/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 269 by schoenebeck, Fri Oct 8 17:25:28 2004 UTC revision 2922 by schoenebeck, Wed May 18 18:04:49 2016 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2016 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    #include <assert.h>
32    
33    /// libgig's current file format version (for extending the original Giga file
34    /// format with libgig's own custom data / custom features).
35    #define GIG_FILE_EXT_VERSION    2
36    
37    /// Initial size of the sample buffer which is used for decompression of
38    /// compressed sample wave streams - this value should always be bigger than
39    /// the biggest sample piece expected to be read by the sampler engine,
40    /// otherwise the buffer size will be raised at runtime and thus the buffer
41    /// reallocated which is time consuming and unefficient.
42    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
43    
44    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
46    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
47    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
48    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
49    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
50    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
51    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
52    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
53    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
55    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
56    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
57    
58  namespace gig {  namespace gig {
59    
60    // *************** Internal functions for sample decompression ***************
61    // *
62    
63    namespace {
64    
65        inline int get12lo(const unsigned char* pSrc)
66        {
67            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68            return x & 0x800 ? x - 0x1000 : x;
69        }
70    
71        inline int get12hi(const unsigned char* pSrc)
72        {
73            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74            return x & 0x800 ? x - 0x1000 : x;
75        }
76    
77        inline int16_t get16(const unsigned char* pSrc)
78        {
79            return int16_t(pSrc[0] | pSrc[1] << 8);
80        }
81    
82        inline int get24(const unsigned char* pSrc)
83        {
84            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85            return x & 0x800000 ? x - 0x1000000 : x;
86        }
87    
88        inline void store24(unsigned char* pDst, int x)
89        {
90            pDst[0] = x;
91            pDst[1] = x >> 8;
92            pDst[2] = x >> 16;
93        }
94    
95        void Decompress16(int compressionmode, const unsigned char* params,
96                          int srcStep, int dstStep,
97                          const unsigned char* pSrc, int16_t* pDst,
98                          file_offset_t currentframeoffset,
99                          file_offset_t copysamples)
100        {
101            switch (compressionmode) {
102                case 0: // 16 bit uncompressed
103                    pSrc += currentframeoffset * srcStep;
104                    while (copysamples) {
105                        *pDst = get16(pSrc);
106                        pDst += dstStep;
107                        pSrc += srcStep;
108                        copysamples--;
109                    }
110                    break;
111    
112                case 1: // 16 bit compressed to 8 bit
113                    int y  = get16(params);
114                    int dy = get16(params + 2);
115                    while (currentframeoffset) {
116                        dy -= int8_t(*pSrc);
117                        y  -= dy;
118                        pSrc += srcStep;
119                        currentframeoffset--;
120                    }
121                    while (copysamples) {
122                        dy -= int8_t(*pSrc);
123                        y  -= dy;
124                        *pDst = y;
125                        pDst += dstStep;
126                        pSrc += srcStep;
127                        copysamples--;
128                    }
129                    break;
130            }
131        }
132    
133        void Decompress24(int compressionmode, const unsigned char* params,
134                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135                          file_offset_t currentframeoffset,
136                          file_offset_t copysamples, int truncatedBits)
137        {
138            int y, dy, ddy, dddy;
139    
140    #define GET_PARAMS(params)                      \
141            y    = get24(params);                   \
142            dy   = y - get24((params) + 3);         \
143            ddy  = get24((params) + 6);             \
144            dddy = get24((params) + 9)
145    
146    #define SKIP_ONE(x)                             \
147            dddy -= (x);                            \
148            ddy  -= dddy;                           \
149            dy   =  -dy - ddy;                      \
150            y    += dy
151    
152    #define COPY_ONE(x)                             \
153            SKIP_ONE(x);                            \
154            store24(pDst, y << truncatedBits);      \
155            pDst += dstStep
156    
157            switch (compressionmode) {
158                case 2: // 24 bit uncompressed
159                    pSrc += currentframeoffset * 3;
160                    while (copysamples) {
161                        store24(pDst, get24(pSrc) << truncatedBits);
162                        pDst += dstStep;
163                        pSrc += 3;
164                        copysamples--;
165                    }
166                    break;
167    
168                case 3: // 24 bit compressed to 16 bit
169                    GET_PARAMS(params);
170                    while (currentframeoffset) {
171                        SKIP_ONE(get16(pSrc));
172                        pSrc += 2;
173                        currentframeoffset--;
174                    }
175                    while (copysamples) {
176                        COPY_ONE(get16(pSrc));
177                        pSrc += 2;
178                        copysamples--;
179                    }
180                    break;
181    
182                case 4: // 24 bit compressed to 12 bit
183                    GET_PARAMS(params);
184                    while (currentframeoffset > 1) {
185                        SKIP_ONE(get12lo(pSrc));
186                        SKIP_ONE(get12hi(pSrc));
187                        pSrc += 3;
188                        currentframeoffset -= 2;
189                    }
190                    if (currentframeoffset) {
191                        SKIP_ONE(get12lo(pSrc));
192                        currentframeoffset--;
193                        if (copysamples) {
194                            COPY_ONE(get12hi(pSrc));
195                            pSrc += 3;
196                            copysamples--;
197                        }
198                    }
199                    while (copysamples > 1) {
200                        COPY_ONE(get12lo(pSrc));
201                        COPY_ONE(get12hi(pSrc));
202                        pSrc += 3;
203                        copysamples -= 2;
204                    }
205                    if (copysamples) {
206                        COPY_ONE(get12lo(pSrc));
207                    }
208                    break;
209    
210                case 5: // 24 bit compressed to 8 bit
211                    GET_PARAMS(params);
212                    while (currentframeoffset) {
213                        SKIP_ONE(int8_t(*pSrc++));
214                        currentframeoffset--;
215                    }
216                    while (copysamples) {
217                        COPY_ONE(int8_t(*pSrc++));
218                        copysamples--;
219                    }
220                    break;
221            }
222        }
223    
224        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
225        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
227        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
228    }
229    
230    
231    
232    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
233    // *
234    
235        static uint32_t* __initCRCTable() {
236            static uint32_t res[256];
237    
238            for (int i = 0 ; i < 256 ; i++) {
239                uint32_t c = i;
240                for (int j = 0 ; j < 8 ; j++) {
241                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242                }
243                res[i] = c;
244            }
245            return res;
246        }
247    
248        static const uint32_t* __CRCTable = __initCRCTable();
249    
250        /**
251         * Initialize a CRC variable.
252         *
253         * @param crc - variable to be initialized
254         */
255        inline static void __resetCRC(uint32_t& crc) {
256            crc = 0xffffffff;
257        }
258    
259        /**
260         * Used to calculate checksums of the sample data in a gig file. The
261         * checksums are stored in the 3crc chunk of the gig file and
262         * automatically updated when a sample is written with Sample::Write().
263         *
264         * One should call __resetCRC() to initialize the CRC variable to be
265         * used before calling this function the first time.
266         *
267         * After initializing the CRC variable one can call this function
268         * arbitrary times, i.e. to split the overall CRC calculation into
269         * steps.
270         *
271         * Once the whole data was processed by __calculateCRC(), one should
272         * call __encodeCRC() to get the final CRC result.
273         *
274         * @param buf     - pointer to data the CRC shall be calculated of
275         * @param bufSize - size of the data to be processed
276         * @param crc     - variable the CRC sum shall be stored to
277         */
278        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279            for (int i = 0 ; i < bufSize ; i++) {
280                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281            }
282        }
283    
284        /**
285         * Returns the final CRC result.
286         *
287         * @param crc - variable previously passed to __calculateCRC()
288         */
289        inline static uint32_t __encodeCRC(const uint32_t& crc) {
290            return crc ^ 0xffffffff;
291        }
292    
293    
294    
295    // *************** Other Internal functions  ***************
296    // *
297    
298        static split_type_t __resolveSplitType(dimension_t dimension) {
299            return (
300                dimension == dimension_layer ||
301                dimension == dimension_samplechannel ||
302                dimension == dimension_releasetrigger ||
303                dimension == dimension_keyboard ||
304                dimension == dimension_roundrobin ||
305                dimension == dimension_random ||
306                dimension == dimension_smartmidi ||
307                dimension == dimension_roundrobinkeyboard
308            ) ? split_type_bit : split_type_normal;
309        }
310    
311        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312            return (dimension_definition.split_type == split_type_normal)
313            ? int(128.0 / dimension_definition.zones) : 0;
314        }
315    
316    
317    
318  // *************** Sample ***************  // *************** Sample ***************
319  // *  // *
320    
321      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
322      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
323    
324      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
325         *
326         * Load an existing sample or create a new one. A 'wave' list chunk must
327         * be given to this constructor. In case the given 'wave' list chunk
328         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329         * format and sample data will be loaded from there, otherwise default
330         * values will be used and those chunks will be created when
331         * File::Save() will be called later on.
332         *
333         * @param pFile          - pointer to gig::File where this sample is
334         *                         located (or will be located)
335         * @param waveList       - pointer to 'wave' list chunk which is (or
336         *                         will be) associated with this sample
337         * @param WavePoolOffset - offset of this sample data from wave pool
338         *                         ('wvpl') list chunk
339         * @param fileNo         - number of an extension file where this sample
340         *                         is located, 0 otherwise
341         */
342        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
343            static const DLS::Info::string_length_t fixedStringLengths[] = {
344                { CHUNK_ID_INAM, 64 },
345                { 0, 0 }
346            };
347            pInfo->SetFixedStringLengths(fixedStringLengths);
348          Instances++;          Instances++;
349            FileNo = fileNo;
350    
351            __resetCRC(crc);
352    
353            pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
354            if (pCk3gix) {
355                uint16_t iSampleGroup = pCk3gix->ReadInt16();
356                pGroup = pFile->GetGroup(iSampleGroup);
357            } else { // '3gix' chunk missing
358                // by default assigned to that mandatory "Default Group"
359                pGroup = pFile->GetGroup(0);
360            }
361    
362          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
363          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCkSmpl) {
364          SampleGroup = _3gix->ReadInt16();              Manufacturer  = pCkSmpl->ReadInt32();
365                Product       = pCkSmpl->ReadInt32();
366          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              SamplePeriod  = pCkSmpl->ReadInt32();
367          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              MIDIUnityNote = pCkSmpl->ReadInt32();
368          Manufacturer      = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
369          Product           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
370          SamplePeriod      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
371          MIDIUnityNote     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
372          FineTune          = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
373          smpl->Read(&SMPTEFormat, 1, 4);              LoopID        = pCkSmpl->ReadInt32();
374          SMPTEOffset       = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
375          Loops             = smpl->ReadInt32();              LoopStart     = pCkSmpl->ReadInt32();
376          uint32_t manufByt = smpl->ReadInt32();              LoopEnd       = pCkSmpl->ReadInt32();
377          LoopID            = smpl->ReadInt32();              LoopFraction  = pCkSmpl->ReadInt32();
378          smpl->Read(&LoopType, 1, 4);              LoopPlayCount = pCkSmpl->ReadInt32();
379          LoopStart         = smpl->ReadInt32();          } else { // 'smpl' chunk missing
380          LoopEnd           = smpl->ReadInt32();              // use default values
381          LoopFraction      = smpl->ReadInt32();              Manufacturer  = 0;
382          LoopPlayCount     = smpl->ReadInt32();              Product       = 0;
383                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
384                MIDIUnityNote = 60;
385                FineTune      = 0;
386                SMPTEFormat   = smpte_format_no_offset;
387                SMPTEOffset   = 0;
388                Loops         = 0;
389                LoopID        = 0;
390                LoopType      = loop_type_normal;
391                LoopStart     = 0;
392                LoopEnd       = 0;
393                LoopFraction  = 0;
394                LoopPlayCount = 0;
395            }
396    
397          FrameTable                 = NULL;          FrameTable                 = NULL;
398          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 400  namespace gig {
400          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
401          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
402    
403          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
404    
405            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
406            Compressed        = ewav;
407            Dithered          = false;
408            TruncatedBits     = 0;
409          if (Compressed) {          if (Compressed) {
410              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
411              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
412                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
413                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
414                    TruncatedBits = ewav->ReadInt32();
415              }              }
416                ScanCompressedSample();
417          }          }
         FrameOffset = 0; // just for streaming compressed samples  
418    
419          LoopSize = LoopEnd - LoopStart;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
420            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
421                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
422                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
423            }
424            FrameOffset = 0; // just for streaming compressed samples
425    
426            LoopSize = LoopEnd - LoopStart + 1;
427        }
428    
429        /**
430         * Make a (semi) deep copy of the Sample object given by @a orig (without
431         * the actual waveform data) and assign it to this object.
432         *
433         * Discussion: copying .gig samples is a bit tricky. It requires three
434         * steps:
435         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
436         *    its new sample waveform data size.
437         * 2. Saving the file (done by File::Save()) so that it gains correct size
438         *    and layout for writing the actual wave form data directly to disc
439         *    in next step.
440         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
441         *
442         * @param orig - original Sample object to be copied from
443         */
444        void Sample::CopyAssignMeta(const Sample* orig) {
445            // handle base classes
446            DLS::Sample::CopyAssignCore(orig);
447            
448            // handle actual own attributes of this class
449            Manufacturer = orig->Manufacturer;
450            Product = orig->Product;
451            SamplePeriod = orig->SamplePeriod;
452            MIDIUnityNote = orig->MIDIUnityNote;
453            FineTune = orig->FineTune;
454            SMPTEFormat = orig->SMPTEFormat;
455            SMPTEOffset = orig->SMPTEOffset;
456            Loops = orig->Loops;
457            LoopID = orig->LoopID;
458            LoopType = orig->LoopType;
459            LoopStart = orig->LoopStart;
460            LoopEnd = orig->LoopEnd;
461            LoopSize = orig->LoopSize;
462            LoopFraction = orig->LoopFraction;
463            LoopPlayCount = orig->LoopPlayCount;
464            
465            // schedule resizing this sample to the given sample's size
466            Resize(orig->GetSize());
467        }
468    
469        /**
470         * Should be called after CopyAssignMeta() and File::Save() sequence.
471         * Read more about it in the discussion of CopyAssignMeta(). This method
472         * copies the actual waveform data by disk streaming.
473         *
474         * @e CAUTION: this method is currently not thread safe! During this
475         * operation the sample must not be used for other purposes by other
476         * threads!
477         *
478         * @param orig - original Sample object to be copied from
479         */
480        void Sample::CopyAssignWave(const Sample* orig) {
481            const int iReadAtOnce = 32*1024;
482            char* buf = new char[iReadAtOnce * orig->FrameSize];
483            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
484            file_offset_t restorePos = pOrig->GetPos();
485            pOrig->SetPos(0);
486            SetPos(0);
487            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
488                               n = pOrig->Read(buf, iReadAtOnce))
489            {
490                Write(buf, n);
491            }
492            pOrig->SetPos(restorePos);
493            delete [] buf;
494        }
495    
496        /**
497         * Apply sample and its settings to the respective RIFF chunks. You have
498         * to call File::Save() to make changes persistent.
499         *
500         * Usually there is absolutely no need to call this method explicitly.
501         * It will be called automatically when File::Save() was called.
502         *
503         * @param pProgress - callback function for progress notification
504         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
505         *                        was provided yet
506         * @throws gig::Exception if there is any invalid sample setting
507         */
508        void Sample::UpdateChunks(progress_t* pProgress) {
509            // first update base class's chunks
510            DLS::Sample::UpdateChunks(pProgress);
511    
512            // make sure 'smpl' chunk exists
513            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
514            if (!pCkSmpl) {
515                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
516                memset(pCkSmpl->LoadChunkData(), 0, 60);
517            }
518            // update 'smpl' chunk
519            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
520            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
521            store32(&pData[0], Manufacturer);
522            store32(&pData[4], Product);
523            store32(&pData[8], SamplePeriod);
524            store32(&pData[12], MIDIUnityNote);
525            store32(&pData[16], FineTune);
526            store32(&pData[20], SMPTEFormat);
527            store32(&pData[24], SMPTEOffset);
528            store32(&pData[28], Loops);
529    
530            // we skip 'manufByt' for now (4 bytes)
531    
532            store32(&pData[36], LoopID);
533            store32(&pData[40], LoopType);
534            store32(&pData[44], LoopStart);
535            store32(&pData[48], LoopEnd);
536            store32(&pData[52], LoopFraction);
537            store32(&pData[56], LoopPlayCount);
538    
539            // make sure '3gix' chunk exists
540            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
541            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
542            // determine appropriate sample group index (to be stored in chunk)
543            uint16_t iSampleGroup = 0; // 0 refers to default sample group
544            File* pFile = static_cast<File*>(pParent);
545            if (pFile->pGroups) {
546                std::list<Group*>::iterator iter = pFile->pGroups->begin();
547                std::list<Group*>::iterator end  = pFile->pGroups->end();
548                for (int i = 0; iter != end; i++, iter++) {
549                    if (*iter == pGroup) {
550                        iSampleGroup = i;
551                        break; // found
552                    }
553                }
554            }
555            // update '3gix' chunk
556            pData = (uint8_t*) pCk3gix->LoadChunkData();
557            store16(&pData[0], iSampleGroup);
558    
559            // if the library user toggled the "Compressed" attribute from true to
560            // false, then the EWAV chunk associated with compressed samples needs
561            // to be deleted
562            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
563            if (ewav && !Compressed) {
564                pWaveList->DeleteSubChunk(ewav);
565            }
566      }      }
567    
568      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
569      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
570          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
571          this->SamplesTotal = 0;          this->SamplesTotal = 0;
572          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
573    
574            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
575            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
576    
577          // Scanning          // Scanning
578          pCkData->SetPos(0);          pCkData->SetPos(0);
579          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
580              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
581              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
582              this->SamplesTotal += 2048;                  // stored, to save some memory
583              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
584                  case 1:   // left channel compressed  
585                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
586                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
587                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
588                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
589    
590                    if (pCkData->RemainingBytes() <= frameSize) {
591                        SamplesInLastFrame =
592                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
593                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
594                        SamplesTotal += SamplesInLastFrame;
595                      break;                      break;
596                  case 257: // both channels compressed                  }
597                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
598                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
599                }
600            }
601            else { // Mono
602                for (int i = 0 ; ; i++) {
603                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
604    
605                    const int mode = pCkData->ReadUint8();
606                    if (mode > 5) throw gig::Exception("Unknown compression mode");
607                    const file_offset_t frameSize = bytesPerFrame[mode];
608    
609                    if (pCkData->RemainingBytes() <= frameSize) {
610                        SamplesInLastFrame =
611                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
612                        SamplesTotal += SamplesInLastFrame;
613                      break;                      break;
614                  default: // both channels uncompressed                  }
615                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
616                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
617              }              }
618          }          }
619          pCkData->SetPos(0);          pCkData->SetPos(0);
620    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
621          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
622          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
623          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
624          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
625          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
626          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
627              FrameTable[i] = *iter;              FrameTable[i] = *iter;
628          }          }
# Line 141  namespace gig { Line 653  namespace gig {
653       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
654       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
655       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
656       *       * @code
657       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
658       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
659         * @endcode
660       *       *
661       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
662       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
663       *                      the cached sample data in bytes       *                      the cached sample data in bytes
664       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
665       */       */
666      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
667          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
668      }      }
669    
# Line 189  namespace gig { Line 702  namespace gig {
702       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
703       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
704       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
705       *       * @code
706       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
707       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
708       *       * @endcode
709       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
710       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
711       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 209  namespace gig { Line 722  namespace gig {
722       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
723       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
724       */       */
725      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
726          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
727          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
728          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
729            SetPos(0); // reset read position to begin of sample
730          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
731          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
732          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 250  namespace gig { Line 764  namespace gig {
764          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
765          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
766          RAMCache.Size   = 0;          RAMCache.Size   = 0;
767            RAMCache.NullExtensionSize = 0;
768        }
769    
770        /** @brief Resize sample.
771         *
772         * Resizes the sample's wave form data, that is the actual size of
773         * sample wave data possible to be written for this sample. This call
774         * will return immediately and just schedule the resize operation. You
775         * should call File::Save() to actually perform the resize operation(s)
776         * "physically" to the file. As this can take a while on large files, it
777         * is recommended to call Resize() first on all samples which have to be
778         * resized and finally to call File::Save() to perform all those resize
779         * operations in one rush.
780         *
781         * The actual size (in bytes) is dependant to the current FrameSize
782         * value. You may want to set FrameSize before calling Resize().
783         *
784         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
785         * enlarged samples before calling File::Save() as this might exceed the
786         * current sample's boundary!
787         *
788         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
789         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
790         * other formats will fail!
791         *
792         * @param NewSize - new sample wave data size in sample points (must be
793         *                  greater than zero)
794         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
795         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
796         * @throws gig::Exception if existing sample is compressed
797         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
798         *      DLS::Sample::FormatTag, File::Save()
799         */
800        void Sample::Resize(file_offset_t NewSize) {
801            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
802            DLS::Sample::Resize(NewSize);
803      }      }
804    
805      /**      /**
# Line 273  namespace gig { Line 823  namespace gig {
823       * @returns            the new sample position       * @returns            the new sample position
824       * @see                Read()       * @see                Read()
825       */       */
826      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
827          if (Compressed) {          if (Compressed) {
828              switch (Whence) {              switch (Whence) {
829                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 291  namespace gig { Line 841  namespace gig {
841              }              }
842              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
843    
844              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
845              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
846              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
847              return this->SamplePos;              return this->SamplePos;
848          }          }
849          else { // not compressed          else { // not compressed
850              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
851              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
852              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
853                                              : result / this->FrameSize;                                              : result / this->FrameSize;
854          }          }
# Line 307  namespace gig { Line 857  namespace gig {
857      /**      /**
858       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
859       */       */
860      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
861          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
862          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
863      }      }
# Line 323  namespace gig { Line 873  namespace gig {
873       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
874       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
875       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
876       *       * @code
877       * <i>       * gig::playback_state_t playbackstate;
878       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
879       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
880       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
881       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
882       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
883       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
884       * The method already handles such cases by itself.       * The method already handles such cases by itself.
885       *       *
886         * <b>Caution:</b> If you are using more than one streaming thread, you
887         * have to use an external decompression buffer for <b>EACH</b>
888         * streaming thread to avoid race conditions and crashes!
889         *
890       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
891       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
892       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
893       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
894         * @param pDimRgn          dimension region with looping information
895         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
896       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
897         * @see                    CreateDecompressionBuffer()
898       */       */
899      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
900          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
901            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
902          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
903    
904          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
905    
906          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
907    
908              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
909                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
910    
911                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
912                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
913    
914                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
915                              // determine the end position within the loop first,                          do {
916                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
917                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
918                              // backward playback  
919                                if (!pPlaybackState->reverse) { // forward playback
920                              unsigned long swapareastart       = totalreadsamples;                                  do {
921                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
922                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
923                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
924                                        totalreadsamples += readsamples;
925                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
926                                            pPlaybackState->reverse = true;
927                              // read samples for backward playback                                          break;
928                              do {                                      }
929                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
930                                  samplestoreadinloop -= readsamples;                              }
931                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
932    
933                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
934                                    // determine the end position within the loop first,
935                                    // read forward from that 'end' and finally after
936                                    // reading, swap all sample frames so it reflects
937                                    // backward playback
938    
939                                    file_offset_t swapareastart       = totalreadsamples;
940                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
941                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
942                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
943    
944                                    SetPos(reverseplaybackend);
945    
946                                    // read samples for backward playback
947                                    do {
948                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
949                                        samplestoreadinloop -= readsamples;
950                                        samplestoread       -= readsamples;
951                                        totalreadsamples    += readsamples;
952                                    } while (samplestoreadinloop && readsamples);
953    
954                                    SetPos(reverseplaybackend); // pretend we really read backwards
955    
956                                    if (reverseplaybackend == loop.LoopStart) {
957                                        pPlaybackState->loop_cycles_left--;
958                                        pPlaybackState->reverse = false;
959                                    }
960    
961                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
962                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
963                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964                              }                              }
965                            } while (samplestoread && readsamples);
966                            break;
967                        }
968    
969                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
970                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
971                          }                          if (!pPlaybackState->reverse) do {
972                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
973                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974                  }                              samplestoread    -= readsamples;
975                                totalreadsamples += readsamples;
976                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
977                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
978                      if (!pPlaybackState->reverse) do {                                  break;
979                          samplestoloopend  = this->LoopEnd - GetPos();                              }
980                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
981    
982                      if (!samplestoread) break;                          if (!samplestoread) break;
983    
984                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
985                      // determine the end position within the loop first,                          // determine the end position within the loop first,
986                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
987                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
988                      // backward playback                          // backward playback
989    
990                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
991                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
992                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
993                                                                                : samplestoread;                                                                                    : samplestoread;
994                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
995    
996                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
997    
998                      // read samples for backward playback                          // read samples for backward playback
999                      do {                          do {
1000                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1001                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1002                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1003                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1004                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1005                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1006                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1007                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1008                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1009                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1010                          }                              }
1011                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1012    
1013                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1014    
1015                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1016                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1017                      break;                          break;
1018                  }                      }
1019    
1020                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1021                      do {                          do {
1022                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1023                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1024                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1025                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1026                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1027                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1028                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1029                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1030                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1031                          }                              }
1032                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1033                      break;                          break;
1034                        }
1035                  }                  }
1036              }              }
1037          }          }
1038    
1039          // read on without looping          // read on without looping
1040          if (samplestoread) do {          if (samplestoread) do {
1041              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1042              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1043              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1044          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 1057  namespace gig {
1057       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1058       * thus for disk streaming.       * thus for disk streaming.
1059       *       *
1060         * <b>Caution:</b> If you are using more than one streaming thread, you
1061         * have to use an external decompression buffer for <b>EACH</b>
1062         * streaming thread to avoid race conditions and crashes!
1063         *
1064         * For 16 bit samples, the data in the buffer will be int16_t
1065         * (using native endianness). For 24 bit, the buffer will
1066         * contain three bytes per sample, little-endian.
1067         *
1068       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1069       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1070         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1071       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1072       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1073       */       */
1074      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1075          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1076          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1077          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1078                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1079                }
1080                else { // 16 bit
1081                    // (pCkData->Read does endian correction)
1082                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1083                                         : pCkData->Read(pBuffer, SampleCount, 2);
1084                }
1085            }
1086            else {
1087              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1088              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1089              // best case needed buffer size (all frames compressed)              file_offset_t assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1090                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1091                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1092                            copysamples;                            copysamples, skipsamples,
1093              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1094              this->FrameOffset = 0;              this->FrameOffset = 0;
1095    
1096              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1097                  // local buffer reallocation - hope this won't happen  
1098                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1099                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1100                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1101                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1102                    remainingsamples = SampleCount;
1103                    assumedsize      = GuessSize(SampleCount);
1104              }              }
1105    
1106              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1107              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1108              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1109              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1110    
1111              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1112                    file_offset_t framesamples = SamplesPerFrame;
1113                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1114                  if (remainingbytes < 8194) {  
1115                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1116                          this->SamplePos = this->SamplesTotal;  
1117                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1118                      }                      mode_r = *pSrc++;
1119                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1120                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1121                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1122                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1123                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1124                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1125                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1126                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1127                            else {
1128                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1129                            }
1130                        }
1131                    }
1132                    else {
1133                        framebytes = bytesPerFrame[mode_l] + 1;
1134                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1135                        if (remainingbytes < framebytes) {
1136                            framesamples = SamplesInLastFrame;
1137                        }
1138                  }                  }
1139    
1140                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1141                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1142                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1143                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1144                            skipsamples = currentframeoffset;
1145                        }
1146                        else {
1147                            copysamples = 0;
1148                            skipsamples = framesamples;
1149                        }
1150                  }                  }
1151                  else {                  else {
1152                        // This frame has enough data for pBuffer, but not
1153                        // all of the frame is needed. Set file position
1154                        // to start of this frame for next call to Read.
1155                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1156                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1157                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1158                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1159                      }                  }
1160                      else {                  remainingsamples -= copysamples;
1161    
1162                    if (remainingbytes > framebytes) {
1163                        remainingbytes -= framebytes;
1164                        if (remainingsamples == 0 &&
1165                            currentframeoffset + copysamples == framesamples) {
1166                            // This frame has enough data for pBuffer, and
1167                            // all of the frame is needed. Set file
1168                            // position to start of next frame for next
1169                            // call to Read. FrameOffset is 0.
1170                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1171                      }                      }
1172                  }                  }
1173                    else remainingbytes = 0;
1174    
1175                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1176                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1177                  switch (compressionmode) {                  if (copysamples == 0) {
1178                      case 1: // left channel compressed                      // skip this frame
1179                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1180                          if (!remainingsamples && copysamples == 2048)                  }
1181                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1182                        const unsigned char* const param_l = pSrc;
1183                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1184                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1185                          while (currentframeoffset) {  
1186                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1187                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1188                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1189                              currentframeoffset--;  
1190                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1191                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1192                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1193                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1194                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1195                          }                          }
1196                          while (copysamples) {                          else { // Mono
1197                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1198                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1199                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1200                          }                          }
1201                          break;                      }
1202                      case 257: // both channels compressed                      else { // 16 bit
1203                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1204                          if (!remainingsamples && copysamples == 2048)  
1205                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1206                            if (Channels == 2) { // Stereo
1207                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1208                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1209                          right  = *(int16_t*)pSrc; pSrc+=2;  
1210                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1211                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1212                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1213                              left   -= dleft;                                           skipsamples, copysamples);
1214                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1215                          }                          }
1216                          while (copysamples) {                          else { // Mono
1217                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1218                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1219                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1220                          }                          }
1221                          break;                      }
1222                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1223                  }                  }
1224              }  
1225                    // reload from disk to local buffer if needed
1226                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1227                        assumedsize    = GuessSize(remainingsamples);
1228                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1229                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1230                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1231                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1232                    }
1233                } // while
1234    
1235              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1236              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1237              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1238          }          }
1239      }      }
1240    
1241        /** @brief Write sample wave data.
1242         *
1243         * Writes \a SampleCount number of sample points from the buffer pointed
1244         * by \a pBuffer and increments the position within the sample. Use this
1245         * method to directly write the sample data to disk, i.e. if you don't
1246         * want or cannot load the whole sample data into RAM.
1247         *
1248         * You have to Resize() the sample to the desired size and call
1249         * File::Save() <b>before</b> using Write().
1250         *
1251         * Note: there is currently no support for writing compressed samples.
1252         *
1253         * For 16 bit samples, the data in the source buffer should be
1254         * int16_t (using native endianness). For 24 bit, the buffer
1255         * should contain three bytes per sample, little-endian.
1256         *
1257         * @param pBuffer     - source buffer
1258         * @param SampleCount - number of sample points to write
1259         * @throws DLS::Exception if current sample size is too small
1260         * @throws gig::Exception if sample is compressed
1261         * @see DLS::LoadSampleData()
1262         */
1263        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1264            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1265    
1266            // if this is the first write in this sample, reset the
1267            // checksum calculator
1268            if (pCkData->GetPos() == 0) {
1269                __resetCRC(crc);
1270            }
1271            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1272            file_offset_t res;
1273            if (BitDepth == 24) {
1274                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1275            } else { // 16 bit
1276                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1277                                    : pCkData->Write(pBuffer, SampleCount, 2);
1278            }
1279            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1280    
1281            // if this is the last write, update the checksum chunk in the
1282            // file
1283            if (pCkData->GetPos() == pCkData->GetSize()) {
1284                File* pFile = static_cast<File*>(GetParent());
1285                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1286            }
1287            return res;
1288        }
1289    
1290        /**
1291         * Allocates a decompression buffer for streaming (compressed) samples
1292         * with Sample::Read(). If you are using more than one streaming thread
1293         * in your application you <b>HAVE</b> to create a decompression buffer
1294         * for <b>EACH</b> of your streaming threads and provide it with the
1295         * Sample::Read() call in order to avoid race conditions and crashes.
1296         *
1297         * You should free the memory occupied by the allocated buffer(s) once
1298         * you don't need one of your streaming threads anymore by calling
1299         * DestroyDecompressionBuffer().
1300         *
1301         * @param MaxReadSize - the maximum size (in sample points) you ever
1302         *                      expect to read with one Read() call
1303         * @returns allocated decompression buffer
1304         * @see DestroyDecompressionBuffer()
1305         */
1306        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1307            buffer_t result;
1308            const double worstCaseHeaderOverhead =
1309                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1310            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1311            result.pStart            = new int8_t[result.Size];
1312            result.NullExtensionSize = 0;
1313            return result;
1314        }
1315    
1316        /**
1317         * Free decompression buffer, previously created with
1318         * CreateDecompressionBuffer().
1319         *
1320         * @param DecompressionBuffer - previously allocated decompression
1321         *                              buffer to free
1322         */
1323        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1324            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1325                delete[] (int8_t*) DecompressionBuffer.pStart;
1326                DecompressionBuffer.pStart = NULL;
1327                DecompressionBuffer.Size   = 0;
1328                DecompressionBuffer.NullExtensionSize = 0;
1329            }
1330        }
1331    
1332        /**
1333         * Returns pointer to the Group this Sample belongs to. In the .gig
1334         * format a sample always belongs to one group. If it wasn't explicitly
1335         * assigned to a certain group, it will be automatically assigned to a
1336         * default group.
1337         *
1338         * @returns Sample's Group (never NULL)
1339         */
1340        Group* Sample::GetGroup() const {
1341            return pGroup;
1342        }
1343    
1344      Sample::~Sample() {      Sample::~Sample() {
1345          Instances--;          Instances--;
1346          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1347                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1348                InternalDecompressionBuffer.pStart = NULL;
1349                InternalDecompressionBuffer.Size   = 0;
1350            }
1351          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1352          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1353      }      }
# Line 670  namespace gig { Line 1357  namespace gig {
1357  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1358  // *  // *
1359    
1360      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1361      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1362    
1363      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1364          Instances++;          Instances++;
1365    
1366          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1367            pRegion = pParent;
1368    
1369            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1370            else memset(&Crossfade, 0, 4);
1371    
1372          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1373    
1374          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1375          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1376          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1377          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1378          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1379          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1380          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1381          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1382          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1383          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1384          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1385          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1386          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1387          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1388          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1389          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1390          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1391          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1392          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1393          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1394          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1395          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1396          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1397          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1398          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1399          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1400          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1401          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1402          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1403          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1404          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1407          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1408          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1409          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1410          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1411          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1412          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1413          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1414          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1415          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1416          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1417          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1418          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1419          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1420          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1421          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1422          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1423          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1424          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1425          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1426              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1427              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1428          }                  VelocityResponseDepth = velocityresponse;
1429          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1430              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1431              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1432          }              } else if (velocityresponse < 15) {
1433          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1434              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1435              VelocityResponseDepth = velocityresponse - 10;              } else {
1436                    VelocityResponseCurve = curve_type_unknown;
1437                    VelocityResponseDepth = 0;
1438                }
1439                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1440                if (releasevelocityresponse < 5) {
1441                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1442                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1443                } else if (releasevelocityresponse < 10) {
1444                    ReleaseVelocityResponseCurve = curve_type_linear;
1445                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1446                } else if (releasevelocityresponse < 15) {
1447                    ReleaseVelocityResponseCurve = curve_type_special;
1448                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1449                } else {
1450                    ReleaseVelocityResponseCurve = curve_type_unknown;
1451                    ReleaseVelocityResponseDepth = 0;
1452                }
1453                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1454                AttenuationControllerThreshold = _3ewa->ReadInt8();
1455                _3ewa->ReadInt32(); // unknown
1456                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1457                _3ewa->ReadInt16(); // unknown
1458                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1459                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1460                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1461                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1462                else                                       DimensionBypass = dim_bypass_ctrl_none;
1463                uint8_t pan = _3ewa->ReadUint8();
1464                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1465                SelfMask = _3ewa->ReadInt8() & 0x01;
1466                _3ewa->ReadInt8(); // unknown
1467                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1468                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1469                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1470                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1471                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1472                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1473                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1474                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1475                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1476                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1477                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1478                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1479                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1480                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1481                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1482                                                            : vcf_res_ctrl_none;
1483                uint16_t eg3depth = _3ewa->ReadUint16();
1484                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1485                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1486                _3ewa->ReadInt16(); // unknown
1487                ChannelOffset = _3ewa->ReadUint8() / 4;
1488                uint8_t regoptions = _3ewa->ReadUint8();
1489                MSDecode           = regoptions & 0x01; // bit 0
1490                SustainDefeat      = regoptions & 0x02; // bit 1
1491                _3ewa->ReadInt16(); // unknown
1492                VelocityUpperLimit = _3ewa->ReadInt8();
1493                _3ewa->ReadInt8(); // unknown
1494                _3ewa->ReadInt16(); // unknown
1495                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1496                _3ewa->ReadInt8(); // unknown
1497                _3ewa->ReadInt8(); // unknown
1498                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1499                uint8_t vcfcutoff = _3ewa->ReadUint8();
1500                VCFEnabled = vcfcutoff & 0x80; // bit 7
1501                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1502                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1503                uint8_t vcfvelscale = _3ewa->ReadUint8();
1504                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1505                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1506                _3ewa->ReadInt8(); // unknown
1507                uint8_t vcfresonance = _3ewa->ReadUint8();
1508                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1509                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1510                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1511                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1512                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1513                uint8_t vcfvelocity = _3ewa->ReadUint8();
1514                VCFVelocityDynamicRange = vcfvelocity % 5;
1515                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1516                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1517                if (VCFType == vcf_type_lowpass) {
1518                    if (lfo3ctrl & 0x40) // bit 6
1519                        VCFType = vcf_type_lowpassturbo;
1520                }
1521                if (_3ewa->RemainingBytes() >= 8) {
1522                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1523                } else {
1524                    memset(DimensionUpperLimits, 0, 8);
1525                }
1526            } else { // '3ewa' chunk does not exist yet
1527                // use default values
1528                LFO3Frequency                   = 1.0;
1529                EG3Attack                       = 0.0;
1530                LFO1InternalDepth               = 0;
1531                LFO3InternalDepth               = 0;
1532                LFO1ControlDepth                = 0;
1533                LFO3ControlDepth                = 0;
1534                EG1Attack                       = 0.0;
1535                EG1Decay1                       = 0.005;
1536                EG1Sustain                      = 1000;
1537                EG1Release                      = 0.3;
1538                EG1Controller.type              = eg1_ctrl_t::type_none;
1539                EG1Controller.controller_number = 0;
1540                EG1ControllerInvert             = false;
1541                EG1ControllerAttackInfluence    = 0;
1542                EG1ControllerDecayInfluence     = 0;
1543                EG1ControllerReleaseInfluence   = 0;
1544                EG2Controller.type              = eg2_ctrl_t::type_none;
1545                EG2Controller.controller_number = 0;
1546                EG2ControllerInvert             = false;
1547                EG2ControllerAttackInfluence    = 0;
1548                EG2ControllerDecayInfluence     = 0;
1549                EG2ControllerReleaseInfluence   = 0;
1550                LFO1Frequency                   = 1.0;
1551                EG2Attack                       = 0.0;
1552                EG2Decay1                       = 0.005;
1553                EG2Sustain                      = 1000;
1554                EG2Release                      = 0.3;
1555                LFO2ControlDepth                = 0;
1556                LFO2Frequency                   = 1.0;
1557                LFO2InternalDepth               = 0;
1558                EG1Decay2                       = 0.0;
1559                EG1InfiniteSustain              = true;
1560                EG1PreAttack                    = 0;
1561                EG2Decay2                       = 0.0;
1562                EG2InfiniteSustain              = true;
1563                EG2PreAttack                    = 0;
1564                VelocityResponseCurve           = curve_type_nonlinear;
1565                VelocityResponseDepth           = 3;
1566                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1567                ReleaseVelocityResponseDepth    = 3;
1568                VelocityResponseCurveScaling    = 32;
1569                AttenuationControllerThreshold  = 0;
1570                SampleStartOffset               = 0;
1571                PitchTrack                      = true;
1572                DimensionBypass                 = dim_bypass_ctrl_none;
1573                Pan                             = 0;
1574                SelfMask                        = true;
1575                LFO3Controller                  = lfo3_ctrl_modwheel;
1576                LFO3Sync                        = false;
1577                InvertAttenuationController     = false;
1578                AttenuationController.type      = attenuation_ctrl_t::type_none;
1579                AttenuationController.controller_number = 0;
1580                LFO2Controller                  = lfo2_ctrl_internal;
1581                LFO2FlipPhase                   = false;
1582                LFO2Sync                        = false;
1583                LFO1Controller                  = lfo1_ctrl_internal;
1584                LFO1FlipPhase                   = false;
1585                LFO1Sync                        = false;
1586                VCFResonanceController          = vcf_res_ctrl_none;
1587                EG3Depth                        = 0;
1588                ChannelOffset                   = 0;
1589                MSDecode                        = false;
1590                SustainDefeat                   = false;
1591                VelocityUpperLimit              = 0;
1592                ReleaseTriggerDecay             = 0;
1593                EG1Hold                         = false;
1594                VCFEnabled                      = false;
1595                VCFCutoff                       = 0;
1596                VCFCutoffController             = vcf_cutoff_ctrl_none;
1597                VCFCutoffControllerInvert       = false;
1598                VCFVelocityScale                = 0;
1599                VCFResonance                    = 0;
1600                VCFResonanceDynamic             = false;
1601                VCFKeyboardTracking             = false;
1602                VCFKeyboardTrackingBreakpoint   = 0;
1603                VCFVelocityDynamicRange         = 0x04;
1604                VCFVelocityCurve                = curve_type_linear;
1605                VCFType                         = vcf_type_lowpass;
1606                memset(DimensionUpperLimits, 127, 8);
1607          }          }
1608          else {  
1609              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1610              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1611                                                         VelocityResponseCurveScaling);
1612    
1613            pVelocityReleaseTable = GetReleaseVelocityTable(
1614                                        ReleaseVelocityResponseCurve,
1615                                        ReleaseVelocityResponseDepth
1616                                    );
1617    
1618            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1619                                                          VCFVelocityDynamicRange,
1620                                                          VCFVelocityScale,
1621                                                          VCFCutoffController);
1622    
1623            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1624            VelocityTable = 0;
1625        }
1626    
1627        /*
1628         * Constructs a DimensionRegion by copying all parameters from
1629         * another DimensionRegion
1630         */
1631        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1632            Instances++;
1633            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1634            *this = src; // default memberwise shallow copy of all parameters
1635            pParentList = _3ewl; // restore the chunk pointer
1636    
1637            // deep copy of owned structures
1638            if (src.VelocityTable) {
1639                VelocityTable = new uint8_t[128];
1640                for (int k = 0 ; k < 128 ; k++)
1641                    VelocityTable[k] = src.VelocityTable[k];
1642          }          }
1643          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1644          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1645              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1646              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1647          }          }
1648          else {      }
1649              ReleaseVelocityResponseCurve = curve_type_unknown;      
1650              ReleaseVelocityResponseDepth = 0;      /**
1651         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1652         * and assign it to this object.
1653         *
1654         * Note that all sample pointers referenced by @a orig are simply copied as
1655         * memory address. Thus the respective samples are shared, not duplicated!
1656         *
1657         * @param orig - original DimensionRegion object to be copied from
1658         */
1659        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1660            CopyAssign(orig, NULL);
1661        }
1662    
1663        /**
1664         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1665         * and assign it to this object.
1666         *
1667         * @param orig - original DimensionRegion object to be copied from
1668         * @param mSamples - crosslink map between the foreign file's samples and
1669         *                   this file's samples
1670         */
1671        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1672            // delete all allocated data first
1673            if (VelocityTable) delete [] VelocityTable;
1674            if (pSampleLoops) delete [] pSampleLoops;
1675            
1676            // backup parent list pointer
1677            RIFF::List* p = pParentList;
1678            
1679            gig::Sample* pOriginalSample = pSample;
1680            gig::Region* pOriginalRegion = pRegion;
1681            
1682            //NOTE: copy code copied from assignment constructor above, see comment there as well
1683            
1684            *this = *orig; // default memberwise shallow copy of all parameters
1685            
1686            // restore members that shall not be altered
1687            pParentList = p; // restore the chunk pointer
1688            pRegion = pOriginalRegion;
1689            
1690            // only take the raw sample reference reference if the
1691            // two DimensionRegion objects are part of the same file
1692            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1693                pSample = pOriginalSample;
1694            }
1695            
1696            if (mSamples && mSamples->count(orig->pSample)) {
1697                pSample = mSamples->find(orig->pSample)->second;
1698          }          }
         VelocityResponseCurveScaling = _3ewa->ReadUint8();  
         AttenuationControllerThreshold = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1699    
1700          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // deep copy of owned structures
1701          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          if (orig->VelocityTable) {
1702          if (pVelocityTables->count(tableKey)) { // if key exists              VelocityTable = new uint8_t[128];
1703              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              for (int k = 0 ; k < 128 ; k++)
1704                    VelocityTable[k] = orig->VelocityTable[k];
1705          }          }
1706          else {          if (orig->pSampleLoops) {
1707              pVelocityAttenuationTable = new double[128];              pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1708              switch (VelocityResponseCurve) { // calculate the new table              for (int k = 0 ; k < orig->SampleLoops ; k++)
1709                    pSampleLoops[k] = orig->pSampleLoops[k];
1710            }
1711        }
1712    
1713        /**
1714         * Updates the respective member variable and updates @c SampleAttenuation
1715         * which depends on this value.
1716         */
1717        void DimensionRegion::SetGain(int32_t gain) {
1718            DLS::Sampler::SetGain(gain);
1719            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1720        }
1721    
1722        /**
1723         * Apply dimension region settings to the respective RIFF chunks. You
1724         * have to call File::Save() to make changes persistent.
1725         *
1726         * Usually there is absolutely no need to call this method explicitly.
1727         * It will be called automatically when File::Save() was called.
1728         *
1729         * @param pProgress - callback function for progress notification
1730         */
1731        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1732            // first update base class's chunk
1733            DLS::Sampler::UpdateChunks(pProgress);
1734    
1735            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1736            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1737            pData[12] = Crossfade.in_start;
1738            pData[13] = Crossfade.in_end;
1739            pData[14] = Crossfade.out_start;
1740            pData[15] = Crossfade.out_end;
1741    
1742            // make sure '3ewa' chunk exists
1743            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1744            if (!_3ewa) {
1745                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1746                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1747                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1748            }
1749            pData = (uint8_t*) _3ewa->LoadChunkData();
1750    
1751            // update '3ewa' chunk with DimensionRegion's current settings
1752    
1753            const uint32_t chunksize = _3ewa->GetNewSize();
1754            store32(&pData[0], chunksize); // unknown, always chunk size?
1755    
1756            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1757            store32(&pData[4], lfo3freq);
1758    
1759            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1760            store32(&pData[8], eg3attack);
1761    
1762            // next 2 bytes unknown
1763    
1764            store16(&pData[14], LFO1InternalDepth);
1765    
1766            // next 2 bytes unknown
1767    
1768            store16(&pData[18], LFO3InternalDepth);
1769    
1770            // next 2 bytes unknown
1771    
1772            store16(&pData[22], LFO1ControlDepth);
1773    
1774            // next 2 bytes unknown
1775    
1776            store16(&pData[26], LFO3ControlDepth);
1777    
1778            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1779            store32(&pData[28], eg1attack);
1780    
1781            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1782            store32(&pData[32], eg1decay1);
1783    
1784            // next 2 bytes unknown
1785    
1786            store16(&pData[38], EG1Sustain);
1787    
1788            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1789            store32(&pData[40], eg1release);
1790    
1791            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1792            pData[44] = eg1ctl;
1793    
1794            const uint8_t eg1ctrloptions =
1795                (EG1ControllerInvert ? 0x01 : 0x00) |
1796                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1797                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1798                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1799            pData[45] = eg1ctrloptions;
1800    
1801            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1802            pData[46] = eg2ctl;
1803    
1804            const uint8_t eg2ctrloptions =
1805                (EG2ControllerInvert ? 0x01 : 0x00) |
1806                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1807                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1808                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1809            pData[47] = eg2ctrloptions;
1810    
1811            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1812            store32(&pData[48], lfo1freq);
1813    
1814            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1815            store32(&pData[52], eg2attack);
1816    
1817            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1818            store32(&pData[56], eg2decay1);
1819    
1820            // next 2 bytes unknown
1821    
1822            store16(&pData[62], EG2Sustain);
1823    
1824            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1825            store32(&pData[64], eg2release);
1826    
1827            // next 2 bytes unknown
1828    
1829            store16(&pData[70], LFO2ControlDepth);
1830    
1831            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1832            store32(&pData[72], lfo2freq);
1833    
1834            // next 2 bytes unknown
1835    
1836            store16(&pData[78], LFO2InternalDepth);
1837    
1838            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1839            store32(&pData[80], eg1decay2);
1840    
1841            // next 2 bytes unknown
1842    
1843            store16(&pData[86], EG1PreAttack);
1844    
1845            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1846            store32(&pData[88], eg2decay2);
1847    
1848            // next 2 bytes unknown
1849    
1850            store16(&pData[94], EG2PreAttack);
1851    
1852            {
1853                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1854                uint8_t velocityresponse = VelocityResponseDepth;
1855                switch (VelocityResponseCurve) {
1856                  case curve_type_nonlinear:                  case curve_type_nonlinear:
1857                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
1858                  case curve_type_linear:                  case curve_type_linear:
1859                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1860                      break;                      break;
1861                  case curve_type_special:                  case curve_type_special:
1862                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_SPECIAL(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1863                      break;                      break;
1864                  case curve_type_unknown:                  case curve_type_unknown:
1865                  default:                  default:
1866                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1867                }
1868                pData[96] = velocityresponse;
1869            }
1870    
1871            {
1872                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1873                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1874                switch (ReleaseVelocityResponseCurve) {
1875                    case curve_type_nonlinear:
1876                        break;
1877                    case curve_type_linear:
1878                        releasevelocityresponse += 5;
1879                        break;
1880                    case curve_type_special:
1881                        releasevelocityresponse += 10;
1882                        break;
1883                    case curve_type_unknown:
1884                    default:
1885                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1886                }
1887                pData[97] = releasevelocityresponse;
1888            }
1889    
1890            pData[98] = VelocityResponseCurveScaling;
1891    
1892            pData[99] = AttenuationControllerThreshold;
1893    
1894            // next 4 bytes unknown
1895    
1896            store16(&pData[104], SampleStartOffset);
1897    
1898            // next 2 bytes unknown
1899    
1900            {
1901                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1902                switch (DimensionBypass) {
1903                    case dim_bypass_ctrl_94:
1904                        pitchTrackDimensionBypass |= 0x10;
1905                        break;
1906                    case dim_bypass_ctrl_95:
1907                        pitchTrackDimensionBypass |= 0x20;
1908                        break;
1909                    case dim_bypass_ctrl_none:
1910                        //FIXME: should we set anything here?
1911                        break;
1912                    default:
1913                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1914              }              }
1915              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[108] = pitchTrackDimensionBypass;
1916            }
1917    
1918            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1919            pData[109] = pan;
1920    
1921            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1922            pData[110] = selfmask;
1923    
1924            // next byte unknown
1925    
1926            {
1927                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1928                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1929                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1930                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1931                pData[112] = lfo3ctrl;
1932            }
1933    
1934            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1935            pData[113] = attenctl;
1936    
1937            {
1938                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1939                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1940                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1941                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1942                pData[114] = lfo2ctrl;
1943            }
1944    
1945            {
1946                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1947                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1948                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1949                if (VCFResonanceController != vcf_res_ctrl_none)
1950                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1951                pData[115] = lfo1ctrl;
1952            }
1953    
1954            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1955                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1956            store16(&pData[116], eg3depth);
1957    
1958            // next 2 bytes unknown
1959    
1960            const uint8_t channeloffset = ChannelOffset * 4;
1961            pData[120] = channeloffset;
1962    
1963            {
1964                uint8_t regoptions = 0;
1965                if (MSDecode)      regoptions |= 0x01; // bit 0
1966                if (SustainDefeat) regoptions |= 0x02; // bit 1
1967                pData[121] = regoptions;
1968            }
1969    
1970            // next 2 bytes unknown
1971    
1972            pData[124] = VelocityUpperLimit;
1973    
1974            // next 3 bytes unknown
1975    
1976            pData[128] = ReleaseTriggerDecay;
1977    
1978            // next 2 bytes unknown
1979    
1980            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1981            pData[131] = eg1hold;
1982    
1983            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1984                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1985            pData[132] = vcfcutoff;
1986    
1987            pData[133] = VCFCutoffController;
1988    
1989            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1990                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
1991            pData[134] = vcfvelscale;
1992    
1993            // next byte unknown
1994    
1995            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1996                                         (VCFResonance & 0x7f); /* lower 7 bits */
1997            pData[136] = vcfresonance;
1998    
1999            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2000                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2001            pData[137] = vcfbreakpoint;
2002    
2003            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2004                                        VCFVelocityCurve * 5;
2005            pData[138] = vcfvelocity;
2006    
2007            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2008            pData[139] = vcftype;
2009    
2010            if (chunksize >= 148) {
2011                memcpy(&pData[140], DimensionUpperLimits, 8);
2012            }
2013        }
2014    
2015        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2016            curve_type_t curveType = releaseVelocityResponseCurve;
2017            uint8_t depth = releaseVelocityResponseDepth;
2018            // this models a strange behaviour or bug in GSt: two of the
2019            // velocity response curves for release time are not used even
2020            // if specified, instead another curve is chosen.
2021            if ((curveType == curve_type_nonlinear && depth == 0) ||
2022                (curveType == curve_type_special   && depth == 4)) {
2023                curveType = curve_type_nonlinear;
2024                depth = 3;
2025            }
2026            return GetVelocityTable(curveType, depth, 0);
2027        }
2028    
2029        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2030                                                        uint8_t vcfVelocityDynamicRange,
2031                                                        uint8_t vcfVelocityScale,
2032                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2033        {
2034            curve_type_t curveType = vcfVelocityCurve;
2035            uint8_t depth = vcfVelocityDynamicRange;
2036            // even stranger GSt: two of the velocity response curves for
2037            // filter cutoff are not used, instead another special curve
2038            // is chosen. This curve is not used anywhere else.
2039            if ((curveType == curve_type_nonlinear && depth == 0) ||
2040                (curveType == curve_type_special   && depth == 4)) {
2041                curveType = curve_type_special;
2042                depth = 5;
2043          }          }
2044            return GetVelocityTable(curveType, depth,
2045                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2046                                        ? vcfVelocityScale : 0);
2047      }      }
2048    
2049        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2050        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2051        {
2052            double* table;
2053            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2054            if (pVelocityTables->count(tableKey)) { // if key exists
2055                table = (*pVelocityTables)[tableKey];
2056            }
2057            else {
2058                table = CreateVelocityTable(curveType, depth, scaling);
2059                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2060            }
2061            return table;
2062        }
2063    
2064        Region* DimensionRegion::GetParent() const {
2065            return pRegion;
2066        }
2067    
2068    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2069    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2070    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2071    //#pragma GCC diagnostic push
2072    //#pragma GCC diagnostic error "-Wswitch"
2073    
2074      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2075          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2076          switch (EncodedController) {          switch (EncodedController) {
# Line 981  namespace gig { Line 2182  namespace gig {
2182                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2183                  break;                  break;
2184    
2185                // format extension (these controllers are so far only supported by
2186                // LinuxSampler & gigedit) they will *NOT* work with
2187                // Gigasampler/GigaStudio !
2188                case _lev_ctrl_CC3_EXT:
2189                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190                    decodedcontroller.controller_number = 3;
2191                    break;
2192                case _lev_ctrl_CC6_EXT:
2193                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194                    decodedcontroller.controller_number = 6;
2195                    break;
2196                case _lev_ctrl_CC7_EXT:
2197                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198                    decodedcontroller.controller_number = 7;
2199                    break;
2200                case _lev_ctrl_CC8_EXT:
2201                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202                    decodedcontroller.controller_number = 8;
2203                    break;
2204                case _lev_ctrl_CC9_EXT:
2205                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206                    decodedcontroller.controller_number = 9;
2207                    break;
2208                case _lev_ctrl_CC10_EXT:
2209                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2210                    decodedcontroller.controller_number = 10;
2211                    break;
2212                case _lev_ctrl_CC11_EXT:
2213                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214                    decodedcontroller.controller_number = 11;
2215                    break;
2216                case _lev_ctrl_CC14_EXT:
2217                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218                    decodedcontroller.controller_number = 14;
2219                    break;
2220                case _lev_ctrl_CC15_EXT:
2221                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222                    decodedcontroller.controller_number = 15;
2223                    break;
2224                case _lev_ctrl_CC20_EXT:
2225                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226                    decodedcontroller.controller_number = 20;
2227                    break;
2228                case _lev_ctrl_CC21_EXT:
2229                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230                    decodedcontroller.controller_number = 21;
2231                    break;
2232                case _lev_ctrl_CC22_EXT:
2233                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234                    decodedcontroller.controller_number = 22;
2235                    break;
2236                case _lev_ctrl_CC23_EXT:
2237                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238                    decodedcontroller.controller_number = 23;
2239                    break;
2240                case _lev_ctrl_CC24_EXT:
2241                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242                    decodedcontroller.controller_number = 24;
2243                    break;
2244                case _lev_ctrl_CC25_EXT:
2245                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246                    decodedcontroller.controller_number = 25;
2247                    break;
2248                case _lev_ctrl_CC26_EXT:
2249                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250                    decodedcontroller.controller_number = 26;
2251                    break;
2252                case _lev_ctrl_CC27_EXT:
2253                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254                    decodedcontroller.controller_number = 27;
2255                    break;
2256                case _lev_ctrl_CC28_EXT:
2257                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258                    decodedcontroller.controller_number = 28;
2259                    break;
2260                case _lev_ctrl_CC29_EXT:
2261                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262                    decodedcontroller.controller_number = 29;
2263                    break;
2264                case _lev_ctrl_CC30_EXT:
2265                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2266                    decodedcontroller.controller_number = 30;
2267                    break;
2268                case _lev_ctrl_CC31_EXT:
2269                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270                    decodedcontroller.controller_number = 31;
2271                    break;
2272                case _lev_ctrl_CC68_EXT:
2273                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274                    decodedcontroller.controller_number = 68;
2275                    break;
2276                case _lev_ctrl_CC69_EXT:
2277                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278                    decodedcontroller.controller_number = 69;
2279                    break;
2280                case _lev_ctrl_CC70_EXT:
2281                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282                    decodedcontroller.controller_number = 70;
2283                    break;
2284                case _lev_ctrl_CC71_EXT:
2285                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286                    decodedcontroller.controller_number = 71;
2287                    break;
2288                case _lev_ctrl_CC72_EXT:
2289                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290                    decodedcontroller.controller_number = 72;
2291                    break;
2292                case _lev_ctrl_CC73_EXT:
2293                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294                    decodedcontroller.controller_number = 73;
2295                    break;
2296                case _lev_ctrl_CC74_EXT:
2297                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298                    decodedcontroller.controller_number = 74;
2299                    break;
2300                case _lev_ctrl_CC75_EXT:
2301                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302                    decodedcontroller.controller_number = 75;
2303                    break;
2304                case _lev_ctrl_CC76_EXT:
2305                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306                    decodedcontroller.controller_number = 76;
2307                    break;
2308                case _lev_ctrl_CC77_EXT:
2309                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310                    decodedcontroller.controller_number = 77;
2311                    break;
2312                case _lev_ctrl_CC78_EXT:
2313                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314                    decodedcontroller.controller_number = 78;
2315                    break;
2316                case _lev_ctrl_CC79_EXT:
2317                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318                    decodedcontroller.controller_number = 79;
2319                    break;
2320                case _lev_ctrl_CC84_EXT:
2321                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322                    decodedcontroller.controller_number = 84;
2323                    break;
2324                case _lev_ctrl_CC85_EXT:
2325                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326                    decodedcontroller.controller_number = 85;
2327                    break;
2328                case _lev_ctrl_CC86_EXT:
2329                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330                    decodedcontroller.controller_number = 86;
2331                    break;
2332                case _lev_ctrl_CC87_EXT:
2333                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334                    decodedcontroller.controller_number = 87;
2335                    break;
2336                case _lev_ctrl_CC89_EXT:
2337                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338                    decodedcontroller.controller_number = 89;
2339                    break;
2340                case _lev_ctrl_CC90_EXT:
2341                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342                    decodedcontroller.controller_number = 90;
2343                    break;
2344                case _lev_ctrl_CC96_EXT:
2345                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346                    decodedcontroller.controller_number = 96;
2347                    break;
2348                case _lev_ctrl_CC97_EXT:
2349                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350                    decodedcontroller.controller_number = 97;
2351                    break;
2352                case _lev_ctrl_CC102_EXT:
2353                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354                    decodedcontroller.controller_number = 102;
2355                    break;
2356                case _lev_ctrl_CC103_EXT:
2357                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358                    decodedcontroller.controller_number = 103;
2359                    break;
2360                case _lev_ctrl_CC104_EXT:
2361                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362                    decodedcontroller.controller_number = 104;
2363                    break;
2364                case _lev_ctrl_CC105_EXT:
2365                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366                    decodedcontroller.controller_number = 105;
2367                    break;
2368                case _lev_ctrl_CC106_EXT:
2369                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370                    decodedcontroller.controller_number = 106;
2371                    break;
2372                case _lev_ctrl_CC107_EXT:
2373                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374                    decodedcontroller.controller_number = 107;
2375                    break;
2376                case _lev_ctrl_CC108_EXT:
2377                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378                    decodedcontroller.controller_number = 108;
2379                    break;
2380                case _lev_ctrl_CC109_EXT:
2381                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382                    decodedcontroller.controller_number = 109;
2383                    break;
2384                case _lev_ctrl_CC110_EXT:
2385                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386                    decodedcontroller.controller_number = 110;
2387                    break;
2388                case _lev_ctrl_CC111_EXT:
2389                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390                    decodedcontroller.controller_number = 111;
2391                    break;
2392                case _lev_ctrl_CC112_EXT:
2393                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394                    decodedcontroller.controller_number = 112;
2395                    break;
2396                case _lev_ctrl_CC113_EXT:
2397                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398                    decodedcontroller.controller_number = 113;
2399                    break;
2400                case _lev_ctrl_CC114_EXT:
2401                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402                    decodedcontroller.controller_number = 114;
2403                    break;
2404                case _lev_ctrl_CC115_EXT:
2405                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406                    decodedcontroller.controller_number = 115;
2407                    break;
2408                case _lev_ctrl_CC116_EXT:
2409                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410                    decodedcontroller.controller_number = 116;
2411                    break;
2412                case _lev_ctrl_CC117_EXT:
2413                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414                    decodedcontroller.controller_number = 117;
2415                    break;
2416                case _lev_ctrl_CC118_EXT:
2417                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418                    decodedcontroller.controller_number = 118;
2419                    break;
2420                case _lev_ctrl_CC119_EXT:
2421                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422                    decodedcontroller.controller_number = 119;
2423                    break;
2424    
2425              // unknown controller type              // unknown controller type
2426              default:              default:
2427                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2428          }          }
2429          return decodedcontroller;          return decodedcontroller;
2430      }      }
2431        
2432    // see above (diagnostic push not supported prior GCC 4.6)
2433    //#pragma GCC diagnostic pop
2434    
2435        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2436            _lev_ctrl_t encodedcontroller;
2437            switch (DecodedController.type) {
2438                // special controller
2439                case leverage_ctrl_t::type_none:
2440                    encodedcontroller = _lev_ctrl_none;
2441                    break;
2442                case leverage_ctrl_t::type_velocity:
2443                    encodedcontroller = _lev_ctrl_velocity;
2444                    break;
2445                case leverage_ctrl_t::type_channelaftertouch:
2446                    encodedcontroller = _lev_ctrl_channelaftertouch;
2447                    break;
2448    
2449                // ordinary MIDI control change controller
2450                case leverage_ctrl_t::type_controlchange:
2451                    switch (DecodedController.controller_number) {
2452                        case 1:
2453                            encodedcontroller = _lev_ctrl_modwheel;
2454                            break;
2455                        case 2:
2456                            encodedcontroller = _lev_ctrl_breath;
2457                            break;
2458                        case 4:
2459                            encodedcontroller = _lev_ctrl_foot;
2460                            break;
2461                        case 12:
2462                            encodedcontroller = _lev_ctrl_effect1;
2463                            break;
2464                        case 13:
2465                            encodedcontroller = _lev_ctrl_effect2;
2466                            break;
2467                        case 16:
2468                            encodedcontroller = _lev_ctrl_genpurpose1;
2469                            break;
2470                        case 17:
2471                            encodedcontroller = _lev_ctrl_genpurpose2;
2472                            break;
2473                        case 18:
2474                            encodedcontroller = _lev_ctrl_genpurpose3;
2475                            break;
2476                        case 19:
2477                            encodedcontroller = _lev_ctrl_genpurpose4;
2478                            break;
2479                        case 5:
2480                            encodedcontroller = _lev_ctrl_portamentotime;
2481                            break;
2482                        case 64:
2483                            encodedcontroller = _lev_ctrl_sustainpedal;
2484                            break;
2485                        case 65:
2486                            encodedcontroller = _lev_ctrl_portamento;
2487                            break;
2488                        case 66:
2489                            encodedcontroller = _lev_ctrl_sostenutopedal;
2490                            break;
2491                        case 67:
2492                            encodedcontroller = _lev_ctrl_softpedal;
2493                            break;
2494                        case 80:
2495                            encodedcontroller = _lev_ctrl_genpurpose5;
2496                            break;
2497                        case 81:
2498                            encodedcontroller = _lev_ctrl_genpurpose6;
2499                            break;
2500                        case 82:
2501                            encodedcontroller = _lev_ctrl_genpurpose7;
2502                            break;
2503                        case 83:
2504                            encodedcontroller = _lev_ctrl_genpurpose8;
2505                            break;
2506                        case 91:
2507                            encodedcontroller = _lev_ctrl_effect1depth;
2508                            break;
2509                        case 92:
2510                            encodedcontroller = _lev_ctrl_effect2depth;
2511                            break;
2512                        case 93:
2513                            encodedcontroller = _lev_ctrl_effect3depth;
2514                            break;
2515                        case 94:
2516                            encodedcontroller = _lev_ctrl_effect4depth;
2517                            break;
2518                        case 95:
2519                            encodedcontroller = _lev_ctrl_effect5depth;
2520                            break;
2521    
2522                        // format extension (these controllers are so far only
2523                        // supported by LinuxSampler & gigedit) they will *NOT*
2524                        // work with Gigasampler/GigaStudio !
2525                        case 3:
2526                            encodedcontroller = _lev_ctrl_CC3_EXT;
2527                            break;
2528                        case 6:
2529                            encodedcontroller = _lev_ctrl_CC6_EXT;
2530                            break;
2531                        case 7:
2532                            encodedcontroller = _lev_ctrl_CC7_EXT;
2533                            break;
2534                        case 8:
2535                            encodedcontroller = _lev_ctrl_CC8_EXT;
2536                            break;
2537                        case 9:
2538                            encodedcontroller = _lev_ctrl_CC9_EXT;
2539                            break;
2540                        case 10:
2541                            encodedcontroller = _lev_ctrl_CC10_EXT;
2542                            break;
2543                        case 11:
2544                            encodedcontroller = _lev_ctrl_CC11_EXT;
2545                            break;
2546                        case 14:
2547                            encodedcontroller = _lev_ctrl_CC14_EXT;
2548                            break;
2549                        case 15:
2550                            encodedcontroller = _lev_ctrl_CC15_EXT;
2551                            break;
2552                        case 20:
2553                            encodedcontroller = _lev_ctrl_CC20_EXT;
2554                            break;
2555                        case 21:
2556                            encodedcontroller = _lev_ctrl_CC21_EXT;
2557                            break;
2558                        case 22:
2559                            encodedcontroller = _lev_ctrl_CC22_EXT;
2560                            break;
2561                        case 23:
2562                            encodedcontroller = _lev_ctrl_CC23_EXT;
2563                            break;
2564                        case 24:
2565                            encodedcontroller = _lev_ctrl_CC24_EXT;
2566                            break;
2567                        case 25:
2568                            encodedcontroller = _lev_ctrl_CC25_EXT;
2569                            break;
2570                        case 26:
2571                            encodedcontroller = _lev_ctrl_CC26_EXT;
2572                            break;
2573                        case 27:
2574                            encodedcontroller = _lev_ctrl_CC27_EXT;
2575                            break;
2576                        case 28:
2577                            encodedcontroller = _lev_ctrl_CC28_EXT;
2578                            break;
2579                        case 29:
2580                            encodedcontroller = _lev_ctrl_CC29_EXT;
2581                            break;
2582                        case 30:
2583                            encodedcontroller = _lev_ctrl_CC30_EXT;
2584                            break;
2585                        case 31:
2586                            encodedcontroller = _lev_ctrl_CC31_EXT;
2587                            break;
2588                        case 68:
2589                            encodedcontroller = _lev_ctrl_CC68_EXT;
2590                            break;
2591                        case 69:
2592                            encodedcontroller = _lev_ctrl_CC69_EXT;
2593                            break;
2594                        case 70:
2595                            encodedcontroller = _lev_ctrl_CC70_EXT;
2596                            break;
2597                        case 71:
2598                            encodedcontroller = _lev_ctrl_CC71_EXT;
2599                            break;
2600                        case 72:
2601                            encodedcontroller = _lev_ctrl_CC72_EXT;
2602                            break;
2603                        case 73:
2604                            encodedcontroller = _lev_ctrl_CC73_EXT;
2605                            break;
2606                        case 74:
2607                            encodedcontroller = _lev_ctrl_CC74_EXT;
2608                            break;
2609                        case 75:
2610                            encodedcontroller = _lev_ctrl_CC75_EXT;
2611                            break;
2612                        case 76:
2613                            encodedcontroller = _lev_ctrl_CC76_EXT;
2614                            break;
2615                        case 77:
2616                            encodedcontroller = _lev_ctrl_CC77_EXT;
2617                            break;
2618                        case 78:
2619                            encodedcontroller = _lev_ctrl_CC78_EXT;
2620                            break;
2621                        case 79:
2622                            encodedcontroller = _lev_ctrl_CC79_EXT;
2623                            break;
2624                        case 84:
2625                            encodedcontroller = _lev_ctrl_CC84_EXT;
2626                            break;
2627                        case 85:
2628                            encodedcontroller = _lev_ctrl_CC85_EXT;
2629                            break;
2630                        case 86:
2631                            encodedcontroller = _lev_ctrl_CC86_EXT;
2632                            break;
2633                        case 87:
2634                            encodedcontroller = _lev_ctrl_CC87_EXT;
2635                            break;
2636                        case 89:
2637                            encodedcontroller = _lev_ctrl_CC89_EXT;
2638                            break;
2639                        case 90:
2640                            encodedcontroller = _lev_ctrl_CC90_EXT;
2641                            break;
2642                        case 96:
2643                            encodedcontroller = _lev_ctrl_CC96_EXT;
2644                            break;
2645                        case 97:
2646                            encodedcontroller = _lev_ctrl_CC97_EXT;
2647                            break;
2648                        case 102:
2649                            encodedcontroller = _lev_ctrl_CC102_EXT;
2650                            break;
2651                        case 103:
2652                            encodedcontroller = _lev_ctrl_CC103_EXT;
2653                            break;
2654                        case 104:
2655                            encodedcontroller = _lev_ctrl_CC104_EXT;
2656                            break;
2657                        case 105:
2658                            encodedcontroller = _lev_ctrl_CC105_EXT;
2659                            break;
2660                        case 106:
2661                            encodedcontroller = _lev_ctrl_CC106_EXT;
2662                            break;
2663                        case 107:
2664                            encodedcontroller = _lev_ctrl_CC107_EXT;
2665                            break;
2666                        case 108:
2667                            encodedcontroller = _lev_ctrl_CC108_EXT;
2668                            break;
2669                        case 109:
2670                            encodedcontroller = _lev_ctrl_CC109_EXT;
2671                            break;
2672                        case 110:
2673                            encodedcontroller = _lev_ctrl_CC110_EXT;
2674                            break;
2675                        case 111:
2676                            encodedcontroller = _lev_ctrl_CC111_EXT;
2677                            break;
2678                        case 112:
2679                            encodedcontroller = _lev_ctrl_CC112_EXT;
2680                            break;
2681                        case 113:
2682                            encodedcontroller = _lev_ctrl_CC113_EXT;
2683                            break;
2684                        case 114:
2685                            encodedcontroller = _lev_ctrl_CC114_EXT;
2686                            break;
2687                        case 115:
2688                            encodedcontroller = _lev_ctrl_CC115_EXT;
2689                            break;
2690                        case 116:
2691                            encodedcontroller = _lev_ctrl_CC116_EXT;
2692                            break;
2693                        case 117:
2694                            encodedcontroller = _lev_ctrl_CC117_EXT;
2695                            break;
2696                        case 118:
2697                            encodedcontroller = _lev_ctrl_CC118_EXT;
2698                            break;
2699                        case 119:
2700                            encodedcontroller = _lev_ctrl_CC119_EXT;
2701                            break;
2702    
2703                        default:
2704                            throw gig::Exception("leverage controller number is not supported by the gig format");
2705                    }
2706                    break;
2707                default:
2708                    throw gig::Exception("Unknown leverage controller type.");
2709            }
2710            return encodedcontroller;
2711        }
2712    
2713      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2714          Instances--;          Instances--;
# Line 1001  namespace gig { Line 2723  namespace gig {
2723              delete pVelocityTables;              delete pVelocityTables;
2724              pVelocityTables = NULL;              pVelocityTables = NULL;
2725          }          }
2726            if (VelocityTable) delete[] VelocityTable;
2727      }      }
2728    
2729      /**      /**
# Line 1018  namespace gig { Line 2741  namespace gig {
2741          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2742      }      }
2743    
2744        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2745            return pVelocityReleaseTable[MIDIKeyVelocity];
2746        }
2747    
2748        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2749            return pVelocityCutoffTable[MIDIKeyVelocity];
2750        }
2751    
2752        /**
2753         * Updates the respective member variable and the lookup table / cache
2754         * that depends on this value.
2755         */
2756        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2757            pVelocityAttenuationTable =
2758                GetVelocityTable(
2759                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2760                );
2761            VelocityResponseCurve = curve;
2762        }
2763    
2764        /**
2765         * Updates the respective member variable and the lookup table / cache
2766         * that depends on this value.
2767         */
2768        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2769            pVelocityAttenuationTable =
2770                GetVelocityTable(
2771                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2772                );
2773            VelocityResponseDepth = depth;
2774        }
2775    
2776        /**
2777         * Updates the respective member variable and the lookup table / cache
2778         * that depends on this value.
2779         */
2780        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2781            pVelocityAttenuationTable =
2782                GetVelocityTable(
2783                    VelocityResponseCurve, VelocityResponseDepth, scaling
2784                );
2785            VelocityResponseCurveScaling = scaling;
2786        }
2787    
2788        /**
2789         * Updates the respective member variable and the lookup table / cache
2790         * that depends on this value.
2791         */
2792        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2793            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2794            ReleaseVelocityResponseCurve = curve;
2795        }
2796    
2797        /**
2798         * Updates the respective member variable and the lookup table / cache
2799         * that depends on this value.
2800         */
2801        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2802            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2803            ReleaseVelocityResponseDepth = depth;
2804        }
2805    
2806        /**
2807         * Updates the respective member variable and the lookup table / cache
2808         * that depends on this value.
2809         */
2810        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2811            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2812            VCFCutoffController = controller;
2813        }
2814    
2815        /**
2816         * Updates the respective member variable and the lookup table / cache
2817         * that depends on this value.
2818         */
2819        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2820            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2821            VCFVelocityCurve = curve;
2822        }
2823    
2824        /**
2825         * Updates the respective member variable and the lookup table / cache
2826         * that depends on this value.
2827         */
2828        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2829            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2830            VCFVelocityDynamicRange = range;
2831        }
2832    
2833        /**
2834         * Updates the respective member variable and the lookup table / cache
2835         * that depends on this value.
2836         */
2837        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2838            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2839            VCFVelocityScale = scaling;
2840        }
2841    
2842        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2843    
2844            // line-segment approximations of the 15 velocity curves
2845    
2846            // linear
2847            const int lin0[] = { 1, 1, 127, 127 };
2848            const int lin1[] = { 1, 21, 127, 127 };
2849            const int lin2[] = { 1, 45, 127, 127 };
2850            const int lin3[] = { 1, 74, 127, 127 };
2851            const int lin4[] = { 1, 127, 127, 127 };
2852    
2853            // non-linear
2854            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2855            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2856                                 127, 127 };
2857            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2858                                 127, 127 };
2859            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2860                                 127, 127 };
2861            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2862    
2863            // special
2864            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2865                                 113, 127, 127, 127 };
2866            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2867                                 118, 127, 127, 127 };
2868            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2869                                 85, 90, 91, 127, 127, 127 };
2870            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2871                                 117, 127, 127, 127 };
2872            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2873                                 127, 127 };
2874    
2875            // this is only used by the VCF velocity curve
2876            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2877                                 91, 127, 127, 127 };
2878    
2879            const int* const curves[] = { non0, non1, non2, non3, non4,
2880                                          lin0, lin1, lin2, lin3, lin4,
2881                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2882    
2883            double* const table = new double[128];
2884    
2885            const int* curve = curves[curveType * 5 + depth];
2886            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2887    
2888            table[0] = 0;
2889            for (int x = 1 ; x < 128 ; x++) {
2890    
2891                if (x > curve[2]) curve += 2;
2892                double y = curve[1] + (x - curve[0]) *
2893                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2894                y = y / 127;
2895    
2896                // Scale up for s > 20, down for s < 20. When
2897                // down-scaling, the curve still ends at 1.0.
2898                if (s < 20 && y >= 0.5)
2899                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2900                else
2901                    y = y * (s / 20.0);
2902                if (y > 1) y = 1;
2903    
2904                table[x] = y;
2905            }
2906            return table;
2907        }
2908    
2909    
2910  // *************** Region ***************  // *************** Region ***************
# Line 1026  namespace gig { Line 2913  namespace gig {
2913      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2914          // Initialization          // Initialization
2915          Dimensions = 0;          Dimensions = 0;
2916          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2917              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2918          }          }
2919            Layers = 1;
2920            File* file = (File*) GetParent()->GetParent();
2921            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2922    
2923          // Actual Loading          // Actual Loading
2924    
2925            if (!file->GetAutoLoad()) return;
2926    
2927          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2928    
2929          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2930          if (_3lnk) {          if (_3lnk) {
2931              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2932              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2933                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2934                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2935                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2936                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2937                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2938                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2939                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2940                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2941                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2942                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2943                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2944                  }                  }
2945                  else { // active dimension                  else { // active dimension
2946                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2947                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2948                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2949                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2950                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2951                      Dimensions++;                      Dimensions++;
2952    
2953                        // if this is a layer dimension, remember the amount of layers
2954                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2955                  }                  }
2956                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2957              }              }
2958                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2959    
2960              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2961              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2962                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
2963                  if (pDimDef->dimension == dimension_velocity) {  
2964                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
2965                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
2966                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2967                          pDimDef->ranges     = NULL;              else
2968                      }                  _3lnk->SetPos(44);
2969                      else { // custom defined ranges  
2970                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
2971                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
2972                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
2973                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2974                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
2975                  }                  }
2976                    GetSample(); // load global region sample reference
2977              }              }
2978            } else {
2979                DimensionRegions = 0;
2980                for (int i = 0 ; i < 8 ; i++) {
2981                    pDimensionDefinitions[i].dimension  = dimension_none;
2982                    pDimensionDefinitions[i].bits       = 0;
2983                    pDimensionDefinitions[i].zones      = 0;
2984                }
2985            }
2986    
2987              // load sample references          // make sure there is at least one dimension region
2988              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          if (!DimensionRegions) {
2989              for (uint i = 0; i < DimensionRegions; i++) {              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2990                  uint32_t wavepoolindex = _3lnk->ReadUint32();              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2991                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2992                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2993                DimensionRegions = 1;
2994            }
2995        }
2996    
2997        /**
2998         * Apply Region settings and all its DimensionRegions to the respective
2999         * RIFF chunks. You have to call File::Save() to make changes persistent.
3000         *
3001         * Usually there is absolutely no need to call this method explicitly.
3002         * It will be called automatically when File::Save() was called.
3003         *
3004         * @param pProgress - callback function for progress notification
3005         * @throws gig::Exception if samples cannot be dereferenced
3006         */
3007        void Region::UpdateChunks(progress_t* pProgress) {
3008            // in the gig format we don't care about the Region's sample reference
3009            // but we still have to provide some existing one to not corrupt the
3010            // file, so to avoid the latter we simply always assign the sample of
3011            // the first dimension region of this region
3012            pSample = pDimensionRegions[0]->pSample;
3013    
3014            // first update base class's chunks
3015            DLS::Region::UpdateChunks(pProgress);
3016    
3017            // update dimension region's chunks
3018            for (int i = 0; i < DimensionRegions; i++) {
3019                pDimensionRegions[i]->UpdateChunks(pProgress);
3020            }
3021    
3022            File* pFile = (File*) GetParent()->GetParent();
3023            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3024            const int iMaxDimensions =  version3 ? 8 : 5;
3025            const int iMaxDimensionRegions = version3 ? 256 : 32;
3026    
3027            // make sure '3lnk' chunk exists
3028            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3029            if (!_3lnk) {
3030                const int _3lnkChunkSize = version3 ? 1092 : 172;
3031                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3032                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3033    
3034                // move 3prg to last position
3035                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3036            }
3037    
3038            // update dimension definitions in '3lnk' chunk
3039            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3040            store32(&pData[0], DimensionRegions);
3041            int shift = 0;
3042            for (int i = 0; i < iMaxDimensions; i++) {
3043                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3044                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3045                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3046                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3047                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3048                // next 3 bytes unknown, always zero?
3049    
3050                shift += pDimensionDefinitions[i].bits;
3051            }
3052    
3053            // update wave pool table in '3lnk' chunk
3054            const int iWavePoolOffset = version3 ? 68 : 44;
3055            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3056                int iWaveIndex = -1;
3057                if (i < DimensionRegions) {
3058                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3059                    File::SampleList::iterator iter = pFile->pSamples->begin();
3060                    File::SampleList::iterator end  = pFile->pSamples->end();
3061                    for (int index = 0; iter != end; ++iter, ++index) {
3062                        if (*iter == pDimensionRegions[i]->pSample) {
3063                            iWaveIndex = index;
3064                            break;
3065                        }
3066                    }
3067              }              }
3068                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3069          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3070      }      }
3071    
3072      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1112  namespace gig { Line 3076  namespace gig {
3076              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3077              while (_3ewl) {              while (_3ewl) {
3078                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3079                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3080                      dimensionRegionNr++;                      dimensionRegionNr++;
3081                  }                  }
3082                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1121  namespace gig { Line 3085  namespace gig {
3085          }          }
3086      }      }
3087    
3088      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3089          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3090              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3091            // update Region key table for fast lookup
3092            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3093        }
3094    
3095        void Region::UpdateVelocityTable() {
3096            // get velocity dimension's index
3097            int veldim = -1;
3098            for (int i = 0 ; i < Dimensions ; i++) {
3099                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3100                    veldim = i;
3101                    break;
3102                }
3103            }
3104            if (veldim == -1) return;
3105    
3106            int step = 1;
3107            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3108            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3109            int end = step * pDimensionDefinitions[veldim].zones;
3110    
3111            // loop through all dimension regions for all dimensions except the velocity dimension
3112            int dim[8] = { 0 };
3113            for (int i = 0 ; i < DimensionRegions ; i++) {
3114    
3115                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3116                    pDimensionRegions[i]->VelocityUpperLimit) {
3117                    // create the velocity table
3118                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3119                    if (!table) {
3120                        table = new uint8_t[128];
3121                        pDimensionRegions[i]->VelocityTable = table;
3122                    }
3123                    int tableidx = 0;
3124                    int velocityZone = 0;
3125                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3126                        for (int k = i ; k < end ; k += step) {
3127                            DimensionRegion *d = pDimensionRegions[k];
3128                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3129                            velocityZone++;
3130                        }
3131                    } else { // gig2
3132                        for (int k = i ; k < end ; k += step) {
3133                            DimensionRegion *d = pDimensionRegions[k];
3134                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3135                            velocityZone++;
3136                        }
3137                    }
3138                } else {
3139                    if (pDimensionRegions[i]->VelocityTable) {
3140                        delete[] pDimensionRegions[i]->VelocityTable;
3141                        pDimensionRegions[i]->VelocityTable = 0;
3142                    }
3143                }
3144    
3145                int j;
3146                int shift = 0;
3147                for (j = 0 ; j < Dimensions ; j++) {
3148                    if (j == veldim) i += skipveldim; // skip velocity dimension
3149                    else {
3150                        dim[j]++;
3151                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3152                        else {
3153                            // skip unused dimension regions
3154                            dim[j] = 0;
3155                            i += ((1 << pDimensionDefinitions[j].bits) -
3156                                  pDimensionDefinitions[j].zones) << shift;
3157                        }
3158                    }
3159                    shift += pDimensionDefinitions[j].bits;
3160                }
3161                if (j == Dimensions) break;
3162            }
3163        }
3164    
3165        /** @brief Einstein would have dreamed of it - create a new dimension.
3166         *
3167         * Creates a new dimension with the dimension definition given by
3168         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3169         * There is a hard limit of dimensions and total amount of "bits" all
3170         * dimensions can have. This limit is dependant to what gig file format
3171         * version this file refers to. The gig v2 (and lower) format has a
3172         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3173         * format has a limit of 8.
3174         *
3175         * @param pDimDef - defintion of the new dimension
3176         * @throws gig::Exception if dimension of the same type exists already
3177         * @throws gig::Exception if amount of dimensions or total amount of
3178         *                        dimension bits limit is violated
3179         */
3180        void Region::AddDimension(dimension_def_t* pDimDef) {
3181            // some initial sanity checks of the given dimension definition
3182            if (pDimDef->zones < 2)
3183                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3184            if (pDimDef->bits < 1)
3185                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3186            if (pDimDef->dimension == dimension_samplechannel) {
3187                if (pDimDef->zones != 2)
3188                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3189                if (pDimDef->bits != 1)
3190                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3191            }
3192    
3193            // check if max. amount of dimensions reached
3194            File* file = (File*) GetParent()->GetParent();
3195            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3196            if (Dimensions >= iMaxDimensions)
3197                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3198            // check if max. amount of dimension bits reached
3199            int iCurrentBits = 0;
3200            for (int i = 0; i < Dimensions; i++)
3201                iCurrentBits += pDimensionDefinitions[i].bits;
3202            if (iCurrentBits >= iMaxDimensions)
3203                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3204            const int iNewBits = iCurrentBits + pDimDef->bits;
3205            if (iNewBits > iMaxDimensions)
3206                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3207            // check if there's already a dimensions of the same type
3208            for (int i = 0; i < Dimensions; i++)
3209                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3210                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3211    
3212            // pos is where the new dimension should be placed, normally
3213            // last in list, except for the samplechannel dimension which
3214            // has to be first in list
3215            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3216            int bitpos = 0;
3217            for (int i = 0 ; i < pos ; i++)
3218                bitpos += pDimensionDefinitions[i].bits;
3219    
3220            // make room for the new dimension
3221            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3222            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3223                for (int j = Dimensions ; j > pos ; j--) {
3224                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3225                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3226                }
3227            }
3228    
3229            // assign definition of new dimension
3230            pDimensionDefinitions[pos] = *pDimDef;
3231    
3232            // auto correct certain dimension definition fields (where possible)
3233            pDimensionDefinitions[pos].split_type  =
3234                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3235            pDimensionDefinitions[pos].zone_size =
3236                __resolveZoneSize(pDimensionDefinitions[pos]);
3237    
3238            // create new dimension region(s) for this new dimension, and make
3239            // sure that the dimension regions are placed correctly in both the
3240            // RIFF list and the pDimensionRegions array
3241            RIFF::Chunk* moveTo = NULL;
3242            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3243            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3244                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3245                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3246                }
3247                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3248                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3249                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3250                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3251                        // create a new dimension region and copy all parameter values from
3252                        // an existing dimension region
3253                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3254                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3255    
3256                        DimensionRegions++;
3257                    }
3258                }
3259                moveTo = pDimensionRegions[i]->pParentList;
3260            }
3261    
3262            // initialize the upper limits for this dimension
3263            int mask = (1 << bitpos) - 1;
3264            for (int z = 0 ; z < pDimDef->zones ; z++) {
3265                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3266                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3267                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3268                                      (z << bitpos) |
3269                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3270                }
3271            }
3272    
3273            Dimensions++;
3274    
3275            // if this is a layer dimension, update 'Layers' attribute
3276            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3277    
3278            UpdateVelocityTable();
3279        }
3280    
3281        /** @brief Delete an existing dimension.
3282         *
3283         * Deletes the dimension given by \a pDimDef and deletes all respective
3284         * dimension regions, that is all dimension regions where the dimension's
3285         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3286         * for example this would delete all dimension regions for the case(s)
3287         * where the sustain pedal is pressed down.
3288         *
3289         * @param pDimDef - dimension to delete
3290         * @throws gig::Exception if given dimension cannot be found
3291         */
3292        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3293            // get dimension's index
3294            int iDimensionNr = -1;
3295            for (int i = 0; i < Dimensions; i++) {
3296                if (&pDimensionDefinitions[i] == pDimDef) {
3297                    iDimensionNr = i;
3298                    break;
3299                }
3300            }
3301            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3302    
3303            // get amount of bits below the dimension to delete
3304            int iLowerBits = 0;
3305            for (int i = 0; i < iDimensionNr; i++)
3306                iLowerBits += pDimensionDefinitions[i].bits;
3307    
3308            // get amount ot bits above the dimension to delete
3309            int iUpperBits = 0;
3310            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3311                iUpperBits += pDimensionDefinitions[i].bits;
3312    
3313            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3314    
3315            // delete dimension regions which belong to the given dimension
3316            // (that is where the dimension's bit > 0)
3317            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3318                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3319                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3320                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3321                                        iObsoleteBit << iLowerBits |
3322                                        iLowerBit;
3323    
3324                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3325                        delete pDimensionRegions[iToDelete];
3326                        pDimensionRegions[iToDelete] = NULL;
3327                        DimensionRegions--;
3328                    }
3329                }
3330            }
3331    
3332            // defrag pDimensionRegions array
3333            // (that is remove the NULL spaces within the pDimensionRegions array)
3334            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3335                if (!pDimensionRegions[iTo]) {
3336                    if (iFrom <= iTo) iFrom = iTo + 1;
3337                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3338                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3339                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3340                        pDimensionRegions[iFrom] = NULL;
3341                    }
3342                }
3343            }
3344    
3345            // remove the this dimension from the upper limits arrays
3346            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3347                DimensionRegion* d = pDimensionRegions[j];
3348                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3349                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3350                }
3351                d->DimensionUpperLimits[Dimensions - 1] = 127;
3352          }          }
3353          for (int i = 0; i < 32; i++) {  
3354            // 'remove' dimension definition
3355            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3356                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3357            }
3358            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3359            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3360            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3361    
3362            Dimensions--;
3363    
3364            // if this was a layer dimension, update 'Layers' attribute
3365            if (pDimDef->dimension == dimension_layer) Layers = 1;
3366        }
3367    
3368        /** @brief Delete one split zone of a dimension (decrement zone amount).
3369         *
3370         * Instead of deleting an entire dimensions, this method will only delete
3371         * one particular split zone given by @a zone of the Region's dimension
3372         * given by @a type. So this method will simply decrement the amount of
3373         * zones by one of the dimension in question. To be able to do that, the
3374         * respective dimension must exist on this Region and it must have at least
3375         * 3 zones. All DimensionRegion objects associated with the zone will be
3376         * deleted.
3377         *
3378         * @param type - identifies the dimension where a zone shall be deleted
3379         * @param zone - index of the dimension split zone that shall be deleted
3380         * @throws gig::Exception if requested zone could not be deleted
3381         */
3382        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3383            dimension_def_t* oldDef = GetDimensionDefinition(type);
3384            if (!oldDef)
3385                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3386            if (oldDef->zones <= 2)
3387                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3388            if (zone < 0 || zone >= oldDef->zones)
3389                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3390    
3391            const int newZoneSize = oldDef->zones - 1;
3392    
3393            // create a temporary Region which just acts as a temporary copy
3394            // container and will be deleted at the end of this function and will
3395            // also not be visible through the API during this process
3396            gig::Region* tempRgn = NULL;
3397            {
3398                // adding these temporary chunks is probably not even necessary
3399                Instrument* instr = static_cast<Instrument*>(GetParent());
3400                RIFF::List* pCkInstrument = instr->pCkInstrument;
3401                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3402                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3403                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3404                tempRgn = new Region(instr, rgn);
3405            }
3406    
3407            // copy this region's dimensions (with already the dimension split size
3408            // requested by the arguments of this method call) to the temporary
3409            // region, and don't use Region::CopyAssign() here for this task, since
3410            // it would also alter fast lookup helper variables here and there
3411            dimension_def_t newDef;
3412            for (int i = 0; i < Dimensions; ++i) {
3413                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3414                // is this the dimension requested by the method arguments? ...
3415                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3416                    def.zones = newZoneSize;
3417                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3418                    newDef = def;
3419                }
3420                tempRgn->AddDimension(&def);
3421            }
3422    
3423            // find the dimension index in the tempRegion which is the dimension
3424            // type passed to this method (paranoidly expecting different order)
3425            int tempReducedDimensionIndex = -1;
3426            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3427                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3428                    tempReducedDimensionIndex = d;
3429                    break;
3430                }
3431            }
3432    
3433            // copy dimension regions from this region to the temporary region
3434            for (int iDst = 0; iDst < 256; ++iDst) {
3435                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3436                if (!dstDimRgn) continue;
3437                std::map<dimension_t,int> dimCase;
3438                bool isValidZone = true;
3439                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3440                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3441                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3442                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3443                    baseBits += dstBits;
3444                    // there are also DimensionRegion objects of unused zones, skip them
3445                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3446                        isValidZone = false;
3447                        break;
3448                    }
3449                }
3450                if (!isValidZone) continue;
3451                // a bit paranoid: cope with the chance that the dimensions would
3452                // have different order in source and destination regions
3453                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3454                if (dimCase[type] >= zone) dimCase[type]++;
3455                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3456                dstDimRgn->CopyAssign(srcDimRgn);
3457                // if this is the upper most zone of the dimension passed to this
3458                // method, then correct (raise) its upper limit to 127
3459                if (newDef.split_type == split_type_normal && isLastZone)
3460                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3461            }
3462    
3463            // now tempRegion's dimensions and DimensionRegions basically reflect
3464            // what we wanted to get for this actual Region here, so we now just
3465            // delete and recreate the dimension in question with the new amount
3466            // zones and then copy back from tempRegion      
3467            DeleteDimension(oldDef);
3468            AddDimension(&newDef);
3469            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3470                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3471                if (!srcDimRgn) continue;
3472                std::map<dimension_t,int> dimCase;
3473                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3474                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3475                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3476                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3477                    baseBits += srcBits;
3478                }
3479                // a bit paranoid: cope with the chance that the dimensions would
3480                // have different order in source and destination regions
3481                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3482                if (!dstDimRgn) continue;
3483                dstDimRgn->CopyAssign(srcDimRgn);
3484            }
3485    
3486            // delete temporary region
3487            delete tempRgn;
3488    
3489            UpdateVelocityTable();
3490        }
3491    
3492        /** @brief Divide split zone of a dimension in two (increment zone amount).
3493         *
3494         * This will increment the amount of zones for the dimension (given by
3495         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3496         * in the middle of its zone range in two. So the two zones resulting from
3497         * the zone being splitted, will be an equivalent copy regarding all their
3498         * articulation informations and sample reference. The two zones will only
3499         * differ in their zone's upper limit
3500         * (DimensionRegion::DimensionUpperLimits).
3501         *
3502         * @param type - identifies the dimension where a zone shall be splitted
3503         * @param zone - index of the dimension split zone that shall be splitted
3504         * @throws gig::Exception if requested zone could not be splitted
3505         */
3506        void Region::SplitDimensionZone(dimension_t type, int zone) {
3507            dimension_def_t* oldDef = GetDimensionDefinition(type);
3508            if (!oldDef)
3509                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3510            if (zone < 0 || zone >= oldDef->zones)
3511                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3512    
3513            const int newZoneSize = oldDef->zones + 1;
3514    
3515            // create a temporary Region which just acts as a temporary copy
3516            // container and will be deleted at the end of this function and will
3517            // also not be visible through the API during this process
3518            gig::Region* tempRgn = NULL;
3519            {
3520                // adding these temporary chunks is probably not even necessary
3521                Instrument* instr = static_cast<Instrument*>(GetParent());
3522                RIFF::List* pCkInstrument = instr->pCkInstrument;
3523                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3524                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3525                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3526                tempRgn = new Region(instr, rgn);
3527            }
3528    
3529            // copy this region's dimensions (with already the dimension split size
3530            // requested by the arguments of this method call) to the temporary
3531            // region, and don't use Region::CopyAssign() here for this task, since
3532            // it would also alter fast lookup helper variables here and there
3533            dimension_def_t newDef;
3534            for (int i = 0; i < Dimensions; ++i) {
3535                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3536                // is this the dimension requested by the method arguments? ...
3537                if (def.dimension == type) { // ... if yes, increment zone amount by one
3538                    def.zones = newZoneSize;
3539                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3540                    newDef = def;
3541                }
3542                tempRgn->AddDimension(&def);
3543            }
3544    
3545            // find the dimension index in the tempRegion which is the dimension
3546            // type passed to this method (paranoidly expecting different order)
3547            int tempIncreasedDimensionIndex = -1;
3548            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3549                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3550                    tempIncreasedDimensionIndex = d;
3551                    break;
3552                }
3553            }
3554    
3555            // copy dimension regions from this region to the temporary region
3556            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3557                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3558                if (!srcDimRgn) continue;
3559                std::map<dimension_t,int> dimCase;
3560                bool isValidZone = true;
3561                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3562                    const int srcBits = pDimensionDefinitions[d].bits;
3563                    dimCase[pDimensionDefinitions[d].dimension] =
3564                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3565                    // there are also DimensionRegion objects for unused zones, skip them
3566                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3567                        isValidZone = false;
3568                        break;
3569                    }
3570                    baseBits += srcBits;
3571                }
3572                if (!isValidZone) continue;
3573                // a bit paranoid: cope with the chance that the dimensions would
3574                // have different order in source and destination regions            
3575                if (dimCase[type] > zone) dimCase[type]++;
3576                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3577                dstDimRgn->CopyAssign(srcDimRgn);
3578                // if this is the requested zone to be splitted, then also copy
3579                // the source DimensionRegion to the newly created target zone
3580                // and set the old zones upper limit lower
3581                if (dimCase[type] == zone) {
3582                    // lower old zones upper limit
3583                    if (newDef.split_type == split_type_normal) {
3584                        const int high =
3585                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3586                        int low = 0;
3587                        if (zone > 0) {
3588                            std::map<dimension_t,int> lowerCase = dimCase;
3589                            lowerCase[type]--;
3590                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3591                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3592                        }
3593                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3594                    }
3595                    // fill the newly created zone of the divided zone as well
3596                    dimCase[type]++;
3597                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3598                    dstDimRgn->CopyAssign(srcDimRgn);
3599                }
3600            }
3601    
3602            // now tempRegion's dimensions and DimensionRegions basically reflect
3603            // what we wanted to get for this actual Region here, so we now just
3604            // delete and recreate the dimension in question with the new amount
3605            // zones and then copy back from tempRegion      
3606            DeleteDimension(oldDef);
3607            AddDimension(&newDef);
3608            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3609                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3610                if (!srcDimRgn) continue;
3611                std::map<dimension_t,int> dimCase;
3612                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3613                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3614                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3615                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3616                    baseBits += srcBits;
3617                }
3618                // a bit paranoid: cope with the chance that the dimensions would
3619                // have different order in source and destination regions
3620                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3621                if (!dstDimRgn) continue;
3622                dstDimRgn->CopyAssign(srcDimRgn);
3623            }
3624    
3625            // delete temporary region
3626            delete tempRgn;
3627    
3628            UpdateVelocityTable();
3629        }
3630    
3631        /** @brief Change type of an existing dimension.
3632         *
3633         * Alters the dimension type of a dimension already existing on this
3634         * region. If there is currently no dimension on this Region with type
3635         * @a oldType, then this call with throw an Exception. Likewise there are
3636         * cases where the requested dimension type cannot be performed. For example
3637         * if the new dimension type shall be gig::dimension_samplechannel, and the
3638         * current dimension has more than 2 zones. In such cases an Exception is
3639         * thrown as well.
3640         *
3641         * @param oldType - identifies the existing dimension to be changed
3642         * @param newType - to which dimension type it should be changed to
3643         * @throws gig::Exception if requested change cannot be performed
3644         */
3645        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3646            if (oldType == newType) return;
3647            dimension_def_t* def = GetDimensionDefinition(oldType);
3648            if (!def)
3649                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3650            if (newType == dimension_samplechannel && def->zones != 2)
3651                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3652            if (GetDimensionDefinition(newType))
3653                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3654            def->dimension  = newType;
3655            def->split_type = __resolveSplitType(newType);
3656        }
3657    
3658        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3659            uint8_t bits[8] = {};
3660            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3661                 it != DimCase.end(); ++it)
3662            {
3663                for (int d = 0; d < Dimensions; ++d) {
3664                    if (pDimensionDefinitions[d].dimension == it->first) {
3665                        bits[d] = it->second;
3666                        goto nextDimCaseSlice;
3667                    }
3668                }
3669                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3670                nextDimCaseSlice:
3671                ; // noop
3672            }
3673            return GetDimensionRegionByBit(bits);
3674        }
3675    
3676        /**
3677         * Searches in the current Region for a dimension of the given dimension
3678         * type and returns the precise configuration of that dimension in this
3679         * Region.
3680         *
3681         * @param type - dimension type of the sought dimension
3682         * @returns dimension definition or NULL if there is no dimension with
3683         *          sought type in this Region.
3684         */
3685        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3686            for (int i = 0; i < Dimensions; ++i)
3687                if (pDimensionDefinitions[i].dimension == type)
3688                    return &pDimensionDefinitions[i];
3689            return NULL;
3690        }
3691    
3692        Region::~Region() {
3693            for (int i = 0; i < 256; i++) {
3694              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3695          }          }
3696      }      }
# Line 1143  namespace gig { Line 3708  namespace gig {
3708       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3709       * etc.).       * etc.).
3710       *       *
3711       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
3712       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
3713       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
3714       * @see             Dimensions       * @see             Dimensions
3715       */       */
3716      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3717          uint8_t bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
3718            int veldim = -1;
3719            int velbitpos;
3720            int bitpos = 0;
3721            int dimregidx = 0;
3722          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3723              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3724                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
3725                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
3726                      break;                  velbitpos = bitpos;
3727                  case split_type_customvelocity:              } else {
3728                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
3729                      break;                      case split_type_normal:
3730                  case split_type_bit: // the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3731                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3732                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3733                      break;                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3734                                }
3735                            } else {
3736                                // gig2: evenly sized zones
3737                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3738                            }
3739                            break;
3740                        case split_type_bit: // the value is already the sought dimension bit number
3741                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3742                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3743                            break;
3744                    }
3745                    dimregidx |= bits << bitpos;
3746                }
3747                bitpos += pDimensionDefinitions[i].bits;
3748            }
3749            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3750            if (!dimreg) return NULL;
3751            if (veldim != -1) {
3752                // (dimreg is now the dimension region for the lowest velocity)
3753                if (dimreg->VelocityTable) // custom defined zone ranges
3754                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3755                else // normal split type
3756                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3757    
3758                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3759                dimregidx |= (bits & limiter_mask) << velbitpos;
3760                dimreg = pDimensionRegions[dimregidx & 255];
3761            }
3762            return dimreg;
3763        }
3764    
3765        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3766            uint8_t bits;
3767            int veldim = -1;
3768            int velbitpos;
3769            int bitpos = 0;
3770            int dimregidx = 0;
3771            for (uint i = 0; i < Dimensions; i++) {
3772                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3773                    // the velocity dimension must be handled after the other dimensions
3774                    veldim = i;
3775                    velbitpos = bitpos;
3776                } else {
3777                    switch (pDimensionDefinitions[i].split_type) {
3778                        case split_type_normal:
3779                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3780                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3781                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3782                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3783                                }
3784                            } else {
3785                                // gig2: evenly sized zones
3786                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3787                            }
3788                            break;
3789                        case split_type_bit: // the value is already the sought dimension bit number
3790                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3791                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3792                            break;
3793                    }
3794                    dimregidx |= bits << bitpos;
3795              }              }
3796                bitpos += pDimensionDefinitions[i].bits;
3797          }          }
3798          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          dimregidx &= 255;
3799            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3800            if (!dimreg) return -1;
3801            if (veldim != -1) {
3802                // (dimreg is now the dimension region for the lowest velocity)
3803                if (dimreg->VelocityTable) // custom defined zone ranges
3804                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3805                else // normal split type
3806                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3807    
3808                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3809                dimregidx |= (bits & limiter_mask) << velbitpos;
3810                dimregidx &= 255;
3811            }
3812            return dimregidx;
3813      }      }
3814    
3815      /**      /**
# Line 1176  namespace gig { Line 3817  namespace gig {
3817       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3818       * instead of calling this method directly!       * instead of calling this method directly!
3819       *       *
3820       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
3821       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
3822       *                 bit numbers       *                 bit numbers
3823       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
3824       */       */
3825      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3826          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3827                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
3828                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
3829                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
3830                                                      << pDimensionDefinitions[2].bits | DimBits[2])
3831                                                      << pDimensionDefinitions[1].bits | DimBits[1])
3832                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
3833      }      }
3834    
3835      /**      /**
# Line 1206  namespace gig { Line 3846  namespace gig {
3846          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3847      }      }
3848    
3849      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3850            if ((int32_t)WavePoolTableIndex == -1) return NULL;
3851          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3852          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
3853          Sample* sample = file->GetFirstSample();          // for new files or files >= 2 GB use 64 bit wave pool offsets
3854          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3855              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
3856              sample = file->GetNextSample();              uint64_t soughtoffset =
3857                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3858                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3859                Sample* sample = file->GetFirstSample(pProgress);
3860                while (sample) {
3861                    if (sample->ullWavePoolOffset == soughtoffset)
3862                        return static_cast<gig::Sample*>(sample);
3863                    sample = file->GetNextSample();
3864                }
3865            } else {
3866                // use extension files and 32 bit wave pool offsets
3867                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3868                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3869                Sample* sample = file->GetFirstSample(pProgress);
3870                while (sample) {
3871                    if (sample->ullWavePoolOffset == soughtoffset &&
3872                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3873                    sample = file->GetNextSample();
3874                }
3875          }          }
3876          return NULL;          return NULL;
3877      }      }
3878        
3879        /**
3880         * Make a (semi) deep copy of the Region object given by @a orig
3881         * and assign it to this object.
3882         *
3883         * Note that all sample pointers referenced by @a orig are simply copied as
3884         * memory address. Thus the respective samples are shared, not duplicated!
3885         *
3886         * @param orig - original Region object to be copied from
3887         */
3888        void Region::CopyAssign(const Region* orig) {
3889            CopyAssign(orig, NULL);
3890        }
3891        
3892        /**
3893         * Make a (semi) deep copy of the Region object given by @a orig and
3894         * assign it to this object
3895         *
3896         * @param mSamples - crosslink map between the foreign file's samples and
3897         *                   this file's samples
3898         */
3899        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3900            // handle base classes
3901            DLS::Region::CopyAssign(orig);
3902            
3903            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3904                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3905            }
3906            
3907            // handle own member variables
3908            for (int i = Dimensions - 1; i >= 0; --i) {
3909                DeleteDimension(&pDimensionDefinitions[i]);
3910            }
3911            Layers = 0; // just to be sure
3912            for (int i = 0; i < orig->Dimensions; i++) {
3913                // we need to copy the dim definition here, to avoid the compiler
3914                // complaining about const-ness issue
3915                dimension_def_t def = orig->pDimensionDefinitions[i];
3916                AddDimension(&def);
3917            }
3918            for (int i = 0; i < 256; i++) {
3919                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3920                    pDimensionRegions[i]->CopyAssign(
3921                        orig->pDimensionRegions[i],
3922                        mSamples
3923                    );
3924                }
3925            }
3926            Layers = orig->Layers;
3927        }
3928    
3929    
3930    // *************** MidiRule ***************
3931    // *
3932    
3933        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3934            _3ewg->SetPos(36);
3935            Triggers = _3ewg->ReadUint8();
3936            _3ewg->SetPos(40);
3937            ControllerNumber = _3ewg->ReadUint8();
3938            _3ewg->SetPos(46);
3939            for (int i = 0 ; i < Triggers ; i++) {
3940                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3941                pTriggers[i].Descending = _3ewg->ReadUint8();
3942                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3943                pTriggers[i].Key = _3ewg->ReadUint8();
3944                pTriggers[i].NoteOff = _3ewg->ReadUint8();
3945                pTriggers[i].Velocity = _3ewg->ReadUint8();
3946                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3947                _3ewg->ReadUint8();
3948            }
3949        }
3950    
3951        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3952            ControllerNumber(0),
3953            Triggers(0) {
3954        }
3955    
3956        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3957            pData[32] = 4;
3958            pData[33] = 16;
3959            pData[36] = Triggers;
3960            pData[40] = ControllerNumber;
3961            for (int i = 0 ; i < Triggers ; i++) {
3962                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3963                pData[47 + i * 8] = pTriggers[i].Descending;
3964                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3965                pData[49 + i * 8] = pTriggers[i].Key;
3966                pData[50 + i * 8] = pTriggers[i].NoteOff;
3967                pData[51 + i * 8] = pTriggers[i].Velocity;
3968                pData[52 + i * 8] = pTriggers[i].OverridePedal;
3969            }
3970        }
3971    
3972        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3973            _3ewg->SetPos(36);
3974            LegatoSamples = _3ewg->ReadUint8(); // always 12
3975            _3ewg->SetPos(40);
3976            BypassUseController = _3ewg->ReadUint8();
3977            BypassKey = _3ewg->ReadUint8();
3978            BypassController = _3ewg->ReadUint8();
3979            ThresholdTime = _3ewg->ReadUint16();
3980            _3ewg->ReadInt16();
3981            ReleaseTime = _3ewg->ReadUint16();
3982            _3ewg->ReadInt16();
3983            KeyRange.low = _3ewg->ReadUint8();
3984            KeyRange.high = _3ewg->ReadUint8();
3985            _3ewg->SetPos(64);
3986            ReleaseTriggerKey = _3ewg->ReadUint8();
3987            AltSustain1Key = _3ewg->ReadUint8();
3988            AltSustain2Key = _3ewg->ReadUint8();
3989        }
3990    
3991        MidiRuleLegato::MidiRuleLegato() :
3992            LegatoSamples(12),
3993            BypassUseController(false),
3994            BypassKey(0),
3995            BypassController(1),
3996            ThresholdTime(20),
3997            ReleaseTime(20),
3998            ReleaseTriggerKey(0),
3999            AltSustain1Key(0),
4000            AltSustain2Key(0)
4001        {
4002            KeyRange.low = KeyRange.high = 0;
4003        }
4004    
4005        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4006            pData[32] = 0;
4007            pData[33] = 16;
4008            pData[36] = LegatoSamples;
4009            pData[40] = BypassUseController;
4010            pData[41] = BypassKey;
4011            pData[42] = BypassController;
4012            store16(&pData[43], ThresholdTime);
4013            store16(&pData[47], ReleaseTime);
4014            pData[51] = KeyRange.low;
4015            pData[52] = KeyRange.high;
4016            pData[64] = ReleaseTriggerKey;
4017            pData[65] = AltSustain1Key;
4018            pData[66] = AltSustain2Key;
4019        }
4020    
4021        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4022            _3ewg->SetPos(36);
4023            Articulations = _3ewg->ReadUint8();
4024            int flags = _3ewg->ReadUint8();
4025            Polyphonic = flags & 8;
4026            Chained = flags & 4;
4027            Selector = (flags & 2) ? selector_controller :
4028                (flags & 1) ? selector_key_switch : selector_none;
4029            Patterns = _3ewg->ReadUint8();
4030            _3ewg->ReadUint8(); // chosen row
4031            _3ewg->ReadUint8(); // unknown
4032            _3ewg->ReadUint8(); // unknown
4033            _3ewg->ReadUint8(); // unknown
4034            KeySwitchRange.low = _3ewg->ReadUint8();
4035            KeySwitchRange.high = _3ewg->ReadUint8();
4036            Controller = _3ewg->ReadUint8();
4037            PlayRange.low = _3ewg->ReadUint8();
4038            PlayRange.high = _3ewg->ReadUint8();
4039    
4040            int n = std::min(int(Articulations), 32);
4041            for (int i = 0 ; i < n ; i++) {
4042                _3ewg->ReadString(pArticulations[i], 32);
4043            }
4044            _3ewg->SetPos(1072);
4045            n = std::min(int(Patterns), 32);
4046            for (int i = 0 ; i < n ; i++) {
4047                _3ewg->ReadString(pPatterns[i].Name, 16);
4048                pPatterns[i].Size = _3ewg->ReadUint8();
4049                _3ewg->Read(&pPatterns[i][0], 1, 32);
4050            }
4051        }
4052    
4053        MidiRuleAlternator::MidiRuleAlternator() :
4054            Articulations(0),
4055            Patterns(0),
4056            Selector(selector_none),
4057            Controller(0),
4058            Polyphonic(false),
4059            Chained(false)
4060        {
4061            PlayRange.low = PlayRange.high = 0;
4062            KeySwitchRange.low = KeySwitchRange.high = 0;
4063        }
4064    
4065        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4066            pData[32] = 3;
4067            pData[33] = 16;
4068            pData[36] = Articulations;
4069            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4070                (Selector == selector_controller ? 2 :
4071                 (Selector == selector_key_switch ? 1 : 0));
4072            pData[38] = Patterns;
4073    
4074            pData[43] = KeySwitchRange.low;
4075            pData[44] = KeySwitchRange.high;
4076            pData[45] = Controller;
4077            pData[46] = PlayRange.low;
4078            pData[47] = PlayRange.high;
4079    
4080            char* str = reinterpret_cast<char*>(pData);
4081            int pos = 48;
4082            int n = std::min(int(Articulations), 32);
4083            for (int i = 0 ; i < n ; i++, pos += 32) {
4084                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4085            }
4086    
4087            pos = 1072;
4088            n = std::min(int(Patterns), 32);
4089            for (int i = 0 ; i < n ; i++, pos += 49) {
4090                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4091                pData[pos + 16] = pPatterns[i].Size;
4092                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4093            }
4094        }
4095    
4096    // *************** Script ***************
4097    // *
4098    
4099        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4100            pGroup = group;
4101            pChunk = ckScri;
4102            if (ckScri) { // object is loaded from file ...
4103                // read header
4104                uint32_t headerSize = ckScri->ReadUint32();
4105                Compression = (Compression_t) ckScri->ReadUint32();
4106                Encoding    = (Encoding_t) ckScri->ReadUint32();
4107                Language    = (Language_t) ckScri->ReadUint32();
4108                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4109                crc         = ckScri->ReadUint32();
4110                uint32_t nameSize = ckScri->ReadUint32();
4111                Name.resize(nameSize, ' ');
4112                for (int i = 0; i < nameSize; ++i)
4113                    Name[i] = ckScri->ReadUint8();
4114                // to handle potential future extensions of the header
4115                ckScri->SetPos(sizeof(int32_t) + headerSize);
4116                // read actual script data
4117                uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4118                data.resize(scriptSize);
4119                for (int i = 0; i < scriptSize; ++i)
4120                    data[i] = ckScri->ReadUint8();
4121            } else { // this is a new script object, so just initialize it as such ...
4122                Compression = COMPRESSION_NONE;
4123                Encoding = ENCODING_ASCII;
4124                Language = LANGUAGE_NKSP;
4125                Bypass   = false;
4126                crc      = 0;
4127                Name     = "Unnamed Script";
4128            }
4129        }
4130    
4131        Script::~Script() {
4132        }
4133    
4134        /**
4135         * Returns the current script (i.e. as source code) in text format.
4136         */
4137        String Script::GetScriptAsText() {
4138            String s;
4139            s.resize(data.size(), ' ');
4140            memcpy(&s[0], &data[0], data.size());
4141            return s;
4142        }
4143    
4144        /**
4145         * Replaces the current script with the new script source code text given
4146         * by @a text.
4147         *
4148         * @param text - new script source code
4149         */
4150        void Script::SetScriptAsText(const String& text) {
4151            data.resize(text.size());
4152            memcpy(&data[0], &text[0], text.size());
4153        }
4154    
4155        /**
4156         * Apply this script to the respective RIFF chunks. You have to call
4157         * File::Save() to make changes persistent.
4158         *
4159         * Usually there is absolutely no need to call this method explicitly.
4160         * It will be called automatically when File::Save() was called.
4161         *
4162         * @param pProgress - callback function for progress notification
4163         */
4164        void Script::UpdateChunks(progress_t* pProgress) {
4165            // recalculate CRC32 check sum
4166            __resetCRC(crc);
4167            __calculateCRC(&data[0], data.size(), crc);
4168            __encodeCRC(crc);
4169            // make sure chunk exists and has the required size
4170            const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4171            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4172            else pChunk->Resize(chunkSize);
4173            // fill the chunk data to be written to disk
4174            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4175            int pos = 0;
4176            store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4177            pos += sizeof(int32_t);
4178            store32(&pData[pos], Compression);
4179            pos += sizeof(int32_t);
4180            store32(&pData[pos], Encoding);
4181            pos += sizeof(int32_t);
4182            store32(&pData[pos], Language);
4183            pos += sizeof(int32_t);
4184            store32(&pData[pos], Bypass ? 1 : 0);
4185            pos += sizeof(int32_t);
4186            store32(&pData[pos], crc);
4187            pos += sizeof(int32_t);
4188            store32(&pData[pos], Name.size());
4189            pos += sizeof(int32_t);
4190            for (int i = 0; i < Name.size(); ++i, ++pos)
4191                pData[pos] = Name[i];
4192            for (int i = 0; i < data.size(); ++i, ++pos)
4193                pData[pos] = data[i];
4194        }
4195    
4196        /**
4197         * Move this script from its current ScriptGroup to another ScriptGroup
4198         * given by @a pGroup.
4199         *
4200         * @param pGroup - script's new group
4201         */
4202        void Script::SetGroup(ScriptGroup* pGroup) {
4203            if (this->pGroup == pGroup) return;
4204            if (pChunk)
4205                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4206            this->pGroup = pGroup;
4207        }
4208    
4209        /**
4210         * Returns the script group this script currently belongs to. Each script
4211         * is a member of exactly one ScriptGroup.
4212         *
4213         * @returns current script group
4214         */
4215        ScriptGroup* Script::GetGroup() const {
4216            return pGroup;
4217        }
4218    
4219        void Script::RemoveAllScriptReferences() {
4220            File* pFile = pGroup->pFile;
4221            for (int i = 0; pFile->GetInstrument(i); ++i) {
4222                Instrument* instr = pFile->GetInstrument(i);
4223                instr->RemoveScript(this);
4224            }
4225        }
4226    
4227    // *************** ScriptGroup ***************
4228    // *
4229    
4230        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4231            pFile = file;
4232            pList = lstRTIS;
4233            pScripts = NULL;
4234            if (lstRTIS) {
4235                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4236                ::LoadString(ckName, Name);
4237            } else {
4238                Name = "Default Group";
4239            }
4240        }
4241    
4242        ScriptGroup::~ScriptGroup() {
4243            if (pScripts) {
4244                std::list<Script*>::iterator iter = pScripts->begin();
4245                std::list<Script*>::iterator end  = pScripts->end();
4246                while (iter != end) {
4247                    delete *iter;
4248                    ++iter;
4249                }
4250                delete pScripts;
4251            }
4252        }
4253    
4254        /**
4255         * Apply this script group to the respective RIFF chunks. You have to call
4256         * File::Save() to make changes persistent.
4257         *
4258         * Usually there is absolutely no need to call this method explicitly.
4259         * It will be called automatically when File::Save() was called.
4260         *
4261         * @param pProgress - callback function for progress notification
4262         */
4263        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4264            if (pScripts) {
4265                if (!pList)
4266                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4267    
4268                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4269                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4270    
4271                for (std::list<Script*>::iterator it = pScripts->begin();
4272                     it != pScripts->end(); ++it)
4273                {
4274                    (*it)->UpdateChunks(pProgress);
4275                }
4276            }
4277        }
4278    
4279        /** @brief Get instrument script.
4280         *
4281         * Returns the real-time instrument script with the given index.
4282         *
4283         * @param index - number of the sought script (0..n)
4284         * @returns sought script or NULL if there's no such script
4285         */
4286        Script* ScriptGroup::GetScript(uint index) {
4287            if (!pScripts) LoadScripts();
4288            std::list<Script*>::iterator it = pScripts->begin();
4289            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4290                if (i == index) return *it;
4291            return NULL;
4292        }
4293    
4294        /** @brief Add new instrument script.
4295         *
4296         * Adds a new real-time instrument script to the file. The script is not
4297         * actually used / executed unless it is referenced by an instrument to be
4298         * used. This is similar to samples, which you can add to a file, without
4299         * an instrument necessarily actually using it.
4300         *
4301         * You have to call Save() to make this persistent to the file.
4302         *
4303         * @return new empty script object
4304         */
4305        Script* ScriptGroup::AddScript() {
4306            if (!pScripts) LoadScripts();
4307            Script* pScript = new Script(this, NULL);
4308            pScripts->push_back(pScript);
4309            return pScript;
4310        }
4311    
4312        /** @brief Delete an instrument script.
4313         *
4314         * This will delete the given real-time instrument script. References of
4315         * instruments that are using that script will be removed accordingly.
4316         *
4317         * You have to call Save() to make this persistent to the file.
4318         *
4319         * @param pScript - script to delete
4320         * @throws gig::Exception if given script could not be found
4321         */
4322        void ScriptGroup::DeleteScript(Script* pScript) {
4323            if (!pScripts) LoadScripts();
4324            std::list<Script*>::iterator iter =
4325                find(pScripts->begin(), pScripts->end(), pScript);
4326            if (iter == pScripts->end())
4327                throw gig::Exception("Could not delete script, could not find given script");
4328            pScripts->erase(iter);
4329            pScript->RemoveAllScriptReferences();
4330            if (pScript->pChunk)
4331                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4332            delete pScript;
4333        }
4334    
4335        void ScriptGroup::LoadScripts() {
4336            if (pScripts) return;
4337            pScripts = new std::list<Script*>;
4338            if (!pList) return;
4339    
4340            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4341                 ck = pList->GetNextSubChunk())
4342            {
4343                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4344                    pScripts->push_back(new Script(this, ck));
4345                }
4346            }
4347        }
4348    
4349  // *************** Instrument ***************  // *************** Instrument ***************
4350  // *  // *
4351    
4352      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4353            static const DLS::Info::string_length_t fixedStringLengths[] = {
4354                { CHUNK_ID_INAM, 64 },
4355                { CHUNK_ID_ISFT, 12 },
4356                { 0, 0 }
4357            };
4358            pInfo->SetFixedStringLengths(fixedStringLengths);
4359    
4360          // Initialization          // Initialization
4361          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4362          RegionIndex = -1;          EffectSend = 0;
4363            Attenuation = 0;
4364            FineTune = 0;
4365            PitchbendRange = 0;
4366            PianoReleaseMode = false;
4367            DimensionKeyRange.low = 0;
4368            DimensionKeyRange.high = 0;
4369            pMidiRules = new MidiRule*[3];
4370            pMidiRules[0] = NULL;
4371            pScriptRefs = NULL;
4372    
4373          // Loading          // Loading
4374          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1240  namespace gig { Line 4383  namespace gig {
4383                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4384                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4385                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4386    
4387                    if (_3ewg->GetSize() > 32) {
4388                        // read MIDI rules
4389                        int i = 0;
4390                        _3ewg->SetPos(32);
4391                        uint8_t id1 = _3ewg->ReadUint8();
4392                        uint8_t id2 = _3ewg->ReadUint8();
4393    
4394                        if (id2 == 16) {
4395                            if (id1 == 4) {
4396                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4397                            } else if (id1 == 0) {
4398                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4399                            } else if (id1 == 3) {
4400                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4401                            } else {
4402                                pMidiRules[i++] = new MidiRuleUnknown;
4403                            }
4404                        }
4405                        else if (id1 != 0 || id2 != 0) {
4406                            pMidiRules[i++] = new MidiRuleUnknown;
4407                        }
4408                        //TODO: all the other types of rules
4409    
4410                        pMidiRules[i] = NULL;
4411                    }
4412              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4413          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4414    
4415          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4416          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4417          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4418          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4419          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
4420          while (rgn) {                  while (rgn) {
4421              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4422                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4423                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
4424              }                      }
4425              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
4426          }                  }
4427                    // Creating Region Key Table for fast lookup
4428          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
4429          for (uint iReg = 0; iReg < Regions; iReg++) {              }
4430              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          }
4431                  RegionKeyTable[iKey] = pRegions[iReg];  
4432            // own gig format extensions
4433            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4434            if (lst3LS) {
4435                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4436                if (ckSCSL) {
4437                    int headerSize = ckSCSL->ReadUint32();
4438                    int slotCount  = ckSCSL->ReadUint32();
4439                    if (slotCount) {
4440                        int slotSize  = ckSCSL->ReadUint32();
4441                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4442                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4443                        for (int i = 0; i < slotCount; ++i) {
4444                            _ScriptPooolEntry e;
4445                            e.fileOffset = ckSCSL->ReadUint32();
4446                            e.bypass     = ckSCSL->ReadUint32() & 1;
4447                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4448                            scriptPoolFileOffsets.push_back(e);
4449                        }
4450                    }
4451                }
4452            }
4453    
4454            __notify_progress(pProgress, 1.0f); // notify done
4455        }
4456    
4457        void Instrument::UpdateRegionKeyTable() {
4458            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4459            RegionList::iterator iter = pRegions->begin();
4460            RegionList::iterator end  = pRegions->end();
4461            for (; iter != end; ++iter) {
4462                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4463                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4464                    RegionKeyTable[iKey] = pRegion;
4465              }              }
4466          }          }
4467      }      }
4468    
4469      Instrument::~Instrument() {      Instrument::~Instrument() {
4470          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4471              if (pRegions) {              delete pMidiRules[i];
4472                  if (pRegions[i]) delete (pRegions[i]);          }
4473            delete[] pMidiRules;
4474            if (pScriptRefs) delete pScriptRefs;
4475        }
4476    
4477        /**
4478         * Apply Instrument with all its Regions to the respective RIFF chunks.
4479         * You have to call File::Save() to make changes persistent.
4480         *
4481         * Usually there is absolutely no need to call this method explicitly.
4482         * It will be called automatically when File::Save() was called.
4483         *
4484         * @param pProgress - callback function for progress notification
4485         * @throws gig::Exception if samples cannot be dereferenced
4486         */
4487        void Instrument::UpdateChunks(progress_t* pProgress) {
4488            // first update base classes' chunks
4489            DLS::Instrument::UpdateChunks(pProgress);
4490    
4491            // update Regions' chunks
4492            {
4493                RegionList::iterator iter = pRegions->begin();
4494                RegionList::iterator end  = pRegions->end();
4495                for (; iter != end; ++iter)
4496                    (*iter)->UpdateChunks(pProgress);
4497            }
4498    
4499            // make sure 'lart' RIFF list chunk exists
4500            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4501            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4502            // make sure '3ewg' RIFF chunk exists
4503            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4504            if (!_3ewg)  {
4505                File* pFile = (File*) GetParent();
4506    
4507                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4508                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4509                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4510                memset(_3ewg->LoadChunkData(), 0, size);
4511            }
4512            // update '3ewg' RIFF chunk
4513            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4514            store16(&pData[0], EffectSend);
4515            store32(&pData[2], Attenuation);
4516            store16(&pData[6], FineTune);
4517            store16(&pData[8], PitchbendRange);
4518            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4519                                        DimensionKeyRange.low << 1;
4520            pData[10] = dimkeystart;
4521            pData[11] = DimensionKeyRange.high;
4522    
4523            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4524                pData[32] = 0;
4525                pData[33] = 0;
4526            } else {
4527                for (int i = 0 ; pMidiRules[i] ; i++) {
4528                    pMidiRules[i]->UpdateChunks(pData);
4529              }              }
             delete[] pRegions;  
4530          }          }
4531    
4532            // own gig format extensions
4533           if (ScriptSlotCount()) {
4534               // make sure we have converted the original loaded script file
4535               // offsets into valid Script object pointers
4536               LoadScripts();
4537    
4538               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4539               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4540               const int slotCount = pScriptRefs->size();
4541               const int headerSize = 3 * sizeof(uint32_t);
4542               const int slotSize  = 2 * sizeof(uint32_t);
4543               const int totalChunkSize = headerSize + slotCount * slotSize;
4544               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4545               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4546               else ckSCSL->Resize(totalChunkSize);
4547               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4548               int pos = 0;
4549               store32(&pData[pos], headerSize);
4550               pos += sizeof(uint32_t);
4551               store32(&pData[pos], slotCount);
4552               pos += sizeof(uint32_t);
4553               store32(&pData[pos], slotSize);
4554               pos += sizeof(uint32_t);
4555               for (int i = 0; i < slotCount; ++i) {
4556                   // arbitrary value, the actual file offset will be updated in
4557                   // UpdateScriptFileOffsets() after the file has been resized
4558                   int bogusFileOffset = 0;
4559                   store32(&pData[pos], bogusFileOffset);
4560                   pos += sizeof(uint32_t);
4561                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4562                   pos += sizeof(uint32_t);
4563               }
4564           } else {
4565               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4566               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4567               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4568           }
4569        }
4570    
4571        void Instrument::UpdateScriptFileOffsets() {
4572           // own gig format extensions
4573           if (pScriptRefs && pScriptRefs->size() > 0) {
4574               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4575               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4576               const int slotCount = pScriptRefs->size();
4577               const int headerSize = 3 * sizeof(uint32_t);
4578               ckSCSL->SetPos(headerSize);
4579               for (int i = 0; i < slotCount; ++i) {
4580                   uint32_t fileOffset =
4581                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4582                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4583                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize());
4584                   ckSCSL->WriteUint32(&fileOffset);
4585                   // jump over flags entry (containing the bypass flag)
4586                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4587               }
4588           }        
4589      }      }
4590    
4591      /**      /**
# Line 1283  namespace gig { Line 4596  namespace gig {
4596       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4597       */       */
4598      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4599          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4600          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4601    
4602          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4603              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4604                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1300  namespace gig { Line 4614  namespace gig {
4614       * @see      GetNextRegion()       * @see      GetNextRegion()
4615       */       */
4616      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4617          if (!Regions) return NULL;          if (!pRegions) return NULL;
4618          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4619          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4620      }      }
4621    
4622      /**      /**
# Line 1314  namespace gig { Line 4628  namespace gig {
4628       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4629       */       */
4630      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4631          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
4632          return pRegions[RegionIndex++];          RegionsIterator++;
4633            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4634        }
4635    
4636        Region* Instrument::AddRegion() {
4637            // create new Region object (and its RIFF chunks)
4638            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4639            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4640            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4641            Region* pNewRegion = new Region(this, rgn);
4642            pRegions->push_back(pNewRegion);
4643            Regions = pRegions->size();
4644            // update Region key table for fast lookup
4645            UpdateRegionKeyTable();
4646            // done
4647            return pNewRegion;
4648        }
4649    
4650        void Instrument::DeleteRegion(Region* pRegion) {
4651            if (!pRegions) return;
4652            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4653            // update Region key table for fast lookup
4654            UpdateRegionKeyTable();
4655        }
4656    
4657        /**
4658         * Move this instrument at the position before @arg dst.
4659         *
4660         * This method can be used to reorder the sequence of instruments in a
4661         * .gig file. This might be helpful especially on large .gig files which
4662         * contain a large number of instruments within the same .gig file. So
4663         * grouping such instruments to similar ones, can help to keep track of them
4664         * when working with such complex .gig files.
4665         *
4666         * When calling this method, this instrument will be removed from in its
4667         * current position in the instruments list and moved to the requested
4668         * target position provided by @param dst. You may also pass NULL as
4669         * argument to this method, in that case this intrument will be moved to the
4670         * very end of the .gig file's instrument list.
4671         *
4672         * You have to call Save() to make the order change persistent to the .gig
4673         * file.
4674         *
4675         * Currently this method is limited to moving the instrument within the same
4676         * .gig file. Trying to move it to another .gig file by calling this method
4677         * will throw an exception.
4678         *
4679         * @param dst - destination instrument at which this instrument will be
4680         *              moved to, or pass NULL for moving to end of list
4681         * @throw gig::Exception if this instrument and target instrument are not
4682         *                       part of the same file
4683         */
4684        void Instrument::MoveTo(Instrument* dst) {
4685            if (dst && GetParent() != dst->GetParent())
4686                throw Exception(
4687                    "gig::Instrument::MoveTo() can only be used for moving within "
4688                    "the same gig file."
4689                );
4690    
4691            File* pFile = (File*) GetParent();
4692    
4693            // move this instrument within the instrument list
4694            {
4695                File::InstrumentList& list = *pFile->pInstruments;
4696    
4697                File::InstrumentList::iterator itFrom =
4698                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4699    
4700                File::InstrumentList::iterator itTo =
4701                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4702    
4703                list.splice(itTo, list, itFrom);
4704            }
4705    
4706            // move the instrument's actual list RIFF chunk appropriately
4707            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4708            lstCkInstruments->MoveSubChunk(
4709                this->pCkInstrument,
4710                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4711            );
4712        }
4713    
4714        /**
4715         * Returns a MIDI rule of the instrument.
4716         *
4717         * The list of MIDI rules, at least in gig v3, always contains at
4718         * most two rules. The second rule can only be the DEF filter
4719         * (which currently isn't supported by libgig).
4720         *
4721         * @param i - MIDI rule number
4722         * @returns   pointer address to MIDI rule number i or NULL if there is none
4723         */
4724        MidiRule* Instrument::GetMidiRule(int i) {
4725            return pMidiRules[i];
4726        }
4727    
4728        /**
4729         * Adds the "controller trigger" MIDI rule to the instrument.
4730         *
4731         * @returns the new MIDI rule
4732         */
4733        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4734            delete pMidiRules[0];
4735            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4736            pMidiRules[0] = r;
4737            pMidiRules[1] = 0;
4738            return r;
4739        }
4740    
4741        /**
4742         * Adds the legato MIDI rule to the instrument.
4743         *
4744         * @returns the new MIDI rule
4745         */
4746        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4747            delete pMidiRules[0];
4748            MidiRuleLegato* r = new MidiRuleLegato;
4749            pMidiRules[0] = r;
4750            pMidiRules[1] = 0;
4751            return r;
4752        }
4753    
4754        /**
4755         * Adds the alternator MIDI rule to the instrument.
4756         *
4757         * @returns the new MIDI rule
4758         */
4759        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4760            delete pMidiRules[0];
4761            MidiRuleAlternator* r = new MidiRuleAlternator;
4762            pMidiRules[0] = r;
4763            pMidiRules[1] = 0;
4764            return r;
4765        }
4766    
4767        /**
4768         * Deletes a MIDI rule from the instrument.
4769         *
4770         * @param i - MIDI rule number
4771         */
4772        void Instrument::DeleteMidiRule(int i) {
4773            delete pMidiRules[i];
4774            pMidiRules[i] = 0;
4775        }
4776    
4777        void Instrument::LoadScripts() {
4778            if (pScriptRefs) return;
4779            pScriptRefs = new std::vector<_ScriptPooolRef>;
4780            if (scriptPoolFileOffsets.empty()) return;
4781            File* pFile = (File*) GetParent();
4782            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4783                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4784                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4785                    ScriptGroup* group = pFile->GetScriptGroup(i);
4786                    for (uint s = 0; group->GetScript(s); ++s) {
4787                        Script* script = group->GetScript(s);
4788                        if (script->pChunk) {
4789                            uint32_t offset = script->pChunk->GetFilePos() -
4790                                              script->pChunk->GetPos() -
4791                                              CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize());
4792                            if (offset == soughtOffset)
4793                            {
4794                                _ScriptPooolRef ref;
4795                                ref.script = script;
4796                                ref.bypass = scriptPoolFileOffsets[k].bypass;
4797                                pScriptRefs->push_back(ref);
4798                                break;
4799                            }
4800                        }
4801                    }
4802                }
4803            }
4804            // we don't need that anymore
4805            scriptPoolFileOffsets.clear();
4806        }
4807    
4808        /** @brief Get instrument script (gig format extension).
4809         *
4810         * Returns the real-time instrument script of instrument script slot
4811         * @a index.
4812         *
4813         * @note This is an own format extension which did not exist i.e. in the
4814         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4815         * gigedit.
4816         *
4817         * @param index - instrument script slot index
4818         * @returns script or NULL if index is out of bounds
4819         */
4820        Script* Instrument::GetScriptOfSlot(uint index) {
4821            LoadScripts();
4822            if (index >= pScriptRefs->size()) return NULL;
4823            return pScriptRefs->at(index).script;
4824        }
4825    
4826        /** @brief Add new instrument script slot (gig format extension).
4827         *
4828         * Add the given real-time instrument script reference to this instrument,
4829         * which shall be executed by the sampler for for this instrument. The
4830         * script will be added to the end of the script list of this instrument.
4831         * The positions of the scripts in the Instrument's Script list are
4832         * relevant, because they define in which order they shall be executed by
4833         * the sampler. For this reason it is also legal to add the same script
4834         * twice to an instrument, for example you might have a script called
4835         * "MyFilter" which performs an event filter task, and you might have
4836         * another script called "MyNoteTrigger" which triggers new notes, then you
4837         * might for example have the following list of scripts on the instrument:
4838         *
4839         * 1. Script "MyFilter"
4840         * 2. Script "MyNoteTrigger"
4841         * 3. Script "MyFilter"
4842         *
4843         * Which would make sense, because the 2nd script launched new events, which
4844         * you might need to filter as well.
4845         *
4846         * There are two ways to disable / "bypass" scripts. You can either disable
4847         * a script locally for the respective script slot on an instrument (i.e. by
4848         * passing @c false to the 2nd argument of this method, or by calling
4849         * SetScriptBypassed()). Or you can disable a script globally for all slots
4850         * and all instruments by setting Script::Bypass.
4851         *
4852         * @note This is an own format extension which did not exist i.e. in the
4853         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4854         * gigedit.
4855         *
4856         * @param pScript - script that shall be executed for this instrument
4857         * @param bypass  - if enabled, the sampler shall skip executing this
4858         *                  script (in the respective list position)
4859         * @see SetScriptBypassed()
4860         */
4861        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4862            LoadScripts();
4863            _ScriptPooolRef ref = { pScript, bypass };
4864            pScriptRefs->push_back(ref);
4865        }
4866    
4867        /** @brief Flip two script slots with each other (gig format extension).
4868         *
4869         * Swaps the position of the two given scripts in the Instrument's Script
4870         * list. The positions of the scripts in the Instrument's Script list are
4871         * relevant, because they define in which order they shall be executed by
4872         * the sampler.
4873         *
4874         * @note This is an own format extension which did not exist i.e. in the
4875         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4876         * gigedit.
4877         *
4878         * @param index1 - index of the first script slot to swap
4879         * @param index2 - index of the second script slot to swap
4880         */
4881        void Instrument::SwapScriptSlots(uint index1, uint index2) {
4882            LoadScripts();
4883            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4884                return;
4885            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4886            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4887            (*pScriptRefs)[index2] = tmp;
4888        }
4889    
4890        /** @brief Remove script slot.
4891         *
4892         * Removes the script slot with the given slot index.
4893         *
4894         * @param index - index of script slot to remove
4895         */
4896        void Instrument::RemoveScriptSlot(uint index) {
4897            LoadScripts();
4898            if (index >= pScriptRefs->size()) return;
4899            pScriptRefs->erase( pScriptRefs->begin() + index );
4900        }
4901    
4902        /** @brief Remove reference to given Script (gig format extension).
4903         *
4904         * This will remove all script slots on the instrument which are referencing
4905         * the given script.
4906         *
4907         * @note This is an own format extension which did not exist i.e. in the
4908         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4909         * gigedit.
4910         *
4911         * @param pScript - script reference to remove from this instrument
4912         * @see RemoveScriptSlot()
4913         */
4914        void Instrument::RemoveScript(Script* pScript) {
4915            LoadScripts();
4916            for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4917                if ((*pScriptRefs)[i].script == pScript) {
4918                    pScriptRefs->erase( pScriptRefs->begin() + i );
4919                }
4920            }
4921        }
4922    
4923        /** @brief Instrument's amount of script slots.
4924         *
4925         * This method returns the amount of script slots this instrument currently
4926         * uses.
4927         *
4928         * A script slot is a reference of a real-time instrument script to be
4929         * executed by the sampler. The scripts will be executed by the sampler in
4930         * sequence of the slots. One (same) script may be referenced multiple
4931         * times in different slots.
4932         *
4933         * @note This is an own format extension which did not exist i.e. in the
4934         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4935         * gigedit.
4936         */
4937        uint Instrument::ScriptSlotCount() const {
4938            return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4939        }
4940    
4941        /** @brief Whether script execution shall be skipped.
4942         *
4943         * Defines locally for the Script reference slot in the Instrument's Script
4944         * list, whether the script shall be skipped by the sampler regarding
4945         * execution.
4946         *
4947         * It is also possible to ignore exeuction of the script globally, for all
4948         * slots and for all instruments by setting Script::Bypass.
4949         *
4950         * @note This is an own format extension which did not exist i.e. in the
4951         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4952         * gigedit.
4953         *
4954         * @param index - index of the script slot on this instrument
4955         * @see Script::Bypass
4956         */
4957        bool Instrument::IsScriptSlotBypassed(uint index) {
4958            if (index >= ScriptSlotCount()) return false;
4959            return pScriptRefs ? pScriptRefs->at(index).bypass
4960                               : scriptPoolFileOffsets.at(index).bypass;
4961            
4962        }
4963    
4964        /** @brief Defines whether execution shall be skipped.
4965         *
4966         * You can call this method to define locally whether or whether not the
4967         * given script slot shall be executed by the sampler.
4968         *
4969         * @note This is an own format extension which did not exist i.e. in the
4970         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4971         * gigedit.
4972         *
4973         * @param index - script slot index on this instrument
4974         * @param bBypass - if true, the script slot will be skipped by the sampler
4975         * @see Script::Bypass
4976         */
4977        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
4978            if (index >= ScriptSlotCount()) return;
4979            if (pScriptRefs)
4980                pScriptRefs->at(index).bypass = bBypass;
4981            else
4982                scriptPoolFileOffsets.at(index).bypass = bBypass;
4983        }
4984    
4985        /**
4986         * Make a (semi) deep copy of the Instrument object given by @a orig
4987         * and assign it to this object.
4988         *
4989         * Note that all sample pointers referenced by @a orig are simply copied as
4990         * memory address. Thus the respective samples are shared, not duplicated!
4991         *
4992         * @param orig - original Instrument object to be copied from
4993         */
4994        void Instrument::CopyAssign(const Instrument* orig) {
4995            CopyAssign(orig, NULL);
4996        }
4997            
4998        /**
4999         * Make a (semi) deep copy of the Instrument object given by @a orig
5000         * and assign it to this object.
5001         *
5002         * @param orig - original Instrument object to be copied from
5003         * @param mSamples - crosslink map between the foreign file's samples and
5004         *                   this file's samples
5005         */
5006        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5007            // handle base class
5008            // (without copying DLS region stuff)
5009            DLS::Instrument::CopyAssignCore(orig);
5010            
5011            // handle own member variables
5012            Attenuation = orig->Attenuation;
5013            EffectSend = orig->EffectSend;
5014            FineTune = orig->FineTune;
5015            PitchbendRange = orig->PitchbendRange;
5016            PianoReleaseMode = orig->PianoReleaseMode;
5017            DimensionKeyRange = orig->DimensionKeyRange;
5018            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5019            pScriptRefs = orig->pScriptRefs;
5020            
5021            // free old midi rules
5022            for (int i = 0 ; pMidiRules[i] ; i++) {
5023                delete pMidiRules[i];
5024            }
5025            //TODO: MIDI rule copying
5026            pMidiRules[0] = NULL;
5027            
5028            // delete all old regions
5029            while (Regions) DeleteRegion(GetFirstRegion());
5030            // create new regions and copy them from original
5031            {
5032                RegionList::const_iterator it = orig->pRegions->begin();
5033                for (int i = 0; i < orig->Regions; ++i, ++it) {
5034                    Region* dstRgn = AddRegion();
5035                    //NOTE: Region does semi-deep copy !
5036                    dstRgn->CopyAssign(
5037                        static_cast<gig::Region*>(*it),
5038                        mSamples
5039                    );
5040                }
5041            }
5042    
5043            UpdateRegionKeyTable();
5044        }
5045    
5046    
5047    // *************** Group ***************
5048    // *
5049    
5050        /** @brief Constructor.
5051         *
5052         * @param file   - pointer to the gig::File object
5053         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5054         *                 NULL if this is a new Group
5055         */
5056        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5057            pFile      = file;
5058            pNameChunk = ck3gnm;
5059            ::LoadString(pNameChunk, Name);
5060        }
5061    
5062        Group::~Group() {
5063            // remove the chunk associated with this group (if any)
5064            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5065        }
5066    
5067        /** @brief Update chunks with current group settings.
5068         *
5069         * Apply current Group field values to the respective chunks. You have
5070         * to call File::Save() to make changes persistent.
5071         *
5072         * Usually there is absolutely no need to call this method explicitly.
5073         * It will be called automatically when File::Save() was called.
5074         *
5075         * @param pProgress - callback function for progress notification
5076         */
5077        void Group::UpdateChunks(progress_t* pProgress) {
5078            // make sure <3gri> and <3gnl> list chunks exist
5079            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5080            if (!_3gri) {
5081                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5082                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5083            }
5084            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5085            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5086    
5087            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5088                // v3 has a fixed list of 128 strings, find a free one
5089                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5090                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5091                        pNameChunk = ck;
5092                        break;
5093                    }
5094                }
5095            }
5096    
5097            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5098            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5099        }
5100    
5101        /**
5102         * Returns the first Sample of this Group. You have to call this method
5103         * once before you use GetNextSample().
5104         *
5105         * <b>Notice:</b> this method might block for a long time, in case the
5106         * samples of this .gig file were not scanned yet
5107         *
5108         * @returns  pointer address to first Sample or NULL if there is none
5109         *           applied to this Group
5110         * @see      GetNextSample()
5111         */
5112        Sample* Group::GetFirstSample() {
5113            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5114            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5115                if (pSample->GetGroup() == this) return pSample;
5116            }
5117            return NULL;
5118        }
5119    
5120        /**
5121         * Returns the next Sample of the Group. You have to call
5122         * GetFirstSample() once before you can use this method. By calling this
5123         * method multiple times it iterates through the Samples assigned to
5124         * this Group.
5125         *
5126         * @returns  pointer address to the next Sample of this Group or NULL if
5127         *           end reached
5128         * @see      GetFirstSample()
5129         */
5130        Sample* Group::GetNextSample() {
5131            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5132            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5133                if (pSample->GetGroup() == this) return pSample;
5134            }
5135            return NULL;
5136        }
5137    
5138        /**
5139         * Move Sample given by \a pSample from another Group to this Group.
5140         */
5141        void Group::AddSample(Sample* pSample) {
5142            pSample->pGroup = this;
5143        }
5144    
5145        /**
5146         * Move all members of this group to another group (preferably the 1st
5147         * one except this). This method is called explicitly by
5148         * File::DeleteGroup() thus when a Group was deleted. This code was
5149         * intentionally not placed in the destructor!
5150         */
5151        void Group::MoveAll() {
5152            // get "that" other group first
5153            Group* pOtherGroup = NULL;
5154            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5155                if (pOtherGroup != this) break;
5156            }
5157            if (!pOtherGroup) throw Exception(
5158                "Could not move samples to another group, since there is no "
5159                "other Group. This is a bug, report it!"
5160            );
5161            // now move all samples of this group to the other group
5162            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5163                pOtherGroup->AddSample(pSample);
5164            }
5165      }      }
5166    
5167    
# Line 1323  namespace gig { Line 5169  namespace gig {
5169  // *************** File ***************  // *************** File ***************
5170  // *  // *
5171    
5172        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5173        const DLS::version_t File::VERSION_2 = {
5174            0, 2, 19980628 & 0xffff, 19980628 >> 16
5175        };
5176    
5177        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5178        const DLS::version_t File::VERSION_3 = {
5179            0, 3, 20030331 & 0xffff, 20030331 >> 16
5180        };
5181    
5182        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5183            { CHUNK_ID_IARL, 256 },
5184            { CHUNK_ID_IART, 128 },
5185            { CHUNK_ID_ICMS, 128 },
5186            { CHUNK_ID_ICMT, 1024 },
5187            { CHUNK_ID_ICOP, 128 },
5188            { CHUNK_ID_ICRD, 128 },
5189            { CHUNK_ID_IENG, 128 },
5190            { CHUNK_ID_IGNR, 128 },
5191            { CHUNK_ID_IKEY, 128 },
5192            { CHUNK_ID_IMED, 128 },
5193            { CHUNK_ID_INAM, 128 },
5194            { CHUNK_ID_IPRD, 128 },
5195            { CHUNK_ID_ISBJ, 128 },
5196            { CHUNK_ID_ISFT, 128 },
5197            { CHUNK_ID_ISRC, 128 },
5198            { CHUNK_ID_ISRF, 128 },
5199            { CHUNK_ID_ITCH, 128 },
5200            { 0, 0 }
5201        };
5202    
5203        File::File() : DLS::File() {
5204            bAutoLoad = true;
5205            *pVersion = VERSION_3;
5206            pGroups = NULL;
5207            pScriptGroups = NULL;
5208            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5209            pInfo->ArchivalLocation = String(256, ' ');
5210    
5211            // add some mandatory chunks to get the file chunks in right
5212            // order (INFO chunk will be moved to first position later)
5213            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5214            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5215            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5216    
5217            GenerateDLSID();
5218        }
5219    
5220      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5221          pSamples     = NULL;          bAutoLoad = true;
5222          pInstruments = NULL;          pGroups = NULL;
5223            pScriptGroups = NULL;
5224            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5225      }      }
5226    
5227      Sample* File::GetFirstSample() {      File::~File() {
5228          if (!pSamples) LoadSamples();          if (pGroups) {
5229                std::list<Group*>::iterator iter = pGroups->begin();
5230                std::list<Group*>::iterator end  = pGroups->end();
5231                while (iter != end) {
5232                    delete *iter;
5233                    ++iter;
5234                }
5235                delete pGroups;
5236            }
5237            if (pScriptGroups) {
5238                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5239                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5240                while (iter != end) {
5241                    delete *iter;
5242                    ++iter;
5243                }
5244                delete pScriptGroups;
5245            }
5246        }
5247    
5248        Sample* File::GetFirstSample(progress_t* pProgress) {
5249            if (!pSamples) LoadSamples(pProgress);
5250          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5251          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5252          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1340  namespace gig { Line 5257  namespace gig {
5257          SamplesIterator++;          SamplesIterator++;
5258          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5259      }      }
5260        
5261        /**
5262         * Returns Sample object of @a index.
5263         *
5264         * @returns sample object or NULL if index is out of bounds
5265         */
5266        Sample* File::GetSample(uint index) {
5267            if (!pSamples) LoadSamples();
5268            if (!pSamples) return NULL;
5269            DLS::File::SampleList::iterator it = pSamples->begin();
5270            for (int i = 0; i < index; ++i) {
5271                ++it;
5272                if (it == pSamples->end()) return NULL;
5273            }
5274            if (it == pSamples->end()) return NULL;
5275            return static_cast<gig::Sample*>( *it );
5276        }
5277    
5278      void File::LoadSamples() {      /** @brief Add a new sample.
5279          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5280          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5281              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5282              RIFF::List* wave = wvpl->GetFirstSubList();       *
5283              while (wave) {       * @returns pointer to new Sample object
5284                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5285                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5286                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5287                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5288           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5289           // create new Sample object and its respective 'wave' list chunk
5290           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5291           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5292    
5293           // add mandatory chunks to get the chunks in right order
5294           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5295           wave->AddSubList(LIST_TYPE_INFO);
5296    
5297           pSamples->push_back(pSample);
5298           return pSample;
5299        }
5300    
5301        /** @brief Delete a sample.
5302         *
5303         * This will delete the given Sample object from the gig file. Any
5304         * references to this sample from Regions and DimensionRegions will be
5305         * removed. You have to call Save() to make this persistent to the file.
5306         *
5307         * @param pSample - sample to delete
5308         * @throws gig::Exception if given sample could not be found
5309         */
5310        void File::DeleteSample(Sample* pSample) {
5311            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5312            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5313            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5314            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5315            pSamples->erase(iter);
5316            delete pSample;
5317    
5318            SampleList::iterator tmp = SamplesIterator;
5319            // remove all references to the sample
5320            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5321                 instrument = GetNextInstrument()) {
5322                for (Region* region = instrument->GetFirstRegion() ; region ;
5323                     region = instrument->GetNextRegion()) {
5324    
5325                    if (region->GetSample() == pSample) region->SetSample(NULL);
5326    
5327                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5328                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5329                        if (d->pSample == pSample) d->pSample = NULL;
5330                  }                  }
                 wave = wvpl->GetNextSubList();  
5331              }              }
5332          }          }
5333          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5334        }
5335    
5336        void File::LoadSamples() {
5337            LoadSamples(NULL);
5338        }
5339    
5340        void File::LoadSamples(progress_t* pProgress) {
5341            // Groups must be loaded before samples, because samples will try
5342            // to resolve the group they belong to
5343            if (!pGroups) LoadGroups();
5344    
5345            if (!pSamples) pSamples = new SampleList;
5346    
5347            RIFF::File* file = pRIFF;
5348    
5349            // just for progress calculation
5350            int iSampleIndex  = 0;
5351            int iTotalSamples = WavePoolCount;
5352    
5353            // check if samples should be loaded from extension files
5354            // (only for old gig files < 2 GB)
5355            int lastFileNo = 0;
5356            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5357                for (int i = 0 ; i < WavePoolCount ; i++) {
5358                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5359                }
5360            }
5361            String name(pRIFF->GetFileName());
5362            int nameLen = name.length();
5363            char suffix[6];
5364            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5365    
5366            for (int fileNo = 0 ; ; ) {
5367                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5368                if (wvpl) {
5369                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5370                    RIFF::List* wave = wvpl->GetFirstSubList();
5371                    while (wave) {
5372                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5373                            // notify current progress
5374                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5375                            __notify_progress(pProgress, subprogress);
5376    
5377                            file_offset_t waveFileOffset = wave->GetFilePos();
5378                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5379    
5380                            iSampleIndex++;
5381                        }
5382                        wave = wvpl->GetNextSubList();
5383                    }
5384    
5385                    if (fileNo == lastFileNo) break;
5386    
5387                    // open extension file (*.gx01, *.gx02, ...)
5388                    fileNo++;
5389                    sprintf(suffix, ".gx%02d", fileNo);
5390                    name.replace(nameLen, 5, suffix);
5391                    file = new RIFF::File(name);
5392                    ExtensionFiles.push_back(file);
5393                } else break;
5394            }
5395    
5396            __notify_progress(pProgress, 1.0); // notify done
5397      }      }
5398    
5399      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5400          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5401          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5402          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5403          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5404      }      }
5405    
5406      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5407          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5408          InstrumentsIterator++;          InstrumentsIterator++;
5409          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5410      }      }
5411    
5412      /**      /**
5413       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5414       *       *
5415         * @param index     - number of the sought instrument (0..n)
5416         * @param pProgress - optional: callback function for progress notification
5417       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5418       */       */
5419      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5420          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5421                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5422    
5423                // sample loading subtask
5424                progress_t subprogress;
5425                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5426                __notify_progress(&subprogress, 0.0f);
5427                if (GetAutoLoad())
5428                    GetFirstSample(&subprogress); // now force all samples to be loaded
5429                __notify_progress(&subprogress, 1.0f);
5430    
5431                // instrument loading subtask
5432                if (pProgress && pProgress->callback) {
5433                    subprogress.__range_min = subprogress.__range_max;
5434                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5435                }
5436                __notify_progress(&subprogress, 0.0f);
5437                LoadInstruments(&subprogress);
5438                __notify_progress(&subprogress, 1.0f);
5439            }
5440          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5441          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5442          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5443              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5444              InstrumentsIterator++;              InstrumentsIterator++;
5445          }          }
5446          return NULL;          return NULL;
5447      }      }
5448    
5449        /** @brief Add a new instrument definition.
5450         *
5451         * This will create a new Instrument object for the gig file. You have
5452         * to call Save() to make this persistent to the file.
5453         *
5454         * @returns pointer to new Instrument object
5455         */
5456        Instrument* File::AddInstrument() {
5457           if (!pInstruments) LoadInstruments();
5458           __ensureMandatoryChunksExist();
5459           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5460           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5461    
5462           // add mandatory chunks to get the chunks in right order
5463           lstInstr->AddSubList(LIST_TYPE_INFO);
5464           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5465    
5466           Instrument* pInstrument = new Instrument(this, lstInstr);
5467           pInstrument->GenerateDLSID();
5468    
5469           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5470    
5471           // this string is needed for the gig to be loadable in GSt:
5472           pInstrument->pInfo->Software = "Endless Wave";
5473    
5474           pInstruments->push_back(pInstrument);
5475           return pInstrument;
5476        }
5477        
5478        /** @brief Add a duplicate of an existing instrument.
5479         *
5480         * Duplicates the instrument definition given by @a orig and adds it
5481         * to this file. This allows in an instrument editor application to
5482         * easily create variations of an instrument, which will be stored in
5483         * the same .gig file, sharing i.e. the same samples.
5484         *
5485         * Note that all sample pointers referenced by @a orig are simply copied as
5486         * memory address. Thus the respective samples are shared, not duplicated!
5487         *
5488         * You have to call Save() to make this persistent to the file.
5489         *
5490         * @param orig - original instrument to be copied
5491         * @returns duplicated copy of the given instrument
5492         */
5493        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5494            Instrument* instr = AddInstrument();
5495            instr->CopyAssign(orig);
5496            return instr;
5497        }
5498        
5499        /** @brief Add content of another existing file.
5500         *
5501         * Duplicates the samples, groups and instruments of the original file
5502         * given by @a pFile and adds them to @c this File. In case @c this File is
5503         * a new one that you haven't saved before, then you have to call
5504         * SetFileName() before calling AddContentOf(), because this method will
5505         * automatically save this file during operation, which is required for
5506         * writing the sample waveform data by disk streaming.
5507         *
5508         * @param pFile - original file whose's content shall be copied from
5509         */
5510        void File::AddContentOf(File* pFile) {
5511            static int iCallCount = -1;
5512            iCallCount++;
5513            std::map<Group*,Group*> mGroups;
5514            std::map<Sample*,Sample*> mSamples;
5515            
5516            // clone sample groups
5517            for (int i = 0; pFile->GetGroup(i); ++i) {
5518                Group* g = AddGroup();
5519                g->Name =
5520                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5521                mGroups[pFile->GetGroup(i)] = g;
5522            }
5523            
5524            // clone samples (not waveform data here yet)
5525            for (int i = 0; pFile->GetSample(i); ++i) {
5526                Sample* s = AddSample();
5527                s->CopyAssignMeta(pFile->GetSample(i));
5528                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5529                mSamples[pFile->GetSample(i)] = s;
5530            }
5531            
5532            //BUG: For some reason this method only works with this additional
5533            //     Save() call in between here.
5534            //
5535            // Important: The correct one of the 2 Save() methods has to be called
5536            // here, depending on whether the file is completely new or has been
5537            // saved to disk already, otherwise it will result in data corruption.
5538            if (pRIFF->IsNew())
5539                Save(GetFileName());
5540            else
5541                Save();
5542            
5543            // clone instruments
5544            // (passing the crosslink table here for the cloned samples)
5545            for (int i = 0; pFile->GetInstrument(i); ++i) {
5546                Instrument* instr = AddInstrument();
5547                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5548            }
5549            
5550            // Mandatory: file needs to be saved to disk at this point, so this
5551            // file has the correct size and data layout for writing the samples'
5552            // waveform data to disk.
5553            Save();
5554            
5555            // clone samples' waveform data
5556            // (using direct read & write disk streaming)
5557            for (int i = 0; pFile->GetSample(i); ++i) {
5558                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5559            }
5560        }
5561    
5562        /** @brief Delete an instrument.
5563         *
5564         * This will delete the given Instrument object from the gig file. You
5565         * have to call Save() to make this persistent to the file.
5566         *
5567         * @param pInstrument - instrument to delete
5568         * @throws gig::Exception if given instrument could not be found
5569         */
5570        void File::DeleteInstrument(Instrument* pInstrument) {
5571            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5572            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5573            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5574            pInstruments->erase(iter);
5575            delete pInstrument;
5576        }
5577    
5578      void File::LoadInstruments() {      void File::LoadInstruments() {
5579            LoadInstruments(NULL);
5580        }
5581    
5582        void File::LoadInstruments(progress_t* pProgress) {
5583            if (!pInstruments) pInstruments = new InstrumentList;
5584          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5585          if (lstInstruments) {          if (lstInstruments) {
5586                int iInstrumentIndex = 0;
5587              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5588              while (lstInstr) {              while (lstInstr) {
5589                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5590                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5591                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5592                        __notify_progress(pProgress, localProgress);
5593    
5594                        // divide local progress into subprogress for loading current Instrument
5595                        progress_t subprogress;
5596                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5597    
5598                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5599    
5600                        iInstrumentIndex++;
5601                  }                  }
5602                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5603              }              }
5604                __notify_progress(pProgress, 1.0); // notify done
5605            }
5606        }
5607    
5608        /// Updates the 3crc chunk with the checksum of a sample. The
5609        /// update is done directly to disk, as this method is called
5610        /// after File::Save()
5611        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5612            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5613            if (!_3crc) return;
5614    
5615            // get the index of the sample
5616            int iWaveIndex = -1;
5617            File::SampleList::iterator iter = pSamples->begin();
5618            File::SampleList::iterator end  = pSamples->end();
5619            for (int index = 0; iter != end; ++iter, ++index) {
5620                if (*iter == pSample) {
5621                    iWaveIndex = index;
5622                    break;
5623                }
5624            }
5625            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5626    
5627            // write the CRC-32 checksum to disk
5628            _3crc->SetPos(iWaveIndex * 8);
5629            uint32_t tmp = 1;
5630            _3crc->WriteUint32(&tmp); // unknown, always 1?
5631            _3crc->WriteUint32(&crc);
5632        }
5633    
5634        Group* File::GetFirstGroup() {
5635            if (!pGroups) LoadGroups();
5636            // there must always be at least one group
5637            GroupsIterator = pGroups->begin();
5638            return *GroupsIterator;
5639        }
5640    
5641        Group* File::GetNextGroup() {
5642            if (!pGroups) return NULL;
5643            ++GroupsIterator;
5644            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5645        }
5646    
5647        /**
5648         * Returns the group with the given index.
5649         *
5650         * @param index - number of the sought group (0..n)
5651         * @returns sought group or NULL if there's no such group
5652         */
5653        Group* File::GetGroup(uint index) {
5654            if (!pGroups) LoadGroups();
5655            GroupsIterator = pGroups->begin();
5656            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5657                if (i == index) return *GroupsIterator;
5658                ++GroupsIterator;
5659            }
5660            return NULL;
5661        }
5662    
5663        /**
5664         * Returns the group with the given group name.
5665         *
5666         * Note: group names don't have to be unique in the gig format! So there
5667         * can be multiple groups with the same name. This method will simply
5668         * return the first group found with the given name.
5669         *
5670         * @param name - name of the sought group
5671         * @returns sought group or NULL if there's no group with that name
5672         */
5673        Group* File::GetGroup(String name) {
5674            if (!pGroups) LoadGroups();
5675            GroupsIterator = pGroups->begin();
5676            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5677                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5678            return NULL;
5679        }
5680    
5681        Group* File::AddGroup() {
5682            if (!pGroups) LoadGroups();
5683            // there must always be at least one group
5684            __ensureMandatoryChunksExist();
5685            Group* pGroup = new Group(this, NULL);
5686            pGroups->push_back(pGroup);
5687            return pGroup;
5688        }
5689    
5690        /** @brief Delete a group and its samples.
5691         *
5692         * This will delete the given Group object and all the samples that
5693         * belong to this group from the gig file. You have to call Save() to
5694         * make this persistent to the file.
5695         *
5696         * @param pGroup - group to delete
5697         * @throws gig::Exception if given group could not be found
5698         */
5699        void File::DeleteGroup(Group* pGroup) {
5700            if (!pGroups) LoadGroups();
5701            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5702            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5703            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5704            // delete all members of this group
5705            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5706                DeleteSample(pSample);
5707            }
5708            // now delete this group object
5709            pGroups->erase(iter);
5710            delete pGroup;
5711        }
5712    
5713        /** @brief Delete a group.
5714         *
5715         * This will delete the given Group object from the gig file. All the
5716         * samples that belong to this group will not be deleted, but instead
5717         * be moved to another group. You have to call Save() to make this
5718         * persistent to the file.
5719         *
5720         * @param pGroup - group to delete
5721         * @throws gig::Exception if given group could not be found
5722         */
5723        void File::DeleteGroupOnly(Group* pGroup) {
5724            if (!pGroups) LoadGroups();
5725            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5726            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5727            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5728            // move all members of this group to another group
5729            pGroup->MoveAll();
5730            pGroups->erase(iter);
5731            delete pGroup;
5732        }
5733    
5734        void File::LoadGroups() {
5735            if (!pGroups) pGroups = new std::list<Group*>;
5736            // try to read defined groups from file
5737            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5738            if (lst3gri) {
5739                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5740                if (lst3gnl) {
5741                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5742                    while (ck) {
5743                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5744                            if (pVersion && pVersion->major == 3 &&
5745                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5746    
5747                            pGroups->push_back(new Group(this, ck));
5748                        }
5749                        ck = lst3gnl->GetNextSubChunk();
5750                    }
5751                }
5752            }
5753            // if there were no group(s), create at least the mandatory default group
5754            if (!pGroups->size()) {
5755                Group* pGroup = new Group(this, NULL);
5756                pGroup->Name = "Default Group";
5757                pGroups->push_back(pGroup);
5758            }
5759        }
5760    
5761        /** @brief Get instrument script group (by index).
5762         *
5763         * Returns the real-time instrument script group with the given index.
5764         *
5765         * @param index - number of the sought group (0..n)
5766         * @returns sought script group or NULL if there's no such group
5767         */
5768        ScriptGroup* File::GetScriptGroup(uint index) {
5769            if (!pScriptGroups) LoadScriptGroups();
5770            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5771            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5772                if (i == index) return *it;
5773            return NULL;
5774        }
5775    
5776        /** @brief Get instrument script group (by name).
5777         *
5778         * Returns the first real-time instrument script group found with the given
5779         * group name. Note that group names may not necessarily be unique.
5780         *
5781         * @param name - name of the sought script group
5782         * @returns sought script group or NULL if there's no such group
5783         */
5784        ScriptGroup* File::GetScriptGroup(const String& name) {
5785            if (!pScriptGroups) LoadScriptGroups();
5786            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5787            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5788                if ((*it)->Name == name) return *it;
5789            return NULL;
5790        }
5791    
5792        /** @brief Add new instrument script group.
5793         *
5794         * Adds a new, empty real-time instrument script group to the file.
5795         *
5796         * You have to call Save() to make this persistent to the file.
5797         *
5798         * @return new empty script group
5799         */
5800        ScriptGroup* File::AddScriptGroup() {
5801            if (!pScriptGroups) LoadScriptGroups();
5802            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5803            pScriptGroups->push_back(pScriptGroup);
5804            return pScriptGroup;
5805        }
5806    
5807        /** @brief Delete an instrument script group.
5808         *
5809         * This will delete the given real-time instrument script group and all its
5810         * instrument scripts it contains. References inside instruments that are
5811         * using the deleted scripts will be removed from the respective instruments
5812         * accordingly.
5813         *
5814         * You have to call Save() to make this persistent to the file.
5815         *
5816         * @param pScriptGroup - script group to delete
5817         * @throws gig::Exception if given script group could not be found
5818         */
5819        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5820            if (!pScriptGroups) LoadScriptGroups();
5821            std::list<ScriptGroup*>::iterator iter =
5822                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5823            if (iter == pScriptGroups->end())
5824                throw gig::Exception("Could not delete script group, could not find given script group");
5825            pScriptGroups->erase(iter);
5826            for (int i = 0; pScriptGroup->GetScript(i); ++i)
5827                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5828            if (pScriptGroup->pList)
5829                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5830            delete pScriptGroup;
5831        }
5832    
5833        void File::LoadScriptGroups() {
5834            if (pScriptGroups) return;
5835            pScriptGroups = new std::list<ScriptGroup*>;
5836            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
5837            if (lstLS) {
5838                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
5839                     lst = lstLS->GetNextSubList())
5840                {
5841                    if (lst->GetListType() == LIST_TYPE_RTIS) {
5842                        pScriptGroups->push_back(new ScriptGroup(this, lst));
5843                    }
5844                }
5845          }          }
5846          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5847    
5848        /**
5849         * Apply all the gig file's current instruments, samples, groups and settings
5850         * to the respective RIFF chunks. You have to call Save() to make changes
5851         * persistent.
5852         *
5853         * Usually there is absolutely no need to call this method explicitly.
5854         * It will be called automatically when File::Save() was called.
5855         *
5856         * @param pProgress - callback function for progress notification
5857         * @throws Exception - on errors
5858         */
5859        void File::UpdateChunks(progress_t* pProgress) {
5860            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5861    
5862            // update own gig format extension chunks
5863            // (not part of the GigaStudio 4 format)
5864            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
5865            if (!lst3LS) {
5866                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
5867            }
5868            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
5869            // location of <3LS > is irrelevant, however it should be located
5870            // before  the actual wave data
5871            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
5872            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
5873    
5874            // This must be performed before writing the chunks for instruments,
5875            // because the instruments' script slots will write the file offsets
5876            // of the respective instrument script chunk as reference.
5877            if (pScriptGroups) {
5878                // Update instrument script (group) chunks.
5879                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5880                     it != pScriptGroups->end(); ++it)
5881                {
5882                    (*it)->UpdateChunks(pProgress);
5883                }
5884            }
5885    
5886            // in case no libgig custom format data was added, then remove the
5887            // custom "3LS " chunk again
5888            if (!lst3LS->CountSubChunks()) {
5889                pRIFF->DeleteSubChunk(lst3LS);
5890                lst3LS = NULL;
5891            }
5892    
5893            // first update base class's chunks
5894            DLS::File::UpdateChunks(pProgress);
5895    
5896            if (newFile) {
5897                // INFO was added by Resource::UpdateChunks - make sure it
5898                // is placed first in file
5899                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5900                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5901                if (first != info) {
5902                    pRIFF->MoveSubChunk(info, first);
5903                }
5904            }
5905    
5906            // update group's chunks
5907            if (pGroups) {
5908                // make sure '3gri' and '3gnl' list chunks exist
5909                // (before updating the Group chunks)
5910                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5911                if (!_3gri) {
5912                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5913                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5914                }
5915                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5916                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5917    
5918                // v3: make sure the file has 128 3gnm chunks
5919                // (before updating the Group chunks)
5920                if (pVersion && pVersion->major == 3) {
5921                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5922                    for (int i = 0 ; i < 128 ; i++) {
5923                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5924                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5925                    }
5926                }
5927    
5928                std::list<Group*>::iterator iter = pGroups->begin();
5929                std::list<Group*>::iterator end  = pGroups->end();
5930                for (; iter != end; ++iter) {
5931                    (*iter)->UpdateChunks(pProgress);
5932                }
5933            }
5934    
5935            // update einf chunk
5936    
5937            // The einf chunk contains statistics about the gig file, such
5938            // as the number of regions and samples used by each
5939            // instrument. It is divided in equally sized parts, where the
5940            // first part contains information about the whole gig file,
5941            // and the rest of the parts map to each instrument in the
5942            // file.
5943            //
5944            // At the end of each part there is a bit map of each sample
5945            // in the file, where a set bit means that the sample is used
5946            // by the file/instrument.
5947            //
5948            // Note that there are several fields with unknown use. These
5949            // are set to zero.
5950    
5951            int sublen = pSamples->size() / 8 + 49;
5952            int einfSize = (Instruments + 1) * sublen;
5953    
5954            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5955            if (einf) {
5956                if (einf->GetSize() != einfSize) {
5957                    einf->Resize(einfSize);
5958                    memset(einf->LoadChunkData(), 0, einfSize);
5959                }
5960            } else if (newFile) {
5961                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5962            }
5963            if (einf) {
5964                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5965    
5966                std::map<gig::Sample*,int> sampleMap;
5967                int sampleIdx = 0;
5968                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5969                    sampleMap[pSample] = sampleIdx++;
5970                }
5971    
5972                int totnbusedsamples = 0;
5973                int totnbusedchannels = 0;
5974                int totnbregions = 0;
5975                int totnbdimregions = 0;
5976                int totnbloops = 0;
5977                int instrumentIdx = 0;
5978    
5979                memset(&pData[48], 0, sublen - 48);
5980    
5981                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5982                     instrument = GetNextInstrument()) {
5983                    int nbusedsamples = 0;
5984                    int nbusedchannels = 0;
5985                    int nbdimregions = 0;
5986                    int nbloops = 0;
5987    
5988                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5989    
5990                    for (Region* region = instrument->GetFirstRegion() ; region ;
5991                         region = instrument->GetNextRegion()) {
5992                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
5993                            gig::DimensionRegion *d = region->pDimensionRegions[i];
5994                            if (d->pSample) {
5995                                int sampleIdx = sampleMap[d->pSample];
5996                                int byte = 48 + sampleIdx / 8;
5997                                int bit = 1 << (sampleIdx & 7);
5998                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
5999                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6000                                    nbusedsamples++;
6001                                    nbusedchannels += d->pSample->Channels;
6002    
6003                                    if ((pData[byte] & bit) == 0) {
6004                                        pData[byte] |= bit;
6005                                        totnbusedsamples++;
6006                                        totnbusedchannels += d->pSample->Channels;
6007                                    }
6008                                }
6009                            }
6010                            if (d->SampleLoops) nbloops++;
6011                        }
6012                        nbdimregions += region->DimensionRegions;
6013                    }
6014                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6015                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6016                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6017                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6018                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6019                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6020                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6021                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6022                    // next 8 bytes unknown
6023                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6024                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
6025                    // next 4 bytes unknown
6026    
6027                    totnbregions += instrument->Regions;
6028                    totnbdimregions += nbdimregions;
6029                    totnbloops += nbloops;
6030                    instrumentIdx++;
6031                }
6032                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6033                // store32(&pData[0], sublen);
6034                store32(&pData[4], totnbusedchannels);
6035                store32(&pData[8], totnbusedsamples);
6036                store32(&pData[12], Instruments);
6037                store32(&pData[16], totnbregions);
6038                store32(&pData[20], totnbdimregions);
6039                store32(&pData[24], totnbloops);
6040                // next 8 bytes unknown
6041                // next 4 bytes unknown, not always 0
6042                store32(&pData[40], pSamples->size());
6043                // next 4 bytes unknown
6044            }
6045    
6046            // update 3crc chunk
6047    
6048            // The 3crc chunk contains CRC-32 checksums for the
6049            // samples. The actual checksum values will be filled in
6050            // later, by Sample::Write.
6051    
6052            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6053            if (_3crc) {
6054                _3crc->Resize(pSamples->size() * 8);
6055            } else if (newFile) {
6056                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6057                _3crc->LoadChunkData();
6058    
6059                // the order of einf and 3crc is not the same in v2 and v3
6060                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6061            }
6062        }
6063        
6064        void File::UpdateFileOffsets() {
6065            DLS::File::UpdateFileOffsets();
6066    
6067            for (Instrument* instrument = GetFirstInstrument(); instrument;
6068                 instrument = GetNextInstrument())
6069            {
6070                instrument->UpdateScriptFileOffsets();
6071            }
6072        }
6073    
6074        /**
6075         * Enable / disable automatic loading. By default this properyt is
6076         * enabled and all informations are loaded automatically. However
6077         * loading all Regions, DimensionRegions and especially samples might
6078         * take a long time for large .gig files, and sometimes one might only
6079         * be interested in retrieving very superficial informations like the
6080         * amount of instruments and their names. In this case one might disable
6081         * automatic loading to avoid very slow response times.
6082         *
6083         * @e CAUTION: by disabling this property many pointers (i.e. sample
6084         * references) and informations will have invalid or even undefined
6085         * data! This feature is currently only intended for retrieving very
6086         * superficial informations in a very fast way. Don't use it to retrieve
6087         * details like synthesis informations or even to modify .gig files!
6088         */
6089        void File::SetAutoLoad(bool b) {
6090            bAutoLoad = b;
6091        }
6092    
6093        /**
6094         * Returns whether automatic loading is enabled.
6095         * @see SetAutoLoad()
6096         */
6097        bool File::GetAutoLoad() {
6098            return bAutoLoad;
6099      }      }
6100    
6101    
# Line 1414  namespace gig { Line 6110  namespace gig {
6110          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6111      }      }
6112    
6113    
6114    // *************** functions ***************
6115    // *
6116    
6117        /**
6118         * Returns the name of this C++ library. This is usually "libgig" of
6119         * course. This call is equivalent to RIFF::libraryName() and
6120         * DLS::libraryName().
6121         */
6122        String libraryName() {
6123            return PACKAGE;
6124        }
6125    
6126        /**
6127         * Returns version of this C++ library. This call is equivalent to
6128         * RIFF::libraryVersion() and DLS::libraryVersion().
6129         */
6130        String libraryVersion() {
6131            return VERSION;
6132        }
6133    
6134  } // namespace gig  } // namespace gig

Legend:
Removed from v.269  
changed lines
  Added in v.2922

  ViewVC Help
Powered by ViewVC