/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 365 by persson, Thu Feb 10 19:16:31 2005 UTC revision 2484 by schoenebeck, Tue Dec 31 00:13:20 2013 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2013 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26  namespace gig { namespace {  #include "helper.h"
27    
28  // *************** Internal functions for sample decopmression ***************  #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    
32    /// Initial size of the sample buffer which is used for decompression of
33    /// compressed sample wave streams - this value should always be bigger than
34    /// the biggest sample piece expected to be read by the sampler engine,
35    /// otherwise the buffer size will be raised at runtime and thus the buffer
36    /// reallocated which is time consuming and unefficient.
37    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
38    
39    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
41    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
42    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
43    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
44    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
45    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
46    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
47    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
48    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
50    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
51    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
52    
53    namespace gig {
54    
55    // *************** progress_t ***************
56    // *
57    
58        progress_t::progress_t() {
59            callback    = NULL;
60            custom      = NULL;
61            __range_min = 0.0f;
62            __range_max = 1.0f;
63        }
64    
65        // private helper function to convert progress of a subprocess into the global progress
66        static void __notify_progress(progress_t* pProgress, float subprogress) {
67            if (pProgress && pProgress->callback) {
68                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
69                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70                pProgress->factor         = totalprogress;
71                pProgress->callback(pProgress); // now actually notify about the progress
72            }
73        }
74    
75        // private helper function to divide a progress into subprogresses
76        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77            if (pParentProgress && pParentProgress->callback) {
78                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
79                pSubProgress->callback    = pParentProgress->callback;
80                pSubProgress->custom      = pParentProgress->custom;
81                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83            }
84        }
85    
86    
87    // *************** Internal functions for sample decompression ***************
88  // *  // *
89    
90    namespace {
91    
92      inline int get12lo(const unsigned char* pSrc)      inline int get12lo(const unsigned char* pSrc)
93      {      {
94          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
# Line 51  namespace gig { namespace { Line 112  namespace gig { namespace {
112          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
113      }      }
114    
115        inline void store24(unsigned char* pDst, int x)
116        {
117            pDst[0] = x;
118            pDst[1] = x >> 8;
119            pDst[2] = x >> 16;
120        }
121    
122      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
123                        int srcStep, const unsigned char* pSrc, int16_t* pDst,                        int srcStep, int dstStep,
124                          const unsigned char* pSrc, int16_t* pDst,
125                        unsigned long currentframeoffset,                        unsigned long currentframeoffset,
126                        unsigned long copysamples)                        unsigned long copysamples)
127      {      {
# Line 61  namespace gig { namespace { Line 130  namespace gig { namespace {
130                  pSrc += currentframeoffset * srcStep;                  pSrc += currentframeoffset * srcStep;
131                  while (copysamples) {                  while (copysamples) {
132                      *pDst = get16(pSrc);                      *pDst = get16(pSrc);
133                      pDst += 2;                      pDst += dstStep;
134                      pSrc += srcStep;                      pSrc += srcStep;
135                      copysamples--;                      copysamples--;
136                  }                  }
# Line 80  namespace gig { namespace { Line 149  namespace gig { namespace {
149                      dy -= int8_t(*pSrc);                      dy -= int8_t(*pSrc);
150                      y  -= dy;                      y  -= dy;
151                      *pDst = y;                      *pDst = y;
152                      pDst += 2;                      pDst += dstStep;
153                      pSrc += srcStep;                      pSrc += srcStep;
154                      copysamples--;                      copysamples--;
155                  }                  }
# Line 89  namespace gig { namespace { Line 158  namespace gig { namespace {
158      }      }
159    
160      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
161                        const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162                        unsigned long currentframeoffset,                        unsigned long currentframeoffset,
163                        unsigned long copysamples)                        unsigned long copysamples, int truncatedBits)
164      {      {
165          // Note: The 24 bits are truncated to 16 bits for now.          int y, dy, ddy, dddy;
166    
167          // Note: The calculation of the initial value of y is strange  #define GET_PARAMS(params)                      \
168          // and not 100% correct. What should the first two parameters          y    = get24(params);                   \
169          // really be used for? Why are they two? The correct value for          dy   = y - get24((params) + 3);         \
170          // y seems to lie somewhere between the values of the first          ddy  = get24((params) + 6);             \
171          // two parameters.          dddy = get24((params) + 9)
         //  
         // Strange thing #2: The formula in SKIP_ONE gives values for  
         // y that are twice as high as they should be. That's why  
         // COPY_ONE shifts 9 steps instead of 8, and also why y is  
         // initialized with a sum instead of a mean value.  
   
         int y, dy, ddy;  
   
 #define GET_PARAMS(params)                              \  
         y = (get24(params) + get24((params) + 3));      \  
         dy  = get24((params) + 6);                      \  
         ddy = get24((params) + 9)  
172    
173  #define SKIP_ONE(x)                             \  #define SKIP_ONE(x)                             \
174          ddy -= (x);                             \          dddy -= (x);                            \
175          dy -= ddy;                              \          ddy  -= dddy;                           \
176          y -= dy          dy   =  -dy - ddy;                      \
177            y    += dy
178    
179  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
180          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
181          *pDst = y >> 9;                         \          store24(pDst, y << truncatedBits);      \
182          pDst += 2          pDst += dstStep
183    
184          switch (compressionmode) {          switch (compressionmode) {
185              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
186                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
187                  while (copysamples) {                  while (copysamples) {
188                      *pDst = get24(pSrc) >> 8;                      store24(pDst, get24(pSrc) << truncatedBits);
189                      pDst += 2;                      pDst += dstStep;
190                      pSrc += 3;                      pSrc += 3;
191                      copysamples--;                      copysamples--;
192                  }                  }
# Line 197  namespace gig { namespace { Line 255  namespace gig { namespace {
255  }  }
256    
257    
258    
259    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
260    // *
261    
262        static uint32_t* __initCRCTable() {
263            static uint32_t res[256];
264    
265            for (int i = 0 ; i < 256 ; i++) {
266                uint32_t c = i;
267                for (int j = 0 ; j < 8 ; j++) {
268                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269                }
270                res[i] = c;
271            }
272            return res;
273        }
274    
275        static const uint32_t* __CRCTable = __initCRCTable();
276    
277        /**
278         * Initialize a CRC variable.
279         *
280         * @param crc - variable to be initialized
281         */
282        inline static void __resetCRC(uint32_t& crc) {
283            crc = 0xffffffff;
284        }
285    
286        /**
287         * Used to calculate checksums of the sample data in a gig file. The
288         * checksums are stored in the 3crc chunk of the gig file and
289         * automatically updated when a sample is written with Sample::Write().
290         *
291         * One should call __resetCRC() to initialize the CRC variable to be
292         * used before calling this function the first time.
293         *
294         * After initializing the CRC variable one can call this function
295         * arbitrary times, i.e. to split the overall CRC calculation into
296         * steps.
297         *
298         * Once the whole data was processed by __calculateCRC(), one should
299         * call __encodeCRC() to get the final CRC result.
300         *
301         * @param buf     - pointer to data the CRC shall be calculated of
302         * @param bufSize - size of the data to be processed
303         * @param crc     - variable the CRC sum shall be stored to
304         */
305        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306            for (int i = 0 ; i < bufSize ; i++) {
307                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308            }
309        }
310    
311        /**
312         * Returns the final CRC result.
313         *
314         * @param crc - variable previously passed to __calculateCRC()
315         */
316        inline static uint32_t __encodeCRC(const uint32_t& crc) {
317            return crc ^ 0xffffffff;
318        }
319    
320    
321    
322    // *************** Other Internal functions  ***************
323    // *
324    
325        static split_type_t __resolveSplitType(dimension_t dimension) {
326            return (
327                dimension == dimension_layer ||
328                dimension == dimension_samplechannel ||
329                dimension == dimension_releasetrigger ||
330                dimension == dimension_keyboard ||
331                dimension == dimension_roundrobin ||
332                dimension == dimension_random ||
333                dimension == dimension_smartmidi ||
334                dimension == dimension_roundrobinkeyboard
335            ) ? split_type_bit : split_type_normal;
336        }
337    
338        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339            return (dimension_definition.split_type == split_type_normal)
340            ? int(128.0 / dimension_definition.zones) : 0;
341        }
342    
343    
344    
345  // *************** Sample ***************  // *************** Sample ***************
346  // *  // *
347    
348      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
349      unsigned char* Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
350    
351      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
352         *
353         * Load an existing sample or create a new one. A 'wave' list chunk must
354         * be given to this constructor. In case the given 'wave' list chunk
355         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356         * format and sample data will be loaded from there, otherwise default
357         * values will be used and those chunks will be created when
358         * File::Save() will be called later on.
359         *
360         * @param pFile          - pointer to gig::File where this sample is
361         *                         located (or will be located)
362         * @param waveList       - pointer to 'wave' list chunk which is (or
363         *                         will be) associated with this sample
364         * @param WavePoolOffset - offset of this sample data from wave pool
365         *                         ('wvpl') list chunk
366         * @param fileNo         - number of an extension file where this sample
367         *                         is located, 0 otherwise
368         */
369        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370            static const DLS::Info::string_length_t fixedStringLengths[] = {
371                { CHUNK_ID_INAM, 64 },
372                { 0, 0 }
373            };
374            pInfo->SetFixedStringLengths(fixedStringLengths);
375          Instances++;          Instances++;
376            FileNo = fileNo;
377    
378            __resetCRC(crc);
379    
380          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
382          SampleGroup = _3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
383                pGroup = pFile->GetGroup(iSampleGroup);
384          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          } else { // '3gix' chunk missing
385          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              // by default assigned to that mandatory "Default Group"
386          Manufacturer      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
387          Product           = smpl->ReadInt32();          }
388          SamplePeriod      = smpl->ReadInt32();  
389          MIDIUnityNote     = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390          FineTune          = smpl->ReadInt32();          if (pCkSmpl) {
391          smpl->Read(&SMPTEFormat, 1, 4);              Manufacturer  = pCkSmpl->ReadInt32();
392          SMPTEOffset       = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
393          Loops             = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
394          smpl->ReadInt32(); // manufByt              MIDIUnityNote = pCkSmpl->ReadInt32();
395          LoopID            = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
396          smpl->Read(&LoopType, 1, 4);              pCkSmpl->Read(&SMPTEFormat, 1, 4);
397          LoopStart         = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
398          LoopEnd           = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
399          LoopFraction      = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
400          LoopPlayCount     = smpl->ReadInt32();              LoopID        = pCkSmpl->ReadInt32();
401                pCkSmpl->Read(&LoopType, 1, 4);
402                LoopStart     = pCkSmpl->ReadInt32();
403                LoopEnd       = pCkSmpl->ReadInt32();
404                LoopFraction  = pCkSmpl->ReadInt32();
405                LoopPlayCount = pCkSmpl->ReadInt32();
406            } else { // 'smpl' chunk missing
407                // use default values
408                Manufacturer  = 0;
409                Product       = 0;
410                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411                MIDIUnityNote = 60;
412                FineTune      = 0;
413                SMPTEFormat   = smpte_format_no_offset;
414                SMPTEOffset   = 0;
415                Loops         = 0;
416                LoopID        = 0;
417                LoopType      = loop_type_normal;
418                LoopStart     = 0;
419                LoopEnd       = 0;
420                LoopFraction  = 0;
421                LoopPlayCount = 0;
422            }
423    
424          FrameTable                 = NULL;          FrameTable                 = NULL;
425          SamplePos                  = 0;          SamplePos                  = 0;
# Line 237  namespace gig { namespace { Line 429  namespace gig { namespace {
429    
430          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433            Compressed        = ewav;
434            Dithered          = false;
435            TruncatedBits     = 0;
436          if (Compressed) {          if (Compressed) {
437                uint32_t version = ewav->ReadInt32();
438                if (version == 3 && BitDepth == 24) {
439                    Dithered = ewav->ReadInt32();
440                    ewav->SetPos(Channels == 2 ? 84 : 64);
441                    TruncatedBits = ewav->ReadInt32();
442                }
443              ScanCompressedSample();              ScanCompressedSample();
444          }          }
445    
446          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447          if ((Compressed || BitDepth == 24) && !pDecompressionBuffer) {          if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448              pDecompressionBuffer    = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449              DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
450            }
451            FrameOffset = 0; // just for streaming compressed samples
452    
453            LoopSize = LoopEnd - LoopStart + 1;
454        }
455    
456        /**
457         * Make a (semi) deep copy of the Sample object given by @a orig (without
458         * the actual waveform data) and assign it to this object.
459         *
460         * Discussion: copying .gig samples is a bit tricky. It requires three
461         * steps:
462         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
463         *    its new sample waveform data size.
464         * 2. Saving the file (done by File::Save()) so that it gains correct size
465         *    and layout for writing the actual wave form data directly to disc
466         *    in next step.
467         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
468         *
469         * @param orig - original Sample object to be copied from
470         */
471        void Sample::CopyAssignMeta(const Sample* orig) {
472            // handle base classes
473            DLS::Sample::CopyAssignCore(orig);
474            
475            // handle actual own attributes of this class
476            Manufacturer = orig->Manufacturer;
477            Product = orig->Product;
478            SamplePeriod = orig->SamplePeriod;
479            MIDIUnityNote = orig->MIDIUnityNote;
480            FineTune = orig->FineTune;
481            SMPTEFormat = orig->SMPTEFormat;
482            SMPTEOffset = orig->SMPTEOffset;
483            Loops = orig->Loops;
484            LoopID = orig->LoopID;
485            LoopType = orig->LoopType;
486            LoopStart = orig->LoopStart;
487            LoopEnd = orig->LoopEnd;
488            LoopSize = orig->LoopSize;
489            LoopFraction = orig->LoopFraction;
490            LoopPlayCount = orig->LoopPlayCount;
491            
492            // schedule resizing this sample to the given sample's size
493            Resize(orig->GetSize());
494        }
495    
496        /**
497         * Should be called after CopyAssignMeta() and File::Save() sequence.
498         * Read more about it in the discussion of CopyAssignMeta(). This method
499         * copies the actual waveform data by disk streaming.
500         *
501         * @e CAUTION: this method is currently not thread safe! During this
502         * operation the sample must not be used for other purposes by other
503         * threads!
504         *
505         * @param orig - original Sample object to be copied from
506         */
507        void Sample::CopyAssignWave(const Sample* orig) {
508            const int iReadAtOnce = 32*1024;
509            char* buf = new char[iReadAtOnce * orig->FrameSize];
510            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
511            unsigned long restorePos = pOrig->GetPos();
512            pOrig->SetPos(0);
513            SetPos(0);
514            for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
515                               n = pOrig->Read(buf, iReadAtOnce))
516            {
517                Write(buf, n);
518          }          }
519          FrameOffset = 0; // just for streaming compressed samples          pOrig->SetPos(restorePos);
520            delete [] buf;
521        }
522    
523          LoopSize = LoopEnd - LoopStart;      /**
524         * Apply sample and its settings to the respective RIFF chunks. You have
525         * to call File::Save() to make changes persistent.
526         *
527         * Usually there is absolutely no need to call this method explicitly.
528         * It will be called automatically when File::Save() was called.
529         *
530         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
531         *                        was provided yet
532         * @throws gig::Exception if there is any invalid sample setting
533         */
534        void Sample::UpdateChunks() {
535            // first update base class's chunks
536            DLS::Sample::UpdateChunks();
537    
538            // make sure 'smpl' chunk exists
539            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
540            if (!pCkSmpl) {
541                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
542                memset(pCkSmpl->LoadChunkData(), 0, 60);
543            }
544            // update 'smpl' chunk
545            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
546            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
547            store32(&pData[0], Manufacturer);
548            store32(&pData[4], Product);
549            store32(&pData[8], SamplePeriod);
550            store32(&pData[12], MIDIUnityNote);
551            store32(&pData[16], FineTune);
552            store32(&pData[20], SMPTEFormat);
553            store32(&pData[24], SMPTEOffset);
554            store32(&pData[28], Loops);
555    
556            // we skip 'manufByt' for now (4 bytes)
557    
558            store32(&pData[36], LoopID);
559            store32(&pData[40], LoopType);
560            store32(&pData[44], LoopStart);
561            store32(&pData[48], LoopEnd);
562            store32(&pData[52], LoopFraction);
563            store32(&pData[56], LoopPlayCount);
564    
565            // make sure '3gix' chunk exists
566            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
567            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
568            // determine appropriate sample group index (to be stored in chunk)
569            uint16_t iSampleGroup = 0; // 0 refers to default sample group
570            File* pFile = static_cast<File*>(pParent);
571            if (pFile->pGroups) {
572                std::list<Group*>::iterator iter = pFile->pGroups->begin();
573                std::list<Group*>::iterator end  = pFile->pGroups->end();
574                for (int i = 0; iter != end; i++, iter++) {
575                    if (*iter == pGroup) {
576                        iSampleGroup = i;
577                        break; // found
578                    }
579                }
580            }
581            // update '3gix' chunk
582            pData = (uint8_t*) pCk3gix->LoadChunkData();
583            store16(&pData[0], iSampleGroup);
584    
585            // if the library user toggled the "Compressed" attribute from true to
586            // false, then the EWAV chunk associated with compressed samples needs
587            // to be deleted
588            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
589            if (ewav && !Compressed) {
590                pWaveList->DeleteSubChunk(ewav);
591            }
592      }      }
593    
594      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 259  namespace gig { namespace { Line 598  namespace gig { namespace {
598          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
599    
600          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
601          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels;          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
602    
603          // Scanning          // Scanning
604          pCkData->SetPos(0);          pCkData->SetPos(0);
# Line 340  namespace gig { namespace { Line 679  namespace gig { namespace {
679       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
680       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
681       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
682       *       * @code
683       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
684       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
685         * @endcode
686       *       *
687       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
688       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 388  namespace gig { namespace { Line 728  namespace gig { namespace {
728       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
729       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
730       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
731       *       * @code
732       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
733       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
734       *       * @endcode
735       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
736       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
737       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 412  namespace gig { namespace { Line 752  namespace gig { namespace {
752          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
753          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
754          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
755            SetPos(0); // reset read position to begin of sample
756          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
757          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
758          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 449  namespace gig { namespace { Line 790  namespace gig { namespace {
790          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
791          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
792          RAMCache.Size   = 0;          RAMCache.Size   = 0;
793            RAMCache.NullExtensionSize = 0;
794        }
795    
796        /** @brief Resize sample.
797         *
798         * Resizes the sample's wave form data, that is the actual size of
799         * sample wave data possible to be written for this sample. This call
800         * will return immediately and just schedule the resize operation. You
801         * should call File::Save() to actually perform the resize operation(s)
802         * "physically" to the file. As this can take a while on large files, it
803         * is recommended to call Resize() first on all samples which have to be
804         * resized and finally to call File::Save() to perform all those resize
805         * operations in one rush.
806         *
807         * The actual size (in bytes) is dependant to the current FrameSize
808         * value. You may want to set FrameSize before calling Resize().
809         *
810         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
811         * enlarged samples before calling File::Save() as this might exceed the
812         * current sample's boundary!
813         *
814         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
815         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
816         * other formats will fail!
817         *
818         * @param iNewSize - new sample wave data size in sample points (must be
819         *                   greater than zero)
820         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
821         *                         or if \a iNewSize is less than 1
822         * @throws gig::Exception if existing sample is compressed
823         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
824         *      DLS::Sample::FormatTag, File::Save()
825         */
826        void Sample::Resize(int iNewSize) {
827            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
828            DLS::Sample::Resize(iNewSize);
829      }      }
830    
831      /**      /**
# Line 506  namespace gig { namespace { Line 883  namespace gig { namespace {
883      /**      /**
884       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
885       */       */
886      unsigned long Sample::GetPos() {      unsigned long Sample::GetPos() const {
887          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
888          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
889      }      }
# Line 522  namespace gig { namespace { Line 899  namespace gig { namespace {
899       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
900       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
901       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
902       *       * @code
903       * <i>       * gig::playback_state_t playbackstate;
904       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
905       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
906       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
907       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
908       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
909       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
910       * The method already handles such cases by itself.       * The method already handles such cases by itself.
911       *       *
912         * <b>Caution:</b> If you are using more than one streaming thread, you
913         * have to use an external decompression buffer for <b>EACH</b>
914         * streaming thread to avoid race conditions and crashes!
915         *
916       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
917       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
918       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
919       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
920         * @param pDimRgn          dimension region with looping information
921         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
922       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
923         * @see                    CreateDecompressionBuffer()
924       */       */
925      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
926                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
927          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
928          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
929    
930          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
931    
932          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
933    
934              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
935                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
936    
937                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
938                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
939    
940                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
941                              // determine the end position within the loop first,                          do {
942                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
943                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
944                              // backward playback  
945                                if (!pPlaybackState->reverse) { // forward playback
946                              unsigned long swapareastart       = totalreadsamples;                                  do {
947                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
948                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
949                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
950                                        totalreadsamples += readsamples;
951                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
952                                            pPlaybackState->reverse = true;
953                              // read samples for backward playback                                          break;
954                              do {                                      }
955                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
956                                  samplestoreadinloop -= readsamples;                              }
957                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
958    
959                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
960                                    // determine the end position within the loop first,
961                                    // read forward from that 'end' and finally after
962                                    // reading, swap all sample frames so it reflects
963                                    // backward playback
964    
965                                    unsigned long swapareastart       = totalreadsamples;
966                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
967                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
968                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
969    
970                                    SetPos(reverseplaybackend);
971    
972                                    // read samples for backward playback
973                                    do {
974                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
975                                        samplestoreadinloop -= readsamples;
976                                        samplestoread       -= readsamples;
977                                        totalreadsamples    += readsamples;
978                                    } while (samplestoreadinloop && readsamples);
979    
980                                    SetPos(reverseplaybackend); // pretend we really read backwards
981    
982                                    if (reverseplaybackend == loop.LoopStart) {
983                                        pPlaybackState->loop_cycles_left--;
984                                        pPlaybackState->reverse = false;
985                                    }
986    
987                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
988                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
989                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
990                              }                              }
991                            } while (samplestoread && readsamples);
992                            break;
993                        }
994    
995                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
996                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
997                          }                          if (!pPlaybackState->reverse) do {
998                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
999                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1000                  }                              samplestoread    -= readsamples;
1001                                totalreadsamples += readsamples;
1002                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1003                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1004                      if (!pPlaybackState->reverse) do {                                  break;
1005                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1006                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1007    
1008                      if (!samplestoread) break;                          if (!samplestoread) break;
1009    
1010                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1011                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1012                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1013                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1014                      // backward playback                          // backward playback
1015    
1016                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
1017                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
1018                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1019                                                                                : samplestoread;                                                                                    : samplestoread;
1020                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1021    
1022                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1023    
1024                      // read samples for backward playback                          // read samples for backward playback
1025                      do {                          do {
1026                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1027                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1028                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1029                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1030                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1031                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1032                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1033                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1034                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1035                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1036                          }                              }
1037                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1038    
1039                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1040    
1041                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1042                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1043                      break;                          break;
1044                  }                      }
1045    
1046                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1047                      do {                          do {
1048                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1049                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1050                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1051                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1052                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1053                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1054                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1055                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1056                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1057                          }                              }
1058                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1059                      break;                          break;
1060                        }
1061                  }                  }
1062              }              }
1063          }          }
1064    
1065          // read on without looping          // read on without looping
1066          if (samplestoread) do {          if (samplestoread) do {
1067              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1068              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1069              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1070          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 694  namespace gig { namespace { Line 1083  namespace gig { namespace {
1083       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1084       * thus for disk streaming.       * thus for disk streaming.
1085       *       *
1086         * <b>Caution:</b> If you are using more than one streaming thread, you
1087         * have to use an external decompression buffer for <b>EACH</b>
1088         * streaming thread to avoid race conditions and crashes!
1089         *
1090         * For 16 bit samples, the data in the buffer will be int16_t
1091         * (using native endianness). For 24 bit, the buffer will
1092         * contain three bytes per sample, little-endian.
1093         *
1094       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1095       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1096         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1097       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1098       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1099       */       */
1100      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1101          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1102          if (!Compressed) {          if (!Compressed) {
1103              if (BitDepth == 24) {              if (BitDepth == 24) {
1104                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = this->pDecompressionBuffer;  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1105              }              }
1106              else { // 16 bit              else { // 16 bit
1107                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 741  namespace gig { namespace { Line 1119  namespace gig { namespace {
1119                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1120              this->FrameOffset = 0;              this->FrameOffset = 0;
1121    
1122              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1123                  // local buffer reallocation - hope this won't happen  
1124                  if (this->pDecompressionBuffer) delete[] this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1125                  this->pDecompressionBuffer    = new unsigned char[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1126                  this->DecompressionBufferSize = assumedsize << 1;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1127                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1128                    remainingsamples = SampleCount;
1129                    assumedsize      = GuessSize(SampleCount);
1130              }              }
1131    
1132              unsigned char* pSrc = this->pDecompressionBuffer;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1133              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1134                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1135              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1136    
1137              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
# Line 831  namespace gig { namespace { Line 1213  namespace gig { namespace {
1213                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1214                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1215    
1216                              Decompress24(mode_l, param_l, pSrc, pDst, skipsamples, copysamples);                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1217                              Decompress24(mode_r, param_r, pSrc + rightChannelOffset, pDst + 1,                                           skipsamples, copysamples, TruncatedBits);
1218                                           skipsamples, copysamples);                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1219                              pDst += copysamples << 1;                                           skipsamples, copysamples, TruncatedBits);
1220                                pDst24 += copysamples * 6;
1221                          }                          }
1222                          else { // Mono                          else { // Mono
1223                              Decompress24(mode_l, param_l, pSrc, pDst, skipsamples, copysamples);                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1224                              pDst += copysamples;                                           skipsamples, copysamples, TruncatedBits);
1225                                pDst24 += copysamples * 3;
1226                          }                          }
1227                      }                      }
1228                      else { // 16 bit                      else { // 16 bit
# Line 850  namespace gig { namespace { Line 1234  namespace gig { namespace {
1234                              if (mode_r) pSrc += 4;                              if (mode_r) pSrc += 4;
1235    
1236                              step = (2 - mode_l) + (2 - mode_r);                              step = (2 - mode_l) + (2 - mode_r);
1237                              Decompress16(mode_l, param_l, step, pSrc, pDst, skipsamples, copysamples);                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1238                              Decompress16(mode_r, param_r, step, pSrc + (2 - mode_l), pDst + 1,                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1239                                           skipsamples, copysamples);                                           skipsamples, copysamples);
1240                              pDst += copysamples << 1;                              pDst += copysamples << 1;
1241                          }                          }
1242                          else { // Mono                          else { // Mono
1243                              step = 2 - mode_l;                              step = 2 - mode_l;
1244                              Decompress16(mode_l, param_l, step, pSrc, pDst, skipsamples, copysamples);                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1245                              pDst += copysamples;                              pDst += copysamples;
1246                          }                          }
1247                      }                      }
# Line 869  namespace gig { namespace { Line 1253  namespace gig { namespace {
1253                      assumedsize    = GuessSize(remainingsamples);                      assumedsize    = GuessSize(remainingsamples);
1254                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1255                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1256                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                      remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1257                      pSrc = this->pDecompressionBuffer;                      pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1258                  }                  }
1259              } // while              } // while
1260    
# Line 880  namespace gig { namespace { Line 1264  namespace gig { namespace {
1264          }          }
1265      }      }
1266    
1267        /** @brief Write sample wave data.
1268         *
1269         * Writes \a SampleCount number of sample points from the buffer pointed
1270         * by \a pBuffer and increments the position within the sample. Use this
1271         * method to directly write the sample data to disk, i.e. if you don't
1272         * want or cannot load the whole sample data into RAM.
1273         *
1274         * You have to Resize() the sample to the desired size and call
1275         * File::Save() <b>before</b> using Write().
1276         *
1277         * Note: there is currently no support for writing compressed samples.
1278         *
1279         * For 16 bit samples, the data in the source buffer should be
1280         * int16_t (using native endianness). For 24 bit, the buffer
1281         * should contain three bytes per sample, little-endian.
1282         *
1283         * @param pBuffer     - source buffer
1284         * @param SampleCount - number of sample points to write
1285         * @throws DLS::Exception if current sample size is too small
1286         * @throws gig::Exception if sample is compressed
1287         * @see DLS::LoadSampleData()
1288         */
1289        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1290            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1291    
1292            // if this is the first write in this sample, reset the
1293            // checksum calculator
1294            if (pCkData->GetPos() == 0) {
1295                __resetCRC(crc);
1296            }
1297            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1298            unsigned long res;
1299            if (BitDepth == 24) {
1300                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1301            } else { // 16 bit
1302                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1303                                    : pCkData->Write(pBuffer, SampleCount, 2);
1304            }
1305            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1306    
1307            // if this is the last write, update the checksum chunk in the
1308            // file
1309            if (pCkData->GetPos() == pCkData->GetSize()) {
1310                File* pFile = static_cast<File*>(GetParent());
1311                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1312            }
1313            return res;
1314        }
1315    
1316        /**
1317         * Allocates a decompression buffer for streaming (compressed) samples
1318         * with Sample::Read(). If you are using more than one streaming thread
1319         * in your application you <b>HAVE</b> to create a decompression buffer
1320         * for <b>EACH</b> of your streaming threads and provide it with the
1321         * Sample::Read() call in order to avoid race conditions and crashes.
1322         *
1323         * You should free the memory occupied by the allocated buffer(s) once
1324         * you don't need one of your streaming threads anymore by calling
1325         * DestroyDecompressionBuffer().
1326         *
1327         * @param MaxReadSize - the maximum size (in sample points) you ever
1328         *                      expect to read with one Read() call
1329         * @returns allocated decompression buffer
1330         * @see DestroyDecompressionBuffer()
1331         */
1332        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1333            buffer_t result;
1334            const double worstCaseHeaderOverhead =
1335                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1336            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1337            result.pStart            = new int8_t[result.Size];
1338            result.NullExtensionSize = 0;
1339            return result;
1340        }
1341    
1342        /**
1343         * Free decompression buffer, previously created with
1344         * CreateDecompressionBuffer().
1345         *
1346         * @param DecompressionBuffer - previously allocated decompression
1347         *                              buffer to free
1348         */
1349        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1350            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1351                delete[] (int8_t*) DecompressionBuffer.pStart;
1352                DecompressionBuffer.pStart = NULL;
1353                DecompressionBuffer.Size   = 0;
1354                DecompressionBuffer.NullExtensionSize = 0;
1355            }
1356        }
1357    
1358        /**
1359         * Returns pointer to the Group this Sample belongs to. In the .gig
1360         * format a sample always belongs to one group. If it wasn't explicitly
1361         * assigned to a certain group, it will be automatically assigned to a
1362         * default group.
1363         *
1364         * @returns Sample's Group (never NULL)
1365         */
1366        Group* Sample::GetGroup() const {
1367            return pGroup;
1368        }
1369    
1370      Sample::~Sample() {      Sample::~Sample() {
1371          Instances--;          Instances--;
1372          if (!Instances && pDecompressionBuffer) {          if (!Instances && InternalDecompressionBuffer.Size) {
1373              delete[] pDecompressionBuffer;              delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1374              pDecompressionBuffer = NULL;              InternalDecompressionBuffer.pStart = NULL;
1375                InternalDecompressionBuffer.Size   = 0;
1376          }          }
1377          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1378          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
# Line 898  namespace gig { namespace { Line 1386  namespace gig { namespace {
1386      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1387      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1388    
1389      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1390          Instances++;          Instances++;
1391    
1392          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1393            pRegion = pParent;
1394    
1395            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1396            else memset(&Crossfade, 0, 4);
1397    
1398          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1399    
1400          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1401          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1402          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1403          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1404          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1406          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1407          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1408          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1409          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1410          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1411          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1412          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1413          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1414          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1416          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1417          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1418          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1420          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1421          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1422          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1423          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1424          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1425          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1426          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1427          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1428          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1429          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1430          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1431          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1434          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1435          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1436          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1437          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1438          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1439          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1440          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1441          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1442          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1443          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1444          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1445          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1446          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1447          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1448          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1449          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1450          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1451          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1452              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1453              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1454          }                  VelocityResponseDepth = velocityresponse;
1455          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1456              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1457              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1458          }              } else if (velocityresponse < 15) {
1459          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1460              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1461              VelocityResponseDepth = velocityresponse - 10;              } else {
1462                    VelocityResponseCurve = curve_type_unknown;
1463                    VelocityResponseDepth = 0;
1464                }
1465                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1466                if (releasevelocityresponse < 5) {
1467                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1468                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1469                } else if (releasevelocityresponse < 10) {
1470                    ReleaseVelocityResponseCurve = curve_type_linear;
1471                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1472                } else if (releasevelocityresponse < 15) {
1473                    ReleaseVelocityResponseCurve = curve_type_special;
1474                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1475                } else {
1476                    ReleaseVelocityResponseCurve = curve_type_unknown;
1477                    ReleaseVelocityResponseDepth = 0;
1478                }
1479                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1480                AttenuationControllerThreshold = _3ewa->ReadInt8();
1481                _3ewa->ReadInt32(); // unknown
1482                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1483                _3ewa->ReadInt16(); // unknown
1484                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1485                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1486                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1487                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1488                else                                       DimensionBypass = dim_bypass_ctrl_none;
1489                uint8_t pan = _3ewa->ReadUint8();
1490                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1491                SelfMask = _3ewa->ReadInt8() & 0x01;
1492                _3ewa->ReadInt8(); // unknown
1493                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1494                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1495                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1496                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1497                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1498                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1499                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1500                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1501                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1502                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1503                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1504                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1505                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1506                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1507                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1508                                                            : vcf_res_ctrl_none;
1509                uint16_t eg3depth = _3ewa->ReadUint16();
1510                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1511                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1512                _3ewa->ReadInt16(); // unknown
1513                ChannelOffset = _3ewa->ReadUint8() / 4;
1514                uint8_t regoptions = _3ewa->ReadUint8();
1515                MSDecode           = regoptions & 0x01; // bit 0
1516                SustainDefeat      = regoptions & 0x02; // bit 1
1517                _3ewa->ReadInt16(); // unknown
1518                VelocityUpperLimit = _3ewa->ReadInt8();
1519                _3ewa->ReadInt8(); // unknown
1520                _3ewa->ReadInt16(); // unknown
1521                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1522                _3ewa->ReadInt8(); // unknown
1523                _3ewa->ReadInt8(); // unknown
1524                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1525                uint8_t vcfcutoff = _3ewa->ReadUint8();
1526                VCFEnabled = vcfcutoff & 0x80; // bit 7
1527                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1528                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1529                uint8_t vcfvelscale = _3ewa->ReadUint8();
1530                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1531                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1532                _3ewa->ReadInt8(); // unknown
1533                uint8_t vcfresonance = _3ewa->ReadUint8();
1534                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1535                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1536                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1537                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1538                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1539                uint8_t vcfvelocity = _3ewa->ReadUint8();
1540                VCFVelocityDynamicRange = vcfvelocity % 5;
1541                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1542                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1543                if (VCFType == vcf_type_lowpass) {
1544                    if (lfo3ctrl & 0x40) // bit 6
1545                        VCFType = vcf_type_lowpassturbo;
1546                }
1547                if (_3ewa->RemainingBytes() >= 8) {
1548                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1549                } else {
1550                    memset(DimensionUpperLimits, 0, 8);
1551                }
1552            } else { // '3ewa' chunk does not exist yet
1553                // use default values
1554                LFO3Frequency                   = 1.0;
1555                EG3Attack                       = 0.0;
1556                LFO1InternalDepth               = 0;
1557                LFO3InternalDepth               = 0;
1558                LFO1ControlDepth                = 0;
1559                LFO3ControlDepth                = 0;
1560                EG1Attack                       = 0.0;
1561                EG1Decay1                       = 0.005;
1562                EG1Sustain                      = 1000;
1563                EG1Release                      = 0.3;
1564                EG1Controller.type              = eg1_ctrl_t::type_none;
1565                EG1Controller.controller_number = 0;
1566                EG1ControllerInvert             = false;
1567                EG1ControllerAttackInfluence    = 0;
1568                EG1ControllerDecayInfluence     = 0;
1569                EG1ControllerReleaseInfluence   = 0;
1570                EG2Controller.type              = eg2_ctrl_t::type_none;
1571                EG2Controller.controller_number = 0;
1572                EG2ControllerInvert             = false;
1573                EG2ControllerAttackInfluence    = 0;
1574                EG2ControllerDecayInfluence     = 0;
1575                EG2ControllerReleaseInfluence   = 0;
1576                LFO1Frequency                   = 1.0;
1577                EG2Attack                       = 0.0;
1578                EG2Decay1                       = 0.005;
1579                EG2Sustain                      = 1000;
1580                EG2Release                      = 0.3;
1581                LFO2ControlDepth                = 0;
1582                LFO2Frequency                   = 1.0;
1583                LFO2InternalDepth               = 0;
1584                EG1Decay2                       = 0.0;
1585                EG1InfiniteSustain              = true;
1586                EG1PreAttack                    = 0;
1587                EG2Decay2                       = 0.0;
1588                EG2InfiniteSustain              = true;
1589                EG2PreAttack                    = 0;
1590                VelocityResponseCurve           = curve_type_nonlinear;
1591                VelocityResponseDepth           = 3;
1592                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1593                ReleaseVelocityResponseDepth    = 3;
1594                VelocityResponseCurveScaling    = 32;
1595                AttenuationControllerThreshold  = 0;
1596                SampleStartOffset               = 0;
1597                PitchTrack                      = true;
1598                DimensionBypass                 = dim_bypass_ctrl_none;
1599                Pan                             = 0;
1600                SelfMask                        = true;
1601                LFO3Controller                  = lfo3_ctrl_modwheel;
1602                LFO3Sync                        = false;
1603                InvertAttenuationController     = false;
1604                AttenuationController.type      = attenuation_ctrl_t::type_none;
1605                AttenuationController.controller_number = 0;
1606                LFO2Controller                  = lfo2_ctrl_internal;
1607                LFO2FlipPhase                   = false;
1608                LFO2Sync                        = false;
1609                LFO1Controller                  = lfo1_ctrl_internal;
1610                LFO1FlipPhase                   = false;
1611                LFO1Sync                        = false;
1612                VCFResonanceController          = vcf_res_ctrl_none;
1613                EG3Depth                        = 0;
1614                ChannelOffset                   = 0;
1615                MSDecode                        = false;
1616                SustainDefeat                   = false;
1617                VelocityUpperLimit              = 0;
1618                ReleaseTriggerDecay             = 0;
1619                EG1Hold                         = false;
1620                VCFEnabled                      = false;
1621                VCFCutoff                       = 0;
1622                VCFCutoffController             = vcf_cutoff_ctrl_none;
1623                VCFCutoffControllerInvert       = false;
1624                VCFVelocityScale                = 0;
1625                VCFResonance                    = 0;
1626                VCFResonanceDynamic             = false;
1627                VCFKeyboardTracking             = false;
1628                VCFKeyboardTrackingBreakpoint   = 0;
1629                VCFVelocityDynamicRange         = 0x04;
1630                VCFVelocityCurve                = curve_type_linear;
1631                VCFType                         = vcf_type_lowpass;
1632                memset(DimensionUpperLimits, 127, 8);
1633            }
1634    
1635            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1636                                                         VelocityResponseDepth,
1637                                                         VelocityResponseCurveScaling);
1638    
1639            pVelocityReleaseTable = GetReleaseVelocityTable(
1640                                        ReleaseVelocityResponseCurve,
1641                                        ReleaseVelocityResponseDepth
1642                                    );
1643    
1644            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1645                                                          VCFVelocityDynamicRange,
1646                                                          VCFVelocityScale,
1647                                                          VCFCutoffController);
1648    
1649            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1650            VelocityTable = 0;
1651        }
1652    
1653        /*
1654         * Constructs a DimensionRegion by copying all parameters from
1655         * another DimensionRegion
1656         */
1657        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1658            Instances++;
1659            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1660            *this = src; // default memberwise shallow copy of all parameters
1661            pParentList = _3ewl; // restore the chunk pointer
1662    
1663            // deep copy of owned structures
1664            if (src.VelocityTable) {
1665                VelocityTable = new uint8_t[128];
1666                for (int k = 0 ; k < 128 ; k++)
1667                    VelocityTable[k] = src.VelocityTable[k];
1668            }
1669            if (src.pSampleLoops) {
1670                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1671                for (int k = 0 ; k < src.SampleLoops ; k++)
1672                    pSampleLoops[k] = src.pSampleLoops[k];
1673          }          }
1674          else {      }
1675              VelocityResponseCurve = curve_type_unknown;      
1676              VelocityResponseDepth = 0;      /**
1677         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1678         * and assign it to this object.
1679         *
1680         * Note that all sample pointers referenced by @a orig are simply copied as
1681         * memory address. Thus the respective samples are shared, not duplicated!
1682         *
1683         * @param orig - original DimensionRegion object to be copied from
1684         */
1685        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1686            CopyAssign(orig, NULL);
1687        }
1688    
1689        /**
1690         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1691         * and assign it to this object.
1692         *
1693         * @param orig - original DimensionRegion object to be copied from
1694         * @param mSamples - crosslink map between the foreign file's samples and
1695         *                   this file's samples
1696         */
1697        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1698            // delete all allocated data first
1699            if (VelocityTable) delete [] VelocityTable;
1700            if (pSampleLoops) delete [] pSampleLoops;
1701            
1702            // backup parent list pointer
1703            RIFF::List* p = pParentList;
1704            
1705            gig::Sample* pOriginalSample = pSample;
1706            gig::Region* pOriginalRegion = pRegion;
1707            
1708            //NOTE: copy code copied from assignment constructor above, see comment there as well
1709            
1710            *this = *orig; // default memberwise shallow copy of all parameters
1711            pParentList = p; // restore the chunk pointer
1712            
1713            // only take the raw sample reference & parent region reference if the
1714            // two DimensionRegion objects are part of the same file
1715            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1716                pRegion = pOriginalRegion;
1717                pSample = pOriginalSample;
1718            }
1719            
1720            if (mSamples && mSamples->count(orig->pSample)) {
1721                pSample = mSamples->find(orig->pSample)->second;
1722            }
1723    
1724            // deep copy of owned structures
1725            if (orig->VelocityTable) {
1726                VelocityTable = new uint8_t[128];
1727                for (int k = 0 ; k < 128 ; k++)
1728                    VelocityTable[k] = orig->VelocityTable[k];
1729            }
1730            if (orig->pSampleLoops) {
1731                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1732                for (int k = 0 ; k < orig->SampleLoops ; k++)
1733                    pSampleLoops[k] = orig->pSampleLoops[k];
1734          }          }
1735          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1736          if (releasevelocityresponse < 5) {  
1737              ReleaseVelocityResponseCurve = curve_type_nonlinear;      /**
1738              ReleaseVelocityResponseDepth = releasevelocityresponse;       * Updates the respective member variable and updates @c SampleAttenuation
1739          }       * which depends on this value.
1740          else if (releasevelocityresponse < 10) {       */
1741              ReleaseVelocityResponseCurve = curve_type_linear;      void DimensionRegion::SetGain(int32_t gain) {
1742              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          DLS::Sampler::SetGain(gain);
1743          }          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1744          else if (releasevelocityresponse < 15) {      }
1745              ReleaseVelocityResponseCurve = curve_type_special;  
1746              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;      /**
1747         * Apply dimension region settings to the respective RIFF chunks. You
1748         * have to call File::Save() to make changes persistent.
1749         *
1750         * Usually there is absolutely no need to call this method explicitly.
1751         * It will be called automatically when File::Save() was called.
1752         */
1753        void DimensionRegion::UpdateChunks() {
1754            // first update base class's chunk
1755            DLS::Sampler::UpdateChunks();
1756    
1757            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1758            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1759            pData[12] = Crossfade.in_start;
1760            pData[13] = Crossfade.in_end;
1761            pData[14] = Crossfade.out_start;
1762            pData[15] = Crossfade.out_end;
1763    
1764            // make sure '3ewa' chunk exists
1765            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1766            if (!_3ewa) {
1767                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1768                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1769                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1770          }          }
1771          else {          pData = (uint8_t*) _3ewa->LoadChunkData();
1772              ReleaseVelocityResponseCurve = curve_type_unknown;  
1773              ReleaseVelocityResponseDepth = 0;          // update '3ewa' chunk with DimensionRegion's current settings
1774    
1775            const uint32_t chunksize = _3ewa->GetNewSize();
1776            store32(&pData[0], chunksize); // unknown, always chunk size?
1777    
1778            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1779            store32(&pData[4], lfo3freq);
1780    
1781            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1782            store32(&pData[8], eg3attack);
1783    
1784            // next 2 bytes unknown
1785    
1786            store16(&pData[14], LFO1InternalDepth);
1787    
1788            // next 2 bytes unknown
1789    
1790            store16(&pData[18], LFO3InternalDepth);
1791    
1792            // next 2 bytes unknown
1793    
1794            store16(&pData[22], LFO1ControlDepth);
1795    
1796            // next 2 bytes unknown
1797    
1798            store16(&pData[26], LFO3ControlDepth);
1799    
1800            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1801            store32(&pData[28], eg1attack);
1802    
1803            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1804            store32(&pData[32], eg1decay1);
1805    
1806            // next 2 bytes unknown
1807    
1808            store16(&pData[38], EG1Sustain);
1809    
1810            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1811            store32(&pData[40], eg1release);
1812    
1813            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1814            pData[44] = eg1ctl;
1815    
1816            const uint8_t eg1ctrloptions =
1817                (EG1ControllerInvert ? 0x01 : 0x00) |
1818                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1819                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1820                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1821            pData[45] = eg1ctrloptions;
1822    
1823            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1824            pData[46] = eg2ctl;
1825    
1826            const uint8_t eg2ctrloptions =
1827                (EG2ControllerInvert ? 0x01 : 0x00) |
1828                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1829                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1830                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1831            pData[47] = eg2ctrloptions;
1832    
1833            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1834            store32(&pData[48], lfo1freq);
1835    
1836            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1837            store32(&pData[52], eg2attack);
1838    
1839            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1840            store32(&pData[56], eg2decay1);
1841    
1842            // next 2 bytes unknown
1843    
1844            store16(&pData[62], EG2Sustain);
1845    
1846            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1847            store32(&pData[64], eg2release);
1848    
1849            // next 2 bytes unknown
1850    
1851            store16(&pData[70], LFO2ControlDepth);
1852    
1853            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1854            store32(&pData[72], lfo2freq);
1855    
1856            // next 2 bytes unknown
1857    
1858            store16(&pData[78], LFO2InternalDepth);
1859    
1860            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1861            store32(&pData[80], eg1decay2);
1862    
1863            // next 2 bytes unknown
1864    
1865            store16(&pData[86], EG1PreAttack);
1866    
1867            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1868            store32(&pData[88], eg2decay2);
1869    
1870            // next 2 bytes unknown
1871    
1872            store16(&pData[94], EG2PreAttack);
1873    
1874            {
1875                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1876                uint8_t velocityresponse = VelocityResponseDepth;
1877                switch (VelocityResponseCurve) {
1878                    case curve_type_nonlinear:
1879                        break;
1880                    case curve_type_linear:
1881                        velocityresponse += 5;
1882                        break;
1883                    case curve_type_special:
1884                        velocityresponse += 10;
1885                        break;
1886                    case curve_type_unknown:
1887                    default:
1888                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1889                }
1890                pData[96] = velocityresponse;
1891            }
1892    
1893            {
1894                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1895                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1896                switch (ReleaseVelocityResponseCurve) {
1897                    case curve_type_nonlinear:
1898                        break;
1899                    case curve_type_linear:
1900                        releasevelocityresponse += 5;
1901                        break;
1902                    case curve_type_special:
1903                        releasevelocityresponse += 10;
1904                        break;
1905                    case curve_type_unknown:
1906                    default:
1907                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1908                }
1909                pData[97] = releasevelocityresponse;
1910            }
1911    
1912            pData[98] = VelocityResponseCurveScaling;
1913    
1914            pData[99] = AttenuationControllerThreshold;
1915    
1916            // next 4 bytes unknown
1917    
1918            store16(&pData[104], SampleStartOffset);
1919    
1920            // next 2 bytes unknown
1921    
1922            {
1923                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1924                switch (DimensionBypass) {
1925                    case dim_bypass_ctrl_94:
1926                        pitchTrackDimensionBypass |= 0x10;
1927                        break;
1928                    case dim_bypass_ctrl_95:
1929                        pitchTrackDimensionBypass |= 0x20;
1930                        break;
1931                    case dim_bypass_ctrl_none:
1932                        //FIXME: should we set anything here?
1933                        break;
1934                    default:
1935                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1936                }
1937                pData[108] = pitchTrackDimensionBypass;
1938            }
1939    
1940            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1941            pData[109] = pan;
1942    
1943            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1944            pData[110] = selfmask;
1945    
1946            // next byte unknown
1947    
1948            {
1949                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1950                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1951                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1952                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1953                pData[112] = lfo3ctrl;
1954            }
1955    
1956            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1957            pData[113] = attenctl;
1958    
1959            {
1960                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1961                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1962                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1963                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1964                pData[114] = lfo2ctrl;
1965            }
1966    
1967            {
1968                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1969                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1970                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1971                if (VCFResonanceController != vcf_res_ctrl_none)
1972                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1973                pData[115] = lfo1ctrl;
1974            }
1975    
1976            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1977                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1978            store16(&pData[116], eg3depth);
1979    
1980            // next 2 bytes unknown
1981    
1982            const uint8_t channeloffset = ChannelOffset * 4;
1983            pData[120] = channeloffset;
1984    
1985            {
1986                uint8_t regoptions = 0;
1987                if (MSDecode)      regoptions |= 0x01; // bit 0
1988                if (SustainDefeat) regoptions |= 0x02; // bit 1
1989                pData[121] = regoptions;
1990            }
1991    
1992            // next 2 bytes unknown
1993    
1994            pData[124] = VelocityUpperLimit;
1995    
1996            // next 3 bytes unknown
1997    
1998            pData[128] = ReleaseTriggerDecay;
1999    
2000            // next 2 bytes unknown
2001    
2002            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2003            pData[131] = eg1hold;
2004    
2005            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2006                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2007            pData[132] = vcfcutoff;
2008    
2009            pData[133] = VCFCutoffController;
2010    
2011            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2012                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2013            pData[134] = vcfvelscale;
2014    
2015            // next byte unknown
2016    
2017            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2018                                         (VCFResonance & 0x7f); /* lower 7 bits */
2019            pData[136] = vcfresonance;
2020    
2021            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2022                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2023            pData[137] = vcfbreakpoint;
2024    
2025            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2026                                        VCFVelocityCurve * 5;
2027            pData[138] = vcfvelocity;
2028    
2029            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2030            pData[139] = vcftype;
2031    
2032            if (chunksize >= 148) {
2033                memcpy(&pData[140], DimensionUpperLimits, 8);
2034          }          }
2035          VelocityResponseCurveScaling = _3ewa->ReadUint8();      }
2036          AttenuationControllerThreshold = _3ewa->ReadInt8();  
2037          _3ewa->ReadInt32(); // unknown      double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2038          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();          curve_type_t curveType = releaseVelocityResponseCurve;
2039          _3ewa->ReadInt16(); // unknown          uint8_t depth = releaseVelocityResponseDepth;
2040          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();          // this models a strange behaviour or bug in GSt: two of the
2041          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);          // velocity response curves for release time are not used even
2042          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;          // if specified, instead another curve is chosen.
2043          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;          if ((curveType == curve_type_nonlinear && depth == 0) ||
2044          else                                       DimensionBypass = dim_bypass_ctrl_none;              (curveType == curve_type_special   && depth == 4)) {
2045          uint8_t pan = _3ewa->ReadUint8();              curveType = curve_type_nonlinear;
2046          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit              depth = 3;
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
2047          }          }
2048            return GetVelocityTable(curveType, depth, 0);
2049        }
2050    
2051        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2052                                                        uint8_t vcfVelocityDynamicRange,
2053                                                        uint8_t vcfVelocityScale,
2054                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2055        {
2056            curve_type_t curveType = vcfVelocityCurve;
2057            uint8_t depth = vcfVelocityDynamicRange;
2058            // even stranger GSt: two of the velocity response curves for
2059            // filter cutoff are not used, instead another special curve
2060            // is chosen. This curve is not used anywhere else.
2061            if ((curveType == curve_type_nonlinear && depth == 0) ||
2062                (curveType == curve_type_special   && depth == 4)) {
2063                curveType = curve_type_special;
2064                depth = 5;
2065            }
2066            return GetVelocityTable(curveType, depth,
2067                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2068                                        ? vcfVelocityScale : 0);
2069        }
2070    
2071          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2072          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2073        {
2074            double* table;
2075            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2076          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
2077              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
2078          }          }
2079          else {          else {
2080              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
2081                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
2082          }          }
2083            return table;
2084        }
2085    
2086        Region* DimensionRegion::GetParent() const {
2087            return pRegion;
2088      }      }
2089    
2090      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
# Line 1187  namespace gig { namespace { Line 2205  namespace gig { namespace {
2205          return decodedcontroller;          return decodedcontroller;
2206      }      }
2207    
2208        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2209            _lev_ctrl_t encodedcontroller;
2210            switch (DecodedController.type) {
2211                // special controller
2212                case leverage_ctrl_t::type_none:
2213                    encodedcontroller = _lev_ctrl_none;
2214                    break;
2215                case leverage_ctrl_t::type_velocity:
2216                    encodedcontroller = _lev_ctrl_velocity;
2217                    break;
2218                case leverage_ctrl_t::type_channelaftertouch:
2219                    encodedcontroller = _lev_ctrl_channelaftertouch;
2220                    break;
2221    
2222                // ordinary MIDI control change controller
2223                case leverage_ctrl_t::type_controlchange:
2224                    switch (DecodedController.controller_number) {
2225                        case 1:
2226                            encodedcontroller = _lev_ctrl_modwheel;
2227                            break;
2228                        case 2:
2229                            encodedcontroller = _lev_ctrl_breath;
2230                            break;
2231                        case 4:
2232                            encodedcontroller = _lev_ctrl_foot;
2233                            break;
2234                        case 12:
2235                            encodedcontroller = _lev_ctrl_effect1;
2236                            break;
2237                        case 13:
2238                            encodedcontroller = _lev_ctrl_effect2;
2239                            break;
2240                        case 16:
2241                            encodedcontroller = _lev_ctrl_genpurpose1;
2242                            break;
2243                        case 17:
2244                            encodedcontroller = _lev_ctrl_genpurpose2;
2245                            break;
2246                        case 18:
2247                            encodedcontroller = _lev_ctrl_genpurpose3;
2248                            break;
2249                        case 19:
2250                            encodedcontroller = _lev_ctrl_genpurpose4;
2251                            break;
2252                        case 5:
2253                            encodedcontroller = _lev_ctrl_portamentotime;
2254                            break;
2255                        case 64:
2256                            encodedcontroller = _lev_ctrl_sustainpedal;
2257                            break;
2258                        case 65:
2259                            encodedcontroller = _lev_ctrl_portamento;
2260                            break;
2261                        case 66:
2262                            encodedcontroller = _lev_ctrl_sostenutopedal;
2263                            break;
2264                        case 67:
2265                            encodedcontroller = _lev_ctrl_softpedal;
2266                            break;
2267                        case 80:
2268                            encodedcontroller = _lev_ctrl_genpurpose5;
2269                            break;
2270                        case 81:
2271                            encodedcontroller = _lev_ctrl_genpurpose6;
2272                            break;
2273                        case 82:
2274                            encodedcontroller = _lev_ctrl_genpurpose7;
2275                            break;
2276                        case 83:
2277                            encodedcontroller = _lev_ctrl_genpurpose8;
2278                            break;
2279                        case 91:
2280                            encodedcontroller = _lev_ctrl_effect1depth;
2281                            break;
2282                        case 92:
2283                            encodedcontroller = _lev_ctrl_effect2depth;
2284                            break;
2285                        case 93:
2286                            encodedcontroller = _lev_ctrl_effect3depth;
2287                            break;
2288                        case 94:
2289                            encodedcontroller = _lev_ctrl_effect4depth;
2290                            break;
2291                        case 95:
2292                            encodedcontroller = _lev_ctrl_effect5depth;
2293                            break;
2294                        default:
2295                            throw gig::Exception("leverage controller number is not supported by the gig format");
2296                    }
2297                    break;
2298                default:
2299                    throw gig::Exception("Unknown leverage controller type.");
2300            }
2301            return encodedcontroller;
2302        }
2303    
2304      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2305          Instances--;          Instances--;
2306          if (!Instances) {          if (!Instances) {
# Line 1200  namespace gig { namespace { Line 2314  namespace gig { namespace {
2314              delete pVelocityTables;              delete pVelocityTables;
2315              pVelocityTables = NULL;              pVelocityTables = NULL;
2316          }          }
2317            if (VelocityTable) delete[] VelocityTable;
2318      }      }
2319    
2320      /**      /**
# Line 1217  namespace gig { namespace { Line 2332  namespace gig { namespace {
2332          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2333      }      }
2334    
2335        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2336            return pVelocityReleaseTable[MIDIKeyVelocity];
2337        }
2338    
2339        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2340            return pVelocityCutoffTable[MIDIKeyVelocity];
2341        }
2342    
2343        /**
2344         * Updates the respective member variable and the lookup table / cache
2345         * that depends on this value.
2346         */
2347        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2348            pVelocityAttenuationTable =
2349                GetVelocityTable(
2350                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2351                );
2352            VelocityResponseCurve = curve;
2353        }
2354    
2355        /**
2356         * Updates the respective member variable and the lookup table / cache
2357         * that depends on this value.
2358         */
2359        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2360            pVelocityAttenuationTable =
2361                GetVelocityTable(
2362                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2363                );
2364            VelocityResponseDepth = depth;
2365        }
2366    
2367        /**
2368         * Updates the respective member variable and the lookup table / cache
2369         * that depends on this value.
2370         */
2371        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2372            pVelocityAttenuationTable =
2373                GetVelocityTable(
2374                    VelocityResponseCurve, VelocityResponseDepth, scaling
2375                );
2376            VelocityResponseCurveScaling = scaling;
2377        }
2378    
2379        /**
2380         * Updates the respective member variable and the lookup table / cache
2381         * that depends on this value.
2382         */
2383        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2384            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2385            ReleaseVelocityResponseCurve = curve;
2386        }
2387    
2388        /**
2389         * Updates the respective member variable and the lookup table / cache
2390         * that depends on this value.
2391         */
2392        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2393            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2394            ReleaseVelocityResponseDepth = depth;
2395        }
2396    
2397        /**
2398         * Updates the respective member variable and the lookup table / cache
2399         * that depends on this value.
2400         */
2401        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2402            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2403            VCFCutoffController = controller;
2404        }
2405    
2406        /**
2407         * Updates the respective member variable and the lookup table / cache
2408         * that depends on this value.
2409         */
2410        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2411            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2412            VCFVelocityCurve = curve;
2413        }
2414    
2415        /**
2416         * Updates the respective member variable and the lookup table / cache
2417         * that depends on this value.
2418         */
2419        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2420            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2421            VCFVelocityDynamicRange = range;
2422        }
2423    
2424        /**
2425         * Updates the respective member variable and the lookup table / cache
2426         * that depends on this value.
2427         */
2428        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2429            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2430            VCFVelocityScale = scaling;
2431        }
2432    
2433      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2434    
2435          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1250  namespace gig { namespace { Line 2463  namespace gig { namespace {
2463          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2464                               127, 127 };                               127, 127 };
2465    
2466            // this is only used by the VCF velocity curve
2467            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2468                                 91, 127, 127, 127 };
2469    
2470          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
2471                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
2472                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
2473    
2474          double* const table = new double[128];          double* const table = new double[128];
2475    
# Line 1296  namespace gig { namespace { Line 2513  namespace gig { namespace {
2513    
2514          // Actual Loading          // Actual Loading
2515    
2516            if (!file->GetAutoLoad()) return;
2517    
2518          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2519    
2520          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1304  namespace gig { namespace { Line 2523  namespace gig { namespace {
2523              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2524                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2525                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2526                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2527                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2528                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2529                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2530                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2531                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2532                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2533                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2534                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2535                  }                  }
2536                  else { // active dimension                  else { // active dimension
2537                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2538                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2539                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2540                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2541                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2542                      Dimensions++;                      Dimensions++;
2543    
2544                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
2545                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2546                  }                  }
2547                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2548              }              }
2549                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2550    
2551              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2552              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2553                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
2554    
2555              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2556              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2557                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2558              else              else
2559                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
2560    
2561              // load sample references              // load sample references (if auto loading is enabled)
2562              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
2563                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
2564                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2565                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2566                    }
2567                    GetSample(); // load global region sample reference
2568                }
2569            } else {
2570                DimensionRegions = 0;
2571                for (int i = 0 ; i < 8 ; i++) {
2572                    pDimensionDefinitions[i].dimension  = dimension_none;
2573                    pDimensionDefinitions[i].bits       = 0;
2574                    pDimensionDefinitions[i].zones      = 0;
2575                }
2576            }
2577    
2578            // make sure there is at least one dimension region
2579            if (!DimensionRegions) {
2580                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2581                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2582                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2583                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2584                DimensionRegions = 1;
2585            }
2586        }
2587    
2588        /**
2589         * Apply Region settings and all its DimensionRegions to the respective
2590         * RIFF chunks. You have to call File::Save() to make changes persistent.
2591         *
2592         * Usually there is absolutely no need to call this method explicitly.
2593         * It will be called automatically when File::Save() was called.
2594         *
2595         * @throws gig::Exception if samples cannot be dereferenced
2596         */
2597        void Region::UpdateChunks() {
2598            // in the gig format we don't care about the Region's sample reference
2599            // but we still have to provide some existing one to not corrupt the
2600            // file, so to avoid the latter we simply always assign the sample of
2601            // the first dimension region of this region
2602            pSample = pDimensionRegions[0]->pSample;
2603    
2604            // first update base class's chunks
2605            DLS::Region::UpdateChunks();
2606    
2607            // update dimension region's chunks
2608            for (int i = 0; i < DimensionRegions; i++) {
2609                pDimensionRegions[i]->UpdateChunks();
2610            }
2611    
2612            File* pFile = (File*) GetParent()->GetParent();
2613            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2614            const int iMaxDimensions =  version3 ? 8 : 5;
2615            const int iMaxDimensionRegions = version3 ? 256 : 32;
2616    
2617            // make sure '3lnk' chunk exists
2618            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2619            if (!_3lnk) {
2620                const int _3lnkChunkSize = version3 ? 1092 : 172;
2621                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2622                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2623    
2624                // move 3prg to last position
2625                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2626            }
2627    
2628            // update dimension definitions in '3lnk' chunk
2629            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2630            store32(&pData[0], DimensionRegions);
2631            int shift = 0;
2632            for (int i = 0; i < iMaxDimensions; i++) {
2633                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2634                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2635                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2636                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2637                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2638                // next 3 bytes unknown, always zero?
2639    
2640                shift += pDimensionDefinitions[i].bits;
2641            }
2642    
2643            // update wave pool table in '3lnk' chunk
2644            const int iWavePoolOffset = version3 ? 68 : 44;
2645            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2646                int iWaveIndex = -1;
2647                if (i < DimensionRegions) {
2648                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2649                    File::SampleList::iterator iter = pFile->pSamples->begin();
2650                    File::SampleList::iterator end  = pFile->pSamples->end();
2651                    for (int index = 0; iter != end; ++iter, ++index) {
2652                        if (*iter == pDimensionRegions[i]->pSample) {
2653                            iWaveIndex = index;
2654                            break;
2655                        }
2656                    }
2657              }              }
2658                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2659          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2660      }      }
2661    
2662      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1385  namespace gig { namespace { Line 2666  namespace gig { namespace {
2666              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2667              while (_3ewl) {              while (_3ewl) {
2668                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2669                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2670                      dimensionRegionNr++;                      dimensionRegionNr++;
2671                  }                  }
2672                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1394  namespace gig { namespace { Line 2675  namespace gig { namespace {
2675          }          }
2676      }      }
2677    
2678      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2679          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
2680              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
2681            // update Region key table for fast lookup
2682            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2683        }
2684    
2685        void Region::UpdateVelocityTable() {
2686            // get velocity dimension's index
2687            int veldim = -1;
2688            for (int i = 0 ; i < Dimensions ; i++) {
2689                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2690                    veldim = i;
2691                    break;
2692                }
2693            }
2694            if (veldim == -1) return;
2695    
2696            int step = 1;
2697            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2698            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2699            int end = step * pDimensionDefinitions[veldim].zones;
2700    
2701            // loop through all dimension regions for all dimensions except the velocity dimension
2702            int dim[8] = { 0 };
2703            for (int i = 0 ; i < DimensionRegions ; i++) {
2704    
2705                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2706                    pDimensionRegions[i]->VelocityUpperLimit) {
2707                    // create the velocity table
2708                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2709                    if (!table) {
2710                        table = new uint8_t[128];
2711                        pDimensionRegions[i]->VelocityTable = table;
2712                    }
2713                    int tableidx = 0;
2714                    int velocityZone = 0;
2715                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2716                        for (int k = i ; k < end ; k += step) {
2717                            DimensionRegion *d = pDimensionRegions[k];
2718                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2719                            velocityZone++;
2720                        }
2721                    } else { // gig2
2722                        for (int k = i ; k < end ; k += step) {
2723                            DimensionRegion *d = pDimensionRegions[k];
2724                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2725                            velocityZone++;
2726                        }
2727                    }
2728                } else {
2729                    if (pDimensionRegions[i]->VelocityTable) {
2730                        delete[] pDimensionRegions[i]->VelocityTable;
2731                        pDimensionRegions[i]->VelocityTable = 0;
2732                    }
2733                }
2734    
2735                int j;
2736                int shift = 0;
2737                for (j = 0 ; j < Dimensions ; j++) {
2738                    if (j == veldim) i += skipveldim; // skip velocity dimension
2739                    else {
2740                        dim[j]++;
2741                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2742                        else {
2743                            // skip unused dimension regions
2744                            dim[j] = 0;
2745                            i += ((1 << pDimensionDefinitions[j].bits) -
2746                                  pDimensionDefinitions[j].zones) << shift;
2747                        }
2748                    }
2749                    shift += pDimensionDefinitions[j].bits;
2750                }
2751                if (j == Dimensions) break;
2752          }          }
2753        }
2754    
2755        /** @brief Einstein would have dreamed of it - create a new dimension.
2756         *
2757         * Creates a new dimension with the dimension definition given by
2758         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2759         * There is a hard limit of dimensions and total amount of "bits" all
2760         * dimensions can have. This limit is dependant to what gig file format
2761         * version this file refers to. The gig v2 (and lower) format has a
2762         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2763         * format has a limit of 8.
2764         *
2765         * @param pDimDef - defintion of the new dimension
2766         * @throws gig::Exception if dimension of the same type exists already
2767         * @throws gig::Exception if amount of dimensions or total amount of
2768         *                        dimension bits limit is violated
2769         */
2770        void Region::AddDimension(dimension_def_t* pDimDef) {
2771            // check if max. amount of dimensions reached
2772            File* file = (File*) GetParent()->GetParent();
2773            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2774            if (Dimensions >= iMaxDimensions)
2775                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2776            // check if max. amount of dimension bits reached
2777            int iCurrentBits = 0;
2778            for (int i = 0; i < Dimensions; i++)
2779                iCurrentBits += pDimensionDefinitions[i].bits;
2780            if (iCurrentBits >= iMaxDimensions)
2781                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2782            const int iNewBits = iCurrentBits + pDimDef->bits;
2783            if (iNewBits > iMaxDimensions)
2784                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2785            // check if there's already a dimensions of the same type
2786            for (int i = 0; i < Dimensions; i++)
2787                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2788                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2789    
2790            // pos is where the new dimension should be placed, normally
2791            // last in list, except for the samplechannel dimension which
2792            // has to be first in list
2793            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2794            int bitpos = 0;
2795            for (int i = 0 ; i < pos ; i++)
2796                bitpos += pDimensionDefinitions[i].bits;
2797    
2798            // make room for the new dimension
2799            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2800            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2801                for (int j = Dimensions ; j > pos ; j--) {
2802                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2803                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2804                }
2805            }
2806    
2807            // assign definition of new dimension
2808            pDimensionDefinitions[pos] = *pDimDef;
2809    
2810            // auto correct certain dimension definition fields (where possible)
2811            pDimensionDefinitions[pos].split_type  =
2812                __resolveSplitType(pDimensionDefinitions[pos].dimension);
2813            pDimensionDefinitions[pos].zone_size =
2814                __resolveZoneSize(pDimensionDefinitions[pos]);
2815    
2816            // create new dimension region(s) for this new dimension, and make
2817            // sure that the dimension regions are placed correctly in both the
2818            // RIFF list and the pDimensionRegions array
2819            RIFF::Chunk* moveTo = NULL;
2820            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2821            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2822                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2823                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2824                }
2825                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2826                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2827                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2828                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2829                        // create a new dimension region and copy all parameter values from
2830                        // an existing dimension region
2831                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2832                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2833    
2834                        DimensionRegions++;
2835                    }
2836                }
2837                moveTo = pDimensionRegions[i]->pParentList;
2838            }
2839    
2840            // initialize the upper limits for this dimension
2841            int mask = (1 << bitpos) - 1;
2842            for (int z = 0 ; z < pDimDef->zones ; z++) {
2843                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2844                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2845                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2846                                      (z << bitpos) |
2847                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2848                }
2849            }
2850    
2851            Dimensions++;
2852    
2853            // if this is a layer dimension, update 'Layers' attribute
2854            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2855    
2856            UpdateVelocityTable();
2857        }
2858    
2859        /** @brief Delete an existing dimension.
2860         *
2861         * Deletes the dimension given by \a pDimDef and deletes all respective
2862         * dimension regions, that is all dimension regions where the dimension's
2863         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2864         * for example this would delete all dimension regions for the case(s)
2865         * where the sustain pedal is pressed down.
2866         *
2867         * @param pDimDef - dimension to delete
2868         * @throws gig::Exception if given dimension cannot be found
2869         */
2870        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2871            // get dimension's index
2872            int iDimensionNr = -1;
2873            for (int i = 0; i < Dimensions; i++) {
2874                if (&pDimensionDefinitions[i] == pDimDef) {
2875                    iDimensionNr = i;
2876                    break;
2877                }
2878            }
2879            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2880    
2881            // get amount of bits below the dimension to delete
2882            int iLowerBits = 0;
2883            for (int i = 0; i < iDimensionNr; i++)
2884                iLowerBits += pDimensionDefinitions[i].bits;
2885    
2886            // get amount ot bits above the dimension to delete
2887            int iUpperBits = 0;
2888            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2889                iUpperBits += pDimensionDefinitions[i].bits;
2890    
2891            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2892    
2893            // delete dimension regions which belong to the given dimension
2894            // (that is where the dimension's bit > 0)
2895            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2896                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2897                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2898                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2899                                        iObsoleteBit << iLowerBits |
2900                                        iLowerBit;
2901    
2902                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2903                        delete pDimensionRegions[iToDelete];
2904                        pDimensionRegions[iToDelete] = NULL;
2905                        DimensionRegions--;
2906                    }
2907                }
2908            }
2909    
2910            // defrag pDimensionRegions array
2911            // (that is remove the NULL spaces within the pDimensionRegions array)
2912            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2913                if (!pDimensionRegions[iTo]) {
2914                    if (iFrom <= iTo) iFrom = iTo + 1;
2915                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2916                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2917                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2918                        pDimensionRegions[iFrom] = NULL;
2919                    }
2920                }
2921            }
2922    
2923            // remove the this dimension from the upper limits arrays
2924            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2925                DimensionRegion* d = pDimensionRegions[j];
2926                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2927                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2928                }
2929                d->DimensionUpperLimits[Dimensions - 1] = 127;
2930            }
2931    
2932            // 'remove' dimension definition
2933            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2934                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2935            }
2936            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2937            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2938            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2939    
2940            Dimensions--;
2941    
2942            // if this was a layer dimension, update 'Layers' attribute
2943            if (pDimDef->dimension == dimension_layer) Layers = 1;
2944        }
2945    
2946        Region::~Region() {
2947          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
2948              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2949          }          }
# Line 1422  namespace gig { namespace { Line 2968  namespace gig { namespace {
2968       * @see             Dimensions       * @see             Dimensions
2969       */       */
2970      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2971          uint8_t bits[8] = { 0 };          uint8_t bits;
2972            int veldim = -1;
2973            int velbitpos;
2974            int bitpos = 0;
2975            int dimregidx = 0;
2976          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2977              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2978              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
2979                  case split_type_normal:                  veldim = i;
2980                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
2981                      break;              } else {
2982                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
2983                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
2984                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2985                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2986                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2987                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2988                      break;                              }
2989                            } else {
2990                                // gig2: evenly sized zones
2991                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2992                            }
2993                            break;
2994                        case split_type_bit: // the value is already the sought dimension bit number
2995                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2996                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2997                            break;
2998                    }
2999                    dimregidx |= bits << bitpos;
3000              }              }
3001                bitpos += pDimensionDefinitions[i].bits;
3002            }
3003            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3004            if (veldim != -1) {
3005                // (dimreg is now the dimension region for the lowest velocity)
3006                if (dimreg->VelocityTable) // custom defined zone ranges
3007                    bits = dimreg->VelocityTable[DimValues[veldim]];
3008                else // normal split type
3009                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
3010    
3011                dimregidx |= bits << velbitpos;
3012                dimreg = pDimensionRegions[dimregidx];
3013          }          }
3014          return GetDimensionRegionByBit(bits);          return dimreg;
3015      }      }
3016    
3017      /**      /**
# Line 1475  namespace gig { namespace { Line 3048  namespace gig { namespace {
3048          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3049      }      }
3050    
3051      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3052          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
3053          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3054            if (!file->pWavePoolTable) return NULL;
3055          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3056          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3057            Sample* sample = file->GetFirstSample(pProgress);
3058          while (sample) {          while (sample) {
3059              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
3060                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3061              sample = file->GetNextSample();              sample = file->GetNextSample();
3062          }          }
3063          return NULL;          return NULL;
3064      }      }
3065        
3066        /**
3067         * Make a (semi) deep copy of the Region object given by @a orig
3068         * and assign it to this object.
3069         *
3070         * Note that all sample pointers referenced by @a orig are simply copied as
3071         * memory address. Thus the respective samples are shared, not duplicated!
3072         *
3073         * @param orig - original Region object to be copied from
3074         */
3075        void Region::CopyAssign(const Region* orig) {
3076            CopyAssign(orig, NULL);
3077        }
3078        
3079        /**
3080         * Make a (semi) deep copy of the Region object given by @a orig and
3081         * assign it to this object
3082         *
3083         * @param mSamples - crosslink map between the foreign file's samples and
3084         *                   this file's samples
3085         */
3086        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3087            // handle base classes
3088            DLS::Region::CopyAssign(orig);
3089            
3090            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3091                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3092            }
3093            
3094            // handle own member variables
3095            for (int i = Dimensions - 1; i >= 0; --i) {
3096                DeleteDimension(&pDimensionDefinitions[i]);
3097            }
3098            Layers = 0; // just to be sure
3099            for (int i = 0; i < orig->Dimensions; i++) {
3100                // we need to copy the dim definition here, to avoid the compiler
3101                // complaining about const-ness issue
3102                dimension_def_t def = orig->pDimensionDefinitions[i];
3103                AddDimension(&def);
3104            }
3105            for (int i = 0; i < 256; i++) {
3106                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3107                    pDimensionRegions[i]->CopyAssign(
3108                        orig->pDimensionRegions[i],
3109                        mSamples
3110                    );
3111                }
3112            }
3113            Layers = orig->Layers;
3114        }
3115    
3116    
3117    // *************** MidiRule ***************
3118    // *
3119    
3120        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3121            _3ewg->SetPos(36);
3122            Triggers = _3ewg->ReadUint8();
3123            _3ewg->SetPos(40);
3124            ControllerNumber = _3ewg->ReadUint8();
3125            _3ewg->SetPos(46);
3126            for (int i = 0 ; i < Triggers ; i++) {
3127                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3128                pTriggers[i].Descending = _3ewg->ReadUint8();
3129                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3130                pTriggers[i].Key = _3ewg->ReadUint8();
3131                pTriggers[i].NoteOff = _3ewg->ReadUint8();
3132                pTriggers[i].Velocity = _3ewg->ReadUint8();
3133                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3134                _3ewg->ReadUint8();
3135            }
3136        }
3137    
3138        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3139            ControllerNumber(0),
3140            Triggers(0) {
3141        }
3142    
3143        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3144            pData[32] = 4;
3145            pData[33] = 16;
3146            pData[36] = Triggers;
3147            pData[40] = ControllerNumber;
3148            for (int i = 0 ; i < Triggers ; i++) {
3149                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3150                pData[47 + i * 8] = pTriggers[i].Descending;
3151                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3152                pData[49 + i * 8] = pTriggers[i].Key;
3153                pData[50 + i * 8] = pTriggers[i].NoteOff;
3154                pData[51 + i * 8] = pTriggers[i].Velocity;
3155                pData[52 + i * 8] = pTriggers[i].OverridePedal;
3156            }
3157        }
3158    
3159        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3160            _3ewg->SetPos(36);
3161            LegatoSamples = _3ewg->ReadUint8(); // always 12
3162            _3ewg->SetPos(40);
3163            BypassUseController = _3ewg->ReadUint8();
3164            BypassKey = _3ewg->ReadUint8();
3165            BypassController = _3ewg->ReadUint8();
3166            ThresholdTime = _3ewg->ReadUint16();
3167            _3ewg->ReadInt16();
3168            ReleaseTime = _3ewg->ReadUint16();
3169            _3ewg->ReadInt16();
3170            KeyRange.low = _3ewg->ReadUint8();
3171            KeyRange.high = _3ewg->ReadUint8();
3172            _3ewg->SetPos(64);
3173            ReleaseTriggerKey = _3ewg->ReadUint8();
3174            AltSustain1Key = _3ewg->ReadUint8();
3175            AltSustain2Key = _3ewg->ReadUint8();
3176        }
3177    
3178        MidiRuleLegato::MidiRuleLegato() :
3179            LegatoSamples(12),
3180            BypassUseController(false),
3181            BypassKey(0),
3182            BypassController(1),
3183            ThresholdTime(20),
3184            ReleaseTime(20),
3185            ReleaseTriggerKey(0),
3186            AltSustain1Key(0),
3187            AltSustain2Key(0)
3188        {
3189            KeyRange.low = KeyRange.high = 0;
3190        }
3191    
3192        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3193            pData[32] = 0;
3194            pData[33] = 16;
3195            pData[36] = LegatoSamples;
3196            pData[40] = BypassUseController;
3197            pData[41] = BypassKey;
3198            pData[42] = BypassController;
3199            store16(&pData[43], ThresholdTime);
3200            store16(&pData[47], ReleaseTime);
3201            pData[51] = KeyRange.low;
3202            pData[52] = KeyRange.high;
3203            pData[64] = ReleaseTriggerKey;
3204            pData[65] = AltSustain1Key;
3205            pData[66] = AltSustain2Key;
3206        }
3207    
3208        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3209            _3ewg->SetPos(36);
3210            Articulations = _3ewg->ReadUint8();
3211            int flags = _3ewg->ReadUint8();
3212            Polyphonic = flags & 8;
3213            Chained = flags & 4;
3214            Selector = (flags & 2) ? selector_controller :
3215                (flags & 1) ? selector_key_switch : selector_none;
3216            Patterns = _3ewg->ReadUint8();
3217            _3ewg->ReadUint8(); // chosen row
3218            _3ewg->ReadUint8(); // unknown
3219            _3ewg->ReadUint8(); // unknown
3220            _3ewg->ReadUint8(); // unknown
3221            KeySwitchRange.low = _3ewg->ReadUint8();
3222            KeySwitchRange.high = _3ewg->ReadUint8();
3223            Controller = _3ewg->ReadUint8();
3224            PlayRange.low = _3ewg->ReadUint8();
3225            PlayRange.high = _3ewg->ReadUint8();
3226    
3227            int n = std::min(int(Articulations), 32);
3228            for (int i = 0 ; i < n ; i++) {
3229                _3ewg->ReadString(pArticulations[i], 32);
3230            }
3231            _3ewg->SetPos(1072);
3232            n = std::min(int(Patterns), 32);
3233            for (int i = 0 ; i < n ; i++) {
3234                _3ewg->ReadString(pPatterns[i].Name, 16);
3235                pPatterns[i].Size = _3ewg->ReadUint8();
3236                _3ewg->Read(&pPatterns[i][0], 1, 32);
3237            }
3238        }
3239    
3240        MidiRuleAlternator::MidiRuleAlternator() :
3241            Articulations(0),
3242            Patterns(0),
3243            Selector(selector_none),
3244            Controller(0),
3245            Polyphonic(false),
3246            Chained(false)
3247        {
3248            PlayRange.low = PlayRange.high = 0;
3249            KeySwitchRange.low = KeySwitchRange.high = 0;
3250        }
3251    
3252        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3253            pData[32] = 3;
3254            pData[33] = 16;
3255            pData[36] = Articulations;
3256            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
3257                (Selector == selector_controller ? 2 :
3258                 (Selector == selector_key_switch ? 1 : 0));
3259            pData[38] = Patterns;
3260    
3261            pData[43] = KeySwitchRange.low;
3262            pData[44] = KeySwitchRange.high;
3263            pData[45] = Controller;
3264            pData[46] = PlayRange.low;
3265            pData[47] = PlayRange.high;
3266    
3267            char* str = reinterpret_cast<char*>(pData);
3268            int pos = 48;
3269            int n = std::min(int(Articulations), 32);
3270            for (int i = 0 ; i < n ; i++, pos += 32) {
3271                strncpy(&str[pos], pArticulations[i].c_str(), 32);
3272            }
3273    
3274            pos = 1072;
3275            n = std::min(int(Patterns), 32);
3276            for (int i = 0 ; i < n ; i++, pos += 49) {
3277                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
3278                pData[pos + 16] = pPatterns[i].Size;
3279                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
3280            }
3281        }
3282    
3283  // *************** Instrument ***************  // *************** Instrument ***************
3284  // *  // *
3285    
3286      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3287            static const DLS::Info::string_length_t fixedStringLengths[] = {
3288                { CHUNK_ID_INAM, 64 },
3289                { CHUNK_ID_ISFT, 12 },
3290                { 0, 0 }
3291            };
3292            pInfo->SetFixedStringLengths(fixedStringLengths);
3293    
3294          // Initialization          // Initialization
3295          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3296          RegionIndex = -1;          EffectSend = 0;
3297            Attenuation = 0;
3298            FineTune = 0;
3299            PitchbendRange = 0;
3300            PianoReleaseMode = false;
3301            DimensionKeyRange.low = 0;
3302            DimensionKeyRange.high = 0;
3303            pMidiRules = new MidiRule*[3];
3304            pMidiRules[0] = NULL;
3305    
3306          // Loading          // Loading
3307          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1510  namespace gig { namespace { Line 3316  namespace gig { namespace {
3316                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
3317                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
3318                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
3319    
3320                    if (_3ewg->GetSize() > 32) {
3321                        // read MIDI rules
3322                        int i = 0;
3323                        _3ewg->SetPos(32);
3324                        uint8_t id1 = _3ewg->ReadUint8();
3325                        uint8_t id2 = _3ewg->ReadUint8();
3326    
3327                        if (id2 == 16) {
3328                            if (id1 == 4) {
3329                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3330                            } else if (id1 == 0) {
3331                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
3332                            } else if (id1 == 3) {
3333                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
3334                            } else {
3335                                pMidiRules[i++] = new MidiRuleUnknown;
3336                            }
3337                        }
3338                        else if (id1 != 0 || id2 != 0) {
3339                            pMidiRules[i++] = new MidiRuleUnknown;
3340                        }
3341                        //TODO: all the other types of rules
3342    
3343                        pMidiRules[i] = NULL;
3344                    }
3345              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
3346          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
3347    
3348          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
3349          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
3350          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3351          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              if (lrgn) {
3352          RIFF::List* rgn = lrgn->GetFirstSubList();                  RIFF::List* rgn = lrgn->GetFirstSubList();
3353          unsigned int iRegion = 0;                  while (rgn) {
3354          while (rgn) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
3355              if (rgn->GetListType() == LIST_TYPE_RGN) {                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3356                  pRegions[iRegion] = new Region(this, rgn);                          pRegions->push_back(new Region(this, rgn));
3357                  iRegion++;                      }
3358              }                      rgn = lrgn->GetNextSubList();
3359              rgn = lrgn->GetNextSubList();                  }
3360          }                  // Creating Region Key Table for fast lookup
3361                    UpdateRegionKeyTable();
3362          // Creating Region Key Table for fast lookup              }
3363          for (uint iReg = 0; iReg < Regions; iReg++) {          }
3364              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
3365                  RegionKeyTable[iKey] = pRegions[iReg];          __notify_progress(pProgress, 1.0f); // notify done
3366        }
3367    
3368        void Instrument::UpdateRegionKeyTable() {
3369            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3370            RegionList::iterator iter = pRegions->begin();
3371            RegionList::iterator end  = pRegions->end();
3372            for (; iter != end; ++iter) {
3373                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3374                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3375                    RegionKeyTable[iKey] = pRegion;
3376              }              }
3377          }          }
3378      }      }
3379    
3380      Instrument::~Instrument() {      Instrument::~Instrument() {
3381          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
3382              if (pRegions) {              delete pMidiRules[i];
3383                  if (pRegions[i]) delete (pRegions[i]);          }
3384            delete[] pMidiRules;
3385        }
3386    
3387        /**
3388         * Apply Instrument with all its Regions to the respective RIFF chunks.
3389         * You have to call File::Save() to make changes persistent.
3390         *
3391         * Usually there is absolutely no need to call this method explicitly.
3392         * It will be called automatically when File::Save() was called.
3393         *
3394         * @throws gig::Exception if samples cannot be dereferenced
3395         */
3396        void Instrument::UpdateChunks() {
3397            // first update base classes' chunks
3398            DLS::Instrument::UpdateChunks();
3399    
3400            // update Regions' chunks
3401            {
3402                RegionList::iterator iter = pRegions->begin();
3403                RegionList::iterator end  = pRegions->end();
3404                for (; iter != end; ++iter)
3405                    (*iter)->UpdateChunks();
3406            }
3407    
3408            // make sure 'lart' RIFF list chunk exists
3409            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3410            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3411            // make sure '3ewg' RIFF chunk exists
3412            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3413            if (!_3ewg)  {
3414                File* pFile = (File*) GetParent();
3415    
3416                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3417                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3418                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3419                memset(_3ewg->LoadChunkData(), 0, size);
3420            }
3421            // update '3ewg' RIFF chunk
3422            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3423            store16(&pData[0], EffectSend);
3424            store32(&pData[2], Attenuation);
3425            store16(&pData[6], FineTune);
3426            store16(&pData[8], PitchbendRange);
3427            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3428                                        DimensionKeyRange.low << 1;
3429            pData[10] = dimkeystart;
3430            pData[11] = DimensionKeyRange.high;
3431    
3432            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
3433                pData[32] = 0;
3434                pData[33] = 0;
3435            } else {
3436                for (int i = 0 ; pMidiRules[i] ; i++) {
3437                    pMidiRules[i]->UpdateChunks(pData);
3438              }              }
3439          }          }
         if (pRegions) delete[] pRegions;  
3440      }      }
3441    
3442      /**      /**
# Line 1554  namespace gig { namespace { Line 3447  namespace gig { namespace {
3447       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3448       */       */
3449      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3450          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3451          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3452    
3453          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
3454              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
3455                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1571  namespace gig { namespace { Line 3465  namespace gig { namespace {
3465       * @see      GetNextRegion()       * @see      GetNextRegion()
3466       */       */
3467      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
3468          if (!Regions) return NULL;          if (!pRegions) return NULL;
3469          RegionIndex = 1;          RegionsIterator = pRegions->begin();
3470          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3471      }      }
3472    
3473      /**      /**
# Line 1585  namespace gig { namespace { Line 3479  namespace gig { namespace {
3479       * @see      GetFirstRegion()       * @see      GetFirstRegion()
3480       */       */
3481      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
3482          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
3483          return pRegions[RegionIndex++];          RegionsIterator++;
3484            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3485        }
3486    
3487        Region* Instrument::AddRegion() {
3488            // create new Region object (and its RIFF chunks)
3489            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3490            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3491            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3492            Region* pNewRegion = new Region(this, rgn);
3493            pRegions->push_back(pNewRegion);
3494            Regions = pRegions->size();
3495            // update Region key table for fast lookup
3496            UpdateRegionKeyTable();
3497            // done
3498            return pNewRegion;
3499        }
3500    
3501        void Instrument::DeleteRegion(Region* pRegion) {
3502            if (!pRegions) return;
3503            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3504            // update Region key table for fast lookup
3505            UpdateRegionKeyTable();
3506      }      }
3507    
3508        /**
3509         * Returns a MIDI rule of the instrument.
3510         *
3511         * The list of MIDI rules, at least in gig v3, always contains at
3512         * most two rules. The second rule can only be the DEF filter
3513         * (which currently isn't supported by libgig).
3514         *
3515         * @param i - MIDI rule number
3516         * @returns   pointer address to MIDI rule number i or NULL if there is none
3517         */
3518        MidiRule* Instrument::GetMidiRule(int i) {
3519            return pMidiRules[i];
3520        }
3521    
3522        /**
3523         * Adds the "controller trigger" MIDI rule to the instrument.
3524         *
3525         * @returns the new MIDI rule
3526         */
3527        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
3528            delete pMidiRules[0];
3529            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
3530            pMidiRules[0] = r;
3531            pMidiRules[1] = 0;
3532            return r;
3533        }
3534    
3535  // *************** File ***************      /**
3536         * Adds the legato MIDI rule to the instrument.
3537         *
3538         * @returns the new MIDI rule
3539         */
3540        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
3541            delete pMidiRules[0];
3542            MidiRuleLegato* r = new MidiRuleLegato;
3543            pMidiRules[0] = r;
3544            pMidiRules[1] = 0;
3545            return r;
3546        }
3547    
3548        /**
3549         * Adds the alternator MIDI rule to the instrument.
3550         *
3551         * @returns the new MIDI rule
3552         */
3553        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
3554            delete pMidiRules[0];
3555            MidiRuleAlternator* r = new MidiRuleAlternator;
3556            pMidiRules[0] = r;
3557            pMidiRules[1] = 0;
3558            return r;
3559        }
3560    
3561        /**
3562         * Deletes a MIDI rule from the instrument.
3563         *
3564         * @param i - MIDI rule number
3565         */
3566        void Instrument::DeleteMidiRule(int i) {
3567            delete pMidiRules[i];
3568            pMidiRules[i] = 0;
3569        }
3570    
3571        /**
3572         * Make a (semi) deep copy of the Instrument object given by @a orig
3573         * and assign it to this object.
3574         *
3575         * Note that all sample pointers referenced by @a orig are simply copied as
3576         * memory address. Thus the respective samples are shared, not duplicated!
3577         *
3578         * @param orig - original Instrument object to be copied from
3579         */
3580        void Instrument::CopyAssign(const Instrument* orig) {
3581            CopyAssign(orig, NULL);
3582        }
3583            
3584        /**
3585         * Make a (semi) deep copy of the Instrument object given by @a orig
3586         * and assign it to this object.
3587         *
3588         * @param orig - original Instrument object to be copied from
3589         * @param mSamples - crosslink map between the foreign file's samples and
3590         *                   this file's samples
3591         */
3592        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
3593            // handle base class
3594            // (without copying DLS region stuff)
3595            DLS::Instrument::CopyAssignCore(orig);
3596            
3597            // handle own member variables
3598            Attenuation = orig->Attenuation;
3599            EffectSend = orig->EffectSend;
3600            FineTune = orig->FineTune;
3601            PitchbendRange = orig->PitchbendRange;
3602            PianoReleaseMode = orig->PianoReleaseMode;
3603            DimensionKeyRange = orig->DimensionKeyRange;
3604            
3605            // free old midi rules
3606            for (int i = 0 ; pMidiRules[i] ; i++) {
3607                delete pMidiRules[i];
3608            }
3609            //TODO: MIDI rule copying
3610            pMidiRules[0] = NULL;
3611            
3612            // delete all old regions
3613            while (Regions) DeleteRegion(GetFirstRegion());
3614            // create new regions and copy them from original
3615            {
3616                RegionList::const_iterator it = orig->pRegions->begin();
3617                for (int i = 0; i < orig->Regions; ++i, ++it) {
3618                    Region* dstRgn = AddRegion();
3619                    //NOTE: Region does semi-deep copy !
3620                    dstRgn->CopyAssign(
3621                        static_cast<gig::Region*>(*it),
3622                        mSamples
3623                    );
3624                }
3625            }
3626    
3627            UpdateRegionKeyTable();
3628        }
3629    
3630    
3631    // *************** Group ***************
3632  // *  // *
3633    
3634      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      /** @brief Constructor.
3635          pSamples     = NULL;       *
3636          pInstruments = NULL;       * @param file   - pointer to the gig::File object
3637         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3638         *                 NULL if this is a new Group
3639         */
3640        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3641            pFile      = file;
3642            pNameChunk = ck3gnm;
3643            ::LoadString(pNameChunk, Name);
3644      }      }
3645    
3646      File::~File() {      Group::~Group() {
3647          // free samples          // remove the chunk associated with this group (if any)
3648          if (pSamples) {          if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3649              SamplesIterator = pSamples->begin();      }
3650              while (SamplesIterator != pSamples->end() ) {  
3651                  delete (*SamplesIterator);      /** @brief Update chunks with current group settings.
3652                  SamplesIterator++;       *
3653         * Apply current Group field values to the respective chunks. You have
3654         * to call File::Save() to make changes persistent.
3655         *
3656         * Usually there is absolutely no need to call this method explicitly.
3657         * It will be called automatically when File::Save() was called.
3658         */
3659        void Group::UpdateChunks() {
3660            // make sure <3gri> and <3gnl> list chunks exist
3661            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3662            if (!_3gri) {
3663                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3664                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3665            }
3666            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3667            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3668    
3669            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3670                // v3 has a fixed list of 128 strings, find a free one
3671                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3672                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3673                        pNameChunk = ck;
3674                        break;
3675                    }
3676              }              }
3677              pSamples->clear();          }
             delete pSamples;  
3678    
3679            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3680            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3681        }
3682    
3683        /**
3684         * Returns the first Sample of this Group. You have to call this method
3685         * once before you use GetNextSample().
3686         *
3687         * <b>Notice:</b> this method might block for a long time, in case the
3688         * samples of this .gig file were not scanned yet
3689         *
3690         * @returns  pointer address to first Sample or NULL if there is none
3691         *           applied to this Group
3692         * @see      GetNextSample()
3693         */
3694        Sample* Group::GetFirstSample() {
3695            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3696            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3697                if (pSample->GetGroup() == this) return pSample;
3698          }          }
3699          // free instruments          return NULL;
3700          if (pInstruments) {      }
3701              InstrumentsIterator = pInstruments->begin();  
3702              while (InstrumentsIterator != pInstruments->end() ) {      /**
3703                  delete (*InstrumentsIterator);       * Returns the next Sample of the Group. You have to call
3704                  InstrumentsIterator++;       * GetFirstSample() once before you can use this method. By calling this
3705         * method multiple times it iterates through the Samples assigned to
3706         * this Group.
3707         *
3708         * @returns  pointer address to the next Sample of this Group or NULL if
3709         *           end reached
3710         * @see      GetFirstSample()
3711         */
3712        Sample* Group::GetNextSample() {
3713            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3714            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3715                if (pSample->GetGroup() == this) return pSample;
3716            }
3717            return NULL;
3718        }
3719    
3720        /**
3721         * Move Sample given by \a pSample from another Group to this Group.
3722         */
3723        void Group::AddSample(Sample* pSample) {
3724            pSample->pGroup = this;
3725        }
3726    
3727        /**
3728         * Move all members of this group to another group (preferably the 1st
3729         * one except this). This method is called explicitly by
3730         * File::DeleteGroup() thus when a Group was deleted. This code was
3731         * intentionally not placed in the destructor!
3732         */
3733        void Group::MoveAll() {
3734            // get "that" other group first
3735            Group* pOtherGroup = NULL;
3736            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3737                if (pOtherGroup != this) break;
3738            }
3739            if (!pOtherGroup) throw Exception(
3740                "Could not move samples to another group, since there is no "
3741                "other Group. This is a bug, report it!"
3742            );
3743            // now move all samples of this group to the other group
3744            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3745                pOtherGroup->AddSample(pSample);
3746            }
3747        }
3748    
3749    
3750    
3751    // *************** File ***************
3752    // *
3753    
3754        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3755        const DLS::version_t File::VERSION_2 = {
3756            0, 2, 19980628 & 0xffff, 19980628 >> 16
3757        };
3758    
3759        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3760        const DLS::version_t File::VERSION_3 = {
3761            0, 3, 20030331 & 0xffff, 20030331 >> 16
3762        };
3763    
3764        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3765            { CHUNK_ID_IARL, 256 },
3766            { CHUNK_ID_IART, 128 },
3767            { CHUNK_ID_ICMS, 128 },
3768            { CHUNK_ID_ICMT, 1024 },
3769            { CHUNK_ID_ICOP, 128 },
3770            { CHUNK_ID_ICRD, 128 },
3771            { CHUNK_ID_IENG, 128 },
3772            { CHUNK_ID_IGNR, 128 },
3773            { CHUNK_ID_IKEY, 128 },
3774            { CHUNK_ID_IMED, 128 },
3775            { CHUNK_ID_INAM, 128 },
3776            { CHUNK_ID_IPRD, 128 },
3777            { CHUNK_ID_ISBJ, 128 },
3778            { CHUNK_ID_ISFT, 128 },
3779            { CHUNK_ID_ISRC, 128 },
3780            { CHUNK_ID_ISRF, 128 },
3781            { CHUNK_ID_ITCH, 128 },
3782            { 0, 0 }
3783        };
3784    
3785        File::File() : DLS::File() {
3786            bAutoLoad = true;
3787            *pVersion = VERSION_3;
3788            pGroups = NULL;
3789            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3790            pInfo->ArchivalLocation = String(256, ' ');
3791    
3792            // add some mandatory chunks to get the file chunks in right
3793            // order (INFO chunk will be moved to first position later)
3794            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3795            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3796            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3797    
3798            GenerateDLSID();
3799        }
3800    
3801        File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3802            bAutoLoad = true;
3803            pGroups = NULL;
3804            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3805        }
3806    
3807        File::~File() {
3808            if (pGroups) {
3809                std::list<Group*>::iterator iter = pGroups->begin();
3810                std::list<Group*>::iterator end  = pGroups->end();
3811                while (iter != end) {
3812                    delete *iter;
3813                    ++iter;
3814              }              }
3815              pInstruments->clear();              delete pGroups;
             delete pInstruments;  
3816          }          }
3817      }      }
3818    
3819      Sample* File::GetFirstSample() {      Sample* File::GetFirstSample(progress_t* pProgress) {
3820          if (!pSamples) LoadSamples();          if (!pSamples) LoadSamples(pProgress);
3821          if (!pSamples) return NULL;          if (!pSamples) return NULL;
3822          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
3823          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1635  namespace gig { namespace { Line 3828  namespace gig { namespace {
3828          SamplesIterator++;          SamplesIterator++;
3829          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3830      }      }
3831        
3832        /**
3833         * Returns Sample object of @a index.
3834         *
3835         * @returns sample object or NULL if index is out of bounds
3836         */
3837        Sample* File::GetSample(uint index) {
3838            if (!pSamples) LoadSamples();
3839            if (!pSamples) return NULL;
3840            DLS::File::SampleList::iterator it = pSamples->begin();
3841            for (int i = 0; i < index; ++i) {
3842                ++it;
3843                if (it == pSamples->end()) return NULL;
3844            }
3845            if (it == pSamples->end()) return NULL;
3846            return static_cast<gig::Sample*>( *it );
3847        }
3848    
3849      void File::LoadSamples() {      /** @brief Add a new sample.
3850          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
3851          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
3852              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
3853              RIFF::List* wave = wvpl->GetFirstSubList();       *
3854              while (wave) {       * @returns pointer to new Sample object
3855                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
3856                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
3857                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
3858                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
3859           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3860           // create new Sample object and its respective 'wave' list chunk
3861           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3862           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3863    
3864           // add mandatory chunks to get the chunks in right order
3865           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3866           wave->AddSubList(LIST_TYPE_INFO);
3867    
3868           pSamples->push_back(pSample);
3869           return pSample;
3870        }
3871    
3872        /** @brief Delete a sample.
3873         *
3874         * This will delete the given Sample object from the gig file. Any
3875         * references to this sample from Regions and DimensionRegions will be
3876         * removed. You have to call Save() to make this persistent to the file.
3877         *
3878         * @param pSample - sample to delete
3879         * @throws gig::Exception if given sample could not be found
3880         */
3881        void File::DeleteSample(Sample* pSample) {
3882            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3883            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3884            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3885            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3886            pSamples->erase(iter);
3887            delete pSample;
3888    
3889            SampleList::iterator tmp = SamplesIterator;
3890            // remove all references to the sample
3891            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3892                 instrument = GetNextInstrument()) {
3893                for (Region* region = instrument->GetFirstRegion() ; region ;
3894                     region = instrument->GetNextRegion()) {
3895    
3896                    if (region->GetSample() == pSample) region->SetSample(NULL);
3897    
3898                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3899                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3900                        if (d->pSample == pSample) d->pSample = NULL;
3901                  }                  }
                 wave = wvpl->GetNextSubList();  
3902              }              }
3903          }          }
3904          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
3905        }
3906    
3907        void File::LoadSamples() {
3908            LoadSamples(NULL);
3909        }
3910    
3911        void File::LoadSamples(progress_t* pProgress) {
3912            // Groups must be loaded before samples, because samples will try
3913            // to resolve the group they belong to
3914            if (!pGroups) LoadGroups();
3915    
3916            if (!pSamples) pSamples = new SampleList;
3917    
3918            RIFF::File* file = pRIFF;
3919    
3920            // just for progress calculation
3921            int iSampleIndex  = 0;
3922            int iTotalSamples = WavePoolCount;
3923    
3924            // check if samples should be loaded from extension files
3925            int lastFileNo = 0;
3926            for (int i = 0 ; i < WavePoolCount ; i++) {
3927                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3928            }
3929            String name(pRIFF->GetFileName());
3930            int nameLen = name.length();
3931            char suffix[6];
3932            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3933    
3934            for (int fileNo = 0 ; ; ) {
3935                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3936                if (wvpl) {
3937                    unsigned long wvplFileOffset = wvpl->GetFilePos();
3938                    RIFF::List* wave = wvpl->GetFirstSubList();
3939                    while (wave) {
3940                        if (wave->GetListType() == LIST_TYPE_WAVE) {
3941                            // notify current progress
3942                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3943                            __notify_progress(pProgress, subprogress);
3944    
3945                            unsigned long waveFileOffset = wave->GetFilePos();
3946                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3947    
3948                            iSampleIndex++;
3949                        }
3950                        wave = wvpl->GetNextSubList();
3951                    }
3952    
3953                    if (fileNo == lastFileNo) break;
3954    
3955                    // open extension file (*.gx01, *.gx02, ...)
3956                    fileNo++;
3957                    sprintf(suffix, ".gx%02d", fileNo);
3958                    name.replace(nameLen, 5, suffix);
3959                    file = new RIFF::File(name);
3960                    ExtensionFiles.push_back(file);
3961                } else break;
3962            }
3963    
3964            __notify_progress(pProgress, 1.0); // notify done
3965      }      }
3966    
3967      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
3968          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
3969          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3970          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3971          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3972      }      }
3973    
3974      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
3975          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3976          InstrumentsIterator++;          InstrumentsIterator++;
3977          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3978      }      }
3979    
3980      /**      /**
3981       * Returns the instrument with the given index.       * Returns the instrument with the given index.
3982       *       *
3983         * @param index     - number of the sought instrument (0..n)
3984         * @param pProgress - optional: callback function for progress notification
3985       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
3986       */       */
3987      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3988          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
3989                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3990    
3991                // sample loading subtask
3992                progress_t subprogress;
3993                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3994                __notify_progress(&subprogress, 0.0f);
3995                if (GetAutoLoad())
3996                    GetFirstSample(&subprogress); // now force all samples to be loaded
3997                __notify_progress(&subprogress, 1.0f);
3998    
3999                // instrument loading subtask
4000                if (pProgress && pProgress->callback) {
4001                    subprogress.__range_min = subprogress.__range_max;
4002                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
4003                }
4004                __notify_progress(&subprogress, 0.0f);
4005                LoadInstruments(&subprogress);
4006                __notify_progress(&subprogress, 1.0f);
4007            }
4008          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
4009          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
4010          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
4011              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
4012              InstrumentsIterator++;              InstrumentsIterator++;
4013          }          }
4014          return NULL;          return NULL;
4015      }      }
4016    
4017        /** @brief Add a new instrument definition.
4018         *
4019         * This will create a new Instrument object for the gig file. You have
4020         * to call Save() to make this persistent to the file.
4021         *
4022         * @returns pointer to new Instrument object
4023         */
4024        Instrument* File::AddInstrument() {
4025           if (!pInstruments) LoadInstruments();
4026           __ensureMandatoryChunksExist();
4027           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4028           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
4029    
4030           // add mandatory chunks to get the chunks in right order
4031           lstInstr->AddSubList(LIST_TYPE_INFO);
4032           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
4033    
4034           Instrument* pInstrument = new Instrument(this, lstInstr);
4035           pInstrument->GenerateDLSID();
4036    
4037           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
4038    
4039           // this string is needed for the gig to be loadable in GSt:
4040           pInstrument->pInfo->Software = "Endless Wave";
4041    
4042           pInstruments->push_back(pInstrument);
4043           return pInstrument;
4044        }
4045        
4046        /** @brief Add a duplicate of an existing instrument.
4047         *
4048         * Duplicates the instrument definition given by @a orig and adds it
4049         * to this file. This allows in an instrument editor application to
4050         * easily create variations of an instrument, which will be stored in
4051         * the same .gig file, sharing i.e. the same samples.
4052         *
4053         * Note that all sample pointers referenced by @a orig are simply copied as
4054         * memory address. Thus the respective samples are shared, not duplicated!
4055         *
4056         * You have to call Save() to make this persistent to the file.
4057         *
4058         * @param orig - original instrument to be copied
4059         * @returns duplicated copy of the given instrument
4060         */
4061        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
4062            Instrument* instr = AddInstrument();
4063            instr->CopyAssign(orig);
4064            return instr;
4065        }
4066        
4067        /** @brief Add content of another existing file.
4068         *
4069         * Duplicates the samples, groups and instruments of the original file
4070         * given by @a pFile and adds them to @c this File. In case @c this File is
4071         * a new one that you haven't saved before, then you have to call
4072         * SetFileName() before calling AddContentOf(), because this method will
4073         * automatically save this file during operation, which is required for
4074         * writing the sample waveform data by disk streaming.
4075         *
4076         * @param pFile - original file whose's content shall be copied from
4077         */
4078        void File::AddContentOf(File* pFile) {
4079            static int iCallCount = -1;
4080            iCallCount++;
4081            std::map<Group*,Group*> mGroups;
4082            std::map<Sample*,Sample*> mSamples;
4083            
4084            // clone sample groups
4085            for (int i = 0; pFile->GetGroup(i); ++i) {
4086                Group* g = AddGroup();
4087                g->Name =
4088                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
4089                mGroups[pFile->GetGroup(i)] = g;
4090            }
4091            
4092            // clone samples (not waveform data here yet)
4093            for (int i = 0; pFile->GetSample(i); ++i) {
4094                Sample* s = AddSample();
4095                s->CopyAssignMeta(pFile->GetSample(i));
4096                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
4097                mSamples[pFile->GetSample(i)] = s;
4098            }
4099            
4100            //BUG: For some reason this method only works with this additional
4101            //     Save() call in between here.
4102            //
4103            // Important: The correct one of the 2 Save() methods has to be called
4104            // here, depending on whether the file is completely new or has been
4105            // saved to disk already, otherwise it will result in data corruption.
4106            if (pRIFF->IsNew())
4107                Save(GetFileName());
4108            else
4109                Save();
4110            
4111            // clone instruments
4112            // (passing the crosslink table here for the cloned samples)
4113            for (int i = 0; pFile->GetInstrument(i); ++i) {
4114                Instrument* instr = AddInstrument();
4115                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
4116            }
4117            
4118            // Mandatory: file needs to be saved to disk at this point, so this
4119            // file has the correct size and data layout for writing the samples'
4120            // waveform data to disk.
4121            Save();
4122            
4123            // clone samples' waveform data
4124            // (using direct read & write disk streaming)
4125            for (int i = 0; pFile->GetSample(i); ++i) {
4126                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
4127            }
4128        }
4129    
4130        /** @brief Delete an instrument.
4131         *
4132         * This will delete the given Instrument object from the gig file. You
4133         * have to call Save() to make this persistent to the file.
4134         *
4135         * @param pInstrument - instrument to delete
4136         * @throws gig::Exception if given instrument could not be found
4137         */
4138        void File::DeleteInstrument(Instrument* pInstrument) {
4139            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
4140            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
4141            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
4142            pInstruments->erase(iter);
4143            delete pInstrument;
4144        }
4145    
4146      void File::LoadInstruments() {      void File::LoadInstruments() {
4147            LoadInstruments(NULL);
4148        }
4149    
4150        void File::LoadInstruments(progress_t* pProgress) {
4151            if (!pInstruments) pInstruments = new InstrumentList;
4152          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4153          if (lstInstruments) {          if (lstInstruments) {
4154                int iInstrumentIndex = 0;
4155              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
4156              while (lstInstr) {              while (lstInstr) {
4157                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
4158                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
4159                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
4160                        __notify_progress(pProgress, localProgress);
4161    
4162                        // divide local progress into subprogress for loading current Instrument
4163                        progress_t subprogress;
4164                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
4165    
4166                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
4167    
4168                        iInstrumentIndex++;
4169                  }                  }
4170                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
4171              }              }
4172                __notify_progress(pProgress, 1.0); // notify done
4173            }
4174        }
4175    
4176        /// Updates the 3crc chunk with the checksum of a sample. The
4177        /// update is done directly to disk, as this method is called
4178        /// after File::Save()
4179        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
4180            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4181            if (!_3crc) return;
4182    
4183            // get the index of the sample
4184            int iWaveIndex = -1;
4185            File::SampleList::iterator iter = pSamples->begin();
4186            File::SampleList::iterator end  = pSamples->end();
4187            for (int index = 0; iter != end; ++iter, ++index) {
4188                if (*iter == pSample) {
4189                    iWaveIndex = index;
4190                    break;
4191                }
4192            }
4193            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
4194    
4195            // write the CRC-32 checksum to disk
4196            _3crc->SetPos(iWaveIndex * 8);
4197            uint32_t tmp = 1;
4198            _3crc->WriteUint32(&tmp); // unknown, always 1?
4199            _3crc->WriteUint32(&crc);
4200        }
4201    
4202        Group* File::GetFirstGroup() {
4203            if (!pGroups) LoadGroups();
4204            // there must always be at least one group
4205            GroupsIterator = pGroups->begin();
4206            return *GroupsIterator;
4207        }
4208    
4209        Group* File::GetNextGroup() {
4210            if (!pGroups) return NULL;
4211            ++GroupsIterator;
4212            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4213        }
4214    
4215        /**
4216         * Returns the group with the given index.
4217         *
4218         * @param index - number of the sought group (0..n)
4219         * @returns sought group or NULL if there's no such group
4220         */
4221        Group* File::GetGroup(uint index) {
4222            if (!pGroups) LoadGroups();
4223            GroupsIterator = pGroups->begin();
4224            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4225                if (i == index) return *GroupsIterator;
4226                ++GroupsIterator;
4227            }
4228            return NULL;
4229        }
4230    
4231        Group* File::AddGroup() {
4232            if (!pGroups) LoadGroups();
4233            // there must always be at least one group
4234            __ensureMandatoryChunksExist();
4235            Group* pGroup = new Group(this, NULL);
4236            pGroups->push_back(pGroup);
4237            return pGroup;
4238        }
4239    
4240        /** @brief Delete a group and its samples.
4241         *
4242         * This will delete the given Group object and all the samples that
4243         * belong to this group from the gig file. You have to call Save() to
4244         * make this persistent to the file.
4245         *
4246         * @param pGroup - group to delete
4247         * @throws gig::Exception if given group could not be found
4248         */
4249        void File::DeleteGroup(Group* pGroup) {
4250            if (!pGroups) LoadGroups();
4251            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4252            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4253            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4254            // delete all members of this group
4255            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
4256                DeleteSample(pSample);
4257            }
4258            // now delete this group object
4259            pGroups->erase(iter);
4260            delete pGroup;
4261        }
4262    
4263        /** @brief Delete a group.
4264         *
4265         * This will delete the given Group object from the gig file. All the
4266         * samples that belong to this group will not be deleted, but instead
4267         * be moved to another group. You have to call Save() to make this
4268         * persistent to the file.
4269         *
4270         * @param pGroup - group to delete
4271         * @throws gig::Exception if given group could not be found
4272         */
4273        void File::DeleteGroupOnly(Group* pGroup) {
4274            if (!pGroups) LoadGroups();
4275            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4276            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4277            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4278            // move all members of this group to another group
4279            pGroup->MoveAll();
4280            pGroups->erase(iter);
4281            delete pGroup;
4282        }
4283    
4284        void File::LoadGroups() {
4285            if (!pGroups) pGroups = new std::list<Group*>;
4286            // try to read defined groups from file
4287            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4288            if (lst3gri) {
4289                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
4290                if (lst3gnl) {
4291                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
4292                    while (ck) {
4293                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
4294                            if (pVersion && pVersion->major == 3 &&
4295                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
4296    
4297                            pGroups->push_back(new Group(this, ck));
4298                        }
4299                        ck = lst3gnl->GetNextSubChunk();
4300                    }
4301                }
4302            }
4303            // if there were no group(s), create at least the mandatory default group
4304            if (!pGroups->size()) {
4305                Group* pGroup = new Group(this, NULL);
4306                pGroup->Name = "Default Group";
4307                pGroups->push_back(pGroup);
4308            }
4309        }
4310    
4311        /**
4312         * Apply all the gig file's current instruments, samples, groups and settings
4313         * to the respective RIFF chunks. You have to call Save() to make changes
4314         * persistent.
4315         *
4316         * Usually there is absolutely no need to call this method explicitly.
4317         * It will be called automatically when File::Save() was called.
4318         *
4319         * @throws Exception - on errors
4320         */
4321        void File::UpdateChunks() {
4322            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
4323    
4324            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
4325    
4326            // first update base class's chunks
4327            DLS::File::UpdateChunks();
4328    
4329            if (newFile) {
4330                // INFO was added by Resource::UpdateChunks - make sure it
4331                // is placed first in file
4332                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
4333                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
4334                if (first != info) {
4335                    pRIFF->MoveSubChunk(info, first);
4336                }
4337            }
4338    
4339            // update group's chunks
4340            if (pGroups) {
4341                // make sure '3gri' and '3gnl' list chunks exist
4342                // (before updating the Group chunks)
4343                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4344                if (!_3gri) {
4345                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
4346                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4347                }
4348                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4349                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4350    
4351                // v3: make sure the file has 128 3gnm chunks
4352                // (before updating the Group chunks)
4353                if (pVersion && pVersion->major == 3) {
4354                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
4355                    for (int i = 0 ; i < 128 ; i++) {
4356                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
4357                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
4358                    }
4359                }
4360    
4361                std::list<Group*>::iterator iter = pGroups->begin();
4362                std::list<Group*>::iterator end  = pGroups->end();
4363                for (; iter != end; ++iter) {
4364                    (*iter)->UpdateChunks();
4365                }
4366            }
4367    
4368            // update einf chunk
4369    
4370            // The einf chunk contains statistics about the gig file, such
4371            // as the number of regions and samples used by each
4372            // instrument. It is divided in equally sized parts, where the
4373            // first part contains information about the whole gig file,
4374            // and the rest of the parts map to each instrument in the
4375            // file.
4376            //
4377            // At the end of each part there is a bit map of each sample
4378            // in the file, where a set bit means that the sample is used
4379            // by the file/instrument.
4380            //
4381            // Note that there are several fields with unknown use. These
4382            // are set to zero.
4383    
4384            int sublen = pSamples->size() / 8 + 49;
4385            int einfSize = (Instruments + 1) * sublen;
4386    
4387            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
4388            if (einf) {
4389                if (einf->GetSize() != einfSize) {
4390                    einf->Resize(einfSize);
4391                    memset(einf->LoadChunkData(), 0, einfSize);
4392                }
4393            } else if (newFile) {
4394                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
4395            }
4396            if (einf) {
4397                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
4398    
4399                std::map<gig::Sample*,int> sampleMap;
4400                int sampleIdx = 0;
4401                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4402                    sampleMap[pSample] = sampleIdx++;
4403                }
4404    
4405                int totnbusedsamples = 0;
4406                int totnbusedchannels = 0;
4407                int totnbregions = 0;
4408                int totnbdimregions = 0;
4409                int totnbloops = 0;
4410                int instrumentIdx = 0;
4411    
4412                memset(&pData[48], 0, sublen - 48);
4413    
4414                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4415                     instrument = GetNextInstrument()) {
4416                    int nbusedsamples = 0;
4417                    int nbusedchannels = 0;
4418                    int nbdimregions = 0;
4419                    int nbloops = 0;
4420    
4421                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
4422    
4423                    for (Region* region = instrument->GetFirstRegion() ; region ;
4424                         region = instrument->GetNextRegion()) {
4425                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
4426                            gig::DimensionRegion *d = region->pDimensionRegions[i];
4427                            if (d->pSample) {
4428                                int sampleIdx = sampleMap[d->pSample];
4429                                int byte = 48 + sampleIdx / 8;
4430                                int bit = 1 << (sampleIdx & 7);
4431                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
4432                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4433                                    nbusedsamples++;
4434                                    nbusedchannels += d->pSample->Channels;
4435    
4436                                    if ((pData[byte] & bit) == 0) {
4437                                        pData[byte] |= bit;
4438                                        totnbusedsamples++;
4439                                        totnbusedchannels += d->pSample->Channels;
4440                                    }
4441                                }
4442                            }
4443                            if (d->SampleLoops) nbloops++;
4444                        }
4445                        nbdimregions += region->DimensionRegions;
4446                    }
4447                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4448                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4449                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4450                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4451                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4452                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4453                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4454                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4455                    // next 8 bytes unknown
4456                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4457                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4458                    // next 4 bytes unknown
4459    
4460                    totnbregions += instrument->Regions;
4461                    totnbdimregions += nbdimregions;
4462                    totnbloops += nbloops;
4463                    instrumentIdx++;
4464                }
4465                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4466                // store32(&pData[0], sublen);
4467                store32(&pData[4], totnbusedchannels);
4468                store32(&pData[8], totnbusedsamples);
4469                store32(&pData[12], Instruments);
4470                store32(&pData[16], totnbregions);
4471                store32(&pData[20], totnbdimregions);
4472                store32(&pData[24], totnbloops);
4473                // next 8 bytes unknown
4474                // next 4 bytes unknown, not always 0
4475                store32(&pData[40], pSamples->size());
4476                // next 4 bytes unknown
4477            }
4478    
4479            // update 3crc chunk
4480    
4481            // The 3crc chunk contains CRC-32 checksums for the
4482            // samples. The actual checksum values will be filled in
4483            // later, by Sample::Write.
4484    
4485            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4486            if (_3crc) {
4487                _3crc->Resize(pSamples->size() * 8);
4488            } else if (newFile) {
4489                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4490                _3crc->LoadChunkData();
4491    
4492                // the order of einf and 3crc is not the same in v2 and v3
4493                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4494          }          }
4495          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
4496    
4497        /**
4498         * Enable / disable automatic loading. By default this properyt is
4499         * enabled and all informations are loaded automatically. However
4500         * loading all Regions, DimensionRegions and especially samples might
4501         * take a long time for large .gig files, and sometimes one might only
4502         * be interested in retrieving very superficial informations like the
4503         * amount of instruments and their names. In this case one might disable
4504         * automatic loading to avoid very slow response times.
4505         *
4506         * @e CAUTION: by disabling this property many pointers (i.e. sample
4507         * references) and informations will have invalid or even undefined
4508         * data! This feature is currently only intended for retrieving very
4509         * superficial informations in a very fast way. Don't use it to retrieve
4510         * details like synthesis informations or even to modify .gig files!
4511         */
4512        void File::SetAutoLoad(bool b) {
4513            bAutoLoad = b;
4514        }
4515    
4516        /**
4517         * Returns whether automatic loading is enabled.
4518         * @see SetAutoLoad()
4519         */
4520        bool File::GetAutoLoad() {
4521            return bAutoLoad;
4522      }      }
4523    
4524    
# Line 1709  namespace gig { namespace { Line 4533  namespace gig { namespace {
4533          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
4534      }      }
4535    
4536    
4537    // *************** functions ***************
4538    // *
4539    
4540        /**
4541         * Returns the name of this C++ library. This is usually "libgig" of
4542         * course. This call is equivalent to RIFF::libraryName() and
4543         * DLS::libraryName().
4544         */
4545        String libraryName() {
4546            return PACKAGE;
4547        }
4548    
4549        /**
4550         * Returns version of this C++ library. This call is equivalent to
4551         * RIFF::libraryVersion() and DLS::libraryVersion().
4552         */
4553        String libraryVersion() {
4554            return VERSION;
4555        }
4556    
4557  } // namespace gig  } // namespace gig

Legend:
Removed from v.365  
changed lines
  Added in v.2484

  ViewVC Help
Powered by ViewVC