/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 24 by schoenebeck, Fri Dec 26 16:15:31 2003 UTC revision 2667 by schoenebeck, Mon Jul 7 15:20:22 2014 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2014 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    #include <assert.h>
32    
33    /// Initial size of the sample buffer which is used for decompression of
34    /// compressed sample wave streams - this value should always be bigger than
35    /// the biggest sample piece expected to be read by the sampler engine,
36    /// otherwise the buffer size will be raised at runtime and thus the buffer
37    /// reallocated which is time consuming and unefficient.
38    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
39    
40    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
41    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
42    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
43    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
44    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
45    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
46    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
47    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
48    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
49    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
50    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
51    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
52    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
53    
54  namespace gig {  namespace gig {
55    
56    // *************** progress_t ***************
57    // *
58    
59        progress_t::progress_t() {
60            callback    = NULL;
61            custom      = NULL;
62            __range_min = 0.0f;
63            __range_max = 1.0f;
64        }
65    
66        // private helper function to convert progress of a subprocess into the global progress
67        static void __notify_progress(progress_t* pProgress, float subprogress) {
68            if (pProgress && pProgress->callback) {
69                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
70                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
71                pProgress->factor         = totalprogress;
72                pProgress->callback(pProgress); // now actually notify about the progress
73            }
74        }
75    
76        // private helper function to divide a progress into subprogresses
77        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
78            if (pParentProgress && pParentProgress->callback) {
79                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
80                pSubProgress->callback    = pParentProgress->callback;
81                pSubProgress->custom      = pParentProgress->custom;
82                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
83                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
84            }
85        }
86    
87    
88    // *************** Internal functions for sample decompression ***************
89    // *
90    
91    namespace {
92    
93        inline int get12lo(const unsigned char* pSrc)
94        {
95            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
96            return x & 0x800 ? x - 0x1000 : x;
97        }
98    
99        inline int get12hi(const unsigned char* pSrc)
100        {
101            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
102            return x & 0x800 ? x - 0x1000 : x;
103        }
104    
105        inline int16_t get16(const unsigned char* pSrc)
106        {
107            return int16_t(pSrc[0] | pSrc[1] << 8);
108        }
109    
110        inline int get24(const unsigned char* pSrc)
111        {
112            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
113            return x & 0x800000 ? x - 0x1000000 : x;
114        }
115    
116        inline void store24(unsigned char* pDst, int x)
117        {
118            pDst[0] = x;
119            pDst[1] = x >> 8;
120            pDst[2] = x >> 16;
121        }
122    
123        void Decompress16(int compressionmode, const unsigned char* params,
124                          int srcStep, int dstStep,
125                          const unsigned char* pSrc, int16_t* pDst,
126                          unsigned long currentframeoffset,
127                          unsigned long copysamples)
128        {
129            switch (compressionmode) {
130                case 0: // 16 bit uncompressed
131                    pSrc += currentframeoffset * srcStep;
132                    while (copysamples) {
133                        *pDst = get16(pSrc);
134                        pDst += dstStep;
135                        pSrc += srcStep;
136                        copysamples--;
137                    }
138                    break;
139    
140                case 1: // 16 bit compressed to 8 bit
141                    int y  = get16(params);
142                    int dy = get16(params + 2);
143                    while (currentframeoffset) {
144                        dy -= int8_t(*pSrc);
145                        y  -= dy;
146                        pSrc += srcStep;
147                        currentframeoffset--;
148                    }
149                    while (copysamples) {
150                        dy -= int8_t(*pSrc);
151                        y  -= dy;
152                        *pDst = y;
153                        pDst += dstStep;
154                        pSrc += srcStep;
155                        copysamples--;
156                    }
157                    break;
158            }
159        }
160    
161        void Decompress24(int compressionmode, const unsigned char* params,
162                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
163                          unsigned long currentframeoffset,
164                          unsigned long copysamples, int truncatedBits)
165        {
166            int y, dy, ddy, dddy;
167    
168    #define GET_PARAMS(params)                      \
169            y    = get24(params);                   \
170            dy   = y - get24((params) + 3);         \
171            ddy  = get24((params) + 6);             \
172            dddy = get24((params) + 9)
173    
174    #define SKIP_ONE(x)                             \
175            dddy -= (x);                            \
176            ddy  -= dddy;                           \
177            dy   =  -dy - ddy;                      \
178            y    += dy
179    
180    #define COPY_ONE(x)                             \
181            SKIP_ONE(x);                            \
182            store24(pDst, y << truncatedBits);      \
183            pDst += dstStep
184    
185            switch (compressionmode) {
186                case 2: // 24 bit uncompressed
187                    pSrc += currentframeoffset * 3;
188                    while (copysamples) {
189                        store24(pDst, get24(pSrc) << truncatedBits);
190                        pDst += dstStep;
191                        pSrc += 3;
192                        copysamples--;
193                    }
194                    break;
195    
196                case 3: // 24 bit compressed to 16 bit
197                    GET_PARAMS(params);
198                    while (currentframeoffset) {
199                        SKIP_ONE(get16(pSrc));
200                        pSrc += 2;
201                        currentframeoffset--;
202                    }
203                    while (copysamples) {
204                        COPY_ONE(get16(pSrc));
205                        pSrc += 2;
206                        copysamples--;
207                    }
208                    break;
209    
210                case 4: // 24 bit compressed to 12 bit
211                    GET_PARAMS(params);
212                    while (currentframeoffset > 1) {
213                        SKIP_ONE(get12lo(pSrc));
214                        SKIP_ONE(get12hi(pSrc));
215                        pSrc += 3;
216                        currentframeoffset -= 2;
217                    }
218                    if (currentframeoffset) {
219                        SKIP_ONE(get12lo(pSrc));
220                        currentframeoffset--;
221                        if (copysamples) {
222                            COPY_ONE(get12hi(pSrc));
223                            pSrc += 3;
224                            copysamples--;
225                        }
226                    }
227                    while (copysamples > 1) {
228                        COPY_ONE(get12lo(pSrc));
229                        COPY_ONE(get12hi(pSrc));
230                        pSrc += 3;
231                        copysamples -= 2;
232                    }
233                    if (copysamples) {
234                        COPY_ONE(get12lo(pSrc));
235                    }
236                    break;
237    
238                case 5: // 24 bit compressed to 8 bit
239                    GET_PARAMS(params);
240                    while (currentframeoffset) {
241                        SKIP_ONE(int8_t(*pSrc++));
242                        currentframeoffset--;
243                    }
244                    while (copysamples) {
245                        COPY_ONE(int8_t(*pSrc++));
246                        copysamples--;
247                    }
248                    break;
249            }
250        }
251    
252        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
253        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
254        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
255        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
256    }
257    
258    
259    
260    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
261    // *
262    
263        static uint32_t* __initCRCTable() {
264            static uint32_t res[256];
265    
266            for (int i = 0 ; i < 256 ; i++) {
267                uint32_t c = i;
268                for (int j = 0 ; j < 8 ; j++) {
269                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
270                }
271                res[i] = c;
272            }
273            return res;
274        }
275    
276        static const uint32_t* __CRCTable = __initCRCTable();
277    
278        /**
279         * Initialize a CRC variable.
280         *
281         * @param crc - variable to be initialized
282         */
283        inline static void __resetCRC(uint32_t& crc) {
284            crc = 0xffffffff;
285        }
286    
287        /**
288         * Used to calculate checksums of the sample data in a gig file. The
289         * checksums are stored in the 3crc chunk of the gig file and
290         * automatically updated when a sample is written with Sample::Write().
291         *
292         * One should call __resetCRC() to initialize the CRC variable to be
293         * used before calling this function the first time.
294         *
295         * After initializing the CRC variable one can call this function
296         * arbitrary times, i.e. to split the overall CRC calculation into
297         * steps.
298         *
299         * Once the whole data was processed by __calculateCRC(), one should
300         * call __encodeCRC() to get the final CRC result.
301         *
302         * @param buf     - pointer to data the CRC shall be calculated of
303         * @param bufSize - size of the data to be processed
304         * @param crc     - variable the CRC sum shall be stored to
305         */
306        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
307            for (int i = 0 ; i < bufSize ; i++) {
308                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
309            }
310        }
311    
312        /**
313         * Returns the final CRC result.
314         *
315         * @param crc - variable previously passed to __calculateCRC()
316         */
317        inline static uint32_t __encodeCRC(const uint32_t& crc) {
318            return crc ^ 0xffffffff;
319        }
320    
321    
322    
323    // *************** Other Internal functions  ***************
324    // *
325    
326        static split_type_t __resolveSplitType(dimension_t dimension) {
327            return (
328                dimension == dimension_layer ||
329                dimension == dimension_samplechannel ||
330                dimension == dimension_releasetrigger ||
331                dimension == dimension_keyboard ||
332                dimension == dimension_roundrobin ||
333                dimension == dimension_random ||
334                dimension == dimension_smartmidi ||
335                dimension == dimension_roundrobinkeyboard
336            ) ? split_type_bit : split_type_normal;
337        }
338    
339        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
340            return (dimension_definition.split_type == split_type_normal)
341            ? int(128.0 / dimension_definition.zones) : 0;
342        }
343    
344    
345    
346  // *************** Sample ***************  // *************** Sample ***************
347  // *  // *
348    
349      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
350      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
351    
352      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
353         *
354         * Load an existing sample or create a new one. A 'wave' list chunk must
355         * be given to this constructor. In case the given 'wave' list chunk
356         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
357         * format and sample data will be loaded from there, otherwise default
358         * values will be used and those chunks will be created when
359         * File::Save() will be called later on.
360         *
361         * @param pFile          - pointer to gig::File where this sample is
362         *                         located (or will be located)
363         * @param waveList       - pointer to 'wave' list chunk which is (or
364         *                         will be) associated with this sample
365         * @param WavePoolOffset - offset of this sample data from wave pool
366         *                         ('wvpl') list chunk
367         * @param fileNo         - number of an extension file where this sample
368         *                         is located, 0 otherwise
369         */
370        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
371            static const DLS::Info::string_length_t fixedStringLengths[] = {
372                { CHUNK_ID_INAM, 64 },
373                { 0, 0 }
374            };
375            pInfo->SetFixedStringLengths(fixedStringLengths);
376          Instances++;          Instances++;
377            FileNo = fileNo;
378    
379            __resetCRC(crc);
380    
381            pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
382            if (pCk3gix) {
383                uint16_t iSampleGroup = pCk3gix->ReadInt16();
384                pGroup = pFile->GetGroup(iSampleGroup);
385            } else { // '3gix' chunk missing
386                // by default assigned to that mandatory "Default Group"
387                pGroup = pFile->GetGroup(0);
388            }
389    
390          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
391          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCkSmpl) {
392          SampleGroup = _3gix->ReadInt16();              Manufacturer  = pCkSmpl->ReadInt32();
393                Product       = pCkSmpl->ReadInt32();
394          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              SamplePeriod  = pCkSmpl->ReadInt32();
395          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              MIDIUnityNote = pCkSmpl->ReadInt32();
396          Manufacturer      = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
397          Product           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
398          SamplePeriod      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
399          MIDIUnityNote     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
400          FineTune          = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
401          smpl->Read(&SMPTEFormat, 1, 4);              LoopID        = pCkSmpl->ReadInt32();
402          SMPTEOffset       = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
403          Loops             = smpl->ReadInt32();              LoopStart     = pCkSmpl->ReadInt32();
404          uint32_t manufByt = smpl->ReadInt32();              LoopEnd       = pCkSmpl->ReadInt32();
405          LoopID            = smpl->ReadInt32();              LoopFraction  = pCkSmpl->ReadInt32();
406          smpl->Read(&LoopType, 1, 4);              LoopPlayCount = pCkSmpl->ReadInt32();
407          LoopStart         = smpl->ReadInt32();          } else { // 'smpl' chunk missing
408          LoopEnd           = smpl->ReadInt32();              // use default values
409          LoopFraction      = smpl->ReadInt32();              Manufacturer  = 0;
410          LoopPlayCount     = smpl->ReadInt32();              Product       = 0;
411                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
412                MIDIUnityNote = 60;
413                FineTune      = 0;
414                SMPTEFormat   = smpte_format_no_offset;
415                SMPTEOffset   = 0;
416                Loops         = 0;
417                LoopID        = 0;
418                LoopType      = loop_type_normal;
419                LoopStart     = 0;
420                LoopEnd       = 0;
421                LoopFraction  = 0;
422                LoopPlayCount = 0;
423            }
424    
425          FrameTable                 = NULL;          FrameTable                 = NULL;
426          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 428  namespace gig {
428          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
429          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
430    
431          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
432    
433            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
434            Compressed        = ewav;
435            Dithered          = false;
436            TruncatedBits     = 0;
437          if (Compressed) {          if (Compressed) {
438              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
439              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
440                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
441                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
442                    TruncatedBits = ewav->ReadInt32();
443              }              }
444                ScanCompressedSample();
445            }
446    
447            // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
448            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
449                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
450                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
451            }
452            FrameOffset = 0; // just for streaming compressed samples
453    
454            LoopSize = LoopEnd - LoopStart + 1;
455        }
456    
457        /**
458         * Make a (semi) deep copy of the Sample object given by @a orig (without
459         * the actual waveform data) and assign it to this object.
460         *
461         * Discussion: copying .gig samples is a bit tricky. It requires three
462         * steps:
463         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
464         *    its new sample waveform data size.
465         * 2. Saving the file (done by File::Save()) so that it gains correct size
466         *    and layout for writing the actual wave form data directly to disc
467         *    in next step.
468         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
469         *
470         * @param orig - original Sample object to be copied from
471         */
472        void Sample::CopyAssignMeta(const Sample* orig) {
473            // handle base classes
474            DLS::Sample::CopyAssignCore(orig);
475            
476            // handle actual own attributes of this class
477            Manufacturer = orig->Manufacturer;
478            Product = orig->Product;
479            SamplePeriod = orig->SamplePeriod;
480            MIDIUnityNote = orig->MIDIUnityNote;
481            FineTune = orig->FineTune;
482            SMPTEFormat = orig->SMPTEFormat;
483            SMPTEOffset = orig->SMPTEOffset;
484            Loops = orig->Loops;
485            LoopID = orig->LoopID;
486            LoopType = orig->LoopType;
487            LoopStart = orig->LoopStart;
488            LoopEnd = orig->LoopEnd;
489            LoopSize = orig->LoopSize;
490            LoopFraction = orig->LoopFraction;
491            LoopPlayCount = orig->LoopPlayCount;
492            
493            // schedule resizing this sample to the given sample's size
494            Resize(orig->GetSize());
495        }
496    
497        /**
498         * Should be called after CopyAssignMeta() and File::Save() sequence.
499         * Read more about it in the discussion of CopyAssignMeta(). This method
500         * copies the actual waveform data by disk streaming.
501         *
502         * @e CAUTION: this method is currently not thread safe! During this
503         * operation the sample must not be used for other purposes by other
504         * threads!
505         *
506         * @param orig - original Sample object to be copied from
507         */
508        void Sample::CopyAssignWave(const Sample* orig) {
509            const int iReadAtOnce = 32*1024;
510            char* buf = new char[iReadAtOnce * orig->FrameSize];
511            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
512            unsigned long restorePos = pOrig->GetPos();
513            pOrig->SetPos(0);
514            SetPos(0);
515            for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
516                               n = pOrig->Read(buf, iReadAtOnce))
517            {
518                Write(buf, n);
519          }          }
520          FrameOffset = 0; // just for streaming compressed samples          pOrig->SetPos(restorePos);
521            delete [] buf;
522        }
523    
524          LoopStart /= FrameSize; // convert to sample points      /**
525          LoopEnd   /= FrameSize; // convert to sample points       * Apply sample and its settings to the respective RIFF chunks. You have
526          LoopSize   = LoopEnd - LoopStart;       * to call File::Save() to make changes persistent.
527         *
528         * Usually there is absolutely no need to call this method explicitly.
529         * It will be called automatically when File::Save() was called.
530         *
531         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
532         *                        was provided yet
533         * @throws gig::Exception if there is any invalid sample setting
534         */
535        void Sample::UpdateChunks() {
536            // first update base class's chunks
537            DLS::Sample::UpdateChunks();
538    
539            // make sure 'smpl' chunk exists
540            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
541            if (!pCkSmpl) {
542                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
543                memset(pCkSmpl->LoadChunkData(), 0, 60);
544            }
545            // update 'smpl' chunk
546            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
547            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
548            store32(&pData[0], Manufacturer);
549            store32(&pData[4], Product);
550            store32(&pData[8], SamplePeriod);
551            store32(&pData[12], MIDIUnityNote);
552            store32(&pData[16], FineTune);
553            store32(&pData[20], SMPTEFormat);
554            store32(&pData[24], SMPTEOffset);
555            store32(&pData[28], Loops);
556    
557            // we skip 'manufByt' for now (4 bytes)
558    
559            store32(&pData[36], LoopID);
560            store32(&pData[40], LoopType);
561            store32(&pData[44], LoopStart);
562            store32(&pData[48], LoopEnd);
563            store32(&pData[52], LoopFraction);
564            store32(&pData[56], LoopPlayCount);
565    
566            // make sure '3gix' chunk exists
567            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
568            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
569            // determine appropriate sample group index (to be stored in chunk)
570            uint16_t iSampleGroup = 0; // 0 refers to default sample group
571            File* pFile = static_cast<File*>(pParent);
572            if (pFile->pGroups) {
573                std::list<Group*>::iterator iter = pFile->pGroups->begin();
574                std::list<Group*>::iterator end  = pFile->pGroups->end();
575                for (int i = 0; iter != end; i++, iter++) {
576                    if (*iter == pGroup) {
577                        iSampleGroup = i;
578                        break; // found
579                    }
580                }
581            }
582            // update '3gix' chunk
583            pData = (uint8_t*) pCk3gix->LoadChunkData();
584            store16(&pData[0], iSampleGroup);
585    
586            // if the library user toggled the "Compressed" attribute from true to
587            // false, then the EWAV chunk associated with compressed samples needs
588            // to be deleted
589            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
590            if (ewav && !Compressed) {
591                pWaveList->DeleteSubChunk(ewav);
592            }
593      }      }
594    
595      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 84  namespace gig { Line 598  namespace gig {
598          this->SamplesTotal = 0;          this->SamplesTotal = 0;
599          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
600    
601            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
602            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
603    
604          // Scanning          // Scanning
605          pCkData->SetPos(0);          pCkData->SetPos(0);
606          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
607              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
608              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
609              this->SamplesTotal += 2048;                  // stored, to save some memory
610              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
611                  case 1:   // left channel compressed  
612                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
613                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
614                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
615                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
616    
617                    if (pCkData->RemainingBytes() <= frameSize) {
618                        SamplesInLastFrame =
619                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
620                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
621                        SamplesTotal += SamplesInLastFrame;
622                      break;                      break;
623                  case 257: // both channels compressed                  }
624                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
625                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
626                }
627            }
628            else { // Mono
629                for (int i = 0 ; ; i++) {
630                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
631    
632                    const int mode = pCkData->ReadUint8();
633                    if (mode > 5) throw gig::Exception("Unknown compression mode");
634                    const unsigned long frameSize = bytesPerFrame[mode];
635    
636                    if (pCkData->RemainingBytes() <= frameSize) {
637                        SamplesInLastFrame =
638                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
639                        SamplesTotal += SamplesInLastFrame;
640                      break;                      break;
641                  default: // both channels uncompressed                  }
642                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
643                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
644              }              }
645          }          }
646          pCkData->SetPos(0);          pCkData->SetPos(0);
647    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
648          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
649          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
650          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 143  namespace gig { Line 680  namespace gig {
680       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
681       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
682       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
683       *       * @code
684       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
685       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
686         * @endcode
687       *       *
688       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
689       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 191  namespace gig { Line 729  namespace gig {
729       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
730       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
731       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
732       *       * @code
733       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
734       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
735       *       * @endcode
736       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
737       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
738       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 215  namespace gig { Line 753  namespace gig {
753          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
754          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
755          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
756            SetPos(0); // reset read position to begin of sample
757          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
758          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
759          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 252  namespace gig { Line 791  namespace gig {
791          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
792          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
793          RAMCache.Size   = 0;          RAMCache.Size   = 0;
794            RAMCache.NullExtensionSize = 0;
795        }
796    
797        /** @brief Resize sample.
798         *
799         * Resizes the sample's wave form data, that is the actual size of
800         * sample wave data possible to be written for this sample. This call
801         * will return immediately and just schedule the resize operation. You
802         * should call File::Save() to actually perform the resize operation(s)
803         * "physically" to the file. As this can take a while on large files, it
804         * is recommended to call Resize() first on all samples which have to be
805         * resized and finally to call File::Save() to perform all those resize
806         * operations in one rush.
807         *
808         * The actual size (in bytes) is dependant to the current FrameSize
809         * value. You may want to set FrameSize before calling Resize().
810         *
811         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
812         * enlarged samples before calling File::Save() as this might exceed the
813         * current sample's boundary!
814         *
815         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
816         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
817         * other formats will fail!
818         *
819         * @param iNewSize - new sample wave data size in sample points (must be
820         *                   greater than zero)
821         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
822         *                         or if \a iNewSize is less than 1
823         * @throws gig::Exception if existing sample is compressed
824         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
825         *      DLS::Sample::FormatTag, File::Save()
826         */
827        void Sample::Resize(int iNewSize) {
828            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
829            DLS::Sample::Resize(iNewSize);
830      }      }
831    
832      /**      /**
# Line 309  namespace gig { Line 884  namespace gig {
884      /**      /**
885       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
886       */       */
887      unsigned long Sample::GetPos() {      unsigned long Sample::GetPos() const {
888          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
889          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
890      }      }
# Line 325  namespace gig { Line 900  namespace gig {
900       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
901       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
902       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
903       *       * @code
904       * <i>       * gig::playback_state_t playbackstate;
905       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
906       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
907       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
908       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
909       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
910       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
911       * The method already handles such cases by itself.       * The method already handles such cases by itself.
912       *       *
913         * <b>Caution:</b> If you are using more than one streaming thread, you
914         * have to use an external decompression buffer for <b>EACH</b>
915         * streaming thread to avoid race conditions and crashes!
916         *
917       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
918       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
919       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
920       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
921         * @param pDimRgn          dimension region with looping information
922         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
923       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
924         * @see                    CreateDecompressionBuffer()
925       */       */
926      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
927                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
928          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
929          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
930    
931          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
932    
933          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
934    
935              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
936                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
937    
938                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
939                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
940    
941                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
942                              // determine the end position within the loop first,                          do {
943                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
944                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
945                              // backward playback  
946                                if (!pPlaybackState->reverse) { // forward playback
947                              unsigned long swapareastart       = totalreadsamples;                                  do {
948                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
949                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
950                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
951                                        totalreadsamples += readsamples;
952                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
953                                            pPlaybackState->reverse = true;
954                              // read samples for backward playback                                          break;
955                              do {                                      }
956                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
957                                  samplestoreadinloop -= readsamples;                              }
958                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
959    
960                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
961                                    // determine the end position within the loop first,
962                                    // read forward from that 'end' and finally after
963                                    // reading, swap all sample frames so it reflects
964                                    // backward playback
965    
966                                    unsigned long swapareastart       = totalreadsamples;
967                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
968                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
969                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
970    
971                                    SetPos(reverseplaybackend);
972    
973                                    // read samples for backward playback
974                                    do {
975                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
976                                        samplestoreadinloop -= readsamples;
977                                        samplestoread       -= readsamples;
978                                        totalreadsamples    += readsamples;
979                                    } while (samplestoreadinloop && readsamples);
980    
981                                    SetPos(reverseplaybackend); // pretend we really read backwards
982    
983                                    if (reverseplaybackend == loop.LoopStart) {
984                                        pPlaybackState->loop_cycles_left--;
985                                        pPlaybackState->reverse = false;
986                                    }
987    
988                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
989                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
990                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
991                              }                              }
992                            } while (samplestoread && readsamples);
993                            break;
994                        }
995    
996                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
997                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
998                          }                          if (!pPlaybackState->reverse) do {
999                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1000                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1001                  }                              samplestoread    -= readsamples;
1002                                totalreadsamples += readsamples;
1003                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1004                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1005                      if (!pPlaybackState->reverse) do {                                  break;
1006                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1007                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1008    
1009                      if (!samplestoread) break;                          if (!samplestoread) break;
1010    
1011                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1012                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1013                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1014                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1015                      // backward playback                          // backward playback
1016    
1017                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
1018                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
1019                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1020                                                                                : samplestoread;                                                                                    : samplestoread;
1021                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1022    
1023                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1024    
1025                      // read samples for backward playback                          // read samples for backward playback
1026                      do {                          do {
1027                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1028                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1029                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1030                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1031                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1032                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1033                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1034                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1035                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1036                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1037                          }                              }
1038                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1039    
1040                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1041    
1042                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1043                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1044                      break;                          break;
1045                  }                      }
1046    
1047                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1048                      do {                          do {
1049                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1050                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1051                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1052                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1053                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1054                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1055                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1056                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1057                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1058                          }                              }
1059                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1060                      break;                          break;
1061                        }
1062                  }                  }
1063              }              }
1064          }          }
1065    
1066          // read on without looping          // read on without looping
1067          if (samplestoread) do {          if (samplestoread) do {
1068              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1069              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1070              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1071          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 497  namespace gig { Line 1084  namespace gig {
1084       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1085       * thus for disk streaming.       * thus for disk streaming.
1086       *       *
1087         * <b>Caution:</b> If you are using more than one streaming thread, you
1088         * have to use an external decompression buffer for <b>EACH</b>
1089         * streaming thread to avoid race conditions and crashes!
1090         *
1091         * For 16 bit samples, the data in the buffer will be int16_t
1092         * (using native endianness). For 24 bit, the buffer will
1093         * contain three bytes per sample, little-endian.
1094         *
1095       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1096       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1097         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1098       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1099       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1100       */       */
1101      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1102          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1103          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1104          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1105                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1106                }
1107                else { // 16 bit
1108                    // (pCkData->Read does endian correction)
1109                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1110                                         : pCkData->Read(pBuffer, SampleCount, 2);
1111                }
1112            }
1113            else {
1114              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1115              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1116              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1117                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1118                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1119                            copysamples;                            copysamples, skipsamples,
1120              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1121              this->FrameOffset = 0;              this->FrameOffset = 0;
1122    
1123              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1124                  // local buffer reallocation - hope this won't happen  
1125                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1126                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1127                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1128                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1129                    remainingsamples = SampleCount;
1130                    assumedsize      = GuessSize(SampleCount);
1131              }              }
1132    
1133              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1135              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1136              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1137    
1138              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1139                    unsigned long framesamples = SamplesPerFrame;
1140                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1141                  if (remainingbytes < 8194) {  
1142                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1143                          this->SamplePos = this->SamplesTotal;  
1144                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1145                      }                      mode_r = *pSrc++;
1146                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1147                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1148                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1149                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1150                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1151                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1152                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1153                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1154                            else {
1155                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1156                            }
1157                        }
1158                    }
1159                    else {
1160                        framebytes = bytesPerFrame[mode_l] + 1;
1161                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1162                        if (remainingbytes < framebytes) {
1163                            framesamples = SamplesInLastFrame;
1164                        }
1165                  }                  }
1166    
1167                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1168                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1169                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1170                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1171                            skipsamples = currentframeoffset;
1172                        }
1173                        else {
1174                            copysamples = 0;
1175                            skipsamples = framesamples;
1176                        }
1177                  }                  }
1178                  else {                  else {
1179                        // This frame has enough data for pBuffer, but not
1180                        // all of the frame is needed. Set file position
1181                        // to start of this frame for next call to Read.
1182                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1183                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1184                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1185                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1186                      }                  }
1187                      else {                  remainingsamples -= copysamples;
1188    
1189                    if (remainingbytes > framebytes) {
1190                        remainingbytes -= framebytes;
1191                        if (remainingsamples == 0 &&
1192                            currentframeoffset + copysamples == framesamples) {
1193                            // This frame has enough data for pBuffer, and
1194                            // all of the frame is needed. Set file
1195                            // position to start of next frame for next
1196                            // call to Read. FrameOffset is 0.
1197                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1198                      }                      }
1199                  }                  }
1200                    else remainingbytes = 0;
1201    
1202                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1203                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1204                  switch (compressionmode) {                  if (copysamples == 0) {
1205                      case 1: // left channel compressed                      // skip this frame
1206                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1207                          if (!remainingsamples && copysamples == 2048)                  }
1208                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1209                        const unsigned char* const param_l = pSrc;
1210                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1211                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1212                          while (currentframeoffset) {  
1213                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1214                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1215                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1216                              currentframeoffset--;  
1217                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1218                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1219                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1220                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1221                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1222                          }                          }
1223                          while (copysamples) {                          else { // Mono
1224                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1225                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1226                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1227                          }                          }
1228                          break;                      }
1229                      case 257: // both channels compressed                      else { // 16 bit
1230                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1231                          if (!remainingsamples && copysamples == 2048)  
1232                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1233                            if (Channels == 2) { // Stereo
1234                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1235                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1236                          right  = *(int16_t*)pSrc; pSrc+=2;  
1237                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1238                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1239                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1240                              left   -= dleft;                                           skipsamples, copysamples);
1241                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1242                          }                          }
1243                          while (copysamples) {                          else { // Mono
1244                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1245                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1246                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1247                          }                          }
1248                          break;                      }
1249                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1250                  }                  }
1251              }  
1252                    // reload from disk to local buffer if needed
1253                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1254                        assumedsize    = GuessSize(remainingsamples);
1255                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1256                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1257                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1258                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1259                    }
1260                } // while
1261    
1262              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1263              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1264              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1265          }          }
1266      }      }
1267    
1268        /** @brief Write sample wave data.
1269         *
1270         * Writes \a SampleCount number of sample points from the buffer pointed
1271         * by \a pBuffer and increments the position within the sample. Use this
1272         * method to directly write the sample data to disk, i.e. if you don't
1273         * want or cannot load the whole sample data into RAM.
1274         *
1275         * You have to Resize() the sample to the desired size and call
1276         * File::Save() <b>before</b> using Write().
1277         *
1278         * Note: there is currently no support for writing compressed samples.
1279         *
1280         * For 16 bit samples, the data in the source buffer should be
1281         * int16_t (using native endianness). For 24 bit, the buffer
1282         * should contain three bytes per sample, little-endian.
1283         *
1284         * @param pBuffer     - source buffer
1285         * @param SampleCount - number of sample points to write
1286         * @throws DLS::Exception if current sample size is too small
1287         * @throws gig::Exception if sample is compressed
1288         * @see DLS::LoadSampleData()
1289         */
1290        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1291            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1292    
1293            // if this is the first write in this sample, reset the
1294            // checksum calculator
1295            if (pCkData->GetPos() == 0) {
1296                __resetCRC(crc);
1297            }
1298            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1299            unsigned long res;
1300            if (BitDepth == 24) {
1301                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1302            } else { // 16 bit
1303                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1304                                    : pCkData->Write(pBuffer, SampleCount, 2);
1305            }
1306            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1307    
1308            // if this is the last write, update the checksum chunk in the
1309            // file
1310            if (pCkData->GetPos() == pCkData->GetSize()) {
1311                File* pFile = static_cast<File*>(GetParent());
1312                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1313            }
1314            return res;
1315        }
1316    
1317        /**
1318         * Allocates a decompression buffer for streaming (compressed) samples
1319         * with Sample::Read(). If you are using more than one streaming thread
1320         * in your application you <b>HAVE</b> to create a decompression buffer
1321         * for <b>EACH</b> of your streaming threads and provide it with the
1322         * Sample::Read() call in order to avoid race conditions and crashes.
1323         *
1324         * You should free the memory occupied by the allocated buffer(s) once
1325         * you don't need one of your streaming threads anymore by calling
1326         * DestroyDecompressionBuffer().
1327         *
1328         * @param MaxReadSize - the maximum size (in sample points) you ever
1329         *                      expect to read with one Read() call
1330         * @returns allocated decompression buffer
1331         * @see DestroyDecompressionBuffer()
1332         */
1333        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1334            buffer_t result;
1335            const double worstCaseHeaderOverhead =
1336                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1337            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1338            result.pStart            = new int8_t[result.Size];
1339            result.NullExtensionSize = 0;
1340            return result;
1341        }
1342    
1343        /**
1344         * Free decompression buffer, previously created with
1345         * CreateDecompressionBuffer().
1346         *
1347         * @param DecompressionBuffer - previously allocated decompression
1348         *                              buffer to free
1349         */
1350        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1351            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1352                delete[] (int8_t*) DecompressionBuffer.pStart;
1353                DecompressionBuffer.pStart = NULL;
1354                DecompressionBuffer.Size   = 0;
1355                DecompressionBuffer.NullExtensionSize = 0;
1356            }
1357        }
1358    
1359        /**
1360         * Returns pointer to the Group this Sample belongs to. In the .gig
1361         * format a sample always belongs to one group. If it wasn't explicitly
1362         * assigned to a certain group, it will be automatically assigned to a
1363         * default group.
1364         *
1365         * @returns Sample's Group (never NULL)
1366         */
1367        Group* Sample::GetGroup() const {
1368            return pGroup;
1369        }
1370    
1371      Sample::~Sample() {      Sample::~Sample() {
1372          Instances--;          Instances--;
1373          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1374                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1375                InternalDecompressionBuffer.pStart = NULL;
1376                InternalDecompressionBuffer.Size   = 0;
1377            }
1378          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1379          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1380      }      }
# Line 675  namespace gig { Line 1387  namespace gig {
1387      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1388      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1389    
1390      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1391          Instances++;          Instances++;
1392    
1393          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1394            pRegion = pParent;
1395    
1396            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1397            else memset(&Crossfade, 0, 4);
1398    
1399          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1400    
1401          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1402          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1403          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1404          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1407          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1408          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1409          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1410          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1411          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1412          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1413          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1414          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1416          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1417          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1418          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1419          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1420          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1421          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1422          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1423          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1424          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1425          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1426          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1427          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1428          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1429          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1430          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1431          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1434          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1435          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1436          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1437          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1438          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1439          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1440          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1441          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1442          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1443          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1444          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1445          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1446          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1447          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1448          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1449          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1450          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1451          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1452          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1453              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1454              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1455          }                  VelocityResponseDepth = velocityresponse;
1456          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1457              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1458              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1459          }              } else if (velocityresponse < 15) {
1460          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1461              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1462              VelocityResponseDepth = velocityresponse - 10;              } else {
1463                    VelocityResponseCurve = curve_type_unknown;
1464                    VelocityResponseDepth = 0;
1465                }
1466                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1467                if (releasevelocityresponse < 5) {
1468                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1469                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1470                } else if (releasevelocityresponse < 10) {
1471                    ReleaseVelocityResponseCurve = curve_type_linear;
1472                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1473                } else if (releasevelocityresponse < 15) {
1474                    ReleaseVelocityResponseCurve = curve_type_special;
1475                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1476                } else {
1477                    ReleaseVelocityResponseCurve = curve_type_unknown;
1478                    ReleaseVelocityResponseDepth = 0;
1479                }
1480                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1481                AttenuationControllerThreshold = _3ewa->ReadInt8();
1482                _3ewa->ReadInt32(); // unknown
1483                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1484                _3ewa->ReadInt16(); // unknown
1485                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1486                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1487                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1488                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1489                else                                       DimensionBypass = dim_bypass_ctrl_none;
1490                uint8_t pan = _3ewa->ReadUint8();
1491                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1492                SelfMask = _3ewa->ReadInt8() & 0x01;
1493                _3ewa->ReadInt8(); // unknown
1494                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1495                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1496                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1497                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1498                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1500                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1501                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1502                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1503                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1504                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1505                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1506                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1507                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1508                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1509                                                            : vcf_res_ctrl_none;
1510                uint16_t eg3depth = _3ewa->ReadUint16();
1511                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1512                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1513                _3ewa->ReadInt16(); // unknown
1514                ChannelOffset = _3ewa->ReadUint8() / 4;
1515                uint8_t regoptions = _3ewa->ReadUint8();
1516                MSDecode           = regoptions & 0x01; // bit 0
1517                SustainDefeat      = regoptions & 0x02; // bit 1
1518                _3ewa->ReadInt16(); // unknown
1519                VelocityUpperLimit = _3ewa->ReadInt8();
1520                _3ewa->ReadInt8(); // unknown
1521                _3ewa->ReadInt16(); // unknown
1522                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1523                _3ewa->ReadInt8(); // unknown
1524                _3ewa->ReadInt8(); // unknown
1525                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1526                uint8_t vcfcutoff = _3ewa->ReadUint8();
1527                VCFEnabled = vcfcutoff & 0x80; // bit 7
1528                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1529                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1530                uint8_t vcfvelscale = _3ewa->ReadUint8();
1531                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1532                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1533                _3ewa->ReadInt8(); // unknown
1534                uint8_t vcfresonance = _3ewa->ReadUint8();
1535                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1536                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1537                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1538                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1539                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1540                uint8_t vcfvelocity = _3ewa->ReadUint8();
1541                VCFVelocityDynamicRange = vcfvelocity % 5;
1542                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1543                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1544                if (VCFType == vcf_type_lowpass) {
1545                    if (lfo3ctrl & 0x40) // bit 6
1546                        VCFType = vcf_type_lowpassturbo;
1547                }
1548                if (_3ewa->RemainingBytes() >= 8) {
1549                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1550                } else {
1551                    memset(DimensionUpperLimits, 0, 8);
1552                }
1553            } else { // '3ewa' chunk does not exist yet
1554                // use default values
1555                LFO3Frequency                   = 1.0;
1556                EG3Attack                       = 0.0;
1557                LFO1InternalDepth               = 0;
1558                LFO3InternalDepth               = 0;
1559                LFO1ControlDepth                = 0;
1560                LFO3ControlDepth                = 0;
1561                EG1Attack                       = 0.0;
1562                EG1Decay1                       = 0.005;
1563                EG1Sustain                      = 1000;
1564                EG1Release                      = 0.3;
1565                EG1Controller.type              = eg1_ctrl_t::type_none;
1566                EG1Controller.controller_number = 0;
1567                EG1ControllerInvert             = false;
1568                EG1ControllerAttackInfluence    = 0;
1569                EG1ControllerDecayInfluence     = 0;
1570                EG1ControllerReleaseInfluence   = 0;
1571                EG2Controller.type              = eg2_ctrl_t::type_none;
1572                EG2Controller.controller_number = 0;
1573                EG2ControllerInvert             = false;
1574                EG2ControllerAttackInfluence    = 0;
1575                EG2ControllerDecayInfluence     = 0;
1576                EG2ControllerReleaseInfluence   = 0;
1577                LFO1Frequency                   = 1.0;
1578                EG2Attack                       = 0.0;
1579                EG2Decay1                       = 0.005;
1580                EG2Sustain                      = 1000;
1581                EG2Release                      = 0.3;
1582                LFO2ControlDepth                = 0;
1583                LFO2Frequency                   = 1.0;
1584                LFO2InternalDepth               = 0;
1585                EG1Decay2                       = 0.0;
1586                EG1InfiniteSustain              = true;
1587                EG1PreAttack                    = 0;
1588                EG2Decay2                       = 0.0;
1589                EG2InfiniteSustain              = true;
1590                EG2PreAttack                    = 0;
1591                VelocityResponseCurve           = curve_type_nonlinear;
1592                VelocityResponseDepth           = 3;
1593                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1594                ReleaseVelocityResponseDepth    = 3;
1595                VelocityResponseCurveScaling    = 32;
1596                AttenuationControllerThreshold  = 0;
1597                SampleStartOffset               = 0;
1598                PitchTrack                      = true;
1599                DimensionBypass                 = dim_bypass_ctrl_none;
1600                Pan                             = 0;
1601                SelfMask                        = true;
1602                LFO3Controller                  = lfo3_ctrl_modwheel;
1603                LFO3Sync                        = false;
1604                InvertAttenuationController     = false;
1605                AttenuationController.type      = attenuation_ctrl_t::type_none;
1606                AttenuationController.controller_number = 0;
1607                LFO2Controller                  = lfo2_ctrl_internal;
1608                LFO2FlipPhase                   = false;
1609                LFO2Sync                        = false;
1610                LFO1Controller                  = lfo1_ctrl_internal;
1611                LFO1FlipPhase                   = false;
1612                LFO1Sync                        = false;
1613                VCFResonanceController          = vcf_res_ctrl_none;
1614                EG3Depth                        = 0;
1615                ChannelOffset                   = 0;
1616                MSDecode                        = false;
1617                SustainDefeat                   = false;
1618                VelocityUpperLimit              = 0;
1619                ReleaseTriggerDecay             = 0;
1620                EG1Hold                         = false;
1621                VCFEnabled                      = false;
1622                VCFCutoff                       = 0;
1623                VCFCutoffController             = vcf_cutoff_ctrl_none;
1624                VCFCutoffControllerInvert       = false;
1625                VCFVelocityScale                = 0;
1626                VCFResonance                    = 0;
1627                VCFResonanceDynamic             = false;
1628                VCFKeyboardTracking             = false;
1629                VCFKeyboardTrackingBreakpoint   = 0;
1630                VCFVelocityDynamicRange         = 0x04;
1631                VCFVelocityCurve                = curve_type_linear;
1632                VCFType                         = vcf_type_lowpass;
1633                memset(DimensionUpperLimits, 127, 8);
1634          }          }
1635          else {  
1636              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1637              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1638                                                         VelocityResponseCurveScaling);
1639    
1640            pVelocityReleaseTable = GetReleaseVelocityTable(
1641                                        ReleaseVelocityResponseCurve,
1642                                        ReleaseVelocityResponseDepth
1643                                    );
1644    
1645            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1646                                                          VCFVelocityDynamicRange,
1647                                                          VCFVelocityScale,
1648                                                          VCFCutoffController);
1649    
1650            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1651            VelocityTable = 0;
1652        }
1653    
1654        /*
1655         * Constructs a DimensionRegion by copying all parameters from
1656         * another DimensionRegion
1657         */
1658        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1659            Instances++;
1660            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1661            *this = src; // default memberwise shallow copy of all parameters
1662            pParentList = _3ewl; // restore the chunk pointer
1663    
1664            // deep copy of owned structures
1665            if (src.VelocityTable) {
1666                VelocityTable = new uint8_t[128];
1667                for (int k = 0 ; k < 128 ; k++)
1668                    VelocityTable[k] = src.VelocityTable[k];
1669          }          }
1670          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1671          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1672              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1673              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1674          }          }
1675          else {      }
1676              ReleaseVelocityResponseCurve = curve_type_unknown;      
1677              ReleaseVelocityResponseDepth = 0;      /**
1678         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1679         * and assign it to this object.
1680         *
1681         * Note that all sample pointers referenced by @a orig are simply copied as
1682         * memory address. Thus the respective samples are shared, not duplicated!
1683         *
1684         * @param orig - original DimensionRegion object to be copied from
1685         */
1686        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1687            CopyAssign(orig, NULL);
1688        }
1689    
1690        /**
1691         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1692         * and assign it to this object.
1693         *
1694         * @param orig - original DimensionRegion object to be copied from
1695         * @param mSamples - crosslink map between the foreign file's samples and
1696         *                   this file's samples
1697         */
1698        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1699            // delete all allocated data first
1700            if (VelocityTable) delete [] VelocityTable;
1701            if (pSampleLoops) delete [] pSampleLoops;
1702            
1703            // backup parent list pointer
1704            RIFF::List* p = pParentList;
1705            
1706            gig::Sample* pOriginalSample = pSample;
1707            gig::Region* pOriginalRegion = pRegion;
1708            
1709            //NOTE: copy code copied from assignment constructor above, see comment there as well
1710            
1711            *this = *orig; // default memberwise shallow copy of all parameters
1712            
1713            // restore members that shall not be altered
1714            pParentList = p; // restore the chunk pointer
1715            pRegion = pOriginalRegion;
1716            
1717            // only take the raw sample reference reference if the
1718            // two DimensionRegion objects are part of the same file
1719            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1720                pSample = pOriginalSample;
1721            }
1722            
1723            if (mSamples && mSamples->count(orig->pSample)) {
1724                pSample = mSamples->find(orig->pSample)->second;
1725          }          }
         VelocityResponseCurveScaling = _3ewa->ReadUint8();  
         AttenuationControlTreshold   = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1726    
1727          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // deep copy of owned structures
1728          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          if (orig->VelocityTable) {
1729          if (pVelocityTables->count(tableKey)) { // if key exists              VelocityTable = new uint8_t[128];
1730              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              for (int k = 0 ; k < 128 ; k++)
1731                    VelocityTable[k] = orig->VelocityTable[k];
1732          }          }
1733          else {          if (orig->pSampleLoops) {
1734              pVelocityAttenuationTable = new double[128];              pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1735              switch (VelocityResponseCurve) { // calculate the new table              for (int k = 0 ; k < orig->SampleLoops ; k++)
1736                    pSampleLoops[k] = orig->pSampleLoops[k];
1737            }
1738        }
1739    
1740        /**
1741         * Updates the respective member variable and updates @c SampleAttenuation
1742         * which depends on this value.
1743         */
1744        void DimensionRegion::SetGain(int32_t gain) {
1745            DLS::Sampler::SetGain(gain);
1746            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1747        }
1748    
1749        /**
1750         * Apply dimension region settings to the respective RIFF chunks. You
1751         * have to call File::Save() to make changes persistent.
1752         *
1753         * Usually there is absolutely no need to call this method explicitly.
1754         * It will be called automatically when File::Save() was called.
1755         */
1756        void DimensionRegion::UpdateChunks() {
1757            // first update base class's chunk
1758            DLS::Sampler::UpdateChunks();
1759    
1760            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1761            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1762            pData[12] = Crossfade.in_start;
1763            pData[13] = Crossfade.in_end;
1764            pData[14] = Crossfade.out_start;
1765            pData[15] = Crossfade.out_end;
1766    
1767            // make sure '3ewa' chunk exists
1768            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1769            if (!_3ewa) {
1770                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1771                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1772                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1773            }
1774            pData = (uint8_t*) _3ewa->LoadChunkData();
1775    
1776            // update '3ewa' chunk with DimensionRegion's current settings
1777    
1778            const uint32_t chunksize = _3ewa->GetNewSize();
1779            store32(&pData[0], chunksize); // unknown, always chunk size?
1780    
1781            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1782            store32(&pData[4], lfo3freq);
1783    
1784            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1785            store32(&pData[8], eg3attack);
1786    
1787            // next 2 bytes unknown
1788    
1789            store16(&pData[14], LFO1InternalDepth);
1790    
1791            // next 2 bytes unknown
1792    
1793            store16(&pData[18], LFO3InternalDepth);
1794    
1795            // next 2 bytes unknown
1796    
1797            store16(&pData[22], LFO1ControlDepth);
1798    
1799            // next 2 bytes unknown
1800    
1801            store16(&pData[26], LFO3ControlDepth);
1802    
1803            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1804            store32(&pData[28], eg1attack);
1805    
1806            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1807            store32(&pData[32], eg1decay1);
1808    
1809            // next 2 bytes unknown
1810    
1811            store16(&pData[38], EG1Sustain);
1812    
1813            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1814            store32(&pData[40], eg1release);
1815    
1816            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1817            pData[44] = eg1ctl;
1818    
1819            const uint8_t eg1ctrloptions =
1820                (EG1ControllerInvert ? 0x01 : 0x00) |
1821                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1822                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1823                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1824            pData[45] = eg1ctrloptions;
1825    
1826            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1827            pData[46] = eg2ctl;
1828    
1829            const uint8_t eg2ctrloptions =
1830                (EG2ControllerInvert ? 0x01 : 0x00) |
1831                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1832                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1833                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1834            pData[47] = eg2ctrloptions;
1835    
1836            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1837            store32(&pData[48], lfo1freq);
1838    
1839            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1840            store32(&pData[52], eg2attack);
1841    
1842            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1843            store32(&pData[56], eg2decay1);
1844    
1845            // next 2 bytes unknown
1846    
1847            store16(&pData[62], EG2Sustain);
1848    
1849            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1850            store32(&pData[64], eg2release);
1851    
1852            // next 2 bytes unknown
1853    
1854            store16(&pData[70], LFO2ControlDepth);
1855    
1856            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1857            store32(&pData[72], lfo2freq);
1858    
1859            // next 2 bytes unknown
1860    
1861            store16(&pData[78], LFO2InternalDepth);
1862    
1863            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1864            store32(&pData[80], eg1decay2);
1865    
1866            // next 2 bytes unknown
1867    
1868            store16(&pData[86], EG1PreAttack);
1869    
1870            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1871            store32(&pData[88], eg2decay2);
1872    
1873            // next 2 bytes unknown
1874    
1875            store16(&pData[94], EG2PreAttack);
1876    
1877            {
1878                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1879                uint8_t velocityresponse = VelocityResponseDepth;
1880                switch (VelocityResponseCurve) {
1881                  case curve_type_nonlinear:                  case curve_type_nonlinear:
1882                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
1883                  case curve_type_linear:                  case curve_type_linear:
1884                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1885                      break;                      break;
1886                  case curve_type_special:                  case curve_type_special:
1887                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
1888                          pVelocityAttenuationTable[velocity] =                      break;
1889                              GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);                  case curve_type_unknown:
1890                          if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;                  default:
1891                          else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1892                      }              }
1893                pData[96] = velocityresponse;
1894            }
1895    
1896            {
1897                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1898                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1899                switch (ReleaseVelocityResponseCurve) {
1900                    case curve_type_nonlinear:
1901                        break;
1902                    case curve_type_linear:
1903                        releasevelocityresponse += 5;
1904                        break;
1905                    case curve_type_special:
1906                        releasevelocityresponse += 10;
1907                      break;                      break;
1908                  case curve_type_unknown:                  case curve_type_unknown:
1909                  default:                  default:
1910                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1911              }              }
1912              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[97] = releasevelocityresponse;
1913            }
1914    
1915            pData[98] = VelocityResponseCurveScaling;
1916    
1917            pData[99] = AttenuationControllerThreshold;
1918    
1919            // next 4 bytes unknown
1920    
1921            store16(&pData[104], SampleStartOffset);
1922    
1923            // next 2 bytes unknown
1924    
1925            {
1926                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1927                switch (DimensionBypass) {
1928                    case dim_bypass_ctrl_94:
1929                        pitchTrackDimensionBypass |= 0x10;
1930                        break;
1931                    case dim_bypass_ctrl_95:
1932                        pitchTrackDimensionBypass |= 0x20;
1933                        break;
1934                    case dim_bypass_ctrl_none:
1935                        //FIXME: should we set anything here?
1936                        break;
1937                    default:
1938                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1939                }
1940                pData[108] = pitchTrackDimensionBypass;
1941            }
1942    
1943            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1944            pData[109] = pan;
1945    
1946            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1947            pData[110] = selfmask;
1948    
1949            // next byte unknown
1950    
1951            {
1952                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1953                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1954                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1955                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1956                pData[112] = lfo3ctrl;
1957            }
1958    
1959            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1960            pData[113] = attenctl;
1961    
1962            {
1963                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1964                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1965                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1966                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1967                pData[114] = lfo2ctrl;
1968            }
1969    
1970            {
1971                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1972                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1973                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1974                if (VCFResonanceController != vcf_res_ctrl_none)
1975                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1976                pData[115] = lfo1ctrl;
1977            }
1978    
1979            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1980                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1981            store16(&pData[116], eg3depth);
1982    
1983            // next 2 bytes unknown
1984    
1985            const uint8_t channeloffset = ChannelOffset * 4;
1986            pData[120] = channeloffset;
1987    
1988            {
1989                uint8_t regoptions = 0;
1990                if (MSDecode)      regoptions |= 0x01; // bit 0
1991                if (SustainDefeat) regoptions |= 0x02; // bit 1
1992                pData[121] = regoptions;
1993            }
1994    
1995            // next 2 bytes unknown
1996    
1997            pData[124] = VelocityUpperLimit;
1998    
1999            // next 3 bytes unknown
2000    
2001            pData[128] = ReleaseTriggerDecay;
2002    
2003            // next 2 bytes unknown
2004    
2005            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2006            pData[131] = eg1hold;
2007    
2008            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2009                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2010            pData[132] = vcfcutoff;
2011    
2012            pData[133] = VCFCutoffController;
2013    
2014            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2015                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2016            pData[134] = vcfvelscale;
2017    
2018            // next byte unknown
2019    
2020            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2021                                         (VCFResonance & 0x7f); /* lower 7 bits */
2022            pData[136] = vcfresonance;
2023    
2024            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2025                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2026            pData[137] = vcfbreakpoint;
2027    
2028            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2029                                        VCFVelocityCurve * 5;
2030            pData[138] = vcfvelocity;
2031    
2032            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2033            pData[139] = vcftype;
2034    
2035            if (chunksize >= 148) {
2036                memcpy(&pData[140], DimensionUpperLimits, 8);
2037            }
2038        }
2039    
2040        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2041            curve_type_t curveType = releaseVelocityResponseCurve;
2042            uint8_t depth = releaseVelocityResponseDepth;
2043            // this models a strange behaviour or bug in GSt: two of the
2044            // velocity response curves for release time are not used even
2045            // if specified, instead another curve is chosen.
2046            if ((curveType == curve_type_nonlinear && depth == 0) ||
2047                (curveType == curve_type_special   && depth == 4)) {
2048                curveType = curve_type_nonlinear;
2049                depth = 3;
2050            }
2051            return GetVelocityTable(curveType, depth, 0);
2052        }
2053    
2054        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2055                                                        uint8_t vcfVelocityDynamicRange,
2056                                                        uint8_t vcfVelocityScale,
2057                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2058        {
2059            curve_type_t curveType = vcfVelocityCurve;
2060            uint8_t depth = vcfVelocityDynamicRange;
2061            // even stranger GSt: two of the velocity response curves for
2062            // filter cutoff are not used, instead another special curve
2063            // is chosen. This curve is not used anywhere else.
2064            if ((curveType == curve_type_nonlinear && depth == 0) ||
2065                (curveType == curve_type_special   && depth == 4)) {
2066                curveType = curve_type_special;
2067                depth = 5;
2068            }
2069            return GetVelocityTable(curveType, depth,
2070                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2071                                        ? vcfVelocityScale : 0);
2072        }
2073    
2074        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2075        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2076        {
2077            double* table;
2078            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2079            if (pVelocityTables->count(tableKey)) { // if key exists
2080                table = (*pVelocityTables)[tableKey];
2081            }
2082            else {
2083                table = CreateVelocityTable(curveType, depth, scaling);
2084                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2085            }
2086            return table;
2087        }
2088    
2089        Region* DimensionRegion::GetParent() const {
2090            return pRegion;
2091        }
2092    
2093    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2094    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2095    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2096    //#pragma GCC diagnostic push
2097    //#pragma GCC diagnostic error "-Wswitch"
2098    
2099        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2100            leverage_ctrl_t decodedcontroller;
2101            switch (EncodedController) {
2102                // special controller
2103                case _lev_ctrl_none:
2104                    decodedcontroller.type = leverage_ctrl_t::type_none;
2105                    decodedcontroller.controller_number = 0;
2106                    break;
2107                case _lev_ctrl_velocity:
2108                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
2109                    decodedcontroller.controller_number = 0;
2110                    break;
2111                case _lev_ctrl_channelaftertouch:
2112                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2113                    decodedcontroller.controller_number = 0;
2114                    break;
2115    
2116                // ordinary MIDI control change controller
2117                case _lev_ctrl_modwheel:
2118                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2119                    decodedcontroller.controller_number = 1;
2120                    break;
2121                case _lev_ctrl_breath:
2122                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2123                    decodedcontroller.controller_number = 2;
2124                    break;
2125                case _lev_ctrl_foot:
2126                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2127                    decodedcontroller.controller_number = 4;
2128                    break;
2129                case _lev_ctrl_effect1:
2130                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2131                    decodedcontroller.controller_number = 12;
2132                    break;
2133                case _lev_ctrl_effect2:
2134                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2135                    decodedcontroller.controller_number = 13;
2136                    break;
2137                case _lev_ctrl_genpurpose1:
2138                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2139                    decodedcontroller.controller_number = 16;
2140                    break;
2141                case _lev_ctrl_genpurpose2:
2142                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2143                    decodedcontroller.controller_number = 17;
2144                    break;
2145                case _lev_ctrl_genpurpose3:
2146                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2147                    decodedcontroller.controller_number = 18;
2148                    break;
2149                case _lev_ctrl_genpurpose4:
2150                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2151                    decodedcontroller.controller_number = 19;
2152                    break;
2153                case _lev_ctrl_portamentotime:
2154                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2155                    decodedcontroller.controller_number = 5;
2156                    break;
2157                case _lev_ctrl_sustainpedal:
2158                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2159                    decodedcontroller.controller_number = 64;
2160                    break;
2161                case _lev_ctrl_portamento:
2162                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2163                    decodedcontroller.controller_number = 65;
2164                    break;
2165                case _lev_ctrl_sostenutopedal:
2166                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2167                    decodedcontroller.controller_number = 66;
2168                    break;
2169                case _lev_ctrl_softpedal:
2170                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2171                    decodedcontroller.controller_number = 67;
2172                    break;
2173                case _lev_ctrl_genpurpose5:
2174                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2175                    decodedcontroller.controller_number = 80;
2176                    break;
2177                case _lev_ctrl_genpurpose6:
2178                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2179                    decodedcontroller.controller_number = 81;
2180                    break;
2181                case _lev_ctrl_genpurpose7:
2182                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2183                    decodedcontroller.controller_number = 82;
2184                    break;
2185                case _lev_ctrl_genpurpose8:
2186                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2187                    decodedcontroller.controller_number = 83;
2188                    break;
2189                case _lev_ctrl_effect1depth:
2190                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2191                    decodedcontroller.controller_number = 91;
2192                    break;
2193                case _lev_ctrl_effect2depth:
2194                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2195                    decodedcontroller.controller_number = 92;
2196                    break;
2197                case _lev_ctrl_effect3depth:
2198                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2199                    decodedcontroller.controller_number = 93;
2200                    break;
2201                case _lev_ctrl_effect4depth:
2202                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2203                    decodedcontroller.controller_number = 94;
2204                    break;
2205                case _lev_ctrl_effect5depth:
2206                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2207                    decodedcontroller.controller_number = 95;
2208                    break;
2209    
2210                // format extension (these controllers are so far only supported by
2211                // LinuxSampler & gigedit) they will *NOT* work with
2212                // Gigasampler/GigaStudio !
2213                case _lev_ctrl_CC3_EXT:
2214                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2215                    decodedcontroller.controller_number = 3;
2216                    break;
2217                case _lev_ctrl_CC6_EXT:
2218                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2219                    decodedcontroller.controller_number = 6;
2220                    break;
2221                case _lev_ctrl_CC7_EXT:
2222                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2223                    decodedcontroller.controller_number = 7;
2224                    break;
2225                case _lev_ctrl_CC8_EXT:
2226                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2227                    decodedcontroller.controller_number = 8;
2228                    break;
2229                case _lev_ctrl_CC9_EXT:
2230                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2231                    decodedcontroller.controller_number = 9;
2232                    break;
2233                case _lev_ctrl_CC10_EXT:
2234                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2235                    decodedcontroller.controller_number = 10;
2236                    break;
2237                case _lev_ctrl_CC11_EXT:
2238                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2239                    decodedcontroller.controller_number = 11;
2240                    break;
2241                case _lev_ctrl_CC14_EXT:
2242                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2243                    decodedcontroller.controller_number = 14;
2244                    break;
2245                case _lev_ctrl_CC15_EXT:
2246                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2247                    decodedcontroller.controller_number = 15;
2248                    break;
2249                case _lev_ctrl_CC20_EXT:
2250                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2251                    decodedcontroller.controller_number = 20;
2252                    break;
2253                case _lev_ctrl_CC21_EXT:
2254                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2255                    decodedcontroller.controller_number = 21;
2256                    break;
2257                case _lev_ctrl_CC22_EXT:
2258                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2259                    decodedcontroller.controller_number = 22;
2260                    break;
2261                case _lev_ctrl_CC23_EXT:
2262                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2263                    decodedcontroller.controller_number = 23;
2264                    break;
2265                case _lev_ctrl_CC24_EXT:
2266                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2267                    decodedcontroller.controller_number = 24;
2268                    break;
2269                case _lev_ctrl_CC25_EXT:
2270                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2271                    decodedcontroller.controller_number = 25;
2272                    break;
2273                case _lev_ctrl_CC26_EXT:
2274                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2275                    decodedcontroller.controller_number = 26;
2276                    break;
2277                case _lev_ctrl_CC27_EXT:
2278                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2279                    decodedcontroller.controller_number = 27;
2280                    break;
2281                case _lev_ctrl_CC28_EXT:
2282                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283                    decodedcontroller.controller_number = 28;
2284                    break;
2285                case _lev_ctrl_CC29_EXT:
2286                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287                    decodedcontroller.controller_number = 29;
2288                    break;
2289                case _lev_ctrl_CC30_EXT:
2290                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291                    decodedcontroller.controller_number = 30;
2292                    break;
2293                case _lev_ctrl_CC31_EXT:
2294                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295                    decodedcontroller.controller_number = 31;
2296                    break;
2297                case _lev_ctrl_CC68_EXT:
2298                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299                    decodedcontroller.controller_number = 68;
2300                    break;
2301                case _lev_ctrl_CC69_EXT:
2302                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303                    decodedcontroller.controller_number = 69;
2304                    break;
2305                case _lev_ctrl_CC70_EXT:
2306                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307                    decodedcontroller.controller_number = 70;
2308                    break;
2309                case _lev_ctrl_CC71_EXT:
2310                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311                    decodedcontroller.controller_number = 71;
2312                    break;
2313                case _lev_ctrl_CC72_EXT:
2314                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315                    decodedcontroller.controller_number = 72;
2316                    break;
2317                case _lev_ctrl_CC73_EXT:
2318                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319                    decodedcontroller.controller_number = 73;
2320                    break;
2321                case _lev_ctrl_CC74_EXT:
2322                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323                    decodedcontroller.controller_number = 74;
2324                    break;
2325                case _lev_ctrl_CC75_EXT:
2326                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327                    decodedcontroller.controller_number = 75;
2328                    break;
2329                case _lev_ctrl_CC76_EXT:
2330                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331                    decodedcontroller.controller_number = 76;
2332                    break;
2333                case _lev_ctrl_CC77_EXT:
2334                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335                    decodedcontroller.controller_number = 77;
2336                    break;
2337                case _lev_ctrl_CC78_EXT:
2338                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339                    decodedcontroller.controller_number = 78;
2340                    break;
2341                case _lev_ctrl_CC79_EXT:
2342                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343                    decodedcontroller.controller_number = 79;
2344                    break;
2345                case _lev_ctrl_CC84_EXT:
2346                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347                    decodedcontroller.controller_number = 84;
2348                    break;
2349                case _lev_ctrl_CC85_EXT:
2350                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351                    decodedcontroller.controller_number = 85;
2352                    break;
2353                case _lev_ctrl_CC86_EXT:
2354                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355                    decodedcontroller.controller_number = 86;
2356                    break;
2357                case _lev_ctrl_CC87_EXT:
2358                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359                    decodedcontroller.controller_number = 87;
2360                    break;
2361                case _lev_ctrl_CC89_EXT:
2362                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363                    decodedcontroller.controller_number = 89;
2364                    break;
2365                case _lev_ctrl_CC90_EXT:
2366                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367                    decodedcontroller.controller_number = 90;
2368                    break;
2369                case _lev_ctrl_CC96_EXT:
2370                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371                    decodedcontroller.controller_number = 96;
2372                    break;
2373                case _lev_ctrl_CC97_EXT:
2374                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2375                    decodedcontroller.controller_number = 97;
2376                    break;
2377                case _lev_ctrl_CC102_EXT:
2378                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379                    decodedcontroller.controller_number = 102;
2380                    break;
2381                case _lev_ctrl_CC103_EXT:
2382                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383                    decodedcontroller.controller_number = 103;
2384                    break;
2385                case _lev_ctrl_CC104_EXT:
2386                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387                    decodedcontroller.controller_number = 104;
2388                    break;
2389                case _lev_ctrl_CC105_EXT:
2390                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391                    decodedcontroller.controller_number = 105;
2392                    break;
2393                case _lev_ctrl_CC106_EXT:
2394                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395                    decodedcontroller.controller_number = 106;
2396                    break;
2397                case _lev_ctrl_CC107_EXT:
2398                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399                    decodedcontroller.controller_number = 107;
2400                    break;
2401                case _lev_ctrl_CC108_EXT:
2402                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403                    decodedcontroller.controller_number = 108;
2404                    break;
2405                case _lev_ctrl_CC109_EXT:
2406                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407                    decodedcontroller.controller_number = 109;
2408                    break;
2409                case _lev_ctrl_CC110_EXT:
2410                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411                    decodedcontroller.controller_number = 110;
2412                    break;
2413                case _lev_ctrl_CC111_EXT:
2414                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415                    decodedcontroller.controller_number = 111;
2416                    break;
2417                case _lev_ctrl_CC112_EXT:
2418                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419                    decodedcontroller.controller_number = 112;
2420                    break;
2421                case _lev_ctrl_CC113_EXT:
2422                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423                    decodedcontroller.controller_number = 113;
2424                    break;
2425                case _lev_ctrl_CC114_EXT:
2426                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427                    decodedcontroller.controller_number = 114;
2428                    break;
2429                case _lev_ctrl_CC115_EXT:
2430                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431                    decodedcontroller.controller_number = 115;
2432                    break;
2433                case _lev_ctrl_CC116_EXT:
2434                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435                    decodedcontroller.controller_number = 116;
2436                    break;
2437                case _lev_ctrl_CC117_EXT:
2438                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439                    decodedcontroller.controller_number = 117;
2440                    break;
2441                case _lev_ctrl_CC118_EXT:
2442                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443                    decodedcontroller.controller_number = 118;
2444                    break;
2445                case _lev_ctrl_CC119_EXT:
2446                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447                    decodedcontroller.controller_number = 119;
2448                    break;
2449    
2450                // unknown controller type
2451                default:
2452                    throw gig::Exception("Unknown leverage controller type.");
2453            }
2454            return decodedcontroller;
2455        }
2456        
2457    // see above (diagnostic push not supported prior GCC 4.6)
2458    //#pragma GCC diagnostic pop
2459    
2460        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2461            _lev_ctrl_t encodedcontroller;
2462            switch (DecodedController.type) {
2463                // special controller
2464                case leverage_ctrl_t::type_none:
2465                    encodedcontroller = _lev_ctrl_none;
2466                    break;
2467                case leverage_ctrl_t::type_velocity:
2468                    encodedcontroller = _lev_ctrl_velocity;
2469                    break;
2470                case leverage_ctrl_t::type_channelaftertouch:
2471                    encodedcontroller = _lev_ctrl_channelaftertouch;
2472                    break;
2473    
2474                // ordinary MIDI control change controller
2475                case leverage_ctrl_t::type_controlchange:
2476                    switch (DecodedController.controller_number) {
2477                        case 1:
2478                            encodedcontroller = _lev_ctrl_modwheel;
2479                            break;
2480                        case 2:
2481                            encodedcontroller = _lev_ctrl_breath;
2482                            break;
2483                        case 4:
2484                            encodedcontroller = _lev_ctrl_foot;
2485                            break;
2486                        case 12:
2487                            encodedcontroller = _lev_ctrl_effect1;
2488                            break;
2489                        case 13:
2490                            encodedcontroller = _lev_ctrl_effect2;
2491                            break;
2492                        case 16:
2493                            encodedcontroller = _lev_ctrl_genpurpose1;
2494                            break;
2495                        case 17:
2496                            encodedcontroller = _lev_ctrl_genpurpose2;
2497                            break;
2498                        case 18:
2499                            encodedcontroller = _lev_ctrl_genpurpose3;
2500                            break;
2501                        case 19:
2502                            encodedcontroller = _lev_ctrl_genpurpose4;
2503                            break;
2504                        case 5:
2505                            encodedcontroller = _lev_ctrl_portamentotime;
2506                            break;
2507                        case 64:
2508                            encodedcontroller = _lev_ctrl_sustainpedal;
2509                            break;
2510                        case 65:
2511                            encodedcontroller = _lev_ctrl_portamento;
2512                            break;
2513                        case 66:
2514                            encodedcontroller = _lev_ctrl_sostenutopedal;
2515                            break;
2516                        case 67:
2517                            encodedcontroller = _lev_ctrl_softpedal;
2518                            break;
2519                        case 80:
2520                            encodedcontroller = _lev_ctrl_genpurpose5;
2521                            break;
2522                        case 81:
2523                            encodedcontroller = _lev_ctrl_genpurpose6;
2524                            break;
2525                        case 82:
2526                            encodedcontroller = _lev_ctrl_genpurpose7;
2527                            break;
2528                        case 83:
2529                            encodedcontroller = _lev_ctrl_genpurpose8;
2530                            break;
2531                        case 91:
2532                            encodedcontroller = _lev_ctrl_effect1depth;
2533                            break;
2534                        case 92:
2535                            encodedcontroller = _lev_ctrl_effect2depth;
2536                            break;
2537                        case 93:
2538                            encodedcontroller = _lev_ctrl_effect3depth;
2539                            break;
2540                        case 94:
2541                            encodedcontroller = _lev_ctrl_effect4depth;
2542                            break;
2543                        case 95:
2544                            encodedcontroller = _lev_ctrl_effect5depth;
2545                            break;
2546    
2547                        // format extension (these controllers are so far only
2548                        // supported by LinuxSampler & gigedit) they will *NOT*
2549                        // work with Gigasampler/GigaStudio !
2550                        case 3:
2551                            encodedcontroller = _lev_ctrl_CC3_EXT;
2552                            break;
2553                        case 6:
2554                            encodedcontroller = _lev_ctrl_CC6_EXT;
2555                            break;
2556                        case 7:
2557                            encodedcontroller = _lev_ctrl_CC7_EXT;
2558                            break;
2559                        case 8:
2560                            encodedcontroller = _lev_ctrl_CC8_EXT;
2561                            break;
2562                        case 9:
2563                            encodedcontroller = _lev_ctrl_CC9_EXT;
2564                            break;
2565                        case 10:
2566                            encodedcontroller = _lev_ctrl_CC10_EXT;
2567                            break;
2568                        case 11:
2569                            encodedcontroller = _lev_ctrl_CC11_EXT;
2570                            break;
2571                        case 14:
2572                            encodedcontroller = _lev_ctrl_CC14_EXT;
2573                            break;
2574                        case 15:
2575                            encodedcontroller = _lev_ctrl_CC15_EXT;
2576                            break;
2577                        case 20:
2578                            encodedcontroller = _lev_ctrl_CC20_EXT;
2579                            break;
2580                        case 21:
2581                            encodedcontroller = _lev_ctrl_CC21_EXT;
2582                            break;
2583                        case 22:
2584                            encodedcontroller = _lev_ctrl_CC22_EXT;
2585                            break;
2586                        case 23:
2587                            encodedcontroller = _lev_ctrl_CC23_EXT;
2588                            break;
2589                        case 24:
2590                            encodedcontroller = _lev_ctrl_CC24_EXT;
2591                            break;
2592                        case 25:
2593                            encodedcontroller = _lev_ctrl_CC25_EXT;
2594                            break;
2595                        case 26:
2596                            encodedcontroller = _lev_ctrl_CC26_EXT;
2597                            break;
2598                        case 27:
2599                            encodedcontroller = _lev_ctrl_CC27_EXT;
2600                            break;
2601                        case 28:
2602                            encodedcontroller = _lev_ctrl_CC28_EXT;
2603                            break;
2604                        case 29:
2605                            encodedcontroller = _lev_ctrl_CC29_EXT;
2606                            break;
2607                        case 30:
2608                            encodedcontroller = _lev_ctrl_CC30_EXT;
2609                            break;
2610                        case 31:
2611                            encodedcontroller = _lev_ctrl_CC31_EXT;
2612                            break;
2613                        case 68:
2614                            encodedcontroller = _lev_ctrl_CC68_EXT;
2615                            break;
2616                        case 69:
2617                            encodedcontroller = _lev_ctrl_CC69_EXT;
2618                            break;
2619                        case 70:
2620                            encodedcontroller = _lev_ctrl_CC70_EXT;
2621                            break;
2622                        case 71:
2623                            encodedcontroller = _lev_ctrl_CC71_EXT;
2624                            break;
2625                        case 72:
2626                            encodedcontroller = _lev_ctrl_CC72_EXT;
2627                            break;
2628                        case 73:
2629                            encodedcontroller = _lev_ctrl_CC73_EXT;
2630                            break;
2631                        case 74:
2632                            encodedcontroller = _lev_ctrl_CC74_EXT;
2633                            break;
2634                        case 75:
2635                            encodedcontroller = _lev_ctrl_CC75_EXT;
2636                            break;
2637                        case 76:
2638                            encodedcontroller = _lev_ctrl_CC76_EXT;
2639                            break;
2640                        case 77:
2641                            encodedcontroller = _lev_ctrl_CC77_EXT;
2642                            break;
2643                        case 78:
2644                            encodedcontroller = _lev_ctrl_CC78_EXT;
2645                            break;
2646                        case 79:
2647                            encodedcontroller = _lev_ctrl_CC79_EXT;
2648                            break;
2649                        case 84:
2650                            encodedcontroller = _lev_ctrl_CC84_EXT;
2651                            break;
2652                        case 85:
2653                            encodedcontroller = _lev_ctrl_CC85_EXT;
2654                            break;
2655                        case 86:
2656                            encodedcontroller = _lev_ctrl_CC86_EXT;
2657                            break;
2658                        case 87:
2659                            encodedcontroller = _lev_ctrl_CC87_EXT;
2660                            break;
2661                        case 89:
2662                            encodedcontroller = _lev_ctrl_CC89_EXT;
2663                            break;
2664                        case 90:
2665                            encodedcontroller = _lev_ctrl_CC90_EXT;
2666                            break;
2667                        case 96:
2668                            encodedcontroller = _lev_ctrl_CC96_EXT;
2669                            break;
2670                        case 97:
2671                            encodedcontroller = _lev_ctrl_CC97_EXT;
2672                            break;
2673                        case 102:
2674                            encodedcontroller = _lev_ctrl_CC102_EXT;
2675                            break;
2676                        case 103:
2677                            encodedcontroller = _lev_ctrl_CC103_EXT;
2678                            break;
2679                        case 104:
2680                            encodedcontroller = _lev_ctrl_CC104_EXT;
2681                            break;
2682                        case 105:
2683                            encodedcontroller = _lev_ctrl_CC105_EXT;
2684                            break;
2685                        case 106:
2686                            encodedcontroller = _lev_ctrl_CC106_EXT;
2687                            break;
2688                        case 107:
2689                            encodedcontroller = _lev_ctrl_CC107_EXT;
2690                            break;
2691                        case 108:
2692                            encodedcontroller = _lev_ctrl_CC108_EXT;
2693                            break;
2694                        case 109:
2695                            encodedcontroller = _lev_ctrl_CC109_EXT;
2696                            break;
2697                        case 110:
2698                            encodedcontroller = _lev_ctrl_CC110_EXT;
2699                            break;
2700                        case 111:
2701                            encodedcontroller = _lev_ctrl_CC111_EXT;
2702                            break;
2703                        case 112:
2704                            encodedcontroller = _lev_ctrl_CC112_EXT;
2705                            break;
2706                        case 113:
2707                            encodedcontroller = _lev_ctrl_CC113_EXT;
2708                            break;
2709                        case 114:
2710                            encodedcontroller = _lev_ctrl_CC114_EXT;
2711                            break;
2712                        case 115:
2713                            encodedcontroller = _lev_ctrl_CC115_EXT;
2714                            break;
2715                        case 116:
2716                            encodedcontroller = _lev_ctrl_CC116_EXT;
2717                            break;
2718                        case 117:
2719                            encodedcontroller = _lev_ctrl_CC117_EXT;
2720                            break;
2721                        case 118:
2722                            encodedcontroller = _lev_ctrl_CC118_EXT;
2723                            break;
2724                        case 119:
2725                            encodedcontroller = _lev_ctrl_CC119_EXT;
2726                            break;
2727    
2728                        default:
2729                            throw gig::Exception("leverage controller number is not supported by the gig format");
2730                    }
2731                    break;
2732                default:
2733                    throw gig::Exception("Unknown leverage controller type.");
2734          }          }
2735            return encodedcontroller;
2736      }      }
2737    
2738      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
# Line 885  namespace gig { Line 2748  namespace gig {
2748              delete pVelocityTables;              delete pVelocityTables;
2749              pVelocityTables = NULL;              pVelocityTables = NULL;
2750          }          }
2751            if (VelocityTable) delete[] VelocityTable;
2752      }      }
2753    
2754      /**      /**
# Line 895  namespace gig { Line 2759  namespace gig {
2759       * triggered to get the volume with which the sample should be played       * triggered to get the volume with which the sample should be played
2760       * back.       * back.
2761       *       *
2762       * @param    MIDI velocity value of the triggered key (between 0 and 127)       * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
2763       * @returns  amplitude factor (between 0.0 and 1.0)       * @returns                amplitude factor (between 0.0 and 1.0)
2764       */       */
2765      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2766          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2767      }      }
2768    
2769        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2770            return pVelocityReleaseTable[MIDIKeyVelocity];
2771        }
2772    
2773        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2774            return pVelocityCutoffTable[MIDIKeyVelocity];
2775        }
2776    
2777        /**
2778         * Updates the respective member variable and the lookup table / cache
2779         * that depends on this value.
2780         */
2781        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2782            pVelocityAttenuationTable =
2783                GetVelocityTable(
2784                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2785                );
2786            VelocityResponseCurve = curve;
2787        }
2788    
2789        /**
2790         * Updates the respective member variable and the lookup table / cache
2791         * that depends on this value.
2792         */
2793        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2794            pVelocityAttenuationTable =
2795                GetVelocityTable(
2796                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2797                );
2798            VelocityResponseDepth = depth;
2799        }
2800    
2801        /**
2802         * Updates the respective member variable and the lookup table / cache
2803         * that depends on this value.
2804         */
2805        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2806            pVelocityAttenuationTable =
2807                GetVelocityTable(
2808                    VelocityResponseCurve, VelocityResponseDepth, scaling
2809                );
2810            VelocityResponseCurveScaling = scaling;
2811        }
2812    
2813        /**
2814         * Updates the respective member variable and the lookup table / cache
2815         * that depends on this value.
2816         */
2817        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2818            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2819            ReleaseVelocityResponseCurve = curve;
2820        }
2821    
2822        /**
2823         * Updates the respective member variable and the lookup table / cache
2824         * that depends on this value.
2825         */
2826        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2827            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2828            ReleaseVelocityResponseDepth = depth;
2829        }
2830    
2831        /**
2832         * Updates the respective member variable and the lookup table / cache
2833         * that depends on this value.
2834         */
2835        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2836            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2837            VCFCutoffController = controller;
2838        }
2839    
2840        /**
2841         * Updates the respective member variable and the lookup table / cache
2842         * that depends on this value.
2843         */
2844        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2845            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2846            VCFVelocityCurve = curve;
2847        }
2848    
2849        /**
2850         * Updates the respective member variable and the lookup table / cache
2851         * that depends on this value.
2852         */
2853        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2854            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2855            VCFVelocityDynamicRange = range;
2856        }
2857    
2858        /**
2859         * Updates the respective member variable and the lookup table / cache
2860         * that depends on this value.
2861         */
2862        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2863            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2864            VCFVelocityScale = scaling;
2865        }
2866    
2867        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2868    
2869            // line-segment approximations of the 15 velocity curves
2870    
2871            // linear
2872            const int lin0[] = { 1, 1, 127, 127 };
2873            const int lin1[] = { 1, 21, 127, 127 };
2874            const int lin2[] = { 1, 45, 127, 127 };
2875            const int lin3[] = { 1, 74, 127, 127 };
2876            const int lin4[] = { 1, 127, 127, 127 };
2877    
2878            // non-linear
2879            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2880            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2881                                 127, 127 };
2882            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2883                                 127, 127 };
2884            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2885                                 127, 127 };
2886            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2887    
2888            // special
2889            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2890                                 113, 127, 127, 127 };
2891            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2892                                 118, 127, 127, 127 };
2893            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2894                                 85, 90, 91, 127, 127, 127 };
2895            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2896                                 117, 127, 127, 127 };
2897            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2898                                 127, 127 };
2899    
2900            // this is only used by the VCF velocity curve
2901            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2902                                 91, 127, 127, 127 };
2903    
2904            const int* const curves[] = { non0, non1, non2, non3, non4,
2905                                          lin0, lin1, lin2, lin3, lin4,
2906                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2907    
2908            double* const table = new double[128];
2909    
2910            const int* curve = curves[curveType * 5 + depth];
2911            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2912    
2913            table[0] = 0;
2914            for (int x = 1 ; x < 128 ; x++) {
2915    
2916                if (x > curve[2]) curve += 2;
2917                double y = curve[1] + (x - curve[0]) *
2918                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2919                y = y / 127;
2920    
2921                // Scale up for s > 20, down for s < 20. When
2922                // down-scaling, the curve still ends at 1.0.
2923                if (s < 20 && y >= 0.5)
2924                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2925                else
2926                    y = y * (s / 20.0);
2927                if (y > 1) y = 1;
2928    
2929                table[x] = y;
2930            }
2931            return table;
2932        }
2933    
2934    
2935  // *************** Region ***************  // *************** Region ***************
# Line 910  namespace gig { Line 2938  namespace gig {
2938      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2939          // Initialization          // Initialization
2940          Dimensions = 0;          Dimensions = 0;
2941          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2942              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2943          }          }
2944            Layers = 1;
2945            File* file = (File*) GetParent()->GetParent();
2946            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2947    
2948          // Actual Loading          // Actual Loading
2949    
2950            if (!file->GetAutoLoad()) return;
2951    
2952          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2953    
2954          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2955          if (_3lnk) {          if (_3lnk) {
2956              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2957              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2958                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2959                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2960                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2961                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2962                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2963                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2964                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2965                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2966                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2967                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2968                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2969                  }                  }
2970                  else { // active dimension                  else { // active dimension
2971                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2972                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2973                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2974                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2975                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2976                      Dimensions++;                      Dimensions++;
2977    
2978                        // if this is a layer dimension, remember the amount of layers
2979                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2980                  }                  }
2981                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2982              }              }
2983                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2984    
2985              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2986              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2987                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
2988                  if (pDimDef->dimension == dimension_velocity) {  
2989                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
2990                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
2991                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2992                          pDimDef->ranges     = NULL;              else
2993                      }                  _3lnk->SetPos(44);
2994                      else { // custom defined ranges  
2995                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
2996                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
2997                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
2998                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2999                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
3000                  }                  }
3001                    GetSample(); // load global region sample reference
3002                }
3003            } else {
3004                DimensionRegions = 0;
3005                for (int i = 0 ; i < 8 ; i++) {
3006                    pDimensionDefinitions[i].dimension  = dimension_none;
3007                    pDimensionDefinitions[i].bits       = 0;
3008                    pDimensionDefinitions[i].zones      = 0;
3009              }              }
3010            }
3011    
3012            // make sure there is at least one dimension region
3013            if (!DimensionRegions) {
3014                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3015                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3016                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3017                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3018                DimensionRegions = 1;
3019            }
3020        }
3021    
3022        /**
3023         * Apply Region settings and all its DimensionRegions to the respective
3024         * RIFF chunks. You have to call File::Save() to make changes persistent.
3025         *
3026         * Usually there is absolutely no need to call this method explicitly.
3027         * It will be called automatically when File::Save() was called.
3028         *
3029         * @throws gig::Exception if samples cannot be dereferenced
3030         */
3031        void Region::UpdateChunks() {
3032            // in the gig format we don't care about the Region's sample reference
3033            // but we still have to provide some existing one to not corrupt the
3034            // file, so to avoid the latter we simply always assign the sample of
3035            // the first dimension region of this region
3036            pSample = pDimensionRegions[0]->pSample;
3037    
3038            // first update base class's chunks
3039            DLS::Region::UpdateChunks();
3040    
3041            // update dimension region's chunks
3042            for (int i = 0; i < DimensionRegions; i++) {
3043                pDimensionRegions[i]->UpdateChunks();
3044            }
3045    
3046            File* pFile = (File*) GetParent()->GetParent();
3047            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3048            const int iMaxDimensions =  version3 ? 8 : 5;
3049            const int iMaxDimensionRegions = version3 ? 256 : 32;
3050    
3051            // make sure '3lnk' chunk exists
3052            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3053            if (!_3lnk) {
3054                const int _3lnkChunkSize = version3 ? 1092 : 172;
3055                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3056                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3057    
3058              // load sample references              // move 3prg to last position
3059              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)              pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3060              for (uint i = 0; i < DimensionRegions; i++) {          }
3061                  uint32_t wavepoolindex = _3lnk->ReadUint32();  
3062                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);          // update dimension definitions in '3lnk' chunk
3063            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3064            store32(&pData[0], DimensionRegions);
3065            int shift = 0;
3066            for (int i = 0; i < iMaxDimensions; i++) {
3067                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3068                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3069                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3070                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3071                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3072                // next 3 bytes unknown, always zero?
3073    
3074                shift += pDimensionDefinitions[i].bits;
3075            }
3076    
3077            // update wave pool table in '3lnk' chunk
3078            const int iWavePoolOffset = version3 ? 68 : 44;
3079            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3080                int iWaveIndex = -1;
3081                if (i < DimensionRegions) {
3082                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3083                    File::SampleList::iterator iter = pFile->pSamples->begin();
3084                    File::SampleList::iterator end  = pFile->pSamples->end();
3085                    for (int index = 0; iter != end; ++iter, ++index) {
3086                        if (*iter == pDimensionRegions[i]->pSample) {
3087                            iWaveIndex = index;
3088                            break;
3089                        }
3090                    }
3091              }              }
3092                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3093          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3094      }      }
3095    
3096      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 995  namespace gig { Line 3100  namespace gig {
3100              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3101              while (_3ewl) {              while (_3ewl) {
3102                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3103                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3104                      dimensionRegionNr++;                      dimensionRegionNr++;
3105                  }                  }
3106                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1004  namespace gig { Line 3109  namespace gig {
3109          }          }
3110      }      }
3111    
3112      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3113          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3114              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3115            // update Region key table for fast lookup
3116            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3117        }
3118    
3119        void Region::UpdateVelocityTable() {
3120            // get velocity dimension's index
3121            int veldim = -1;
3122            for (int i = 0 ; i < Dimensions ; i++) {
3123                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3124                    veldim = i;
3125                    break;
3126                }
3127          }          }
3128          for (int i = 0; i < 32; i++) {          if (veldim == -1) return;
3129    
3130            int step = 1;
3131            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3132            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3133            int end = step * pDimensionDefinitions[veldim].zones;
3134    
3135            // loop through all dimension regions for all dimensions except the velocity dimension
3136            int dim[8] = { 0 };
3137            for (int i = 0 ; i < DimensionRegions ; i++) {
3138    
3139                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3140                    pDimensionRegions[i]->VelocityUpperLimit) {
3141                    // create the velocity table
3142                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3143                    if (!table) {
3144                        table = new uint8_t[128];
3145                        pDimensionRegions[i]->VelocityTable = table;
3146                    }
3147                    int tableidx = 0;
3148                    int velocityZone = 0;
3149                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3150                        for (int k = i ; k < end ; k += step) {
3151                            DimensionRegion *d = pDimensionRegions[k];
3152                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3153                            velocityZone++;
3154                        }
3155                    } else { // gig2
3156                        for (int k = i ; k < end ; k += step) {
3157                            DimensionRegion *d = pDimensionRegions[k];
3158                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3159                            velocityZone++;
3160                        }
3161                    }
3162                } else {
3163                    if (pDimensionRegions[i]->VelocityTable) {
3164                        delete[] pDimensionRegions[i]->VelocityTable;
3165                        pDimensionRegions[i]->VelocityTable = 0;
3166                    }
3167                }
3168    
3169                int j;
3170                int shift = 0;
3171                for (j = 0 ; j < Dimensions ; j++) {
3172                    if (j == veldim) i += skipveldim; // skip velocity dimension
3173                    else {
3174                        dim[j]++;
3175                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3176                        else {
3177                            // skip unused dimension regions
3178                            dim[j] = 0;
3179                            i += ((1 << pDimensionDefinitions[j].bits) -
3180                                  pDimensionDefinitions[j].zones) << shift;
3181                        }
3182                    }
3183                    shift += pDimensionDefinitions[j].bits;
3184                }
3185                if (j == Dimensions) break;
3186            }
3187        }
3188    
3189        /** @brief Einstein would have dreamed of it - create a new dimension.
3190         *
3191         * Creates a new dimension with the dimension definition given by
3192         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3193         * There is a hard limit of dimensions and total amount of "bits" all
3194         * dimensions can have. This limit is dependant to what gig file format
3195         * version this file refers to. The gig v2 (and lower) format has a
3196         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3197         * format has a limit of 8.
3198         *
3199         * @param pDimDef - defintion of the new dimension
3200         * @throws gig::Exception if dimension of the same type exists already
3201         * @throws gig::Exception if amount of dimensions or total amount of
3202         *                        dimension bits limit is violated
3203         */
3204        void Region::AddDimension(dimension_def_t* pDimDef) {
3205            // some initial sanity checks of the given dimension definition
3206            if (pDimDef->zones < 2)
3207                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3208            if (pDimDef->bits < 1)
3209                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3210            if (pDimDef->dimension == dimension_samplechannel) {
3211                if (pDimDef->zones != 2)
3212                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3213                if (pDimDef->bits != 1)
3214                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3215            }
3216    
3217            // check if max. amount of dimensions reached
3218            File* file = (File*) GetParent()->GetParent();
3219            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3220            if (Dimensions >= iMaxDimensions)
3221                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3222            // check if max. amount of dimension bits reached
3223            int iCurrentBits = 0;
3224            for (int i = 0; i < Dimensions; i++)
3225                iCurrentBits += pDimensionDefinitions[i].bits;
3226            if (iCurrentBits >= iMaxDimensions)
3227                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3228            const int iNewBits = iCurrentBits + pDimDef->bits;
3229            if (iNewBits > iMaxDimensions)
3230                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3231            // check if there's already a dimensions of the same type
3232            for (int i = 0; i < Dimensions; i++)
3233                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3234                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3235    
3236            // pos is where the new dimension should be placed, normally
3237            // last in list, except for the samplechannel dimension which
3238            // has to be first in list
3239            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3240            int bitpos = 0;
3241            for (int i = 0 ; i < pos ; i++)
3242                bitpos += pDimensionDefinitions[i].bits;
3243    
3244            // make room for the new dimension
3245            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3246            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3247                for (int j = Dimensions ; j > pos ; j--) {
3248                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3249                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3250                }
3251            }
3252    
3253            // assign definition of new dimension
3254            pDimensionDefinitions[pos] = *pDimDef;
3255    
3256            // auto correct certain dimension definition fields (where possible)
3257            pDimensionDefinitions[pos].split_type  =
3258                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3259            pDimensionDefinitions[pos].zone_size =
3260                __resolveZoneSize(pDimensionDefinitions[pos]);
3261    
3262            // create new dimension region(s) for this new dimension, and make
3263            // sure that the dimension regions are placed correctly in both the
3264            // RIFF list and the pDimensionRegions array
3265            RIFF::Chunk* moveTo = NULL;
3266            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3267            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3268                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3269                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3270                }
3271                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3272                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3273                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3274                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3275                        // create a new dimension region and copy all parameter values from
3276                        // an existing dimension region
3277                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3278                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3279    
3280                        DimensionRegions++;
3281                    }
3282                }
3283                moveTo = pDimensionRegions[i]->pParentList;
3284            }
3285    
3286            // initialize the upper limits for this dimension
3287            int mask = (1 << bitpos) - 1;
3288            for (int z = 0 ; z < pDimDef->zones ; z++) {
3289                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3290                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3291                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3292                                      (z << bitpos) |
3293                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3294                }
3295            }
3296    
3297            Dimensions++;
3298    
3299            // if this is a layer dimension, update 'Layers' attribute
3300            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3301    
3302            UpdateVelocityTable();
3303        }
3304    
3305        /** @brief Delete an existing dimension.
3306         *
3307         * Deletes the dimension given by \a pDimDef and deletes all respective
3308         * dimension regions, that is all dimension regions where the dimension's
3309         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3310         * for example this would delete all dimension regions for the case(s)
3311         * where the sustain pedal is pressed down.
3312         *
3313         * @param pDimDef - dimension to delete
3314         * @throws gig::Exception if given dimension cannot be found
3315         */
3316        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3317            // get dimension's index
3318            int iDimensionNr = -1;
3319            for (int i = 0; i < Dimensions; i++) {
3320                if (&pDimensionDefinitions[i] == pDimDef) {
3321                    iDimensionNr = i;
3322                    break;
3323                }
3324            }
3325            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3326    
3327            // get amount of bits below the dimension to delete
3328            int iLowerBits = 0;
3329            for (int i = 0; i < iDimensionNr; i++)
3330                iLowerBits += pDimensionDefinitions[i].bits;
3331    
3332            // get amount ot bits above the dimension to delete
3333            int iUpperBits = 0;
3334            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3335                iUpperBits += pDimensionDefinitions[i].bits;
3336    
3337            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3338    
3339            // delete dimension regions which belong to the given dimension
3340            // (that is where the dimension's bit > 0)
3341            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3342                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3343                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3344                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3345                                        iObsoleteBit << iLowerBits |
3346                                        iLowerBit;
3347    
3348                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3349                        delete pDimensionRegions[iToDelete];
3350                        pDimensionRegions[iToDelete] = NULL;
3351                        DimensionRegions--;
3352                    }
3353                }
3354            }
3355    
3356            // defrag pDimensionRegions array
3357            // (that is remove the NULL spaces within the pDimensionRegions array)
3358            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3359                if (!pDimensionRegions[iTo]) {
3360                    if (iFrom <= iTo) iFrom = iTo + 1;
3361                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3362                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3363                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3364                        pDimensionRegions[iFrom] = NULL;
3365                    }
3366                }
3367            }
3368    
3369            // remove the this dimension from the upper limits arrays
3370            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3371                DimensionRegion* d = pDimensionRegions[j];
3372                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3373                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3374                }
3375                d->DimensionUpperLimits[Dimensions - 1] = 127;
3376            }
3377    
3378            // 'remove' dimension definition
3379            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3380                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3381            }
3382            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3383            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3384            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3385    
3386            Dimensions--;
3387    
3388            // if this was a layer dimension, update 'Layers' attribute
3389            if (pDimDef->dimension == dimension_layer) Layers = 1;
3390        }
3391    
3392        /** @brief Delete one split zone of a dimension (decrement zone amount).
3393         *
3394         * Instead of deleting an entire dimensions, this method will only delete
3395         * one particular split zone given by @a zone of the Region's dimension
3396         * given by @a type. So this method will simply decrement the amount of
3397         * zones by one of the dimension in question. To be able to do that, the
3398         * respective dimension must exist on this Region and it must have at least
3399         * 3 zones. All DimensionRegion objects associated with the zone will be
3400         * deleted.
3401         *
3402         * @param type - identifies the dimension where a zone shall be deleted
3403         * @param zone - index of the dimension split zone that shall be deleted
3404         * @throws gig::Exception if requested zone could not be deleted
3405         */
3406        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3407            dimension_def_t* oldDef = GetDimensionDefinition(type);
3408            if (!oldDef)
3409                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3410            if (oldDef->zones <= 2)
3411                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3412            if (zone < 0 || zone >= oldDef->zones)
3413                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3414    
3415            const int newZoneSize = oldDef->zones - 1;
3416    
3417            // create a temporary Region which just acts as a temporary copy
3418            // container and will be deleted at the end of this function and will
3419            // also not be visible through the API during this process
3420            gig::Region* tempRgn = NULL;
3421            {
3422                // adding these temporary chunks is probably not even necessary
3423                Instrument* instr = static_cast<Instrument*>(GetParent());
3424                RIFF::List* pCkInstrument = instr->pCkInstrument;
3425                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3426                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3427                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3428                tempRgn = new Region(instr, rgn);
3429            }
3430    
3431            // copy this region's dimensions (with already the dimension split size
3432            // requested by the arguments of this method call) to the temporary
3433            // region, and don't use Region::CopyAssign() here for this task, since
3434            // it would also alter fast lookup helper variables here and there
3435            dimension_def_t newDef;
3436            for (int i = 0; i < Dimensions; ++i) {
3437                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3438                // is this the dimension requested by the method arguments? ...
3439                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3440                    def.zones = newZoneSize;
3441                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3442                    newDef = def;
3443                }
3444                tempRgn->AddDimension(&def);
3445            }
3446    
3447            // find the dimension index in the tempRegion which is the dimension
3448            // type passed to this method (paranoidly expecting different order)
3449            int tempReducedDimensionIndex = -1;
3450            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3451                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3452                    tempReducedDimensionIndex = d;
3453                    break;
3454                }
3455            }
3456    
3457            // copy dimension regions from this region to the temporary region
3458            for (int iDst = 0; iDst < 256; ++iDst) {
3459                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3460                if (!dstDimRgn) continue;
3461                std::map<dimension_t,int> dimCase;
3462                bool isValidZone = true;
3463                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3464                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3465                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3466                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3467                    baseBits += dstBits;
3468                    // there are also DimensionRegion objects of unused zones, skip them
3469                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3470                        isValidZone = false;
3471                        break;
3472                    }
3473                }
3474                if (!isValidZone) continue;
3475                // a bit paranoid: cope with the chance that the dimensions would
3476                // have different order in source and destination regions
3477                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3478                if (dimCase[type] >= zone) dimCase[type]++;
3479                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3480                dstDimRgn->CopyAssign(srcDimRgn);
3481                // if this is the upper most zone of the dimension passed to this
3482                // method, then correct (raise) its upper limit to 127
3483                if (newDef.split_type == split_type_normal && isLastZone)
3484                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3485            }
3486    
3487            // now tempRegion's dimensions and DimensionRegions basically reflect
3488            // what we wanted to get for this actual Region here, so we now just
3489            // delete and recreate the dimension in question with the new amount
3490            // zones and then copy back from tempRegion      
3491            DeleteDimension(oldDef);
3492            AddDimension(&newDef);
3493            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3494                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3495                if (!srcDimRgn) continue;
3496                std::map<dimension_t,int> dimCase;
3497                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3498                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3499                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3500                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3501                    baseBits += srcBits;
3502                }
3503                // a bit paranoid: cope with the chance that the dimensions would
3504                // have different order in source and destination regions
3505                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3506                if (!dstDimRgn) continue;
3507                dstDimRgn->CopyAssign(srcDimRgn);
3508            }
3509    
3510            // delete temporary region
3511            delete tempRgn;
3512    
3513            UpdateVelocityTable();
3514        }
3515    
3516        /** @brief Divide split zone of a dimension in two (increment zone amount).
3517         *
3518         * This will increment the amount of zones for the dimension (given by
3519         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3520         * in the middle of its zone range in two. So the two zones resulting from
3521         * the zone being splitted, will be an equivalent copy regarding all their
3522         * articulation informations and sample reference. The two zones will only
3523         * differ in their zone's upper limit
3524         * (DimensionRegion::DimensionUpperLimits).
3525         *
3526         * @param type - identifies the dimension where a zone shall be splitted
3527         * @param zone - index of the dimension split zone that shall be splitted
3528         * @throws gig::Exception if requested zone could not be splitted
3529         */
3530        void Region::SplitDimensionZone(dimension_t type, int zone) {
3531            dimension_def_t* oldDef = GetDimensionDefinition(type);
3532            if (!oldDef)
3533                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3534            if (zone < 0 || zone >= oldDef->zones)
3535                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3536    
3537            const int newZoneSize = oldDef->zones + 1;
3538    
3539            // create a temporary Region which just acts as a temporary copy
3540            // container and will be deleted at the end of this function and will
3541            // also not be visible through the API during this process
3542            gig::Region* tempRgn = NULL;
3543            {
3544                // adding these temporary chunks is probably not even necessary
3545                Instrument* instr = static_cast<Instrument*>(GetParent());
3546                RIFF::List* pCkInstrument = instr->pCkInstrument;
3547                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3548                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3549                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3550                tempRgn = new Region(instr, rgn);
3551            }
3552    
3553            // copy this region's dimensions (with already the dimension split size
3554            // requested by the arguments of this method call) to the temporary
3555            // region, and don't use Region::CopyAssign() here for this task, since
3556            // it would also alter fast lookup helper variables here and there
3557            dimension_def_t newDef;
3558            for (int i = 0; i < Dimensions; ++i) {
3559                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3560                // is this the dimension requested by the method arguments? ...
3561                if (def.dimension == type) { // ... if yes, increment zone amount by one
3562                    def.zones = newZoneSize;
3563                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3564                    newDef = def;
3565                }
3566                tempRgn->AddDimension(&def);
3567            }
3568    
3569            // find the dimension index in the tempRegion which is the dimension
3570            // type passed to this method (paranoidly expecting different order)
3571            int tempIncreasedDimensionIndex = -1;
3572            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3573                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3574                    tempIncreasedDimensionIndex = d;
3575                    break;
3576                }
3577            }
3578    
3579            // copy dimension regions from this region to the temporary region
3580            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3581                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3582                if (!srcDimRgn) continue;
3583                std::map<dimension_t,int> dimCase;
3584                bool isValidZone = true;
3585                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3586                    const int srcBits = pDimensionDefinitions[d].bits;
3587                    dimCase[pDimensionDefinitions[d].dimension] =
3588                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3589                    // there are also DimensionRegion objects for unused zones, skip them
3590                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3591                        isValidZone = false;
3592                        break;
3593                    }
3594                    baseBits += srcBits;
3595                }
3596                if (!isValidZone) continue;
3597                // a bit paranoid: cope with the chance that the dimensions would
3598                // have different order in source and destination regions            
3599                if (dimCase[type] > zone) dimCase[type]++;
3600                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3601                dstDimRgn->CopyAssign(srcDimRgn);
3602                // if this is the requested zone to be splitted, then also copy
3603                // the source DimensionRegion to the newly created target zone
3604                // and set the old zones upper limit lower
3605                if (dimCase[type] == zone) {
3606                    // lower old zones upper limit
3607                    if (newDef.split_type == split_type_normal) {
3608                        const int high =
3609                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3610                        int low = 0;
3611                        if (zone > 0) {
3612                            std::map<dimension_t,int> lowerCase = dimCase;
3613                            lowerCase[type]--;
3614                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3615                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3616                        }
3617                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3618                    }
3619                    // fill the newly created zone of the divided zone as well
3620                    dimCase[type]++;
3621                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3622                    dstDimRgn->CopyAssign(srcDimRgn);
3623                }
3624            }
3625    
3626            // now tempRegion's dimensions and DimensionRegions basically reflect
3627            // what we wanted to get for this actual Region here, so we now just
3628            // delete and recreate the dimension in question with the new amount
3629            // zones and then copy back from tempRegion      
3630            DeleteDimension(oldDef);
3631            AddDimension(&newDef);
3632            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3633                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3634                if (!srcDimRgn) continue;
3635                std::map<dimension_t,int> dimCase;
3636                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3637                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3638                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3639                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3640                    baseBits += srcBits;
3641                }
3642                // a bit paranoid: cope with the chance that the dimensions would
3643                // have different order in source and destination regions
3644                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3645                if (!dstDimRgn) continue;
3646                dstDimRgn->CopyAssign(srcDimRgn);
3647            }
3648    
3649            // delete temporary region
3650            delete tempRgn;
3651    
3652            UpdateVelocityTable();
3653        }
3654    
3655        /** @brief Change type of an existing dimension.
3656         *
3657         * Alters the dimension type of a dimension already existing on this
3658         * region. If there is currently no dimension on this Region with type
3659         * @a oldType, then this call with throw an Exception. Likewise there are
3660         * cases where the requested dimension type cannot be performed. For example
3661         * if the new dimension type shall be gig::dimension_samplechannel, and the
3662         * current dimension has more than 2 zones. In such cases an Exception is
3663         * thrown as well.
3664         *
3665         * @param oldType - identifies the existing dimension to be changed
3666         * @param newType - to which dimension type it should be changed to
3667         * @throws gig::Exception if requested change cannot be performed
3668         */
3669        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3670            if (oldType == newType) return;
3671            dimension_def_t* def = GetDimensionDefinition(oldType);
3672            if (!def)
3673                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3674            if (newType == dimension_samplechannel && def->zones != 2)
3675                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3676            if (GetDimensionDefinition(newType))
3677                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3678            def->dimension  = newType;
3679            def->split_type = __resolveSplitType(newType);
3680        }
3681    
3682        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3683            uint8_t bits[8] = {};
3684            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3685                 it != DimCase.end(); ++it)
3686            {
3687                for (int d = 0; d < Dimensions; ++d) {
3688                    if (pDimensionDefinitions[d].dimension == it->first) {
3689                        bits[d] = it->second;
3690                        goto nextDimCaseSlice;
3691                    }
3692                }
3693                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3694                nextDimCaseSlice:
3695                ; // noop
3696            }
3697            return GetDimensionRegionByBit(bits);
3698        }
3699    
3700        /**
3701         * Searches in the current Region for a dimension of the given dimension
3702         * type and returns the precise configuration of that dimension in this
3703         * Region.
3704         *
3705         * @param type - dimension type of the sought dimension
3706         * @returns dimension definition or NULL if there is no dimension with
3707         *          sought type in this Region.
3708         */
3709        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3710            for (int i = 0; i < Dimensions; ++i)
3711                if (pDimensionDefinitions[i].dimension == type)
3712                    return &pDimensionDefinitions[i];
3713            return NULL;
3714        }
3715    
3716        Region::~Region() {
3717            for (int i = 0; i < 256; i++) {
3718              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3719          }          }
3720      }      }
# Line 1026  namespace gig { Line 3732  namespace gig {
3732       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3733       * etc.).       * etc.).
3734       *       *
3735       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
3736       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
3737       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
3738       * @see             Dimensions       * @see             Dimensions
3739       */       */
3740      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3741          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
3742            int veldim = -1;
3743            int velbitpos;
3744            int bitpos = 0;
3745            int dimregidx = 0;
3746          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3747              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3748                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
3749                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
3750                      break;                  velbitpos = bitpos;
3751                  case split_type_customvelocity:              } else {
3752                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
3753                      break;                      case split_type_normal:
3754                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3755                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3756                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3757                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3758                                }
3759                            } else {
3760                                // gig2: evenly sized zones
3761                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3762                            }
3763                            break;
3764                        case split_type_bit: // the value is already the sought dimension bit number
3765                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3766                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3767                            break;
3768                    }
3769                    dimregidx |= bits << bitpos;
3770                }
3771                bitpos += pDimensionDefinitions[i].bits;
3772            }
3773            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3774            if (!dimreg) return NULL;
3775            if (veldim != -1) {
3776                // (dimreg is now the dimension region for the lowest velocity)
3777                if (dimreg->VelocityTable) // custom defined zone ranges
3778                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3779                else // normal split type
3780                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3781    
3782                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3783                dimregidx |= (bits & limiter_mask) << velbitpos;
3784                dimreg = pDimensionRegions[dimregidx & 255];
3785            }
3786            return dimreg;
3787        }
3788    
3789        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3790            uint8_t bits;
3791            int veldim = -1;
3792            int velbitpos;
3793            int bitpos = 0;
3794            int dimregidx = 0;
3795            for (uint i = 0; i < Dimensions; i++) {
3796                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3797                    // the velocity dimension must be handled after the other dimensions
3798                    veldim = i;
3799                    velbitpos = bitpos;
3800                } else {
3801                    switch (pDimensionDefinitions[i].split_type) {
3802                        case split_type_normal:
3803                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3804                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3805                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3806                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3807                                }
3808                            } else {
3809                                // gig2: evenly sized zones
3810                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3811                            }
3812                            break;
3813                        case split_type_bit: // the value is already the sought dimension bit number
3814                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3815                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3816                            break;
3817                    }
3818                    dimregidx |= bits << bitpos;
3819              }              }
3820                bitpos += pDimensionDefinitions[i].bits;
3821          }          }
3822          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          dimregidx &= 255;
3823            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3824            if (!dimreg) return -1;
3825            if (veldim != -1) {
3826                // (dimreg is now the dimension region for the lowest velocity)
3827                if (dimreg->VelocityTable) // custom defined zone ranges
3828                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3829                else // normal split type
3830                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3831    
3832                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3833                dimregidx |= (bits & limiter_mask) << velbitpos;
3834                dimregidx &= 255;
3835            }
3836            return dimregidx;
3837      }      }
3838    
3839      /**      /**
# Line 1056  namespace gig { Line 3841  namespace gig {
3841       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3842       * instead of calling this method directly!       * instead of calling this method directly!
3843       *       *
3844       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
3845       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
3846       *                 bit numbers       *                 bit numbers
3847       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
3848       */       */
3849      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3850          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3851                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
3852                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
3853                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
3854                                                      << pDimensionDefinitions[2].bits | DimBits[2])
3855                                                      << pDimensionDefinitions[1].bits | DimBits[1])
3856                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
3857      }      }
3858    
3859      /**      /**
# Line 1086  namespace gig { Line 3870  namespace gig {
3870          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3871      }      }
3872    
3873      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3874            if ((int32_t)WavePoolTableIndex == -1) return NULL;
3875          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3876            if (!file->pWavePoolTable) return NULL;
3877          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3878          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3879            Sample* sample = file->GetFirstSample(pProgress);
3880          while (sample) {          while (sample) {
3881              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
3882                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3883              sample = file->GetNextSample();              sample = file->GetNextSample();
3884          }          }
3885          return NULL;          return NULL;
3886      }      }
3887        
3888        /**
3889         * Make a (semi) deep copy of the Region object given by @a orig
3890         * and assign it to this object.
3891         *
3892         * Note that all sample pointers referenced by @a orig are simply copied as
3893         * memory address. Thus the respective samples are shared, not duplicated!
3894         *
3895         * @param orig - original Region object to be copied from
3896         */
3897        void Region::CopyAssign(const Region* orig) {
3898            CopyAssign(orig, NULL);
3899        }
3900        
3901        /**
3902         * Make a (semi) deep copy of the Region object given by @a orig and
3903         * assign it to this object
3904         *
3905         * @param mSamples - crosslink map between the foreign file's samples and
3906         *                   this file's samples
3907         */
3908        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3909            // handle base classes
3910            DLS::Region::CopyAssign(orig);
3911            
3912            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3913                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3914            }
3915            
3916            // handle own member variables
3917            for (int i = Dimensions - 1; i >= 0; --i) {
3918                DeleteDimension(&pDimensionDefinitions[i]);
3919            }
3920            Layers = 0; // just to be sure
3921            for (int i = 0; i < orig->Dimensions; i++) {
3922                // we need to copy the dim definition here, to avoid the compiler
3923                // complaining about const-ness issue
3924                dimension_def_t def = orig->pDimensionDefinitions[i];
3925                AddDimension(&def);
3926            }
3927            for (int i = 0; i < 256; i++) {
3928                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3929                    pDimensionRegions[i]->CopyAssign(
3930                        orig->pDimensionRegions[i],
3931                        mSamples
3932                    );
3933                }
3934            }
3935            Layers = orig->Layers;
3936        }
3937    
3938    
3939    // *************** MidiRule ***************
3940    // *
3941    
3942        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3943            _3ewg->SetPos(36);
3944            Triggers = _3ewg->ReadUint8();
3945            _3ewg->SetPos(40);
3946            ControllerNumber = _3ewg->ReadUint8();
3947            _3ewg->SetPos(46);
3948            for (int i = 0 ; i < Triggers ; i++) {
3949                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3950                pTriggers[i].Descending = _3ewg->ReadUint8();
3951                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3952                pTriggers[i].Key = _3ewg->ReadUint8();
3953                pTriggers[i].NoteOff = _3ewg->ReadUint8();
3954                pTriggers[i].Velocity = _3ewg->ReadUint8();
3955                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3956                _3ewg->ReadUint8();
3957            }
3958        }
3959    
3960        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3961            ControllerNumber(0),
3962            Triggers(0) {
3963        }
3964    
3965        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3966            pData[32] = 4;
3967            pData[33] = 16;
3968            pData[36] = Triggers;
3969            pData[40] = ControllerNumber;
3970            for (int i = 0 ; i < Triggers ; i++) {
3971                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3972                pData[47 + i * 8] = pTriggers[i].Descending;
3973                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3974                pData[49 + i * 8] = pTriggers[i].Key;
3975                pData[50 + i * 8] = pTriggers[i].NoteOff;
3976                pData[51 + i * 8] = pTriggers[i].Velocity;
3977                pData[52 + i * 8] = pTriggers[i].OverridePedal;
3978            }
3979        }
3980    
3981        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3982            _3ewg->SetPos(36);
3983            LegatoSamples = _3ewg->ReadUint8(); // always 12
3984            _3ewg->SetPos(40);
3985            BypassUseController = _3ewg->ReadUint8();
3986            BypassKey = _3ewg->ReadUint8();
3987            BypassController = _3ewg->ReadUint8();
3988            ThresholdTime = _3ewg->ReadUint16();
3989            _3ewg->ReadInt16();
3990            ReleaseTime = _3ewg->ReadUint16();
3991            _3ewg->ReadInt16();
3992            KeyRange.low = _3ewg->ReadUint8();
3993            KeyRange.high = _3ewg->ReadUint8();
3994            _3ewg->SetPos(64);
3995            ReleaseTriggerKey = _3ewg->ReadUint8();
3996            AltSustain1Key = _3ewg->ReadUint8();
3997            AltSustain2Key = _3ewg->ReadUint8();
3998        }
3999    
4000        MidiRuleLegato::MidiRuleLegato() :
4001            LegatoSamples(12),
4002            BypassUseController(false),
4003            BypassKey(0),
4004            BypassController(1),
4005            ThresholdTime(20),
4006            ReleaseTime(20),
4007            ReleaseTriggerKey(0),
4008            AltSustain1Key(0),
4009            AltSustain2Key(0)
4010        {
4011            KeyRange.low = KeyRange.high = 0;
4012        }
4013    
4014        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4015            pData[32] = 0;
4016            pData[33] = 16;
4017            pData[36] = LegatoSamples;
4018            pData[40] = BypassUseController;
4019            pData[41] = BypassKey;
4020            pData[42] = BypassController;
4021            store16(&pData[43], ThresholdTime);
4022            store16(&pData[47], ReleaseTime);
4023            pData[51] = KeyRange.low;
4024            pData[52] = KeyRange.high;
4025            pData[64] = ReleaseTriggerKey;
4026            pData[65] = AltSustain1Key;
4027            pData[66] = AltSustain2Key;
4028        }
4029    
4030        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4031            _3ewg->SetPos(36);
4032            Articulations = _3ewg->ReadUint8();
4033            int flags = _3ewg->ReadUint8();
4034            Polyphonic = flags & 8;
4035            Chained = flags & 4;
4036            Selector = (flags & 2) ? selector_controller :
4037                (flags & 1) ? selector_key_switch : selector_none;
4038            Patterns = _3ewg->ReadUint8();
4039            _3ewg->ReadUint8(); // chosen row
4040            _3ewg->ReadUint8(); // unknown
4041            _3ewg->ReadUint8(); // unknown
4042            _3ewg->ReadUint8(); // unknown
4043            KeySwitchRange.low = _3ewg->ReadUint8();
4044            KeySwitchRange.high = _3ewg->ReadUint8();
4045            Controller = _3ewg->ReadUint8();
4046            PlayRange.low = _3ewg->ReadUint8();
4047            PlayRange.high = _3ewg->ReadUint8();
4048    
4049            int n = std::min(int(Articulations), 32);
4050            for (int i = 0 ; i < n ; i++) {
4051                _3ewg->ReadString(pArticulations[i], 32);
4052            }
4053            _3ewg->SetPos(1072);
4054            n = std::min(int(Patterns), 32);
4055            for (int i = 0 ; i < n ; i++) {
4056                _3ewg->ReadString(pPatterns[i].Name, 16);
4057                pPatterns[i].Size = _3ewg->ReadUint8();
4058                _3ewg->Read(&pPatterns[i][0], 1, 32);
4059            }
4060        }
4061    
4062        MidiRuleAlternator::MidiRuleAlternator() :
4063            Articulations(0),
4064            Patterns(0),
4065            Selector(selector_none),
4066            Controller(0),
4067            Polyphonic(false),
4068            Chained(false)
4069        {
4070            PlayRange.low = PlayRange.high = 0;
4071            KeySwitchRange.low = KeySwitchRange.high = 0;
4072        }
4073    
4074        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4075            pData[32] = 3;
4076            pData[33] = 16;
4077            pData[36] = Articulations;
4078            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4079                (Selector == selector_controller ? 2 :
4080                 (Selector == selector_key_switch ? 1 : 0));
4081            pData[38] = Patterns;
4082    
4083            pData[43] = KeySwitchRange.low;
4084            pData[44] = KeySwitchRange.high;
4085            pData[45] = Controller;
4086            pData[46] = PlayRange.low;
4087            pData[47] = PlayRange.high;
4088    
4089            char* str = reinterpret_cast<char*>(pData);
4090            int pos = 48;
4091            int n = std::min(int(Articulations), 32);
4092            for (int i = 0 ; i < n ; i++, pos += 32) {
4093                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4094            }
4095    
4096            pos = 1072;
4097            n = std::min(int(Patterns), 32);
4098            for (int i = 0 ; i < n ; i++, pos += 49) {
4099                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4100                pData[pos + 16] = pPatterns[i].Size;
4101                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4102            }
4103        }
4104    
4105    // *************** Script ***************
4106    // *
4107    
4108        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4109            pGroup = group;
4110            pChunk = ckScri;
4111            if (ckScri) { // object is loaded from file ...
4112                // read header
4113                uint32_t headerSize = ckScri->ReadUint32();
4114                Compression = (Compression_t) ckScri->ReadUint32();
4115                Encoding    = (Encoding_t) ckScri->ReadUint32();
4116                Language    = (Language_t) ckScri->ReadUint32();
4117                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4118                crc         = ckScri->ReadUint32();
4119                uint32_t nameSize = ckScri->ReadUint32();
4120                Name.resize(nameSize, ' ');
4121                for (int i = 0; i < nameSize; ++i)
4122                    Name[i] = ckScri->ReadUint8();
4123                // to handle potential future extensions of the header
4124                ckScri->SetPos(sizeof(int32_t) + headerSize);
4125                // read actual script data
4126                uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4127                data.resize(scriptSize);
4128                for (int i = 0; i < scriptSize; ++i)
4129                    data[i] = ckScri->ReadUint8();
4130            } else { // this is a new script object, so just initialize it as such ...
4131                Compression = COMPRESSION_NONE;
4132                Encoding = ENCODING_ASCII;
4133                Language = LANGUAGE_NKSP;
4134                Bypass   = false;
4135                crc      = 0;
4136                Name     = "Unnamed Script";
4137            }
4138        }
4139    
4140        Script::~Script() {
4141        }
4142    
4143        /**
4144         * Returns the current script (i.e. as source code) in text format.
4145         */
4146        String Script::GetScriptAsText() {
4147            String s;
4148            s.resize(data.size(), ' ');
4149            memcpy(&s[0], &data[0], data.size());
4150            return s;
4151        }
4152    
4153        /**
4154         * Replaces the current script with the new script source code text given
4155         * by @a text.
4156         *
4157         * @param text - new script source code
4158         */
4159        void Script::SetScriptAsText(const String& text) {
4160            data.resize(text.size());
4161            memcpy(&data[0], &text[0], text.size());
4162        }
4163    
4164        void Script::UpdateChunks() {
4165            // recalculate CRC32 check sum
4166            __resetCRC(crc);
4167            __calculateCRC(&data[0], data.size(), crc);
4168            __encodeCRC(crc);
4169            // make sure chunk exists and has the required size
4170            const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4171            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4172            else pChunk->Resize(chunkSize);
4173            // fill the chunk data to be written to disk
4174            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4175            int pos = 0;
4176            store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4177            pos += sizeof(int32_t);
4178            store32(&pData[pos], Compression);
4179            pos += sizeof(int32_t);
4180            store32(&pData[pos], Encoding);
4181            pos += sizeof(int32_t);
4182            store32(&pData[pos], Language);
4183            pos += sizeof(int32_t);
4184            store32(&pData[pos], Bypass ? 1 : 0);
4185            pos += sizeof(int32_t);
4186            store32(&pData[pos], crc);
4187            pos += sizeof(int32_t);
4188            store32(&pData[pos], Name.size());
4189            pos += sizeof(int32_t);
4190            for (int i = 0; i < Name.size(); ++i, ++pos)
4191                pData[pos] = Name[i];
4192            for (int i = 0; i < data.size(); ++i, ++pos)
4193                pData[pos] = data[i];
4194        }
4195    
4196        /**
4197         * Move this script from its current ScriptGroup to another ScriptGroup
4198         * given by @a pGroup.
4199         *
4200         * @param pGroup - script's new group
4201         */
4202        void Script::SetGroup(ScriptGroup* pGroup) {
4203            if (this->pGroup = pGroup) return;
4204            if (pChunk)
4205                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4206            this->pGroup = pGroup;
4207        }
4208    
4209        /**
4210         * Returns the script group this script currently belongs to. Each script
4211         * is a member of exactly one ScriptGroup.
4212         *
4213         * @returns current script group
4214         */
4215        ScriptGroup* Script::GetGroup() const {
4216            return pGroup;
4217        }
4218    
4219        void Script::RemoveAllScriptReferences() {
4220            File* pFile = pGroup->pFile;
4221            for (int i = 0; pFile->GetInstrument(i); ++i) {
4222                Instrument* instr = pFile->GetInstrument(i);
4223                instr->RemoveScript(this);
4224            }
4225        }
4226    
4227    // *************** ScriptGroup ***************
4228    // *
4229    
4230        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4231            pFile = file;
4232            pList = lstRTIS;
4233            pScripts = NULL;
4234            if (lstRTIS) {
4235                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4236                ::LoadString(ckName, Name);
4237            } else {
4238                Name = "Default Group";
4239            }
4240        }
4241    
4242        ScriptGroup::~ScriptGroup() {
4243            if (pScripts) {
4244                std::list<Script*>::iterator iter = pScripts->begin();
4245                std::list<Script*>::iterator end  = pScripts->end();
4246                while (iter != end) {
4247                    delete *iter;
4248                    ++iter;
4249                }
4250                delete pScripts;
4251            }
4252        }
4253    
4254        void ScriptGroup::UpdateChunks() {
4255            if (pScripts) {
4256                if (!pList)
4257                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4258    
4259                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4260                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4261    
4262                for (std::list<Script*>::iterator it = pScripts->begin();
4263                     it != pScripts->end(); ++it)
4264                {
4265                    (*it)->UpdateChunks();
4266                }
4267            }
4268        }
4269    
4270        /** @brief Get instrument script.
4271         *
4272         * Returns the real-time instrument script with the given index.
4273         *
4274         * @param index - number of the sought script (0..n)
4275         * @returns sought script or NULL if there's no such script
4276         */
4277        Script* ScriptGroup::GetScript(uint index) {
4278            if (!pScripts) LoadScripts();
4279            std::list<Script*>::iterator it = pScripts->begin();
4280            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4281                if (i == index) return *it;
4282            return NULL;
4283        }
4284    
4285        /** @brief Add new instrument script.
4286         *
4287         * Adds a new real-time instrument script to the file. The script is not
4288         * actually used / executed unless it is referenced by an instrument to be
4289         * used. This is similar to samples, which you can add to a file, without
4290         * an instrument necessarily actually using it.
4291         *
4292         * You have to call Save() to make this persistent to the file.
4293         *
4294         * @return new empty script object
4295         */
4296        Script* ScriptGroup::AddScript() {
4297            if (!pScripts) LoadScripts();
4298            Script* pScript = new Script(this, NULL);
4299            pScripts->push_back(pScript);
4300            return pScript;
4301        }
4302    
4303        /** @brief Delete an instrument script.
4304         *
4305         * This will delete the given real-time instrument script. References of
4306         * instruments that are using that script will be removed accordingly.
4307         *
4308         * You have to call Save() to make this persistent to the file.
4309         *
4310         * @param pScript - script to delete
4311         * @throws gig::Exception if given script could not be found
4312         */
4313        void ScriptGroup::DeleteScript(Script* pScript) {
4314            if (!pScripts) LoadScripts();
4315            std::list<Script*>::iterator iter =
4316                find(pScripts->begin(), pScripts->end(), pScript);
4317            if (iter == pScripts->end())
4318                throw gig::Exception("Could not delete script, could not find given script");
4319            pScripts->erase(iter);
4320            pScript->RemoveAllScriptReferences();
4321            if (pScript->pChunk)
4322                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4323            delete pScript;
4324        }
4325    
4326        void ScriptGroup::LoadScripts() {
4327            if (pScripts) return;
4328            pScripts = new std::list<Script*>;
4329            if (!pList) return;
4330    
4331            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4332                 ck = pList->GetNextSubChunk())
4333            {
4334                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4335                    pScripts->push_back(new Script(this, ck));
4336                }
4337            }
4338        }
4339    
4340  // *************** Instrument ***************  // *************** Instrument ***************
4341  // *  // *
4342    
4343      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4344            static const DLS::Info::string_length_t fixedStringLengths[] = {
4345                { CHUNK_ID_INAM, 64 },
4346                { CHUNK_ID_ISFT, 12 },
4347                { 0, 0 }
4348            };
4349            pInfo->SetFixedStringLengths(fixedStringLengths);
4350    
4351          // Initialization          // Initialization
4352          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4353          RegionIndex = -1;          EffectSend = 0;
4354            Attenuation = 0;
4355            FineTune = 0;
4356            PitchbendRange = 0;
4357            PianoReleaseMode = false;
4358            DimensionKeyRange.low = 0;
4359            DimensionKeyRange.high = 0;
4360            pMidiRules = new MidiRule*[3];
4361            pMidiRules[0] = NULL;
4362            pScriptRefs = NULL;
4363    
4364          // Loading          // Loading
4365          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1120  namespace gig { Line 4374  namespace gig {
4374                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4375                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4376                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4377    
4378                    if (_3ewg->GetSize() > 32) {
4379                        // read MIDI rules
4380                        int i = 0;
4381                        _3ewg->SetPos(32);
4382                        uint8_t id1 = _3ewg->ReadUint8();
4383                        uint8_t id2 = _3ewg->ReadUint8();
4384    
4385                        if (id2 == 16) {
4386                            if (id1 == 4) {
4387                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4388                            } else if (id1 == 0) {
4389                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4390                            } else if (id1 == 3) {
4391                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4392                            } else {
4393                                pMidiRules[i++] = new MidiRuleUnknown;
4394                            }
4395                        }
4396                        else if (id1 != 0 || id2 != 0) {
4397                            pMidiRules[i++] = new MidiRuleUnknown;
4398                        }
4399                        //TODO: all the other types of rules
4400    
4401                        pMidiRules[i] = NULL;
4402                    }
4403              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4404          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4405    
4406          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4407          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4408          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4409          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4410          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
4411          while (rgn) {                  while (rgn) {
4412              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4413                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4414                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
4415              }                      }
4416              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
4417          }                  }
4418                    // Creating Region Key Table for fast lookup
4419          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
4420          for (uint iReg = 0; iReg < Regions; iReg++) {              }
4421              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          }
4422                  RegionKeyTable[iKey] = pRegions[iReg];  
4423            // own gig format extensions
4424            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4425            if (lst3LS) {
4426                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4427                if (ckSCSL) {
4428                    int headerSize = ckSCSL->ReadUint32();
4429                    int slotCount  = ckSCSL->ReadUint32();
4430                    if (slotCount) {
4431                        int slotSize  = ckSCSL->ReadUint32();
4432                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4433                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4434                        for (int i = 0; i < slotCount; ++i) {
4435                            _ScriptPooolEntry e;
4436                            e.fileOffset = ckSCSL->ReadUint32();
4437                            e.bypass     = ckSCSL->ReadUint32() & 1;
4438                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4439                            scriptPoolFileOffsets.push_back(e);
4440                        }
4441                    }
4442                }
4443            }
4444    
4445            __notify_progress(pProgress, 1.0f); // notify done
4446        }
4447    
4448        void Instrument::UpdateRegionKeyTable() {
4449            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4450            RegionList::iterator iter = pRegions->begin();
4451            RegionList::iterator end  = pRegions->end();
4452            for (; iter != end; ++iter) {
4453                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4454                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4455                    RegionKeyTable[iKey] = pRegion;
4456              }              }
4457          }          }
4458      }      }
4459    
4460      Instrument::~Instrument() {      Instrument::~Instrument() {
4461          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4462              if (pRegions) {              delete pMidiRules[i];
4463                  if (pRegions[i]) delete (pRegions[i]);          }
4464            delete[] pMidiRules;
4465            if (pScriptRefs) delete pScriptRefs;
4466        }
4467    
4468        /**
4469         * Apply Instrument with all its Regions to the respective RIFF chunks.
4470         * You have to call File::Save() to make changes persistent.
4471         *
4472         * Usually there is absolutely no need to call this method explicitly.
4473         * It will be called automatically when File::Save() was called.
4474         *
4475         * @throws gig::Exception if samples cannot be dereferenced
4476         */
4477        void Instrument::UpdateChunks() {
4478            // first update base classes' chunks
4479            DLS::Instrument::UpdateChunks();
4480    
4481            // update Regions' chunks
4482            {
4483                RegionList::iterator iter = pRegions->begin();
4484                RegionList::iterator end  = pRegions->end();
4485                for (; iter != end; ++iter)
4486                    (*iter)->UpdateChunks();
4487            }
4488    
4489            // make sure 'lart' RIFF list chunk exists
4490            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4491            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4492            // make sure '3ewg' RIFF chunk exists
4493            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4494            if (!_3ewg)  {
4495                File* pFile = (File*) GetParent();
4496    
4497                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4498                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4499                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4500                memset(_3ewg->LoadChunkData(), 0, size);
4501            }
4502            // update '3ewg' RIFF chunk
4503            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4504            store16(&pData[0], EffectSend);
4505            store32(&pData[2], Attenuation);
4506            store16(&pData[6], FineTune);
4507            store16(&pData[8], PitchbendRange);
4508            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4509                                        DimensionKeyRange.low << 1;
4510            pData[10] = dimkeystart;
4511            pData[11] = DimensionKeyRange.high;
4512    
4513            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4514                pData[32] = 0;
4515                pData[33] = 0;
4516            } else {
4517                for (int i = 0 ; pMidiRules[i] ; i++) {
4518                    pMidiRules[i]->UpdateChunks(pData);
4519              }              }
             delete[] pRegions;  
4520          }          }
4521    
4522            // own gig format extensions
4523           if (ScriptSlotCount()) {
4524               // make sure we have converted the original loaded script file
4525               // offsets into valid Script object pointers
4526               LoadScripts();
4527    
4528               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4529               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4530               const int slotCount = pScriptRefs->size();
4531               const int headerSize = 3 * sizeof(uint32_t);
4532               const int slotSize  = 2 * sizeof(uint32_t);
4533               const int totalChunkSize = headerSize + slotCount * slotSize;
4534               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4535               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4536               else ckSCSL->Resize(totalChunkSize);
4537               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4538               int pos = 0;
4539               store32(&pData[pos], headerSize);
4540               pos += sizeof(uint32_t);
4541               store32(&pData[pos], slotCount);
4542               pos += sizeof(uint32_t);
4543               store32(&pData[pos], slotSize);
4544               pos += sizeof(uint32_t);
4545               for (int i = 0; i < slotCount; ++i) {
4546                   // arbitrary value, the actual file offset will be updated in
4547                   // UpdateScriptFileOffsets() after the file has been resized
4548                   int bogusFileOffset = 0;
4549                   store32(&pData[pos], bogusFileOffset);
4550                   pos += sizeof(uint32_t);
4551                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4552                   pos += sizeof(uint32_t);
4553               }
4554           } else {
4555               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4556               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4557               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4558           }
4559        }
4560    
4561        void Instrument::UpdateScriptFileOffsets() {
4562           // own gig format extensions
4563           if (pScriptRefs && pScriptRefs->size() > 0) {
4564               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4565               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4566               const int slotCount = pScriptRefs->size();
4567               const int headerSize = 3 * sizeof(uint32_t);
4568               ckSCSL->SetPos(headerSize);
4569               for (int i = 0; i < slotCount; ++i) {
4570                   uint32_t fileOffset =
4571                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4572                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4573                        CHUNK_HEADER_SIZE;
4574                   ckSCSL->WriteUint32(&fileOffset);
4575                   // jump over flags entry (containing the bypass flag)
4576                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4577               }
4578           }        
4579      }      }
4580    
4581      /**      /**
# Line 1163  namespace gig { Line 4586  namespace gig {
4586       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4587       */       */
4588      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4589          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4590          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4591    
4592          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4593              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4594                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1180  namespace gig { Line 4604  namespace gig {
4604       * @see      GetNextRegion()       * @see      GetNextRegion()
4605       */       */
4606      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4607          if (!Regions) return NULL;          if (!pRegions) return NULL;
4608          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4609          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4610      }      }
4611    
4612      /**      /**
# Line 1194  namespace gig { Line 4618  namespace gig {
4618       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4619       */       */
4620      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4621          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
4622          return pRegions[RegionIndex++];          RegionsIterator++;
4623            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4624        }
4625    
4626        Region* Instrument::AddRegion() {
4627            // create new Region object (and its RIFF chunks)
4628            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4629            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4630            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4631            Region* pNewRegion = new Region(this, rgn);
4632            pRegions->push_back(pNewRegion);
4633            Regions = pRegions->size();
4634            // update Region key table for fast lookup
4635            UpdateRegionKeyTable();
4636            // done
4637            return pNewRegion;
4638        }
4639    
4640        void Instrument::DeleteRegion(Region* pRegion) {
4641            if (!pRegions) return;
4642            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4643            // update Region key table for fast lookup
4644            UpdateRegionKeyTable();
4645        }
4646    
4647        /**
4648         * Returns a MIDI rule of the instrument.
4649         *
4650         * The list of MIDI rules, at least in gig v3, always contains at
4651         * most two rules. The second rule can only be the DEF filter
4652         * (which currently isn't supported by libgig).
4653         *
4654         * @param i - MIDI rule number
4655         * @returns   pointer address to MIDI rule number i or NULL if there is none
4656         */
4657        MidiRule* Instrument::GetMidiRule(int i) {
4658            return pMidiRules[i];
4659        }
4660    
4661        /**
4662         * Adds the "controller trigger" MIDI rule to the instrument.
4663         *
4664         * @returns the new MIDI rule
4665         */
4666        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4667            delete pMidiRules[0];
4668            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4669            pMidiRules[0] = r;
4670            pMidiRules[1] = 0;
4671            return r;
4672        }
4673    
4674        /**
4675         * Adds the legato MIDI rule to the instrument.
4676         *
4677         * @returns the new MIDI rule
4678         */
4679        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4680            delete pMidiRules[0];
4681            MidiRuleLegato* r = new MidiRuleLegato;
4682            pMidiRules[0] = r;
4683            pMidiRules[1] = 0;
4684            return r;
4685        }
4686    
4687        /**
4688         * Adds the alternator MIDI rule to the instrument.
4689         *
4690         * @returns the new MIDI rule
4691         */
4692        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4693            delete pMidiRules[0];
4694            MidiRuleAlternator* r = new MidiRuleAlternator;
4695            pMidiRules[0] = r;
4696            pMidiRules[1] = 0;
4697            return r;
4698        }
4699    
4700        /**
4701         * Deletes a MIDI rule from the instrument.
4702         *
4703         * @param i - MIDI rule number
4704         */
4705        void Instrument::DeleteMidiRule(int i) {
4706            delete pMidiRules[i];
4707            pMidiRules[i] = 0;
4708        }
4709    
4710        void Instrument::LoadScripts() {
4711            if (pScriptRefs) return;
4712            pScriptRefs = new std::vector<_ScriptPooolRef>;
4713            if (scriptPoolFileOffsets.empty()) return;
4714            File* pFile = (File*) GetParent();
4715            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4716                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4717                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4718                    ScriptGroup* group = pFile->GetScriptGroup(i);
4719                    for (uint s = 0; group->GetScript(s); ++s) {
4720                        Script* script = group->GetScript(s);
4721                        if (script->pChunk) {
4722                            uint32_t offset = script->pChunk->GetFilePos() -
4723                                              script->pChunk->GetPos() -
4724                                              CHUNK_HEADER_SIZE;
4725                            if (offset == soughtOffset)
4726                            {
4727                                _ScriptPooolRef ref;
4728                                ref.script = script;
4729                                ref.bypass = scriptPoolFileOffsets[k].bypass;
4730                                pScriptRefs->push_back(ref);
4731                                break;
4732                            }
4733                        }
4734                    }
4735                }
4736            }
4737            // we don't need that anymore
4738            scriptPoolFileOffsets.clear();
4739        }
4740    
4741        /** @brief Get instrument script (gig format extension).
4742         *
4743         * Returns the real-time instrument script of instrument script slot
4744         * @a index.
4745         *
4746         * @note This is an own format extension which did not exist i.e. in the
4747         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4748         * gigedit.
4749         *
4750         * @param index - instrument script slot index
4751         * @returns script or NULL if index is out of bounds
4752         */
4753        Script* Instrument::GetScriptOfSlot(uint index) {
4754            LoadScripts();
4755            if (index >= pScriptRefs->size()) return NULL;
4756            return pScriptRefs->at(index).script;
4757        }
4758    
4759        /** @brief Add new instrument script slot (gig format extension).
4760         *
4761         * Add the given real-time instrument script reference to this instrument,
4762         * which shall be executed by the sampler for for this instrument. The
4763         * script will be added to the end of the script list of this instrument.
4764         * The positions of the scripts in the Instrument's Script list are
4765         * relevant, because they define in which order they shall be executed by
4766         * the sampler. For this reason it is also legal to add the same script
4767         * twice to an instrument, for example you might have a script called
4768         * "MyFilter" which performs an event filter task, and you might have
4769         * another script called "MyNoteTrigger" which triggers new notes, then you
4770         * might for example have the following list of scripts on the instrument:
4771         *
4772         * 1. Script "MyFilter"
4773         * 2. Script "MyNoteTrigger"
4774         * 3. Script "MyFilter"
4775         *
4776         * Which would make sense, because the 2nd script launched new events, which
4777         * you might need to filter as well.
4778         *
4779         * There are two ways to disable / "bypass" scripts. You can either disable
4780         * a script locally for the respective script slot on an instrument (i.e. by
4781         * passing @c false to the 2nd argument of this method, or by calling
4782         * SetScriptBypassed()). Or you can disable a script globally for all slots
4783         * and all instruments by setting Script::Bypass.
4784         *
4785         * @note This is an own format extension which did not exist i.e. in the
4786         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4787         * gigedit.
4788         *
4789         * @param pScript - script that shall be executed for this instrument
4790         * @param bypass  - if enabled, the sampler shall skip executing this
4791         *                  script (in the respective list position)
4792         * @see SetScriptBypassed()
4793         */
4794        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4795            LoadScripts();
4796            _ScriptPooolRef ref = { pScript, bypass };
4797            pScriptRefs->push_back(ref);
4798        }
4799    
4800        /** @brief Flip two script slots with each other (gig format extension).
4801         *
4802         * Swaps the position of the two given scripts in the Instrument's Script
4803         * list. The positions of the scripts in the Instrument's Script list are
4804         * relevant, because they define in which order they shall be executed by
4805         * the sampler.
4806         *
4807         * @note This is an own format extension which did not exist i.e. in the
4808         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4809         * gigedit.
4810         *
4811         * @param index1 - index of the first script slot to swap
4812         * @param index2 - index of the second script slot to swap
4813         */
4814        void Instrument::SwapScriptSlots(uint index1, uint index2) {
4815            LoadScripts();
4816            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4817                return;
4818            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4819            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4820            (*pScriptRefs)[index2] = tmp;
4821        }
4822    
4823        /** @brief Remove script slot.
4824         *
4825         * Removes the script slot with the given slot index.
4826         *
4827         * @param index - index of script slot to remove
4828         */
4829        void Instrument::RemoveScriptSlot(uint index) {
4830            LoadScripts();
4831            if (index >= pScriptRefs->size()) return;
4832            pScriptRefs->erase( pScriptRefs->begin() + index );
4833        }
4834    
4835        /** @brief Remove reference to given Script (gig format extension).
4836         *
4837         * This will remove all script slots on the instrument which are referencing
4838         * the given script.
4839         *
4840         * @note This is an own format extension which did not exist i.e. in the
4841         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4842         * gigedit.
4843         *
4844         * @param pScript - script reference to remove from this instrument
4845         * @see RemoveScriptSlot()
4846         */
4847        void Instrument::RemoveScript(Script* pScript) {
4848            LoadScripts();
4849            for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4850                if ((*pScriptRefs)[i].script == pScript) {
4851                    pScriptRefs->erase( pScriptRefs->begin() + i );
4852                }
4853            }
4854        }
4855    
4856        /** @brief Instrument's amount of script slots.
4857         *
4858         * This method returns the amount of script slots this instrument currently
4859         * uses.
4860         *
4861         * A script slot is a reference of a real-time instrument script to be
4862         * executed by the sampler. The scripts will be executed by the sampler in
4863         * sequence of the slots. One (same) script may be referenced multiple
4864         * times in different slots.
4865         *
4866         * @note This is an own format extension which did not exist i.e. in the
4867         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4868         * gigedit.
4869         */
4870        uint Instrument::ScriptSlotCount() const {
4871            return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4872        }
4873    
4874        /** @brief Whether script execution shall be skipped.
4875         *
4876         * Defines locally for the Script reference slot in the Instrument's Script
4877         * list, whether the script shall be skipped by the sampler regarding
4878         * execution.
4879         *
4880         * It is also possible to ignore exeuction of the script globally, for all
4881         * slots and for all instruments by setting Script::Bypass.
4882         *
4883         * @note This is an own format extension which did not exist i.e. in the
4884         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4885         * gigedit.
4886         *
4887         * @param index - index of the script slot on this instrument
4888         * @see Script::Bypass
4889         */
4890        bool Instrument::IsScriptSlotBypassed(uint index) {
4891            if (index >= ScriptSlotCount()) return false;
4892            return pScriptRefs ? pScriptRefs->at(index).bypass
4893                               : scriptPoolFileOffsets.at(index).bypass;
4894            
4895        }
4896    
4897        /** @brief Defines whether execution shall be skipped.
4898         *
4899         * You can call this method to define locally whether or whether not the
4900         * given script slot shall be executed by the sampler.
4901         *
4902         * @note This is an own format extension which did not exist i.e. in the
4903         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4904         * gigedit.
4905         *
4906         * @param index - script slot index on this instrument
4907         * @param bBypass - if true, the script slot will be skipped by the sampler
4908         * @see Script::Bypass
4909         */
4910        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
4911            if (index >= ScriptSlotCount()) return;
4912            if (pScriptRefs)
4913                pScriptRefs->at(index).bypass = bBypass;
4914            else
4915                scriptPoolFileOffsets.at(index).bypass = bBypass;
4916        }
4917    
4918        /**
4919         * Make a (semi) deep copy of the Instrument object given by @a orig
4920         * and assign it to this object.
4921         *
4922         * Note that all sample pointers referenced by @a orig are simply copied as
4923         * memory address. Thus the respective samples are shared, not duplicated!
4924         *
4925         * @param orig - original Instrument object to be copied from
4926         */
4927        void Instrument::CopyAssign(const Instrument* orig) {
4928            CopyAssign(orig, NULL);
4929        }
4930            
4931        /**
4932         * Make a (semi) deep copy of the Instrument object given by @a orig
4933         * and assign it to this object.
4934         *
4935         * @param orig - original Instrument object to be copied from
4936         * @param mSamples - crosslink map between the foreign file's samples and
4937         *                   this file's samples
4938         */
4939        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4940            // handle base class
4941            // (without copying DLS region stuff)
4942            DLS::Instrument::CopyAssignCore(orig);
4943            
4944            // handle own member variables
4945            Attenuation = orig->Attenuation;
4946            EffectSend = orig->EffectSend;
4947            FineTune = orig->FineTune;
4948            PitchbendRange = orig->PitchbendRange;
4949            PianoReleaseMode = orig->PianoReleaseMode;
4950            DimensionKeyRange = orig->DimensionKeyRange;
4951            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
4952            pScriptRefs = orig->pScriptRefs;
4953            
4954            // free old midi rules
4955            for (int i = 0 ; pMidiRules[i] ; i++) {
4956                delete pMidiRules[i];
4957            }
4958            //TODO: MIDI rule copying
4959            pMidiRules[0] = NULL;
4960            
4961            // delete all old regions
4962            while (Regions) DeleteRegion(GetFirstRegion());
4963            // create new regions and copy them from original
4964            {
4965                RegionList::const_iterator it = orig->pRegions->begin();
4966                for (int i = 0; i < orig->Regions; ++i, ++it) {
4967                    Region* dstRgn = AddRegion();
4968                    //NOTE: Region does semi-deep copy !
4969                    dstRgn->CopyAssign(
4970                        static_cast<gig::Region*>(*it),
4971                        mSamples
4972                    );
4973                }
4974            }
4975    
4976            UpdateRegionKeyTable();
4977        }
4978    
4979    
4980    // *************** Group ***************
4981    // *
4982    
4983        /** @brief Constructor.
4984         *
4985         * @param file   - pointer to the gig::File object
4986         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4987         *                 NULL if this is a new Group
4988         */
4989        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4990            pFile      = file;
4991            pNameChunk = ck3gnm;
4992            ::LoadString(pNameChunk, Name);
4993        }
4994    
4995        Group::~Group() {
4996            // remove the chunk associated with this group (if any)
4997            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4998        }
4999    
5000        /** @brief Update chunks with current group settings.
5001         *
5002         * Apply current Group field values to the respective chunks. You have
5003         * to call File::Save() to make changes persistent.
5004         *
5005         * Usually there is absolutely no need to call this method explicitly.
5006         * It will be called automatically when File::Save() was called.
5007         */
5008        void Group::UpdateChunks() {
5009            // make sure <3gri> and <3gnl> list chunks exist
5010            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5011            if (!_3gri) {
5012                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5013                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5014            }
5015            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5016            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5017    
5018            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5019                // v3 has a fixed list of 128 strings, find a free one
5020                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5021                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5022                        pNameChunk = ck;
5023                        break;
5024                    }
5025                }
5026            }
5027    
5028            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5029            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5030        }
5031    
5032        /**
5033         * Returns the first Sample of this Group. You have to call this method
5034         * once before you use GetNextSample().
5035         *
5036         * <b>Notice:</b> this method might block for a long time, in case the
5037         * samples of this .gig file were not scanned yet
5038         *
5039         * @returns  pointer address to first Sample or NULL if there is none
5040         *           applied to this Group
5041         * @see      GetNextSample()
5042         */
5043        Sample* Group::GetFirstSample() {
5044            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5045            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5046                if (pSample->GetGroup() == this) return pSample;
5047            }
5048            return NULL;
5049        }
5050    
5051        /**
5052         * Returns the next Sample of the Group. You have to call
5053         * GetFirstSample() once before you can use this method. By calling this
5054         * method multiple times it iterates through the Samples assigned to
5055         * this Group.
5056         *
5057         * @returns  pointer address to the next Sample of this Group or NULL if
5058         *           end reached
5059         * @see      GetFirstSample()
5060         */
5061        Sample* Group::GetNextSample() {
5062            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5063            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5064                if (pSample->GetGroup() == this) return pSample;
5065            }
5066            return NULL;
5067        }
5068    
5069        /**
5070         * Move Sample given by \a pSample from another Group to this Group.
5071         */
5072        void Group::AddSample(Sample* pSample) {
5073            pSample->pGroup = this;
5074        }
5075    
5076        /**
5077         * Move all members of this group to another group (preferably the 1st
5078         * one except this). This method is called explicitly by
5079         * File::DeleteGroup() thus when a Group was deleted. This code was
5080         * intentionally not placed in the destructor!
5081         */
5082        void Group::MoveAll() {
5083            // get "that" other group first
5084            Group* pOtherGroup = NULL;
5085            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5086                if (pOtherGroup != this) break;
5087            }
5088            if (!pOtherGroup) throw Exception(
5089                "Could not move samples to another group, since there is no "
5090                "other Group. This is a bug, report it!"
5091            );
5092            // now move all samples of this group to the other group
5093            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5094                pOtherGroup->AddSample(pSample);
5095            }
5096      }      }
5097    
5098    
# Line 1203  namespace gig { Line 5100  namespace gig {
5100  // *************** File ***************  // *************** File ***************
5101  // *  // *
5102    
5103        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5104        const DLS::version_t File::VERSION_2 = {
5105            0, 2, 19980628 & 0xffff, 19980628 >> 16
5106        };
5107    
5108        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5109        const DLS::version_t File::VERSION_3 = {
5110            0, 3, 20030331 & 0xffff, 20030331 >> 16
5111        };
5112    
5113        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5114            { CHUNK_ID_IARL, 256 },
5115            { CHUNK_ID_IART, 128 },
5116            { CHUNK_ID_ICMS, 128 },
5117            { CHUNK_ID_ICMT, 1024 },
5118            { CHUNK_ID_ICOP, 128 },
5119            { CHUNK_ID_ICRD, 128 },
5120            { CHUNK_ID_IENG, 128 },
5121            { CHUNK_ID_IGNR, 128 },
5122            { CHUNK_ID_IKEY, 128 },
5123            { CHUNK_ID_IMED, 128 },
5124            { CHUNK_ID_INAM, 128 },
5125            { CHUNK_ID_IPRD, 128 },
5126            { CHUNK_ID_ISBJ, 128 },
5127            { CHUNK_ID_ISFT, 128 },
5128            { CHUNK_ID_ISRC, 128 },
5129            { CHUNK_ID_ISRF, 128 },
5130            { CHUNK_ID_ITCH, 128 },
5131            { 0, 0 }
5132        };
5133    
5134        File::File() : DLS::File() {
5135            bAutoLoad = true;
5136            *pVersion = VERSION_3;
5137            pGroups = NULL;
5138            pScriptGroups = NULL;
5139            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5140            pInfo->ArchivalLocation = String(256, ' ');
5141    
5142            // add some mandatory chunks to get the file chunks in right
5143            // order (INFO chunk will be moved to first position later)
5144            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5145            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5146            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5147    
5148            GenerateDLSID();
5149        }
5150    
5151      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5152          pSamples     = NULL;          bAutoLoad = true;
5153          pInstruments = NULL;          pGroups = NULL;
5154            pScriptGroups = NULL;
5155            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5156      }      }
5157    
5158      Sample* File::GetFirstSample() {      File::~File() {
5159          if (!pSamples) LoadSamples();          if (pGroups) {
5160                std::list<Group*>::iterator iter = pGroups->begin();
5161                std::list<Group*>::iterator end  = pGroups->end();
5162                while (iter != end) {
5163                    delete *iter;
5164                    ++iter;
5165                }
5166                delete pGroups;
5167            }
5168            if (pScriptGroups) {
5169                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5170                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5171                while (iter != end) {
5172                    delete *iter;
5173                    ++iter;
5174                }
5175                delete pScriptGroups;
5176            }
5177        }
5178    
5179        Sample* File::GetFirstSample(progress_t* pProgress) {
5180            if (!pSamples) LoadSamples(pProgress);
5181          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5182          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5183          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1220  namespace gig { Line 5188  namespace gig {
5188          SamplesIterator++;          SamplesIterator++;
5189          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5190      }      }
5191        
5192        /**
5193         * Returns Sample object of @a index.
5194         *
5195         * @returns sample object or NULL if index is out of bounds
5196         */
5197        Sample* File::GetSample(uint index) {
5198            if (!pSamples) LoadSamples();
5199            if (!pSamples) return NULL;
5200            DLS::File::SampleList::iterator it = pSamples->begin();
5201            for (int i = 0; i < index; ++i) {
5202                ++it;
5203                if (it == pSamples->end()) return NULL;
5204            }
5205            if (it == pSamples->end()) return NULL;
5206            return static_cast<gig::Sample*>( *it );
5207        }
5208    
5209      void File::LoadSamples() {      /** @brief Add a new sample.
5210          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5211          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5212              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5213              RIFF::List* wave = wvpl->GetFirstSubList();       *
5214              while (wave) {       * @returns pointer to new Sample object
5215                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5216                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5217                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5218                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5219           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5220           // create new Sample object and its respective 'wave' list chunk
5221           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5222           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5223    
5224           // add mandatory chunks to get the chunks in right order
5225           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5226           wave->AddSubList(LIST_TYPE_INFO);
5227    
5228           pSamples->push_back(pSample);
5229           return pSample;
5230        }
5231    
5232        /** @brief Delete a sample.
5233         *
5234         * This will delete the given Sample object from the gig file. Any
5235         * references to this sample from Regions and DimensionRegions will be
5236         * removed. You have to call Save() to make this persistent to the file.
5237         *
5238         * @param pSample - sample to delete
5239         * @throws gig::Exception if given sample could not be found
5240         */
5241        void File::DeleteSample(Sample* pSample) {
5242            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5243            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5244            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5245            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5246            pSamples->erase(iter);
5247            delete pSample;
5248    
5249            SampleList::iterator tmp = SamplesIterator;
5250            // remove all references to the sample
5251            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5252                 instrument = GetNextInstrument()) {
5253                for (Region* region = instrument->GetFirstRegion() ; region ;
5254                     region = instrument->GetNextRegion()) {
5255    
5256                    if (region->GetSample() == pSample) region->SetSample(NULL);
5257    
5258                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5259                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5260                        if (d->pSample == pSample) d->pSample = NULL;
5261                  }                  }
                 wave = wvpl->GetNextSubList();  
5262              }              }
5263          }          }
5264          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5265        }
5266    
5267        void File::LoadSamples() {
5268            LoadSamples(NULL);
5269        }
5270    
5271        void File::LoadSamples(progress_t* pProgress) {
5272            // Groups must be loaded before samples, because samples will try
5273            // to resolve the group they belong to
5274            if (!pGroups) LoadGroups();
5275    
5276            if (!pSamples) pSamples = new SampleList;
5277    
5278            RIFF::File* file = pRIFF;
5279    
5280            // just for progress calculation
5281            int iSampleIndex  = 0;
5282            int iTotalSamples = WavePoolCount;
5283    
5284            // check if samples should be loaded from extension files
5285            int lastFileNo = 0;
5286            for (int i = 0 ; i < WavePoolCount ; i++) {
5287                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5288            }
5289            String name(pRIFF->GetFileName());
5290            int nameLen = name.length();
5291            char suffix[6];
5292            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5293    
5294            for (int fileNo = 0 ; ; ) {
5295                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5296                if (wvpl) {
5297                    unsigned long wvplFileOffset = wvpl->GetFilePos();
5298                    RIFF::List* wave = wvpl->GetFirstSubList();
5299                    while (wave) {
5300                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5301                            // notify current progress
5302                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5303                            __notify_progress(pProgress, subprogress);
5304    
5305                            unsigned long waveFileOffset = wave->GetFilePos();
5306                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5307    
5308                            iSampleIndex++;
5309                        }
5310                        wave = wvpl->GetNextSubList();
5311                    }
5312    
5313                    if (fileNo == lastFileNo) break;
5314    
5315                    // open extension file (*.gx01, *.gx02, ...)
5316                    fileNo++;
5317                    sprintf(suffix, ".gx%02d", fileNo);
5318                    name.replace(nameLen, 5, suffix);
5319                    file = new RIFF::File(name);
5320                    ExtensionFiles.push_back(file);
5321                } else break;
5322            }
5323    
5324            __notify_progress(pProgress, 1.0); // notify done
5325      }      }
5326    
5327      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5328          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5329          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5330          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5331          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5332      }      }
5333    
5334      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5335          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5336          InstrumentsIterator++;          InstrumentsIterator++;
5337          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5338      }      }
5339    
5340      /**      /**
5341       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5342       *       *
5343         * @param index     - number of the sought instrument (0..n)
5344         * @param pProgress - optional: callback function for progress notification
5345       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5346       */       */
5347      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5348          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5349                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5350    
5351                // sample loading subtask
5352                progress_t subprogress;
5353                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5354                __notify_progress(&subprogress, 0.0f);
5355                if (GetAutoLoad())
5356                    GetFirstSample(&subprogress); // now force all samples to be loaded
5357                __notify_progress(&subprogress, 1.0f);
5358    
5359                // instrument loading subtask
5360                if (pProgress && pProgress->callback) {
5361                    subprogress.__range_min = subprogress.__range_max;
5362                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5363                }
5364                __notify_progress(&subprogress, 0.0f);
5365                LoadInstruments(&subprogress);
5366                __notify_progress(&subprogress, 1.0f);
5367            }
5368          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5369          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5370          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5371              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5372              InstrumentsIterator++;              InstrumentsIterator++;
5373          }          }
5374          return NULL;          return NULL;
5375      }      }
5376    
5377        /** @brief Add a new instrument definition.
5378         *
5379         * This will create a new Instrument object for the gig file. You have
5380         * to call Save() to make this persistent to the file.
5381         *
5382         * @returns pointer to new Instrument object
5383         */
5384        Instrument* File::AddInstrument() {
5385           if (!pInstruments) LoadInstruments();
5386           __ensureMandatoryChunksExist();
5387           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5388           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5389    
5390           // add mandatory chunks to get the chunks in right order
5391           lstInstr->AddSubList(LIST_TYPE_INFO);
5392           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5393    
5394           Instrument* pInstrument = new Instrument(this, lstInstr);
5395           pInstrument->GenerateDLSID();
5396    
5397           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5398    
5399           // this string is needed for the gig to be loadable in GSt:
5400           pInstrument->pInfo->Software = "Endless Wave";
5401    
5402           pInstruments->push_back(pInstrument);
5403           return pInstrument;
5404        }
5405        
5406        /** @brief Add a duplicate of an existing instrument.
5407         *
5408         * Duplicates the instrument definition given by @a orig and adds it
5409         * to this file. This allows in an instrument editor application to
5410         * easily create variations of an instrument, which will be stored in
5411         * the same .gig file, sharing i.e. the same samples.
5412         *
5413         * Note that all sample pointers referenced by @a orig are simply copied as
5414         * memory address. Thus the respective samples are shared, not duplicated!
5415         *
5416         * You have to call Save() to make this persistent to the file.
5417         *
5418         * @param orig - original instrument to be copied
5419         * @returns duplicated copy of the given instrument
5420         */
5421        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5422            Instrument* instr = AddInstrument();
5423            instr->CopyAssign(orig);
5424            return instr;
5425        }
5426        
5427        /** @brief Add content of another existing file.
5428         *
5429         * Duplicates the samples, groups and instruments of the original file
5430         * given by @a pFile and adds them to @c this File. In case @c this File is
5431         * a new one that you haven't saved before, then you have to call
5432         * SetFileName() before calling AddContentOf(), because this method will
5433         * automatically save this file during operation, which is required for
5434         * writing the sample waveform data by disk streaming.
5435         *
5436         * @param pFile - original file whose's content shall be copied from
5437         */
5438        void File::AddContentOf(File* pFile) {
5439            static int iCallCount = -1;
5440            iCallCount++;
5441            std::map<Group*,Group*> mGroups;
5442            std::map<Sample*,Sample*> mSamples;
5443            
5444            // clone sample groups
5445            for (int i = 0; pFile->GetGroup(i); ++i) {
5446                Group* g = AddGroup();
5447                g->Name =
5448                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5449                mGroups[pFile->GetGroup(i)] = g;
5450            }
5451            
5452            // clone samples (not waveform data here yet)
5453            for (int i = 0; pFile->GetSample(i); ++i) {
5454                Sample* s = AddSample();
5455                s->CopyAssignMeta(pFile->GetSample(i));
5456                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5457                mSamples[pFile->GetSample(i)] = s;
5458            }
5459            
5460            //BUG: For some reason this method only works with this additional
5461            //     Save() call in between here.
5462            //
5463            // Important: The correct one of the 2 Save() methods has to be called
5464            // here, depending on whether the file is completely new or has been
5465            // saved to disk already, otherwise it will result in data corruption.
5466            if (pRIFF->IsNew())
5467                Save(GetFileName());
5468            else
5469                Save();
5470            
5471            // clone instruments
5472            // (passing the crosslink table here for the cloned samples)
5473            for (int i = 0; pFile->GetInstrument(i); ++i) {
5474                Instrument* instr = AddInstrument();
5475                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5476            }
5477            
5478            // Mandatory: file needs to be saved to disk at this point, so this
5479            // file has the correct size and data layout for writing the samples'
5480            // waveform data to disk.
5481            Save();
5482            
5483            // clone samples' waveform data
5484            // (using direct read & write disk streaming)
5485            for (int i = 0; pFile->GetSample(i); ++i) {
5486                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5487            }
5488        }
5489    
5490        /** @brief Delete an instrument.
5491         *
5492         * This will delete the given Instrument object from the gig file. You
5493         * have to call Save() to make this persistent to the file.
5494         *
5495         * @param pInstrument - instrument to delete
5496         * @throws gig::Exception if given instrument could not be found
5497         */
5498        void File::DeleteInstrument(Instrument* pInstrument) {
5499            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5500            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5501            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5502            pInstruments->erase(iter);
5503            delete pInstrument;
5504        }
5505    
5506      void File::LoadInstruments() {      void File::LoadInstruments() {
5507            LoadInstruments(NULL);
5508        }
5509    
5510        void File::LoadInstruments(progress_t* pProgress) {
5511            if (!pInstruments) pInstruments = new InstrumentList;
5512          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5513          if (lstInstruments) {          if (lstInstruments) {
5514                int iInstrumentIndex = 0;
5515              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5516              while (lstInstr) {              while (lstInstr) {
5517                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5518                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5519                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5520                        __notify_progress(pProgress, localProgress);
5521    
5522                        // divide local progress into subprogress for loading current Instrument
5523                        progress_t subprogress;
5524                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5525    
5526                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5527    
5528                        iInstrumentIndex++;
5529                  }                  }
5530                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5531              }              }
5532                __notify_progress(pProgress, 1.0); // notify done
5533            }
5534        }
5535    
5536        /// Updates the 3crc chunk with the checksum of a sample. The
5537        /// update is done directly to disk, as this method is called
5538        /// after File::Save()
5539        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5540            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5541            if (!_3crc) return;
5542    
5543            // get the index of the sample
5544            int iWaveIndex = -1;
5545            File::SampleList::iterator iter = pSamples->begin();
5546            File::SampleList::iterator end  = pSamples->end();
5547            for (int index = 0; iter != end; ++iter, ++index) {
5548                if (*iter == pSample) {
5549                    iWaveIndex = index;
5550                    break;
5551                }
5552            }
5553            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5554    
5555            // write the CRC-32 checksum to disk
5556            _3crc->SetPos(iWaveIndex * 8);
5557            uint32_t tmp = 1;
5558            _3crc->WriteUint32(&tmp); // unknown, always 1?
5559            _3crc->WriteUint32(&crc);
5560        }
5561    
5562        Group* File::GetFirstGroup() {
5563            if (!pGroups) LoadGroups();
5564            // there must always be at least one group
5565            GroupsIterator = pGroups->begin();
5566            return *GroupsIterator;
5567        }
5568    
5569        Group* File::GetNextGroup() {
5570            if (!pGroups) return NULL;
5571            ++GroupsIterator;
5572            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5573        }
5574    
5575        /**
5576         * Returns the group with the given index.
5577         *
5578         * @param index - number of the sought group (0..n)
5579         * @returns sought group or NULL if there's no such group
5580         */
5581        Group* File::GetGroup(uint index) {
5582            if (!pGroups) LoadGroups();
5583            GroupsIterator = pGroups->begin();
5584            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5585                if (i == index) return *GroupsIterator;
5586                ++GroupsIterator;
5587            }
5588            return NULL;
5589        }
5590    
5591        /**
5592         * Returns the group with the given group name.
5593         *
5594         * Note: group names don't have to be unique in the gig format! So there
5595         * can be multiple groups with the same name. This method will simply
5596         * return the first group found with the given name.
5597         *
5598         * @param name - name of the sought group
5599         * @returns sought group or NULL if there's no group with that name
5600         */
5601        Group* File::GetGroup(String name) {
5602            if (!pGroups) LoadGroups();
5603            GroupsIterator = pGroups->begin();
5604            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5605                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5606            return NULL;
5607        }
5608    
5609        Group* File::AddGroup() {
5610            if (!pGroups) LoadGroups();
5611            // there must always be at least one group
5612            __ensureMandatoryChunksExist();
5613            Group* pGroup = new Group(this, NULL);
5614            pGroups->push_back(pGroup);
5615            return pGroup;
5616        }
5617    
5618        /** @brief Delete a group and its samples.
5619         *
5620         * This will delete the given Group object and all the samples that
5621         * belong to this group from the gig file. You have to call Save() to
5622         * make this persistent to the file.
5623         *
5624         * @param pGroup - group to delete
5625         * @throws gig::Exception if given group could not be found
5626         */
5627        void File::DeleteGroup(Group* pGroup) {
5628            if (!pGroups) LoadGroups();
5629            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5630            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5631            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5632            // delete all members of this group
5633            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5634                DeleteSample(pSample);
5635            }
5636            // now delete this group object
5637            pGroups->erase(iter);
5638            delete pGroup;
5639        }
5640    
5641        /** @brief Delete a group.
5642         *
5643         * This will delete the given Group object from the gig file. All the
5644         * samples that belong to this group will not be deleted, but instead
5645         * be moved to another group. You have to call Save() to make this
5646         * persistent to the file.
5647         *
5648         * @param pGroup - group to delete
5649         * @throws gig::Exception if given group could not be found
5650         */
5651        void File::DeleteGroupOnly(Group* pGroup) {
5652            if (!pGroups) LoadGroups();
5653            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5654            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5655            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5656            // move all members of this group to another group
5657            pGroup->MoveAll();
5658            pGroups->erase(iter);
5659            delete pGroup;
5660        }
5661    
5662        void File::LoadGroups() {
5663            if (!pGroups) pGroups = new std::list<Group*>;
5664            // try to read defined groups from file
5665            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5666            if (lst3gri) {
5667                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5668                if (lst3gnl) {
5669                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5670                    while (ck) {
5671                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5672                            if (pVersion && pVersion->major == 3 &&
5673                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5674    
5675                            pGroups->push_back(new Group(this, ck));
5676                        }
5677                        ck = lst3gnl->GetNextSubChunk();
5678                    }
5679                }
5680            }
5681            // if there were no group(s), create at least the mandatory default group
5682            if (!pGroups->size()) {
5683                Group* pGroup = new Group(this, NULL);
5684                pGroup->Name = "Default Group";
5685                pGroups->push_back(pGroup);
5686          }          }
5687          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5688    
5689        /** @brief Get instrument script group (by index).
5690         *
5691         * Returns the real-time instrument script group with the given index.
5692         *
5693         * @param index - number of the sought group (0..n)
5694         * @returns sought script group or NULL if there's no such group
5695         */
5696        ScriptGroup* File::GetScriptGroup(uint index) {
5697            if (!pScriptGroups) LoadScriptGroups();
5698            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5699            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5700                if (i == index) return *it;
5701            return NULL;
5702        }
5703    
5704        /** @brief Get instrument script group (by name).
5705         *
5706         * Returns the first real-time instrument script group found with the given
5707         * group name. Note that group names may not necessarily be unique.
5708         *
5709         * @param name - name of the sought script group
5710         * @returns sought script group or NULL if there's no such group
5711         */
5712        ScriptGroup* File::GetScriptGroup(const String& name) {
5713            if (!pScriptGroups) LoadScriptGroups();
5714            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5715            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5716                if ((*it)->Name == name) return *it;
5717            return NULL;
5718        }
5719    
5720        /** @brief Add new instrument script group.
5721         *
5722         * Adds a new, empty real-time instrument script group to the file.
5723         *
5724         * You have to call Save() to make this persistent to the file.
5725         *
5726         * @return new empty script group
5727         */
5728        ScriptGroup* File::AddScriptGroup() {
5729            if (!pScriptGroups) LoadScriptGroups();
5730            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5731            pScriptGroups->push_back(pScriptGroup);
5732            return pScriptGroup;
5733        }
5734    
5735        /** @brief Delete an instrument script group.
5736         *
5737         * This will delete the given real-time instrument script group and all its
5738         * instrument scripts it contains. References inside instruments that are
5739         * using the deleted scripts will be removed from the respective instruments
5740         * accordingly.
5741         *
5742         * You have to call Save() to make this persistent to the file.
5743         *
5744         * @param pScriptGroup - script group to delete
5745         * @throws gig::Exception if given script group could not be found
5746         */
5747        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5748            if (!pScriptGroups) LoadScriptGroups();
5749            std::list<ScriptGroup*>::iterator iter =
5750                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5751            if (iter == pScriptGroups->end())
5752                throw gig::Exception("Could not delete script group, could not find given script group");
5753            pScriptGroups->erase(iter);
5754            for (int i = 0; pScriptGroup->GetScript(i); ++i)
5755                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5756            if (pScriptGroup->pList)
5757                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5758            delete pScriptGroup;
5759        }
5760    
5761        void File::LoadScriptGroups() {
5762            if (pScriptGroups) return;
5763            pScriptGroups = new std::list<ScriptGroup*>;
5764            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
5765            if (lstLS) {
5766                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
5767                     lst = lstLS->GetNextSubList())
5768                {
5769                    if (lst->GetListType() == LIST_TYPE_RTIS) {
5770                        pScriptGroups->push_back(new ScriptGroup(this, lst));
5771                    }
5772                }
5773            }
5774        }
5775    
5776        /**
5777         * Apply all the gig file's current instruments, samples, groups and settings
5778         * to the respective RIFF chunks. You have to call Save() to make changes
5779         * persistent.
5780         *
5781         * Usually there is absolutely no need to call this method explicitly.
5782         * It will be called automatically when File::Save() was called.
5783         *
5784         * @throws Exception - on errors
5785         */
5786        void File::UpdateChunks() {
5787            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5788    
5789            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
5790    
5791            // update own gig format extension chunks
5792            // (not part of the GigaStudio 4 format)
5793            //
5794            // This must be performed before writing the chunks for instruments,
5795            // because the instruments' script slots will write the file offsets
5796            // of the respective instrument script chunk as reference.
5797            if (pScriptGroups) {
5798                RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
5799                if (pScriptGroups->empty()) {
5800                    if (lst3LS) pRIFF->DeleteSubChunk(lst3LS);
5801                } else {
5802                    if (!lst3LS) lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
5803    
5804                    // Update instrument script (group) chunks.
5805    
5806                    for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5807                         it != pScriptGroups->end(); ++it)
5808                    {
5809                        (*it)->UpdateChunks();
5810                    }
5811                }
5812            }
5813    
5814            // first update base class's chunks
5815            DLS::File::UpdateChunks();
5816    
5817            if (newFile) {
5818                // INFO was added by Resource::UpdateChunks - make sure it
5819                // is placed first in file
5820                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5821                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5822                if (first != info) {
5823                    pRIFF->MoveSubChunk(info, first);
5824                }
5825            }
5826    
5827            // update group's chunks
5828            if (pGroups) {
5829                // make sure '3gri' and '3gnl' list chunks exist
5830                // (before updating the Group chunks)
5831                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5832                if (!_3gri) {
5833                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5834                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5835                }
5836                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5837                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5838    
5839                // v3: make sure the file has 128 3gnm chunks
5840                // (before updating the Group chunks)
5841                if (pVersion && pVersion->major == 3) {
5842                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5843                    for (int i = 0 ; i < 128 ; i++) {
5844                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5845                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5846                    }
5847                }
5848    
5849                std::list<Group*>::iterator iter = pGroups->begin();
5850                std::list<Group*>::iterator end  = pGroups->end();
5851                for (; iter != end; ++iter) {
5852                    (*iter)->UpdateChunks();
5853                }
5854            }
5855    
5856            // update einf chunk
5857    
5858            // The einf chunk contains statistics about the gig file, such
5859            // as the number of regions and samples used by each
5860            // instrument. It is divided in equally sized parts, where the
5861            // first part contains information about the whole gig file,
5862            // and the rest of the parts map to each instrument in the
5863            // file.
5864            //
5865            // At the end of each part there is a bit map of each sample
5866            // in the file, where a set bit means that the sample is used
5867            // by the file/instrument.
5868            //
5869            // Note that there are several fields with unknown use. These
5870            // are set to zero.
5871    
5872            int sublen = pSamples->size() / 8 + 49;
5873            int einfSize = (Instruments + 1) * sublen;
5874    
5875            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5876            if (einf) {
5877                if (einf->GetSize() != einfSize) {
5878                    einf->Resize(einfSize);
5879                    memset(einf->LoadChunkData(), 0, einfSize);
5880                }
5881            } else if (newFile) {
5882                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5883            }
5884            if (einf) {
5885                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5886    
5887                std::map<gig::Sample*,int> sampleMap;
5888                int sampleIdx = 0;
5889                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5890                    sampleMap[pSample] = sampleIdx++;
5891                }
5892    
5893                int totnbusedsamples = 0;
5894                int totnbusedchannels = 0;
5895                int totnbregions = 0;
5896                int totnbdimregions = 0;
5897                int totnbloops = 0;
5898                int instrumentIdx = 0;
5899    
5900                memset(&pData[48], 0, sublen - 48);
5901    
5902                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5903                     instrument = GetNextInstrument()) {
5904                    int nbusedsamples = 0;
5905                    int nbusedchannels = 0;
5906                    int nbdimregions = 0;
5907                    int nbloops = 0;
5908    
5909                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5910    
5911                    for (Region* region = instrument->GetFirstRegion() ; region ;
5912                         region = instrument->GetNextRegion()) {
5913                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
5914                            gig::DimensionRegion *d = region->pDimensionRegions[i];
5915                            if (d->pSample) {
5916                                int sampleIdx = sampleMap[d->pSample];
5917                                int byte = 48 + sampleIdx / 8;
5918                                int bit = 1 << (sampleIdx & 7);
5919                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
5920                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
5921                                    nbusedsamples++;
5922                                    nbusedchannels += d->pSample->Channels;
5923    
5924                                    if ((pData[byte] & bit) == 0) {
5925                                        pData[byte] |= bit;
5926                                        totnbusedsamples++;
5927                                        totnbusedchannels += d->pSample->Channels;
5928                                    }
5929                                }
5930                            }
5931                            if (d->SampleLoops) nbloops++;
5932                        }
5933                        nbdimregions += region->DimensionRegions;
5934                    }
5935                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5936                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
5937                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
5938                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
5939                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
5940                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
5941                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
5942                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
5943                    // next 8 bytes unknown
5944                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
5945                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
5946                    // next 4 bytes unknown
5947    
5948                    totnbregions += instrument->Regions;
5949                    totnbdimregions += nbdimregions;
5950                    totnbloops += nbloops;
5951                    instrumentIdx++;
5952                }
5953                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5954                // store32(&pData[0], sublen);
5955                store32(&pData[4], totnbusedchannels);
5956                store32(&pData[8], totnbusedsamples);
5957                store32(&pData[12], Instruments);
5958                store32(&pData[16], totnbregions);
5959                store32(&pData[20], totnbdimregions);
5960                store32(&pData[24], totnbloops);
5961                // next 8 bytes unknown
5962                // next 4 bytes unknown, not always 0
5963                store32(&pData[40], pSamples->size());
5964                // next 4 bytes unknown
5965            }
5966    
5967            // update 3crc chunk
5968    
5969            // The 3crc chunk contains CRC-32 checksums for the
5970            // samples. The actual checksum values will be filled in
5971            // later, by Sample::Write.
5972    
5973            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5974            if (_3crc) {
5975                _3crc->Resize(pSamples->size() * 8);
5976            } else if (newFile) {
5977                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5978                _3crc->LoadChunkData();
5979    
5980                // the order of einf and 3crc is not the same in v2 and v3
5981                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5982            }
5983        }
5984        
5985        void File::UpdateFileOffsets() {
5986            DLS::File::UpdateFileOffsets();
5987    
5988            for (Instrument* instrument = GetFirstInstrument(); instrument;
5989                 instrument = GetNextInstrument())
5990            {
5991                instrument->UpdateScriptFileOffsets();
5992            }
5993        }
5994    
5995        /**
5996         * Enable / disable automatic loading. By default this properyt is
5997         * enabled and all informations are loaded automatically. However
5998         * loading all Regions, DimensionRegions and especially samples might
5999         * take a long time for large .gig files, and sometimes one might only
6000         * be interested in retrieving very superficial informations like the
6001         * amount of instruments and their names. In this case one might disable
6002         * automatic loading to avoid very slow response times.
6003         *
6004         * @e CAUTION: by disabling this property many pointers (i.e. sample
6005         * references) and informations will have invalid or even undefined
6006         * data! This feature is currently only intended for retrieving very
6007         * superficial informations in a very fast way. Don't use it to retrieve
6008         * details like synthesis informations or even to modify .gig files!
6009         */
6010        void File::SetAutoLoad(bool b) {
6011            bAutoLoad = b;
6012        }
6013    
6014        /**
6015         * Returns whether automatic loading is enabled.
6016         * @see SetAutoLoad()
6017         */
6018        bool File::GetAutoLoad() {
6019            return bAutoLoad;
6020      }      }
6021    
6022    
# Line 1294  namespace gig { Line 6031  namespace gig {
6031          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6032      }      }
6033    
6034    
6035    // *************** functions ***************
6036    // *
6037    
6038        /**
6039         * Returns the name of this C++ library. This is usually "libgig" of
6040         * course. This call is equivalent to RIFF::libraryName() and
6041         * DLS::libraryName().
6042         */
6043        String libraryName() {
6044            return PACKAGE;
6045        }
6046    
6047        /**
6048         * Returns version of this C++ library. This call is equivalent to
6049         * RIFF::libraryVersion() and DLS::libraryVersion().
6050         */
6051        String libraryVersion() {
6052            return VERSION;
6053        }
6054    
6055  } // namespace gig  } // namespace gig

Legend:
Removed from v.24  
changed lines
  Added in v.2667

  ViewVC Help
Powered by ViewVC