/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 352 by schoenebeck, Sat Jan 29 14:24:11 2005 UTC revision 3709 by schoenebeck, Fri Jan 10 11:21:59 2020 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2019 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30    #include <math.h>
31    #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38    /// Initial size of the sample buffer which is used for decompression of
39    /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59    #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
61    
62  namespace gig {  namespace gig {
63    
64    // *************** Internal functions for sample decompression ***************
65    // *
66    
67    namespace {
68    
69        inline int get12lo(const unsigned char* pSrc)
70        {
71            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72            return x & 0x800 ? x - 0x1000 : x;
73        }
74    
75        inline int get12hi(const unsigned char* pSrc)
76        {
77            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78            return x & 0x800 ? x - 0x1000 : x;
79        }
80    
81        inline int16_t get16(const unsigned char* pSrc)
82        {
83            return int16_t(pSrc[0] | pSrc[1] << 8);
84        }
85    
86        inline int get24(const unsigned char* pSrc)
87        {
88            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89            return x & 0x800000 ? x - 0x1000000 : x;
90        }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99        void Decompress16(int compressionmode, const unsigned char* params,
100                          int srcStep, int dstStep,
101                          const unsigned char* pSrc, int16_t* pDst,
102                          file_offset_t currentframeoffset,
103                          file_offset_t copysamples)
104        {
105            switch (compressionmode) {
106                case 0: // 16 bit uncompressed
107                    pSrc += currentframeoffset * srcStep;
108                    while (copysamples) {
109                        *pDst = get16(pSrc);
110                        pDst += dstStep;
111                        pSrc += srcStep;
112                        copysamples--;
113                    }
114                    break;
115    
116                case 1: // 16 bit compressed to 8 bit
117                    int y  = get16(params);
118                    int dy = get16(params + 2);
119                    while (currentframeoffset) {
120                        dy -= int8_t(*pSrc);
121                        y  -= dy;
122                        pSrc += srcStep;
123                        currentframeoffset--;
124                    }
125                    while (copysamples) {
126                        dy -= int8_t(*pSrc);
127                        y  -= dy;
128                        *pDst = y;
129                        pDst += dstStep;
130                        pSrc += srcStep;
131                        copysamples--;
132                    }
133                    break;
134            }
135        }
136    
137        void Decompress24(int compressionmode, const unsigned char* params,
138                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                          file_offset_t currentframeoffset,
140                          file_offset_t copysamples, int truncatedBits)
141        {
142            int y, dy, ddy, dddy;
143    
144    #define GET_PARAMS(params)                      \
145            y    = get24(params);                   \
146            dy   = y - get24((params) + 3);         \
147            ddy  = get24((params) + 6);             \
148            dddy = get24((params) + 9)
149    
150    #define SKIP_ONE(x)                             \
151            dddy -= (x);                            \
152            ddy  -= dddy;                           \
153            dy   =  -dy - ddy;                      \
154            y    += dy
155    
156    #define COPY_ONE(x)                             \
157            SKIP_ONE(x);                            \
158            store24(pDst, y << truncatedBits);      \
159            pDst += dstStep
160    
161            switch (compressionmode) {
162                case 2: // 24 bit uncompressed
163                    pSrc += currentframeoffset * 3;
164                    while (copysamples) {
165                        store24(pDst, get24(pSrc) << truncatedBits);
166                        pDst += dstStep;
167                        pSrc += 3;
168                        copysamples--;
169                    }
170                    break;
171    
172                case 3: // 24 bit compressed to 16 bit
173                    GET_PARAMS(params);
174                    while (currentframeoffset) {
175                        SKIP_ONE(get16(pSrc));
176                        pSrc += 2;
177                        currentframeoffset--;
178                    }
179                    while (copysamples) {
180                        COPY_ONE(get16(pSrc));
181                        pSrc += 2;
182                        copysamples--;
183                    }
184                    break;
185    
186                case 4: // 24 bit compressed to 12 bit
187                    GET_PARAMS(params);
188                    while (currentframeoffset > 1) {
189                        SKIP_ONE(get12lo(pSrc));
190                        SKIP_ONE(get12hi(pSrc));
191                        pSrc += 3;
192                        currentframeoffset -= 2;
193                    }
194                    if (currentframeoffset) {
195                        SKIP_ONE(get12lo(pSrc));
196                        currentframeoffset--;
197                        if (copysamples) {
198                            COPY_ONE(get12hi(pSrc));
199                            pSrc += 3;
200                            copysamples--;
201                        }
202                    }
203                    while (copysamples > 1) {
204                        COPY_ONE(get12lo(pSrc));
205                        COPY_ONE(get12hi(pSrc));
206                        pSrc += 3;
207                        copysamples -= 2;
208                    }
209                    if (copysamples) {
210                        COPY_ONE(get12lo(pSrc));
211                    }
212                    break;
213    
214                case 5: // 24 bit compressed to 8 bit
215                    GET_PARAMS(params);
216                    while (currentframeoffset) {
217                        SKIP_ONE(int8_t(*pSrc++));
218                        currentframeoffset--;
219                    }
220                    while (copysamples) {
221                        COPY_ONE(int8_t(*pSrc++));
222                        copysamples--;
223                    }
224                    break;
225            }
226        }
227    
228        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
229        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
231        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
232    }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
369      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
370    
371      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
372         *
373         * Load an existing sample or create a new one. A 'wave' list chunk must
374         * be given to this constructor. In case the given 'wave' list chunk
375         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376         * format and sample data will be loaded from there, otherwise default
377         * values will be used and those chunks will be created when
378         * File::Save() will be called later on.
379         *
380         * @param pFile          - pointer to gig::File where this sample is
381         *                         located (or will be located)
382         * @param waveList       - pointer to 'wave' list chunk which is (or
383         *                         will be) associated with this sample
384         * @param WavePoolOffset - offset of this sample data from wave pool
385         *                         ('wvpl') list chunk
386         * @param fileNo         - number of an extension file where this sample
387         *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389         */
390        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399            FileNo = fileNo;
400    
401          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
402          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          // if this is not a new sample, try to get the sample's already existing
403          SampleGroup = _3gix->ReadInt16();          // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          // user for the last time (by calling Sample::Write() that is).
406          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (index >= 0) { // not a new file ...
407          Manufacturer      = smpl->ReadInt32();              try {
408          Product           = smpl->ReadInt32();                  uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409          SamplePeriod      = smpl->ReadInt32();                  this->crc = crc;
410          MIDIUnityNote     = smpl->ReadInt32();              } catch (...) {}
411          FineTune          = smpl->ReadInt32();          }
412          smpl->Read(&SMPTEFormat, 1, 4);  
413          SMPTEOffset       = smpl->ReadInt32();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          Loops             = smpl->ReadInt32();          if (pCk3gix) {
415          uint32_t manufByt = smpl->ReadInt32();              pCk3gix->SetPos(0);
416          LoopID            = smpl->ReadInt32();  
417          smpl->Read(&LoopType, 1, 4);              uint16_t iSampleGroup = pCk3gix->ReadInt16();
418          LoopStart         = smpl->ReadInt32();              pGroup = pFile->GetGroup(iSampleGroup);
419          LoopEnd           = smpl->ReadInt32();          } else { // '3gix' chunk missing
420          LoopFraction      = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
421          LoopPlayCount     = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
422            }
423    
424            pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425            if (pCkSmpl) {
426                pCkSmpl->SetPos(0);
427    
428                Manufacturer  = pCkSmpl->ReadInt32();
429                Product       = pCkSmpl->ReadInt32();
430                SamplePeriod  = pCkSmpl->ReadInt32();
431                MIDIUnityNote = pCkSmpl->ReadInt32();
432                FineTune      = pCkSmpl->ReadInt32();
433                pCkSmpl->Read(&SMPTEFormat, 1, 4);
434                SMPTEOffset   = pCkSmpl->ReadInt32();
435                Loops         = pCkSmpl->ReadInt32();
436                pCkSmpl->ReadInt32(); // manufByt
437                LoopID        = pCkSmpl->ReadInt32();
438                pCkSmpl->Read(&LoopType, 1, 4);
439                LoopStart     = pCkSmpl->ReadInt32();
440                LoopEnd       = pCkSmpl->ReadInt32();
441                LoopFraction  = pCkSmpl->ReadInt32();
442                LoopPlayCount = pCkSmpl->ReadInt32();
443            } else { // 'smpl' chunk missing
444                // use default values
445                Manufacturer  = 0;
446                Product       = 0;
447                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448                MIDIUnityNote = 60;
449                FineTune      = 0;
450                SMPTEFormat   = smpte_format_no_offset;
451                SMPTEOffset   = 0;
452                Loops         = 0;
453                LoopID        = 0;
454                LoopType      = loop_type_normal;
455                LoopStart     = 0;
456                LoopEnd       = 0;
457                LoopFraction  = 0;
458                LoopPlayCount = 0;
459            }
460    
461          FrameTable                 = NULL;          FrameTable                 = NULL;
462          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 464  namespace gig {
464          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
465          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
466    
467          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468    
469            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470            Compressed        = ewav;
471            Dithered          = false;
472            TruncatedBits     = 0;
473          if (Compressed) {          if (Compressed) {
474                ewav->SetPos(0);
475    
476                uint32_t version = ewav->ReadInt32();
477                if (version > 2 && BitDepth == 24) {
478                    Dithered = ewav->ReadInt32();
479                    ewav->SetPos(Channels == 2 ? 84 : 64);
480                    TruncatedBits = ewav->ReadInt32();
481                }
482              ScanCompressedSample();              ScanCompressedSample();
483          }          }
484    
         if (BitDepth > 24)                throw gig::Exception("Only samples up to 24 bit supported");  
         if (Compressed && Channels == 1)  throw gig::Exception("Mono compressed samples not yet supported");  
         if (Compressed && BitDepth == 24) throw gig::Exception("24 bit compressed samples not yet supported");  
   
485          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486          if ((Compressed || BitDepth == 24) && !pDecompressionBuffer) {          if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487              pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488              DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
489            }
490            FrameOffset = 0; // just for streaming compressed samples
491    
492            LoopSize = LoopEnd - LoopStart + 1;
493        }
494    
495        /**
496         * Make a (semi) deep copy of the Sample object given by @a orig (without
497         * the actual waveform data) and assign it to this object.
498         *
499         * Discussion: copying .gig samples is a bit tricky. It requires three
500         * steps:
501         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502         *    its new sample waveform data size.
503         * 2. Saving the file (done by File::Save()) so that it gains correct size
504         *    and layout for writing the actual wave form data directly to disc
505         *    in next step.
506         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507         *
508         * @param orig - original Sample object to be copied from
509         */
510        void Sample::CopyAssignMeta(const Sample* orig) {
511            // handle base classes
512            DLS::Sample::CopyAssignCore(orig);
513            
514            // handle actual own attributes of this class
515            Manufacturer = orig->Manufacturer;
516            Product = orig->Product;
517            SamplePeriod = orig->SamplePeriod;
518            MIDIUnityNote = orig->MIDIUnityNote;
519            FineTune = orig->FineTune;
520            SMPTEFormat = orig->SMPTEFormat;
521            SMPTEOffset = orig->SMPTEOffset;
522            Loops = orig->Loops;
523            LoopID = orig->LoopID;
524            LoopType = orig->LoopType;
525            LoopStart = orig->LoopStart;
526            LoopEnd = orig->LoopEnd;
527            LoopSize = orig->LoopSize;
528            LoopFraction = orig->LoopFraction;
529            LoopPlayCount = orig->LoopPlayCount;
530            
531            // schedule resizing this sample to the given sample's size
532            Resize(orig->GetSize());
533        }
534    
535        /**
536         * Should be called after CopyAssignMeta() and File::Save() sequence.
537         * Read more about it in the discussion of CopyAssignMeta(). This method
538         * copies the actual waveform data by disk streaming.
539         *
540         * @e CAUTION: this method is currently not thread safe! During this
541         * operation the sample must not be used for other purposes by other
542         * threads!
543         *
544         * @param orig - original Sample object to be copied from
545         */
546        void Sample::CopyAssignWave(const Sample* orig) {
547            const int iReadAtOnce = 32*1024;
548            char* buf = new char[iReadAtOnce * orig->FrameSize];
549            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550            file_offset_t restorePos = pOrig->GetPos();
551            pOrig->SetPos(0);
552            SetPos(0);
553            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554                               n = pOrig->Read(buf, iReadAtOnce))
555            {
556                Write(buf, n);
557          }          }
558          FrameOffset = 0; // just for streaming compressed samples          pOrig->SetPos(restorePos);
559            delete [] buf;
560        }
561    
562          LoopSize = LoopEnd - LoopStart;      /**
563         * Apply sample and its settings to the respective RIFF chunks. You have
564         * to call File::Save() to make changes persistent.
565         *
566         * Usually there is absolutely no need to call this method explicitly.
567         * It will be called automatically when File::Save() was called.
568         *
569         * @param pProgress - callback function for progress notification
570         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571         *                        was provided yet
572         * @throws gig::Exception if there is any invalid sample setting
573         */
574        void Sample::UpdateChunks(progress_t* pProgress) {
575            // first update base class's chunks
576            DLS::Sample::UpdateChunks(pProgress);
577    
578            // make sure 'smpl' chunk exists
579            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580            if (!pCkSmpl) {
581                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582                memset(pCkSmpl->LoadChunkData(), 0, 60);
583            }
584            // update 'smpl' chunk
585            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587            store32(&pData[0], Manufacturer);
588            store32(&pData[4], Product);
589            store32(&pData[8], SamplePeriod);
590            store32(&pData[12], MIDIUnityNote);
591            store32(&pData[16], FineTune);
592            store32(&pData[20], SMPTEFormat);
593            store32(&pData[24], SMPTEOffset);
594            store32(&pData[28], Loops);
595    
596            // we skip 'manufByt' for now (4 bytes)
597    
598            store32(&pData[36], LoopID);
599            store32(&pData[40], LoopType);
600            store32(&pData[44], LoopStart);
601            store32(&pData[48], LoopEnd);
602            store32(&pData[52], LoopFraction);
603            store32(&pData[56], LoopPlayCount);
604    
605            // make sure '3gix' chunk exists
606            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608            // determine appropriate sample group index (to be stored in chunk)
609            uint16_t iSampleGroup = 0; // 0 refers to default sample group
610            File* pFile = static_cast<File*>(pParent);
611            if (pFile->pGroups) {
612                std::list<Group*>::iterator iter = pFile->pGroups->begin();
613                std::list<Group*>::iterator end  = pFile->pGroups->end();
614                for (int i = 0; iter != end; i++, iter++) {
615                    if (*iter == pGroup) {
616                        iSampleGroup = i;
617                        break; // found
618                    }
619                }
620            }
621            // update '3gix' chunk
622            pData = (uint8_t*) pCk3gix->LoadChunkData();
623            store16(&pData[0], iSampleGroup);
624    
625            // if the library user toggled the "Compressed" attribute from true to
626            // false, then the EWAV chunk associated with compressed samples needs
627            // to be deleted
628            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629            if (ewav && !Compressed) {
630                pWaveList->DeleteSubChunk(ewav);
631            }
632      }      }
633    
634      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
636          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
637          this->SamplesTotal = 0;          this->SamplesTotal = 0;
638          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
639    
640            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642    
643          // Scanning          // Scanning
644          pCkData->SetPos(0);          pCkData->SetPos(0);
645          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
646              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
647              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
648              this->SamplesTotal += 2048;                  // stored, to save some memory
649              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650                  case 1:   // left channel compressed  
651                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
652                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
653                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655    
656                    if (pCkData->RemainingBytes() <= frameSize) {
657                        SamplesInLastFrame =
658                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660                        SamplesTotal += SamplesInLastFrame;
661                      break;                      break;
662                  case 257: // both channels compressed                  }
663                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
664                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
665                }
666            }
667            else { // Mono
668                for (int i = 0 ; ; i++) {
669                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670    
671                    const int mode = pCkData->ReadUint8();
672                    if (mode > 5) throw gig::Exception("Unknown compression mode");
673                    const file_offset_t frameSize = bytesPerFrame[mode];
674    
675                    if (pCkData->RemainingBytes() <= frameSize) {
676                        SamplesInLastFrame =
677                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678                        SamplesTotal += SamplesInLastFrame;
679                      break;                      break;
680                  default: // both channels uncompressed                  }
681                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
682                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
683              }              }
684          }          }
685          pCkData->SetPos(0);          pCkData->SetPos(0);
686    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
687          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
689          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
690          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
691          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
693              FrameTable[i] = *iter;              FrameTable[i] = *iter;
694          }          }
# Line 147  namespace gig { Line 719  namespace gig {
719       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
720       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
721       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
722       *       * @code
723       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
724       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
725         * @endcode
726       *       *
727       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
728       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
729       *                      the cached sample data in bytes       *                      the cached sample data in bytes
730       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
731       */       */
732      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734      }      }
735    
# Line 195  namespace gig { Line 768  namespace gig {
768       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
769       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
770       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
771       *       * @code
772       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
774       *       * @endcode
775       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
776       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
777       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 215  namespace gig { Line 788  namespace gig {
788       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
789       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
790       */       */
791      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795            SetPos(0); // reset read position to begin of sample
796          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
797          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 256  namespace gig { Line 830  namespace gig {
830          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
832          RAMCache.Size   = 0;          RAMCache.Size   = 0;
833            RAMCache.NullExtensionSize = 0;
834        }
835    
836        /** @brief Resize sample.
837         *
838         * Resizes the sample's wave form data, that is the actual size of
839         * sample wave data possible to be written for this sample. This call
840         * will return immediately and just schedule the resize operation. You
841         * should call File::Save() to actually perform the resize operation(s)
842         * "physically" to the file. As this can take a while on large files, it
843         * is recommended to call Resize() first on all samples which have to be
844         * resized and finally to call File::Save() to perform all those resize
845         * operations in one rush.
846         *
847         * The actual size (in bytes) is dependant to the current FrameSize
848         * value. You may want to set FrameSize before calling Resize().
849         *
850         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851         * enlarged samples before calling File::Save() as this might exceed the
852         * current sample's boundary!
853         *
854         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856         * other formats will fail!
857         *
858         * @param NewSize - new sample wave data size in sample points (must be
859         *                  greater than zero)
860         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862         * @throws gig::Exception if existing sample is compressed
863         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864         *      DLS::Sample::FormatTag, File::Save()
865         */
866        void Sample::Resize(file_offset_t NewSize) {
867            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868            DLS::Sample::Resize(NewSize);
869      }      }
870    
871      /**      /**
# Line 279  namespace gig { Line 889  namespace gig {
889       * @returns            the new sample position       * @returns            the new sample position
890       * @see                Read()       * @see                Read()
891       */       */
892      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893          if (Compressed) {          if (Compressed) {
894              switch (Whence) {              switch (Whence) {
895                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 297  namespace gig { Line 907  namespace gig {
907              }              }
908              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
912              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
913              return this->SamplePos;              return this->SamplePos;
914          }          }
915          else { // not compressed          else { // not compressed
916              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
917              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
919                                              : result / this->FrameSize;                                              : result / this->FrameSize;
920          }          }
# Line 313  namespace gig { Line 923  namespace gig {
923      /**      /**
924       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
925       */       */
926      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
927          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
928          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
929      }      }
# Line 329  namespace gig { Line 939  namespace gig {
939       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
940       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
941       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
942       *       * @code
943       * <i>       * gig::playback_state_t playbackstate;
944       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
945       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
946       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
948       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
949       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
950       * The method already handles such cases by itself.       * The method already handles such cases by itself.
951       *       *
952         * <b>Caution:</b> If you are using more than one streaming thread, you
953         * have to use an external decompression buffer for <b>EACH</b>
954         * streaming thread to avoid race conditions and crashes!
955         *
956       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
957       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
958       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
959       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
960         * @param pDimRgn          dimension region with looping information
961         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
962       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
963         * @see                    CreateDecompressionBuffer()
964       */       */
965      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
969    
970          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
971    
972          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973    
974              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976    
977                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
978                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
979    
980                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
981                              // determine the end position within the loop first,                          do {
982                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
983                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984                              // backward playback  
985                                if (!pPlaybackState->reverse) { // forward playback
986                              unsigned long swapareastart       = totalreadsamples;                                  do {
987                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
988                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
990                                        totalreadsamples += readsamples;
991                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
992                                            pPlaybackState->reverse = true;
993                              // read samples for backward playback                                          break;
994                              do {                                      }
995                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
996                                  samplestoreadinloop -= readsamples;                              }
997                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
998    
999                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
1000                                    // determine the end position within the loop first,
1001                                    // read forward from that 'end' and finally after
1002                                    // reading, swap all sample frames so it reflects
1003                                    // backward playback
1004    
1005                                    file_offset_t swapareastart       = totalreadsamples;
1006                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1007                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1009    
1010                                    SetPos(reverseplaybackend);
1011    
1012                                    // read samples for backward playback
1013                                    do {
1014                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015                                        samplestoreadinloop -= readsamples;
1016                                        samplestoread       -= readsamples;
1017                                        totalreadsamples    += readsamples;
1018                                    } while (samplestoreadinloop && readsamples);
1019    
1020                                    SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022                                    if (reverseplaybackend == loop.LoopStart) {
1023                                        pPlaybackState->loop_cycles_left--;
1024                                        pPlaybackState->reverse = false;
1025                                    }
1026    
1027                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1028                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                              }                              }
1031                            } while (samplestoread && readsamples);
1032                            break;
1033                        }
1034    
1035                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1036                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1037                          }                          if (!pPlaybackState->reverse) do {
1038                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1039                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040                  }                              samplestoread    -= readsamples;
1041                                totalreadsamples += readsamples;
1042                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1043                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1044                      if (!pPlaybackState->reverse) do {                                  break;
1045                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1046                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1047    
1048                      if (!samplestoread) break;                          if (!samplestoread) break;
1049    
1050                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1051                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1052                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1053                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1054                      // backward playback                          // backward playback
1055    
1056                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1057                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1058                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059                                                                                : samplestoread;                                                                                    : samplestoread;
1060                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061    
1062                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1063    
1064                      // read samples for backward playback                          // read samples for backward playback
1065                      do {                          do {
1066                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1067                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1069                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1071                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1072                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1073                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1074                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1075                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1076                          }                              }
1077                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1078    
1079                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1080    
1081                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1082                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083                      break;                          break;
1084                  }                      }
1085    
1086                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1087                      do {                          do {
1088                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1089                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1091                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1093                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1094                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1095                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1096                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1097                          }                              }
1098                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1099                      break;                          break;
1100                        }
1101                  }                  }
1102              }              }
1103          }          }
1104    
1105          // read on without looping          // read on without looping
1106          if (samplestoread) do {          if (samplestoread) do {
1107              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1109              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1110          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 501  namespace gig { Line 1123  namespace gig {
1123       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124       * thus for disk streaming.       * thus for disk streaming.
1125       *       *
1126         * <b>Caution:</b> If you are using more than one streaming thread, you
1127         * have to use an external decompression buffer for <b>EACH</b>
1128         * streaming thread to avoid race conditions and crashes!
1129         *
1130         * For 16 bit samples, the data in the buffer will be int16_t
1131         * (using native endianness). For 24 bit, the buffer will
1132         * contain three bytes per sample, little-endian.
1133         *
1134       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1135       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1136         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1137       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1138       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1139       */       */
1140      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1142          if (!Compressed) {          if (!Compressed) {
1143              if (BitDepth == 24) {              if (BitDepth == 24) {
1144                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145                  int8_t* pSrc = (int8_t*)this->pDecompressionBuffer;              }
1146                  int8_t* pDst = (int8_t*)pBuffer;              else { // 16 bit
1147                  unsigned long n = pCkData->Read(pSrc, SampleCount, FrameSize);                  // (pCkData->Read does endian correction)
1148                  for (int i = SampleCount * (FrameSize / 3) ; i > 0 ; i--) {                  return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149                      pSrc++;                                       : pCkData->Read(pBuffer, SampleCount, 2);
                     *pDst++ = *pSrc++;  
                     *pDst++ = *pSrc++;  
                 }  
                 return SampleCount;  
             } else {  
                 return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?  
1150              }              }
1151          }          }
1152          else { //FIXME: no support for mono compressed samples yet, are there any?          else {
1153              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1154              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1155              // best case needed buffer size (all frames compressed)              file_offset_t assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1156                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1157                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1158                            copysamples;                            copysamples, skipsamples,
1159              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1160              this->FrameOffset = 0;              this->FrameOffset = 0;
1161    
1162              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163                  // local buffer reallocation - hope this won't happen  
1164                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1165                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1166                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1168                    remainingsamples = SampleCount;
1169                    assumedsize      = GuessSize(SampleCount);
1170              }              }
1171    
1172              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1178                    file_offset_t framesamples = SamplesPerFrame;
1179                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180                  if (remainingbytes < 8194) {  
1181                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1182                          this->SamplePos = this->SamplesTotal;  
1183                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1184                      }                      mode_r = *pSrc++;
1185                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1189                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1190                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1191                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1193                            else {
1194                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195                            }
1196                        }
1197                    }
1198                    else {
1199                        framebytes = bytesPerFrame[mode_l] + 1;
1200                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201                        if (remainingbytes < framebytes) {
1202                            framesamples = SamplesInLastFrame;
1203                        }
1204                  }                  }
1205    
1206                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1207                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1208                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1209                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1210                            skipsamples = currentframeoffset;
1211                        }
1212                        else {
1213                            copysamples = 0;
1214                            skipsamples = framesamples;
1215                        }
1216                  }                  }
1217                  else {                  else {
1218                        // This frame has enough data for pBuffer, but not
1219                        // all of the frame is needed. Set file position
1220                        // to start of this frame for next call to Read.
1221                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1222                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1223                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1225                      }                  }
1226                      else {                  remainingsamples -= copysamples;
1227    
1228                    if (remainingbytes > framebytes) {
1229                        remainingbytes -= framebytes;
1230                        if (remainingsamples == 0 &&
1231                            currentframeoffset + copysamples == framesamples) {
1232                            // This frame has enough data for pBuffer, and
1233                            // all of the frame is needed. Set file
1234                            // position to start of next frame for next
1235                            // call to Read. FrameOffset is 0.
1236                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1237                      }                      }
1238                  }                  }
1239                    else remainingbytes = 0;
1240    
1241                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1242                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1243                  switch (compressionmode) {                  if (copysamples == 0) {
1244                      case 1: // left channel compressed                      // skip this frame
1245                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1246                          if (!remainingsamples && copysamples == 2048)                  }
1247                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1248                        const unsigned char* const param_l = pSrc;
1249                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1250                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1251                          while (currentframeoffset) {  
1252                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1253                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1254                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1255                              currentframeoffset--;  
1256                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1258                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1260                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1261                          }                          }
1262                          while (copysamples) {                          else { // Mono
1263                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1265                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1266                          }                          }
1267                          break;                      }
1268                      case 257: // both channels compressed                      else { // 16 bit
1269                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1270                          if (!remainingsamples && copysamples == 2048)  
1271                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1272                            if (Channels == 2) { // Stereo
1273                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1274                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1275                          right  = *(int16_t*)pSrc; pSrc+=2;  
1276                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1277                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279                              left   -= dleft;                                           skipsamples, copysamples);
1280                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1281                          }                          }
1282                          while (copysamples) {                          else { // Mono
1283                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1284                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1286                          }                          }
1287                          break;                      }
1288                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1289                  }                  }
1290              }  
1291                    // reload from disk to local buffer if needed
1292                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293                        assumedsize    = GuessSize(remainingsamples);
1294                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298                    }
1299                } // while
1300    
1301              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1302              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1304          }          }
1305      }      }
1306    
1307        /** @brief Write sample wave data.
1308         *
1309         * Writes \a SampleCount number of sample points from the buffer pointed
1310         * by \a pBuffer and increments the position within the sample. Use this
1311         * method to directly write the sample data to disk, i.e. if you don't
1312         * want or cannot load the whole sample data into RAM.
1313         *
1314         * You have to Resize() the sample to the desired size and call
1315         * File::Save() <b>before</b> using Write().
1316         *
1317         * Note: there is currently no support for writing compressed samples.
1318         *
1319         * For 16 bit samples, the data in the source buffer should be
1320         * int16_t (using native endianness). For 24 bit, the buffer
1321         * should contain three bytes per sample, little-endian.
1322         *
1323         * @param pBuffer     - source buffer
1324         * @param SampleCount - number of sample points to write
1325         * @throws DLS::Exception if current sample size is too small
1326         * @throws gig::Exception if sample is compressed
1327         * @see DLS::LoadSampleData()
1328         */
1329        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331    
1332            // if this is the first write in this sample, reset the
1333            // checksum calculator
1334            if (pCkData->GetPos() == 0) {
1335                __resetCRC(crc);
1336            }
1337            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338            file_offset_t res;
1339            if (BitDepth == 24) {
1340                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341            } else { // 16 bit
1342                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343                                    : pCkData->Write(pBuffer, SampleCount, 2);
1344            }
1345            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346    
1347            // if this is the last write, update the checksum chunk in the
1348            // file
1349            if (pCkData->GetPos() == pCkData->GetSize()) {
1350                __finalizeCRC(crc);
1351                File* pFile = static_cast<File*>(GetParent());
1352                pFile->SetSampleChecksum(this, crc);
1353            }
1354            return res;
1355        }
1356    
1357        /**
1358         * Allocates a decompression buffer for streaming (compressed) samples
1359         * with Sample::Read(). If you are using more than one streaming thread
1360         * in your application you <b>HAVE</b> to create a decompression buffer
1361         * for <b>EACH</b> of your streaming threads and provide it with the
1362         * Sample::Read() call in order to avoid race conditions and crashes.
1363         *
1364         * You should free the memory occupied by the allocated buffer(s) once
1365         * you don't need one of your streaming threads anymore by calling
1366         * DestroyDecompressionBuffer().
1367         *
1368         * @param MaxReadSize - the maximum size (in sample points) you ever
1369         *                      expect to read with one Read() call
1370         * @returns allocated decompression buffer
1371         * @see DestroyDecompressionBuffer()
1372         */
1373        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374            buffer_t result;
1375            const double worstCaseHeaderOverhead =
1376                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378            result.pStart            = new int8_t[result.Size];
1379            result.NullExtensionSize = 0;
1380            return result;
1381        }
1382    
1383        /**
1384         * Free decompression buffer, previously created with
1385         * CreateDecompressionBuffer().
1386         *
1387         * @param DecompressionBuffer - previously allocated decompression
1388         *                              buffer to free
1389         */
1390        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392                delete[] (int8_t*) DecompressionBuffer.pStart;
1393                DecompressionBuffer.pStart = NULL;
1394                DecompressionBuffer.Size   = 0;
1395                DecompressionBuffer.NullExtensionSize = 0;
1396            }
1397        }
1398    
1399        /**
1400         * Returns pointer to the Group this Sample belongs to. In the .gig
1401         * format a sample always belongs to one group. If it wasn't explicitly
1402         * assigned to a certain group, it will be automatically assigned to a
1403         * default group.
1404         *
1405         * @returns Sample's Group (never NULL)
1406         */
1407        Group* Sample::GetGroup() const {
1408            return pGroup;
1409        }
1410    
1411        /**
1412         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413         * time when this sample's wave form data was modified for the last time
1414         * by calling Write(). This checksum only covers the raw wave form data,
1415         * not any meta informations like i.e. bit depth or loop points. Since
1416         * this method just returns the checksum stored for this sample i.e. when
1417         * the gig file was loaded, this method returns immediately. So it does no
1418         * recalcuation of the checksum with the currently available sample wave
1419         * form data.
1420         *
1421         * @see VerifyWaveData()
1422         */
1423        uint32_t Sample::GetWaveDataCRC32Checksum() {
1424            return crc;
1425        }
1426    
1427        /**
1428         * Checks the integrity of this sample's raw audio wave data. Whenever a
1429         * Sample's raw wave data is intentionally modified (i.e. by calling
1430         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431         * is calculated and stored/updated for this sample, along to the sample's
1432         * meta informations.
1433         *
1434         * Now by calling this method the current raw audio wave data is checked
1435         * against the already stored CRC32 check sum in order to check whether the
1436         * sample data had been damaged unintentionally for some reason. Since by
1437         * calling this method always the entire raw audio wave data has to be
1438         * read, verifying all samples this way may take a long time accordingly.
1439         * And that's also the reason why the sample integrity is not checked by
1440         * default whenever a gig file is loaded. So this method must be called
1441         * explicitly to fulfill this task.
1442         *
1443         * @param pActually - (optional) if provided, will be set to the actually
1444         *                    calculated checksum of the current raw wave form data,
1445         *                    you can get the expected checksum instead by calling
1446         *                    GetWaveDataCRC32Checksum()
1447         * @returns true if sample is OK or false if the sample is damaged
1448         * @throws Exception if no checksum had been stored to disk for this
1449         *         sample yet, or on I/O issues
1450         * @see GetWaveDataCRC32Checksum()
1451         */
1452        bool Sample::VerifyWaveData(uint32_t* pActually) {
1453            //File* pFile = static_cast<File*>(GetParent());
1454            uint32_t crc = CalculateWaveDataChecksum();
1455            if (pActually) *pActually = crc;
1456            return crc == this->crc;
1457        }
1458    
1459        uint32_t Sample::CalculateWaveDataChecksum() {
1460            const size_t sz = 20*1024; // 20kB buffer size
1461            std::vector<uint8_t> buffer(sz);
1462            buffer.resize(sz);
1463    
1464            const size_t n = sz / FrameSize;
1465            SetPos(0);
1466            uint32_t crc = 0;
1467            __resetCRC(crc);
1468            while (true) {
1469                file_offset_t nRead = Read(&buffer[0], n);
1470                if (nRead <= 0) break;
1471                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472            }
1473            __finalizeCRC(crc);
1474            return crc;
1475        }
1476    
1477      Sample::~Sample() {      Sample::~Sample() {
1478          Instances--;          Instances--;
1479          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1480                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481                InternalDecompressionBuffer.pStart = NULL;
1482                InternalDecompressionBuffer.Size   = 0;
1483            }
1484          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1485          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486      }      }
# Line 691  namespace gig { Line 1490  namespace gig {
1490  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1491  // *  // *
1492    
1493      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1494      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497          Instances++;          Instances++;
1498    
1499          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1500            pRegion = pParent;
1501    
1502            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503            else memset(&Crossfade, 0, 4);
1504    
1505          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506    
1507          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1509          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->SetPos(0);
1510          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());  
1511          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512          LFO1InternalDepth = _3ewa->ReadUint16();              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1515          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1516          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1517          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1518          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1519          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1ControlDepth = _3ewa->ReadUint16();
1520          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt16(); // unknown
1521          _3ewa->ReadInt16(); // unknown              LFO3ControlDepth = _3ewa->ReadInt16();
1522          EG1Sustain          = _3ewa->ReadUint16();              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              _3ewa->ReadInt16(); // unknown
1525          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Sustain          = _3ewa->ReadUint16();
1526          EG1ControllerInvert           = eg1ctrloptions & 0x01;              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1529          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1530          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532          EG2ControllerInvert           = eg2ctrloptions & 0x01;              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1535          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1536          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539          _3ewa->ReadInt16(); // unknown              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540          EG2Sustain       = _3ewa->ReadUint16();              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1543          LFO2ControlDepth = _3ewa->ReadUint16();              EG2Sustain       = _3ewa->ReadUint16();
1544          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1546          LFO2InternalDepth = _3ewa->ReadUint16();              LFO2ControlDepth = _3ewa->ReadUint16();
1547          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              _3ewa->ReadInt16(); // unknown
1549          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              LFO2InternalDepth = _3ewa->ReadUint16();
1550          _3ewa->ReadInt16(); // unknown              int32_t eg1decay2 = _3ewa->ReadInt32();
1551          EG1PreAttack      = _3ewa->ReadUint16();              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1552          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              _3ewa->ReadInt16(); // unknown
1554          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG1PreAttack      = _3ewa->ReadUint16();
1555          _3ewa->ReadInt16(); // unknown              int32_t eg2decay2 = _3ewa->ReadInt32();
1556          EG2PreAttack      = _3ewa->ReadUint16();              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1557          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558          if (velocityresponse < 5) {              _3ewa->ReadInt16(); // unknown
1559              VelocityResponseCurve = curve_type_nonlinear;              EG2PreAttack      = _3ewa->ReadUint16();
1560              VelocityResponseDepth = velocityresponse;              uint8_t velocityresponse = _3ewa->ReadUint8();
1561          }              if (velocityresponse < 5) {
1562          else if (velocityresponse < 10) {                  VelocityResponseCurve = curve_type_nonlinear;
1563              VelocityResponseCurve = curve_type_linear;                  VelocityResponseDepth = velocityresponse;
1564              VelocityResponseDepth = velocityresponse - 5;              } else if (velocityresponse < 10) {
1565          }                  VelocityResponseCurve = curve_type_linear;
1566          else if (velocityresponse < 15) {                  VelocityResponseDepth = velocityresponse - 5;
1567              VelocityResponseCurve = curve_type_special;              } else if (velocityresponse < 15) {
1568              VelocityResponseDepth = velocityresponse - 10;                  VelocityResponseCurve = curve_type_special;
1569                    VelocityResponseDepth = velocityresponse - 10;
1570                } else {
1571                    VelocityResponseCurve = curve_type_unknown;
1572                    VelocityResponseDepth = 0;
1573                }
1574                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575                if (releasevelocityresponse < 5) {
1576                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1578                } else if (releasevelocityresponse < 10) {
1579                    ReleaseVelocityResponseCurve = curve_type_linear;
1580                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581                } else if (releasevelocityresponse < 15) {
1582                    ReleaseVelocityResponseCurve = curve_type_special;
1583                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584                } else {
1585                    ReleaseVelocityResponseCurve = curve_type_unknown;
1586                    ReleaseVelocityResponseDepth = 0;
1587                }
1588                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589                AttenuationControllerThreshold = _3ewa->ReadInt8();
1590                _3ewa->ReadInt32(); // unknown
1591                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592                _3ewa->ReadInt16(); // unknown
1593                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597                else                                       DimensionBypass = dim_bypass_ctrl_none;
1598                uint8_t pan = _3ewa->ReadUint8();
1599                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600                SelfMask = _3ewa->ReadInt8() & 0x01;
1601                _3ewa->ReadInt8(); // unknown
1602                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1605                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1608                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1610                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1611                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1612                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1613                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1615                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1616                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617                                                            : vcf_res_ctrl_none;
1618                uint16_t eg3depth = _3ewa->ReadUint16();
1619                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621                _3ewa->ReadInt16(); // unknown
1622                ChannelOffset = _3ewa->ReadUint8() / 4;
1623                uint8_t regoptions = _3ewa->ReadUint8();
1624                MSDecode           = regoptions & 0x01; // bit 0
1625                SustainDefeat      = regoptions & 0x02; // bit 1
1626                _3ewa->ReadInt16(); // unknown
1627                VelocityUpperLimit = _3ewa->ReadInt8();
1628                _3ewa->ReadInt8(); // unknown
1629                _3ewa->ReadInt16(); // unknown
1630                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631                _3ewa->ReadInt8(); // unknown
1632                _3ewa->ReadInt8(); // unknown
1633                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634                uint8_t vcfcutoff = _3ewa->ReadUint8();
1635                VCFEnabled = vcfcutoff & 0x80; // bit 7
1636                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1637                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638                uint8_t vcfvelscale = _3ewa->ReadUint8();
1639                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641                _3ewa->ReadInt8(); // unknown
1642                uint8_t vcfresonance = _3ewa->ReadUint8();
1643                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1646                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1647                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648                uint8_t vcfvelocity = _3ewa->ReadUint8();
1649                VCFVelocityDynamicRange = vcfvelocity % 5;
1650                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1651                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652                if (VCFType == vcf_type_lowpass) {
1653                    if (lfo3ctrl & 0x40) // bit 6
1654                        VCFType = vcf_type_lowpassturbo;
1655                }
1656                if (_3ewa->RemainingBytes() >= 8) {
1657                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1658                } else {
1659                    memset(DimensionUpperLimits, 0, 8);
1660                }
1661            } else { // '3ewa' chunk does not exist yet
1662                // use default values
1663                LFO3Frequency                   = 1.0;
1664                EG3Attack                       = 0.0;
1665                LFO1InternalDepth               = 0;
1666                LFO3InternalDepth               = 0;
1667                LFO1ControlDepth                = 0;
1668                LFO3ControlDepth                = 0;
1669                EG1Attack                       = 0.0;
1670                EG1Decay1                       = 0.005;
1671                EG1Sustain                      = 1000;
1672                EG1Release                      = 0.3;
1673                EG1Controller.type              = eg1_ctrl_t::type_none;
1674                EG1Controller.controller_number = 0;
1675                EG1ControllerInvert             = false;
1676                EG1ControllerAttackInfluence    = 0;
1677                EG1ControllerDecayInfluence     = 0;
1678                EG1ControllerReleaseInfluence   = 0;
1679                EG2Controller.type              = eg2_ctrl_t::type_none;
1680                EG2Controller.controller_number = 0;
1681                EG2ControllerInvert             = false;
1682                EG2ControllerAttackInfluence    = 0;
1683                EG2ControllerDecayInfluence     = 0;
1684                EG2ControllerReleaseInfluence   = 0;
1685                LFO1Frequency                   = 1.0;
1686                EG2Attack                       = 0.0;
1687                EG2Decay1                       = 0.005;
1688                EG2Sustain                      = 1000;
1689                EG2Release                      = 60;
1690                LFO2ControlDepth                = 0;
1691                LFO2Frequency                   = 1.0;
1692                LFO2InternalDepth               = 0;
1693                EG1Decay2                       = 0.0;
1694                EG1InfiniteSustain              = true;
1695                EG1PreAttack                    = 0;
1696                EG2Decay2                       = 0.0;
1697                EG2InfiniteSustain              = true;
1698                EG2PreAttack                    = 0;
1699                VelocityResponseCurve           = curve_type_nonlinear;
1700                VelocityResponseDepth           = 3;
1701                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1702                ReleaseVelocityResponseDepth    = 3;
1703                VelocityResponseCurveScaling    = 32;
1704                AttenuationControllerThreshold  = 0;
1705                SampleStartOffset               = 0;
1706                PitchTrack                      = true;
1707                DimensionBypass                 = dim_bypass_ctrl_none;
1708                Pan                             = 0;
1709                SelfMask                        = true;
1710                LFO3Controller                  = lfo3_ctrl_modwheel;
1711                LFO3Sync                        = false;
1712                InvertAttenuationController     = false;
1713                AttenuationController.type      = attenuation_ctrl_t::type_none;
1714                AttenuationController.controller_number = 0;
1715                LFO2Controller                  = lfo2_ctrl_internal;
1716                LFO2FlipPhase                   = false;
1717                LFO2Sync                        = false;
1718                LFO1Controller                  = lfo1_ctrl_internal;
1719                LFO1FlipPhase                   = false;
1720                LFO1Sync                        = false;
1721                VCFResonanceController          = vcf_res_ctrl_none;
1722                EG3Depth                        = 0;
1723                ChannelOffset                   = 0;
1724                MSDecode                        = false;
1725                SustainDefeat                   = false;
1726                VelocityUpperLimit              = 0;
1727                ReleaseTriggerDecay             = 0;
1728                EG1Hold                         = false;
1729                VCFEnabled                      = false;
1730                VCFCutoff                       = 0;
1731                VCFCutoffController             = vcf_cutoff_ctrl_none;
1732                VCFCutoffControllerInvert       = false;
1733                VCFVelocityScale                = 0;
1734                VCFResonance                    = 0;
1735                VCFResonanceDynamic             = false;
1736                VCFKeyboardTracking             = false;
1737                VCFKeyboardTrackingBreakpoint   = 0;
1738                VCFVelocityDynamicRange         = 0x04;
1739                VCFVelocityCurve                = curve_type_linear;
1740                VCFType                         = vcf_type_lowpass;
1741                memset(DimensionUpperLimits, 127, 8);
1742          }          }
1743          else {  
1744              VelocityResponseCurve = curve_type_unknown;          // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745              VelocityResponseDepth = 0;          RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746            if (lsde) { // format extension for EG behavior options
1747                lsde->SetPos(0);
1748    
1749                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751                    unsigned char byte = lsde->ReadUint8();
1752                    pEGOpts[i]->AttackCancel     = byte & 1;
1753                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1755                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1756                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1757                }
1758          }          }
1759          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          // format extension for sustain pedal up effect on release trigger samples
1760          if (releasevelocityresponse < 5) {          if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761              ReleaseVelocityResponseCurve = curve_type_nonlinear;              lsde->SetPos(3);
1762              ReleaseVelocityResponseDepth = releasevelocityresponse;              uint8_t byte = lsde->ReadUint8();
1763          }              SustainReleaseTrigger   = static_cast<sust_rel_trg_t>(byte & 0x03);
1764          else if (releasevelocityresponse < 10) {              NoNoteOffReleaseTrigger = byte >> 7;
1765              ReleaseVelocityResponseCurve = curve_type_linear;          } else {
1766              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;              SustainReleaseTrigger   = sust_rel_trg_none;
1767          }              NoNoteOffReleaseTrigger = false;
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1768          }          }
1769          else {          // format extension for LFOs' wave form, phase displacement and for
1770              ReleaseVelocityResponseCurve = curve_type_unknown;          // LFO3's flip phase
1771              ReleaseVelocityResponseDepth = 0;          if (lsde && lsde->GetSize() > 4) {
1772                lsde->SetPos(4);
1773                LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774                LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775                LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776                lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777                LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778                LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779                LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780                const uint32_t flags = lsde->ReadInt32();
1781                LFO3FlipPhase = flags & 1;
1782            } else {
1783                LFO1WaveForm = lfo_wave_sine;
1784                LFO2WaveForm = lfo_wave_sine;
1785                LFO3WaveForm = lfo_wave_sine;
1786                LFO1Phase = 0.0;
1787                LFO2Phase = 0.0;
1788                LFO3Phase = 0.0;
1789                LFO3FlipPhase = false;
1790            }
1791    
1792            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793                                                         VelocityResponseDepth,
1794                                                         VelocityResponseCurveScaling);
1795    
1796            pVelocityReleaseTable = GetReleaseVelocityTable(
1797                                        ReleaseVelocityResponseCurve,
1798                                        ReleaseVelocityResponseDepth
1799                                    );
1800    
1801            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802                                                          VCFVelocityDynamicRange,
1803                                                          VCFVelocityScale,
1804                                                          VCFCutoffController);
1805    
1806            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807            VelocityTable = 0;
1808        }
1809    
1810        /*
1811         * Constructs a DimensionRegion by copying all parameters from
1812         * another DimensionRegion
1813         */
1814        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815            Instances++;
1816            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817            *this = src; // default memberwise shallow copy of all parameters
1818            pParentList = _3ewl; // restore the chunk pointer
1819    
1820            // deep copy of owned structures
1821            if (src.VelocityTable) {
1822                VelocityTable = new uint8_t[128];
1823                for (int k = 0 ; k < 128 ; k++)
1824                    VelocityTable[k] = src.VelocityTable[k];
1825            }
1826            if (src.pSampleLoops) {
1827                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828                for (int k = 0 ; k < src.SampleLoops ; k++)
1829                    pSampleLoops[k] = src.pSampleLoops[k];
1830            }
1831        }
1832        
1833        /**
1834         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835         * and assign it to this object.
1836         *
1837         * Note that all sample pointers referenced by @a orig are simply copied as
1838         * memory address. Thus the respective samples are shared, not duplicated!
1839         *
1840         * @param orig - original DimensionRegion object to be copied from
1841         */
1842        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843            CopyAssign(orig, NULL);
1844        }
1845    
1846        /**
1847         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848         * and assign it to this object.
1849         *
1850         * @param orig - original DimensionRegion object to be copied from
1851         * @param mSamples - crosslink map between the foreign file's samples and
1852         *                   this file's samples
1853         */
1854        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855            // delete all allocated data first
1856            if (VelocityTable) delete [] VelocityTable;
1857            if (pSampleLoops) delete [] pSampleLoops;
1858            
1859            // backup parent list pointer
1860            RIFF::List* p = pParentList;
1861            
1862            gig::Sample* pOriginalSample = pSample;
1863            gig::Region* pOriginalRegion = pRegion;
1864            
1865            //NOTE: copy code copied from assignment constructor above, see comment there as well
1866            
1867            *this = *orig; // default memberwise shallow copy of all parameters
1868            
1869            // restore members that shall not be altered
1870            pParentList = p; // restore the chunk pointer
1871            pRegion = pOriginalRegion;
1872            
1873            // only take the raw sample reference reference if the
1874            // two DimensionRegion objects are part of the same file
1875            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876                pSample = pOriginalSample;
1877            }
1878            
1879            if (mSamples && mSamples->count(orig->pSample)) {
1880                pSample = mSamples->find(orig->pSample)->second;
1881            }
1882    
1883            // deep copy of owned structures
1884            if (orig->VelocityTable) {
1885                VelocityTable = new uint8_t[128];
1886                for (int k = 0 ; k < 128 ; k++)
1887                    VelocityTable[k] = orig->VelocityTable[k];
1888            }
1889            if (orig->pSampleLoops) {
1890                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891                for (int k = 0 ; k < orig->SampleLoops ; k++)
1892                    pSampleLoops[k] = orig->pSampleLoops[k];
1893          }          }
1894          VelocityResponseCurveScaling = _3ewa->ReadUint8();      }
1895          AttenuationControllerThreshold = _3ewa->ReadInt8();  
1896          _3ewa->ReadInt32(); // unknown      void DimensionRegion::serialize(Serialization::Archive* archive) {
1897          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();          // in case this class will become backward incompatible one day,
1898          _3ewa->ReadInt16(); // unknown          // then set a version and minimum version for this class like:
1899          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();          //archive->setVersion(*this, 2);
1900          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);          //archive->setMinVersion(*this, 1);
1901          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
1902          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;          SRLZ(VelocityUpperLimit);
1903          else                                       DimensionBypass = dim_bypass_ctrl_none;          SRLZ(EG1PreAttack);
1904          uint8_t pan = _3ewa->ReadUint8();          SRLZ(EG1Attack);
1905          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit          SRLZ(EG1Decay1);
1906          SelfMask = _3ewa->ReadInt8() & 0x01;          SRLZ(EG1Decay2);
1907          _3ewa->ReadInt8(); // unknown          SRLZ(EG1InfiniteSustain);
1908          uint8_t lfo3ctrl = _3ewa->ReadUint8();          SRLZ(EG1Sustain);
1909          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits          SRLZ(EG1Release);
1910          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5          SRLZ(EG1Hold);
1911          InvertAttenuationController = lfo3ctrl & 0x80; // bit 7          SRLZ(EG1Controller);
1912          AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));          SRLZ(EG1ControllerInvert);
1913          uint8_t lfo2ctrl       = _3ewa->ReadUint8();          SRLZ(EG1ControllerAttackInfluence);
1914          LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits          SRLZ(EG1ControllerDecayInfluence);
1915          LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7          SRLZ(EG1ControllerReleaseInfluence);
1916          LFO2Sync               = lfo2ctrl & 0x20; // bit 5          SRLZ(LFO1WaveForm);
1917          bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6          SRLZ(LFO1Frequency);
1918          uint8_t lfo1ctrl       = _3ewa->ReadUint8();          SRLZ(LFO1Phase);
1919          LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits          SRLZ(LFO1InternalDepth);
1920          LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7          SRLZ(LFO1ControlDepth);
1921          LFO1Sync               = lfo1ctrl & 0x40; // bit 6          SRLZ(LFO1Controller);
1922          VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))          SRLZ(LFO1FlipPhase);
1923                                                      : vcf_res_ctrl_none;          SRLZ(LFO1Sync);
1924          uint16_t eg3depth = _3ewa->ReadUint16();          SRLZ(EG2PreAttack);
1925          EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */          SRLZ(EG2Attack);
1926                                        : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */          SRLZ(EG2Decay1);
1927          _3ewa->ReadInt16(); // unknown          SRLZ(EG2Decay2);
1928          ChannelOffset = _3ewa->ReadUint8() / 4;          SRLZ(EG2InfiniteSustain);
1929          uint8_t regoptions = _3ewa->ReadUint8();          SRLZ(EG2Sustain);
1930          MSDecode           = regoptions & 0x01; // bit 0          SRLZ(EG2Release);
1931          SustainDefeat      = regoptions & 0x02; // bit 1          SRLZ(EG2Controller);
1932          _3ewa->ReadInt16(); // unknown          SRLZ(EG2ControllerInvert);
1933          VelocityUpperLimit = _3ewa->ReadInt8();          SRLZ(EG2ControllerAttackInfluence);
1934          _3ewa->ReadInt8(); // unknown          SRLZ(EG2ControllerDecayInfluence);
1935          _3ewa->ReadInt16(); // unknown          SRLZ(EG2ControllerReleaseInfluence);
1936          ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay          SRLZ(LFO2WaveForm);
1937          _3ewa->ReadInt8(); // unknown          SRLZ(LFO2Frequency);
1938          _3ewa->ReadInt8(); // unknown          SRLZ(LFO2Phase);
1939          EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7          SRLZ(LFO2InternalDepth);
1940          uint8_t vcfcutoff = _3ewa->ReadUint8();          SRLZ(LFO2ControlDepth);
1941          VCFEnabled = vcfcutoff & 0x80; // bit 7          SRLZ(LFO2Controller);
1942          VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits          SRLZ(LFO2FlipPhase);
1943          VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());          SRLZ(LFO2Sync);
1944          VCFVelocityScale = _3ewa->ReadUint8();          SRLZ(EG3Attack);
1945          _3ewa->ReadInt8(); // unknown          SRLZ(EG3Depth);
1946          uint8_t vcfresonance = _3ewa->ReadUint8();          SRLZ(LFO3WaveForm);
1947          VCFResonance = vcfresonance & 0x7f; // lower 7 bits          SRLZ(LFO3Frequency);
1948          VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7          SRLZ(LFO3Phase);
1949          uint8_t vcfbreakpoint         = _3ewa->ReadUint8();          SRLZ(LFO3InternalDepth);
1950          VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7          SRLZ(LFO3ControlDepth);
1951          VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits          SRLZ(LFO3Controller);
1952          uint8_t vcfvelocity = _3ewa->ReadUint8();          SRLZ(LFO3FlipPhase);
1953          VCFVelocityDynamicRange = vcfvelocity % 5;          SRLZ(LFO3Sync);
1954          VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);          SRLZ(VCFEnabled);
1955          VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());          SRLZ(VCFType);
1956          if (VCFType == vcf_type_lowpass) {          SRLZ(VCFCutoffController);
1957              if (lfo3ctrl & 0x40) // bit 6          SRLZ(VCFCutoffControllerInvert);
1958                  VCFType = vcf_type_lowpassturbo;          SRLZ(VCFCutoff);
1959            SRLZ(VCFVelocityCurve);
1960            SRLZ(VCFVelocityScale);
1961            SRLZ(VCFVelocityDynamicRange);
1962            SRLZ(VCFResonance);
1963            SRLZ(VCFResonanceDynamic);
1964            SRLZ(VCFResonanceController);
1965            SRLZ(VCFKeyboardTracking);
1966            SRLZ(VCFKeyboardTrackingBreakpoint);
1967            SRLZ(VelocityResponseCurve);
1968            SRLZ(VelocityResponseDepth);
1969            SRLZ(VelocityResponseCurveScaling);
1970            SRLZ(ReleaseVelocityResponseCurve);
1971            SRLZ(ReleaseVelocityResponseDepth);
1972            SRLZ(ReleaseTriggerDecay);
1973            SRLZ(Crossfade);
1974            SRLZ(PitchTrack);
1975            SRLZ(DimensionBypass);
1976            SRLZ(Pan);
1977            SRLZ(SelfMask);
1978            SRLZ(AttenuationController);
1979            SRLZ(InvertAttenuationController);
1980            SRLZ(AttenuationControllerThreshold);
1981            SRLZ(ChannelOffset);
1982            SRLZ(SustainDefeat);
1983            SRLZ(MSDecode);
1984            //SRLZ(SampleStartOffset);
1985            SRLZ(SampleAttenuation);
1986            SRLZ(EG1Options);
1987            SRLZ(EG2Options);
1988            SRLZ(SustainReleaseTrigger);
1989            SRLZ(NoNoteOffReleaseTrigger);
1990    
1991            // derived attributes from DLS::Sampler
1992            SRLZ(FineTune);
1993            SRLZ(Gain);
1994        }
1995    
1996        /**
1997         * Updates the respective member variable and updates @c SampleAttenuation
1998         * which depends on this value.
1999         */
2000        void DimensionRegion::SetGain(int32_t gain) {
2001            DLS::Sampler::SetGain(gain);
2002            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003        }
2004    
2005        /**
2006         * Apply dimension region settings to the respective RIFF chunks. You
2007         * have to call File::Save() to make changes persistent.
2008         *
2009         * Usually there is absolutely no need to call this method explicitly.
2010         * It will be called automatically when File::Save() was called.
2011         *
2012         * @param pProgress - callback function for progress notification
2013         */
2014        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015            // first update base class's chunk
2016            DLS::Sampler::UpdateChunks(pProgress);
2017    
2018            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020            pData[12] = Crossfade.in_start;
2021            pData[13] = Crossfade.in_end;
2022            pData[14] = Crossfade.out_start;
2023            pData[15] = Crossfade.out_end;
2024    
2025            // make sure '3ewa' chunk exists
2026            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027            if (!_3ewa) {
2028                File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031            }
2032            pData = (uint8_t*) _3ewa->LoadChunkData();
2033    
2034            // update '3ewa' chunk with DimensionRegion's current settings
2035    
2036            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037            store32(&pData[0], chunksize); // unknown, always chunk size?
2038    
2039            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040            store32(&pData[4], lfo3freq);
2041    
2042            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043            store32(&pData[8], eg3attack);
2044    
2045            // next 2 bytes unknown
2046    
2047            store16(&pData[14], LFO1InternalDepth);
2048    
2049            // next 2 bytes unknown
2050    
2051            store16(&pData[18], LFO3InternalDepth);
2052    
2053            // next 2 bytes unknown
2054    
2055            store16(&pData[22], LFO1ControlDepth);
2056    
2057            // next 2 bytes unknown
2058    
2059            store16(&pData[26], LFO3ControlDepth);
2060    
2061            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062            store32(&pData[28], eg1attack);
2063    
2064            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065            store32(&pData[32], eg1decay1);
2066    
2067            // next 2 bytes unknown
2068    
2069            store16(&pData[38], EG1Sustain);
2070    
2071            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072            store32(&pData[40], eg1release);
2073    
2074            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075            pData[44] = eg1ctl;
2076    
2077            const uint8_t eg1ctrloptions =
2078                (EG1ControllerInvert ? 0x01 : 0x00) |
2079                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082            pData[45] = eg1ctrloptions;
2083    
2084            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085            pData[46] = eg2ctl;
2086    
2087            const uint8_t eg2ctrloptions =
2088                (EG2ControllerInvert ? 0x01 : 0x00) |
2089                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092            pData[47] = eg2ctrloptions;
2093    
2094            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095            store32(&pData[48], lfo1freq);
2096    
2097            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098            store32(&pData[52], eg2attack);
2099    
2100            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101            store32(&pData[56], eg2decay1);
2102    
2103            // next 2 bytes unknown
2104    
2105            store16(&pData[62], EG2Sustain);
2106    
2107            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108            store32(&pData[64], eg2release);
2109    
2110            // next 2 bytes unknown
2111    
2112            store16(&pData[70], LFO2ControlDepth);
2113    
2114            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115            store32(&pData[72], lfo2freq);
2116    
2117            // next 2 bytes unknown
2118    
2119            store16(&pData[78], LFO2InternalDepth);
2120    
2121            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122            store32(&pData[80], eg1decay2);
2123    
2124            // next 2 bytes unknown
2125    
2126            store16(&pData[86], EG1PreAttack);
2127    
2128            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129            store32(&pData[88], eg2decay2);
2130    
2131            // next 2 bytes unknown
2132    
2133            store16(&pData[94], EG2PreAttack);
2134    
2135            {
2136                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137                uint8_t velocityresponse = VelocityResponseDepth;
2138                switch (VelocityResponseCurve) {
2139                    case curve_type_nonlinear:
2140                        break;
2141                    case curve_type_linear:
2142                        velocityresponse += 5;
2143                        break;
2144                    case curve_type_special:
2145                        velocityresponse += 10;
2146                        break;
2147                    case curve_type_unknown:
2148                    default:
2149                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150                }
2151                pData[96] = velocityresponse;
2152            }
2153    
2154            {
2155                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157                switch (ReleaseVelocityResponseCurve) {
2158                    case curve_type_nonlinear:
2159                        break;
2160                    case curve_type_linear:
2161                        releasevelocityresponse += 5;
2162                        break;
2163                    case curve_type_special:
2164                        releasevelocityresponse += 10;
2165                        break;
2166                    case curve_type_unknown:
2167                    default:
2168                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169                }
2170                pData[97] = releasevelocityresponse;
2171          }          }
2172    
2173          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          pData[98] = VelocityResponseCurveScaling;
2174          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;  
2175            pData[99] = AttenuationControllerThreshold;
2176    
2177            // next 4 bytes unknown
2178    
2179            store16(&pData[104], SampleStartOffset);
2180    
2181            // next 2 bytes unknown
2182    
2183            {
2184                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185                switch (DimensionBypass) {
2186                    case dim_bypass_ctrl_94:
2187                        pitchTrackDimensionBypass |= 0x10;
2188                        break;
2189                    case dim_bypass_ctrl_95:
2190                        pitchTrackDimensionBypass |= 0x20;
2191                        break;
2192                    case dim_bypass_ctrl_none:
2193                        //FIXME: should we set anything here?
2194                        break;
2195                    default:
2196                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197                }
2198                pData[108] = pitchTrackDimensionBypass;
2199            }
2200    
2201            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202            pData[109] = pan;
2203    
2204            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205            pData[110] = selfmask;
2206    
2207            // next byte unknown
2208    
2209            {
2210                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214                pData[112] = lfo3ctrl;
2215            }
2216    
2217            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218            pData[113] = attenctl;
2219    
2220            {
2221                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2224                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225                pData[114] = lfo2ctrl;
2226            }
2227    
2228            {
2229                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2232                if (VCFResonanceController != vcf_res_ctrl_none)
2233                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234                pData[115] = lfo1ctrl;
2235            }
2236    
2237            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239            store16(&pData[116], eg3depth);
2240    
2241            // next 2 bytes unknown
2242    
2243            const uint8_t channeloffset = ChannelOffset * 4;
2244            pData[120] = channeloffset;
2245    
2246            {
2247                uint8_t regoptions = 0;
2248                if (MSDecode)      regoptions |= 0x01; // bit 0
2249                if (SustainDefeat) regoptions |= 0x02; // bit 1
2250                pData[121] = regoptions;
2251            }
2252    
2253            // next 2 bytes unknown
2254    
2255            pData[124] = VelocityUpperLimit;
2256    
2257            // next 3 bytes unknown
2258    
2259            pData[128] = ReleaseTriggerDecay;
2260    
2261            // next 2 bytes unknown
2262    
2263            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264            pData[131] = eg1hold;
2265    
2266            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2267                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2268            pData[132] = vcfcutoff;
2269    
2270            pData[133] = VCFCutoffController;
2271    
2272            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274            pData[134] = vcfvelscale;
2275    
2276            // next byte unknown
2277    
2278            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279                                         (VCFResonance & 0x7f); /* lower 7 bits */
2280            pData[136] = vcfresonance;
2281    
2282            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284            pData[137] = vcfbreakpoint;
2285    
2286            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287                                        VCFVelocityCurve * 5;
2288            pData[138] = vcfvelocity;
2289    
2290            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291            pData[139] = vcftype;
2292    
2293            if (chunksize >= 148) {
2294                memcpy(&pData[140], DimensionUpperLimits, 8);
2295            }
2296    
2297            // chunk for own format extensions, these will *NOT* work with
2298            // Gigasampler/GigaStudio !
2299            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300            const int lsdeSize =
2301                3 /* EG cancel options */ +
2302                1 /* sustain pedal up on release trigger option */ +
2303                8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304            if (!lsde && UsesAnyGigFormatExtension()) {
2305                // only add this "LSDE" chunk if there is some (format extension)
2306                // setting effective that would require our "LSDE" format extension
2307                // chunk to be stored
2308                lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309                // move LSDE chunk to the end of parent list
2310                pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311            }
2312            if (lsde) {
2313                if (lsde->GetNewSize() < lsdeSize)
2314                    lsde->Resize(lsdeSize);
2315                // format extension for EG behavior options
2316                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319                    pData[i] =
2320                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2321                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2323                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2324                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2325                }
2326                // format extension for release trigger options
2327                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328                // format extension for LFOs' wave form, phase displacement and for
2329                // LFO3's flip phase
2330                store16(&pData[4], LFO1WaveForm);
2331                store16(&pData[6], LFO2WaveForm);
2332                store16(&pData[8], LFO3WaveForm);
2333                //NOTE: 16 bits reserved here for potential future use !
2334                const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335                const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336                const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337                store32(&pData[12], lfo1Phase);
2338                store32(&pData[16], lfo2Phase);
2339                store32(&pData[20], lfo3Phase);
2340                const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341                store32(&pData[24], flags);
2342    
2343                // compile time sanity check: is our last store access here
2344                // consistent with the initial lsdeSize value assignment?
2345                static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346            }
2347        }
2348    
2349        /**
2350         * Returns @c true in case this DimensionRegion object uses any gig format
2351         * extension, that is whether this DimensionRegion object currently has any
2352         * setting effective that would require our "LSDE" RIFF chunk to be stored
2353         * to the gig file.
2354         *
2355         * Right now this is a private method. It is considerable though this method
2356         * to become (in slightly modified form) a public API method in future, i.e.
2357         * to allow instrument editors to visualize and/or warn the user of any
2358         * format extension being used. Right now this method really just serves to
2359         * answer the question whether an LSDE chunk is required, for the public API
2360         * purpose this method would also need to check whether any other setting
2361         * stored to the regular value '3ewa' chunk, is actually a format extension
2362         * as well.
2363         */
2364        bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365            eg_opt_t defaultOpt;
2366            return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367                   memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368                   SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369                   LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370                   LFO1Phase || LFO2Phase || LFO3Phase ||
2371                   LFO3FlipPhase;
2372        }
2373    
2374        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375            curve_type_t curveType = releaseVelocityResponseCurve;
2376            uint8_t depth = releaseVelocityResponseDepth;
2377            // this models a strange behaviour or bug in GSt: two of the
2378            // velocity response curves for release time are not used even
2379            // if specified, instead another curve is chosen.
2380            if ((curveType == curve_type_nonlinear && depth == 0) ||
2381                (curveType == curve_type_special   && depth == 4)) {
2382                curveType = curve_type_nonlinear;
2383                depth = 3;
2384            }
2385            return GetVelocityTable(curveType, depth, 0);
2386        }
2387    
2388        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389                                                        uint8_t vcfVelocityDynamicRange,
2390                                                        uint8_t vcfVelocityScale,
2391                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2392        {
2393            curve_type_t curveType = vcfVelocityCurve;
2394            uint8_t depth = vcfVelocityDynamicRange;
2395            // even stranger GSt: two of the velocity response curves for
2396            // filter cutoff are not used, instead another special curve
2397            // is chosen. This curve is not used anywhere else.
2398            if ((curveType == curve_type_nonlinear && depth == 0) ||
2399                (curveType == curve_type_special   && depth == 4)) {
2400                curveType = curve_type_special;
2401                depth = 5;
2402            }
2403            return GetVelocityTable(curveType, depth,
2404                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405                                        ? vcfVelocityScale : 0);
2406        }
2407    
2408        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410        {
2411            // sanity check input parameters
2412            // (fallback to some default parameters on ill input)
2413            switch (curveType) {
2414                case curve_type_nonlinear:
2415                case curve_type_linear:
2416                    if (depth > 4) {
2417                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418                        depth   = 0;
2419                        scaling = 0;
2420                    }
2421                    break;
2422                case curve_type_special:
2423                    if (depth > 5) {
2424                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425                        depth   = 0;
2426                        scaling = 0;
2427                    }
2428                    break;
2429                case curve_type_unknown:
2430                default:
2431                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432                    curveType = curve_type_linear;
2433                    depth     = 0;
2434                    scaling   = 0;
2435                    break;
2436            }
2437    
2438            double* table;
2439            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
2441              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
2442          }          }
2443          else {          else {
2444              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
2445                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
2446          }          }
2447            return table;
2448        }
2449    
2450        Region* DimensionRegion::GetParent() const {
2451            return pRegion;
2452      }      }
2453    
2454    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457    //#pragma GCC diagnostic push
2458    //#pragma GCC diagnostic error "-Wswitch"
2459    
2460      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2462          switch (EncodedController) {          switch (EncodedController) {
# Line 976  namespace gig { Line 2568  namespace gig {
2568                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2569                  break;                  break;
2570    
2571                // format extension (these controllers are so far only supported by
2572                // LinuxSampler & gigedit) they will *NOT* work with
2573                // Gigasampler/GigaStudio !
2574                case _lev_ctrl_CC3_EXT:
2575                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576                    decodedcontroller.controller_number = 3;
2577                    break;
2578                case _lev_ctrl_CC6_EXT:
2579                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580                    decodedcontroller.controller_number = 6;
2581                    break;
2582                case _lev_ctrl_CC7_EXT:
2583                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584                    decodedcontroller.controller_number = 7;
2585                    break;
2586                case _lev_ctrl_CC8_EXT:
2587                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588                    decodedcontroller.controller_number = 8;
2589                    break;
2590                case _lev_ctrl_CC9_EXT:
2591                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592                    decodedcontroller.controller_number = 9;
2593                    break;
2594                case _lev_ctrl_CC10_EXT:
2595                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596                    decodedcontroller.controller_number = 10;
2597                    break;
2598                case _lev_ctrl_CC11_EXT:
2599                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600                    decodedcontroller.controller_number = 11;
2601                    break;
2602                case _lev_ctrl_CC14_EXT:
2603                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604                    decodedcontroller.controller_number = 14;
2605                    break;
2606                case _lev_ctrl_CC15_EXT:
2607                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608                    decodedcontroller.controller_number = 15;
2609                    break;
2610                case _lev_ctrl_CC20_EXT:
2611                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612                    decodedcontroller.controller_number = 20;
2613                    break;
2614                case _lev_ctrl_CC21_EXT:
2615                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616                    decodedcontroller.controller_number = 21;
2617                    break;
2618                case _lev_ctrl_CC22_EXT:
2619                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620                    decodedcontroller.controller_number = 22;
2621                    break;
2622                case _lev_ctrl_CC23_EXT:
2623                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624                    decodedcontroller.controller_number = 23;
2625                    break;
2626                case _lev_ctrl_CC24_EXT:
2627                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628                    decodedcontroller.controller_number = 24;
2629                    break;
2630                case _lev_ctrl_CC25_EXT:
2631                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632                    decodedcontroller.controller_number = 25;
2633                    break;
2634                case _lev_ctrl_CC26_EXT:
2635                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636                    decodedcontroller.controller_number = 26;
2637                    break;
2638                case _lev_ctrl_CC27_EXT:
2639                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640                    decodedcontroller.controller_number = 27;
2641                    break;
2642                case _lev_ctrl_CC28_EXT:
2643                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644                    decodedcontroller.controller_number = 28;
2645                    break;
2646                case _lev_ctrl_CC29_EXT:
2647                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648                    decodedcontroller.controller_number = 29;
2649                    break;
2650                case _lev_ctrl_CC30_EXT:
2651                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652                    decodedcontroller.controller_number = 30;
2653                    break;
2654                case _lev_ctrl_CC31_EXT:
2655                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656                    decodedcontroller.controller_number = 31;
2657                    break;
2658                case _lev_ctrl_CC68_EXT:
2659                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660                    decodedcontroller.controller_number = 68;
2661                    break;
2662                case _lev_ctrl_CC69_EXT:
2663                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664                    decodedcontroller.controller_number = 69;
2665                    break;
2666                case _lev_ctrl_CC70_EXT:
2667                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668                    decodedcontroller.controller_number = 70;
2669                    break;
2670                case _lev_ctrl_CC71_EXT:
2671                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672                    decodedcontroller.controller_number = 71;
2673                    break;
2674                case _lev_ctrl_CC72_EXT:
2675                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676                    decodedcontroller.controller_number = 72;
2677                    break;
2678                case _lev_ctrl_CC73_EXT:
2679                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680                    decodedcontroller.controller_number = 73;
2681                    break;
2682                case _lev_ctrl_CC74_EXT:
2683                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684                    decodedcontroller.controller_number = 74;
2685                    break;
2686                case _lev_ctrl_CC75_EXT:
2687                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688                    decodedcontroller.controller_number = 75;
2689                    break;
2690                case _lev_ctrl_CC76_EXT:
2691                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692                    decodedcontroller.controller_number = 76;
2693                    break;
2694                case _lev_ctrl_CC77_EXT:
2695                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696                    decodedcontroller.controller_number = 77;
2697                    break;
2698                case _lev_ctrl_CC78_EXT:
2699                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700                    decodedcontroller.controller_number = 78;
2701                    break;
2702                case _lev_ctrl_CC79_EXT:
2703                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704                    decodedcontroller.controller_number = 79;
2705                    break;
2706                case _lev_ctrl_CC84_EXT:
2707                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708                    decodedcontroller.controller_number = 84;
2709                    break;
2710                case _lev_ctrl_CC85_EXT:
2711                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712                    decodedcontroller.controller_number = 85;
2713                    break;
2714                case _lev_ctrl_CC86_EXT:
2715                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716                    decodedcontroller.controller_number = 86;
2717                    break;
2718                case _lev_ctrl_CC87_EXT:
2719                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720                    decodedcontroller.controller_number = 87;
2721                    break;
2722                case _lev_ctrl_CC89_EXT:
2723                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724                    decodedcontroller.controller_number = 89;
2725                    break;
2726                case _lev_ctrl_CC90_EXT:
2727                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728                    decodedcontroller.controller_number = 90;
2729                    break;
2730                case _lev_ctrl_CC96_EXT:
2731                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732                    decodedcontroller.controller_number = 96;
2733                    break;
2734                case _lev_ctrl_CC97_EXT:
2735                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736                    decodedcontroller.controller_number = 97;
2737                    break;
2738                case _lev_ctrl_CC102_EXT:
2739                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740                    decodedcontroller.controller_number = 102;
2741                    break;
2742                case _lev_ctrl_CC103_EXT:
2743                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744                    decodedcontroller.controller_number = 103;
2745                    break;
2746                case _lev_ctrl_CC104_EXT:
2747                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748                    decodedcontroller.controller_number = 104;
2749                    break;
2750                case _lev_ctrl_CC105_EXT:
2751                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752                    decodedcontroller.controller_number = 105;
2753                    break;
2754                case _lev_ctrl_CC106_EXT:
2755                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756                    decodedcontroller.controller_number = 106;
2757                    break;
2758                case _lev_ctrl_CC107_EXT:
2759                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760                    decodedcontroller.controller_number = 107;
2761                    break;
2762                case _lev_ctrl_CC108_EXT:
2763                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764                    decodedcontroller.controller_number = 108;
2765                    break;
2766                case _lev_ctrl_CC109_EXT:
2767                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768                    decodedcontroller.controller_number = 109;
2769                    break;
2770                case _lev_ctrl_CC110_EXT:
2771                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772                    decodedcontroller.controller_number = 110;
2773                    break;
2774                case _lev_ctrl_CC111_EXT:
2775                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776                    decodedcontroller.controller_number = 111;
2777                    break;
2778                case _lev_ctrl_CC112_EXT:
2779                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780                    decodedcontroller.controller_number = 112;
2781                    break;
2782                case _lev_ctrl_CC113_EXT:
2783                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784                    decodedcontroller.controller_number = 113;
2785                    break;
2786                case _lev_ctrl_CC114_EXT:
2787                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788                    decodedcontroller.controller_number = 114;
2789                    break;
2790                case _lev_ctrl_CC115_EXT:
2791                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792                    decodedcontroller.controller_number = 115;
2793                    break;
2794                case _lev_ctrl_CC116_EXT:
2795                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796                    decodedcontroller.controller_number = 116;
2797                    break;
2798                case _lev_ctrl_CC117_EXT:
2799                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800                    decodedcontroller.controller_number = 117;
2801                    break;
2802                case _lev_ctrl_CC118_EXT:
2803                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804                    decodedcontroller.controller_number = 118;
2805                    break;
2806                case _lev_ctrl_CC119_EXT:
2807                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808                    decodedcontroller.controller_number = 119;
2809                    break;
2810    
2811              // unknown controller type              // unknown controller type
2812              default:              default:
2813                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2814                    decodedcontroller.controller_number = 0;
2815                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816                    break;
2817          }          }
2818          return decodedcontroller;          return decodedcontroller;
2819      }      }
2820        
2821    // see above (diagnostic push not supported prior GCC 4.6)
2822    //#pragma GCC diagnostic pop
2823    
2824        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825            _lev_ctrl_t encodedcontroller;
2826            switch (DecodedController.type) {
2827                // special controller
2828                case leverage_ctrl_t::type_none:
2829                    encodedcontroller = _lev_ctrl_none;
2830                    break;
2831                case leverage_ctrl_t::type_velocity:
2832                    encodedcontroller = _lev_ctrl_velocity;
2833                    break;
2834                case leverage_ctrl_t::type_channelaftertouch:
2835                    encodedcontroller = _lev_ctrl_channelaftertouch;
2836                    break;
2837    
2838                // ordinary MIDI control change controller
2839                case leverage_ctrl_t::type_controlchange:
2840                    switch (DecodedController.controller_number) {
2841                        case 1:
2842                            encodedcontroller = _lev_ctrl_modwheel;
2843                            break;
2844                        case 2:
2845                            encodedcontroller = _lev_ctrl_breath;
2846                            break;
2847                        case 4:
2848                            encodedcontroller = _lev_ctrl_foot;
2849                            break;
2850                        case 12:
2851                            encodedcontroller = _lev_ctrl_effect1;
2852                            break;
2853                        case 13:
2854                            encodedcontroller = _lev_ctrl_effect2;
2855                            break;
2856                        case 16:
2857                            encodedcontroller = _lev_ctrl_genpurpose1;
2858                            break;
2859                        case 17:
2860                            encodedcontroller = _lev_ctrl_genpurpose2;
2861                            break;
2862                        case 18:
2863                            encodedcontroller = _lev_ctrl_genpurpose3;
2864                            break;
2865                        case 19:
2866                            encodedcontroller = _lev_ctrl_genpurpose4;
2867                            break;
2868                        case 5:
2869                            encodedcontroller = _lev_ctrl_portamentotime;
2870                            break;
2871                        case 64:
2872                            encodedcontroller = _lev_ctrl_sustainpedal;
2873                            break;
2874                        case 65:
2875                            encodedcontroller = _lev_ctrl_portamento;
2876                            break;
2877                        case 66:
2878                            encodedcontroller = _lev_ctrl_sostenutopedal;
2879                            break;
2880                        case 67:
2881                            encodedcontroller = _lev_ctrl_softpedal;
2882                            break;
2883                        case 80:
2884                            encodedcontroller = _lev_ctrl_genpurpose5;
2885                            break;
2886                        case 81:
2887                            encodedcontroller = _lev_ctrl_genpurpose6;
2888                            break;
2889                        case 82:
2890                            encodedcontroller = _lev_ctrl_genpurpose7;
2891                            break;
2892                        case 83:
2893                            encodedcontroller = _lev_ctrl_genpurpose8;
2894                            break;
2895                        case 91:
2896                            encodedcontroller = _lev_ctrl_effect1depth;
2897                            break;
2898                        case 92:
2899                            encodedcontroller = _lev_ctrl_effect2depth;
2900                            break;
2901                        case 93:
2902                            encodedcontroller = _lev_ctrl_effect3depth;
2903                            break;
2904                        case 94:
2905                            encodedcontroller = _lev_ctrl_effect4depth;
2906                            break;
2907                        case 95:
2908                            encodedcontroller = _lev_ctrl_effect5depth;
2909                            break;
2910    
2911                        // format extension (these controllers are so far only
2912                        // supported by LinuxSampler & gigedit) they will *NOT*
2913                        // work with Gigasampler/GigaStudio !
2914                        case 3:
2915                            encodedcontroller = _lev_ctrl_CC3_EXT;
2916                            break;
2917                        case 6:
2918                            encodedcontroller = _lev_ctrl_CC6_EXT;
2919                            break;
2920                        case 7:
2921                            encodedcontroller = _lev_ctrl_CC7_EXT;
2922                            break;
2923                        case 8:
2924                            encodedcontroller = _lev_ctrl_CC8_EXT;
2925                            break;
2926                        case 9:
2927                            encodedcontroller = _lev_ctrl_CC9_EXT;
2928                            break;
2929                        case 10:
2930                            encodedcontroller = _lev_ctrl_CC10_EXT;
2931                            break;
2932                        case 11:
2933                            encodedcontroller = _lev_ctrl_CC11_EXT;
2934                            break;
2935                        case 14:
2936                            encodedcontroller = _lev_ctrl_CC14_EXT;
2937                            break;
2938                        case 15:
2939                            encodedcontroller = _lev_ctrl_CC15_EXT;
2940                            break;
2941                        case 20:
2942                            encodedcontroller = _lev_ctrl_CC20_EXT;
2943                            break;
2944                        case 21:
2945                            encodedcontroller = _lev_ctrl_CC21_EXT;
2946                            break;
2947                        case 22:
2948                            encodedcontroller = _lev_ctrl_CC22_EXT;
2949                            break;
2950                        case 23:
2951                            encodedcontroller = _lev_ctrl_CC23_EXT;
2952                            break;
2953                        case 24:
2954                            encodedcontroller = _lev_ctrl_CC24_EXT;
2955                            break;
2956                        case 25:
2957                            encodedcontroller = _lev_ctrl_CC25_EXT;
2958                            break;
2959                        case 26:
2960                            encodedcontroller = _lev_ctrl_CC26_EXT;
2961                            break;
2962                        case 27:
2963                            encodedcontroller = _lev_ctrl_CC27_EXT;
2964                            break;
2965                        case 28:
2966                            encodedcontroller = _lev_ctrl_CC28_EXT;
2967                            break;
2968                        case 29:
2969                            encodedcontroller = _lev_ctrl_CC29_EXT;
2970                            break;
2971                        case 30:
2972                            encodedcontroller = _lev_ctrl_CC30_EXT;
2973                            break;
2974                        case 31:
2975                            encodedcontroller = _lev_ctrl_CC31_EXT;
2976                            break;
2977                        case 68:
2978                            encodedcontroller = _lev_ctrl_CC68_EXT;
2979                            break;
2980                        case 69:
2981                            encodedcontroller = _lev_ctrl_CC69_EXT;
2982                            break;
2983                        case 70:
2984                            encodedcontroller = _lev_ctrl_CC70_EXT;
2985                            break;
2986                        case 71:
2987                            encodedcontroller = _lev_ctrl_CC71_EXT;
2988                            break;
2989                        case 72:
2990                            encodedcontroller = _lev_ctrl_CC72_EXT;
2991                            break;
2992                        case 73:
2993                            encodedcontroller = _lev_ctrl_CC73_EXT;
2994                            break;
2995                        case 74:
2996                            encodedcontroller = _lev_ctrl_CC74_EXT;
2997                            break;
2998                        case 75:
2999                            encodedcontroller = _lev_ctrl_CC75_EXT;
3000                            break;
3001                        case 76:
3002                            encodedcontroller = _lev_ctrl_CC76_EXT;
3003                            break;
3004                        case 77:
3005                            encodedcontroller = _lev_ctrl_CC77_EXT;
3006                            break;
3007                        case 78:
3008                            encodedcontroller = _lev_ctrl_CC78_EXT;
3009                            break;
3010                        case 79:
3011                            encodedcontroller = _lev_ctrl_CC79_EXT;
3012                            break;
3013                        case 84:
3014                            encodedcontroller = _lev_ctrl_CC84_EXT;
3015                            break;
3016                        case 85:
3017                            encodedcontroller = _lev_ctrl_CC85_EXT;
3018                            break;
3019                        case 86:
3020                            encodedcontroller = _lev_ctrl_CC86_EXT;
3021                            break;
3022                        case 87:
3023                            encodedcontroller = _lev_ctrl_CC87_EXT;
3024                            break;
3025                        case 89:
3026                            encodedcontroller = _lev_ctrl_CC89_EXT;
3027                            break;
3028                        case 90:
3029                            encodedcontroller = _lev_ctrl_CC90_EXT;
3030                            break;
3031                        case 96:
3032                            encodedcontroller = _lev_ctrl_CC96_EXT;
3033                            break;
3034                        case 97:
3035                            encodedcontroller = _lev_ctrl_CC97_EXT;
3036                            break;
3037                        case 102:
3038                            encodedcontroller = _lev_ctrl_CC102_EXT;
3039                            break;
3040                        case 103:
3041                            encodedcontroller = _lev_ctrl_CC103_EXT;
3042                            break;
3043                        case 104:
3044                            encodedcontroller = _lev_ctrl_CC104_EXT;
3045                            break;
3046                        case 105:
3047                            encodedcontroller = _lev_ctrl_CC105_EXT;
3048                            break;
3049                        case 106:
3050                            encodedcontroller = _lev_ctrl_CC106_EXT;
3051                            break;
3052                        case 107:
3053                            encodedcontroller = _lev_ctrl_CC107_EXT;
3054                            break;
3055                        case 108:
3056                            encodedcontroller = _lev_ctrl_CC108_EXT;
3057                            break;
3058                        case 109:
3059                            encodedcontroller = _lev_ctrl_CC109_EXT;
3060                            break;
3061                        case 110:
3062                            encodedcontroller = _lev_ctrl_CC110_EXT;
3063                            break;
3064                        case 111:
3065                            encodedcontroller = _lev_ctrl_CC111_EXT;
3066                            break;
3067                        case 112:
3068                            encodedcontroller = _lev_ctrl_CC112_EXT;
3069                            break;
3070                        case 113:
3071                            encodedcontroller = _lev_ctrl_CC113_EXT;
3072                            break;
3073                        case 114:
3074                            encodedcontroller = _lev_ctrl_CC114_EXT;
3075                            break;
3076                        case 115:
3077                            encodedcontroller = _lev_ctrl_CC115_EXT;
3078                            break;
3079                        case 116:
3080                            encodedcontroller = _lev_ctrl_CC116_EXT;
3081                            break;
3082                        case 117:
3083                            encodedcontroller = _lev_ctrl_CC117_EXT;
3084                            break;
3085                        case 118:
3086                            encodedcontroller = _lev_ctrl_CC118_EXT;
3087                            break;
3088                        case 119:
3089                            encodedcontroller = _lev_ctrl_CC119_EXT;
3090                            break;
3091    
3092                        default:
3093                            throw gig::Exception("leverage controller number is not supported by the gig format");
3094                    }
3095                    break;
3096                default:
3097                    throw gig::Exception("Unknown leverage controller type.");
3098            }
3099            return encodedcontroller;
3100        }
3101    
3102      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
3103          Instances--;          Instances--;
# Line 996  namespace gig { Line 3112  namespace gig {
3112              delete pVelocityTables;              delete pVelocityTables;
3113              pVelocityTables = NULL;              pVelocityTables = NULL;
3114          }          }
3115            if (VelocityTable) delete[] VelocityTable;
3116      }      }
3117    
3118      /**      /**
# Line 1013  namespace gig { Line 3130  namespace gig {
3130          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
3131      }      }
3132    
3133        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134            return pVelocityReleaseTable[MIDIKeyVelocity];
3135        }
3136    
3137        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138            return pVelocityCutoffTable[MIDIKeyVelocity];
3139        }
3140    
3141        /**
3142         * Updates the respective member variable and the lookup table / cache
3143         * that depends on this value.
3144         */
3145        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146            pVelocityAttenuationTable =
3147                GetVelocityTable(
3148                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149                );
3150            VelocityResponseCurve = curve;
3151        }
3152    
3153        /**
3154         * Updates the respective member variable and the lookup table / cache
3155         * that depends on this value.
3156         */
3157        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158            pVelocityAttenuationTable =
3159                GetVelocityTable(
3160                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161                );
3162            VelocityResponseDepth = depth;
3163        }
3164    
3165        /**
3166         * Updates the respective member variable and the lookup table / cache
3167         * that depends on this value.
3168         */
3169        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170            pVelocityAttenuationTable =
3171                GetVelocityTable(
3172                    VelocityResponseCurve, VelocityResponseDepth, scaling
3173                );
3174            VelocityResponseCurveScaling = scaling;
3175        }
3176    
3177        /**
3178         * Updates the respective member variable and the lookup table / cache
3179         * that depends on this value.
3180         */
3181        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183            ReleaseVelocityResponseCurve = curve;
3184        }
3185    
3186        /**
3187         * Updates the respective member variable and the lookup table / cache
3188         * that depends on this value.
3189         */
3190        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192            ReleaseVelocityResponseDepth = depth;
3193        }
3194    
3195        /**
3196         * Updates the respective member variable and the lookup table / cache
3197         * that depends on this value.
3198         */
3199        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201            VCFCutoffController = controller;
3202        }
3203    
3204        /**
3205         * Updates the respective member variable and the lookup table / cache
3206         * that depends on this value.
3207         */
3208        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210            VCFVelocityCurve = curve;
3211        }
3212    
3213        /**
3214         * Updates the respective member variable and the lookup table / cache
3215         * that depends on this value.
3216         */
3217        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219            VCFVelocityDynamicRange = range;
3220        }
3221    
3222        /**
3223         * Updates the respective member variable and the lookup table / cache
3224         * that depends on this value.
3225         */
3226        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228            VCFVelocityScale = scaling;
3229        }
3230    
3231      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232    
3233          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1046  namespace gig { Line 3261  namespace gig {
3261          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262                               127, 127 };                               127, 127 };
3263    
3264            // this is only used by the VCF velocity curve
3265            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266                                 91, 127, 127, 127 };
3267    
3268          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
3269                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
3270                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
3271    
3272          double* const table = new double[128];          double* const table = new double[128];
3273    
# Line 1088  namespace gig { Line 3307  namespace gig {
3307          }          }
3308          Layers = 1;          Layers = 1;
3309          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3310          int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311    
3312          // Actual Loading          // Actual Loading
3313    
3314            if (!file->GetAutoLoad()) return;
3315    
3316          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3317    
3318          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319          if (_3lnk) {          if (_3lnk) {
3320                _3lnk->SetPos(0);
3321    
3322              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3323              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3324                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3326                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3330                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3331                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3332                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3333                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3334                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3335                  }                  }
3336                  else { // active dimension                  else { // active dimension
3337                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3338                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3339                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3342                      Dimensions++;                      Dimensions++;
3343    
3344                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
3345                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346                  }                  }
3347                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348              }              }
3349                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350    
3351              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3352              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3353                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
3354    
3355              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
3356              File* file = (File*) GetParent()->GetParent();              if (file->pVersion && file->pVersion->major > 2)
             if (file->pVersion && file->pVersion->major == 3)  
3357                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358              else              else
3359                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3360    
3361              // load sample references              // load sample references (if auto loading is enabled)
3362              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3363                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3364                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3365                        if (file->pWavePoolTable && pDimensionRegions[i])
3366                            pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367                    }
3368                    GetSample(); // load global region sample reference
3369              }              }
3370            } else {
3371                DimensionRegions = 0;
3372                for (int i = 0 ; i < 8 ; i++) {
3373                    pDimensionDefinitions[i].dimension  = dimension_none;
3374                    pDimensionDefinitions[i].bits       = 0;
3375                    pDimensionDefinitions[i].zones      = 0;
3376                }
3377            }
3378    
3379            // make sure there is at least one dimension region
3380            if (!DimensionRegions) {
3381                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385                DimensionRegions = 1;
3386            }
3387        }
3388    
3389        /**
3390         * Apply Region settings and all its DimensionRegions to the respective
3391         * RIFF chunks. You have to call File::Save() to make changes persistent.
3392         *
3393         * Usually there is absolutely no need to call this method explicitly.
3394         * It will be called automatically when File::Save() was called.
3395         *
3396         * @param pProgress - callback function for progress notification
3397         * @throws gig::Exception if samples cannot be dereferenced
3398         */
3399        void Region::UpdateChunks(progress_t* pProgress) {
3400            // in the gig format we don't care about the Region's sample reference
3401            // but we still have to provide some existing one to not corrupt the
3402            // file, so to avoid the latter we simply always assign the sample of
3403            // the first dimension region of this region
3404            pSample = pDimensionRegions[0]->pSample;
3405    
3406            // first update base class's chunks
3407            DLS::Region::UpdateChunks(pProgress);
3408    
3409            // update dimension region's chunks
3410            for (int i = 0; i < DimensionRegions; i++) {
3411                pDimensionRegions[i]->UpdateChunks(pProgress);
3412            }
3413    
3414            File* pFile = (File*) GetParent()->GetParent();
3415            const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416            const int iMaxDimensions =  versiongt2 ? 8 : 5;
3417            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418    
3419            // make sure '3lnk' chunk exists
3420            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421            if (!_3lnk) {
3422                const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425    
3426                // move 3prg to last position
3427                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428            }
3429    
3430            // update dimension definitions in '3lnk' chunk
3431            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432            store32(&pData[0], DimensionRegions);
3433            int shift = 0;
3434            for (int i = 0; i < iMaxDimensions; i++) {
3435                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440                // next 3 bytes unknown, always zero?
3441    
3442                shift += pDimensionDefinitions[i].bits;
3443            }
3444    
3445            // update wave pool table in '3lnk' chunk
3446            const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448                int iWaveIndex = -1;
3449                if (i < DimensionRegions) {
3450                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451                    File::SampleList::iterator iter = pFile->pSamples->begin();
3452                    File::SampleList::iterator end  = pFile->pSamples->end();
3453                    for (int index = 0; iter != end; ++iter, ++index) {
3454                        if (*iter == pDimensionRegions[i]->pSample) {
3455                            iWaveIndex = index;
3456                            break;
3457                        }
3458                    }
3459                }
3460                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461            }
3462    
3463            if (versiongt2) {
3464                // add 3dnm list which always seems to be empty
3465                RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3466                if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3467    
3468                // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3469                RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3470                if (!_3ddp) _3ddp =  pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3471                uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3472                for (int i = 0; i < 16; i += 4) {
3473                    store32(&pData[i], 0xFFFFFFFF);
3474                }
3475    
3476                // move 3dnm and 3ddp to the end of the region list
3477                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3478                pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3479            } else {
3480                // this is intended for the user switching from GSt >= 3 version
3481                // back to an older format version, delete GSt3 chunks ...
3482                RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3483                if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3484    
3485                RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3486                if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3487          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3488      }      }
3489    
3490      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1181  namespace gig { Line 3494  namespace gig {
3494              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3495              while (_3ewl) {              while (_3ewl) {
3496                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3497                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3498                      dimensionRegionNr++;                      dimensionRegionNr++;
3499                  }                  }
3500                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1190  namespace gig { Line 3503  namespace gig {
3503          }          }
3504      }      }
3505    
3506      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3507          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3508              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3509            // update Region key table for fast lookup
3510            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3511        }
3512    
3513        void Region::UpdateVelocityTable() {
3514            // get velocity dimension's index
3515            int veldim = -1;
3516            for (int i = 0 ; i < Dimensions ; i++) {
3517                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3518                    veldim = i;
3519                    break;
3520                }
3521          }          }
3522            if (veldim == -1) return;
3523    
3524            int step = 1;
3525            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3526            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3527    
3528            // loop through all dimension regions for all dimensions except the velocity dimension
3529            int dim[8] = { 0 };
3530            for (int i = 0 ; i < DimensionRegions ; i++) {
3531                const int end = i + step * pDimensionDefinitions[veldim].zones;
3532    
3533                // create a velocity table for all cases where the velocity zone is zero
3534                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3535                    pDimensionRegions[i]->VelocityUpperLimit) {
3536                    // create the velocity table
3537                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3538                    if (!table) {
3539                        table = new uint8_t[128];
3540                        pDimensionRegions[i]->VelocityTable = table;
3541                    }
3542                    int tableidx = 0;
3543                    int velocityZone = 0;
3544                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3545                        for (int k = i ; k < end ; k += step) {
3546                            DimensionRegion *d = pDimensionRegions[k];
3547                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3548                            velocityZone++;
3549                        }
3550                    } else { // gig2
3551                        for (int k = i ; k < end ; k += step) {
3552                            DimensionRegion *d = pDimensionRegions[k];
3553                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3554                            velocityZone++;
3555                        }
3556                    }
3557                } else {
3558                    if (pDimensionRegions[i]->VelocityTable) {
3559                        delete[] pDimensionRegions[i]->VelocityTable;
3560                        pDimensionRegions[i]->VelocityTable = 0;
3561                    }
3562                }
3563    
3564                // jump to the next case where the velocity zone is zero
3565                int j;
3566                int shift = 0;
3567                for (j = 0 ; j < Dimensions ; j++) {
3568                    if (j == veldim) i += skipveldim; // skip velocity dimension
3569                    else {
3570                        dim[j]++;
3571                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3572                        else {
3573                            // skip unused dimension regions
3574                            dim[j] = 0;
3575                            i += ((1 << pDimensionDefinitions[j].bits) -
3576                                  pDimensionDefinitions[j].zones) << shift;
3577                        }
3578                    }
3579                    shift += pDimensionDefinitions[j].bits;
3580                }
3581                if (j == Dimensions) break;
3582            }
3583        }
3584    
3585        /** @brief Einstein would have dreamed of it - create a new dimension.
3586         *
3587         * Creates a new dimension with the dimension definition given by
3588         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3589         * There is a hard limit of dimensions and total amount of "bits" all
3590         * dimensions can have. This limit is dependant to what gig file format
3591         * version this file refers to. The gig v2 (and lower) format has a
3592         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3593         * format has a limit of 8.
3594         *
3595         * @param pDimDef - defintion of the new dimension
3596         * @throws gig::Exception if dimension of the same type exists already
3597         * @throws gig::Exception if amount of dimensions or total amount of
3598         *                        dimension bits limit is violated
3599         */
3600        void Region::AddDimension(dimension_def_t* pDimDef) {
3601            // some initial sanity checks of the given dimension definition
3602            if (pDimDef->zones < 2)
3603                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3604            if (pDimDef->bits < 1)
3605                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3606            if (pDimDef->dimension == dimension_samplechannel) {
3607                if (pDimDef->zones != 2)
3608                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3609                if (pDimDef->bits != 1)
3610                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3611            }
3612    
3613            // check if max. amount of dimensions reached
3614            File* file = (File*) GetParent()->GetParent();
3615            const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3616            if (Dimensions >= iMaxDimensions)
3617                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3618            // check if max. amount of dimension bits reached
3619            int iCurrentBits = 0;
3620            for (int i = 0; i < Dimensions; i++)
3621                iCurrentBits += pDimensionDefinitions[i].bits;
3622            if (iCurrentBits >= iMaxDimensions)
3623                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3624            const int iNewBits = iCurrentBits + pDimDef->bits;
3625            if (iNewBits > iMaxDimensions)
3626                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3627            // check if there's already a dimensions of the same type
3628            for (int i = 0; i < Dimensions; i++)
3629                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3630                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3631    
3632            // pos is where the new dimension should be placed, normally
3633            // last in list, except for the samplechannel dimension which
3634            // has to be first in list
3635            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3636            int bitpos = 0;
3637            for (int i = 0 ; i < pos ; i++)
3638                bitpos += pDimensionDefinitions[i].bits;
3639    
3640            // make room for the new dimension
3641            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3642            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3643                for (int j = Dimensions ; j > pos ; j--) {
3644                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3645                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3646                }
3647            }
3648    
3649            // assign definition of new dimension
3650            pDimensionDefinitions[pos] = *pDimDef;
3651    
3652            // auto correct certain dimension definition fields (where possible)
3653            pDimensionDefinitions[pos].split_type  =
3654                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3655            pDimensionDefinitions[pos].zone_size =
3656                __resolveZoneSize(pDimensionDefinitions[pos]);
3657    
3658            // create new dimension region(s) for this new dimension, and make
3659            // sure that the dimension regions are placed correctly in both the
3660            // RIFF list and the pDimensionRegions array
3661            RIFF::Chunk* moveTo = NULL;
3662            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3663            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3664                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3665                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3666                }
3667                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3668                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3669                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3670                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3671                        // create a new dimension region and copy all parameter values from
3672                        // an existing dimension region
3673                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3674                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3675    
3676                        DimensionRegions++;
3677                    }
3678                }
3679                moveTo = pDimensionRegions[i]->pParentList;
3680            }
3681    
3682            // initialize the upper limits for this dimension
3683            int mask = (1 << bitpos) - 1;
3684            for (int z = 0 ; z < pDimDef->zones ; z++) {
3685                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3686                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3687                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3688                                      (z << bitpos) |
3689                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3690                }
3691            }
3692    
3693            Dimensions++;
3694    
3695            // if this is a layer dimension, update 'Layers' attribute
3696            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3697    
3698            UpdateVelocityTable();
3699        }
3700    
3701        /** @brief Delete an existing dimension.
3702         *
3703         * Deletes the dimension given by \a pDimDef and deletes all respective
3704         * dimension regions, that is all dimension regions where the dimension's
3705         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3706         * for example this would delete all dimension regions for the case(s)
3707         * where the sustain pedal is pressed down.
3708         *
3709         * @param pDimDef - dimension to delete
3710         * @throws gig::Exception if given dimension cannot be found
3711         */
3712        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3713            // get dimension's index
3714            int iDimensionNr = -1;
3715            for (int i = 0; i < Dimensions; i++) {
3716                if (&pDimensionDefinitions[i] == pDimDef) {
3717                    iDimensionNr = i;
3718                    break;
3719                }
3720            }
3721            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3722    
3723            // get amount of bits below the dimension to delete
3724            int iLowerBits = 0;
3725            for (int i = 0; i < iDimensionNr; i++)
3726                iLowerBits += pDimensionDefinitions[i].bits;
3727    
3728            // get amount ot bits above the dimension to delete
3729            int iUpperBits = 0;
3730            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3731                iUpperBits += pDimensionDefinitions[i].bits;
3732    
3733            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3734    
3735            // delete dimension regions which belong to the given dimension
3736            // (that is where the dimension's bit > 0)
3737            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3738                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3739                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3740                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3741                                        iObsoleteBit << iLowerBits |
3742                                        iLowerBit;
3743    
3744                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3745                        delete pDimensionRegions[iToDelete];
3746                        pDimensionRegions[iToDelete] = NULL;
3747                        DimensionRegions--;
3748                    }
3749                }
3750            }
3751    
3752            // defrag pDimensionRegions array
3753            // (that is remove the NULL spaces within the pDimensionRegions array)
3754            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3755                if (!pDimensionRegions[iTo]) {
3756                    if (iFrom <= iTo) iFrom = iTo + 1;
3757                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3758                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3759                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3760                        pDimensionRegions[iFrom] = NULL;
3761                    }
3762                }
3763            }
3764    
3765            // remove the this dimension from the upper limits arrays
3766            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3767                DimensionRegion* d = pDimensionRegions[j];
3768                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3769                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3770                }
3771                d->DimensionUpperLimits[Dimensions - 1] = 127;
3772            }
3773    
3774            // 'remove' dimension definition
3775            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3776                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3777            }
3778            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3779            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3780            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3781    
3782            Dimensions--;
3783    
3784            // if this was a layer dimension, update 'Layers' attribute
3785            if (pDimDef->dimension == dimension_layer) Layers = 1;
3786        }
3787    
3788        /** @brief Delete one split zone of a dimension (decrement zone amount).
3789         *
3790         * Instead of deleting an entire dimensions, this method will only delete
3791         * one particular split zone given by @a zone of the Region's dimension
3792         * given by @a type. So this method will simply decrement the amount of
3793         * zones by one of the dimension in question. To be able to do that, the
3794         * respective dimension must exist on this Region and it must have at least
3795         * 3 zones. All DimensionRegion objects associated with the zone will be
3796         * deleted.
3797         *
3798         * @param type - identifies the dimension where a zone shall be deleted
3799         * @param zone - index of the dimension split zone that shall be deleted
3800         * @throws gig::Exception if requested zone could not be deleted
3801         */
3802        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3803            dimension_def_t* oldDef = GetDimensionDefinition(type);
3804            if (!oldDef)
3805                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3806            if (oldDef->zones <= 2)
3807                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3808            if (zone < 0 || zone >= oldDef->zones)
3809                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3810    
3811            const int newZoneSize = oldDef->zones - 1;
3812    
3813            // create a temporary Region which just acts as a temporary copy
3814            // container and will be deleted at the end of this function and will
3815            // also not be visible through the API during this process
3816            gig::Region* tempRgn = NULL;
3817            {
3818                // adding these temporary chunks is probably not even necessary
3819                Instrument* instr = static_cast<Instrument*>(GetParent());
3820                RIFF::List* pCkInstrument = instr->pCkInstrument;
3821                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3822                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3823                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3824                tempRgn = new Region(instr, rgn);
3825            }
3826    
3827            // copy this region's dimensions (with already the dimension split size
3828            // requested by the arguments of this method call) to the temporary
3829            // region, and don't use Region::CopyAssign() here for this task, since
3830            // it would also alter fast lookup helper variables here and there
3831            dimension_def_t newDef;
3832            for (int i = 0; i < Dimensions; ++i) {
3833                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3834                // is this the dimension requested by the method arguments? ...
3835                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3836                    def.zones = newZoneSize;
3837                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3838                    newDef = def;
3839                }
3840                tempRgn->AddDimension(&def);
3841            }
3842    
3843            // find the dimension index in the tempRegion which is the dimension
3844            // type passed to this method (paranoidly expecting different order)
3845            int tempReducedDimensionIndex = -1;
3846            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3847                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3848                    tempReducedDimensionIndex = d;
3849                    break;
3850                }
3851            }
3852    
3853            // copy dimension regions from this region to the temporary region
3854            for (int iDst = 0; iDst < 256; ++iDst) {
3855                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3856                if (!dstDimRgn) continue;
3857                std::map<dimension_t,int> dimCase;
3858                bool isValidZone = true;
3859                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3860                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3861                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3862                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3863                    baseBits += dstBits;
3864                    // there are also DimensionRegion objects of unused zones, skip them
3865                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3866                        isValidZone = false;
3867                        break;
3868                    }
3869                }
3870                if (!isValidZone) continue;
3871                // a bit paranoid: cope with the chance that the dimensions would
3872                // have different order in source and destination regions
3873                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3874                if (dimCase[type] >= zone) dimCase[type]++;
3875                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3876                dstDimRgn->CopyAssign(srcDimRgn);
3877                // if this is the upper most zone of the dimension passed to this
3878                // method, then correct (raise) its upper limit to 127
3879                if (newDef.split_type == split_type_normal && isLastZone)
3880                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3881            }
3882    
3883            // now tempRegion's dimensions and DimensionRegions basically reflect
3884            // what we wanted to get for this actual Region here, so we now just
3885            // delete and recreate the dimension in question with the new amount
3886            // zones and then copy back from tempRegion      
3887            DeleteDimension(oldDef);
3888            AddDimension(&newDef);
3889            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3890                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3891                if (!srcDimRgn) continue;
3892                std::map<dimension_t,int> dimCase;
3893                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3894                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3895                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3896                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3897                    baseBits += srcBits;
3898                }
3899                // a bit paranoid: cope with the chance that the dimensions would
3900                // have different order in source and destination regions
3901                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3902                if (!dstDimRgn) continue;
3903                dstDimRgn->CopyAssign(srcDimRgn);
3904            }
3905    
3906            // delete temporary region
3907            tempRgn->DeleteChunks();
3908            delete tempRgn;
3909    
3910            UpdateVelocityTable();
3911        }
3912    
3913        /** @brief Divide split zone of a dimension in two (increment zone amount).
3914         *
3915         * This will increment the amount of zones for the dimension (given by
3916         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3917         * in the middle of its zone range in two. So the two zones resulting from
3918         * the zone being splitted, will be an equivalent copy regarding all their
3919         * articulation informations and sample reference. The two zones will only
3920         * differ in their zone's upper limit
3921         * (DimensionRegion::DimensionUpperLimits).
3922         *
3923         * @param type - identifies the dimension where a zone shall be splitted
3924         * @param zone - index of the dimension split zone that shall be splitted
3925         * @throws gig::Exception if requested zone could not be splitted
3926         */
3927        void Region::SplitDimensionZone(dimension_t type, int zone) {
3928            dimension_def_t* oldDef = GetDimensionDefinition(type);
3929            if (!oldDef)
3930                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3931            if (zone < 0 || zone >= oldDef->zones)
3932                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3933    
3934            const int newZoneSize = oldDef->zones + 1;
3935    
3936            // create a temporary Region which just acts as a temporary copy
3937            // container and will be deleted at the end of this function and will
3938            // also not be visible through the API during this process
3939            gig::Region* tempRgn = NULL;
3940            {
3941                // adding these temporary chunks is probably not even necessary
3942                Instrument* instr = static_cast<Instrument*>(GetParent());
3943                RIFF::List* pCkInstrument = instr->pCkInstrument;
3944                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3945                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3946                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3947                tempRgn = new Region(instr, rgn);
3948            }
3949    
3950            // copy this region's dimensions (with already the dimension split size
3951            // requested by the arguments of this method call) to the temporary
3952            // region, and don't use Region::CopyAssign() here for this task, since
3953            // it would also alter fast lookup helper variables here and there
3954            dimension_def_t newDef;
3955            for (int i = 0; i < Dimensions; ++i) {
3956                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3957                // is this the dimension requested by the method arguments? ...
3958                if (def.dimension == type) { // ... if yes, increment zone amount by one
3959                    def.zones = newZoneSize;
3960                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3961                    newDef = def;
3962                }
3963                tempRgn->AddDimension(&def);
3964            }
3965    
3966            // find the dimension index in the tempRegion which is the dimension
3967            // type passed to this method (paranoidly expecting different order)
3968            int tempIncreasedDimensionIndex = -1;
3969            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3970                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3971                    tempIncreasedDimensionIndex = d;
3972                    break;
3973                }
3974            }
3975    
3976            // copy dimension regions from this region to the temporary region
3977            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3978                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3979                if (!srcDimRgn) continue;
3980                std::map<dimension_t,int> dimCase;
3981                bool isValidZone = true;
3982                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3983                    const int srcBits = pDimensionDefinitions[d].bits;
3984                    dimCase[pDimensionDefinitions[d].dimension] =
3985                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3986                    // there are also DimensionRegion objects for unused zones, skip them
3987                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3988                        isValidZone = false;
3989                        break;
3990                    }
3991                    baseBits += srcBits;
3992                }
3993                if (!isValidZone) continue;
3994                // a bit paranoid: cope with the chance that the dimensions would
3995                // have different order in source and destination regions            
3996                if (dimCase[type] > zone) dimCase[type]++;
3997                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3998                dstDimRgn->CopyAssign(srcDimRgn);
3999                // if this is the requested zone to be splitted, then also copy
4000                // the source DimensionRegion to the newly created target zone
4001                // and set the old zones upper limit lower
4002                if (dimCase[type] == zone) {
4003                    // lower old zones upper limit
4004                    if (newDef.split_type == split_type_normal) {
4005                        const int high =
4006                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4007                        int low = 0;
4008                        if (zone > 0) {
4009                            std::map<dimension_t,int> lowerCase = dimCase;
4010                            lowerCase[type]--;
4011                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4012                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4013                        }
4014                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4015                    }
4016                    // fill the newly created zone of the divided zone as well
4017                    dimCase[type]++;
4018                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4019                    dstDimRgn->CopyAssign(srcDimRgn);
4020                }
4021            }
4022    
4023            // now tempRegion's dimensions and DimensionRegions basically reflect
4024            // what we wanted to get for this actual Region here, so we now just
4025            // delete and recreate the dimension in question with the new amount
4026            // zones and then copy back from tempRegion. we're actually deleting and
4027            // recreating all dimensions here, to avoid altering the precise order
4028            // of the dimensions (which would not be an error per so, but it would
4029            // cause usability issues with instrument editors)
4030            {
4031                std::vector<dimension_def_t> oldDefs;
4032                for (int i = 0; i < Dimensions; ++i)
4033                    oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4034                for (int i = Dimensions - 1; i >= 0; --i)
4035                    DeleteDimension(&pDimensionDefinitions[i]);
4036                for (int i = 0; i < oldDefs.size(); ++i) {
4037                    dimension_def_t& def = oldDefs[i];
4038                    AddDimension(
4039                        (def.dimension == newDef.dimension) ? &newDef : &def
4040                    );
4041                }
4042            }
4043            for (int iSrc = 0; iSrc < 256; ++iSrc) {
4044                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4045                if (!srcDimRgn) continue;
4046                std::map<dimension_t,int> dimCase;
4047                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4048                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4049                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4050                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
4051                    baseBits += srcBits;
4052                }
4053                // a bit paranoid: cope with the chance that the dimensions would
4054                // have different order in source and destination regions
4055                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4056                if (!dstDimRgn) continue;
4057                dstDimRgn->CopyAssign(srcDimRgn);
4058            }
4059    
4060            // delete temporary region
4061            tempRgn->DeleteChunks();
4062            delete tempRgn;
4063    
4064            UpdateVelocityTable();
4065        }
4066    
4067        /** @brief Change type of an existing dimension.
4068         *
4069         * Alters the dimension type of a dimension already existing on this
4070         * region. If there is currently no dimension on this Region with type
4071         * @a oldType, then this call with throw an Exception. Likewise there are
4072         * cases where the requested dimension type cannot be performed. For example
4073         * if the new dimension type shall be gig::dimension_samplechannel, and the
4074         * current dimension has more than 2 zones. In such cases an Exception is
4075         * thrown as well.
4076         *
4077         * @param oldType - identifies the existing dimension to be changed
4078         * @param newType - to which dimension type it should be changed to
4079         * @throws gig::Exception if requested change cannot be performed
4080         */
4081        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4082            if (oldType == newType) return;
4083            dimension_def_t* def = GetDimensionDefinition(oldType);
4084            if (!def)
4085                throw gig::Exception("No dimension with provided old dimension type exists on this region");
4086            if (newType == dimension_samplechannel && def->zones != 2)
4087                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4088            if (GetDimensionDefinition(newType))
4089                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4090            def->dimension  = newType;
4091            def->split_type = __resolveSplitType(newType);
4092        }
4093    
4094        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4095            uint8_t bits[8] = {};
4096            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4097                 it != DimCase.end(); ++it)
4098            {
4099                for (int d = 0; d < Dimensions; ++d) {
4100                    if (pDimensionDefinitions[d].dimension == it->first) {
4101                        bits[d] = it->second;
4102                        goto nextDimCaseSlice;
4103                    }
4104                }
4105                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4106                nextDimCaseSlice:
4107                ; // noop
4108            }
4109            return GetDimensionRegionByBit(bits);
4110        }
4111    
4112        /**
4113         * Searches in the current Region for a dimension of the given dimension
4114         * type and returns the precise configuration of that dimension in this
4115         * Region.
4116         *
4117         * @param type - dimension type of the sought dimension
4118         * @returns dimension definition or NULL if there is no dimension with
4119         *          sought type in this Region.
4120         */
4121        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4122            for (int i = 0; i < Dimensions; ++i)
4123                if (pDimensionDefinitions[i].dimension == type)
4124                    return &pDimensionDefinitions[i];
4125            return NULL;
4126        }
4127    
4128        Region::~Region() {
4129          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
4130              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
4131          }          }
# Line 1218  namespace gig { Line 4150  namespace gig {
4150       * @see             Dimensions       * @see             Dimensions
4151       */       */
4152      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4153          uint8_t bits[8] = { 0 };          uint8_t bits;
4154            int veldim = -1;
4155            int velbitpos = 0;
4156            int bitpos = 0;
4157            int dimregidx = 0;
4158          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
4159              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4160              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
4161                  case split_type_normal:                  veldim = i;
4162                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
4163                      break;              } else {
4164                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
4165                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
4166                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4167                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4168                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4169                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4170                      break;                              }
4171                            } else {
4172                                // gig2: evenly sized zones
4173                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4174                            }
4175                            break;
4176                        case split_type_bit: // the value is already the sought dimension bit number
4177                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4178                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4179                            break;
4180                    }
4181                    dimregidx |= bits << bitpos;
4182              }              }
4183                bitpos += pDimensionDefinitions[i].bits;
4184          }          }
4185          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4186            if (!dimreg) return NULL;
4187            if (veldim != -1) {
4188                // (dimreg is now the dimension region for the lowest velocity)
4189                if (dimreg->VelocityTable) // custom defined zone ranges
4190                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4191                else // normal split type
4192                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4193    
4194                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4195                dimregidx |= (bits & limiter_mask) << velbitpos;
4196                dimreg = pDimensionRegions[dimregidx & 255];
4197            }
4198            return dimreg;
4199        }
4200    
4201        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4202            uint8_t bits;
4203            int veldim = -1;
4204            int velbitpos = 0;
4205            int bitpos = 0;
4206            int dimregidx = 0;
4207            for (uint i = 0; i < Dimensions; i++) {
4208                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4209                    // the velocity dimension must be handled after the other dimensions
4210                    veldim = i;
4211                    velbitpos = bitpos;
4212                } else {
4213                    switch (pDimensionDefinitions[i].split_type) {
4214                        case split_type_normal:
4215                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4216                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4217                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4218                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4219                                }
4220                            } else {
4221                                // gig2: evenly sized zones
4222                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4223                            }
4224                            break;
4225                        case split_type_bit: // the value is already the sought dimension bit number
4226                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4227                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4228                            break;
4229                    }
4230                    dimregidx |= bits << bitpos;
4231                }
4232                bitpos += pDimensionDefinitions[i].bits;
4233            }
4234            dimregidx &= 255;
4235            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4236            if (!dimreg) return -1;
4237            if (veldim != -1) {
4238                // (dimreg is now the dimension region for the lowest velocity)
4239                if (dimreg->VelocityTable) // custom defined zone ranges
4240                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4241                else // normal split type
4242                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4243    
4244                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4245                dimregidx |= (bits & limiter_mask) << velbitpos;
4246                dimregidx &= 255;
4247            }
4248            return dimregidx;
4249      }      }
4250    
4251      /**      /**
# Line 1271  namespace gig { Line 4282  namespace gig {
4282          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4283      }      }
4284    
4285      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4286          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4287          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4288          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4289          Sample* sample = file->GetFirstSample();          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4290          while (sample) {          // for new files or files >= 2 GB use 64 bit wave pool offsets
4291              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4292              sample = file->GetNextSample();              // use 64 bit wave pool offsets (treating this as large file)
4293                uint64_t soughtoffset =
4294                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4295                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4296                Sample* sample = file->GetFirstSample(pProgress);
4297                while (sample) {
4298                    if (sample->ullWavePoolOffset == soughtoffset)
4299                        return static_cast<gig::Sample*>(sample);
4300                    sample = file->GetNextSample();
4301                }
4302            } else {
4303                // use extension files and 32 bit wave pool offsets
4304                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4305                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4306                Sample* sample = file->GetFirstSample(pProgress);
4307                while (sample) {
4308                    if (sample->ullWavePoolOffset == soughtoffset &&
4309                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4310                    sample = file->GetNextSample();
4311                }
4312            }
4313            return NULL;
4314        }
4315        
4316        /**
4317         * Make a (semi) deep copy of the Region object given by @a orig
4318         * and assign it to this object.
4319         *
4320         * Note that all sample pointers referenced by @a orig are simply copied as
4321         * memory address. Thus the respective samples are shared, not duplicated!
4322         *
4323         * @param orig - original Region object to be copied from
4324         */
4325        void Region::CopyAssign(const Region* orig) {
4326            CopyAssign(orig, NULL);
4327        }
4328        
4329        /**
4330         * Make a (semi) deep copy of the Region object given by @a orig and
4331         * assign it to this object
4332         *
4333         * @param mSamples - crosslink map between the foreign file's samples and
4334         *                   this file's samples
4335         */
4336        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4337            // handle base classes
4338            DLS::Region::CopyAssign(orig);
4339            
4340            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4341                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4342            }
4343            
4344            // handle own member variables
4345            for (int i = Dimensions - 1; i >= 0; --i) {
4346                DeleteDimension(&pDimensionDefinitions[i]);
4347            }
4348            Layers = 0; // just to be sure
4349            for (int i = 0; i < orig->Dimensions; i++) {
4350                // we need to copy the dim definition here, to avoid the compiler
4351                // complaining about const-ness issue
4352                dimension_def_t def = orig->pDimensionDefinitions[i];
4353                AddDimension(&def);
4354            }
4355            for (int i = 0; i < 256; i++) {
4356                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4357                    pDimensionRegions[i]->CopyAssign(
4358                        orig->pDimensionRegions[i],
4359                        mSamples
4360                    );
4361                }
4362            }
4363            Layers = orig->Layers;
4364        }
4365    
4366    
4367    // *************** MidiRule ***************
4368    // *
4369    
4370        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4371            _3ewg->SetPos(36);
4372            Triggers = _3ewg->ReadUint8();
4373            _3ewg->SetPos(40);
4374            ControllerNumber = _3ewg->ReadUint8();
4375            _3ewg->SetPos(46);
4376            for (int i = 0 ; i < Triggers ; i++) {
4377                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4378                pTriggers[i].Descending = _3ewg->ReadUint8();
4379                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4380                pTriggers[i].Key = _3ewg->ReadUint8();
4381                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4382                pTriggers[i].Velocity = _3ewg->ReadUint8();
4383                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4384                _3ewg->ReadUint8();
4385            }
4386        }
4387    
4388        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4389            ControllerNumber(0),
4390            Triggers(0) {
4391        }
4392    
4393        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4394            pData[32] = 4;
4395            pData[33] = 16;
4396            pData[36] = Triggers;
4397            pData[40] = ControllerNumber;
4398            for (int i = 0 ; i < Triggers ; i++) {
4399                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4400                pData[47 + i * 8] = pTriggers[i].Descending;
4401                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4402                pData[49 + i * 8] = pTriggers[i].Key;
4403                pData[50 + i * 8] = pTriggers[i].NoteOff;
4404                pData[51 + i * 8] = pTriggers[i].Velocity;
4405                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4406            }
4407        }
4408    
4409        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4410            _3ewg->SetPos(36);
4411            LegatoSamples = _3ewg->ReadUint8(); // always 12
4412            _3ewg->SetPos(40);
4413            BypassUseController = _3ewg->ReadUint8();
4414            BypassKey = _3ewg->ReadUint8();
4415            BypassController = _3ewg->ReadUint8();
4416            ThresholdTime = _3ewg->ReadUint16();
4417            _3ewg->ReadInt16();
4418            ReleaseTime = _3ewg->ReadUint16();
4419            _3ewg->ReadInt16();
4420            KeyRange.low = _3ewg->ReadUint8();
4421            KeyRange.high = _3ewg->ReadUint8();
4422            _3ewg->SetPos(64);
4423            ReleaseTriggerKey = _3ewg->ReadUint8();
4424            AltSustain1Key = _3ewg->ReadUint8();
4425            AltSustain2Key = _3ewg->ReadUint8();
4426        }
4427    
4428        MidiRuleLegato::MidiRuleLegato() :
4429            LegatoSamples(12),
4430            BypassUseController(false),
4431            BypassKey(0),
4432            BypassController(1),
4433            ThresholdTime(20),
4434            ReleaseTime(20),
4435            ReleaseTriggerKey(0),
4436            AltSustain1Key(0),
4437            AltSustain2Key(0)
4438        {
4439            KeyRange.low = KeyRange.high = 0;
4440        }
4441    
4442        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4443            pData[32] = 0;
4444            pData[33] = 16;
4445            pData[36] = LegatoSamples;
4446            pData[40] = BypassUseController;
4447            pData[41] = BypassKey;
4448            pData[42] = BypassController;
4449            store16(&pData[43], ThresholdTime);
4450            store16(&pData[47], ReleaseTime);
4451            pData[51] = KeyRange.low;
4452            pData[52] = KeyRange.high;
4453            pData[64] = ReleaseTriggerKey;
4454            pData[65] = AltSustain1Key;
4455            pData[66] = AltSustain2Key;
4456        }
4457    
4458        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4459            _3ewg->SetPos(36);
4460            Articulations = _3ewg->ReadUint8();
4461            int flags = _3ewg->ReadUint8();
4462            Polyphonic = flags & 8;
4463            Chained = flags & 4;
4464            Selector = (flags & 2) ? selector_controller :
4465                (flags & 1) ? selector_key_switch : selector_none;
4466            Patterns = _3ewg->ReadUint8();
4467            _3ewg->ReadUint8(); // chosen row
4468            _3ewg->ReadUint8(); // unknown
4469            _3ewg->ReadUint8(); // unknown
4470            _3ewg->ReadUint8(); // unknown
4471            KeySwitchRange.low = _3ewg->ReadUint8();
4472            KeySwitchRange.high = _3ewg->ReadUint8();
4473            Controller = _3ewg->ReadUint8();
4474            PlayRange.low = _3ewg->ReadUint8();
4475            PlayRange.high = _3ewg->ReadUint8();
4476    
4477            int n = std::min(int(Articulations), 32);
4478            for (int i = 0 ; i < n ; i++) {
4479                _3ewg->ReadString(pArticulations[i], 32);
4480            }
4481            _3ewg->SetPos(1072);
4482            n = std::min(int(Patterns), 32);
4483            for (int i = 0 ; i < n ; i++) {
4484                _3ewg->ReadString(pPatterns[i].Name, 16);
4485                pPatterns[i].Size = _3ewg->ReadUint8();
4486                _3ewg->Read(&pPatterns[i][0], 1, 32);
4487            }
4488        }
4489    
4490        MidiRuleAlternator::MidiRuleAlternator() :
4491            Articulations(0),
4492            Patterns(0),
4493            Selector(selector_none),
4494            Controller(0),
4495            Polyphonic(false),
4496            Chained(false)
4497        {
4498            PlayRange.low = PlayRange.high = 0;
4499            KeySwitchRange.low = KeySwitchRange.high = 0;
4500        }
4501    
4502        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4503            pData[32] = 3;
4504            pData[33] = 16;
4505            pData[36] = Articulations;
4506            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4507                (Selector == selector_controller ? 2 :
4508                 (Selector == selector_key_switch ? 1 : 0));
4509            pData[38] = Patterns;
4510    
4511            pData[43] = KeySwitchRange.low;
4512            pData[44] = KeySwitchRange.high;
4513            pData[45] = Controller;
4514            pData[46] = PlayRange.low;
4515            pData[47] = PlayRange.high;
4516    
4517            char* str = reinterpret_cast<char*>(pData);
4518            int pos = 48;
4519            int n = std::min(int(Articulations), 32);
4520            for (int i = 0 ; i < n ; i++, pos += 32) {
4521                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4522            }
4523    
4524            pos = 1072;
4525            n = std::min(int(Patterns), 32);
4526            for (int i = 0 ; i < n ; i++, pos += 49) {
4527                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4528                pData[pos + 16] = pPatterns[i].Size;
4529                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4530            }
4531        }
4532    
4533    // *************** Script ***************
4534    // *
4535    
4536        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4537            pGroup = group;
4538            pChunk = ckScri;
4539            if (ckScri) { // object is loaded from file ...
4540                ckScri->SetPos(0);
4541    
4542                // read header
4543                uint32_t headerSize = ckScri->ReadUint32();
4544                Compression = (Compression_t) ckScri->ReadUint32();
4545                Encoding    = (Encoding_t) ckScri->ReadUint32();
4546                Language    = (Language_t) ckScri->ReadUint32();
4547                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4548                crc         = ckScri->ReadUint32();
4549                uint32_t nameSize = ckScri->ReadUint32();
4550                Name.resize(nameSize, ' ');
4551                for (int i = 0; i < nameSize; ++i)
4552                    Name[i] = ckScri->ReadUint8();
4553                // to handle potential future extensions of the header
4554                ckScri->SetPos(sizeof(int32_t) + headerSize);
4555                // read actual script data
4556                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4557                data.resize(scriptSize);
4558                for (int i = 0; i < scriptSize; ++i)
4559                    data[i] = ckScri->ReadUint8();
4560            } else { // this is a new script object, so just initialize it as such ...
4561                Compression = COMPRESSION_NONE;
4562                Encoding = ENCODING_ASCII;
4563                Language = LANGUAGE_NKSP;
4564                Bypass   = false;
4565                crc      = 0;
4566                Name     = "Unnamed Script";
4567          }          }
4568        }
4569    
4570        Script::~Script() {
4571        }
4572    
4573        /**
4574         * Returns the current script (i.e. as source code) in text format.
4575         */
4576        String Script::GetScriptAsText() {
4577            String s;
4578            s.resize(data.size(), ' ');
4579            memcpy(&s[0], &data[0], data.size());
4580            return s;
4581        }
4582    
4583        /**
4584         * Replaces the current script with the new script source code text given
4585         * by @a text.
4586         *
4587         * @param text - new script source code
4588         */
4589        void Script::SetScriptAsText(const String& text) {
4590            data.resize(text.size());
4591            memcpy(&data[0], &text[0], text.size());
4592        }
4593    
4594        /** @brief Remove all RIFF chunks associated with this Script object.
4595         *
4596         * At the moment Script::DeleteChunks() does nothing. It is
4597         * recommended to call this method explicitly though from deriving classes's
4598         * own overridden implementation of this method to avoid potential future
4599         * compatiblity issues.
4600         *
4601         * See DLS::Storage::DeleteChunks() for details.
4602         */
4603        void Script::DeleteChunks() {
4604        }
4605    
4606        /**
4607         * Apply this script to the respective RIFF chunks. You have to call
4608         * File::Save() to make changes persistent.
4609         *
4610         * Usually there is absolutely no need to call this method explicitly.
4611         * It will be called automatically when File::Save() was called.
4612         *
4613         * @param pProgress - callback function for progress notification
4614         */
4615        void Script::UpdateChunks(progress_t* pProgress) {
4616            // recalculate CRC32 check sum
4617            __resetCRC(crc);
4618            __calculateCRC(&data[0], data.size(), crc);
4619            __finalizeCRC(crc);
4620            // make sure chunk exists and has the required size
4621            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4622            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4623            else pChunk->Resize(chunkSize);
4624            // fill the chunk data to be written to disk
4625            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4626            int pos = 0;
4627            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4628            pos += sizeof(int32_t);
4629            store32(&pData[pos], Compression);
4630            pos += sizeof(int32_t);
4631            store32(&pData[pos], Encoding);
4632            pos += sizeof(int32_t);
4633            store32(&pData[pos], Language);
4634            pos += sizeof(int32_t);
4635            store32(&pData[pos], Bypass ? 1 : 0);
4636            pos += sizeof(int32_t);
4637            store32(&pData[pos], crc);
4638            pos += sizeof(int32_t);
4639            store32(&pData[pos], (uint32_t) Name.size());
4640            pos += sizeof(int32_t);
4641            for (int i = 0; i < Name.size(); ++i, ++pos)
4642                pData[pos] = Name[i];
4643            for (int i = 0; i < data.size(); ++i, ++pos)
4644                pData[pos] = data[i];
4645        }
4646    
4647        /**
4648         * Move this script from its current ScriptGroup to another ScriptGroup
4649         * given by @a pGroup.
4650         *
4651         * @param pGroup - script's new group
4652         */
4653        void Script::SetGroup(ScriptGroup* pGroup) {
4654            if (this->pGroup == pGroup) return;
4655            if (pChunk)
4656                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4657            this->pGroup = pGroup;
4658        }
4659    
4660        /**
4661         * Returns the script group this script currently belongs to. Each script
4662         * is a member of exactly one ScriptGroup.
4663         *
4664         * @returns current script group
4665         */
4666        ScriptGroup* Script::GetGroup() const {
4667            return pGroup;
4668        }
4669    
4670        /**
4671         * Make a (semi) deep copy of the Script object given by @a orig
4672         * and assign it to this object. Note: the ScriptGroup this Script
4673         * object belongs to remains untouched by this call.
4674         *
4675         * @param orig - original Script object to be copied from
4676         */
4677        void Script::CopyAssign(const Script* orig) {
4678            Name        = orig->Name;
4679            Compression = orig->Compression;
4680            Encoding    = orig->Encoding;
4681            Language    = orig->Language;
4682            Bypass      = orig->Bypass;
4683            data        = orig->data;
4684        }
4685    
4686        void Script::RemoveAllScriptReferences() {
4687            File* pFile = pGroup->pFile;
4688            for (int i = 0; pFile->GetInstrument(i); ++i) {
4689                Instrument* instr = pFile->GetInstrument(i);
4690                instr->RemoveScript(this);
4691            }
4692        }
4693    
4694    // *************** ScriptGroup ***************
4695    // *
4696    
4697        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4698            pFile = file;
4699            pList = lstRTIS;
4700            pScripts = NULL;
4701            if (lstRTIS) {
4702                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4703                ::LoadString(ckName, Name);
4704            } else {
4705                Name = "Default Group";
4706            }
4707        }
4708    
4709        ScriptGroup::~ScriptGroup() {
4710            if (pScripts) {
4711                std::list<Script*>::iterator iter = pScripts->begin();
4712                std::list<Script*>::iterator end  = pScripts->end();
4713                while (iter != end) {
4714                    delete *iter;
4715                    ++iter;
4716                }
4717                delete pScripts;
4718            }
4719        }
4720    
4721        /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4722         *
4723         * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4724         * recommended to call this method explicitly though from deriving classes's
4725         * own overridden implementation of this method to avoid potential future
4726         * compatiblity issues.
4727         *
4728         * See DLS::Storage::DeleteChunks() for details.
4729         */
4730        void ScriptGroup::DeleteChunks() {
4731        }
4732    
4733        /**
4734         * Apply this script group to the respective RIFF chunks. You have to call
4735         * File::Save() to make changes persistent.
4736         *
4737         * Usually there is absolutely no need to call this method explicitly.
4738         * It will be called automatically when File::Save() was called.
4739         *
4740         * @param pProgress - callback function for progress notification
4741         */
4742        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4743            if (pScripts) {
4744                if (!pList)
4745                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4746    
4747                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4748                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4749    
4750                for (std::list<Script*>::iterator it = pScripts->begin();
4751                     it != pScripts->end(); ++it)
4752                {
4753                    (*it)->UpdateChunks(pProgress);
4754                }
4755            }
4756        }
4757    
4758        /** @brief Get instrument script.
4759         *
4760         * Returns the real-time instrument script with the given index.
4761         *
4762         * @param index - number of the sought script (0..n)
4763         * @returns sought script or NULL if there's no such script
4764         */
4765        Script* ScriptGroup::GetScript(uint index) {
4766            if (!pScripts) LoadScripts();
4767            std::list<Script*>::iterator it = pScripts->begin();
4768            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4769                if (i == index) return *it;
4770          return NULL;          return NULL;
4771      }      }
4772    
4773        /** @brief Add new instrument script.
4774         *
4775         * Adds a new real-time instrument script to the file. The script is not
4776         * actually used / executed unless it is referenced by an instrument to be
4777         * used. This is similar to samples, which you can add to a file, without
4778         * an instrument necessarily actually using it.
4779         *
4780         * You have to call Save() to make this persistent to the file.
4781         *
4782         * @return new empty script object
4783         */
4784        Script* ScriptGroup::AddScript() {
4785            if (!pScripts) LoadScripts();
4786            Script* pScript = new Script(this, NULL);
4787            pScripts->push_back(pScript);
4788            return pScript;
4789        }
4790    
4791        /** @brief Delete an instrument script.
4792         *
4793         * This will delete the given real-time instrument script. References of
4794         * instruments that are using that script will be removed accordingly.
4795         *
4796         * You have to call Save() to make this persistent to the file.
4797         *
4798         * @param pScript - script to delete
4799         * @throws gig::Exception if given script could not be found
4800         */
4801        void ScriptGroup::DeleteScript(Script* pScript) {
4802            if (!pScripts) LoadScripts();
4803            std::list<Script*>::iterator iter =
4804                find(pScripts->begin(), pScripts->end(), pScript);
4805            if (iter == pScripts->end())
4806                throw gig::Exception("Could not delete script, could not find given script");
4807            pScripts->erase(iter);
4808            pScript->RemoveAllScriptReferences();
4809            if (pScript->pChunk)
4810                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4811            delete pScript;
4812        }
4813    
4814        void ScriptGroup::LoadScripts() {
4815            if (pScripts) return;
4816            pScripts = new std::list<Script*>;
4817            if (!pList) return;
4818    
4819            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4820                 ck = pList->GetNextSubChunk())
4821            {
4822                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4823                    pScripts->push_back(new Script(this, ck));
4824                }
4825            }
4826        }
4827    
4828  // *************** Instrument ***************  // *************** Instrument ***************
4829  // *  // *
4830    
4831      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4832            static const DLS::Info::string_length_t fixedStringLengths[] = {
4833                { CHUNK_ID_INAM, 64 },
4834                { CHUNK_ID_ISFT, 12 },
4835                { 0, 0 }
4836            };
4837            pInfo->SetFixedStringLengths(fixedStringLengths);
4838    
4839          // Initialization          // Initialization
4840          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4841          RegionIndex = -1;          EffectSend = 0;
4842            Attenuation = 0;
4843            FineTune = 0;
4844            PitchbendRange = 2;
4845            PianoReleaseMode = false;
4846            DimensionKeyRange.low = 0;
4847            DimensionKeyRange.high = 0;
4848            pMidiRules = new MidiRule*[3];
4849            pMidiRules[0] = NULL;
4850            pScriptRefs = NULL;
4851    
4852          // Loading          // Loading
4853          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4854          if (lart) {          if (lart) {
4855              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4856              if (_3ewg) {              if (_3ewg) {
4857                    _3ewg->SetPos(0);
4858    
4859                  EffectSend             = _3ewg->ReadUint16();                  EffectSend             = _3ewg->ReadUint16();
4860                  Attenuation            = _3ewg->ReadInt32();                  Attenuation            = _3ewg->ReadInt32();
4861                  FineTune               = _3ewg->ReadInt16();                  FineTune               = _3ewg->ReadInt16();
# Line 1306  namespace gig { Line 4864  namespace gig {
4864                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4865                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4866                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4867    
4868                    if (_3ewg->GetSize() > 32) {
4869                        // read MIDI rules
4870                        int i = 0;
4871                        _3ewg->SetPos(32);
4872                        uint8_t id1 = _3ewg->ReadUint8();
4873                        uint8_t id2 = _3ewg->ReadUint8();
4874    
4875                        if (id2 == 16) {
4876                            if (id1 == 4) {
4877                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4878                            } else if (id1 == 0) {
4879                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4880                            } else if (id1 == 3) {
4881                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4882                            } else {
4883                                pMidiRules[i++] = new MidiRuleUnknown;
4884                            }
4885                        }
4886                        else if (id1 != 0 || id2 != 0) {
4887                            pMidiRules[i++] = new MidiRuleUnknown;
4888                        }
4889                        //TODO: all the other types of rules
4890    
4891                        pMidiRules[i] = NULL;
4892                    }
4893              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4894          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4895    
4896          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4897          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4898          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4899          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              if (lrgn) {
4900          RIFF::List* rgn = lrgn->GetFirstSubList();                  RIFF::List* rgn = lrgn->GetFirstSubList();
4901          unsigned int iRegion = 0;                  while (rgn) {
4902          while (rgn) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4903              if (rgn->GetListType() == LIST_TYPE_RGN) {                          if (pProgress)
4904                  pRegions[iRegion] = new Region(this, rgn);                              __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4905                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
4906              }                      }
4907              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
4908          }                  }
4909                    // Creating Region Key Table for fast lookup
4910          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
4911          for (uint iReg = 0; iReg < Regions; iReg++) {              }
4912              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          }
4913                  RegionKeyTable[iKey] = pRegions[iReg];  
4914            // own gig format extensions
4915            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4916            if (lst3LS) {
4917                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4918                if (ckSCSL) {
4919                    ckSCSL->SetPos(0);
4920    
4921                    int headerSize = ckSCSL->ReadUint32();
4922                    int slotCount  = ckSCSL->ReadUint32();
4923                    if (slotCount) {
4924                        int slotSize  = ckSCSL->ReadUint32();
4925                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4926                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4927                        for (int i = 0; i < slotCount; ++i) {
4928                            _ScriptPooolEntry e;
4929                            e.fileOffset = ckSCSL->ReadUint32();
4930                            e.bypass     = ckSCSL->ReadUint32() & 1;
4931                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4932                            scriptPoolFileOffsets.push_back(e);
4933                        }
4934                    }
4935                }
4936            }
4937    
4938            if (pProgress)
4939                __notify_progress(pProgress, 1.0f); // notify done
4940        }
4941    
4942        void Instrument::UpdateRegionKeyTable() {
4943            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4944            RegionList::iterator iter = pRegions->begin();
4945            RegionList::iterator end  = pRegions->end();
4946            for (; iter != end; ++iter) {
4947                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4948                const int low  = std::max(int(pRegion->KeyRange.low), 0);
4949                const int high = std::min(int(pRegion->KeyRange.high), 127);
4950                for (int iKey = low; iKey <= high; iKey++) {
4951                    RegionKeyTable[iKey] = pRegion;
4952              }              }
4953          }          }
4954      }      }
4955    
4956      Instrument::~Instrument() {      Instrument::~Instrument() {
4957          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4958              if (pRegions) {              delete pMidiRules[i];
4959                  if (pRegions[i]) delete (pRegions[i]);          }
4960            delete[] pMidiRules;
4961            if (pScriptRefs) delete pScriptRefs;
4962        }
4963    
4964        /**
4965         * Apply Instrument with all its Regions to the respective RIFF chunks.
4966         * You have to call File::Save() to make changes persistent.
4967         *
4968         * Usually there is absolutely no need to call this method explicitly.
4969         * It will be called automatically when File::Save() was called.
4970         *
4971         * @param pProgress - callback function for progress notification
4972         * @throws gig::Exception if samples cannot be dereferenced
4973         */
4974        void Instrument::UpdateChunks(progress_t* pProgress) {
4975            // first update base classes' chunks
4976            DLS::Instrument::UpdateChunks(pProgress);
4977    
4978            // update Regions' chunks
4979            {
4980                RegionList::iterator iter = pRegions->begin();
4981                RegionList::iterator end  = pRegions->end();
4982                for (; iter != end; ++iter)
4983                    (*iter)->UpdateChunks(pProgress);
4984            }
4985    
4986            // make sure 'lart' RIFF list chunk exists
4987            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4988            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4989            // make sure '3ewg' RIFF chunk exists
4990            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4991            if (!_3ewg)  {
4992                File* pFile = (File*) GetParent();
4993    
4994                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4995                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4996                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4997                memset(_3ewg->LoadChunkData(), 0, size);
4998            }
4999            // update '3ewg' RIFF chunk
5000            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5001            store16(&pData[0], EffectSend);
5002            store32(&pData[2], Attenuation);
5003            store16(&pData[6], FineTune);
5004            store16(&pData[8], PitchbendRange);
5005            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5006                                        DimensionKeyRange.low << 1;
5007            pData[10] = dimkeystart;
5008            pData[11] = DimensionKeyRange.high;
5009    
5010            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5011                pData[32] = 0;
5012                pData[33] = 0;
5013            } else {
5014                for (int i = 0 ; pMidiRules[i] ; i++) {
5015                    pMidiRules[i]->UpdateChunks(pData);
5016              }              }
5017          }          }
5018          if (pRegions) delete[] pRegions;  
5019            // own gig format extensions
5020           if (ScriptSlotCount()) {
5021               // make sure we have converted the original loaded script file
5022               // offsets into valid Script object pointers
5023               LoadScripts();
5024    
5025               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5026               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5027               const int slotCount = (int) pScriptRefs->size();
5028               const int headerSize = 3 * sizeof(uint32_t);
5029               const int slotSize  = 2 * sizeof(uint32_t);
5030               const int totalChunkSize = headerSize + slotCount * slotSize;
5031               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5032               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5033               else ckSCSL->Resize(totalChunkSize);
5034               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5035               int pos = 0;
5036               store32(&pData[pos], headerSize);
5037               pos += sizeof(uint32_t);
5038               store32(&pData[pos], slotCount);
5039               pos += sizeof(uint32_t);
5040               store32(&pData[pos], slotSize);
5041               pos += sizeof(uint32_t);
5042               for (int i = 0; i < slotCount; ++i) {
5043                   // arbitrary value, the actual file offset will be updated in
5044                   // UpdateScriptFileOffsets() after the file has been resized
5045                   int bogusFileOffset = 0;
5046                   store32(&pData[pos], bogusFileOffset);
5047                   pos += sizeof(uint32_t);
5048                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5049                   pos += sizeof(uint32_t);
5050               }
5051           } else {
5052               // no script slots, so get rid of any LS custom RIFF chunks (if any)
5053               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5054               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5055           }
5056        }
5057    
5058        void Instrument::UpdateScriptFileOffsets() {
5059           // own gig format extensions
5060           if (pScriptRefs && pScriptRefs->size() > 0) {
5061               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5062               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5063               const int slotCount = (int) pScriptRefs->size();
5064               const int headerSize = 3 * sizeof(uint32_t);
5065               ckSCSL->SetPos(headerSize);
5066               for (int i = 0; i < slotCount; ++i) {
5067                   uint32_t fileOffset = uint32_t(
5068                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5069                        (*pScriptRefs)[i].script->pChunk->GetPos() -
5070                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5071                   );
5072                   ckSCSL->WriteUint32(&fileOffset);
5073                   // jump over flags entry (containing the bypass flag)
5074                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5075               }
5076           }        
5077      }      }
5078    
5079      /**      /**
# Line 1350  namespace gig { Line 5084  namespace gig {
5084       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
5085       */       */
5086      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
5087          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5088          return RegionKeyTable[Key];          return RegionKeyTable[Key];
5089    
5090          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
5091              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
5092                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1367  namespace gig { Line 5102  namespace gig {
5102       * @see      GetNextRegion()       * @see      GetNextRegion()
5103       */       */
5104      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
5105          if (!Regions) return NULL;          if (!pRegions) return NULL;
5106          RegionIndex = 1;          RegionsIterator = pRegions->begin();
5107          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5108      }      }
5109    
5110      /**      /**
# Line 1381  namespace gig { Line 5116  namespace gig {
5116       * @see      GetFirstRegion()       * @see      GetFirstRegion()
5117       */       */
5118      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
5119          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
5120          return pRegions[RegionIndex++];          RegionsIterator++;
5121            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5122        }
5123    
5124        Region* Instrument::AddRegion() {
5125            // create new Region object (and its RIFF chunks)
5126            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5127            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5128            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5129            Region* pNewRegion = new Region(this, rgn);
5130            pRegions->push_back(pNewRegion);
5131            Regions = (uint32_t) pRegions->size();
5132            // update Region key table for fast lookup
5133            UpdateRegionKeyTable();
5134            // done
5135            return pNewRegion;
5136        }
5137    
5138        void Instrument::DeleteRegion(Region* pRegion) {
5139            if (!pRegions) return;
5140            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5141            // update Region key table for fast lookup
5142            UpdateRegionKeyTable();
5143        }
5144    
5145        /**
5146         * Move this instrument at the position before @arg dst.
5147         *
5148         * This method can be used to reorder the sequence of instruments in a
5149         * .gig file. This might be helpful especially on large .gig files which
5150         * contain a large number of instruments within the same .gig file. So
5151         * grouping such instruments to similar ones, can help to keep track of them
5152         * when working with such complex .gig files.
5153         *
5154         * When calling this method, this instrument will be removed from in its
5155         * current position in the instruments list and moved to the requested
5156         * target position provided by @param dst. You may also pass NULL as
5157         * argument to this method, in that case this intrument will be moved to the
5158         * very end of the .gig file's instrument list.
5159         *
5160         * You have to call Save() to make the order change persistent to the .gig
5161         * file.
5162         *
5163         * Currently this method is limited to moving the instrument within the same
5164         * .gig file. Trying to move it to another .gig file by calling this method
5165         * will throw an exception.
5166         *
5167         * @param dst - destination instrument at which this instrument will be
5168         *              moved to, or pass NULL for moving to end of list
5169         * @throw gig::Exception if this instrument and target instrument are not
5170         *                       part of the same file
5171         */
5172        void Instrument::MoveTo(Instrument* dst) {
5173            if (dst && GetParent() != dst->GetParent())
5174                throw Exception(
5175                    "gig::Instrument::MoveTo() can only be used for moving within "
5176                    "the same gig file."
5177                );
5178    
5179            File* pFile = (File*) GetParent();
5180    
5181            // move this instrument within the instrument list
5182            {
5183                File::InstrumentList& list = *pFile->pInstruments;
5184    
5185                File::InstrumentList::iterator itFrom =
5186                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5187    
5188                File::InstrumentList::iterator itTo =
5189                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5190    
5191                list.splice(itTo, list, itFrom);
5192            }
5193    
5194            // move the instrument's actual list RIFF chunk appropriately
5195            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5196            lstCkInstruments->MoveSubChunk(
5197                this->pCkInstrument,
5198                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5199            );
5200        }
5201    
5202        /**
5203         * Returns a MIDI rule of the instrument.
5204         *
5205         * The list of MIDI rules, at least in gig v3, always contains at
5206         * most two rules. The second rule can only be the DEF filter
5207         * (which currently isn't supported by libgig).
5208         *
5209         * @param i - MIDI rule number
5210         * @returns   pointer address to MIDI rule number i or NULL if there is none
5211         */
5212        MidiRule* Instrument::GetMidiRule(int i) {
5213            return pMidiRules[i];
5214        }
5215    
5216        /**
5217         * Adds the "controller trigger" MIDI rule to the instrument.
5218         *
5219         * @returns the new MIDI rule
5220         */
5221        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5222            delete pMidiRules[0];
5223            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5224            pMidiRules[0] = r;
5225            pMidiRules[1] = 0;
5226            return r;
5227        }
5228    
5229        /**
5230         * Adds the legato MIDI rule to the instrument.
5231         *
5232         * @returns the new MIDI rule
5233         */
5234        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5235            delete pMidiRules[0];
5236            MidiRuleLegato* r = new MidiRuleLegato;
5237            pMidiRules[0] = r;
5238            pMidiRules[1] = 0;
5239            return r;
5240        }
5241    
5242        /**
5243         * Adds the alternator MIDI rule to the instrument.
5244         *
5245         * @returns the new MIDI rule
5246         */
5247        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5248            delete pMidiRules[0];
5249            MidiRuleAlternator* r = new MidiRuleAlternator;
5250            pMidiRules[0] = r;
5251            pMidiRules[1] = 0;
5252            return r;
5253        }
5254    
5255        /**
5256         * Deletes a MIDI rule from the instrument.
5257         *
5258         * @param i - MIDI rule number
5259         */
5260        void Instrument::DeleteMidiRule(int i) {
5261            delete pMidiRules[i];
5262            pMidiRules[i] = 0;
5263        }
5264    
5265        void Instrument::LoadScripts() {
5266            if (pScriptRefs) return;
5267            pScriptRefs = new std::vector<_ScriptPooolRef>;
5268            if (scriptPoolFileOffsets.empty()) return;
5269            File* pFile = (File*) GetParent();
5270            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5271                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5272                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5273                    ScriptGroup* group = pFile->GetScriptGroup(i);
5274                    for (uint s = 0; group->GetScript(s); ++s) {
5275                        Script* script = group->GetScript(s);
5276                        if (script->pChunk) {
5277                            uint32_t offset = uint32_t(
5278                                script->pChunk->GetFilePos() -
5279                                script->pChunk->GetPos() -
5280                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5281                            );
5282                            if (offset == soughtOffset)
5283                            {
5284                                _ScriptPooolRef ref;
5285                                ref.script = script;
5286                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5287                                pScriptRefs->push_back(ref);
5288                                break;
5289                            }
5290                        }
5291                    }
5292                }
5293            }
5294            // we don't need that anymore
5295            scriptPoolFileOffsets.clear();
5296        }
5297    
5298        /** @brief Get instrument script (gig format extension).
5299         *
5300         * Returns the real-time instrument script of instrument script slot
5301         * @a index.
5302         *
5303         * @note This is an own format extension which did not exist i.e. in the
5304         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5305         * gigedit.
5306         *
5307         * @param index - instrument script slot index
5308         * @returns script or NULL if index is out of bounds
5309         */
5310        Script* Instrument::GetScriptOfSlot(uint index) {
5311            LoadScripts();
5312            if (index >= pScriptRefs->size()) return NULL;
5313            return pScriptRefs->at(index).script;
5314        }
5315    
5316        /** @brief Add new instrument script slot (gig format extension).
5317         *
5318         * Add the given real-time instrument script reference to this instrument,
5319         * which shall be executed by the sampler for for this instrument. The
5320         * script will be added to the end of the script list of this instrument.
5321         * The positions of the scripts in the Instrument's Script list are
5322         * relevant, because they define in which order they shall be executed by
5323         * the sampler. For this reason it is also legal to add the same script
5324         * twice to an instrument, for example you might have a script called
5325         * "MyFilter" which performs an event filter task, and you might have
5326         * another script called "MyNoteTrigger" which triggers new notes, then you
5327         * might for example have the following list of scripts on the instrument:
5328         *
5329         * 1. Script "MyFilter"
5330         * 2. Script "MyNoteTrigger"
5331         * 3. Script "MyFilter"
5332         *
5333         * Which would make sense, because the 2nd script launched new events, which
5334         * you might need to filter as well.
5335         *
5336         * There are two ways to disable / "bypass" scripts. You can either disable
5337         * a script locally for the respective script slot on an instrument (i.e. by
5338         * passing @c false to the 2nd argument of this method, or by calling
5339         * SetScriptBypassed()). Or you can disable a script globally for all slots
5340         * and all instruments by setting Script::Bypass.
5341         *
5342         * @note This is an own format extension which did not exist i.e. in the
5343         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5344         * gigedit.
5345         *
5346         * @param pScript - script that shall be executed for this instrument
5347         * @param bypass  - if enabled, the sampler shall skip executing this
5348         *                  script (in the respective list position)
5349         * @see SetScriptBypassed()
5350         */
5351        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5352            LoadScripts();
5353            _ScriptPooolRef ref = { pScript, bypass };
5354            pScriptRefs->push_back(ref);
5355        }
5356    
5357        /** @brief Flip two script slots with each other (gig format extension).
5358         *
5359         * Swaps the position of the two given scripts in the Instrument's Script
5360         * list. The positions of the scripts in the Instrument's Script list are
5361         * relevant, because they define in which order they shall be executed by
5362         * the sampler.
5363         *
5364         * @note This is an own format extension which did not exist i.e. in the
5365         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5366         * gigedit.
5367         *
5368         * @param index1 - index of the first script slot to swap
5369         * @param index2 - index of the second script slot to swap
5370         */
5371        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5372            LoadScripts();
5373            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5374                return;
5375            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5376            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5377            (*pScriptRefs)[index2] = tmp;
5378        }
5379    
5380        /** @brief Remove script slot.
5381         *
5382         * Removes the script slot with the given slot index.
5383         *
5384         * @param index - index of script slot to remove
5385         */
5386        void Instrument::RemoveScriptSlot(uint index) {
5387            LoadScripts();
5388            if (index >= pScriptRefs->size()) return;
5389            pScriptRefs->erase( pScriptRefs->begin() + index );
5390        }
5391    
5392        /** @brief Remove reference to given Script (gig format extension).
5393         *
5394         * This will remove all script slots on the instrument which are referencing
5395         * the given script.
5396         *
5397         * @note This is an own format extension which did not exist i.e. in the
5398         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5399         * gigedit.
5400         *
5401         * @param pScript - script reference to remove from this instrument
5402         * @see RemoveScriptSlot()
5403         */
5404        void Instrument::RemoveScript(Script* pScript) {
5405            LoadScripts();
5406            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5407                if ((*pScriptRefs)[i].script == pScript) {
5408                    pScriptRefs->erase( pScriptRefs->begin() + i );
5409                }
5410            }
5411        }
5412    
5413        /** @brief Instrument's amount of script slots.
5414         *
5415         * This method returns the amount of script slots this instrument currently
5416         * uses.
5417         *
5418         * A script slot is a reference of a real-time instrument script to be
5419         * executed by the sampler. The scripts will be executed by the sampler in
5420         * sequence of the slots. One (same) script may be referenced multiple
5421         * times in different slots.
5422         *
5423         * @note This is an own format extension which did not exist i.e. in the
5424         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5425         * gigedit.
5426         */
5427        uint Instrument::ScriptSlotCount() const {
5428            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5429        }
5430    
5431        /** @brief Whether script execution shall be skipped.
5432         *
5433         * Defines locally for the Script reference slot in the Instrument's Script
5434         * list, whether the script shall be skipped by the sampler regarding
5435         * execution.
5436         *
5437         * It is also possible to ignore exeuction of the script globally, for all
5438         * slots and for all instruments by setting Script::Bypass.
5439         *
5440         * @note This is an own format extension which did not exist i.e. in the
5441         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5442         * gigedit.
5443         *
5444         * @param index - index of the script slot on this instrument
5445         * @see Script::Bypass
5446         */
5447        bool Instrument::IsScriptSlotBypassed(uint index) {
5448            if (index >= ScriptSlotCount()) return false;
5449            return pScriptRefs ? pScriptRefs->at(index).bypass
5450                               : scriptPoolFileOffsets.at(index).bypass;
5451            
5452        }
5453    
5454        /** @brief Defines whether execution shall be skipped.
5455         *
5456         * You can call this method to define locally whether or whether not the
5457         * given script slot shall be executed by the sampler.
5458         *
5459         * @note This is an own format extension which did not exist i.e. in the
5460         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5461         * gigedit.
5462         *
5463         * @param index - script slot index on this instrument
5464         * @param bBypass - if true, the script slot will be skipped by the sampler
5465         * @see Script::Bypass
5466         */
5467        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5468            if (index >= ScriptSlotCount()) return;
5469            if (pScriptRefs)
5470                pScriptRefs->at(index).bypass = bBypass;
5471            else
5472                scriptPoolFileOffsets.at(index).bypass = bBypass;
5473        }
5474    
5475        /**
5476         * Make a (semi) deep copy of the Instrument object given by @a orig
5477         * and assign it to this object.
5478         *
5479         * Note that all sample pointers referenced by @a orig are simply copied as
5480         * memory address. Thus the respective samples are shared, not duplicated!
5481         *
5482         * @param orig - original Instrument object to be copied from
5483         */
5484        void Instrument::CopyAssign(const Instrument* orig) {
5485            CopyAssign(orig, NULL);
5486        }
5487            
5488        /**
5489         * Make a (semi) deep copy of the Instrument object given by @a orig
5490         * and assign it to this object.
5491         *
5492         * @param orig - original Instrument object to be copied from
5493         * @param mSamples - crosslink map between the foreign file's samples and
5494         *                   this file's samples
5495         */
5496        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5497            // handle base class
5498            // (without copying DLS region stuff)
5499            DLS::Instrument::CopyAssignCore(orig);
5500            
5501            // handle own member variables
5502            Attenuation = orig->Attenuation;
5503            EffectSend = orig->EffectSend;
5504            FineTune = orig->FineTune;
5505            PitchbendRange = orig->PitchbendRange;
5506            PianoReleaseMode = orig->PianoReleaseMode;
5507            DimensionKeyRange = orig->DimensionKeyRange;
5508            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5509            pScriptRefs = orig->pScriptRefs;
5510            
5511            // free old midi rules
5512            for (int i = 0 ; pMidiRules[i] ; i++) {
5513                delete pMidiRules[i];
5514            }
5515            //TODO: MIDI rule copying
5516            pMidiRules[0] = NULL;
5517            
5518            // delete all old regions
5519            while (Regions) DeleteRegion(GetFirstRegion());
5520            // create new regions and copy them from original
5521            {
5522                RegionList::const_iterator it = orig->pRegions->begin();
5523                for (int i = 0; i < orig->Regions; ++i, ++it) {
5524                    Region* dstRgn = AddRegion();
5525                    //NOTE: Region does semi-deep copy !
5526                    dstRgn->CopyAssign(
5527                        static_cast<gig::Region*>(*it),
5528                        mSamples
5529                    );
5530                }
5531            }
5532    
5533            UpdateRegionKeyTable();
5534        }
5535    
5536    
5537    // *************** Group ***************
5538    // *
5539    
5540        /** @brief Constructor.
5541         *
5542         * @param file   - pointer to the gig::File object
5543         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5544         *                 NULL if this is a new Group
5545         */
5546        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5547            pFile      = file;
5548            pNameChunk = ck3gnm;
5549            ::LoadString(pNameChunk, Name);
5550        }
5551    
5552        /** @brief Destructor.
5553         *
5554         * Currently this destructor implementation does nothing.
5555         */
5556        Group::~Group() {
5557        }
5558    
5559        /** @brief Remove all RIFF chunks associated with this Group object.
5560         *
5561         * See DLS::Storage::DeleteChunks() for details.
5562         */
5563        void Group::DeleteChunks() {
5564            // handle own RIFF chunks
5565            if (pNameChunk) {
5566                pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5567                pNameChunk = NULL;
5568            }
5569        }
5570    
5571        /** @brief Update chunks with current group settings.
5572         *
5573         * Apply current Group field values to the respective chunks. You have
5574         * to call File::Save() to make changes persistent.
5575         *
5576         * Usually there is absolutely no need to call this method explicitly.
5577         * It will be called automatically when File::Save() was called.
5578         *
5579         * @param pProgress - callback function for progress notification
5580         */
5581        void Group::UpdateChunks(progress_t* pProgress) {
5582            // make sure <3gri> and <3gnl> list chunks exist
5583            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5584            if (!_3gri) {
5585                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5586                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5587            }
5588            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5589            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5590    
5591            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5592                // v3 has a fixed list of 128 strings, find a free one
5593                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5594                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5595                        pNameChunk = ck;
5596                        break;
5597                    }
5598                }
5599            }
5600    
5601            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5602            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5603        }
5604    
5605        /**
5606         * Returns the first Sample of this Group. You have to call this method
5607         * once before you use GetNextSample().
5608         *
5609         * <b>Notice:</b> this method might block for a long time, in case the
5610         * samples of this .gig file were not scanned yet
5611         *
5612         * @returns  pointer address to first Sample or NULL if there is none
5613         *           applied to this Group
5614         * @see      GetNextSample()
5615         */
5616        Sample* Group::GetFirstSample() {
5617            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5618            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5619                if (pSample->GetGroup() == this) return pSample;
5620            }
5621            return NULL;
5622        }
5623    
5624        /**
5625         * Returns the next Sample of the Group. You have to call
5626         * GetFirstSample() once before you can use this method. By calling this
5627         * method multiple times it iterates through the Samples assigned to
5628         * this Group.
5629         *
5630         * @returns  pointer address to the next Sample of this Group or NULL if
5631         *           end reached
5632         * @see      GetFirstSample()
5633         */
5634        Sample* Group::GetNextSample() {
5635            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5636            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5637                if (pSample->GetGroup() == this) return pSample;
5638            }
5639            return NULL;
5640        }
5641    
5642        /**
5643         * Move Sample given by \a pSample from another Group to this Group.
5644         */
5645        void Group::AddSample(Sample* pSample) {
5646            pSample->pGroup = this;
5647        }
5648    
5649        /**
5650         * Move all members of this group to another group (preferably the 1st
5651         * one except this). This method is called explicitly by
5652         * File::DeleteGroup() thus when a Group was deleted. This code was
5653         * intentionally not placed in the destructor!
5654         */
5655        void Group::MoveAll() {
5656            // get "that" other group first
5657            Group* pOtherGroup = NULL;
5658            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5659                if (pOtherGroup != this) break;
5660            }
5661            if (!pOtherGroup) throw Exception(
5662                "Could not move samples to another group, since there is no "
5663                "other Group. This is a bug, report it!"
5664            );
5665            // now move all samples of this group to the other group
5666            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5667                pOtherGroup->AddSample(pSample);
5668            }
5669      }      }
5670    
5671    
# Line 1390  namespace gig { Line 5673  namespace gig {
5673  // *************** File ***************  // *************** File ***************
5674  // *  // *
5675    
5676        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5677        const DLS::version_t File::VERSION_2 = {
5678            0, 2, 19980628 & 0xffff, 19980628 >> 16
5679        };
5680    
5681        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5682        const DLS::version_t File::VERSION_3 = {
5683            0, 3, 20030331 & 0xffff, 20030331 >> 16
5684        };
5685    
5686        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5687        const DLS::version_t File::VERSION_4 = {
5688            0, 4, 20071012 & 0xffff, 20071012 >> 16
5689        };
5690    
5691        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5692            { CHUNK_ID_IARL, 256 },
5693            { CHUNK_ID_IART, 128 },
5694            { CHUNK_ID_ICMS, 128 },
5695            { CHUNK_ID_ICMT, 1024 },
5696            { CHUNK_ID_ICOP, 128 },
5697            { CHUNK_ID_ICRD, 128 },
5698            { CHUNK_ID_IENG, 128 },
5699            { CHUNK_ID_IGNR, 128 },
5700            { CHUNK_ID_IKEY, 128 },
5701            { CHUNK_ID_IMED, 128 },
5702            { CHUNK_ID_INAM, 128 },
5703            { CHUNK_ID_IPRD, 128 },
5704            { CHUNK_ID_ISBJ, 128 },
5705            { CHUNK_ID_ISFT, 128 },
5706            { CHUNK_ID_ISRC, 128 },
5707            { CHUNK_ID_ISRF, 128 },
5708            { CHUNK_ID_ITCH, 128 },
5709            { 0, 0 }
5710        };
5711    
5712        File::File() : DLS::File() {
5713            bAutoLoad = true;
5714            *pVersion = VERSION_3;
5715            pGroups = NULL;
5716            pScriptGroups = NULL;
5717            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5718            pInfo->ArchivalLocation = String(256, ' ');
5719    
5720            // add some mandatory chunks to get the file chunks in right
5721            // order (INFO chunk will be moved to first position later)
5722            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5723            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5724            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5725    
5726            GenerateDLSID();
5727        }
5728    
5729      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5730          pSamples     = NULL;          bAutoLoad = true;
5731          pInstruments = NULL;          pGroups = NULL;
5732            pScriptGroups = NULL;
5733            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5734      }      }
5735    
5736      File::~File() {      File::~File() {
5737          // free samples          if (pGroups) {
5738          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
5739              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
5740              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
5741                  delete (*SamplesIterator);                  delete *iter;
5742                  SamplesIterator++;                  ++iter;
5743              }              }
5744              pSamples->clear();              delete pGroups;
   
5745          }          }
5746          // free instruments          if (pScriptGroups) {
5747          if (pInstruments) {              std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5748              InstrumentsIterator = pInstruments->begin();              std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5749              while (InstrumentsIterator != pInstruments->end() ) {              while (iter != end) {
5750                  delete (*InstrumentsIterator);                  delete *iter;
5751                  InstrumentsIterator++;                  ++iter;
5752              }              }
5753              pInstruments->clear();              delete pScriptGroups;
5754          }          }
5755      }      }
5756    
5757      Sample* File::GetFirstSample() {      Sample* File::GetFirstSample(progress_t* pProgress) {
5758          if (!pSamples) LoadSamples();          if (!pSamples) LoadSamples(pProgress);
5759          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5760          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5761          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1429  namespace gig { Line 5766  namespace gig {
5766          SamplesIterator++;          SamplesIterator++;
5767          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5768      }      }
5769        
5770        /**
5771         * Returns Sample object of @a index.
5772         *
5773         * @returns sample object or NULL if index is out of bounds
5774         */
5775        Sample* File::GetSample(uint index) {
5776            if (!pSamples) LoadSamples();
5777            if (!pSamples) return NULL;
5778            DLS::File::SampleList::iterator it = pSamples->begin();
5779            for (int i = 0; i < index; ++i) {
5780                ++it;
5781                if (it == pSamples->end()) return NULL;
5782            }
5783            if (it == pSamples->end()) return NULL;
5784            return static_cast<gig::Sample*>( *it );
5785        }
5786    
5787        /**
5788         * Returns the total amount of samples of this gig file.
5789         *
5790         * Note that this method might block for a long time in case it is required
5791         * to load the sample info for the first time.
5792         *
5793         * @returns total amount of samples
5794         */
5795        size_t File::CountSamples() {
5796            if (!pSamples) LoadSamples();
5797            if (!pSamples) return 0;
5798            return pSamples->size();
5799        }
5800    
5801        /** @brief Add a new sample.
5802         *
5803         * This will create a new Sample object for the gig file. You have to
5804         * call Save() to make this persistent to the file.
5805         *
5806         * @returns pointer to new Sample object
5807         */
5808        Sample* File::AddSample() {
5809           if (!pSamples) LoadSamples();
5810           __ensureMandatoryChunksExist();
5811           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5812           // create new Sample object and its respective 'wave' list chunk
5813           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5814           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5815    
5816           // add mandatory chunks to get the chunks in right order
5817           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5818           wave->AddSubList(LIST_TYPE_INFO);
5819    
5820           pSamples->push_back(pSample);
5821           return pSample;
5822        }
5823    
5824        /** @brief Delete a sample.
5825         *
5826         * This will delete the given Sample object from the gig file. Any
5827         * references to this sample from Regions and DimensionRegions will be
5828         * removed. You have to call Save() to make this persistent to the file.
5829         *
5830         * @param pSample - sample to delete
5831         * @throws gig::Exception if given sample could not be found
5832         */
5833        void File::DeleteSample(Sample* pSample) {
5834            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5835            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5836            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5837            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5838            pSamples->erase(iter);
5839            pSample->DeleteChunks();
5840            delete pSample;
5841    
5842            SampleList::iterator tmp = SamplesIterator;
5843            // remove all references to the sample
5844            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5845                 instrument = GetNextInstrument()) {
5846                for (Region* region = instrument->GetFirstRegion() ; region ;
5847                     region = instrument->GetNextRegion()) {
5848    
5849                    if (region->GetSample() == pSample) region->SetSample(NULL);
5850    
5851                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5852                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5853                        if (d->pSample == pSample) d->pSample = NULL;
5854                    }
5855                }
5856            }
5857            SamplesIterator = tmp; // restore iterator
5858        }
5859    
5860      void File::LoadSamples() {      void File::LoadSamples() {
5861          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
5862          if (wvpl) {      }
5863              unsigned long wvplFileOffset = wvpl->GetFilePos();  
5864              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
5865              while (wave) {          // Groups must be loaded before samples, because samples will try
5866                  if (wave->GetListType() == LIST_TYPE_WAVE) {          // to resolve the group they belong to
5867                      if (!pSamples) pSamples = new SampleList;          if (!pGroups) LoadGroups();
5868                      unsigned long waveFileOffset = wave->GetFilePos();  
5869                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          if (!pSamples) pSamples = new SampleList;
5870    
5871            RIFF::File* file = pRIFF;
5872    
5873            // just for progress calculation
5874            int iSampleIndex  = 0;
5875            int iTotalSamples = WavePoolCount;
5876    
5877            // just for assembling path of optional extension files to be read
5878            const std::string folder = parentPath(pRIFF->GetFileName());
5879            const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5880    
5881            // the main gig file and the extension files (.gx01, ... , .gx98) may
5882            // contain wave data (wave pool)
5883            std::vector<RIFF::File*> poolFiles;
5884            poolFiles.push_back(pRIFF);
5885    
5886            // get info about all extension files
5887            RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5888            if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5889                const uint32_t n = ckXfil->ReadInt32();
5890                for (int i = 0; i < n; i++) {
5891                    // read the filename and load the extension file
5892                    std::string name;
5893                    ckXfil->ReadString(name, 128);
5894                    std::string path = concatPath(folder, name);
5895                    RIFF::File* pExtFile = new RIFF::File(path);
5896                    // check that the dlsids match
5897                    RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5898                    if (ckDLSID) {
5899                        ::DLS::dlsid_t idExpected;
5900                        idExpected.ulData1 = ckXfil->ReadInt32();
5901                        idExpected.usData2 = ckXfil->ReadInt16();
5902                        idExpected.usData3 = ckXfil->ReadInt16();
5903                        ckXfil->Read(idExpected.abData, 8, 1);
5904                        ::DLS::dlsid_t idFound;
5905                        ckDLSID->Read(&idFound.ulData1, 1, 4);
5906                        ckDLSID->Read(&idFound.usData2, 1, 2);
5907                        ckDLSID->Read(&idFound.usData3, 1, 2);
5908                        ckDLSID->Read(idFound.abData, 8, 1);
5909                        if (memcmp(&idExpected, &idFound, 16) != 0)
5910                            throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5911                  }                  }
5912                  wave = wvpl->GetNextSubList();                  poolFiles.push_back(pExtFile);
5913                    ExtensionFiles.push_back(pExtFile);
5914                }
5915            }
5916    
5917            // check if a .gx99 (GigaPulse) file exists
5918            RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5919            if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5920                std::string path = baseName + ".gx99";
5921                RIFF::File* pExtFile = new RIFF::File(path);
5922    
5923                // skip unused int and filename
5924                ckDoxf->SetPos(132, RIFF::stream_curpos);
5925    
5926                // check that the dlsids match
5927                RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5928                if (ckDLSID) {
5929                    ::DLS::dlsid_t idExpected;
5930                    idExpected.ulData1 = ckDoxf->ReadInt32();
5931                    idExpected.usData2 = ckDoxf->ReadInt16();
5932                    idExpected.usData3 = ckDoxf->ReadInt16();
5933                    ckDoxf->Read(idExpected.abData, 8, 1);
5934                    ::DLS::dlsid_t idFound;
5935                    ckDLSID->Read(&idFound.ulData1, 1, 4);
5936                    ckDLSID->Read(&idFound.usData2, 1, 2);
5937                    ckDLSID->Read(&idFound.usData3, 1, 2);
5938                    ckDLSID->Read(idFound.abData, 8, 1);
5939                    if (memcmp(&idExpected, &idFound, 16) != 0)
5940                        throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5941              }              }
5942                poolFiles.push_back(pExtFile);
5943                ExtensionFiles.push_back(pExtFile);
5944          }          }
5945          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
5946            // load samples from extension files (if required)
5947            for (int i = 0; i < poolFiles.size(); i++) {
5948                RIFF::File* file = poolFiles[i];
5949                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5950                if (wvpl) {
5951                    file_offset_t wvplFileOffset = wvpl->GetFilePos() -
5952                                                   wvpl->GetPos(); // should be zero, but just to be sure
5953                    RIFF::List* wave = wvpl->GetFirstSubList();
5954                    while (wave) {
5955                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5956                            // notify current progress
5957                            if (pProgress) {
5958                                const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5959                                __notify_progress(pProgress, subprogress);
5960                            }
5961    
5962                            file_offset_t waveFileOffset = wave->GetFilePos();
5963                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5964    
5965                            iSampleIndex++;
5966                        }
5967                        wave = wvpl->GetNextSubList();
5968                    }
5969                }
5970            }
5971    
5972            if (pProgress)
5973                __notify_progress(pProgress, 1.0); // notify done
5974      }      }
5975    
5976      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5977          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5978          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5979          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5980          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5981      }      }
5982    
5983      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5984          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5985          InstrumentsIterator++;          InstrumentsIterator++;
5986          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5987        }
5988    
5989        /**
5990         * Returns the total amount of instruments of this gig file.
5991         *
5992         * Note that this method might block for a long time in case it is required
5993         * to load the instruments info for the first time.
5994         *
5995         * @returns total amount of instruments
5996         */
5997        size_t File::CountInstruments() {
5998            if (!pInstruments) LoadInstruments();
5999            if (!pInstruments) return 0;
6000            return pInstruments->size();
6001      }      }
6002    
6003      /**      /**
6004       * Returns the instrument with the given index.       * Returns the instrument with the given index.
6005       *       *
6006         * @param index     - number of the sought instrument (0..n)
6007         * @param pProgress - optional: callback function for progress notification
6008       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
6009       */       */
6010      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
6011          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
6012                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6013    
6014                if (pProgress) {
6015                    // sample loading subtask
6016                    progress_t subprogress;
6017                    __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6018                    __notify_progress(&subprogress, 0.0f);
6019                    if (GetAutoLoad())
6020                        GetFirstSample(&subprogress); // now force all samples to be loaded
6021                    __notify_progress(&subprogress, 1.0f);
6022    
6023                    // instrument loading subtask
6024                    if (pProgress->callback) {
6025                        subprogress.__range_min = subprogress.__range_max;
6026                        subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6027                    }
6028                    __notify_progress(&subprogress, 0.0f);
6029                    LoadInstruments(&subprogress);
6030                    __notify_progress(&subprogress, 1.0f);
6031                } else {
6032                    // sample loading subtask
6033                    if (GetAutoLoad())
6034                        GetFirstSample(); // now force all samples to be loaded
6035    
6036                    // instrument loading subtask
6037                    LoadInstruments();
6038                }
6039            }
6040          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
6041          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
6042          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6043              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6044              InstrumentsIterator++;              InstrumentsIterator++;
6045          }          }
6046          return NULL;          return NULL;
6047      }      }
6048    
6049        /** @brief Add a new instrument definition.
6050         *
6051         * This will create a new Instrument object for the gig file. You have
6052         * to call Save() to make this persistent to the file.
6053         *
6054         * @returns pointer to new Instrument object
6055         */
6056        Instrument* File::AddInstrument() {
6057           if (!pInstruments) LoadInstruments();
6058           __ensureMandatoryChunksExist();
6059           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6060           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6061    
6062           // add mandatory chunks to get the chunks in right order
6063           lstInstr->AddSubList(LIST_TYPE_INFO);
6064           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6065    
6066           Instrument* pInstrument = new Instrument(this, lstInstr);
6067           pInstrument->GenerateDLSID();
6068    
6069           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6070    
6071           // this string is needed for the gig to be loadable in GSt:
6072           pInstrument->pInfo->Software = "Endless Wave";
6073    
6074           pInstruments->push_back(pInstrument);
6075           return pInstrument;
6076        }
6077        
6078        /** @brief Add a duplicate of an existing instrument.
6079         *
6080         * Duplicates the instrument definition given by @a orig and adds it
6081         * to this file. This allows in an instrument editor application to
6082         * easily create variations of an instrument, which will be stored in
6083         * the same .gig file, sharing i.e. the same samples.
6084         *
6085         * Note that all sample pointers referenced by @a orig are simply copied as
6086         * memory address. Thus the respective samples are shared, not duplicated!
6087         *
6088         * You have to call Save() to make this persistent to the file.
6089         *
6090         * @param orig - original instrument to be copied
6091         * @returns duplicated copy of the given instrument
6092         */
6093        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6094            Instrument* instr = AddInstrument();
6095            instr->CopyAssign(orig);
6096            return instr;
6097        }
6098        
6099        /** @brief Add content of another existing file.
6100         *
6101         * Duplicates the samples, groups and instruments of the original file
6102         * given by @a pFile and adds them to @c this File. In case @c this File is
6103         * a new one that you haven't saved before, then you have to call
6104         * SetFileName() before calling AddContentOf(), because this method will
6105         * automatically save this file during operation, which is required for
6106         * writing the sample waveform data by disk streaming.
6107         *
6108         * @param pFile - original file whose's content shall be copied from
6109         */
6110        void File::AddContentOf(File* pFile) {
6111            static int iCallCount = -1;
6112            iCallCount++;
6113            std::map<Group*,Group*> mGroups;
6114            std::map<Sample*,Sample*> mSamples;
6115            
6116            // clone sample groups
6117            for (int i = 0; pFile->GetGroup(i); ++i) {
6118                Group* g = AddGroup();
6119                g->Name =
6120                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6121                mGroups[pFile->GetGroup(i)] = g;
6122            }
6123            
6124            // clone samples (not waveform data here yet)
6125            for (int i = 0; pFile->GetSample(i); ++i) {
6126                Sample* s = AddSample();
6127                s->CopyAssignMeta(pFile->GetSample(i));
6128                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6129                mSamples[pFile->GetSample(i)] = s;
6130            }
6131    
6132            // clone script groups and their scripts
6133            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6134                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6135                ScriptGroup* dg = AddScriptGroup();
6136                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6137                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6138                    Script* ss = sg->GetScript(iScript);
6139                    Script* ds = dg->AddScript();
6140                    ds->CopyAssign(ss);
6141                }
6142            }
6143    
6144            //BUG: For some reason this method only works with this additional
6145            //     Save() call in between here.
6146            //
6147            // Important: The correct one of the 2 Save() methods has to be called
6148            // here, depending on whether the file is completely new or has been
6149            // saved to disk already, otherwise it will result in data corruption.
6150            if (pRIFF->IsNew())
6151                Save(GetFileName());
6152            else
6153                Save();
6154            
6155            // clone instruments
6156            // (passing the crosslink table here for the cloned samples)
6157            for (int i = 0; pFile->GetInstrument(i); ++i) {
6158                Instrument* instr = AddInstrument();
6159                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6160            }
6161            
6162            // Mandatory: file needs to be saved to disk at this point, so this
6163            // file has the correct size and data layout for writing the samples'
6164            // waveform data to disk.
6165            Save();
6166            
6167            // clone samples' waveform data
6168            // (using direct read & write disk streaming)
6169            for (int i = 0; pFile->GetSample(i); ++i) {
6170                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6171            }
6172        }
6173    
6174        /** @brief Delete an instrument.
6175         *
6176         * This will delete the given Instrument object from the gig file. You
6177         * have to call Save() to make this persistent to the file.
6178         *
6179         * @param pInstrument - instrument to delete
6180         * @throws gig::Exception if given instrument could not be found
6181         */
6182        void File::DeleteInstrument(Instrument* pInstrument) {
6183            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6184            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6185            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6186            pInstruments->erase(iter);
6187            pInstrument->DeleteChunks();
6188            delete pInstrument;
6189        }
6190    
6191      void File::LoadInstruments() {      void File::LoadInstruments() {
6192            LoadInstruments(NULL);
6193        }
6194    
6195        void File::LoadInstruments(progress_t* pProgress) {
6196            if (!pInstruments) pInstruments = new InstrumentList;
6197          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6198          if (lstInstruments) {          if (lstInstruments) {
6199                int iInstrumentIndex = 0;
6200              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6201              while (lstInstr) {              while (lstInstr) {
6202                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
6203                      if (!pInstruments) pInstruments = new InstrumentList;                      if (pProgress) {
6204                      pInstruments->push_back(new Instrument(this, lstInstr));                          // notify current progress
6205                            const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6206                            __notify_progress(pProgress, localProgress);
6207    
6208                            // divide local progress into subprogress for loading current Instrument
6209                            progress_t subprogress;
6210                            __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6211    
6212                            pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6213                        } else {
6214                            pInstruments->push_back(new Instrument(this, lstInstr));
6215                        }
6216    
6217                        iInstrumentIndex++;
6218                  }                  }
6219                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
6220              }              }
6221                if (pProgress)
6222                    __notify_progress(pProgress, 1.0); // notify done
6223            }
6224        }
6225    
6226        /// Updates the 3crc chunk with the checksum of a sample. The
6227        /// update is done directly to disk, as this method is called
6228        /// after File::Save()
6229        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6230            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6231            if (!_3crc) return;
6232    
6233            // get the index of the sample
6234            int iWaveIndex = GetWaveTableIndexOf(pSample);
6235            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6236    
6237            // write the CRC-32 checksum to disk
6238            _3crc->SetPos(iWaveIndex * 8);
6239            uint32_t one = 1;
6240            _3crc->WriteUint32(&one); // always 1
6241            _3crc->WriteUint32(&crc);
6242        }
6243    
6244        uint32_t File::GetSampleChecksum(Sample* pSample) {
6245            // get the index of the sample
6246            int iWaveIndex = GetWaveTableIndexOf(pSample);
6247            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6248    
6249            return GetSampleChecksumByIndex(iWaveIndex);
6250        }
6251    
6252        uint32_t File::GetSampleChecksumByIndex(int index) {
6253            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6254    
6255            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6256            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6257            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6258            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6259    
6260            // read the CRC-32 checksum directly from disk
6261            size_t pos = index * 8;
6262            if (pos + 8 > _3crc->GetNewSize())
6263                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6264    
6265            uint32_t one = load32(&pData[pos]); // always 1
6266            if (one != 1)
6267                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6268    
6269            return load32(&pData[pos+4]);
6270        }
6271    
6272        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6273            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6274            File::SampleList::iterator iter = pSamples->begin();
6275            File::SampleList::iterator end  = pSamples->end();
6276            for (int index = 0; iter != end; ++iter, ++index)
6277                if (*iter == pSample)
6278                    return index;
6279            return -1;
6280        }
6281    
6282        /**
6283         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6284         * the CRC32 check sums of all samples' raw wave data.
6285         *
6286         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6287         */
6288        bool File::VerifySampleChecksumTable() {
6289            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6290            if (!_3crc) return false;
6291            if (_3crc->GetNewSize() <= 0) return false;
6292            if (_3crc->GetNewSize() % 8) return false;
6293            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6294            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6295    
6296            const file_offset_t n = _3crc->GetNewSize() / 8;
6297    
6298            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6299            if (!pData) return false;
6300    
6301            for (file_offset_t i = 0; i < n; ++i) {
6302                uint32_t one = pData[i*2];
6303                if (one != 1) return false;
6304            }
6305    
6306            return true;
6307        }
6308    
6309        /**
6310         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6311         * file's checksum table with those new checksums. This might usually
6312         * just be necessary if the checksum table was damaged.
6313         *
6314         * @e IMPORTANT: The current implementation of this method only works
6315         * with files that have not been modified since it was loaded, because
6316         * it expects that no externally caused file structure changes are
6317         * required!
6318         *
6319         * Due to the expectation above, this method is currently protected
6320         * and actually only used by the command line tool "gigdump" yet.
6321         *
6322         * @returns true if Save() is required to be called after this call,
6323         *          false if no further action is required
6324         */
6325        bool File::RebuildSampleChecksumTable() {
6326            // make sure sample chunks were scanned
6327            if (!pSamples) GetFirstSample();
6328    
6329            bool bRequiresSave = false;
6330    
6331            // make sure "3CRC" chunk exists with required size
6332            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6333            if (!_3crc) {
6334                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6335                // the order of einf and 3crc is not the same in v2 and v3
6336                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6337                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6338                bRequiresSave = true;
6339            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6340                _3crc->Resize(pSamples->size() * 8);
6341                bRequiresSave = true;
6342            }
6343    
6344            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6345                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6346                {
6347                    File::SampleList::iterator iter = pSamples->begin();
6348                    File::SampleList::iterator end  = pSamples->end();
6349                    for (; iter != end; ++iter) {
6350                        gig::Sample* pSample = (gig::Sample*) *iter;
6351                        int index = GetWaveTableIndexOf(pSample);
6352                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6353                        pData[index*2]   = 1; // always 1
6354                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6355                    }
6356                }
6357            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6358                // make sure file is in write mode
6359                pRIFF->SetMode(RIFF::stream_mode_read_write);
6360                {
6361                    File::SampleList::iterator iter = pSamples->begin();
6362                    File::SampleList::iterator end  = pSamples->end();
6363                    for (; iter != end; ++iter) {
6364                        gig::Sample* pSample = (gig::Sample*) *iter;
6365                        int index = GetWaveTableIndexOf(pSample);
6366                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6367                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6368                        SetSampleChecksum(pSample, pSample->crc);
6369                    }
6370                }
6371            }
6372    
6373            return bRequiresSave;
6374        }
6375    
6376        Group* File::GetFirstGroup() {
6377            if (!pGroups) LoadGroups();
6378            // there must always be at least one group
6379            GroupsIterator = pGroups->begin();
6380            return *GroupsIterator;
6381        }
6382    
6383        Group* File::GetNextGroup() {
6384            if (!pGroups) return NULL;
6385            ++GroupsIterator;
6386            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6387        }
6388    
6389        /**
6390         * Returns the group with the given index.
6391         *
6392         * @param index - number of the sought group (0..n)
6393         * @returns sought group or NULL if there's no such group
6394         */
6395        Group* File::GetGroup(uint index) {
6396            if (!pGroups) LoadGroups();
6397            GroupsIterator = pGroups->begin();
6398            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6399                if (i == index) return *GroupsIterator;
6400                ++GroupsIterator;
6401            }
6402            return NULL;
6403        }
6404    
6405        /**
6406         * Returns the group with the given group name.
6407         *
6408         * Note: group names don't have to be unique in the gig format! So there
6409         * can be multiple groups with the same name. This method will simply
6410         * return the first group found with the given name.
6411         *
6412         * @param name - name of the sought group
6413         * @returns sought group or NULL if there's no group with that name
6414         */
6415        Group* File::GetGroup(String name) {
6416            if (!pGroups) LoadGroups();
6417            GroupsIterator = pGroups->begin();
6418            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6419                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6420            return NULL;
6421        }
6422    
6423        Group* File::AddGroup() {
6424            if (!pGroups) LoadGroups();
6425            // there must always be at least one group
6426            __ensureMandatoryChunksExist();
6427            Group* pGroup = new Group(this, NULL);
6428            pGroups->push_back(pGroup);
6429            return pGroup;
6430        }
6431    
6432        /** @brief Delete a group and its samples.
6433         *
6434         * This will delete the given Group object and all the samples that
6435         * belong to this group from the gig file. You have to call Save() to
6436         * make this persistent to the file.
6437         *
6438         * @param pGroup - group to delete
6439         * @throws gig::Exception if given group could not be found
6440         */
6441        void File::DeleteGroup(Group* pGroup) {
6442            if (!pGroups) LoadGroups();
6443            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6444            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6445            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6446            // delete all members of this group
6447            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6448                DeleteSample(pSample);
6449            }
6450            // now delete this group object
6451            pGroups->erase(iter);
6452            pGroup->DeleteChunks();
6453            delete pGroup;
6454        }
6455    
6456        /** @brief Delete a group.
6457         *
6458         * This will delete the given Group object from the gig file. All the
6459         * samples that belong to this group will not be deleted, but instead
6460         * be moved to another group. You have to call Save() to make this
6461         * persistent to the file.
6462         *
6463         * @param pGroup - group to delete
6464         * @throws gig::Exception if given group could not be found
6465         */
6466        void File::DeleteGroupOnly(Group* pGroup) {
6467            if (!pGroups) LoadGroups();
6468            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6469            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6470            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6471            // move all members of this group to another group
6472            pGroup->MoveAll();
6473            pGroups->erase(iter);
6474            pGroup->DeleteChunks();
6475            delete pGroup;
6476        }
6477    
6478        void File::LoadGroups() {
6479            if (!pGroups) pGroups = new std::list<Group*>;
6480            // try to read defined groups from file
6481            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6482            if (lst3gri) {
6483                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6484                if (lst3gnl) {
6485                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6486                    while (ck) {
6487                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6488                            if (pVersion && pVersion->major > 2 &&
6489                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6490    
6491                            pGroups->push_back(new Group(this, ck));
6492                        }
6493                        ck = lst3gnl->GetNextSubChunk();
6494                    }
6495                }
6496            }
6497            // if there were no group(s), create at least the mandatory default group
6498            if (!pGroups->size()) {
6499                Group* pGroup = new Group(this, NULL);
6500                pGroup->Name = "Default Group";
6501                pGroups->push_back(pGroup);
6502            }
6503        }
6504    
6505        /** @brief Get instrument script group (by index).
6506         *
6507         * Returns the real-time instrument script group with the given index.
6508         *
6509         * @param index - number of the sought group (0..n)
6510         * @returns sought script group or NULL if there's no such group
6511         */
6512        ScriptGroup* File::GetScriptGroup(uint index) {
6513            if (!pScriptGroups) LoadScriptGroups();
6514            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6515            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6516                if (i == index) return *it;
6517            return NULL;
6518        }
6519    
6520        /** @brief Get instrument script group (by name).
6521         *
6522         * Returns the first real-time instrument script group found with the given
6523         * group name. Note that group names may not necessarily be unique.
6524         *
6525         * @param name - name of the sought script group
6526         * @returns sought script group or NULL if there's no such group
6527         */
6528        ScriptGroup* File::GetScriptGroup(const String& name) {
6529            if (!pScriptGroups) LoadScriptGroups();
6530            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6531            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6532                if ((*it)->Name == name) return *it;
6533            return NULL;
6534        }
6535    
6536        /** @brief Add new instrument script group.
6537         *
6538         * Adds a new, empty real-time instrument script group to the file.
6539         *
6540         * You have to call Save() to make this persistent to the file.
6541         *
6542         * @return new empty script group
6543         */
6544        ScriptGroup* File::AddScriptGroup() {
6545            if (!pScriptGroups) LoadScriptGroups();
6546            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6547            pScriptGroups->push_back(pScriptGroup);
6548            return pScriptGroup;
6549        }
6550    
6551        /** @brief Delete an instrument script group.
6552         *
6553         * This will delete the given real-time instrument script group and all its
6554         * instrument scripts it contains. References inside instruments that are
6555         * using the deleted scripts will be removed from the respective instruments
6556         * accordingly.
6557         *
6558         * You have to call Save() to make this persistent to the file.
6559         *
6560         * @param pScriptGroup - script group to delete
6561         * @throws gig::Exception if given script group could not be found
6562         */
6563        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6564            if (!pScriptGroups) LoadScriptGroups();
6565            std::list<ScriptGroup*>::iterator iter =
6566                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6567            if (iter == pScriptGroups->end())
6568                throw gig::Exception("Could not delete script group, could not find given script group");
6569            pScriptGroups->erase(iter);
6570            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6571                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6572            if (pScriptGroup->pList)
6573                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6574            pScriptGroup->DeleteChunks();
6575            delete pScriptGroup;
6576        }
6577    
6578        void File::LoadScriptGroups() {
6579            if (pScriptGroups) return;
6580            pScriptGroups = new std::list<ScriptGroup*>;
6581            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6582            if (lstLS) {
6583                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6584                     lst = lstLS->GetNextSubList())
6585                {
6586                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6587                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6588                    }
6589                }
6590          }          }
6591          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
6592    
6593        /**
6594         * Apply all the gig file's current instruments, samples, groups and settings
6595         * to the respective RIFF chunks. You have to call Save() to make changes
6596         * persistent.
6597         *
6598         * Usually there is absolutely no need to call this method explicitly.
6599         * It will be called automatically when File::Save() was called.
6600         *
6601         * @param pProgress - callback function for progress notification
6602         * @throws Exception - on errors
6603         */
6604        void File::UpdateChunks(progress_t* pProgress) {
6605            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6606    
6607            // update own gig format extension chunks
6608            // (not part of the GigaStudio 4 format)
6609            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6610            if (!lst3LS) {
6611                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6612            }
6613            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6614            // location of <3LS > is irrelevant, however it should be located
6615            // before  the actual wave data
6616            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6617            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6618    
6619            // This must be performed before writing the chunks for instruments,
6620            // because the instruments' script slots will write the file offsets
6621            // of the respective instrument script chunk as reference.
6622            if (pScriptGroups) {
6623                // Update instrument script (group) chunks.
6624                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6625                     it != pScriptGroups->end(); ++it)
6626                {
6627                    (*it)->UpdateChunks(pProgress);
6628                }
6629            }
6630    
6631            // in case no libgig custom format data was added, then remove the
6632            // custom "3LS " chunk again
6633            if (!lst3LS->CountSubChunks()) {
6634                pRIFF->DeleteSubChunk(lst3LS);
6635                lst3LS = NULL;
6636            }
6637    
6638            // first update base class's chunks
6639            DLS::File::UpdateChunks(pProgress);
6640    
6641            if (newFile) {
6642                // INFO was added by Resource::UpdateChunks - make sure it
6643                // is placed first in file
6644                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6645                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6646                if (first != info) {
6647                    pRIFF->MoveSubChunk(info, first);
6648                }
6649            }
6650    
6651            // update group's chunks
6652            if (pGroups) {
6653                // make sure '3gri' and '3gnl' list chunks exist
6654                // (before updating the Group chunks)
6655                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6656                if (!_3gri) {
6657                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6658                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6659                }
6660                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6661                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6662    
6663                // v3: make sure the file has 128 3gnm chunks
6664                // (before updating the Group chunks)
6665                if (pVersion && pVersion->major > 2) {
6666                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6667                    for (int i = 0 ; i < 128 ; i++) {
6668                        // create 128 empty placeholder strings which will either
6669                        // be filled by Group::UpdateChunks below or left empty.
6670                        ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6671                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6672                    }
6673                }
6674    
6675                std::list<Group*>::iterator iter = pGroups->begin();
6676                std::list<Group*>::iterator end  = pGroups->end();
6677                for (; iter != end; ++iter) {
6678                    (*iter)->UpdateChunks(pProgress);
6679                }
6680            }
6681    
6682            // update einf chunk
6683    
6684            // The einf chunk contains statistics about the gig file, such
6685            // as the number of regions and samples used by each
6686            // instrument. It is divided in equally sized parts, where the
6687            // first part contains information about the whole gig file,
6688            // and the rest of the parts map to each instrument in the
6689            // file.
6690            //
6691            // At the end of each part there is a bit map of each sample
6692            // in the file, where a set bit means that the sample is used
6693            // by the file/instrument.
6694            //
6695            // Note that there are several fields with unknown use. These
6696            // are set to zero.
6697    
6698            int sublen = int(pSamples->size() / 8 + 49);
6699            int einfSize = (Instruments + 1) * sublen;
6700    
6701            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6702            if (einf) {
6703                if (einf->GetSize() != einfSize) {
6704                    einf->Resize(einfSize);
6705                    memset(einf->LoadChunkData(), 0, einfSize);
6706                }
6707            } else if (newFile) {
6708                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6709            }
6710            if (einf) {
6711                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6712    
6713                std::map<gig::Sample*,int> sampleMap;
6714                int sampleIdx = 0;
6715                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6716                    sampleMap[pSample] = sampleIdx++;
6717                }
6718    
6719                int totnbusedsamples = 0;
6720                int totnbusedchannels = 0;
6721                int totnbregions = 0;
6722                int totnbdimregions = 0;
6723                int totnbloops = 0;
6724                int instrumentIdx = 0;
6725    
6726                memset(&pData[48], 0, sublen - 48);
6727    
6728                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6729                     instrument = GetNextInstrument()) {
6730                    int nbusedsamples = 0;
6731                    int nbusedchannels = 0;
6732                    int nbdimregions = 0;
6733                    int nbloops = 0;
6734    
6735                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6736    
6737                    for (Region* region = instrument->GetFirstRegion() ; region ;
6738                         region = instrument->GetNextRegion()) {
6739                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6740                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6741                            if (d->pSample) {
6742                                int sampleIdx = sampleMap[d->pSample];
6743                                int byte = 48 + sampleIdx / 8;
6744                                int bit = 1 << (sampleIdx & 7);
6745                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6746                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6747                                    nbusedsamples++;
6748                                    nbusedchannels += d->pSample->Channels;
6749    
6750                                    if ((pData[byte] & bit) == 0) {
6751                                        pData[byte] |= bit;
6752                                        totnbusedsamples++;
6753                                        totnbusedchannels += d->pSample->Channels;
6754                                    }
6755                                }
6756                            }
6757                            if (d->SampleLoops) nbloops++;
6758                        }
6759                        nbdimregions += region->DimensionRegions;
6760                    }
6761                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6762                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6763                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6764                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6765                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6766                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6767                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6768                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6769                    // next 8 bytes unknown
6770                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6771                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6772                    // next 4 bytes unknown
6773    
6774                    totnbregions += instrument->Regions;
6775                    totnbdimregions += nbdimregions;
6776                    totnbloops += nbloops;
6777                    instrumentIdx++;
6778                }
6779                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6780                // store32(&pData[0], sublen);
6781                store32(&pData[4], totnbusedchannels);
6782                store32(&pData[8], totnbusedsamples);
6783                store32(&pData[12], Instruments);
6784                store32(&pData[16], totnbregions);
6785                store32(&pData[20], totnbdimregions);
6786                store32(&pData[24], totnbloops);
6787                // next 8 bytes unknown
6788                // next 4 bytes unknown, not always 0
6789                store32(&pData[40], (uint32_t) pSamples->size());
6790                // next 4 bytes unknown
6791            }
6792    
6793            // update 3crc chunk
6794    
6795            // The 3crc chunk contains CRC-32 checksums for the
6796            // samples. When saving a gig file to disk, we first update the 3CRC
6797            // chunk here (in RAM) with the old crc values which we read from the
6798            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6799            // member variable). This step is required, because samples might have
6800            // been deleted by the user since the file was opened, which in turn
6801            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6802            // If a sample was conciously modified by the user (that is if
6803            // Sample::Write() was called later on) then Sample::Write() will just
6804            // update the respective individual checksum(s) directly on disk and
6805            // leaves all other sample checksums untouched.
6806    
6807            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6808            if (_3crc) {
6809                _3crc->Resize(pSamples->size() * 8);
6810            } else /*if (newFile)*/ {
6811                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6812                // the order of einf and 3crc is not the same in v2 and v3
6813                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6814            }
6815            { // must be performed in RAM here ...
6816                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6817                if (pData) {
6818                    File::SampleList::iterator iter = pSamples->begin();
6819                    File::SampleList::iterator end  = pSamples->end();
6820                    for (int index = 0; iter != end; ++iter, ++index) {
6821                        gig::Sample* pSample = (gig::Sample*) *iter;
6822                        pData[index*2]   = 1; // always 1
6823                        pData[index*2+1] = pSample->crc;
6824                    }
6825                }
6826            }
6827        }
6828        
6829        void File::UpdateFileOffsets() {
6830            DLS::File::UpdateFileOffsets();
6831    
6832            for (Instrument* instrument = GetFirstInstrument(); instrument;
6833                 instrument = GetNextInstrument())
6834            {
6835                instrument->UpdateScriptFileOffsets();
6836            }
6837        }
6838    
6839        /**
6840         * Enable / disable automatic loading. By default this property is
6841         * enabled and every information is loaded automatically. However
6842         * loading all Regions, DimensionRegions and especially samples might
6843         * take a long time for large .gig files, and sometimes one might only
6844         * be interested in retrieving very superficial informations like the
6845         * amount of instruments and their names. In this case one might disable
6846         * automatic loading to avoid very slow response times.
6847         *
6848         * @e CAUTION: by disabling this property many pointers (i.e. sample
6849         * references) and attributes will have invalid or even undefined
6850         * data! This feature is currently only intended for retrieving very
6851         * superficial information in a very fast way. Don't use it to retrieve
6852         * details like synthesis information or even to modify .gig files!
6853         */
6854        void File::SetAutoLoad(bool b) {
6855            bAutoLoad = b;
6856        }
6857    
6858        /**
6859         * Returns whether automatic loading is enabled.
6860         * @see SetAutoLoad()
6861         */
6862        bool File::GetAutoLoad() {
6863            return bAutoLoad;
6864      }      }
6865    
6866    
# Line 1496  namespace gig { Line 6868  namespace gig {
6868  // *************** Exception ***************  // *************** Exception ***************
6869  // *  // *
6870    
6871      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6872        }
6873    
6874        Exception::Exception(String format, ...) : DLS::Exception() {
6875            va_list arg;
6876            va_start(arg, format);
6877            Message = assemble(format, arg);
6878            va_end(arg);
6879        }
6880    
6881        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6882            Message = assemble(format, arg);
6883      }      }
6884    
6885      void Exception::PrintMessage() {      void Exception::PrintMessage() {
6886          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6887      }      }
6888    
6889    
6890    // *************** functions ***************
6891    // *
6892    
6893        /**
6894         * Returns the name of this C++ library. This is usually "libgig" of
6895         * course. This call is equivalent to RIFF::libraryName() and
6896         * DLS::libraryName().
6897         */
6898        String libraryName() {
6899            return PACKAGE;
6900        }
6901    
6902        /**
6903         * Returns version of this C++ library. This call is equivalent to
6904         * RIFF::libraryVersion() and DLS::libraryVersion().
6905         */
6906        String libraryVersion() {
6907            return VERSION;
6908        }
6909    
6910  } // namespace gig  } // namespace gig

Legend:
Removed from v.352  
changed lines
  Added in v.3709

  ViewVC Help
Powered by ViewVC