/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 269 by schoenebeck, Fri Oct 8 17:25:28 2004 UTC revision 3488 by schoenebeck, Thu Feb 28 17:49:07 2019 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2019 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30    #include <math.h>
31    #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38    /// Initial size of the sample buffer which is used for decompression of
39    /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59    #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
61    
62  namespace gig {  namespace gig {
63    
64    // *************** Internal functions for sample decompression ***************
65    // *
66    
67    namespace {
68    
69        inline int get12lo(const unsigned char* pSrc)
70        {
71            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72            return x & 0x800 ? x - 0x1000 : x;
73        }
74    
75        inline int get12hi(const unsigned char* pSrc)
76        {
77            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78            return x & 0x800 ? x - 0x1000 : x;
79        }
80    
81        inline int16_t get16(const unsigned char* pSrc)
82        {
83            return int16_t(pSrc[0] | pSrc[1] << 8);
84        }
85    
86        inline int get24(const unsigned char* pSrc)
87        {
88            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89            return x & 0x800000 ? x - 0x1000000 : x;
90        }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99        void Decompress16(int compressionmode, const unsigned char* params,
100                          int srcStep, int dstStep,
101                          const unsigned char* pSrc, int16_t* pDst,
102                          file_offset_t currentframeoffset,
103                          file_offset_t copysamples)
104        {
105            switch (compressionmode) {
106                case 0: // 16 bit uncompressed
107                    pSrc += currentframeoffset * srcStep;
108                    while (copysamples) {
109                        *pDst = get16(pSrc);
110                        pDst += dstStep;
111                        pSrc += srcStep;
112                        copysamples--;
113                    }
114                    break;
115    
116                case 1: // 16 bit compressed to 8 bit
117                    int y  = get16(params);
118                    int dy = get16(params + 2);
119                    while (currentframeoffset) {
120                        dy -= int8_t(*pSrc);
121                        y  -= dy;
122                        pSrc += srcStep;
123                        currentframeoffset--;
124                    }
125                    while (copysamples) {
126                        dy -= int8_t(*pSrc);
127                        y  -= dy;
128                        *pDst = y;
129                        pDst += dstStep;
130                        pSrc += srcStep;
131                        copysamples--;
132                    }
133                    break;
134            }
135        }
136    
137        void Decompress24(int compressionmode, const unsigned char* params,
138                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                          file_offset_t currentframeoffset,
140                          file_offset_t copysamples, int truncatedBits)
141        {
142            int y, dy, ddy, dddy;
143    
144    #define GET_PARAMS(params)                      \
145            y    = get24(params);                   \
146            dy   = y - get24((params) + 3);         \
147            ddy  = get24((params) + 6);             \
148            dddy = get24((params) + 9)
149    
150    #define SKIP_ONE(x)                             \
151            dddy -= (x);                            \
152            ddy  -= dddy;                           \
153            dy   =  -dy - ddy;                      \
154            y    += dy
155    
156    #define COPY_ONE(x)                             \
157            SKIP_ONE(x);                            \
158            store24(pDst, y << truncatedBits);      \
159            pDst += dstStep
160    
161            switch (compressionmode) {
162                case 2: // 24 bit uncompressed
163                    pSrc += currentframeoffset * 3;
164                    while (copysamples) {
165                        store24(pDst, get24(pSrc) << truncatedBits);
166                        pDst += dstStep;
167                        pSrc += 3;
168                        copysamples--;
169                    }
170                    break;
171    
172                case 3: // 24 bit compressed to 16 bit
173                    GET_PARAMS(params);
174                    while (currentframeoffset) {
175                        SKIP_ONE(get16(pSrc));
176                        pSrc += 2;
177                        currentframeoffset--;
178                    }
179                    while (copysamples) {
180                        COPY_ONE(get16(pSrc));
181                        pSrc += 2;
182                        copysamples--;
183                    }
184                    break;
185    
186                case 4: // 24 bit compressed to 12 bit
187                    GET_PARAMS(params);
188                    while (currentframeoffset > 1) {
189                        SKIP_ONE(get12lo(pSrc));
190                        SKIP_ONE(get12hi(pSrc));
191                        pSrc += 3;
192                        currentframeoffset -= 2;
193                    }
194                    if (currentframeoffset) {
195                        SKIP_ONE(get12lo(pSrc));
196                        currentframeoffset--;
197                        if (copysamples) {
198                            COPY_ONE(get12hi(pSrc));
199                            pSrc += 3;
200                            copysamples--;
201                        }
202                    }
203                    while (copysamples > 1) {
204                        COPY_ONE(get12lo(pSrc));
205                        COPY_ONE(get12hi(pSrc));
206                        pSrc += 3;
207                        copysamples -= 2;
208                    }
209                    if (copysamples) {
210                        COPY_ONE(get12lo(pSrc));
211                    }
212                    break;
213    
214                case 5: // 24 bit compressed to 8 bit
215                    GET_PARAMS(params);
216                    while (currentframeoffset) {
217                        SKIP_ONE(int8_t(*pSrc++));
218                        currentframeoffset--;
219                    }
220                    while (copysamples) {
221                        COPY_ONE(int8_t(*pSrc++));
222                        copysamples--;
223                    }
224                    break;
225            }
226        }
227    
228        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
229        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
231        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
232    }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
369      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
370    
371      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
372         *
373         * Load an existing sample or create a new one. A 'wave' list chunk must
374         * be given to this constructor. In case the given 'wave' list chunk
375         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376         * format and sample data will be loaded from there, otherwise default
377         * values will be used and those chunks will be created when
378         * File::Save() will be called later on.
379         *
380         * @param pFile          - pointer to gig::File where this sample is
381         *                         located (or will be located)
382         * @param waveList       - pointer to 'wave' list chunk which is (or
383         *                         will be) associated with this sample
384         * @param WavePoolOffset - offset of this sample data from wave pool
385         *                         ('wvpl') list chunk
386         * @param fileNo         - number of an extension file where this sample
387         *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389         */
390        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399            FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413            pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414            if (pCk3gix) {
415                pCk3gix->SetPos(0);
416    
417                uint16_t iSampleGroup = pCk3gix->ReadInt16();
418                pGroup = pFile->GetGroup(iSampleGroup);
419            } else { // '3gix' chunk missing
420                // by default assigned to that mandatory "Default Group"
421                pGroup = pFile->GetGroup(0);
422            }
423    
424          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCkSmpl) {
426          SampleGroup = _3gix->ReadInt16();              pCkSmpl->SetPos(0);
427    
428          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              Manufacturer  = pCkSmpl->ReadInt32();
429          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              Product       = pCkSmpl->ReadInt32();
430          Manufacturer      = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
431          Product           = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
432          SamplePeriod      = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
433          MIDIUnityNote     = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
434          FineTune          = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
435          smpl->Read(&SMPTEFormat, 1, 4);              Loops         = pCkSmpl->ReadInt32();
436          SMPTEOffset       = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
437          Loops             = smpl->ReadInt32();              LoopID        = pCkSmpl->ReadInt32();
438          uint32_t manufByt = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
439          LoopID            = smpl->ReadInt32();              LoopStart     = pCkSmpl->ReadInt32();
440          smpl->Read(&LoopType, 1, 4);              LoopEnd       = pCkSmpl->ReadInt32();
441          LoopStart         = smpl->ReadInt32();              LoopFraction  = pCkSmpl->ReadInt32();
442          LoopEnd           = smpl->ReadInt32();              LoopPlayCount = pCkSmpl->ReadInt32();
443          LoopFraction      = smpl->ReadInt32();          } else { // 'smpl' chunk missing
444          LoopPlayCount     = smpl->ReadInt32();              // use default values
445                Manufacturer  = 0;
446                Product       = 0;
447                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448                MIDIUnityNote = 60;
449                FineTune      = 0;
450                SMPTEFormat   = smpte_format_no_offset;
451                SMPTEOffset   = 0;
452                Loops         = 0;
453                LoopID        = 0;
454                LoopType      = loop_type_normal;
455                LoopStart     = 0;
456                LoopEnd       = 0;
457                LoopFraction  = 0;
458                LoopPlayCount = 0;
459            }
460    
461          FrameTable                 = NULL;          FrameTable                 = NULL;
462          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 464  namespace gig {
464          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
465          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
466    
467          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468    
469            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470            Compressed        = ewav;
471            Dithered          = false;
472            TruncatedBits     = 0;
473          if (Compressed) {          if (Compressed) {
474              ScanCompressedSample();              ewav->SetPos(0);
475              if (!pDecompressionBuffer) {  
476                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];              uint32_t version = ewav->ReadInt32();
477                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;              if (version > 2 && BitDepth == 24) {
478                    Dithered = ewav->ReadInt32();
479                    ewav->SetPos(Channels == 2 ? 84 : 64);
480                    TruncatedBits = ewav->ReadInt32();
481              }              }
482                ScanCompressedSample();
483          }          }
         FrameOffset = 0; // just for streaming compressed samples  
484    
485          LoopSize = LoopEnd - LoopStart;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
489            }
490            FrameOffset = 0; // just for streaming compressed samples
491    
492            LoopSize = LoopEnd - LoopStart + 1;
493        }
494    
495        /**
496         * Make a (semi) deep copy of the Sample object given by @a orig (without
497         * the actual waveform data) and assign it to this object.
498         *
499         * Discussion: copying .gig samples is a bit tricky. It requires three
500         * steps:
501         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502         *    its new sample waveform data size.
503         * 2. Saving the file (done by File::Save()) so that it gains correct size
504         *    and layout for writing the actual wave form data directly to disc
505         *    in next step.
506         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507         *
508         * @param orig - original Sample object to be copied from
509         */
510        void Sample::CopyAssignMeta(const Sample* orig) {
511            // handle base classes
512            DLS::Sample::CopyAssignCore(orig);
513            
514            // handle actual own attributes of this class
515            Manufacturer = orig->Manufacturer;
516            Product = orig->Product;
517            SamplePeriod = orig->SamplePeriod;
518            MIDIUnityNote = orig->MIDIUnityNote;
519            FineTune = orig->FineTune;
520            SMPTEFormat = orig->SMPTEFormat;
521            SMPTEOffset = orig->SMPTEOffset;
522            Loops = orig->Loops;
523            LoopID = orig->LoopID;
524            LoopType = orig->LoopType;
525            LoopStart = orig->LoopStart;
526            LoopEnd = orig->LoopEnd;
527            LoopSize = orig->LoopSize;
528            LoopFraction = orig->LoopFraction;
529            LoopPlayCount = orig->LoopPlayCount;
530            
531            // schedule resizing this sample to the given sample's size
532            Resize(orig->GetSize());
533        }
534    
535        /**
536         * Should be called after CopyAssignMeta() and File::Save() sequence.
537         * Read more about it in the discussion of CopyAssignMeta(). This method
538         * copies the actual waveform data by disk streaming.
539         *
540         * @e CAUTION: this method is currently not thread safe! During this
541         * operation the sample must not be used for other purposes by other
542         * threads!
543         *
544         * @param orig - original Sample object to be copied from
545         */
546        void Sample::CopyAssignWave(const Sample* orig) {
547            const int iReadAtOnce = 32*1024;
548            char* buf = new char[iReadAtOnce * orig->FrameSize];
549            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550            file_offset_t restorePos = pOrig->GetPos();
551            pOrig->SetPos(0);
552            SetPos(0);
553            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554                               n = pOrig->Read(buf, iReadAtOnce))
555            {
556                Write(buf, n);
557            }
558            pOrig->SetPos(restorePos);
559            delete [] buf;
560        }
561    
562        /**
563         * Apply sample and its settings to the respective RIFF chunks. You have
564         * to call File::Save() to make changes persistent.
565         *
566         * Usually there is absolutely no need to call this method explicitly.
567         * It will be called automatically when File::Save() was called.
568         *
569         * @param pProgress - callback function for progress notification
570         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571         *                        was provided yet
572         * @throws gig::Exception if there is any invalid sample setting
573         */
574        void Sample::UpdateChunks(progress_t* pProgress) {
575            // first update base class's chunks
576            DLS::Sample::UpdateChunks(pProgress);
577    
578            // make sure 'smpl' chunk exists
579            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580            if (!pCkSmpl) {
581                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582                memset(pCkSmpl->LoadChunkData(), 0, 60);
583            }
584            // update 'smpl' chunk
585            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587            store32(&pData[0], Manufacturer);
588            store32(&pData[4], Product);
589            store32(&pData[8], SamplePeriod);
590            store32(&pData[12], MIDIUnityNote);
591            store32(&pData[16], FineTune);
592            store32(&pData[20], SMPTEFormat);
593            store32(&pData[24], SMPTEOffset);
594            store32(&pData[28], Loops);
595    
596            // we skip 'manufByt' for now (4 bytes)
597    
598            store32(&pData[36], LoopID);
599            store32(&pData[40], LoopType);
600            store32(&pData[44], LoopStart);
601            store32(&pData[48], LoopEnd);
602            store32(&pData[52], LoopFraction);
603            store32(&pData[56], LoopPlayCount);
604    
605            // make sure '3gix' chunk exists
606            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608            // determine appropriate sample group index (to be stored in chunk)
609            uint16_t iSampleGroup = 0; // 0 refers to default sample group
610            File* pFile = static_cast<File*>(pParent);
611            if (pFile->pGroups) {
612                std::list<Group*>::iterator iter = pFile->pGroups->begin();
613                std::list<Group*>::iterator end  = pFile->pGroups->end();
614                for (int i = 0; iter != end; i++, iter++) {
615                    if (*iter == pGroup) {
616                        iSampleGroup = i;
617                        break; // found
618                    }
619                }
620            }
621            // update '3gix' chunk
622            pData = (uint8_t*) pCk3gix->LoadChunkData();
623            store16(&pData[0], iSampleGroup);
624    
625            // if the library user toggled the "Compressed" attribute from true to
626            // false, then the EWAV chunk associated with compressed samples needs
627            // to be deleted
628            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629            if (ewav && !Compressed) {
630                pWaveList->DeleteSubChunk(ewav);
631            }
632      }      }
633    
634      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
636          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
637          this->SamplesTotal = 0;          this->SamplesTotal = 0;
638          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
639    
640            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642    
643          // Scanning          // Scanning
644          pCkData->SetPos(0);          pCkData->SetPos(0);
645          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
646              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
647              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
648              this->SamplesTotal += 2048;                  // stored, to save some memory
649              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650                  case 1:   // left channel compressed  
651                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
652                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
653                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655    
656                    if (pCkData->RemainingBytes() <= frameSize) {
657                        SamplesInLastFrame =
658                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660                        SamplesTotal += SamplesInLastFrame;
661                      break;                      break;
662                  case 257: // both channels compressed                  }
663                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
664                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
665                }
666            }
667            else { // Mono
668                for (int i = 0 ; ; i++) {
669                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670    
671                    const int mode = pCkData->ReadUint8();
672                    if (mode > 5) throw gig::Exception("Unknown compression mode");
673                    const file_offset_t frameSize = bytesPerFrame[mode];
674    
675                    if (pCkData->RemainingBytes() <= frameSize) {
676                        SamplesInLastFrame =
677                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678                        SamplesTotal += SamplesInLastFrame;
679                      break;                      break;
680                  default: // both channels uncompressed                  }
681                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
682                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
683              }              }
684          }          }
685          pCkData->SetPos(0);          pCkData->SetPos(0);
686    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
687          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
689          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
690          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
691          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
693              FrameTable[i] = *iter;              FrameTable[i] = *iter;
694          }          }
# Line 141  namespace gig { Line 719  namespace gig {
719       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
720       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
721       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
722       *       * @code
723       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
724       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
725         * @endcode
726       *       *
727       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
728       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
729       *                      the cached sample data in bytes       *                      the cached sample data in bytes
730       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
731       */       */
732      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734      }      }
735    
# Line 189  namespace gig { Line 768  namespace gig {
768       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
769       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
770       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
771       *       * @code
772       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
774       *       * @endcode
775       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
776       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
777       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 209  namespace gig { Line 788  namespace gig {
788       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
789       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
790       */       */
791      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795            SetPos(0); // reset read position to begin of sample
796          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
797          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 250  namespace gig { Line 830  namespace gig {
830          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
832          RAMCache.Size   = 0;          RAMCache.Size   = 0;
833            RAMCache.NullExtensionSize = 0;
834        }
835    
836        /** @brief Resize sample.
837         *
838         * Resizes the sample's wave form data, that is the actual size of
839         * sample wave data possible to be written for this sample. This call
840         * will return immediately and just schedule the resize operation. You
841         * should call File::Save() to actually perform the resize operation(s)
842         * "physically" to the file. As this can take a while on large files, it
843         * is recommended to call Resize() first on all samples which have to be
844         * resized and finally to call File::Save() to perform all those resize
845         * operations in one rush.
846         *
847         * The actual size (in bytes) is dependant to the current FrameSize
848         * value. You may want to set FrameSize before calling Resize().
849         *
850         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851         * enlarged samples before calling File::Save() as this might exceed the
852         * current sample's boundary!
853         *
854         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856         * other formats will fail!
857         *
858         * @param NewSize - new sample wave data size in sample points (must be
859         *                  greater than zero)
860         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862         * @throws gig::Exception if existing sample is compressed
863         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864         *      DLS::Sample::FormatTag, File::Save()
865         */
866        void Sample::Resize(file_offset_t NewSize) {
867            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868            DLS::Sample::Resize(NewSize);
869      }      }
870    
871      /**      /**
# Line 273  namespace gig { Line 889  namespace gig {
889       * @returns            the new sample position       * @returns            the new sample position
890       * @see                Read()       * @see                Read()
891       */       */
892      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893          if (Compressed) {          if (Compressed) {
894              switch (Whence) {              switch (Whence) {
895                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 291  namespace gig { Line 907  namespace gig {
907              }              }
908              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
912              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
913              return this->SamplePos;              return this->SamplePos;
914          }          }
915          else { // not compressed          else { // not compressed
916              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
917              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
919                                              : result / this->FrameSize;                                              : result / this->FrameSize;
920          }          }
# Line 307  namespace gig { Line 923  namespace gig {
923      /**      /**
924       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
925       */       */
926      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
927          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
928          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
929      }      }
# Line 323  namespace gig { Line 939  namespace gig {
939       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
940       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
941       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
942       *       * @code
943       * <i>       * gig::playback_state_t playbackstate;
944       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
945       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
946       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
948       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
949       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
950       * The method already handles such cases by itself.       * The method already handles such cases by itself.
951       *       *
952         * <b>Caution:</b> If you are using more than one streaming thread, you
953         * have to use an external decompression buffer for <b>EACH</b>
954         * streaming thread to avoid race conditions and crashes!
955         *
956       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
957       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
958       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
959       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
960         * @param pDimRgn          dimension region with looping information
961         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
962       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
963         * @see                    CreateDecompressionBuffer()
964       */       */
965      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
969    
970          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
971    
972          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973    
974              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976    
977                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
978                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
979    
980                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
981                              // determine the end position within the loop first,                          do {
982                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
983                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984                              // backward playback  
985                                if (!pPlaybackState->reverse) { // forward playback
986                              unsigned long swapareastart       = totalreadsamples;                                  do {
987                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
988                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
990                                        totalreadsamples += readsamples;
991                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
992                                            pPlaybackState->reverse = true;
993                              // read samples for backward playback                                          break;
994                              do {                                      }
995                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
996                                  samplestoreadinloop -= readsamples;                              }
997                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
998    
999                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
1000                                    // determine the end position within the loop first,
1001                                    // read forward from that 'end' and finally after
1002                                    // reading, swap all sample frames so it reflects
1003                                    // backward playback
1004    
1005                                    file_offset_t swapareastart       = totalreadsamples;
1006                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1007                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1009    
1010                                    SetPos(reverseplaybackend);
1011    
1012                                    // read samples for backward playback
1013                                    do {
1014                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015                                        samplestoreadinloop -= readsamples;
1016                                        samplestoread       -= readsamples;
1017                                        totalreadsamples    += readsamples;
1018                                    } while (samplestoreadinloop && readsamples);
1019    
1020                                    SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022                                    if (reverseplaybackend == loop.LoopStart) {
1023                                        pPlaybackState->loop_cycles_left--;
1024                                        pPlaybackState->reverse = false;
1025                                    }
1026    
1027                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1028                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                              }                              }
1031                            } while (samplestoread && readsamples);
1032                            break;
1033                        }
1034    
1035                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1036                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1037                          }                          if (!pPlaybackState->reverse) do {
1038                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1039                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040                  }                              samplestoread    -= readsamples;
1041                                totalreadsamples += readsamples;
1042                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1043                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1044                      if (!pPlaybackState->reverse) do {                                  break;
1045                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1046                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1047    
1048                      if (!samplestoread) break;                          if (!samplestoread) break;
1049    
1050                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1051                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1052                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1053                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1054                      // backward playback                          // backward playback
1055    
1056                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1057                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1058                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059                                                                                : samplestoread;                                                                                    : samplestoread;
1060                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061    
1062                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1063    
1064                      // read samples for backward playback                          // read samples for backward playback
1065                      do {                          do {
1066                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1067                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1069                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1071                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1072                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1073                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1074                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1075                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1076                          }                              }
1077                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1078    
1079                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1080    
1081                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1082                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083                      break;                          break;
1084                  }                      }
1085    
1086                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1087                      do {                          do {
1088                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1089                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1091                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1093                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1094                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1095                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1096                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1097                          }                              }
1098                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1099                      break;                          break;
1100                        }
1101                  }                  }
1102              }              }
1103          }          }
1104    
1105          // read on without looping          // read on without looping
1106          if (samplestoread) do {          if (samplestoread) do {
1107              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1109              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1110          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 1123  namespace gig {
1123       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124       * thus for disk streaming.       * thus for disk streaming.
1125       *       *
1126         * <b>Caution:</b> If you are using more than one streaming thread, you
1127         * have to use an external decompression buffer for <b>EACH</b>
1128         * streaming thread to avoid race conditions and crashes!
1129         *
1130         * For 16 bit samples, the data in the buffer will be int16_t
1131         * (using native endianness). For 24 bit, the buffer will
1132         * contain three bytes per sample, little-endian.
1133         *
1134       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1135       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1136         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1137       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1138       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1139       */       */
1140      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1142          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1143          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1144                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145                }
1146                else { // 16 bit
1147                    // (pCkData->Read does endian correction)
1148                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149                                         : pCkData->Read(pBuffer, SampleCount, 2);
1150                }
1151            }
1152            else {
1153              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1154              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1155              // best case needed buffer size (all frames compressed)              file_offset_t assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1156                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1157                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1158                            copysamples;                            copysamples, skipsamples,
1159              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1160              this->FrameOffset = 0;              this->FrameOffset = 0;
1161    
1162              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163                  // local buffer reallocation - hope this won't happen  
1164                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1165                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1166                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1168                    remainingsamples = SampleCount;
1169                    assumedsize      = GuessSize(SampleCount);
1170              }              }
1171    
1172              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1178                    file_offset_t framesamples = SamplesPerFrame;
1179                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180                  if (remainingbytes < 8194) {  
1181                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1182                          this->SamplePos = this->SamplesTotal;  
1183                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1184                      }                      mode_r = *pSrc++;
1185                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1189                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1190                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1191                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1193                            else {
1194                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195                            }
1196                        }
1197                    }
1198                    else {
1199                        framebytes = bytesPerFrame[mode_l] + 1;
1200                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201                        if (remainingbytes < framebytes) {
1202                            framesamples = SamplesInLastFrame;
1203                        }
1204                  }                  }
1205    
1206                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1207                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1208                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1209                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1210                            skipsamples = currentframeoffset;
1211                        }
1212                        else {
1213                            copysamples = 0;
1214                            skipsamples = framesamples;
1215                        }
1216                  }                  }
1217                  else {                  else {
1218                        // This frame has enough data for pBuffer, but not
1219                        // all of the frame is needed. Set file position
1220                        // to start of this frame for next call to Read.
1221                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1222                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1223                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1225                      }                  }
1226                      else {                  remainingsamples -= copysamples;
1227    
1228                    if (remainingbytes > framebytes) {
1229                        remainingbytes -= framebytes;
1230                        if (remainingsamples == 0 &&
1231                            currentframeoffset + copysamples == framesamples) {
1232                            // This frame has enough data for pBuffer, and
1233                            // all of the frame is needed. Set file
1234                            // position to start of next frame for next
1235                            // call to Read. FrameOffset is 0.
1236                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1237                      }                      }
1238                  }                  }
1239                    else remainingbytes = 0;
1240    
1241                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1242                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1243                  switch (compressionmode) {                  if (copysamples == 0) {
1244                      case 1: // left channel compressed                      // skip this frame
1245                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1246                          if (!remainingsamples && copysamples == 2048)                  }
1247                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1248                        const unsigned char* const param_l = pSrc;
1249                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1250                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1251                          while (currentframeoffset) {  
1252                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1253                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1254                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1255                              currentframeoffset--;  
1256                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1258                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1260                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1261                          }                          }
1262                          while (copysamples) {                          else { // Mono
1263                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1265                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1266                          }                          }
1267                          break;                      }
1268                      case 257: // both channels compressed                      else { // 16 bit
1269                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1270                          if (!remainingsamples && copysamples == 2048)  
1271                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1272                            if (Channels == 2) { // Stereo
1273                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1274                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1275                          right  = *(int16_t*)pSrc; pSrc+=2;  
1276                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1277                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279                              left   -= dleft;                                           skipsamples, copysamples);
1280                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1281                          }                          }
1282                          while (copysamples) {                          else { // Mono
1283                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1284                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1286                          }                          }
1287                          break;                      }
1288                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1289                  }                  }
1290              }  
1291                    // reload from disk to local buffer if needed
1292                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293                        assumedsize    = GuessSize(remainingsamples);
1294                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298                    }
1299                } // while
1300    
1301              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1302              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1304          }          }
1305      }      }
1306    
1307        /** @brief Write sample wave data.
1308         *
1309         * Writes \a SampleCount number of sample points from the buffer pointed
1310         * by \a pBuffer and increments the position within the sample. Use this
1311         * method to directly write the sample data to disk, i.e. if you don't
1312         * want or cannot load the whole sample data into RAM.
1313         *
1314         * You have to Resize() the sample to the desired size and call
1315         * File::Save() <b>before</b> using Write().
1316         *
1317         * Note: there is currently no support for writing compressed samples.
1318         *
1319         * For 16 bit samples, the data in the source buffer should be
1320         * int16_t (using native endianness). For 24 bit, the buffer
1321         * should contain three bytes per sample, little-endian.
1322         *
1323         * @param pBuffer     - source buffer
1324         * @param SampleCount - number of sample points to write
1325         * @throws DLS::Exception if current sample size is too small
1326         * @throws gig::Exception if sample is compressed
1327         * @see DLS::LoadSampleData()
1328         */
1329        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331    
1332            // if this is the first write in this sample, reset the
1333            // checksum calculator
1334            if (pCkData->GetPos() == 0) {
1335                __resetCRC(crc);
1336            }
1337            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338            file_offset_t res;
1339            if (BitDepth == 24) {
1340                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341            } else { // 16 bit
1342                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343                                    : pCkData->Write(pBuffer, SampleCount, 2);
1344            }
1345            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346    
1347            // if this is the last write, update the checksum chunk in the
1348            // file
1349            if (pCkData->GetPos() == pCkData->GetSize()) {
1350                __finalizeCRC(crc);
1351                File* pFile = static_cast<File*>(GetParent());
1352                pFile->SetSampleChecksum(this, crc);
1353            }
1354            return res;
1355        }
1356    
1357        /**
1358         * Allocates a decompression buffer for streaming (compressed) samples
1359         * with Sample::Read(). If you are using more than one streaming thread
1360         * in your application you <b>HAVE</b> to create a decompression buffer
1361         * for <b>EACH</b> of your streaming threads and provide it with the
1362         * Sample::Read() call in order to avoid race conditions and crashes.
1363         *
1364         * You should free the memory occupied by the allocated buffer(s) once
1365         * you don't need one of your streaming threads anymore by calling
1366         * DestroyDecompressionBuffer().
1367         *
1368         * @param MaxReadSize - the maximum size (in sample points) you ever
1369         *                      expect to read with one Read() call
1370         * @returns allocated decompression buffer
1371         * @see DestroyDecompressionBuffer()
1372         */
1373        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374            buffer_t result;
1375            const double worstCaseHeaderOverhead =
1376                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378            result.pStart            = new int8_t[result.Size];
1379            result.NullExtensionSize = 0;
1380            return result;
1381        }
1382    
1383        /**
1384         * Free decompression buffer, previously created with
1385         * CreateDecompressionBuffer().
1386         *
1387         * @param DecompressionBuffer - previously allocated decompression
1388         *                              buffer to free
1389         */
1390        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392                delete[] (int8_t*) DecompressionBuffer.pStart;
1393                DecompressionBuffer.pStart = NULL;
1394                DecompressionBuffer.Size   = 0;
1395                DecompressionBuffer.NullExtensionSize = 0;
1396            }
1397        }
1398    
1399        /**
1400         * Returns pointer to the Group this Sample belongs to. In the .gig
1401         * format a sample always belongs to one group. If it wasn't explicitly
1402         * assigned to a certain group, it will be automatically assigned to a
1403         * default group.
1404         *
1405         * @returns Sample's Group (never NULL)
1406         */
1407        Group* Sample::GetGroup() const {
1408            return pGroup;
1409        }
1410    
1411        /**
1412         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413         * time when this sample's wave form data was modified for the last time
1414         * by calling Write(). This checksum only covers the raw wave form data,
1415         * not any meta informations like i.e. bit depth or loop points. Since
1416         * this method just returns the checksum stored for this sample i.e. when
1417         * the gig file was loaded, this method returns immediately. So it does no
1418         * recalcuation of the checksum with the currently available sample wave
1419         * form data.
1420         *
1421         * @see VerifyWaveData()
1422         */
1423        uint32_t Sample::GetWaveDataCRC32Checksum() {
1424            return crc;
1425        }
1426    
1427        /**
1428         * Checks the integrity of this sample's raw audio wave data. Whenever a
1429         * Sample's raw wave data is intentionally modified (i.e. by calling
1430         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431         * is calculated and stored/updated for this sample, along to the sample's
1432         * meta informations.
1433         *
1434         * Now by calling this method the current raw audio wave data is checked
1435         * against the already stored CRC32 check sum in order to check whether the
1436         * sample data had been damaged unintentionally for some reason. Since by
1437         * calling this method always the entire raw audio wave data has to be
1438         * read, verifying all samples this way may take a long time accordingly.
1439         * And that's also the reason why the sample integrity is not checked by
1440         * default whenever a gig file is loaded. So this method must be called
1441         * explicitly to fulfill this task.
1442         *
1443         * @param pActually - (optional) if provided, will be set to the actually
1444         *                    calculated checksum of the current raw wave form data,
1445         *                    you can get the expected checksum instead by calling
1446         *                    GetWaveDataCRC32Checksum()
1447         * @returns true if sample is OK or false if the sample is damaged
1448         * @throws Exception if no checksum had been stored to disk for this
1449         *         sample yet, or on I/O issues
1450         * @see GetWaveDataCRC32Checksum()
1451         */
1452        bool Sample::VerifyWaveData(uint32_t* pActually) {
1453            //File* pFile = static_cast<File*>(GetParent());
1454            uint32_t crc = CalculateWaveDataChecksum();
1455            if (pActually) *pActually = crc;
1456            return crc == this->crc;
1457        }
1458    
1459        uint32_t Sample::CalculateWaveDataChecksum() {
1460            const size_t sz = 20*1024; // 20kB buffer size
1461            std::vector<uint8_t> buffer(sz);
1462            buffer.resize(sz);
1463    
1464            const size_t n = sz / FrameSize;
1465            SetPos(0);
1466            uint32_t crc = 0;
1467            __resetCRC(crc);
1468            while (true) {
1469                file_offset_t nRead = Read(&buffer[0], n);
1470                if (nRead <= 0) break;
1471                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472            }
1473            __finalizeCRC(crc);
1474            return crc;
1475        }
1476    
1477      Sample::~Sample() {      Sample::~Sample() {
1478          Instances--;          Instances--;
1479          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1480                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481                InternalDecompressionBuffer.pStart = NULL;
1482                InternalDecompressionBuffer.Size   = 0;
1483            }
1484          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1485          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486      }      }
# Line 670  namespace gig { Line 1490  namespace gig {
1490  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1491  // *  // *
1492    
1493      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1494      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497          Instances++;          Instances++;
1498    
1499          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1500            pRegion = pParent;
1501    
1502            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503            else memset(&Crossfade, 0, 4);
1504    
1505          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506    
1507          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1509          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->SetPos(0);
1510          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());  
1511          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512          LFO1InternalDepth = _3ewa->ReadUint16();              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1515          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1516          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1517          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1518          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1519          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1ControlDepth = _3ewa->ReadUint16();
1520          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt16(); // unknown
1521          _3ewa->ReadInt16(); // unknown              LFO3ControlDepth = _3ewa->ReadInt16();
1522          EG1Sustain          = _3ewa->ReadUint16();              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              _3ewa->ReadInt16(); // unknown
1525          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Sustain          = _3ewa->ReadUint16();
1526          EG1ControllerInvert           = eg1ctrloptions & 0x01;              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1529          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1530          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532          EG2ControllerInvert           = eg2ctrloptions & 0x01;              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1535          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1536          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539          _3ewa->ReadInt16(); // unknown              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540          EG2Sustain       = _3ewa->ReadUint16();              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1543          LFO2ControlDepth = _3ewa->ReadUint16();              EG2Sustain       = _3ewa->ReadUint16();
1544          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1546          LFO2InternalDepth = _3ewa->ReadUint16();              LFO2ControlDepth = _3ewa->ReadUint16();
1547          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              _3ewa->ReadInt16(); // unknown
1549          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              LFO2InternalDepth = _3ewa->ReadUint16();
1550          _3ewa->ReadInt16(); // unknown              int32_t eg1decay2 = _3ewa->ReadInt32();
1551          EG1PreAttack      = _3ewa->ReadUint16();              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1552          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              _3ewa->ReadInt16(); // unknown
1554          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG1PreAttack      = _3ewa->ReadUint16();
1555          _3ewa->ReadInt16(); // unknown              int32_t eg2decay2 = _3ewa->ReadInt32();
1556          EG2PreAttack      = _3ewa->ReadUint16();              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1557          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558          if (velocityresponse < 5) {              _3ewa->ReadInt16(); // unknown
1559              VelocityResponseCurve = curve_type_nonlinear;              EG2PreAttack      = _3ewa->ReadUint16();
1560              VelocityResponseDepth = velocityresponse;              uint8_t velocityresponse = _3ewa->ReadUint8();
1561          }              if (velocityresponse < 5) {
1562          else if (velocityresponse < 10) {                  VelocityResponseCurve = curve_type_nonlinear;
1563              VelocityResponseCurve = curve_type_linear;                  VelocityResponseDepth = velocityresponse;
1564              VelocityResponseDepth = velocityresponse - 5;              } else if (velocityresponse < 10) {
1565          }                  VelocityResponseCurve = curve_type_linear;
1566          else if (velocityresponse < 15) {                  VelocityResponseDepth = velocityresponse - 5;
1567              VelocityResponseCurve = curve_type_special;              } else if (velocityresponse < 15) {
1568              VelocityResponseDepth = velocityresponse - 10;                  VelocityResponseCurve = curve_type_special;
1569                    VelocityResponseDepth = velocityresponse - 10;
1570                } else {
1571                    VelocityResponseCurve = curve_type_unknown;
1572                    VelocityResponseDepth = 0;
1573                }
1574                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575                if (releasevelocityresponse < 5) {
1576                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1578                } else if (releasevelocityresponse < 10) {
1579                    ReleaseVelocityResponseCurve = curve_type_linear;
1580                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581                } else if (releasevelocityresponse < 15) {
1582                    ReleaseVelocityResponseCurve = curve_type_special;
1583                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584                } else {
1585                    ReleaseVelocityResponseCurve = curve_type_unknown;
1586                    ReleaseVelocityResponseDepth = 0;
1587                }
1588                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589                AttenuationControllerThreshold = _3ewa->ReadInt8();
1590                _3ewa->ReadInt32(); // unknown
1591                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592                _3ewa->ReadInt16(); // unknown
1593                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597                else                                       DimensionBypass = dim_bypass_ctrl_none;
1598                uint8_t pan = _3ewa->ReadUint8();
1599                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600                SelfMask = _3ewa->ReadInt8() & 0x01;
1601                _3ewa->ReadInt8(); // unknown
1602                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1605                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1608                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1610                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1611                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1612                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1613                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1615                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1616                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617                                                            : vcf_res_ctrl_none;
1618                uint16_t eg3depth = _3ewa->ReadUint16();
1619                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621                _3ewa->ReadInt16(); // unknown
1622                ChannelOffset = _3ewa->ReadUint8() / 4;
1623                uint8_t regoptions = _3ewa->ReadUint8();
1624                MSDecode           = regoptions & 0x01; // bit 0
1625                SustainDefeat      = regoptions & 0x02; // bit 1
1626                _3ewa->ReadInt16(); // unknown
1627                VelocityUpperLimit = _3ewa->ReadInt8();
1628                _3ewa->ReadInt8(); // unknown
1629                _3ewa->ReadInt16(); // unknown
1630                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631                _3ewa->ReadInt8(); // unknown
1632                _3ewa->ReadInt8(); // unknown
1633                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634                uint8_t vcfcutoff = _3ewa->ReadUint8();
1635                VCFEnabled = vcfcutoff & 0x80; // bit 7
1636                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1637                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638                uint8_t vcfvelscale = _3ewa->ReadUint8();
1639                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641                _3ewa->ReadInt8(); // unknown
1642                uint8_t vcfresonance = _3ewa->ReadUint8();
1643                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1646                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1647                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648                uint8_t vcfvelocity = _3ewa->ReadUint8();
1649                VCFVelocityDynamicRange = vcfvelocity % 5;
1650                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1651                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652                if (VCFType == vcf_type_lowpass) {
1653                    if (lfo3ctrl & 0x40) // bit 6
1654                        VCFType = vcf_type_lowpassturbo;
1655                }
1656                if (_3ewa->RemainingBytes() >= 8) {
1657                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1658                } else {
1659                    memset(DimensionUpperLimits, 0, 8);
1660                }
1661            } else { // '3ewa' chunk does not exist yet
1662                // use default values
1663                LFO3Frequency                   = 1.0;
1664                EG3Attack                       = 0.0;
1665                LFO1InternalDepth               = 0;
1666                LFO3InternalDepth               = 0;
1667                LFO1ControlDepth                = 0;
1668                LFO3ControlDepth                = 0;
1669                EG1Attack                       = 0.0;
1670                EG1Decay1                       = 0.005;
1671                EG1Sustain                      = 1000;
1672                EG1Release                      = 0.3;
1673                EG1Controller.type              = eg1_ctrl_t::type_none;
1674                EG1Controller.controller_number = 0;
1675                EG1ControllerInvert             = false;
1676                EG1ControllerAttackInfluence    = 0;
1677                EG1ControllerDecayInfluence     = 0;
1678                EG1ControllerReleaseInfluence   = 0;
1679                EG2Controller.type              = eg2_ctrl_t::type_none;
1680                EG2Controller.controller_number = 0;
1681                EG2ControllerInvert             = false;
1682                EG2ControllerAttackInfluence    = 0;
1683                EG2ControllerDecayInfluence     = 0;
1684                EG2ControllerReleaseInfluence   = 0;
1685                LFO1Frequency                   = 1.0;
1686                EG2Attack                       = 0.0;
1687                EG2Decay1                       = 0.005;
1688                EG2Sustain                      = 1000;
1689                EG2Release                      = 60;
1690                LFO2ControlDepth                = 0;
1691                LFO2Frequency                   = 1.0;
1692                LFO2InternalDepth               = 0;
1693                EG1Decay2                       = 0.0;
1694                EG1InfiniteSustain              = true;
1695                EG1PreAttack                    = 0;
1696                EG2Decay2                       = 0.0;
1697                EG2InfiniteSustain              = true;
1698                EG2PreAttack                    = 0;
1699                VelocityResponseCurve           = curve_type_nonlinear;
1700                VelocityResponseDepth           = 3;
1701                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1702                ReleaseVelocityResponseDepth    = 3;
1703                VelocityResponseCurveScaling    = 32;
1704                AttenuationControllerThreshold  = 0;
1705                SampleStartOffset               = 0;
1706                PitchTrack                      = true;
1707                DimensionBypass                 = dim_bypass_ctrl_none;
1708                Pan                             = 0;
1709                SelfMask                        = true;
1710                LFO3Controller                  = lfo3_ctrl_modwheel;
1711                LFO3Sync                        = false;
1712                InvertAttenuationController     = false;
1713                AttenuationController.type      = attenuation_ctrl_t::type_none;
1714                AttenuationController.controller_number = 0;
1715                LFO2Controller                  = lfo2_ctrl_internal;
1716                LFO2FlipPhase                   = false;
1717                LFO2Sync                        = false;
1718                LFO1Controller                  = lfo1_ctrl_internal;
1719                LFO1FlipPhase                   = false;
1720                LFO1Sync                        = false;
1721                VCFResonanceController          = vcf_res_ctrl_none;
1722                EG3Depth                        = 0;
1723                ChannelOffset                   = 0;
1724                MSDecode                        = false;
1725                SustainDefeat                   = false;
1726                VelocityUpperLimit              = 0;
1727                ReleaseTriggerDecay             = 0;
1728                EG1Hold                         = false;
1729                VCFEnabled                      = false;
1730                VCFCutoff                       = 0;
1731                VCFCutoffController             = vcf_cutoff_ctrl_none;
1732                VCFCutoffControllerInvert       = false;
1733                VCFVelocityScale                = 0;
1734                VCFResonance                    = 0;
1735                VCFResonanceDynamic             = false;
1736                VCFKeyboardTracking             = false;
1737                VCFKeyboardTrackingBreakpoint   = 0;
1738                VCFVelocityDynamicRange         = 0x04;
1739                VCFVelocityCurve                = curve_type_linear;
1740                VCFType                         = vcf_type_lowpass;
1741                memset(DimensionUpperLimits, 127, 8);
1742          }          }
1743          else {          // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1744              VelocityResponseCurve = curve_type_unknown;          RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1745              VelocityResponseDepth = 0;          if (lsde) { // format extension for EG behavior options
1746                lsde->SetPos(0);
1747    
1748                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1749                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1750                    unsigned char byte = lsde->ReadUint8();
1751                    pEGOpts[i]->AttackCancel     = byte & 1;
1752                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1753                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1754                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1755                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1756                }
1757          }          }
1758          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          // format extension for sustain pedal up effect on release trigger samples
1759          if (releasevelocityresponse < 5) {          if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1760              ReleaseVelocityResponseCurve = curve_type_nonlinear;              lsde->SetPos(3);
1761              ReleaseVelocityResponseDepth = releasevelocityresponse;              uint8_t byte = lsde->ReadUint8();
1762          }              SustainReleaseTrigger   = static_cast<sust_rel_trg_t>(byte & 0x03);
1763          else if (releasevelocityresponse < 10) {              NoNoteOffReleaseTrigger = byte >> 7;
1764              ReleaseVelocityResponseCurve = curve_type_linear;          } else {
1765              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;              SustainReleaseTrigger   = sust_rel_trg_none;
1766          }              NoNoteOffReleaseTrigger = false;
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1767          }          }
1768          else {  
1769              ReleaseVelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1770              ReleaseVelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1771                                                         VelocityResponseCurveScaling);
1772    
1773            pVelocityReleaseTable = GetReleaseVelocityTable(
1774                                        ReleaseVelocityResponseCurve,
1775                                        ReleaseVelocityResponseDepth
1776                                    );
1777    
1778            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1779                                                          VCFVelocityDynamicRange,
1780                                                          VCFVelocityScale,
1781                                                          VCFCutoffController);
1782    
1783            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1784            VelocityTable = 0;
1785        }
1786    
1787        /*
1788         * Constructs a DimensionRegion by copying all parameters from
1789         * another DimensionRegion
1790         */
1791        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1792            Instances++;
1793            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1794            *this = src; // default memberwise shallow copy of all parameters
1795            pParentList = _3ewl; // restore the chunk pointer
1796    
1797            // deep copy of owned structures
1798            if (src.VelocityTable) {
1799                VelocityTable = new uint8_t[128];
1800                for (int k = 0 ; k < 128 ; k++)
1801                    VelocityTable[k] = src.VelocityTable[k];
1802            }
1803            if (src.pSampleLoops) {
1804                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1805                for (int k = 0 ; k < src.SampleLoops ; k++)
1806                    pSampleLoops[k] = src.pSampleLoops[k];
1807          }          }
1808          VelocityResponseCurveScaling = _3ewa->ReadUint8();      }
1809          AttenuationControllerThreshold = _3ewa->ReadInt8();      
1810          _3ewa->ReadInt32(); // unknown      /**
1811          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();       * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1812          _3ewa->ReadInt16(); // unknown       * and assign it to this object.
1813          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();       *
1814          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);       * Note that all sample pointers referenced by @a orig are simply copied as
1815          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;       * memory address. Thus the respective samples are shared, not duplicated!
1816          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;       *
1817          else                                       DimensionBypass = dim_bypass_ctrl_none;       * @param orig - original DimensionRegion object to be copied from
1818          uint8_t pan = _3ewa->ReadUint8();       */
1819          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit      void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1820          SelfMask = _3ewa->ReadInt8() & 0x01;          CopyAssign(orig, NULL);
1821          _3ewa->ReadInt8(); // unknown      }
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1822    
1823          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet      /**
1824          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;       * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1825          if (pVelocityTables->count(tableKey)) { // if key exists       * and assign it to this object.
1826              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];       *
1827         * @param orig - original DimensionRegion object to be copied from
1828         * @param mSamples - crosslink map between the foreign file's samples and
1829         *                   this file's samples
1830         */
1831        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1832            // delete all allocated data first
1833            if (VelocityTable) delete [] VelocityTable;
1834            if (pSampleLoops) delete [] pSampleLoops;
1835            
1836            // backup parent list pointer
1837            RIFF::List* p = pParentList;
1838            
1839            gig::Sample* pOriginalSample = pSample;
1840            gig::Region* pOriginalRegion = pRegion;
1841            
1842            //NOTE: copy code copied from assignment constructor above, see comment there as well
1843            
1844            *this = *orig; // default memberwise shallow copy of all parameters
1845            
1846            // restore members that shall not be altered
1847            pParentList = p; // restore the chunk pointer
1848            pRegion = pOriginalRegion;
1849            
1850            // only take the raw sample reference reference if the
1851            // two DimensionRegion objects are part of the same file
1852            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1853                pSample = pOriginalSample;
1854          }          }
1855          else {          
1856              pVelocityAttenuationTable = new double[128];          if (mSamples && mSamples->count(orig->pSample)) {
1857              switch (VelocityResponseCurve) { // calculate the new table              pSample = mSamples->find(orig->pSample)->second;
1858            }
1859    
1860            // deep copy of owned structures
1861            if (orig->VelocityTable) {
1862                VelocityTable = new uint8_t[128];
1863                for (int k = 0 ; k < 128 ; k++)
1864                    VelocityTable[k] = orig->VelocityTable[k];
1865            }
1866            if (orig->pSampleLoops) {
1867                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1868                for (int k = 0 ; k < orig->SampleLoops ; k++)
1869                    pSampleLoops[k] = orig->pSampleLoops[k];
1870            }
1871        }
1872    
1873        void DimensionRegion::serialize(Serialization::Archive* archive) {
1874            // in case this class will become backward incompatible one day,
1875            // then set a version and minimum version for this class like:
1876            //archive->setVersion(*this, 2);
1877            //archive->setMinVersion(*this, 1);
1878    
1879            SRLZ(VelocityUpperLimit);
1880            SRLZ(EG1PreAttack);
1881            SRLZ(EG1Attack);
1882            SRLZ(EG1Decay1);
1883            SRLZ(EG1Decay2);
1884            SRLZ(EG1InfiniteSustain);
1885            SRLZ(EG1Sustain);
1886            SRLZ(EG1Release);
1887            SRLZ(EG1Hold);
1888            SRLZ(EG1Controller);
1889            SRLZ(EG1ControllerInvert);
1890            SRLZ(EG1ControllerAttackInfluence);
1891            SRLZ(EG1ControllerDecayInfluence);
1892            SRLZ(EG1ControllerReleaseInfluence);
1893            SRLZ(LFO1Frequency);
1894            SRLZ(LFO1InternalDepth);
1895            SRLZ(LFO1ControlDepth);
1896            SRLZ(LFO1Controller);
1897            SRLZ(LFO1FlipPhase);
1898            SRLZ(LFO1Sync);
1899            SRLZ(EG2PreAttack);
1900            SRLZ(EG2Attack);
1901            SRLZ(EG2Decay1);
1902            SRLZ(EG2Decay2);
1903            SRLZ(EG2InfiniteSustain);
1904            SRLZ(EG2Sustain);
1905            SRLZ(EG2Release);
1906            SRLZ(EG2Controller);
1907            SRLZ(EG2ControllerInvert);
1908            SRLZ(EG2ControllerAttackInfluence);
1909            SRLZ(EG2ControllerDecayInfluence);
1910            SRLZ(EG2ControllerReleaseInfluence);
1911            SRLZ(LFO2Frequency);
1912            SRLZ(LFO2InternalDepth);
1913            SRLZ(LFO2ControlDepth);
1914            SRLZ(LFO2Controller);
1915            SRLZ(LFO2FlipPhase);
1916            SRLZ(LFO2Sync);
1917            SRLZ(EG3Attack);
1918            SRLZ(EG3Depth);
1919            SRLZ(LFO3Frequency);
1920            SRLZ(LFO3InternalDepth);
1921            SRLZ(LFO3ControlDepth);
1922            SRLZ(LFO3Controller);
1923            SRLZ(LFO3Sync);
1924            SRLZ(VCFEnabled);
1925            SRLZ(VCFType);
1926            SRLZ(VCFCutoffController);
1927            SRLZ(VCFCutoffControllerInvert);
1928            SRLZ(VCFCutoff);
1929            SRLZ(VCFVelocityCurve);
1930            SRLZ(VCFVelocityScale);
1931            SRLZ(VCFVelocityDynamicRange);
1932            SRLZ(VCFResonance);
1933            SRLZ(VCFResonanceDynamic);
1934            SRLZ(VCFResonanceController);
1935            SRLZ(VCFKeyboardTracking);
1936            SRLZ(VCFKeyboardTrackingBreakpoint);
1937            SRLZ(VelocityResponseCurve);
1938            SRLZ(VelocityResponseDepth);
1939            SRLZ(VelocityResponseCurveScaling);
1940            SRLZ(ReleaseVelocityResponseCurve);
1941            SRLZ(ReleaseVelocityResponseDepth);
1942            SRLZ(ReleaseTriggerDecay);
1943            SRLZ(Crossfade);
1944            SRLZ(PitchTrack);
1945            SRLZ(DimensionBypass);
1946            SRLZ(Pan);
1947            SRLZ(SelfMask);
1948            SRLZ(AttenuationController);
1949            SRLZ(InvertAttenuationController);
1950            SRLZ(AttenuationControllerThreshold);
1951            SRLZ(ChannelOffset);
1952            SRLZ(SustainDefeat);
1953            SRLZ(MSDecode);
1954            //SRLZ(SampleStartOffset);
1955            SRLZ(SampleAttenuation);
1956            SRLZ(EG1Options);
1957            SRLZ(EG2Options);
1958            SRLZ(SustainReleaseTrigger);
1959            SRLZ(NoNoteOffReleaseTrigger);
1960    
1961            // derived attributes from DLS::Sampler
1962            SRLZ(FineTune);
1963            SRLZ(Gain);
1964        }
1965    
1966        /**
1967         * Updates the respective member variable and updates @c SampleAttenuation
1968         * which depends on this value.
1969         */
1970        void DimensionRegion::SetGain(int32_t gain) {
1971            DLS::Sampler::SetGain(gain);
1972            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1973        }
1974    
1975        /**
1976         * Apply dimension region settings to the respective RIFF chunks. You
1977         * have to call File::Save() to make changes persistent.
1978         *
1979         * Usually there is absolutely no need to call this method explicitly.
1980         * It will be called automatically when File::Save() was called.
1981         *
1982         * @param pProgress - callback function for progress notification
1983         */
1984        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1985            // first update base class's chunk
1986            DLS::Sampler::UpdateChunks(pProgress);
1987    
1988            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1989            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1990            pData[12] = Crossfade.in_start;
1991            pData[13] = Crossfade.in_end;
1992            pData[14] = Crossfade.out_start;
1993            pData[15] = Crossfade.out_end;
1994    
1995            // make sure '3ewa' chunk exists
1996            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1997            if (!_3ewa) {
1998                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1999                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2000                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2001            }
2002            pData = (uint8_t*) _3ewa->LoadChunkData();
2003    
2004            // update '3ewa' chunk with DimensionRegion's current settings
2005    
2006            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2007            store32(&pData[0], chunksize); // unknown, always chunk size?
2008    
2009            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2010            store32(&pData[4], lfo3freq);
2011    
2012            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2013            store32(&pData[8], eg3attack);
2014    
2015            // next 2 bytes unknown
2016    
2017            store16(&pData[14], LFO1InternalDepth);
2018    
2019            // next 2 bytes unknown
2020    
2021            store16(&pData[18], LFO3InternalDepth);
2022    
2023            // next 2 bytes unknown
2024    
2025            store16(&pData[22], LFO1ControlDepth);
2026    
2027            // next 2 bytes unknown
2028    
2029            store16(&pData[26], LFO3ControlDepth);
2030    
2031            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2032            store32(&pData[28], eg1attack);
2033    
2034            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2035            store32(&pData[32], eg1decay1);
2036    
2037            // next 2 bytes unknown
2038    
2039            store16(&pData[38], EG1Sustain);
2040    
2041            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2042            store32(&pData[40], eg1release);
2043    
2044            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2045            pData[44] = eg1ctl;
2046    
2047            const uint8_t eg1ctrloptions =
2048                (EG1ControllerInvert ? 0x01 : 0x00) |
2049                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2050                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2051                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2052            pData[45] = eg1ctrloptions;
2053    
2054            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2055            pData[46] = eg2ctl;
2056    
2057            const uint8_t eg2ctrloptions =
2058                (EG2ControllerInvert ? 0x01 : 0x00) |
2059                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2060                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2061                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2062            pData[47] = eg2ctrloptions;
2063    
2064            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2065            store32(&pData[48], lfo1freq);
2066    
2067            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2068            store32(&pData[52], eg2attack);
2069    
2070            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2071            store32(&pData[56], eg2decay1);
2072    
2073            // next 2 bytes unknown
2074    
2075            store16(&pData[62], EG2Sustain);
2076    
2077            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2078            store32(&pData[64], eg2release);
2079    
2080            // next 2 bytes unknown
2081    
2082            store16(&pData[70], LFO2ControlDepth);
2083    
2084            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2085            store32(&pData[72], lfo2freq);
2086    
2087            // next 2 bytes unknown
2088    
2089            store16(&pData[78], LFO2InternalDepth);
2090    
2091            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2092            store32(&pData[80], eg1decay2);
2093    
2094            // next 2 bytes unknown
2095    
2096            store16(&pData[86], EG1PreAttack);
2097    
2098            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2099            store32(&pData[88], eg2decay2);
2100    
2101            // next 2 bytes unknown
2102    
2103            store16(&pData[94], EG2PreAttack);
2104    
2105            {
2106                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2107                uint8_t velocityresponse = VelocityResponseDepth;
2108                switch (VelocityResponseCurve) {
2109                  case curve_type_nonlinear:                  case curve_type_nonlinear:
2110                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
2111                  case curve_type_linear:                  case curve_type_linear:
2112                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
2113                      break;                      break;
2114                  case curve_type_special:                  case curve_type_special:
2115                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
2116                          pVelocityAttenuationTable[velocity] =                      break;
2117                              GIG_VELOCITY_TRANSFORM_SPECIAL(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));                  case curve_type_unknown:
2118                          if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;                  default:
2119                          else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2120                      }              }
2121                pData[96] = velocityresponse;
2122            }
2123    
2124            {
2125                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2126                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2127                switch (ReleaseVelocityResponseCurve) {
2128                    case curve_type_nonlinear:
2129                        break;
2130                    case curve_type_linear:
2131                        releasevelocityresponse += 5;
2132                        break;
2133                    case curve_type_special:
2134                        releasevelocityresponse += 10;
2135                      break;                      break;
2136                  case curve_type_unknown:                  case curve_type_unknown:
2137                  default:                  default:
2138                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2139                }
2140                pData[97] = releasevelocityresponse;
2141            }
2142    
2143            pData[98] = VelocityResponseCurveScaling;
2144    
2145            pData[99] = AttenuationControllerThreshold;
2146    
2147            // next 4 bytes unknown
2148    
2149            store16(&pData[104], SampleStartOffset);
2150    
2151            // next 2 bytes unknown
2152    
2153            {
2154                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2155                switch (DimensionBypass) {
2156                    case dim_bypass_ctrl_94:
2157                        pitchTrackDimensionBypass |= 0x10;
2158                        break;
2159                    case dim_bypass_ctrl_95:
2160                        pitchTrackDimensionBypass |= 0x20;
2161                        break;
2162                    case dim_bypass_ctrl_none:
2163                        //FIXME: should we set anything here?
2164                        break;
2165                    default:
2166                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2167                }
2168                pData[108] = pitchTrackDimensionBypass;
2169            }
2170    
2171            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2172            pData[109] = pan;
2173    
2174            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2175            pData[110] = selfmask;
2176    
2177            // next byte unknown
2178    
2179            {
2180                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2181                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2182                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2183                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2184                pData[112] = lfo3ctrl;
2185            }
2186    
2187            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2188            pData[113] = attenctl;
2189    
2190            {
2191                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2192                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2193                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2194                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2195                pData[114] = lfo2ctrl;
2196            }
2197    
2198            {
2199                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2200                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2201                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2202                if (VCFResonanceController != vcf_res_ctrl_none)
2203                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2204                pData[115] = lfo1ctrl;
2205            }
2206    
2207            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2208                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2209            store16(&pData[116], eg3depth);
2210    
2211            // next 2 bytes unknown
2212    
2213            const uint8_t channeloffset = ChannelOffset * 4;
2214            pData[120] = channeloffset;
2215    
2216            {
2217                uint8_t regoptions = 0;
2218                if (MSDecode)      regoptions |= 0x01; // bit 0
2219                if (SustainDefeat) regoptions |= 0x02; // bit 1
2220                pData[121] = regoptions;
2221            }
2222    
2223            // next 2 bytes unknown
2224    
2225            pData[124] = VelocityUpperLimit;
2226    
2227            // next 3 bytes unknown
2228    
2229            pData[128] = ReleaseTriggerDecay;
2230    
2231            // next 2 bytes unknown
2232    
2233            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2234            pData[131] = eg1hold;
2235    
2236            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2237                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2238            pData[132] = vcfcutoff;
2239    
2240            pData[133] = VCFCutoffController;
2241    
2242            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2243                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2244            pData[134] = vcfvelscale;
2245    
2246            // next byte unknown
2247    
2248            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2249                                         (VCFResonance & 0x7f); /* lower 7 bits */
2250            pData[136] = vcfresonance;
2251    
2252            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2253                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2254            pData[137] = vcfbreakpoint;
2255    
2256            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2257                                        VCFVelocityCurve * 5;
2258            pData[138] = vcfvelocity;
2259    
2260            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2261            pData[139] = vcftype;
2262    
2263            if (chunksize >= 148) {
2264                memcpy(&pData[140], DimensionUpperLimits, 8);
2265            }
2266    
2267            // chunk for own format extensions, these will *NOT* work with
2268            // Gigasampler/GigaStudio !
2269            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2270            const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2271            if (!lsde) {
2272                // only add this "LSDE" chunk if either EG options or release
2273                // trigger options deviate from their default behaviour
2274                eg_opt_t defaultOpt;
2275                if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2276                    memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2277                    SustainReleaseTrigger || NoNoteOffReleaseTrigger)
2278                {
2279                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2280                    // move LSDE chunk to the end of parent list
2281                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2282                }
2283            }
2284            if (lsde) {
2285                if (lsde->GetNewSize() < lsdeSize)
2286                    lsde->Resize(lsdeSize);
2287                // format extension for EG behavior options
2288                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2289                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2290                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2291                    pData[i] =
2292                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2293                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2294                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2295                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2296                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2297              }              }
2298              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              // format extension for release trigger options
2299                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2300            }
2301        }
2302    
2303        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2304            curve_type_t curveType = releaseVelocityResponseCurve;
2305            uint8_t depth = releaseVelocityResponseDepth;
2306            // this models a strange behaviour or bug in GSt: two of the
2307            // velocity response curves for release time are not used even
2308            // if specified, instead another curve is chosen.
2309            if ((curveType == curve_type_nonlinear && depth == 0) ||
2310                (curveType == curve_type_special   && depth == 4)) {
2311                curveType = curve_type_nonlinear;
2312                depth = 3;
2313            }
2314            return GetVelocityTable(curveType, depth, 0);
2315        }
2316    
2317        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2318                                                        uint8_t vcfVelocityDynamicRange,
2319                                                        uint8_t vcfVelocityScale,
2320                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2321        {
2322            curve_type_t curveType = vcfVelocityCurve;
2323            uint8_t depth = vcfVelocityDynamicRange;
2324            // even stranger GSt: two of the velocity response curves for
2325            // filter cutoff are not used, instead another special curve
2326            // is chosen. This curve is not used anywhere else.
2327            if ((curveType == curve_type_nonlinear && depth == 0) ||
2328                (curveType == curve_type_special   && depth == 4)) {
2329                curveType = curve_type_special;
2330                depth = 5;
2331            }
2332            return GetVelocityTable(curveType, depth,
2333                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2334                                        ? vcfVelocityScale : 0);
2335        }
2336    
2337        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2338        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2339        {
2340            // sanity check input parameters
2341            // (fallback to some default parameters on ill input)
2342            switch (curveType) {
2343                case curve_type_nonlinear:
2344                case curve_type_linear:
2345                    if (depth > 4) {
2346                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2347                        depth   = 0;
2348                        scaling = 0;
2349                    }
2350                    break;
2351                case curve_type_special:
2352                    if (depth > 5) {
2353                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2354                        depth   = 0;
2355                        scaling = 0;
2356                    }
2357                    break;
2358                case curve_type_unknown:
2359                default:
2360                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2361                    curveType = curve_type_linear;
2362                    depth     = 0;
2363                    scaling   = 0;
2364                    break;
2365          }          }
2366    
2367            double* table;
2368            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2369            if (pVelocityTables->count(tableKey)) { // if key exists
2370                table = (*pVelocityTables)[tableKey];
2371            }
2372            else {
2373                table = CreateVelocityTable(curveType, depth, scaling);
2374                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2375            }
2376            return table;
2377      }      }
2378    
2379        Region* DimensionRegion::GetParent() const {
2380            return pRegion;
2381        }
2382    
2383    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2384    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2385    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2386    //#pragma GCC diagnostic push
2387    //#pragma GCC diagnostic error "-Wswitch"
2388    
2389      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2390          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2391          switch (EncodedController) {          switch (EncodedController) {
# Line 981  namespace gig { Line 2497  namespace gig {
2497                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2498                  break;                  break;
2499    
2500                // format extension (these controllers are so far only supported by
2501                // LinuxSampler & gigedit) they will *NOT* work with
2502                // Gigasampler/GigaStudio !
2503                case _lev_ctrl_CC3_EXT:
2504                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505                    decodedcontroller.controller_number = 3;
2506                    break;
2507                case _lev_ctrl_CC6_EXT:
2508                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509                    decodedcontroller.controller_number = 6;
2510                    break;
2511                case _lev_ctrl_CC7_EXT:
2512                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513                    decodedcontroller.controller_number = 7;
2514                    break;
2515                case _lev_ctrl_CC8_EXT:
2516                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517                    decodedcontroller.controller_number = 8;
2518                    break;
2519                case _lev_ctrl_CC9_EXT:
2520                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521                    decodedcontroller.controller_number = 9;
2522                    break;
2523                case _lev_ctrl_CC10_EXT:
2524                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525                    decodedcontroller.controller_number = 10;
2526                    break;
2527                case _lev_ctrl_CC11_EXT:
2528                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529                    decodedcontroller.controller_number = 11;
2530                    break;
2531                case _lev_ctrl_CC14_EXT:
2532                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533                    decodedcontroller.controller_number = 14;
2534                    break;
2535                case _lev_ctrl_CC15_EXT:
2536                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537                    decodedcontroller.controller_number = 15;
2538                    break;
2539                case _lev_ctrl_CC20_EXT:
2540                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541                    decodedcontroller.controller_number = 20;
2542                    break;
2543                case _lev_ctrl_CC21_EXT:
2544                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545                    decodedcontroller.controller_number = 21;
2546                    break;
2547                case _lev_ctrl_CC22_EXT:
2548                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549                    decodedcontroller.controller_number = 22;
2550                    break;
2551                case _lev_ctrl_CC23_EXT:
2552                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553                    decodedcontroller.controller_number = 23;
2554                    break;
2555                case _lev_ctrl_CC24_EXT:
2556                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557                    decodedcontroller.controller_number = 24;
2558                    break;
2559                case _lev_ctrl_CC25_EXT:
2560                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561                    decodedcontroller.controller_number = 25;
2562                    break;
2563                case _lev_ctrl_CC26_EXT:
2564                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565                    decodedcontroller.controller_number = 26;
2566                    break;
2567                case _lev_ctrl_CC27_EXT:
2568                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569                    decodedcontroller.controller_number = 27;
2570                    break;
2571                case _lev_ctrl_CC28_EXT:
2572                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573                    decodedcontroller.controller_number = 28;
2574                    break;
2575                case _lev_ctrl_CC29_EXT:
2576                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577                    decodedcontroller.controller_number = 29;
2578                    break;
2579                case _lev_ctrl_CC30_EXT:
2580                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581                    decodedcontroller.controller_number = 30;
2582                    break;
2583                case _lev_ctrl_CC31_EXT:
2584                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585                    decodedcontroller.controller_number = 31;
2586                    break;
2587                case _lev_ctrl_CC68_EXT:
2588                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589                    decodedcontroller.controller_number = 68;
2590                    break;
2591                case _lev_ctrl_CC69_EXT:
2592                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593                    decodedcontroller.controller_number = 69;
2594                    break;
2595                case _lev_ctrl_CC70_EXT:
2596                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597                    decodedcontroller.controller_number = 70;
2598                    break;
2599                case _lev_ctrl_CC71_EXT:
2600                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601                    decodedcontroller.controller_number = 71;
2602                    break;
2603                case _lev_ctrl_CC72_EXT:
2604                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605                    decodedcontroller.controller_number = 72;
2606                    break;
2607                case _lev_ctrl_CC73_EXT:
2608                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609                    decodedcontroller.controller_number = 73;
2610                    break;
2611                case _lev_ctrl_CC74_EXT:
2612                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613                    decodedcontroller.controller_number = 74;
2614                    break;
2615                case _lev_ctrl_CC75_EXT:
2616                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617                    decodedcontroller.controller_number = 75;
2618                    break;
2619                case _lev_ctrl_CC76_EXT:
2620                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621                    decodedcontroller.controller_number = 76;
2622                    break;
2623                case _lev_ctrl_CC77_EXT:
2624                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625                    decodedcontroller.controller_number = 77;
2626                    break;
2627                case _lev_ctrl_CC78_EXT:
2628                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629                    decodedcontroller.controller_number = 78;
2630                    break;
2631                case _lev_ctrl_CC79_EXT:
2632                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633                    decodedcontroller.controller_number = 79;
2634                    break;
2635                case _lev_ctrl_CC84_EXT:
2636                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637                    decodedcontroller.controller_number = 84;
2638                    break;
2639                case _lev_ctrl_CC85_EXT:
2640                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641                    decodedcontroller.controller_number = 85;
2642                    break;
2643                case _lev_ctrl_CC86_EXT:
2644                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645                    decodedcontroller.controller_number = 86;
2646                    break;
2647                case _lev_ctrl_CC87_EXT:
2648                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649                    decodedcontroller.controller_number = 87;
2650                    break;
2651                case _lev_ctrl_CC89_EXT:
2652                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653                    decodedcontroller.controller_number = 89;
2654                    break;
2655                case _lev_ctrl_CC90_EXT:
2656                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657                    decodedcontroller.controller_number = 90;
2658                    break;
2659                case _lev_ctrl_CC96_EXT:
2660                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661                    decodedcontroller.controller_number = 96;
2662                    break;
2663                case _lev_ctrl_CC97_EXT:
2664                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665                    decodedcontroller.controller_number = 97;
2666                    break;
2667                case _lev_ctrl_CC102_EXT:
2668                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669                    decodedcontroller.controller_number = 102;
2670                    break;
2671                case _lev_ctrl_CC103_EXT:
2672                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673                    decodedcontroller.controller_number = 103;
2674                    break;
2675                case _lev_ctrl_CC104_EXT:
2676                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677                    decodedcontroller.controller_number = 104;
2678                    break;
2679                case _lev_ctrl_CC105_EXT:
2680                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681                    decodedcontroller.controller_number = 105;
2682                    break;
2683                case _lev_ctrl_CC106_EXT:
2684                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685                    decodedcontroller.controller_number = 106;
2686                    break;
2687                case _lev_ctrl_CC107_EXT:
2688                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689                    decodedcontroller.controller_number = 107;
2690                    break;
2691                case _lev_ctrl_CC108_EXT:
2692                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693                    decodedcontroller.controller_number = 108;
2694                    break;
2695                case _lev_ctrl_CC109_EXT:
2696                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697                    decodedcontroller.controller_number = 109;
2698                    break;
2699                case _lev_ctrl_CC110_EXT:
2700                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701                    decodedcontroller.controller_number = 110;
2702                    break;
2703                case _lev_ctrl_CC111_EXT:
2704                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705                    decodedcontroller.controller_number = 111;
2706                    break;
2707                case _lev_ctrl_CC112_EXT:
2708                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709                    decodedcontroller.controller_number = 112;
2710                    break;
2711                case _lev_ctrl_CC113_EXT:
2712                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2713                    decodedcontroller.controller_number = 113;
2714                    break;
2715                case _lev_ctrl_CC114_EXT:
2716                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2717                    decodedcontroller.controller_number = 114;
2718                    break;
2719                case _lev_ctrl_CC115_EXT:
2720                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2721                    decodedcontroller.controller_number = 115;
2722                    break;
2723                case _lev_ctrl_CC116_EXT:
2724                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2725                    decodedcontroller.controller_number = 116;
2726                    break;
2727                case _lev_ctrl_CC117_EXT:
2728                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2729                    decodedcontroller.controller_number = 117;
2730                    break;
2731                case _lev_ctrl_CC118_EXT:
2732                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2733                    decodedcontroller.controller_number = 118;
2734                    break;
2735                case _lev_ctrl_CC119_EXT:
2736                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2737                    decodedcontroller.controller_number = 119;
2738                    break;
2739    
2740              // unknown controller type              // unknown controller type
2741              default:              default:
2742                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2743                    decodedcontroller.controller_number = 0;
2744                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2745                    break;
2746          }          }
2747          return decodedcontroller;          return decodedcontroller;
2748      }      }
2749        
2750    // see above (diagnostic push not supported prior GCC 4.6)
2751    //#pragma GCC diagnostic pop
2752    
2753        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2754            _lev_ctrl_t encodedcontroller;
2755            switch (DecodedController.type) {
2756                // special controller
2757                case leverage_ctrl_t::type_none:
2758                    encodedcontroller = _lev_ctrl_none;
2759                    break;
2760                case leverage_ctrl_t::type_velocity:
2761                    encodedcontroller = _lev_ctrl_velocity;
2762                    break;
2763                case leverage_ctrl_t::type_channelaftertouch:
2764                    encodedcontroller = _lev_ctrl_channelaftertouch;
2765                    break;
2766    
2767                // ordinary MIDI control change controller
2768                case leverage_ctrl_t::type_controlchange:
2769                    switch (DecodedController.controller_number) {
2770                        case 1:
2771                            encodedcontroller = _lev_ctrl_modwheel;
2772                            break;
2773                        case 2:
2774                            encodedcontroller = _lev_ctrl_breath;
2775                            break;
2776                        case 4:
2777                            encodedcontroller = _lev_ctrl_foot;
2778                            break;
2779                        case 12:
2780                            encodedcontroller = _lev_ctrl_effect1;
2781                            break;
2782                        case 13:
2783                            encodedcontroller = _lev_ctrl_effect2;
2784                            break;
2785                        case 16:
2786                            encodedcontroller = _lev_ctrl_genpurpose1;
2787                            break;
2788                        case 17:
2789                            encodedcontroller = _lev_ctrl_genpurpose2;
2790                            break;
2791                        case 18:
2792                            encodedcontroller = _lev_ctrl_genpurpose3;
2793                            break;
2794                        case 19:
2795                            encodedcontroller = _lev_ctrl_genpurpose4;
2796                            break;
2797                        case 5:
2798                            encodedcontroller = _lev_ctrl_portamentotime;
2799                            break;
2800                        case 64:
2801                            encodedcontroller = _lev_ctrl_sustainpedal;
2802                            break;
2803                        case 65:
2804                            encodedcontroller = _lev_ctrl_portamento;
2805                            break;
2806                        case 66:
2807                            encodedcontroller = _lev_ctrl_sostenutopedal;
2808                            break;
2809                        case 67:
2810                            encodedcontroller = _lev_ctrl_softpedal;
2811                            break;
2812                        case 80:
2813                            encodedcontroller = _lev_ctrl_genpurpose5;
2814                            break;
2815                        case 81:
2816                            encodedcontroller = _lev_ctrl_genpurpose6;
2817                            break;
2818                        case 82:
2819                            encodedcontroller = _lev_ctrl_genpurpose7;
2820                            break;
2821                        case 83:
2822                            encodedcontroller = _lev_ctrl_genpurpose8;
2823                            break;
2824                        case 91:
2825                            encodedcontroller = _lev_ctrl_effect1depth;
2826                            break;
2827                        case 92:
2828                            encodedcontroller = _lev_ctrl_effect2depth;
2829                            break;
2830                        case 93:
2831                            encodedcontroller = _lev_ctrl_effect3depth;
2832                            break;
2833                        case 94:
2834                            encodedcontroller = _lev_ctrl_effect4depth;
2835                            break;
2836                        case 95:
2837                            encodedcontroller = _lev_ctrl_effect5depth;
2838                            break;
2839    
2840                        // format extension (these controllers are so far only
2841                        // supported by LinuxSampler & gigedit) they will *NOT*
2842                        // work with Gigasampler/GigaStudio !
2843                        case 3:
2844                            encodedcontroller = _lev_ctrl_CC3_EXT;
2845                            break;
2846                        case 6:
2847                            encodedcontroller = _lev_ctrl_CC6_EXT;
2848                            break;
2849                        case 7:
2850                            encodedcontroller = _lev_ctrl_CC7_EXT;
2851                            break;
2852                        case 8:
2853                            encodedcontroller = _lev_ctrl_CC8_EXT;
2854                            break;
2855                        case 9:
2856                            encodedcontroller = _lev_ctrl_CC9_EXT;
2857                            break;
2858                        case 10:
2859                            encodedcontroller = _lev_ctrl_CC10_EXT;
2860                            break;
2861                        case 11:
2862                            encodedcontroller = _lev_ctrl_CC11_EXT;
2863                            break;
2864                        case 14:
2865                            encodedcontroller = _lev_ctrl_CC14_EXT;
2866                            break;
2867                        case 15:
2868                            encodedcontroller = _lev_ctrl_CC15_EXT;
2869                            break;
2870                        case 20:
2871                            encodedcontroller = _lev_ctrl_CC20_EXT;
2872                            break;
2873                        case 21:
2874                            encodedcontroller = _lev_ctrl_CC21_EXT;
2875                            break;
2876                        case 22:
2877                            encodedcontroller = _lev_ctrl_CC22_EXT;
2878                            break;
2879                        case 23:
2880                            encodedcontroller = _lev_ctrl_CC23_EXT;
2881                            break;
2882                        case 24:
2883                            encodedcontroller = _lev_ctrl_CC24_EXT;
2884                            break;
2885                        case 25:
2886                            encodedcontroller = _lev_ctrl_CC25_EXT;
2887                            break;
2888                        case 26:
2889                            encodedcontroller = _lev_ctrl_CC26_EXT;
2890                            break;
2891                        case 27:
2892                            encodedcontroller = _lev_ctrl_CC27_EXT;
2893                            break;
2894                        case 28:
2895                            encodedcontroller = _lev_ctrl_CC28_EXT;
2896                            break;
2897                        case 29:
2898                            encodedcontroller = _lev_ctrl_CC29_EXT;
2899                            break;
2900                        case 30:
2901                            encodedcontroller = _lev_ctrl_CC30_EXT;
2902                            break;
2903                        case 31:
2904                            encodedcontroller = _lev_ctrl_CC31_EXT;
2905                            break;
2906                        case 68:
2907                            encodedcontroller = _lev_ctrl_CC68_EXT;
2908                            break;
2909                        case 69:
2910                            encodedcontroller = _lev_ctrl_CC69_EXT;
2911                            break;
2912                        case 70:
2913                            encodedcontroller = _lev_ctrl_CC70_EXT;
2914                            break;
2915                        case 71:
2916                            encodedcontroller = _lev_ctrl_CC71_EXT;
2917                            break;
2918                        case 72:
2919                            encodedcontroller = _lev_ctrl_CC72_EXT;
2920                            break;
2921                        case 73:
2922                            encodedcontroller = _lev_ctrl_CC73_EXT;
2923                            break;
2924                        case 74:
2925                            encodedcontroller = _lev_ctrl_CC74_EXT;
2926                            break;
2927                        case 75:
2928                            encodedcontroller = _lev_ctrl_CC75_EXT;
2929                            break;
2930                        case 76:
2931                            encodedcontroller = _lev_ctrl_CC76_EXT;
2932                            break;
2933                        case 77:
2934                            encodedcontroller = _lev_ctrl_CC77_EXT;
2935                            break;
2936                        case 78:
2937                            encodedcontroller = _lev_ctrl_CC78_EXT;
2938                            break;
2939                        case 79:
2940                            encodedcontroller = _lev_ctrl_CC79_EXT;
2941                            break;
2942                        case 84:
2943                            encodedcontroller = _lev_ctrl_CC84_EXT;
2944                            break;
2945                        case 85:
2946                            encodedcontroller = _lev_ctrl_CC85_EXT;
2947                            break;
2948                        case 86:
2949                            encodedcontroller = _lev_ctrl_CC86_EXT;
2950                            break;
2951                        case 87:
2952                            encodedcontroller = _lev_ctrl_CC87_EXT;
2953                            break;
2954                        case 89:
2955                            encodedcontroller = _lev_ctrl_CC89_EXT;
2956                            break;
2957                        case 90:
2958                            encodedcontroller = _lev_ctrl_CC90_EXT;
2959                            break;
2960                        case 96:
2961                            encodedcontroller = _lev_ctrl_CC96_EXT;
2962                            break;
2963                        case 97:
2964                            encodedcontroller = _lev_ctrl_CC97_EXT;
2965                            break;
2966                        case 102:
2967                            encodedcontroller = _lev_ctrl_CC102_EXT;
2968                            break;
2969                        case 103:
2970                            encodedcontroller = _lev_ctrl_CC103_EXT;
2971                            break;
2972                        case 104:
2973                            encodedcontroller = _lev_ctrl_CC104_EXT;
2974                            break;
2975                        case 105:
2976                            encodedcontroller = _lev_ctrl_CC105_EXT;
2977                            break;
2978                        case 106:
2979                            encodedcontroller = _lev_ctrl_CC106_EXT;
2980                            break;
2981                        case 107:
2982                            encodedcontroller = _lev_ctrl_CC107_EXT;
2983                            break;
2984                        case 108:
2985                            encodedcontroller = _lev_ctrl_CC108_EXT;
2986                            break;
2987                        case 109:
2988                            encodedcontroller = _lev_ctrl_CC109_EXT;
2989                            break;
2990                        case 110:
2991                            encodedcontroller = _lev_ctrl_CC110_EXT;
2992                            break;
2993                        case 111:
2994                            encodedcontroller = _lev_ctrl_CC111_EXT;
2995                            break;
2996                        case 112:
2997                            encodedcontroller = _lev_ctrl_CC112_EXT;
2998                            break;
2999                        case 113:
3000                            encodedcontroller = _lev_ctrl_CC113_EXT;
3001                            break;
3002                        case 114:
3003                            encodedcontroller = _lev_ctrl_CC114_EXT;
3004                            break;
3005                        case 115:
3006                            encodedcontroller = _lev_ctrl_CC115_EXT;
3007                            break;
3008                        case 116:
3009                            encodedcontroller = _lev_ctrl_CC116_EXT;
3010                            break;
3011                        case 117:
3012                            encodedcontroller = _lev_ctrl_CC117_EXT;
3013                            break;
3014                        case 118:
3015                            encodedcontroller = _lev_ctrl_CC118_EXT;
3016                            break;
3017                        case 119:
3018                            encodedcontroller = _lev_ctrl_CC119_EXT;
3019                            break;
3020    
3021                        default:
3022                            throw gig::Exception("leverage controller number is not supported by the gig format");
3023                    }
3024                    break;
3025                default:
3026                    throw gig::Exception("Unknown leverage controller type.");
3027            }
3028            return encodedcontroller;
3029        }
3030    
3031      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
3032          Instances--;          Instances--;
# Line 1001  namespace gig { Line 3041  namespace gig {
3041              delete pVelocityTables;              delete pVelocityTables;
3042              pVelocityTables = NULL;              pVelocityTables = NULL;
3043          }          }
3044            if (VelocityTable) delete[] VelocityTable;
3045      }      }
3046    
3047      /**      /**
# Line 1018  namespace gig { Line 3059  namespace gig {
3059          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
3060      }      }
3061    
3062        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3063            return pVelocityReleaseTable[MIDIKeyVelocity];
3064        }
3065    
3066        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3067            return pVelocityCutoffTable[MIDIKeyVelocity];
3068        }
3069    
3070        /**
3071         * Updates the respective member variable and the lookup table / cache
3072         * that depends on this value.
3073         */
3074        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3075            pVelocityAttenuationTable =
3076                GetVelocityTable(
3077                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3078                );
3079            VelocityResponseCurve = curve;
3080        }
3081    
3082        /**
3083         * Updates the respective member variable and the lookup table / cache
3084         * that depends on this value.
3085         */
3086        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3087            pVelocityAttenuationTable =
3088                GetVelocityTable(
3089                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3090                );
3091            VelocityResponseDepth = depth;
3092        }
3093    
3094        /**
3095         * Updates the respective member variable and the lookup table / cache
3096         * that depends on this value.
3097         */
3098        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3099            pVelocityAttenuationTable =
3100                GetVelocityTable(
3101                    VelocityResponseCurve, VelocityResponseDepth, scaling
3102                );
3103            VelocityResponseCurveScaling = scaling;
3104        }
3105    
3106        /**
3107         * Updates the respective member variable and the lookup table / cache
3108         * that depends on this value.
3109         */
3110        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3111            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3112            ReleaseVelocityResponseCurve = curve;
3113        }
3114    
3115        /**
3116         * Updates the respective member variable and the lookup table / cache
3117         * that depends on this value.
3118         */
3119        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3120            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3121            ReleaseVelocityResponseDepth = depth;
3122        }
3123    
3124        /**
3125         * Updates the respective member variable and the lookup table / cache
3126         * that depends on this value.
3127         */
3128        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3129            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3130            VCFCutoffController = controller;
3131        }
3132    
3133        /**
3134         * Updates the respective member variable and the lookup table / cache
3135         * that depends on this value.
3136         */
3137        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3138            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3139            VCFVelocityCurve = curve;
3140        }
3141    
3142        /**
3143         * Updates the respective member variable and the lookup table / cache
3144         * that depends on this value.
3145         */
3146        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3147            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3148            VCFVelocityDynamicRange = range;
3149        }
3150    
3151        /**
3152         * Updates the respective member variable and the lookup table / cache
3153         * that depends on this value.
3154         */
3155        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3156            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3157            VCFVelocityScale = scaling;
3158        }
3159    
3160        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3161    
3162            // line-segment approximations of the 15 velocity curves
3163    
3164            // linear
3165            const int lin0[] = { 1, 1, 127, 127 };
3166            const int lin1[] = { 1, 21, 127, 127 };
3167            const int lin2[] = { 1, 45, 127, 127 };
3168            const int lin3[] = { 1, 74, 127, 127 };
3169            const int lin4[] = { 1, 127, 127, 127 };
3170    
3171            // non-linear
3172            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3173            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3174                                 127, 127 };
3175            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3176                                 127, 127 };
3177            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3178                                 127, 127 };
3179            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3180    
3181            // special
3182            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3183                                 113, 127, 127, 127 };
3184            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3185                                 118, 127, 127, 127 };
3186            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3187                                 85, 90, 91, 127, 127, 127 };
3188            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3189                                 117, 127, 127, 127 };
3190            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3191                                 127, 127 };
3192    
3193            // this is only used by the VCF velocity curve
3194            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3195                                 91, 127, 127, 127 };
3196    
3197            const int* const curves[] = { non0, non1, non2, non3, non4,
3198                                          lin0, lin1, lin2, lin3, lin4,
3199                                          spe0, spe1, spe2, spe3, spe4, spe5 };
3200    
3201            double* const table = new double[128];
3202    
3203            const int* curve = curves[curveType * 5 + depth];
3204            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3205    
3206            table[0] = 0;
3207            for (int x = 1 ; x < 128 ; x++) {
3208    
3209                if (x > curve[2]) curve += 2;
3210                double y = curve[1] + (x - curve[0]) *
3211                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3212                y = y / 127;
3213    
3214                // Scale up for s > 20, down for s < 20. When
3215                // down-scaling, the curve still ends at 1.0.
3216                if (s < 20 && y >= 0.5)
3217                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3218                else
3219                    y = y * (s / 20.0);
3220                if (y > 1) y = 1;
3221    
3222                table[x] = y;
3223            }
3224            return table;
3225        }
3226    
3227    
3228  // *************** Region ***************  // *************** Region ***************
# Line 1026  namespace gig { Line 3231  namespace gig {
3231      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3232          // Initialization          // Initialization
3233          Dimensions = 0;          Dimensions = 0;
3234          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
3235              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
3236          }          }
3237            Layers = 1;
3238            File* file = (File*) GetParent()->GetParent();
3239            int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3240    
3241          // Actual Loading          // Actual Loading
3242    
3243            if (!file->GetAutoLoad()) return;
3244    
3245          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3246    
3247          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3248          if (_3lnk) {          if (_3lnk) {
3249                _3lnk->SetPos(0);
3250    
3251              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3252              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
3253                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3254                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3255                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3256                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3257                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3258                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3259                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3260                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3261                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3262                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3263                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3264                  }                  }
3265                  else { // active dimension                  else { // active dimension
3266                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3267                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3268                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3269                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3270                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3271                      Dimensions++;                      Dimensions++;
3272    
3273                        // if this is a layer dimension, remember the amount of layers
3274                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3275                  }                  }
3276                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3277              }              }
3278                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3279    
3280              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3281              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3282                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
3283                  if (pDimDef->dimension == dimension_velocity) {  
3284                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
3285                          // no custom defined ranges              if (file->pVersion && file->pVersion->major > 2)
3286                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3287                          pDimDef->ranges     = NULL;              else
3288                      }                  _3lnk->SetPos(44);
3289                      else { // custom defined ranges  
3290                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
3291                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
3292                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
3293                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3294                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable && pDimensionRegions[i])
3295                              bits[i] = velocityZone;                          pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
3296                  }                  }
3297                    GetSample(); // load global region sample reference
3298              }              }
3299            } else {
3300                DimensionRegions = 0;
3301                for (int i = 0 ; i < 8 ; i++) {
3302                    pDimensionDefinitions[i].dimension  = dimension_none;
3303                    pDimensionDefinitions[i].bits       = 0;
3304                    pDimensionDefinitions[i].zones      = 0;
3305                }
3306            }
3307    
3308            // make sure there is at least one dimension region
3309            if (!DimensionRegions) {
3310                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3311                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3312                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3313                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3314                DimensionRegions = 1;
3315            }
3316        }
3317    
3318              // load sample references      /**
3319              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)       * Apply Region settings and all its DimensionRegions to the respective
3320              for (uint i = 0; i < DimensionRegions; i++) {       * RIFF chunks. You have to call File::Save() to make changes persistent.
3321                  uint32_t wavepoolindex = _3lnk->ReadUint32();       *
3322                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);       * Usually there is absolutely no need to call this method explicitly.
3323         * It will be called automatically when File::Save() was called.
3324         *
3325         * @param pProgress - callback function for progress notification
3326         * @throws gig::Exception if samples cannot be dereferenced
3327         */
3328        void Region::UpdateChunks(progress_t* pProgress) {
3329            // in the gig format we don't care about the Region's sample reference
3330            // but we still have to provide some existing one to not corrupt the
3331            // file, so to avoid the latter we simply always assign the sample of
3332            // the first dimension region of this region
3333            pSample = pDimensionRegions[0]->pSample;
3334    
3335            // first update base class's chunks
3336            DLS::Region::UpdateChunks(pProgress);
3337    
3338            // update dimension region's chunks
3339            for (int i = 0; i < DimensionRegions; i++) {
3340                pDimensionRegions[i]->UpdateChunks(pProgress);
3341            }
3342    
3343            File* pFile = (File*) GetParent()->GetParent();
3344            bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3345            const int iMaxDimensions =  versiongt2 ? 8 : 5;
3346            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3347    
3348            // make sure '3lnk' chunk exists
3349            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3350            if (!_3lnk) {
3351                const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3352                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3353                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3354    
3355                // move 3prg to last position
3356                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3357            }
3358    
3359            // update dimension definitions in '3lnk' chunk
3360            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3361            store32(&pData[0], DimensionRegions);
3362            int shift = 0;
3363            for (int i = 0; i < iMaxDimensions; i++) {
3364                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3365                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3366                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3367                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3368                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3369                // next 3 bytes unknown, always zero?
3370    
3371                shift += pDimensionDefinitions[i].bits;
3372            }
3373    
3374            // update wave pool table in '3lnk' chunk
3375            const int iWavePoolOffset = versiongt2 ? 68 : 44;
3376            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3377                int iWaveIndex = -1;
3378                if (i < DimensionRegions) {
3379                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3380                    File::SampleList::iterator iter = pFile->pSamples->begin();
3381                    File::SampleList::iterator end  = pFile->pSamples->end();
3382                    for (int index = 0; iter != end; ++iter, ++index) {
3383                        if (*iter == pDimensionRegions[i]->pSample) {
3384                            iWaveIndex = index;
3385                            break;
3386                        }
3387                    }
3388              }              }
3389                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3390          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3391      }      }
3392    
3393      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1112  namespace gig { Line 3397  namespace gig {
3397              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3398              while (_3ewl) {              while (_3ewl) {
3399                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3400                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3401                      dimensionRegionNr++;                      dimensionRegionNr++;
3402                  }                  }
3403                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1121  namespace gig { Line 3406  namespace gig {
3406          }          }
3407      }      }
3408    
3409      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3410          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3411              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3412            // update Region key table for fast lookup
3413            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3414        }
3415    
3416        void Region::UpdateVelocityTable() {
3417            // get velocity dimension's index
3418            int veldim = -1;
3419            for (int i = 0 ; i < Dimensions ; i++) {
3420                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3421                    veldim = i;
3422                    break;
3423                }
3424          }          }
3425          for (int i = 0; i < 32; i++) {          if (veldim == -1) return;
3426    
3427            int step = 1;
3428            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3429            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3430    
3431            // loop through all dimension regions for all dimensions except the velocity dimension
3432            int dim[8] = { 0 };
3433            for (int i = 0 ; i < DimensionRegions ; i++) {
3434                const int end = i + step * pDimensionDefinitions[veldim].zones;
3435    
3436                // create a velocity table for all cases where the velocity zone is zero
3437                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3438                    pDimensionRegions[i]->VelocityUpperLimit) {
3439                    // create the velocity table
3440                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3441                    if (!table) {
3442                        table = new uint8_t[128];
3443                        pDimensionRegions[i]->VelocityTable = table;
3444                    }
3445                    int tableidx = 0;
3446                    int velocityZone = 0;
3447                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3448                        for (int k = i ; k < end ; k += step) {
3449                            DimensionRegion *d = pDimensionRegions[k];
3450                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3451                            velocityZone++;
3452                        }
3453                    } else { // gig2
3454                        for (int k = i ; k < end ; k += step) {
3455                            DimensionRegion *d = pDimensionRegions[k];
3456                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3457                            velocityZone++;
3458                        }
3459                    }
3460                } else {
3461                    if (pDimensionRegions[i]->VelocityTable) {
3462                        delete[] pDimensionRegions[i]->VelocityTable;
3463                        pDimensionRegions[i]->VelocityTable = 0;
3464                    }
3465                }
3466    
3467                // jump to the next case where the velocity zone is zero
3468                int j;
3469                int shift = 0;
3470                for (j = 0 ; j < Dimensions ; j++) {
3471                    if (j == veldim) i += skipveldim; // skip velocity dimension
3472                    else {
3473                        dim[j]++;
3474                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3475                        else {
3476                            // skip unused dimension regions
3477                            dim[j] = 0;
3478                            i += ((1 << pDimensionDefinitions[j].bits) -
3479                                  pDimensionDefinitions[j].zones) << shift;
3480                        }
3481                    }
3482                    shift += pDimensionDefinitions[j].bits;
3483                }
3484                if (j == Dimensions) break;
3485            }
3486        }
3487    
3488        /** @brief Einstein would have dreamed of it - create a new dimension.
3489         *
3490         * Creates a new dimension with the dimension definition given by
3491         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3492         * There is a hard limit of dimensions and total amount of "bits" all
3493         * dimensions can have. This limit is dependant to what gig file format
3494         * version this file refers to. The gig v2 (and lower) format has a
3495         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3496         * format has a limit of 8.
3497         *
3498         * @param pDimDef - defintion of the new dimension
3499         * @throws gig::Exception if dimension of the same type exists already
3500         * @throws gig::Exception if amount of dimensions or total amount of
3501         *                        dimension bits limit is violated
3502         */
3503        void Region::AddDimension(dimension_def_t* pDimDef) {
3504            // some initial sanity checks of the given dimension definition
3505            if (pDimDef->zones < 2)
3506                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3507            if (pDimDef->bits < 1)
3508                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3509            if (pDimDef->dimension == dimension_samplechannel) {
3510                if (pDimDef->zones != 2)
3511                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3512                if (pDimDef->bits != 1)
3513                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3514            }
3515    
3516            // check if max. amount of dimensions reached
3517            File* file = (File*) GetParent()->GetParent();
3518            const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3519            if (Dimensions >= iMaxDimensions)
3520                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3521            // check if max. amount of dimension bits reached
3522            int iCurrentBits = 0;
3523            for (int i = 0; i < Dimensions; i++)
3524                iCurrentBits += pDimensionDefinitions[i].bits;
3525            if (iCurrentBits >= iMaxDimensions)
3526                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3527            const int iNewBits = iCurrentBits + pDimDef->bits;
3528            if (iNewBits > iMaxDimensions)
3529                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3530            // check if there's already a dimensions of the same type
3531            for (int i = 0; i < Dimensions; i++)
3532                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3533                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3534    
3535            // pos is where the new dimension should be placed, normally
3536            // last in list, except for the samplechannel dimension which
3537            // has to be first in list
3538            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3539            int bitpos = 0;
3540            for (int i = 0 ; i < pos ; i++)
3541                bitpos += pDimensionDefinitions[i].bits;
3542    
3543            // make room for the new dimension
3544            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3545            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3546                for (int j = Dimensions ; j > pos ; j--) {
3547                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3548                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3549                }
3550            }
3551    
3552            // assign definition of new dimension
3553            pDimensionDefinitions[pos] = *pDimDef;
3554    
3555            // auto correct certain dimension definition fields (where possible)
3556            pDimensionDefinitions[pos].split_type  =
3557                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3558            pDimensionDefinitions[pos].zone_size =
3559                __resolveZoneSize(pDimensionDefinitions[pos]);
3560    
3561            // create new dimension region(s) for this new dimension, and make
3562            // sure that the dimension regions are placed correctly in both the
3563            // RIFF list and the pDimensionRegions array
3564            RIFF::Chunk* moveTo = NULL;
3565            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3566            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3567                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3568                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3569                }
3570                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3571                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3572                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3573                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3574                        // create a new dimension region and copy all parameter values from
3575                        // an existing dimension region
3576                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3577                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3578    
3579                        DimensionRegions++;
3580                    }
3581                }
3582                moveTo = pDimensionRegions[i]->pParentList;
3583            }
3584    
3585            // initialize the upper limits for this dimension
3586            int mask = (1 << bitpos) - 1;
3587            for (int z = 0 ; z < pDimDef->zones ; z++) {
3588                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3589                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3590                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3591                                      (z << bitpos) |
3592                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3593                }
3594            }
3595    
3596            Dimensions++;
3597    
3598            // if this is a layer dimension, update 'Layers' attribute
3599            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3600    
3601            UpdateVelocityTable();
3602        }
3603    
3604        /** @brief Delete an existing dimension.
3605         *
3606         * Deletes the dimension given by \a pDimDef and deletes all respective
3607         * dimension regions, that is all dimension regions where the dimension's
3608         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3609         * for example this would delete all dimension regions for the case(s)
3610         * where the sustain pedal is pressed down.
3611         *
3612         * @param pDimDef - dimension to delete
3613         * @throws gig::Exception if given dimension cannot be found
3614         */
3615        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3616            // get dimension's index
3617            int iDimensionNr = -1;
3618            for (int i = 0; i < Dimensions; i++) {
3619                if (&pDimensionDefinitions[i] == pDimDef) {
3620                    iDimensionNr = i;
3621                    break;
3622                }
3623            }
3624            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3625    
3626            // get amount of bits below the dimension to delete
3627            int iLowerBits = 0;
3628            for (int i = 0; i < iDimensionNr; i++)
3629                iLowerBits += pDimensionDefinitions[i].bits;
3630    
3631            // get amount ot bits above the dimension to delete
3632            int iUpperBits = 0;
3633            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3634                iUpperBits += pDimensionDefinitions[i].bits;
3635    
3636            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3637    
3638            // delete dimension regions which belong to the given dimension
3639            // (that is where the dimension's bit > 0)
3640            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3641                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3642                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3643                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3644                                        iObsoleteBit << iLowerBits |
3645                                        iLowerBit;
3646    
3647                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3648                        delete pDimensionRegions[iToDelete];
3649                        pDimensionRegions[iToDelete] = NULL;
3650                        DimensionRegions--;
3651                    }
3652                }
3653            }
3654    
3655            // defrag pDimensionRegions array
3656            // (that is remove the NULL spaces within the pDimensionRegions array)
3657            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3658                if (!pDimensionRegions[iTo]) {
3659                    if (iFrom <= iTo) iFrom = iTo + 1;
3660                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3661                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3662                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3663                        pDimensionRegions[iFrom] = NULL;
3664                    }
3665                }
3666            }
3667    
3668            // remove the this dimension from the upper limits arrays
3669            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3670                DimensionRegion* d = pDimensionRegions[j];
3671                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3672                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3673                }
3674                d->DimensionUpperLimits[Dimensions - 1] = 127;
3675            }
3676    
3677            // 'remove' dimension definition
3678            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3679                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3680            }
3681            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3682            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3683            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3684    
3685            Dimensions--;
3686    
3687            // if this was a layer dimension, update 'Layers' attribute
3688            if (pDimDef->dimension == dimension_layer) Layers = 1;
3689        }
3690    
3691        /** @brief Delete one split zone of a dimension (decrement zone amount).
3692         *
3693         * Instead of deleting an entire dimensions, this method will only delete
3694         * one particular split zone given by @a zone of the Region's dimension
3695         * given by @a type. So this method will simply decrement the amount of
3696         * zones by one of the dimension in question. To be able to do that, the
3697         * respective dimension must exist on this Region and it must have at least
3698         * 3 zones. All DimensionRegion objects associated with the zone will be
3699         * deleted.
3700         *
3701         * @param type - identifies the dimension where a zone shall be deleted
3702         * @param zone - index of the dimension split zone that shall be deleted
3703         * @throws gig::Exception if requested zone could not be deleted
3704         */
3705        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3706            dimension_def_t* oldDef = GetDimensionDefinition(type);
3707            if (!oldDef)
3708                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3709            if (oldDef->zones <= 2)
3710                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3711            if (zone < 0 || zone >= oldDef->zones)
3712                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3713    
3714            const int newZoneSize = oldDef->zones - 1;
3715    
3716            // create a temporary Region which just acts as a temporary copy
3717            // container and will be deleted at the end of this function and will
3718            // also not be visible through the API during this process
3719            gig::Region* tempRgn = NULL;
3720            {
3721                // adding these temporary chunks is probably not even necessary
3722                Instrument* instr = static_cast<Instrument*>(GetParent());
3723                RIFF::List* pCkInstrument = instr->pCkInstrument;
3724                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3725                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3726                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3727                tempRgn = new Region(instr, rgn);
3728            }
3729    
3730            // copy this region's dimensions (with already the dimension split size
3731            // requested by the arguments of this method call) to the temporary
3732            // region, and don't use Region::CopyAssign() here for this task, since
3733            // it would also alter fast lookup helper variables here and there
3734            dimension_def_t newDef;
3735            for (int i = 0; i < Dimensions; ++i) {
3736                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3737                // is this the dimension requested by the method arguments? ...
3738                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3739                    def.zones = newZoneSize;
3740                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3741                    newDef = def;
3742                }
3743                tempRgn->AddDimension(&def);
3744            }
3745    
3746            // find the dimension index in the tempRegion which is the dimension
3747            // type passed to this method (paranoidly expecting different order)
3748            int tempReducedDimensionIndex = -1;
3749            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3750                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3751                    tempReducedDimensionIndex = d;
3752                    break;
3753                }
3754            }
3755    
3756            // copy dimension regions from this region to the temporary region
3757            for (int iDst = 0; iDst < 256; ++iDst) {
3758                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3759                if (!dstDimRgn) continue;
3760                std::map<dimension_t,int> dimCase;
3761                bool isValidZone = true;
3762                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3763                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3764                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3765                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3766                    baseBits += dstBits;
3767                    // there are also DimensionRegion objects of unused zones, skip them
3768                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3769                        isValidZone = false;
3770                        break;
3771                    }
3772                }
3773                if (!isValidZone) continue;
3774                // a bit paranoid: cope with the chance that the dimensions would
3775                // have different order in source and destination regions
3776                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3777                if (dimCase[type] >= zone) dimCase[type]++;
3778                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3779                dstDimRgn->CopyAssign(srcDimRgn);
3780                // if this is the upper most zone of the dimension passed to this
3781                // method, then correct (raise) its upper limit to 127
3782                if (newDef.split_type == split_type_normal && isLastZone)
3783                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3784            }
3785    
3786            // now tempRegion's dimensions and DimensionRegions basically reflect
3787            // what we wanted to get for this actual Region here, so we now just
3788            // delete and recreate the dimension in question with the new amount
3789            // zones and then copy back from tempRegion      
3790            DeleteDimension(oldDef);
3791            AddDimension(&newDef);
3792            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3793                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3794                if (!srcDimRgn) continue;
3795                std::map<dimension_t,int> dimCase;
3796                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3797                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3798                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3799                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3800                    baseBits += srcBits;
3801                }
3802                // a bit paranoid: cope with the chance that the dimensions would
3803                // have different order in source and destination regions
3804                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3805                if (!dstDimRgn) continue;
3806                dstDimRgn->CopyAssign(srcDimRgn);
3807            }
3808    
3809            // delete temporary region
3810            tempRgn->DeleteChunks();
3811            delete tempRgn;
3812    
3813            UpdateVelocityTable();
3814        }
3815    
3816        /** @brief Divide split zone of a dimension in two (increment zone amount).
3817         *
3818         * This will increment the amount of zones for the dimension (given by
3819         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3820         * in the middle of its zone range in two. So the two zones resulting from
3821         * the zone being splitted, will be an equivalent copy regarding all their
3822         * articulation informations and sample reference. The two zones will only
3823         * differ in their zone's upper limit
3824         * (DimensionRegion::DimensionUpperLimits).
3825         *
3826         * @param type - identifies the dimension where a zone shall be splitted
3827         * @param zone - index of the dimension split zone that shall be splitted
3828         * @throws gig::Exception if requested zone could not be splitted
3829         */
3830        void Region::SplitDimensionZone(dimension_t type, int zone) {
3831            dimension_def_t* oldDef = GetDimensionDefinition(type);
3832            if (!oldDef)
3833                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3834            if (zone < 0 || zone >= oldDef->zones)
3835                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3836    
3837            const int newZoneSize = oldDef->zones + 1;
3838    
3839            // create a temporary Region which just acts as a temporary copy
3840            // container and will be deleted at the end of this function and will
3841            // also not be visible through the API during this process
3842            gig::Region* tempRgn = NULL;
3843            {
3844                // adding these temporary chunks is probably not even necessary
3845                Instrument* instr = static_cast<Instrument*>(GetParent());
3846                RIFF::List* pCkInstrument = instr->pCkInstrument;
3847                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3848                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3849                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3850                tempRgn = new Region(instr, rgn);
3851            }
3852    
3853            // copy this region's dimensions (with already the dimension split size
3854            // requested by the arguments of this method call) to the temporary
3855            // region, and don't use Region::CopyAssign() here for this task, since
3856            // it would also alter fast lookup helper variables here and there
3857            dimension_def_t newDef;
3858            for (int i = 0; i < Dimensions; ++i) {
3859                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3860                // is this the dimension requested by the method arguments? ...
3861                if (def.dimension == type) { // ... if yes, increment zone amount by one
3862                    def.zones = newZoneSize;
3863                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3864                    newDef = def;
3865                }
3866                tempRgn->AddDimension(&def);
3867            }
3868    
3869            // find the dimension index in the tempRegion which is the dimension
3870            // type passed to this method (paranoidly expecting different order)
3871            int tempIncreasedDimensionIndex = -1;
3872            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3873                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3874                    tempIncreasedDimensionIndex = d;
3875                    break;
3876                }
3877            }
3878    
3879            // copy dimension regions from this region to the temporary region
3880            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3881                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3882                if (!srcDimRgn) continue;
3883                std::map<dimension_t,int> dimCase;
3884                bool isValidZone = true;
3885                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3886                    const int srcBits = pDimensionDefinitions[d].bits;
3887                    dimCase[pDimensionDefinitions[d].dimension] =
3888                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3889                    // there are also DimensionRegion objects for unused zones, skip them
3890                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3891                        isValidZone = false;
3892                        break;
3893                    }
3894                    baseBits += srcBits;
3895                }
3896                if (!isValidZone) continue;
3897                // a bit paranoid: cope with the chance that the dimensions would
3898                // have different order in source and destination regions            
3899                if (dimCase[type] > zone) dimCase[type]++;
3900                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3901                dstDimRgn->CopyAssign(srcDimRgn);
3902                // if this is the requested zone to be splitted, then also copy
3903                // the source DimensionRegion to the newly created target zone
3904                // and set the old zones upper limit lower
3905                if (dimCase[type] == zone) {
3906                    // lower old zones upper limit
3907                    if (newDef.split_type == split_type_normal) {
3908                        const int high =
3909                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3910                        int low = 0;
3911                        if (zone > 0) {
3912                            std::map<dimension_t,int> lowerCase = dimCase;
3913                            lowerCase[type]--;
3914                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3915                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3916                        }
3917                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3918                    }
3919                    // fill the newly created zone of the divided zone as well
3920                    dimCase[type]++;
3921                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3922                    dstDimRgn->CopyAssign(srcDimRgn);
3923                }
3924            }
3925    
3926            // now tempRegion's dimensions and DimensionRegions basically reflect
3927            // what we wanted to get for this actual Region here, so we now just
3928            // delete and recreate the dimension in question with the new amount
3929            // zones and then copy back from tempRegion      
3930            DeleteDimension(oldDef);
3931            AddDimension(&newDef);
3932            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3933                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3934                if (!srcDimRgn) continue;
3935                std::map<dimension_t,int> dimCase;
3936                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3937                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3938                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3939                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3940                    baseBits += srcBits;
3941                }
3942                // a bit paranoid: cope with the chance that the dimensions would
3943                // have different order in source and destination regions
3944                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3945                if (!dstDimRgn) continue;
3946                dstDimRgn->CopyAssign(srcDimRgn);
3947            }
3948    
3949            // delete temporary region
3950            tempRgn->DeleteChunks();
3951            delete tempRgn;
3952    
3953            UpdateVelocityTable();
3954        }
3955    
3956        /** @brief Change type of an existing dimension.
3957         *
3958         * Alters the dimension type of a dimension already existing on this
3959         * region. If there is currently no dimension on this Region with type
3960         * @a oldType, then this call with throw an Exception. Likewise there are
3961         * cases where the requested dimension type cannot be performed. For example
3962         * if the new dimension type shall be gig::dimension_samplechannel, and the
3963         * current dimension has more than 2 zones. In such cases an Exception is
3964         * thrown as well.
3965         *
3966         * @param oldType - identifies the existing dimension to be changed
3967         * @param newType - to which dimension type it should be changed to
3968         * @throws gig::Exception if requested change cannot be performed
3969         */
3970        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3971            if (oldType == newType) return;
3972            dimension_def_t* def = GetDimensionDefinition(oldType);
3973            if (!def)
3974                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3975            if (newType == dimension_samplechannel && def->zones != 2)
3976                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3977            if (GetDimensionDefinition(newType))
3978                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3979            def->dimension  = newType;
3980            def->split_type = __resolveSplitType(newType);
3981        }
3982    
3983        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3984            uint8_t bits[8] = {};
3985            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3986                 it != DimCase.end(); ++it)
3987            {
3988                for (int d = 0; d < Dimensions; ++d) {
3989                    if (pDimensionDefinitions[d].dimension == it->first) {
3990                        bits[d] = it->second;
3991                        goto nextDimCaseSlice;
3992                    }
3993                }
3994                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3995                nextDimCaseSlice:
3996                ; // noop
3997            }
3998            return GetDimensionRegionByBit(bits);
3999        }
4000    
4001        /**
4002         * Searches in the current Region for a dimension of the given dimension
4003         * type and returns the precise configuration of that dimension in this
4004         * Region.
4005         *
4006         * @param type - dimension type of the sought dimension
4007         * @returns dimension definition or NULL if there is no dimension with
4008         *          sought type in this Region.
4009         */
4010        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4011            for (int i = 0; i < Dimensions; ++i)
4012                if (pDimensionDefinitions[i].dimension == type)
4013                    return &pDimensionDefinitions[i];
4014            return NULL;
4015        }
4016    
4017        Region::~Region() {
4018            for (int i = 0; i < 256; i++) {
4019              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
4020          }          }
4021      }      }
# Line 1143  namespace gig { Line 4033  namespace gig {
4033       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4034       * etc.).       * etc.).
4035       *       *
4036       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
4037       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
4038       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
4039       * @see             Dimensions       * @see             Dimensions
4040       */       */
4041      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4042          uint8_t bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
4043            int veldim = -1;
4044            int velbitpos = 0;
4045            int bitpos = 0;
4046            int dimregidx = 0;
4047          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
4048              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4049                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
4050                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
4051                      break;                  velbitpos = bitpos;
4052                  case split_type_customvelocity:              } else {
4053                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
4054                      break;                      case split_type_normal:
4055                  case split_type_bit: // the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4056                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4057                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4058                      break;                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4059                                }
4060                            } else {
4061                                // gig2: evenly sized zones
4062                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4063                            }
4064                            break;
4065                        case split_type_bit: // the value is already the sought dimension bit number
4066                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4067                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4068                            break;
4069                    }
4070                    dimregidx |= bits << bitpos;
4071                }
4072                bitpos += pDimensionDefinitions[i].bits;
4073            }
4074            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4075            if (!dimreg) return NULL;
4076            if (veldim != -1) {
4077                // (dimreg is now the dimension region for the lowest velocity)
4078                if (dimreg->VelocityTable) // custom defined zone ranges
4079                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4080                else // normal split type
4081                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4082    
4083                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4084                dimregidx |= (bits & limiter_mask) << velbitpos;
4085                dimreg = pDimensionRegions[dimregidx & 255];
4086            }
4087            return dimreg;
4088        }
4089    
4090        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4091            uint8_t bits;
4092            int veldim = -1;
4093            int velbitpos = 0;
4094            int bitpos = 0;
4095            int dimregidx = 0;
4096            for (uint i = 0; i < Dimensions; i++) {
4097                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4098                    // the velocity dimension must be handled after the other dimensions
4099                    veldim = i;
4100                    velbitpos = bitpos;
4101                } else {
4102                    switch (pDimensionDefinitions[i].split_type) {
4103                        case split_type_normal:
4104                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4105                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4106                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4107                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4108                                }
4109                            } else {
4110                                // gig2: evenly sized zones
4111                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4112                            }
4113                            break;
4114                        case split_type_bit: // the value is already the sought dimension bit number
4115                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4116                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4117                            break;
4118                    }
4119                    dimregidx |= bits << bitpos;
4120              }              }
4121                bitpos += pDimensionDefinitions[i].bits;
4122          }          }
4123          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          dimregidx &= 255;
4124            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4125            if (!dimreg) return -1;
4126            if (veldim != -1) {
4127                // (dimreg is now the dimension region for the lowest velocity)
4128                if (dimreg->VelocityTable) // custom defined zone ranges
4129                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4130                else // normal split type
4131                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4132    
4133                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4134                dimregidx |= (bits & limiter_mask) << velbitpos;
4135                dimregidx &= 255;
4136            }
4137            return dimregidx;
4138      }      }
4139    
4140      /**      /**
# Line 1176  namespace gig { Line 4142  namespace gig {
4142       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4143       * instead of calling this method directly!       * instead of calling this method directly!
4144       *       *
4145       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
4146       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
4147       *                 bit numbers       *                 bit numbers
4148       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
4149       */       */
4150      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4151          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4152                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
4153                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
4154                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
4155                                                      << pDimensionDefinitions[2].bits | DimBits[2])
4156                                                      << pDimensionDefinitions[1].bits | DimBits[1])
4157                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
4158      }      }
4159    
4160      /**      /**
# Line 1206  namespace gig { Line 4171  namespace gig {
4171          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4172      }      }
4173    
4174      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4175            if ((int32_t)WavePoolTableIndex == -1) return NULL;
4176          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4177          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4178          Sample* sample = file->GetFirstSample();          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4179          while (sample) {          // for new files or files >= 2 GB use 64 bit wave pool offsets
4180              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4181              sample = file->GetNextSample();              // use 64 bit wave pool offsets (treating this as large file)
4182                uint64_t soughtoffset =
4183                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4184                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4185                Sample* sample = file->GetFirstSample(pProgress);
4186                while (sample) {
4187                    if (sample->ullWavePoolOffset == soughtoffset)
4188                        return static_cast<gig::Sample*>(sample);
4189                    sample = file->GetNextSample();
4190                }
4191            } else {
4192                // use extension files and 32 bit wave pool offsets
4193                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4194                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4195                Sample* sample = file->GetFirstSample(pProgress);
4196                while (sample) {
4197                    if (sample->ullWavePoolOffset == soughtoffset &&
4198                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4199                    sample = file->GetNextSample();
4200                }
4201            }
4202            return NULL;
4203        }
4204        
4205        /**
4206         * Make a (semi) deep copy of the Region object given by @a orig
4207         * and assign it to this object.
4208         *
4209         * Note that all sample pointers referenced by @a orig are simply copied as
4210         * memory address. Thus the respective samples are shared, not duplicated!
4211         *
4212         * @param orig - original Region object to be copied from
4213         */
4214        void Region::CopyAssign(const Region* orig) {
4215            CopyAssign(orig, NULL);
4216        }
4217        
4218        /**
4219         * Make a (semi) deep copy of the Region object given by @a orig and
4220         * assign it to this object
4221         *
4222         * @param mSamples - crosslink map between the foreign file's samples and
4223         *                   this file's samples
4224         */
4225        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4226            // handle base classes
4227            DLS::Region::CopyAssign(orig);
4228            
4229            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4230                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4231            }
4232            
4233            // handle own member variables
4234            for (int i = Dimensions - 1; i >= 0; --i) {
4235                DeleteDimension(&pDimensionDefinitions[i]);
4236            }
4237            Layers = 0; // just to be sure
4238            for (int i = 0; i < orig->Dimensions; i++) {
4239                // we need to copy the dim definition here, to avoid the compiler
4240                // complaining about const-ness issue
4241                dimension_def_t def = orig->pDimensionDefinitions[i];
4242                AddDimension(&def);
4243            }
4244            for (int i = 0; i < 256; i++) {
4245                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4246                    pDimensionRegions[i]->CopyAssign(
4247                        orig->pDimensionRegions[i],
4248                        mSamples
4249                    );
4250                }
4251            }
4252            Layers = orig->Layers;
4253        }
4254    
4255    
4256    // *************** MidiRule ***************
4257    // *
4258    
4259        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4260            _3ewg->SetPos(36);
4261            Triggers = _3ewg->ReadUint8();
4262            _3ewg->SetPos(40);
4263            ControllerNumber = _3ewg->ReadUint8();
4264            _3ewg->SetPos(46);
4265            for (int i = 0 ; i < Triggers ; i++) {
4266                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4267                pTriggers[i].Descending = _3ewg->ReadUint8();
4268                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4269                pTriggers[i].Key = _3ewg->ReadUint8();
4270                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4271                pTriggers[i].Velocity = _3ewg->ReadUint8();
4272                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4273                _3ewg->ReadUint8();
4274            }
4275        }
4276    
4277        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4278            ControllerNumber(0),
4279            Triggers(0) {
4280        }
4281    
4282        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4283            pData[32] = 4;
4284            pData[33] = 16;
4285            pData[36] = Triggers;
4286            pData[40] = ControllerNumber;
4287            for (int i = 0 ; i < Triggers ; i++) {
4288                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4289                pData[47 + i * 8] = pTriggers[i].Descending;
4290                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4291                pData[49 + i * 8] = pTriggers[i].Key;
4292                pData[50 + i * 8] = pTriggers[i].NoteOff;
4293                pData[51 + i * 8] = pTriggers[i].Velocity;
4294                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4295            }
4296        }
4297    
4298        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4299            _3ewg->SetPos(36);
4300            LegatoSamples = _3ewg->ReadUint8(); // always 12
4301            _3ewg->SetPos(40);
4302            BypassUseController = _3ewg->ReadUint8();
4303            BypassKey = _3ewg->ReadUint8();
4304            BypassController = _3ewg->ReadUint8();
4305            ThresholdTime = _3ewg->ReadUint16();
4306            _3ewg->ReadInt16();
4307            ReleaseTime = _3ewg->ReadUint16();
4308            _3ewg->ReadInt16();
4309            KeyRange.low = _3ewg->ReadUint8();
4310            KeyRange.high = _3ewg->ReadUint8();
4311            _3ewg->SetPos(64);
4312            ReleaseTriggerKey = _3ewg->ReadUint8();
4313            AltSustain1Key = _3ewg->ReadUint8();
4314            AltSustain2Key = _3ewg->ReadUint8();
4315        }
4316    
4317        MidiRuleLegato::MidiRuleLegato() :
4318            LegatoSamples(12),
4319            BypassUseController(false),
4320            BypassKey(0),
4321            BypassController(1),
4322            ThresholdTime(20),
4323            ReleaseTime(20),
4324            ReleaseTriggerKey(0),
4325            AltSustain1Key(0),
4326            AltSustain2Key(0)
4327        {
4328            KeyRange.low = KeyRange.high = 0;
4329        }
4330    
4331        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4332            pData[32] = 0;
4333            pData[33] = 16;
4334            pData[36] = LegatoSamples;
4335            pData[40] = BypassUseController;
4336            pData[41] = BypassKey;
4337            pData[42] = BypassController;
4338            store16(&pData[43], ThresholdTime);
4339            store16(&pData[47], ReleaseTime);
4340            pData[51] = KeyRange.low;
4341            pData[52] = KeyRange.high;
4342            pData[64] = ReleaseTriggerKey;
4343            pData[65] = AltSustain1Key;
4344            pData[66] = AltSustain2Key;
4345        }
4346    
4347        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4348            _3ewg->SetPos(36);
4349            Articulations = _3ewg->ReadUint8();
4350            int flags = _3ewg->ReadUint8();
4351            Polyphonic = flags & 8;
4352            Chained = flags & 4;
4353            Selector = (flags & 2) ? selector_controller :
4354                (flags & 1) ? selector_key_switch : selector_none;
4355            Patterns = _3ewg->ReadUint8();
4356            _3ewg->ReadUint8(); // chosen row
4357            _3ewg->ReadUint8(); // unknown
4358            _3ewg->ReadUint8(); // unknown
4359            _3ewg->ReadUint8(); // unknown
4360            KeySwitchRange.low = _3ewg->ReadUint8();
4361            KeySwitchRange.high = _3ewg->ReadUint8();
4362            Controller = _3ewg->ReadUint8();
4363            PlayRange.low = _3ewg->ReadUint8();
4364            PlayRange.high = _3ewg->ReadUint8();
4365    
4366            int n = std::min(int(Articulations), 32);
4367            for (int i = 0 ; i < n ; i++) {
4368                _3ewg->ReadString(pArticulations[i], 32);
4369            }
4370            _3ewg->SetPos(1072);
4371            n = std::min(int(Patterns), 32);
4372            for (int i = 0 ; i < n ; i++) {
4373                _3ewg->ReadString(pPatterns[i].Name, 16);
4374                pPatterns[i].Size = _3ewg->ReadUint8();
4375                _3ewg->Read(&pPatterns[i][0], 1, 32);
4376            }
4377        }
4378    
4379        MidiRuleAlternator::MidiRuleAlternator() :
4380            Articulations(0),
4381            Patterns(0),
4382            Selector(selector_none),
4383            Controller(0),
4384            Polyphonic(false),
4385            Chained(false)
4386        {
4387            PlayRange.low = PlayRange.high = 0;
4388            KeySwitchRange.low = KeySwitchRange.high = 0;
4389        }
4390    
4391        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4392            pData[32] = 3;
4393            pData[33] = 16;
4394            pData[36] = Articulations;
4395            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4396                (Selector == selector_controller ? 2 :
4397                 (Selector == selector_key_switch ? 1 : 0));
4398            pData[38] = Patterns;
4399    
4400            pData[43] = KeySwitchRange.low;
4401            pData[44] = KeySwitchRange.high;
4402            pData[45] = Controller;
4403            pData[46] = PlayRange.low;
4404            pData[47] = PlayRange.high;
4405    
4406            char* str = reinterpret_cast<char*>(pData);
4407            int pos = 48;
4408            int n = std::min(int(Articulations), 32);
4409            for (int i = 0 ; i < n ; i++, pos += 32) {
4410                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4411            }
4412    
4413            pos = 1072;
4414            n = std::min(int(Patterns), 32);
4415            for (int i = 0 ; i < n ; i++, pos += 49) {
4416                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4417                pData[pos + 16] = pPatterns[i].Size;
4418                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4419            }
4420        }
4421    
4422    // *************** Script ***************
4423    // *
4424    
4425        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4426            pGroup = group;
4427            pChunk = ckScri;
4428            if (ckScri) { // object is loaded from file ...
4429                ckScri->SetPos(0);
4430    
4431                // read header
4432                uint32_t headerSize = ckScri->ReadUint32();
4433                Compression = (Compression_t) ckScri->ReadUint32();
4434                Encoding    = (Encoding_t) ckScri->ReadUint32();
4435                Language    = (Language_t) ckScri->ReadUint32();
4436                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4437                crc         = ckScri->ReadUint32();
4438                uint32_t nameSize = ckScri->ReadUint32();
4439                Name.resize(nameSize, ' ');
4440                for (int i = 0; i < nameSize; ++i)
4441                    Name[i] = ckScri->ReadUint8();
4442                // to handle potential future extensions of the header
4443                ckScri->SetPos(sizeof(int32_t) + headerSize);
4444                // read actual script data
4445                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4446                data.resize(scriptSize);
4447                for (int i = 0; i < scriptSize; ++i)
4448                    data[i] = ckScri->ReadUint8();
4449            } else { // this is a new script object, so just initialize it as such ...
4450                Compression = COMPRESSION_NONE;
4451                Encoding = ENCODING_ASCII;
4452                Language = LANGUAGE_NKSP;
4453                Bypass   = false;
4454                crc      = 0;
4455                Name     = "Unnamed Script";
4456            }
4457        }
4458    
4459        Script::~Script() {
4460        }
4461    
4462        /**
4463         * Returns the current script (i.e. as source code) in text format.
4464         */
4465        String Script::GetScriptAsText() {
4466            String s;
4467            s.resize(data.size(), ' ');
4468            memcpy(&s[0], &data[0], data.size());
4469            return s;
4470        }
4471    
4472        /**
4473         * Replaces the current script with the new script source code text given
4474         * by @a text.
4475         *
4476         * @param text - new script source code
4477         */
4478        void Script::SetScriptAsText(const String& text) {
4479            data.resize(text.size());
4480            memcpy(&data[0], &text[0], text.size());
4481        }
4482    
4483        /** @brief Remove all RIFF chunks associated with this Script object.
4484         *
4485         * At the moment Script::DeleteChunks() does nothing. It is
4486         * recommended to call this method explicitly though from deriving classes's
4487         * own overridden implementation of this method to avoid potential future
4488         * compatiblity issues.
4489         *
4490         * See DLS::Storage::DeleteChunks() for details.
4491         */
4492        void Script::DeleteChunks() {
4493        }
4494    
4495        /**
4496         * Apply this script to the respective RIFF chunks. You have to call
4497         * File::Save() to make changes persistent.
4498         *
4499         * Usually there is absolutely no need to call this method explicitly.
4500         * It will be called automatically when File::Save() was called.
4501         *
4502         * @param pProgress - callback function for progress notification
4503         */
4504        void Script::UpdateChunks(progress_t* pProgress) {
4505            // recalculate CRC32 check sum
4506            __resetCRC(crc);
4507            __calculateCRC(&data[0], data.size(), crc);
4508            __finalizeCRC(crc);
4509            // make sure chunk exists and has the required size
4510            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4511            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4512            else pChunk->Resize(chunkSize);
4513            // fill the chunk data to be written to disk
4514            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4515            int pos = 0;
4516            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4517            pos += sizeof(int32_t);
4518            store32(&pData[pos], Compression);
4519            pos += sizeof(int32_t);
4520            store32(&pData[pos], Encoding);
4521            pos += sizeof(int32_t);
4522            store32(&pData[pos], Language);
4523            pos += sizeof(int32_t);
4524            store32(&pData[pos], Bypass ? 1 : 0);
4525            pos += sizeof(int32_t);
4526            store32(&pData[pos], crc);
4527            pos += sizeof(int32_t);
4528            store32(&pData[pos], (uint32_t) Name.size());
4529            pos += sizeof(int32_t);
4530            for (int i = 0; i < Name.size(); ++i, ++pos)
4531                pData[pos] = Name[i];
4532            for (int i = 0; i < data.size(); ++i, ++pos)
4533                pData[pos] = data[i];
4534        }
4535    
4536        /**
4537         * Move this script from its current ScriptGroup to another ScriptGroup
4538         * given by @a pGroup.
4539         *
4540         * @param pGroup - script's new group
4541         */
4542        void Script::SetGroup(ScriptGroup* pGroup) {
4543            if (this->pGroup == pGroup) return;
4544            if (pChunk)
4545                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4546            this->pGroup = pGroup;
4547        }
4548    
4549        /**
4550         * Returns the script group this script currently belongs to. Each script
4551         * is a member of exactly one ScriptGroup.
4552         *
4553         * @returns current script group
4554         */
4555        ScriptGroup* Script::GetGroup() const {
4556            return pGroup;
4557        }
4558    
4559        /**
4560         * Make a (semi) deep copy of the Script object given by @a orig
4561         * and assign it to this object. Note: the ScriptGroup this Script
4562         * object belongs to remains untouched by this call.
4563         *
4564         * @param orig - original Script object to be copied from
4565         */
4566        void Script::CopyAssign(const Script* orig) {
4567            Name        = orig->Name;
4568            Compression = orig->Compression;
4569            Encoding    = orig->Encoding;
4570            Language    = orig->Language;
4571            Bypass      = orig->Bypass;
4572            data        = orig->data;
4573        }
4574    
4575        void Script::RemoveAllScriptReferences() {
4576            File* pFile = pGroup->pFile;
4577            for (int i = 0; pFile->GetInstrument(i); ++i) {
4578                Instrument* instr = pFile->GetInstrument(i);
4579                instr->RemoveScript(this);
4580            }
4581        }
4582    
4583    // *************** ScriptGroup ***************
4584    // *
4585    
4586        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4587            pFile = file;
4588            pList = lstRTIS;
4589            pScripts = NULL;
4590            if (lstRTIS) {
4591                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4592                ::LoadString(ckName, Name);
4593            } else {
4594                Name = "Default Group";
4595            }
4596        }
4597    
4598        ScriptGroup::~ScriptGroup() {
4599            if (pScripts) {
4600                std::list<Script*>::iterator iter = pScripts->begin();
4601                std::list<Script*>::iterator end  = pScripts->end();
4602                while (iter != end) {
4603                    delete *iter;
4604                    ++iter;
4605                }
4606                delete pScripts;
4607            }
4608        }
4609    
4610        /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4611         *
4612         * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4613         * recommended to call this method explicitly though from deriving classes's
4614         * own overridden implementation of this method to avoid potential future
4615         * compatiblity issues.
4616         *
4617         * See DLS::Storage::DeleteChunks() for details.
4618         */
4619        void ScriptGroup::DeleteChunks() {
4620        }
4621    
4622        /**
4623         * Apply this script group to the respective RIFF chunks. You have to call
4624         * File::Save() to make changes persistent.
4625         *
4626         * Usually there is absolutely no need to call this method explicitly.
4627         * It will be called automatically when File::Save() was called.
4628         *
4629         * @param pProgress - callback function for progress notification
4630         */
4631        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4632            if (pScripts) {
4633                if (!pList)
4634                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4635    
4636                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4637                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4638    
4639                for (std::list<Script*>::iterator it = pScripts->begin();
4640                     it != pScripts->end(); ++it)
4641                {
4642                    (*it)->UpdateChunks(pProgress);
4643                }
4644          }          }
4645        }
4646    
4647        /** @brief Get instrument script.
4648         *
4649         * Returns the real-time instrument script with the given index.
4650         *
4651         * @param index - number of the sought script (0..n)
4652         * @returns sought script or NULL if there's no such script
4653         */
4654        Script* ScriptGroup::GetScript(uint index) {
4655            if (!pScripts) LoadScripts();
4656            std::list<Script*>::iterator it = pScripts->begin();
4657            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4658                if (i == index) return *it;
4659          return NULL;          return NULL;
4660      }      }
4661    
4662        /** @brief Add new instrument script.
4663         *
4664         * Adds a new real-time instrument script to the file. The script is not
4665         * actually used / executed unless it is referenced by an instrument to be
4666         * used. This is similar to samples, which you can add to a file, without
4667         * an instrument necessarily actually using it.
4668         *
4669         * You have to call Save() to make this persistent to the file.
4670         *
4671         * @return new empty script object
4672         */
4673        Script* ScriptGroup::AddScript() {
4674            if (!pScripts) LoadScripts();
4675            Script* pScript = new Script(this, NULL);
4676            pScripts->push_back(pScript);
4677            return pScript;
4678        }
4679    
4680        /** @brief Delete an instrument script.
4681         *
4682         * This will delete the given real-time instrument script. References of
4683         * instruments that are using that script will be removed accordingly.
4684         *
4685         * You have to call Save() to make this persistent to the file.
4686         *
4687         * @param pScript - script to delete
4688         * @throws gig::Exception if given script could not be found
4689         */
4690        void ScriptGroup::DeleteScript(Script* pScript) {
4691            if (!pScripts) LoadScripts();
4692            std::list<Script*>::iterator iter =
4693                find(pScripts->begin(), pScripts->end(), pScript);
4694            if (iter == pScripts->end())
4695                throw gig::Exception("Could not delete script, could not find given script");
4696            pScripts->erase(iter);
4697            pScript->RemoveAllScriptReferences();
4698            if (pScript->pChunk)
4699                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4700            delete pScript;
4701        }
4702    
4703        void ScriptGroup::LoadScripts() {
4704            if (pScripts) return;
4705            pScripts = new std::list<Script*>;
4706            if (!pList) return;
4707    
4708            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4709                 ck = pList->GetNextSubChunk())
4710            {
4711                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4712                    pScripts->push_back(new Script(this, ck));
4713                }
4714            }
4715        }
4716    
4717  // *************** Instrument ***************  // *************** Instrument ***************
4718  // *  // *
4719    
4720      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4721            static const DLS::Info::string_length_t fixedStringLengths[] = {
4722                { CHUNK_ID_INAM, 64 },
4723                { CHUNK_ID_ISFT, 12 },
4724                { 0, 0 }
4725            };
4726            pInfo->SetFixedStringLengths(fixedStringLengths);
4727    
4728          // Initialization          // Initialization
4729          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4730          RegionIndex = -1;          EffectSend = 0;
4731            Attenuation = 0;
4732            FineTune = 0;
4733            PitchbendRange = 2;
4734            PianoReleaseMode = false;
4735            DimensionKeyRange.low = 0;
4736            DimensionKeyRange.high = 0;
4737            pMidiRules = new MidiRule*[3];
4738            pMidiRules[0] = NULL;
4739            pScriptRefs = NULL;
4740    
4741          // Loading          // Loading
4742          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4743          if (lart) {          if (lart) {
4744              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4745              if (_3ewg) {              if (_3ewg) {
4746                    _3ewg->SetPos(0);
4747    
4748                  EffectSend             = _3ewg->ReadUint16();                  EffectSend             = _3ewg->ReadUint16();
4749                  Attenuation            = _3ewg->ReadInt32();                  Attenuation            = _3ewg->ReadInt32();
4750                  FineTune               = _3ewg->ReadInt16();                  FineTune               = _3ewg->ReadInt16();
# Line 1240  namespace gig { Line 4753  namespace gig {
4753                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4754                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4755                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4756    
4757                    if (_3ewg->GetSize() > 32) {
4758                        // read MIDI rules
4759                        int i = 0;
4760                        _3ewg->SetPos(32);
4761                        uint8_t id1 = _3ewg->ReadUint8();
4762                        uint8_t id2 = _3ewg->ReadUint8();
4763    
4764                        if (id2 == 16) {
4765                            if (id1 == 4) {
4766                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4767                            } else if (id1 == 0) {
4768                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4769                            } else if (id1 == 3) {
4770                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4771                            } else {
4772                                pMidiRules[i++] = new MidiRuleUnknown;
4773                            }
4774                        }
4775                        else if (id1 != 0 || id2 != 0) {
4776                            pMidiRules[i++] = new MidiRuleUnknown;
4777                        }
4778                        //TODO: all the other types of rules
4779    
4780                        pMidiRules[i] = NULL;
4781                    }
4782                }
4783            }
4784    
4785            if (pFile->GetAutoLoad()) {
4786                if (!pRegions) pRegions = new RegionList;
4787                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4788                if (lrgn) {
4789                    RIFF::List* rgn = lrgn->GetFirstSubList();
4790                    while (rgn) {
4791                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4792                            if (pProgress)
4793                                __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4794                            pRegions->push_back(new Region(this, rgn));
4795                        }
4796                        rgn = lrgn->GetNextSubList();
4797                    }
4798                    // Creating Region Key Table for fast lookup
4799                    UpdateRegionKeyTable();
4800                }
4801            }
4802    
4803            // own gig format extensions
4804            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4805            if (lst3LS) {
4806                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4807                if (ckSCSL) {
4808                    ckSCSL->SetPos(0);
4809    
4810                    int headerSize = ckSCSL->ReadUint32();
4811                    int slotCount  = ckSCSL->ReadUint32();
4812                    if (slotCount) {
4813                        int slotSize  = ckSCSL->ReadUint32();
4814                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4815                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4816                        for (int i = 0; i < slotCount; ++i) {
4817                            _ScriptPooolEntry e;
4818                            e.fileOffset = ckSCSL->ReadUint32();
4819                            e.bypass     = ckSCSL->ReadUint32() & 1;
4820                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4821                            scriptPoolFileOffsets.push_back(e);
4822                        }
4823                    }
4824              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4825          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4826    
4827          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pProgress)
4828          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              __notify_progress(pProgress, 1.0f); // notify done
4829          pRegions = new Region*[Regions];      }
4830          RIFF::List* rgn = lrgn->GetFirstSubList();  
4831          unsigned int iRegion = 0;      void Instrument::UpdateRegionKeyTable() {
4832          while (rgn) {          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4833              if (rgn->GetListType() == LIST_TYPE_RGN) {          RegionList::iterator iter = pRegions->begin();
4834                  pRegions[iRegion] = new Region(this, rgn);          RegionList::iterator end  = pRegions->end();
4835                  iRegion++;          for (; iter != end; ++iter) {
4836              }              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4837              rgn = lrgn->GetNextSubList();              const int low  = std::max(int(pRegion->KeyRange.low), 0);
4838          }              const int high = std::min(int(pRegion->KeyRange.high), 127);
4839                for (int iKey = low; iKey <= high; iKey++) {
4840          // Creating Region Key Table for fast lookup                  RegionKeyTable[iKey] = pRegion;
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
4841              }              }
4842          }          }
4843      }      }
4844    
4845      Instrument::~Instrument() {      Instrument::~Instrument() {
4846          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4847              if (pRegions) {              delete pMidiRules[i];
4848                  if (pRegions[i]) delete (pRegions[i]);          }
4849            delete[] pMidiRules;
4850            if (pScriptRefs) delete pScriptRefs;
4851        }
4852    
4853        /**
4854         * Apply Instrument with all its Regions to the respective RIFF chunks.
4855         * You have to call File::Save() to make changes persistent.
4856         *
4857         * Usually there is absolutely no need to call this method explicitly.
4858         * It will be called automatically when File::Save() was called.
4859         *
4860         * @param pProgress - callback function for progress notification
4861         * @throws gig::Exception if samples cannot be dereferenced
4862         */
4863        void Instrument::UpdateChunks(progress_t* pProgress) {
4864            // first update base classes' chunks
4865            DLS::Instrument::UpdateChunks(pProgress);
4866    
4867            // update Regions' chunks
4868            {
4869                RegionList::iterator iter = pRegions->begin();
4870                RegionList::iterator end  = pRegions->end();
4871                for (; iter != end; ++iter)
4872                    (*iter)->UpdateChunks(pProgress);
4873            }
4874    
4875            // make sure 'lart' RIFF list chunk exists
4876            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4877            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4878            // make sure '3ewg' RIFF chunk exists
4879            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4880            if (!_3ewg)  {
4881                File* pFile = (File*) GetParent();
4882    
4883                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4884                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4885                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4886                memset(_3ewg->LoadChunkData(), 0, size);
4887            }
4888            // update '3ewg' RIFF chunk
4889            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4890            store16(&pData[0], EffectSend);
4891            store32(&pData[2], Attenuation);
4892            store16(&pData[6], FineTune);
4893            store16(&pData[8], PitchbendRange);
4894            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4895                                        DimensionKeyRange.low << 1;
4896            pData[10] = dimkeystart;
4897            pData[11] = DimensionKeyRange.high;
4898    
4899            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4900                pData[32] = 0;
4901                pData[33] = 0;
4902            } else {
4903                for (int i = 0 ; pMidiRules[i] ; i++) {
4904                    pMidiRules[i]->UpdateChunks(pData);
4905              }              }
             delete[] pRegions;  
4906          }          }
4907    
4908            // own gig format extensions
4909           if (ScriptSlotCount()) {
4910               // make sure we have converted the original loaded script file
4911               // offsets into valid Script object pointers
4912               LoadScripts();
4913    
4914               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4915               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4916               const int slotCount = (int) pScriptRefs->size();
4917               const int headerSize = 3 * sizeof(uint32_t);
4918               const int slotSize  = 2 * sizeof(uint32_t);
4919               const int totalChunkSize = headerSize + slotCount * slotSize;
4920               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4921               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4922               else ckSCSL->Resize(totalChunkSize);
4923               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4924               int pos = 0;
4925               store32(&pData[pos], headerSize);
4926               pos += sizeof(uint32_t);
4927               store32(&pData[pos], slotCount);
4928               pos += sizeof(uint32_t);
4929               store32(&pData[pos], slotSize);
4930               pos += sizeof(uint32_t);
4931               for (int i = 0; i < slotCount; ++i) {
4932                   // arbitrary value, the actual file offset will be updated in
4933                   // UpdateScriptFileOffsets() after the file has been resized
4934                   int bogusFileOffset = 0;
4935                   store32(&pData[pos], bogusFileOffset);
4936                   pos += sizeof(uint32_t);
4937                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4938                   pos += sizeof(uint32_t);
4939               }
4940           } else {
4941               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4942               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4943               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4944           }
4945        }
4946    
4947        void Instrument::UpdateScriptFileOffsets() {
4948           // own gig format extensions
4949           if (pScriptRefs && pScriptRefs->size() > 0) {
4950               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4951               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4952               const int slotCount = (int) pScriptRefs->size();
4953               const int headerSize = 3 * sizeof(uint32_t);
4954               ckSCSL->SetPos(headerSize);
4955               for (int i = 0; i < slotCount; ++i) {
4956                   uint32_t fileOffset = uint32_t(
4957                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4958                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4959                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4960                   );
4961                   ckSCSL->WriteUint32(&fileOffset);
4962                   // jump over flags entry (containing the bypass flag)
4963                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4964               }
4965           }        
4966      }      }
4967    
4968      /**      /**
# Line 1283  namespace gig { Line 4973  namespace gig {
4973       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4974       */       */
4975      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4976          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4977          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4978    
4979          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4980              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4981                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1300  namespace gig { Line 4991  namespace gig {
4991       * @see      GetNextRegion()       * @see      GetNextRegion()
4992       */       */
4993      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4994          if (!Regions) return NULL;          if (!pRegions) return NULL;
4995          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4996          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4997      }      }
4998    
4999      /**      /**
# Line 1314  namespace gig { Line 5005  namespace gig {
5005       * @see      GetFirstRegion()       * @see      GetFirstRegion()
5006       */       */
5007      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
5008          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
5009          return pRegions[RegionIndex++];          RegionsIterator++;
5010            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5011        }
5012    
5013        Region* Instrument::AddRegion() {
5014            // create new Region object (and its RIFF chunks)
5015            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5016            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5017            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5018            Region* pNewRegion = new Region(this, rgn);
5019            pRegions->push_back(pNewRegion);
5020            Regions = (uint32_t) pRegions->size();
5021            // update Region key table for fast lookup
5022            UpdateRegionKeyTable();
5023            // done
5024            return pNewRegion;
5025        }
5026    
5027        void Instrument::DeleteRegion(Region* pRegion) {
5028            if (!pRegions) return;
5029            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5030            // update Region key table for fast lookup
5031            UpdateRegionKeyTable();
5032        }
5033    
5034        /**
5035         * Move this instrument at the position before @arg dst.
5036         *
5037         * This method can be used to reorder the sequence of instruments in a
5038         * .gig file. This might be helpful especially on large .gig files which
5039         * contain a large number of instruments within the same .gig file. So
5040         * grouping such instruments to similar ones, can help to keep track of them
5041         * when working with such complex .gig files.
5042         *
5043         * When calling this method, this instrument will be removed from in its
5044         * current position in the instruments list and moved to the requested
5045         * target position provided by @param dst. You may also pass NULL as
5046         * argument to this method, in that case this intrument will be moved to the
5047         * very end of the .gig file's instrument list.
5048         *
5049         * You have to call Save() to make the order change persistent to the .gig
5050         * file.
5051         *
5052         * Currently this method is limited to moving the instrument within the same
5053         * .gig file. Trying to move it to another .gig file by calling this method
5054         * will throw an exception.
5055         *
5056         * @param dst - destination instrument at which this instrument will be
5057         *              moved to, or pass NULL for moving to end of list
5058         * @throw gig::Exception if this instrument and target instrument are not
5059         *                       part of the same file
5060         */
5061        void Instrument::MoveTo(Instrument* dst) {
5062            if (dst && GetParent() != dst->GetParent())
5063                throw Exception(
5064                    "gig::Instrument::MoveTo() can only be used for moving within "
5065                    "the same gig file."
5066                );
5067    
5068            File* pFile = (File*) GetParent();
5069    
5070            // move this instrument within the instrument list
5071            {
5072                File::InstrumentList& list = *pFile->pInstruments;
5073    
5074                File::InstrumentList::iterator itFrom =
5075                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5076    
5077                File::InstrumentList::iterator itTo =
5078                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5079    
5080                list.splice(itTo, list, itFrom);
5081            }
5082    
5083            // move the instrument's actual list RIFF chunk appropriately
5084            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5085            lstCkInstruments->MoveSubChunk(
5086                this->pCkInstrument,
5087                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5088            );
5089        }
5090    
5091        /**
5092         * Returns a MIDI rule of the instrument.
5093         *
5094         * The list of MIDI rules, at least in gig v3, always contains at
5095         * most two rules. The second rule can only be the DEF filter
5096         * (which currently isn't supported by libgig).
5097         *
5098         * @param i - MIDI rule number
5099         * @returns   pointer address to MIDI rule number i or NULL if there is none
5100         */
5101        MidiRule* Instrument::GetMidiRule(int i) {
5102            return pMidiRules[i];
5103        }
5104    
5105        /**
5106         * Adds the "controller trigger" MIDI rule to the instrument.
5107         *
5108         * @returns the new MIDI rule
5109         */
5110        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5111            delete pMidiRules[0];
5112            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5113            pMidiRules[0] = r;
5114            pMidiRules[1] = 0;
5115            return r;
5116        }
5117    
5118        /**
5119         * Adds the legato MIDI rule to the instrument.
5120         *
5121         * @returns the new MIDI rule
5122         */
5123        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5124            delete pMidiRules[0];
5125            MidiRuleLegato* r = new MidiRuleLegato;
5126            pMidiRules[0] = r;
5127            pMidiRules[1] = 0;
5128            return r;
5129        }
5130    
5131        /**
5132         * Adds the alternator MIDI rule to the instrument.
5133         *
5134         * @returns the new MIDI rule
5135         */
5136        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5137            delete pMidiRules[0];
5138            MidiRuleAlternator* r = new MidiRuleAlternator;
5139            pMidiRules[0] = r;
5140            pMidiRules[1] = 0;
5141            return r;
5142        }
5143    
5144        /**
5145         * Deletes a MIDI rule from the instrument.
5146         *
5147         * @param i - MIDI rule number
5148         */
5149        void Instrument::DeleteMidiRule(int i) {
5150            delete pMidiRules[i];
5151            pMidiRules[i] = 0;
5152        }
5153    
5154        void Instrument::LoadScripts() {
5155            if (pScriptRefs) return;
5156            pScriptRefs = new std::vector<_ScriptPooolRef>;
5157            if (scriptPoolFileOffsets.empty()) return;
5158            File* pFile = (File*) GetParent();
5159            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5160                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5161                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5162                    ScriptGroup* group = pFile->GetScriptGroup(i);
5163                    for (uint s = 0; group->GetScript(s); ++s) {
5164                        Script* script = group->GetScript(s);
5165                        if (script->pChunk) {
5166                            uint32_t offset = uint32_t(
5167                                script->pChunk->GetFilePos() -
5168                                script->pChunk->GetPos() -
5169                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5170                            );
5171                            if (offset == soughtOffset)
5172                            {
5173                                _ScriptPooolRef ref;
5174                                ref.script = script;
5175                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5176                                pScriptRefs->push_back(ref);
5177                                break;
5178                            }
5179                        }
5180                    }
5181                }
5182            }
5183            // we don't need that anymore
5184            scriptPoolFileOffsets.clear();
5185        }
5186    
5187        /** @brief Get instrument script (gig format extension).
5188         *
5189         * Returns the real-time instrument script of instrument script slot
5190         * @a index.
5191         *
5192         * @note This is an own format extension which did not exist i.e. in the
5193         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5194         * gigedit.
5195         *
5196         * @param index - instrument script slot index
5197         * @returns script or NULL if index is out of bounds
5198         */
5199        Script* Instrument::GetScriptOfSlot(uint index) {
5200            LoadScripts();
5201            if (index >= pScriptRefs->size()) return NULL;
5202            return pScriptRefs->at(index).script;
5203        }
5204    
5205        /** @brief Add new instrument script slot (gig format extension).
5206         *
5207         * Add the given real-time instrument script reference to this instrument,
5208         * which shall be executed by the sampler for for this instrument. The
5209         * script will be added to the end of the script list of this instrument.
5210         * The positions of the scripts in the Instrument's Script list are
5211         * relevant, because they define in which order they shall be executed by
5212         * the sampler. For this reason it is also legal to add the same script
5213         * twice to an instrument, for example you might have a script called
5214         * "MyFilter" which performs an event filter task, and you might have
5215         * another script called "MyNoteTrigger" which triggers new notes, then you
5216         * might for example have the following list of scripts on the instrument:
5217         *
5218         * 1. Script "MyFilter"
5219         * 2. Script "MyNoteTrigger"
5220         * 3. Script "MyFilter"
5221         *
5222         * Which would make sense, because the 2nd script launched new events, which
5223         * you might need to filter as well.
5224         *
5225         * There are two ways to disable / "bypass" scripts. You can either disable
5226         * a script locally for the respective script slot on an instrument (i.e. by
5227         * passing @c false to the 2nd argument of this method, or by calling
5228         * SetScriptBypassed()). Or you can disable a script globally for all slots
5229         * and all instruments by setting Script::Bypass.
5230         *
5231         * @note This is an own format extension which did not exist i.e. in the
5232         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5233         * gigedit.
5234         *
5235         * @param pScript - script that shall be executed for this instrument
5236         * @param bypass  - if enabled, the sampler shall skip executing this
5237         *                  script (in the respective list position)
5238         * @see SetScriptBypassed()
5239         */
5240        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5241            LoadScripts();
5242            _ScriptPooolRef ref = { pScript, bypass };
5243            pScriptRefs->push_back(ref);
5244        }
5245    
5246        /** @brief Flip two script slots with each other (gig format extension).
5247         *
5248         * Swaps the position of the two given scripts in the Instrument's Script
5249         * list. The positions of the scripts in the Instrument's Script list are
5250         * relevant, because they define in which order they shall be executed by
5251         * the sampler.
5252         *
5253         * @note This is an own format extension which did not exist i.e. in the
5254         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5255         * gigedit.
5256         *
5257         * @param index1 - index of the first script slot to swap
5258         * @param index2 - index of the second script slot to swap
5259         */
5260        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5261            LoadScripts();
5262            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5263                return;
5264            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5265            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5266            (*pScriptRefs)[index2] = tmp;
5267        }
5268    
5269        /** @brief Remove script slot.
5270         *
5271         * Removes the script slot with the given slot index.
5272         *
5273         * @param index - index of script slot to remove
5274         */
5275        void Instrument::RemoveScriptSlot(uint index) {
5276            LoadScripts();
5277            if (index >= pScriptRefs->size()) return;
5278            pScriptRefs->erase( pScriptRefs->begin() + index );
5279        }
5280    
5281        /** @brief Remove reference to given Script (gig format extension).
5282         *
5283         * This will remove all script slots on the instrument which are referencing
5284         * the given script.
5285         *
5286         * @note This is an own format extension which did not exist i.e. in the
5287         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5288         * gigedit.
5289         *
5290         * @param pScript - script reference to remove from this instrument
5291         * @see RemoveScriptSlot()
5292         */
5293        void Instrument::RemoveScript(Script* pScript) {
5294            LoadScripts();
5295            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5296                if ((*pScriptRefs)[i].script == pScript) {
5297                    pScriptRefs->erase( pScriptRefs->begin() + i );
5298                }
5299            }
5300        }
5301    
5302        /** @brief Instrument's amount of script slots.
5303         *
5304         * This method returns the amount of script slots this instrument currently
5305         * uses.
5306         *
5307         * A script slot is a reference of a real-time instrument script to be
5308         * executed by the sampler. The scripts will be executed by the sampler in
5309         * sequence of the slots. One (same) script may be referenced multiple
5310         * times in different slots.
5311         *
5312         * @note This is an own format extension which did not exist i.e. in the
5313         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5314         * gigedit.
5315         */
5316        uint Instrument::ScriptSlotCount() const {
5317            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5318        }
5319    
5320        /** @brief Whether script execution shall be skipped.
5321         *
5322         * Defines locally for the Script reference slot in the Instrument's Script
5323         * list, whether the script shall be skipped by the sampler regarding
5324         * execution.
5325         *
5326         * It is also possible to ignore exeuction of the script globally, for all
5327         * slots and for all instruments by setting Script::Bypass.
5328         *
5329         * @note This is an own format extension which did not exist i.e. in the
5330         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5331         * gigedit.
5332         *
5333         * @param index - index of the script slot on this instrument
5334         * @see Script::Bypass
5335         */
5336        bool Instrument::IsScriptSlotBypassed(uint index) {
5337            if (index >= ScriptSlotCount()) return false;
5338            return pScriptRefs ? pScriptRefs->at(index).bypass
5339                               : scriptPoolFileOffsets.at(index).bypass;
5340            
5341        }
5342    
5343        /** @brief Defines whether execution shall be skipped.
5344         *
5345         * You can call this method to define locally whether or whether not the
5346         * given script slot shall be executed by the sampler.
5347         *
5348         * @note This is an own format extension which did not exist i.e. in the
5349         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5350         * gigedit.
5351         *
5352         * @param index - script slot index on this instrument
5353         * @param bBypass - if true, the script slot will be skipped by the sampler
5354         * @see Script::Bypass
5355         */
5356        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5357            if (index >= ScriptSlotCount()) return;
5358            if (pScriptRefs)
5359                pScriptRefs->at(index).bypass = bBypass;
5360            else
5361                scriptPoolFileOffsets.at(index).bypass = bBypass;
5362        }
5363    
5364        /**
5365         * Make a (semi) deep copy of the Instrument object given by @a orig
5366         * and assign it to this object.
5367         *
5368         * Note that all sample pointers referenced by @a orig are simply copied as
5369         * memory address. Thus the respective samples are shared, not duplicated!
5370         *
5371         * @param orig - original Instrument object to be copied from
5372         */
5373        void Instrument::CopyAssign(const Instrument* orig) {
5374            CopyAssign(orig, NULL);
5375        }
5376            
5377        /**
5378         * Make a (semi) deep copy of the Instrument object given by @a orig
5379         * and assign it to this object.
5380         *
5381         * @param orig - original Instrument object to be copied from
5382         * @param mSamples - crosslink map between the foreign file's samples and
5383         *                   this file's samples
5384         */
5385        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5386            // handle base class
5387            // (without copying DLS region stuff)
5388            DLS::Instrument::CopyAssignCore(orig);
5389            
5390            // handle own member variables
5391            Attenuation = orig->Attenuation;
5392            EffectSend = orig->EffectSend;
5393            FineTune = orig->FineTune;
5394            PitchbendRange = orig->PitchbendRange;
5395            PianoReleaseMode = orig->PianoReleaseMode;
5396            DimensionKeyRange = orig->DimensionKeyRange;
5397            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5398            pScriptRefs = orig->pScriptRefs;
5399            
5400            // free old midi rules
5401            for (int i = 0 ; pMidiRules[i] ; i++) {
5402                delete pMidiRules[i];
5403            }
5404            //TODO: MIDI rule copying
5405            pMidiRules[0] = NULL;
5406            
5407            // delete all old regions
5408            while (Regions) DeleteRegion(GetFirstRegion());
5409            // create new regions and copy them from original
5410            {
5411                RegionList::const_iterator it = orig->pRegions->begin();
5412                for (int i = 0; i < orig->Regions; ++i, ++it) {
5413                    Region* dstRgn = AddRegion();
5414                    //NOTE: Region does semi-deep copy !
5415                    dstRgn->CopyAssign(
5416                        static_cast<gig::Region*>(*it),
5417                        mSamples
5418                    );
5419                }
5420            }
5421    
5422            UpdateRegionKeyTable();
5423        }
5424    
5425    
5426    // *************** Group ***************
5427    // *
5428    
5429        /** @brief Constructor.
5430         *
5431         * @param file   - pointer to the gig::File object
5432         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5433         *                 NULL if this is a new Group
5434         */
5435        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5436            pFile      = file;
5437            pNameChunk = ck3gnm;
5438            ::LoadString(pNameChunk, Name);
5439        }
5440    
5441        /** @brief Destructor.
5442         *
5443         * Currently this destructor implementation does nothing.
5444         */
5445        Group::~Group() {
5446        }
5447    
5448        /** @brief Remove all RIFF chunks associated with this Group object.
5449         *
5450         * See DLS::Storage::DeleteChunks() for details.
5451         */
5452        void Group::DeleteChunks() {
5453            // handle own RIFF chunks
5454            if (pNameChunk) {
5455                pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5456                pNameChunk = NULL;
5457            }
5458        }
5459    
5460        /** @brief Update chunks with current group settings.
5461         *
5462         * Apply current Group field values to the respective chunks. You have
5463         * to call File::Save() to make changes persistent.
5464         *
5465         * Usually there is absolutely no need to call this method explicitly.
5466         * It will be called automatically when File::Save() was called.
5467         *
5468         * @param pProgress - callback function for progress notification
5469         */
5470        void Group::UpdateChunks(progress_t* pProgress) {
5471            // make sure <3gri> and <3gnl> list chunks exist
5472            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5473            if (!_3gri) {
5474                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5475                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5476            }
5477            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5478            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5479    
5480            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5481                // v3 has a fixed list of 128 strings, find a free one
5482                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5483                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5484                        pNameChunk = ck;
5485                        break;
5486                    }
5487                }
5488            }
5489    
5490            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5491            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5492        }
5493    
5494        /**
5495         * Returns the first Sample of this Group. You have to call this method
5496         * once before you use GetNextSample().
5497         *
5498         * <b>Notice:</b> this method might block for a long time, in case the
5499         * samples of this .gig file were not scanned yet
5500         *
5501         * @returns  pointer address to first Sample or NULL if there is none
5502         *           applied to this Group
5503         * @see      GetNextSample()
5504         */
5505        Sample* Group::GetFirstSample() {
5506            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5507            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5508                if (pSample->GetGroup() == this) return pSample;
5509            }
5510            return NULL;
5511        }
5512    
5513        /**
5514         * Returns the next Sample of the Group. You have to call
5515         * GetFirstSample() once before you can use this method. By calling this
5516         * method multiple times it iterates through the Samples assigned to
5517         * this Group.
5518         *
5519         * @returns  pointer address to the next Sample of this Group or NULL if
5520         *           end reached
5521         * @see      GetFirstSample()
5522         */
5523        Sample* Group::GetNextSample() {
5524            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5525            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5526                if (pSample->GetGroup() == this) return pSample;
5527            }
5528            return NULL;
5529        }
5530    
5531        /**
5532         * Move Sample given by \a pSample from another Group to this Group.
5533         */
5534        void Group::AddSample(Sample* pSample) {
5535            pSample->pGroup = this;
5536        }
5537    
5538        /**
5539         * Move all members of this group to another group (preferably the 1st
5540         * one except this). This method is called explicitly by
5541         * File::DeleteGroup() thus when a Group was deleted. This code was
5542         * intentionally not placed in the destructor!
5543         */
5544        void Group::MoveAll() {
5545            // get "that" other group first
5546            Group* pOtherGroup = NULL;
5547            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5548                if (pOtherGroup != this) break;
5549            }
5550            if (!pOtherGroup) throw Exception(
5551                "Could not move samples to another group, since there is no "
5552                "other Group. This is a bug, report it!"
5553            );
5554            // now move all samples of this group to the other group
5555            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5556                pOtherGroup->AddSample(pSample);
5557            }
5558      }      }
5559    
5560    
# Line 1323  namespace gig { Line 5562  namespace gig {
5562  // *************** File ***************  // *************** File ***************
5563  // *  // *
5564    
5565        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5566        const DLS::version_t File::VERSION_2 = {
5567            0, 2, 19980628 & 0xffff, 19980628 >> 16
5568        };
5569    
5570        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5571        const DLS::version_t File::VERSION_3 = {
5572            0, 3, 20030331 & 0xffff, 20030331 >> 16
5573        };
5574    
5575        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5576        const DLS::version_t File::VERSION_4 = {
5577            0, 4, 20071012 & 0xffff, 20071012 >> 16
5578        };
5579    
5580        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5581            { CHUNK_ID_IARL, 256 },
5582            { CHUNK_ID_IART, 128 },
5583            { CHUNK_ID_ICMS, 128 },
5584            { CHUNK_ID_ICMT, 1024 },
5585            { CHUNK_ID_ICOP, 128 },
5586            { CHUNK_ID_ICRD, 128 },
5587            { CHUNK_ID_IENG, 128 },
5588            { CHUNK_ID_IGNR, 128 },
5589            { CHUNK_ID_IKEY, 128 },
5590            { CHUNK_ID_IMED, 128 },
5591            { CHUNK_ID_INAM, 128 },
5592            { CHUNK_ID_IPRD, 128 },
5593            { CHUNK_ID_ISBJ, 128 },
5594            { CHUNK_ID_ISFT, 128 },
5595            { CHUNK_ID_ISRC, 128 },
5596            { CHUNK_ID_ISRF, 128 },
5597            { CHUNK_ID_ITCH, 128 },
5598            { 0, 0 }
5599        };
5600    
5601        File::File() : DLS::File() {
5602            bAutoLoad = true;
5603            *pVersion = VERSION_3;
5604            pGroups = NULL;
5605            pScriptGroups = NULL;
5606            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5607            pInfo->ArchivalLocation = String(256, ' ');
5608    
5609            // add some mandatory chunks to get the file chunks in right
5610            // order (INFO chunk will be moved to first position later)
5611            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5612            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5613            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5614    
5615            GenerateDLSID();
5616        }
5617    
5618      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5619          pSamples     = NULL;          bAutoLoad = true;
5620          pInstruments = NULL;          pGroups = NULL;
5621            pScriptGroups = NULL;
5622            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5623      }      }
5624    
5625      Sample* File::GetFirstSample() {      File::~File() {
5626          if (!pSamples) LoadSamples();          if (pGroups) {
5627                std::list<Group*>::iterator iter = pGroups->begin();
5628                std::list<Group*>::iterator end  = pGroups->end();
5629                while (iter != end) {
5630                    delete *iter;
5631                    ++iter;
5632                }
5633                delete pGroups;
5634            }
5635            if (pScriptGroups) {
5636                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5637                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5638                while (iter != end) {
5639                    delete *iter;
5640                    ++iter;
5641                }
5642                delete pScriptGroups;
5643            }
5644        }
5645    
5646        Sample* File::GetFirstSample(progress_t* pProgress) {
5647            if (!pSamples) LoadSamples(pProgress);
5648          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5649          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5650          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1340  namespace gig { Line 5655  namespace gig {
5655          SamplesIterator++;          SamplesIterator++;
5656          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5657      }      }
5658        
5659        /**
5660         * Returns Sample object of @a index.
5661         *
5662         * @returns sample object or NULL if index is out of bounds
5663         */
5664        Sample* File::GetSample(uint index) {
5665            if (!pSamples) LoadSamples();
5666            if (!pSamples) return NULL;
5667            DLS::File::SampleList::iterator it = pSamples->begin();
5668            for (int i = 0; i < index; ++i) {
5669                ++it;
5670                if (it == pSamples->end()) return NULL;
5671            }
5672            if (it == pSamples->end()) return NULL;
5673            return static_cast<gig::Sample*>( *it );
5674        }
5675    
5676        /**
5677         * Returns the total amount of samples of this gig file.
5678         *
5679         * Note that this method might block for a long time in case it is required
5680         * to load the sample info for the first time.
5681         *
5682         * @returns total amount of samples
5683         */
5684        size_t File::CountSamples() {
5685            if (!pSamples) LoadSamples();
5686            if (!pSamples) return 0;
5687            return pSamples->size();
5688        }
5689    
5690        /** @brief Add a new sample.
5691         *
5692         * This will create a new Sample object for the gig file. You have to
5693         * call Save() to make this persistent to the file.
5694         *
5695         * @returns pointer to new Sample object
5696         */
5697        Sample* File::AddSample() {
5698           if (!pSamples) LoadSamples();
5699           __ensureMandatoryChunksExist();
5700           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5701           // create new Sample object and its respective 'wave' list chunk
5702           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5703           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5704    
5705           // add mandatory chunks to get the chunks in right order
5706           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5707           wave->AddSubList(LIST_TYPE_INFO);
5708    
5709           pSamples->push_back(pSample);
5710           return pSample;
5711        }
5712    
5713        /** @brief Delete a sample.
5714         *
5715         * This will delete the given Sample object from the gig file. Any
5716         * references to this sample from Regions and DimensionRegions will be
5717         * removed. You have to call Save() to make this persistent to the file.
5718         *
5719         * @param pSample - sample to delete
5720         * @throws gig::Exception if given sample could not be found
5721         */
5722        void File::DeleteSample(Sample* pSample) {
5723            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5724            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5725            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5726            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5727            pSamples->erase(iter);
5728            pSample->DeleteChunks();
5729            delete pSample;
5730    
5731            SampleList::iterator tmp = SamplesIterator;
5732            // remove all references to the sample
5733            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5734                 instrument = GetNextInstrument()) {
5735                for (Region* region = instrument->GetFirstRegion() ; region ;
5736                     region = instrument->GetNextRegion()) {
5737    
5738                    if (region->GetSample() == pSample) region->SetSample(NULL);
5739    
5740                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5741                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5742                        if (d->pSample == pSample) d->pSample = NULL;
5743                    }
5744                }
5745            }
5746            SamplesIterator = tmp; // restore iterator
5747        }
5748    
5749      void File::LoadSamples() {      void File::LoadSamples() {
5750          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
5751          if (wvpl) {      }
5752              unsigned long wvplFileOffset = wvpl->GetFilePos();  
5753              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
5754              while (wave) {          // Groups must be loaded before samples, because samples will try
5755                  if (wave->GetListType() == LIST_TYPE_WAVE) {          // to resolve the group they belong to
5756                      if (!pSamples) pSamples = new SampleList;          if (!pGroups) LoadGroups();
5757                      unsigned long waveFileOffset = wave->GetFilePos();  
5758                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          if (!pSamples) pSamples = new SampleList;
5759    
5760            RIFF::File* file = pRIFF;
5761    
5762            // just for progress calculation
5763            int iSampleIndex  = 0;
5764            int iTotalSamples = WavePoolCount;
5765    
5766            // just for assembling path of optional extension files to be read
5767            const std::string folder = parentPath(pRIFF->GetFileName());
5768            const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5769    
5770            // the main gig file and the extension files (.gx01, ... , .gx98) may
5771            // contain wave data (wave pool)
5772            std::vector<RIFF::File*> poolFiles;
5773            poolFiles.push_back(pRIFF);
5774    
5775            // get info about all extension files
5776            RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5777            if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5778                const uint32_t n = ckXfil->ReadInt32();
5779                for (int i = 0; i < n; i++) {
5780                    // read the filename and load the extension file
5781                    std::string name;
5782                    ckXfil->ReadString(name, 128);
5783                    std::string path = concatPath(folder, name);
5784                    RIFF::File* pExtFile = new RIFF::File(path);
5785                    // check that the dlsids match
5786                    RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5787                    if (ckDLSID) {
5788                        ::DLS::dlsid_t idExpected;
5789                        idExpected.ulData1 = ckXfil->ReadInt32();
5790                        idExpected.usData2 = ckXfil->ReadInt16();
5791                        idExpected.usData3 = ckXfil->ReadInt16();
5792                        ckXfil->Read(idExpected.abData, 8, 1);
5793                        ::DLS::dlsid_t idFound;
5794                        ckDLSID->Read(&idFound.ulData1, 1, 4);
5795                        ckDLSID->Read(&idFound.usData2, 1, 2);
5796                        ckDLSID->Read(&idFound.usData3, 1, 2);
5797                        ckDLSID->Read(idFound.abData, 8, 1);
5798                        if (memcmp(&idExpected, &idFound, 16) != 0)
5799                            throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5800                    }
5801                    poolFiles.push_back(pExtFile);
5802                    ExtensionFiles.push_back(pExtFile);
5803                }
5804            }
5805    
5806            // check if a .gx99 (GigaPulse) file exists
5807            RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5808            if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5809                std::string path = baseName + ".gx99";
5810                RIFF::File* pExtFile = new RIFF::File(path);
5811    
5812                // skip unused int and filename
5813                ckDoxf->SetPos(132, RIFF::stream_curpos);
5814    
5815                // check that the dlsids match
5816                RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5817                if (ckDLSID) {
5818                    ::DLS::dlsid_t idExpected;
5819                    idExpected.ulData1 = ckDoxf->ReadInt32();
5820                    idExpected.usData2 = ckDoxf->ReadInt16();
5821                    idExpected.usData3 = ckDoxf->ReadInt16();
5822                    ckDoxf->Read(idExpected.abData, 8, 1);
5823                    ::DLS::dlsid_t idFound;
5824                    ckDLSID->Read(&idFound.ulData1, 1, 4);
5825                    ckDLSID->Read(&idFound.usData2, 1, 2);
5826                    ckDLSID->Read(&idFound.usData3, 1, 2);
5827                    ckDLSID->Read(idFound.abData, 8, 1);
5828                    if (memcmp(&idExpected, &idFound, 16) != 0)
5829                        throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5830                }
5831                poolFiles.push_back(pExtFile);
5832                ExtensionFiles.push_back(pExtFile);
5833            }
5834    
5835            // load samples from extension files (if required)
5836            for (int i = 0; i < poolFiles.size(); i++) {
5837                RIFF::File* file = poolFiles[i];
5838                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5839                if (wvpl) {
5840                    file_offset_t wvplFileOffset = wvpl->GetFilePos() -
5841                                                   wvpl->GetPos(); // should be zero, but just to be sure
5842                    RIFF::List* wave = wvpl->GetFirstSubList();
5843                    while (wave) {
5844                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5845                            // notify current progress
5846                            if (pProgress) {
5847                                const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5848                                __notify_progress(pProgress, subprogress);
5849                            }
5850    
5851                            file_offset_t waveFileOffset = wave->GetFilePos();
5852                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5853    
5854                            iSampleIndex++;
5855                        }
5856                        wave = wvpl->GetNextSubList();
5857                  }                  }
                 wave = wvpl->GetNextSubList();  
5858              }              }
5859          }          }
5860          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
5861            if (pProgress)
5862                __notify_progress(pProgress, 1.0); // notify done
5863      }      }
5864    
5865      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5866          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5867          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5868          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5869          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5870      }      }
5871    
5872      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5873          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5874          InstrumentsIterator++;          InstrumentsIterator++;
5875          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5876        }
5877    
5878        /**
5879         * Returns the total amount of instruments of this gig file.
5880         *
5881         * Note that this method might block for a long time in case it is required
5882         * to load the instruments info for the first time.
5883         *
5884         * @returns total amount of instruments
5885         */
5886        size_t File::CountInstruments() {
5887            if (!pInstruments) LoadInstruments();
5888            if (!pInstruments) return 0;
5889            return pInstruments->size();
5890      }      }
5891    
5892      /**      /**
5893       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5894       *       *
5895         * @param index     - number of the sought instrument (0..n)
5896         * @param pProgress - optional: callback function for progress notification
5897       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5898       */       */
5899      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5900          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5901                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5902    
5903                if (pProgress) {
5904                    // sample loading subtask
5905                    progress_t subprogress;
5906                    __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5907                    __notify_progress(&subprogress, 0.0f);
5908                    if (GetAutoLoad())
5909                        GetFirstSample(&subprogress); // now force all samples to be loaded
5910                    __notify_progress(&subprogress, 1.0f);
5911    
5912                    // instrument loading subtask
5913                    if (pProgress->callback) {
5914                        subprogress.__range_min = subprogress.__range_max;
5915                        subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5916                    }
5917                    __notify_progress(&subprogress, 0.0f);
5918                    LoadInstruments(&subprogress);
5919                    __notify_progress(&subprogress, 1.0f);
5920                } else {
5921                    // sample loading subtask
5922                    if (GetAutoLoad())
5923                        GetFirstSample(); // now force all samples to be loaded
5924    
5925                    // instrument loading subtask
5926                    LoadInstruments();
5927                }
5928            }
5929          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5930          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5931          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5932              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5933              InstrumentsIterator++;              InstrumentsIterator++;
5934          }          }
5935          return NULL;          return NULL;
5936      }      }
5937    
5938        /** @brief Add a new instrument definition.
5939         *
5940         * This will create a new Instrument object for the gig file. You have
5941         * to call Save() to make this persistent to the file.
5942         *
5943         * @returns pointer to new Instrument object
5944         */
5945        Instrument* File::AddInstrument() {
5946           if (!pInstruments) LoadInstruments();
5947           __ensureMandatoryChunksExist();
5948           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5949           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5950    
5951           // add mandatory chunks to get the chunks in right order
5952           lstInstr->AddSubList(LIST_TYPE_INFO);
5953           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5954    
5955           Instrument* pInstrument = new Instrument(this, lstInstr);
5956           pInstrument->GenerateDLSID();
5957    
5958           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5959    
5960           // this string is needed for the gig to be loadable in GSt:
5961           pInstrument->pInfo->Software = "Endless Wave";
5962    
5963           pInstruments->push_back(pInstrument);
5964           return pInstrument;
5965        }
5966        
5967        /** @brief Add a duplicate of an existing instrument.
5968         *
5969         * Duplicates the instrument definition given by @a orig and adds it
5970         * to this file. This allows in an instrument editor application to
5971         * easily create variations of an instrument, which will be stored in
5972         * the same .gig file, sharing i.e. the same samples.
5973         *
5974         * Note that all sample pointers referenced by @a orig are simply copied as
5975         * memory address. Thus the respective samples are shared, not duplicated!
5976         *
5977         * You have to call Save() to make this persistent to the file.
5978         *
5979         * @param orig - original instrument to be copied
5980         * @returns duplicated copy of the given instrument
5981         */
5982        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5983            Instrument* instr = AddInstrument();
5984            instr->CopyAssign(orig);
5985            return instr;
5986        }
5987        
5988        /** @brief Add content of another existing file.
5989         *
5990         * Duplicates the samples, groups and instruments of the original file
5991         * given by @a pFile and adds them to @c this File. In case @c this File is
5992         * a new one that you haven't saved before, then you have to call
5993         * SetFileName() before calling AddContentOf(), because this method will
5994         * automatically save this file during operation, which is required for
5995         * writing the sample waveform data by disk streaming.
5996         *
5997         * @param pFile - original file whose's content shall be copied from
5998         */
5999        void File::AddContentOf(File* pFile) {
6000            static int iCallCount = -1;
6001            iCallCount++;
6002            std::map<Group*,Group*> mGroups;
6003            std::map<Sample*,Sample*> mSamples;
6004            
6005            // clone sample groups
6006            for (int i = 0; pFile->GetGroup(i); ++i) {
6007                Group* g = AddGroup();
6008                g->Name =
6009                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6010                mGroups[pFile->GetGroup(i)] = g;
6011            }
6012            
6013            // clone samples (not waveform data here yet)
6014            for (int i = 0; pFile->GetSample(i); ++i) {
6015                Sample* s = AddSample();
6016                s->CopyAssignMeta(pFile->GetSample(i));
6017                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6018                mSamples[pFile->GetSample(i)] = s;
6019            }
6020    
6021            // clone script groups and their scripts
6022            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6023                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6024                ScriptGroup* dg = AddScriptGroup();
6025                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6026                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6027                    Script* ss = sg->GetScript(iScript);
6028                    Script* ds = dg->AddScript();
6029                    ds->CopyAssign(ss);
6030                }
6031            }
6032    
6033            //BUG: For some reason this method only works with this additional
6034            //     Save() call in between here.
6035            //
6036            // Important: The correct one of the 2 Save() methods has to be called
6037            // here, depending on whether the file is completely new or has been
6038            // saved to disk already, otherwise it will result in data corruption.
6039            if (pRIFF->IsNew())
6040                Save(GetFileName());
6041            else
6042                Save();
6043            
6044            // clone instruments
6045            // (passing the crosslink table here for the cloned samples)
6046            for (int i = 0; pFile->GetInstrument(i); ++i) {
6047                Instrument* instr = AddInstrument();
6048                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6049            }
6050            
6051            // Mandatory: file needs to be saved to disk at this point, so this
6052            // file has the correct size and data layout for writing the samples'
6053            // waveform data to disk.
6054            Save();
6055            
6056            // clone samples' waveform data
6057            // (using direct read & write disk streaming)
6058            for (int i = 0; pFile->GetSample(i); ++i) {
6059                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6060            }
6061        }
6062    
6063        /** @brief Delete an instrument.
6064         *
6065         * This will delete the given Instrument object from the gig file. You
6066         * have to call Save() to make this persistent to the file.
6067         *
6068         * @param pInstrument - instrument to delete
6069         * @throws gig::Exception if given instrument could not be found
6070         */
6071        void File::DeleteInstrument(Instrument* pInstrument) {
6072            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6073            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6074            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6075            pInstruments->erase(iter);
6076            pInstrument->DeleteChunks();
6077            delete pInstrument;
6078        }
6079    
6080      void File::LoadInstruments() {      void File::LoadInstruments() {
6081            LoadInstruments(NULL);
6082        }
6083    
6084        void File::LoadInstruments(progress_t* pProgress) {
6085            if (!pInstruments) pInstruments = new InstrumentList;
6086          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6087          if (lstInstruments) {          if (lstInstruments) {
6088                int iInstrumentIndex = 0;
6089              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6090              while (lstInstr) {              while (lstInstr) {
6091                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
6092                      if (!pInstruments) pInstruments = new InstrumentList;                      if (pProgress) {
6093                      pInstruments->push_back(new Instrument(this, lstInstr));                          // notify current progress
6094                            const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6095                            __notify_progress(pProgress, localProgress);
6096    
6097                            // divide local progress into subprogress for loading current Instrument
6098                            progress_t subprogress;
6099                            __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6100    
6101                            pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6102                        } else {
6103                            pInstruments->push_back(new Instrument(this, lstInstr));
6104                        }
6105    
6106                        iInstrumentIndex++;
6107                  }                  }
6108                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
6109              }              }
6110                if (pProgress)
6111                    __notify_progress(pProgress, 1.0); // notify done
6112            }
6113        }
6114    
6115        /// Updates the 3crc chunk with the checksum of a sample. The
6116        /// update is done directly to disk, as this method is called
6117        /// after File::Save()
6118        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6119            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6120            if (!_3crc) return;
6121    
6122            // get the index of the sample
6123            int iWaveIndex = GetWaveTableIndexOf(pSample);
6124            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6125    
6126            // write the CRC-32 checksum to disk
6127            _3crc->SetPos(iWaveIndex * 8);
6128            uint32_t one = 1;
6129            _3crc->WriteUint32(&one); // always 1
6130            _3crc->WriteUint32(&crc);
6131        }
6132    
6133        uint32_t File::GetSampleChecksum(Sample* pSample) {
6134            // get the index of the sample
6135            int iWaveIndex = GetWaveTableIndexOf(pSample);
6136            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6137    
6138            return GetSampleChecksumByIndex(iWaveIndex);
6139        }
6140    
6141        uint32_t File::GetSampleChecksumByIndex(int index) {
6142            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6143    
6144            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6145            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6146            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6147            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6148    
6149            // read the CRC-32 checksum directly from disk
6150            size_t pos = index * 8;
6151            if (pos + 8 > _3crc->GetNewSize())
6152                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6153    
6154            uint32_t one = load32(&pData[pos]); // always 1
6155            if (one != 1)
6156                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6157    
6158            return load32(&pData[pos+4]);
6159        }
6160    
6161        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6162            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6163            File::SampleList::iterator iter = pSamples->begin();
6164            File::SampleList::iterator end  = pSamples->end();
6165            for (int index = 0; iter != end; ++iter, ++index)
6166                if (*iter == pSample)
6167                    return index;
6168            return -1;
6169        }
6170    
6171        /**
6172         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6173         * the CRC32 check sums of all samples' raw wave data.
6174         *
6175         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6176         */
6177        bool File::VerifySampleChecksumTable() {
6178            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6179            if (!_3crc) return false;
6180            if (_3crc->GetNewSize() <= 0) return false;
6181            if (_3crc->GetNewSize() % 8) return false;
6182            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6183            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6184    
6185            const file_offset_t n = _3crc->GetNewSize() / 8;
6186    
6187            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6188            if (!pData) return false;
6189    
6190            for (file_offset_t i = 0; i < n; ++i) {
6191                uint32_t one = pData[i*2];
6192                if (one != 1) return false;
6193            }
6194    
6195            return true;
6196        }
6197    
6198        /**
6199         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6200         * file's checksum table with those new checksums. This might usually
6201         * just be necessary if the checksum table was damaged.
6202         *
6203         * @e IMPORTANT: The current implementation of this method only works
6204         * with files that have not been modified since it was loaded, because
6205         * it expects that no externally caused file structure changes are
6206         * required!
6207         *
6208         * Due to the expectation above, this method is currently protected
6209         * and actually only used by the command line tool "gigdump" yet.
6210         *
6211         * @returns true if Save() is required to be called after this call,
6212         *          false if no further action is required
6213         */
6214        bool File::RebuildSampleChecksumTable() {
6215            // make sure sample chunks were scanned
6216            if (!pSamples) GetFirstSample();
6217    
6218            bool bRequiresSave = false;
6219    
6220            // make sure "3CRC" chunk exists with required size
6221            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6222            if (!_3crc) {
6223                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6224                // the order of einf and 3crc is not the same in v2 and v3
6225                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6226                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6227                bRequiresSave = true;
6228            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6229                _3crc->Resize(pSamples->size() * 8);
6230                bRequiresSave = true;
6231            }
6232    
6233            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6234                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6235                {
6236                    File::SampleList::iterator iter = pSamples->begin();
6237                    File::SampleList::iterator end  = pSamples->end();
6238                    for (; iter != end; ++iter) {
6239                        gig::Sample* pSample = (gig::Sample*) *iter;
6240                        int index = GetWaveTableIndexOf(pSample);
6241                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6242                        pData[index*2]   = 1; // always 1
6243                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6244                    }
6245                }
6246            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6247                // make sure file is in write mode
6248                pRIFF->SetMode(RIFF::stream_mode_read_write);
6249                {
6250                    File::SampleList::iterator iter = pSamples->begin();
6251                    File::SampleList::iterator end  = pSamples->end();
6252                    for (; iter != end; ++iter) {
6253                        gig::Sample* pSample = (gig::Sample*) *iter;
6254                        int index = GetWaveTableIndexOf(pSample);
6255                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6256                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6257                        SetSampleChecksum(pSample, pSample->crc);
6258                    }
6259                }
6260            }
6261    
6262            return bRequiresSave;
6263        }
6264    
6265        Group* File::GetFirstGroup() {
6266            if (!pGroups) LoadGroups();
6267            // there must always be at least one group
6268            GroupsIterator = pGroups->begin();
6269            return *GroupsIterator;
6270        }
6271    
6272        Group* File::GetNextGroup() {
6273            if (!pGroups) return NULL;
6274            ++GroupsIterator;
6275            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6276        }
6277    
6278        /**
6279         * Returns the group with the given index.
6280         *
6281         * @param index - number of the sought group (0..n)
6282         * @returns sought group or NULL if there's no such group
6283         */
6284        Group* File::GetGroup(uint index) {
6285            if (!pGroups) LoadGroups();
6286            GroupsIterator = pGroups->begin();
6287            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6288                if (i == index) return *GroupsIterator;
6289                ++GroupsIterator;
6290          }          }
6291          else throw gig::Exception("Mandatory <lins> list chunk not found.");          return NULL;
6292        }
6293    
6294        /**
6295         * Returns the group with the given group name.
6296         *
6297         * Note: group names don't have to be unique in the gig format! So there
6298         * can be multiple groups with the same name. This method will simply
6299         * return the first group found with the given name.
6300         *
6301         * @param name - name of the sought group
6302         * @returns sought group or NULL if there's no group with that name
6303         */
6304        Group* File::GetGroup(String name) {
6305            if (!pGroups) LoadGroups();
6306            GroupsIterator = pGroups->begin();
6307            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6308                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6309            return NULL;
6310        }
6311    
6312        Group* File::AddGroup() {
6313            if (!pGroups) LoadGroups();
6314            // there must always be at least one group
6315            __ensureMandatoryChunksExist();
6316            Group* pGroup = new Group(this, NULL);
6317            pGroups->push_back(pGroup);
6318            return pGroup;
6319        }
6320    
6321        /** @brief Delete a group and its samples.
6322         *
6323         * This will delete the given Group object and all the samples that
6324         * belong to this group from the gig file. You have to call Save() to
6325         * make this persistent to the file.
6326         *
6327         * @param pGroup - group to delete
6328         * @throws gig::Exception if given group could not be found
6329         */
6330        void File::DeleteGroup(Group* pGroup) {
6331            if (!pGroups) LoadGroups();
6332            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6333            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6334            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6335            // delete all members of this group
6336            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6337                DeleteSample(pSample);
6338            }
6339            // now delete this group object
6340            pGroups->erase(iter);
6341            pGroup->DeleteChunks();
6342            delete pGroup;
6343        }
6344    
6345        /** @brief Delete a group.
6346         *
6347         * This will delete the given Group object from the gig file. All the
6348         * samples that belong to this group will not be deleted, but instead
6349         * be moved to another group. You have to call Save() to make this
6350         * persistent to the file.
6351         *
6352         * @param pGroup - group to delete
6353         * @throws gig::Exception if given group could not be found
6354         */
6355        void File::DeleteGroupOnly(Group* pGroup) {
6356            if (!pGroups) LoadGroups();
6357            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6358            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6359            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6360            // move all members of this group to another group
6361            pGroup->MoveAll();
6362            pGroups->erase(iter);
6363            pGroup->DeleteChunks();
6364            delete pGroup;
6365        }
6366    
6367        void File::LoadGroups() {
6368            if (!pGroups) pGroups = new std::list<Group*>;
6369            // try to read defined groups from file
6370            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6371            if (lst3gri) {
6372                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6373                if (lst3gnl) {
6374                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6375                    while (ck) {
6376                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6377                            if (pVersion && pVersion->major > 2 &&
6378                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6379    
6380                            pGroups->push_back(new Group(this, ck));
6381                        }
6382                        ck = lst3gnl->GetNextSubChunk();
6383                    }
6384                }
6385            }
6386            // if there were no group(s), create at least the mandatory default group
6387            if (!pGroups->size()) {
6388                Group* pGroup = new Group(this, NULL);
6389                pGroup->Name = "Default Group";
6390                pGroups->push_back(pGroup);
6391            }
6392        }
6393    
6394        /** @brief Get instrument script group (by index).
6395         *
6396         * Returns the real-time instrument script group with the given index.
6397         *
6398         * @param index - number of the sought group (0..n)
6399         * @returns sought script group or NULL if there's no such group
6400         */
6401        ScriptGroup* File::GetScriptGroup(uint index) {
6402            if (!pScriptGroups) LoadScriptGroups();
6403            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6404            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6405                if (i == index) return *it;
6406            return NULL;
6407        }
6408    
6409        /** @brief Get instrument script group (by name).
6410         *
6411         * Returns the first real-time instrument script group found with the given
6412         * group name. Note that group names may not necessarily be unique.
6413         *
6414         * @param name - name of the sought script group
6415         * @returns sought script group or NULL if there's no such group
6416         */
6417        ScriptGroup* File::GetScriptGroup(const String& name) {
6418            if (!pScriptGroups) LoadScriptGroups();
6419            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6420            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6421                if ((*it)->Name == name) return *it;
6422            return NULL;
6423        }
6424    
6425        /** @brief Add new instrument script group.
6426         *
6427         * Adds a new, empty real-time instrument script group to the file.
6428         *
6429         * You have to call Save() to make this persistent to the file.
6430         *
6431         * @return new empty script group
6432         */
6433        ScriptGroup* File::AddScriptGroup() {
6434            if (!pScriptGroups) LoadScriptGroups();
6435            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6436            pScriptGroups->push_back(pScriptGroup);
6437            return pScriptGroup;
6438        }
6439    
6440        /** @brief Delete an instrument script group.
6441         *
6442         * This will delete the given real-time instrument script group and all its
6443         * instrument scripts it contains. References inside instruments that are
6444         * using the deleted scripts will be removed from the respective instruments
6445         * accordingly.
6446         *
6447         * You have to call Save() to make this persistent to the file.
6448         *
6449         * @param pScriptGroup - script group to delete
6450         * @throws gig::Exception if given script group could not be found
6451         */
6452        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6453            if (!pScriptGroups) LoadScriptGroups();
6454            std::list<ScriptGroup*>::iterator iter =
6455                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6456            if (iter == pScriptGroups->end())
6457                throw gig::Exception("Could not delete script group, could not find given script group");
6458            pScriptGroups->erase(iter);
6459            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6460                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6461            if (pScriptGroup->pList)
6462                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6463            pScriptGroup->DeleteChunks();
6464            delete pScriptGroup;
6465        }
6466    
6467        void File::LoadScriptGroups() {
6468            if (pScriptGroups) return;
6469            pScriptGroups = new std::list<ScriptGroup*>;
6470            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6471            if (lstLS) {
6472                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6473                     lst = lstLS->GetNextSubList())
6474                {
6475                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6476                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6477                    }
6478                }
6479            }
6480        }
6481    
6482        /**
6483         * Apply all the gig file's current instruments, samples, groups and settings
6484         * to the respective RIFF chunks. You have to call Save() to make changes
6485         * persistent.
6486         *
6487         * Usually there is absolutely no need to call this method explicitly.
6488         * It will be called automatically when File::Save() was called.
6489         *
6490         * @param pProgress - callback function for progress notification
6491         * @throws Exception - on errors
6492         */
6493        void File::UpdateChunks(progress_t* pProgress) {
6494            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6495    
6496            // update own gig format extension chunks
6497            // (not part of the GigaStudio 4 format)
6498            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6499            if (!lst3LS) {
6500                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6501            }
6502            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6503            // location of <3LS > is irrelevant, however it should be located
6504            // before  the actual wave data
6505            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6506            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6507    
6508            // This must be performed before writing the chunks for instruments,
6509            // because the instruments' script slots will write the file offsets
6510            // of the respective instrument script chunk as reference.
6511            if (pScriptGroups) {
6512                // Update instrument script (group) chunks.
6513                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6514                     it != pScriptGroups->end(); ++it)
6515                {
6516                    (*it)->UpdateChunks(pProgress);
6517                }
6518            }
6519    
6520            // in case no libgig custom format data was added, then remove the
6521            // custom "3LS " chunk again
6522            if (!lst3LS->CountSubChunks()) {
6523                pRIFF->DeleteSubChunk(lst3LS);
6524                lst3LS = NULL;
6525            }
6526    
6527            // first update base class's chunks
6528            DLS::File::UpdateChunks(pProgress);
6529    
6530            if (newFile) {
6531                // INFO was added by Resource::UpdateChunks - make sure it
6532                // is placed first in file
6533                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6534                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6535                if (first != info) {
6536                    pRIFF->MoveSubChunk(info, first);
6537                }
6538            }
6539    
6540            // update group's chunks
6541            if (pGroups) {
6542                // make sure '3gri' and '3gnl' list chunks exist
6543                // (before updating the Group chunks)
6544                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6545                if (!_3gri) {
6546                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6547                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6548                }
6549                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6550                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6551    
6552                // v3: make sure the file has 128 3gnm chunks
6553                // (before updating the Group chunks)
6554                if (pVersion && pVersion->major > 2) {
6555                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6556                    for (int i = 0 ; i < 128 ; i++) {
6557                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6558                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6559                    }
6560                }
6561    
6562                std::list<Group*>::iterator iter = pGroups->begin();
6563                std::list<Group*>::iterator end  = pGroups->end();
6564                for (; iter != end; ++iter) {
6565                    (*iter)->UpdateChunks(pProgress);
6566                }
6567            }
6568    
6569            // update einf chunk
6570    
6571            // The einf chunk contains statistics about the gig file, such
6572            // as the number of regions and samples used by each
6573            // instrument. It is divided in equally sized parts, where the
6574            // first part contains information about the whole gig file,
6575            // and the rest of the parts map to each instrument in the
6576            // file.
6577            //
6578            // At the end of each part there is a bit map of each sample
6579            // in the file, where a set bit means that the sample is used
6580            // by the file/instrument.
6581            //
6582            // Note that there are several fields with unknown use. These
6583            // are set to zero.
6584    
6585            int sublen = int(pSamples->size() / 8 + 49);
6586            int einfSize = (Instruments + 1) * sublen;
6587    
6588            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6589            if (einf) {
6590                if (einf->GetSize() != einfSize) {
6591                    einf->Resize(einfSize);
6592                    memset(einf->LoadChunkData(), 0, einfSize);
6593                }
6594            } else if (newFile) {
6595                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6596            }
6597            if (einf) {
6598                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6599    
6600                std::map<gig::Sample*,int> sampleMap;
6601                int sampleIdx = 0;
6602                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6603                    sampleMap[pSample] = sampleIdx++;
6604                }
6605    
6606                int totnbusedsamples = 0;
6607                int totnbusedchannels = 0;
6608                int totnbregions = 0;
6609                int totnbdimregions = 0;
6610                int totnbloops = 0;
6611                int instrumentIdx = 0;
6612    
6613                memset(&pData[48], 0, sublen - 48);
6614    
6615                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6616                     instrument = GetNextInstrument()) {
6617                    int nbusedsamples = 0;
6618                    int nbusedchannels = 0;
6619                    int nbdimregions = 0;
6620                    int nbloops = 0;
6621    
6622                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6623    
6624                    for (Region* region = instrument->GetFirstRegion() ; region ;
6625                         region = instrument->GetNextRegion()) {
6626                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6627                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6628                            if (d->pSample) {
6629                                int sampleIdx = sampleMap[d->pSample];
6630                                int byte = 48 + sampleIdx / 8;
6631                                int bit = 1 << (sampleIdx & 7);
6632                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6633                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6634                                    nbusedsamples++;
6635                                    nbusedchannels += d->pSample->Channels;
6636    
6637                                    if ((pData[byte] & bit) == 0) {
6638                                        pData[byte] |= bit;
6639                                        totnbusedsamples++;
6640                                        totnbusedchannels += d->pSample->Channels;
6641                                    }
6642                                }
6643                            }
6644                            if (d->SampleLoops) nbloops++;
6645                        }
6646                        nbdimregions += region->DimensionRegions;
6647                    }
6648                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6649                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6650                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6651                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6652                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6653                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6654                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6655                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6656                    // next 8 bytes unknown
6657                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6658                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6659                    // next 4 bytes unknown
6660    
6661                    totnbregions += instrument->Regions;
6662                    totnbdimregions += nbdimregions;
6663                    totnbloops += nbloops;
6664                    instrumentIdx++;
6665                }
6666                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6667                // store32(&pData[0], sublen);
6668                store32(&pData[4], totnbusedchannels);
6669                store32(&pData[8], totnbusedsamples);
6670                store32(&pData[12], Instruments);
6671                store32(&pData[16], totnbregions);
6672                store32(&pData[20], totnbdimregions);
6673                store32(&pData[24], totnbloops);
6674                // next 8 bytes unknown
6675                // next 4 bytes unknown, not always 0
6676                store32(&pData[40], (uint32_t) pSamples->size());
6677                // next 4 bytes unknown
6678            }
6679    
6680            // update 3crc chunk
6681    
6682            // The 3crc chunk contains CRC-32 checksums for the
6683            // samples. When saving a gig file to disk, we first update the 3CRC
6684            // chunk here (in RAM) with the old crc values which we read from the
6685            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6686            // member variable). This step is required, because samples might have
6687            // been deleted by the user since the file was opened, which in turn
6688            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6689            // If a sample was conciously modified by the user (that is if
6690            // Sample::Write() was called later on) then Sample::Write() will just
6691            // update the respective individual checksum(s) directly on disk and
6692            // leaves all other sample checksums untouched.
6693    
6694            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6695            if (_3crc) {
6696                _3crc->Resize(pSamples->size() * 8);
6697            } else /*if (newFile)*/ {
6698                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6699                // the order of einf and 3crc is not the same in v2 and v3
6700                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6701            }
6702            { // must be performed in RAM here ...
6703                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6704                if (pData) {
6705                    File::SampleList::iterator iter = pSamples->begin();
6706                    File::SampleList::iterator end  = pSamples->end();
6707                    for (int index = 0; iter != end; ++iter, ++index) {
6708                        gig::Sample* pSample = (gig::Sample*) *iter;
6709                        pData[index*2]   = 1; // always 1
6710                        pData[index*2+1] = pSample->crc;
6711                    }
6712                }
6713            }
6714        }
6715        
6716        void File::UpdateFileOffsets() {
6717            DLS::File::UpdateFileOffsets();
6718    
6719            for (Instrument* instrument = GetFirstInstrument(); instrument;
6720                 instrument = GetNextInstrument())
6721            {
6722                instrument->UpdateScriptFileOffsets();
6723            }
6724        }
6725    
6726        /**
6727         * Enable / disable automatic loading. By default this property is
6728         * enabled and every information is loaded automatically. However
6729         * loading all Regions, DimensionRegions and especially samples might
6730         * take a long time for large .gig files, and sometimes one might only
6731         * be interested in retrieving very superficial informations like the
6732         * amount of instruments and their names. In this case one might disable
6733         * automatic loading to avoid very slow response times.
6734         *
6735         * @e CAUTION: by disabling this property many pointers (i.e. sample
6736         * references) and attributes will have invalid or even undefined
6737         * data! This feature is currently only intended for retrieving very
6738         * superficial information in a very fast way. Don't use it to retrieve
6739         * details like synthesis information or even to modify .gig files!
6740         */
6741        void File::SetAutoLoad(bool b) {
6742            bAutoLoad = b;
6743        }
6744    
6745        /**
6746         * Returns whether automatic loading is enabled.
6747         * @see SetAutoLoad()
6748         */
6749        bool File::GetAutoLoad() {
6750            return bAutoLoad;
6751      }      }
6752    
6753    
# Line 1407  namespace gig { Line 6755  namespace gig {
6755  // *************** Exception ***************  // *************** Exception ***************
6756  // *  // *
6757    
6758      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6759        }
6760    
6761        Exception::Exception(String format, ...) : DLS::Exception() {
6762            va_list arg;
6763            va_start(arg, format);
6764            Message = assemble(format, arg);
6765            va_end(arg);
6766        }
6767    
6768        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6769            Message = assemble(format, arg);
6770      }      }
6771    
6772      void Exception::PrintMessage() {      void Exception::PrintMessage() {
6773          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6774      }      }
6775    
6776    
6777    // *************** functions ***************
6778    // *
6779    
6780        /**
6781         * Returns the name of this C++ library. This is usually "libgig" of
6782         * course. This call is equivalent to RIFF::libraryName() and
6783         * DLS::libraryName().
6784         */
6785        String libraryName() {
6786            return PACKAGE;
6787        }
6788    
6789        /**
6790         * Returns version of this C++ library. This call is equivalent to
6791         * RIFF::libraryVersion() and DLS::libraryVersion().
6792         */
6793        String libraryVersion() {
6794            return VERSION;
6795        }
6796    
6797  } // namespace gig  } // namespace gig

Legend:
Removed from v.269  
changed lines
  Added in v.3488

  ViewVC Help
Powered by ViewVC