] & bit) == 0) {
6415                                        pData[byte] |= bit;
6416                                        totnbusedsamples++;
6417                                        totnbusedchannels += d->pSample->Channels;
6418                                    }
6419                                }
6420                            }
6421                            if (d->SampleLoops) nbloops++;
6422                        }
6423                        nbdimregions += region->DimensionRegions;
6424                    }
6425                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6426                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6427                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6428                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6429                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6430                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6431                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6432                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6433                    // next 8 bytes unknown
6434                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6435                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6436                    // next 4 bytes unknown
6437    
6438                    totnbregions += instrument->Regions;
6439                    totnbdimregions += nbdimregions;
6440                    totnbloops += nbloops;
6441                    instrumentIdx++;
6442                }
6443                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6444                // store32(&pData[0], sublen);
6445                store32(&pData[4], totnbusedchannels);
6446                store32(&pData[8], totnbusedsamples);
6447                store32(&pData[12], Instruments);
6448                store32(&pData[16], totnbregions);
6449                store32(&pData[20], totnbdimregions);
6450                store32(&pData[24], totnbloops);
6451                // next 8 bytes unknown
6452                // next 4 bytes unknown, not always 0
6453                store32(&pData[40], (uint32_t) pSamples->size());
6454                // next 4 bytes unknown
6455            }
6456    
6457            // update 3crc chunk
6458    
6459            // The 3crc chunk contains CRC-32 checksums for the
6460            // samples. When saving a gig file to disk, we first update the 3CRC
6461            // chunk here (in RAM) with the old crc values which we read from the
6462            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6463            // member variable). This step is required, because samples might have
6464            // been deleted by the user since the file was opened, which in turn
6465            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6466            // If a sample was conciously modified by the user (that is if
6467            // Sample::Write() was called later on) then Sample::Write() will just
6468            // update the respective individual checksum(s) directly on disk and
6469            // leaves all other sample checksums untouched.
6470    
6471            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6472            if (_3crc) {
6473                _3crc->Resize(pSamples->size() * 8);
6474            } else /*if (newFile)*/ {
6475                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6476                // the order of einf and 3crc is not the same in v2 and v3
6477                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6478            }
6479            { // must be performed in RAM here ...
6480                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6481                if (pData) {
6482                    File::SampleList::iterator iter = pSamples->begin();
6483                    File::SampleList::iterator end  = pSamples->end();
6484                    for (int index = 0; iter != end; ++iter, ++index) {
6485                        gig::Sample* pSample = (gig::Sample*) *iter;
6486                        pData[index*2]   = 1; // always 1
6487                        pData[index*2+1] = pSample->crc;
6488                    }
6489                }
6490            }
6491        }
6492        
6493        void File::UpdateFileOffsets() {
6494            DLS::File::UpdateFileOffsets();
6495    
6496            for (Instrument* instrument = GetFirstInstrument(); instrument;
6497                 instrument = GetNextInstrument())
6498            {
6499                instrument->UpdateScriptFileOffsets();
6500            }
6501        }
6502    
6503        /**
6504         * Enable / disable automatic loading. By default this properyt is
6505         * enabled and all informations are loaded automatically. However
6506         * loading all Regions, DimensionRegions and especially samples might
6507         * take a long time for large .gig files, and sometimes one might only
6508         * be interested in retrieving very superficial informations like the
6509         * amount of instruments and their names. In this case one might disable
6510         * automatic loading to avoid very slow response times.
6511         *
6512         * @e CAUTION: by disabling this property many pointers (i.e. sample
6513         * references) and informations will have invalid or even undefined
6514         * data! This feature is currently only intended for retrieving very
6515         * superficial informations in a very fast way. Don't use it to retrieve
6516         * details like synthesis informations or even to modify .gig files!
6517         */
6518        void File::SetAutoLoad(bool b) {
6519            bAutoLoad = b;
6520        }
6521    
6522        /**
6523         * Returns whether automatic loading is enabled.
6524         * @see SetAutoLoad()
6525         */
6526        bool File::GetAutoLoad() {
6527            return bAutoLoad;
6528      }      }
6529    
6530    
# Line 1015  namespace gig { Line 6532  namespace gig {
6532  // *************** Exception ***************  // *************** Exception ***************
6533  // *  // *
6534    
6535      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6536        }
6537    
6538        Exception::Exception(String format, ...) : DLS::Exception() {
6539            va_list arg;
6540            va_start(arg, format);
6541            Message = assemble(format, arg);
6542            va_end(arg);
6543        }
6544    
6545        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6546            Message = assemble(format, arg);
6547      }      }
6548    
6549      void Exception::PrintMessage() {      void Exception::PrintMessage() {
6550          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6551      }      }
6552    
6553    
6554    // *************** functions ***************
6555    // *
6556    
6557        /**
6558         * Returns the name of this C++ library. This is usually "libgig" of
6559         * course. This call is equivalent to RIFF::libraryName() and
6560         * DLS::libraryName().
6561         */
6562        String libraryName() {
6563            return PACKAGE;
6564        }
6565    
6566        /**
6567         * Returns version of this C++ library. This call is equivalent to
6568         * RIFF::libraryVersion() and DLS::libraryVersion().
6569         */
6570        String libraryVersion() {
6571            return VERSION;
6572        }
6573    
6574  } // namespace gig  } // namespace gig

Legend:
Removed from v.2  
changed lines
  Added in v.3324

  ViewVC Help
Powered by ViewVC