/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 406 by persson, Wed Feb 23 19:11:07 2005 UTC revision 3323 by schoenebeck, Thu Jul 20 22:09:54 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30    #include <math.h>
31  #include <iostream>  #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38    /// Initial size of the sample buffer which is used for decompression of
39    /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59    #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
61    
62  namespace gig { namespace {  namespace gig {
63    
64  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
66    
67    namespace {
68    
69      inline int get12lo(const unsigned char* pSrc)      inline int get12lo(const unsigned char* pSrc)
70      {      {
71          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
# Line 53  namespace gig { namespace { Line 89  namespace gig { namespace {
89          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
90      }      }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 92  namespace gig { namespace { Line 135  namespace gig { namespace {
135      }      }
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples)                        file_offset_t copysamples, int truncatedBits)
141      {      {
142          // Note: The 24 bits are truncated to 16 bits for now.          int y, dy, ddy, dddy;
143    
144          // Note: The calculation of the initial value of y is strange  #define GET_PARAMS(params)                      \
145          // and not 100% correct. What should the first two parameters          y    = get24(params);                   \
146          // really be used for? Why are they two? The correct value for          dy   = y - get24((params) + 3);         \
147          // y seems to lie somewhere between the values of the first          ddy  = get24((params) + 6);             \
148          // two parameters.          dddy = get24((params) + 9)
         //  
         // Strange thing #2: The formula in SKIP_ONE gives values for  
         // y that are twice as high as they should be. That's why  
         // COPY_ONE shifts 9 steps instead of 8, and also why y is  
         // initialized with a sum instead of a mean value.  
   
         int y, dy, ddy;  
   
 #define GET_PARAMS(params)                              \  
         y = (get24(params) + get24((params) + 3));      \  
         dy  = get24((params) + 6);                      \  
         ddy = get24((params) + 9)  
149    
150  #define SKIP_ONE(x)                             \  #define SKIP_ONE(x)                             \
151          ddy -= (x);                             \          dddy -= (x);                            \
152          dy -= ddy;                              \          ddy  -= dddy;                           \
153          y -= dy          dy   =  -dy - ddy;                      \
154            y    += dy
155    
156  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
157          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
158          *pDst = y >> 9;                         \          store24(pDst, y << truncatedBits);      \
159          pDst += dstStep          pDst += dstStep
160    
161          switch (compressionmode) {          switch (compressionmode) {
162              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
163                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
164                  while (copysamples) {                  while (copysamples) {
165                      *pDst = get24(pSrc) >> 8;                      store24(pDst, get24(pSrc) << truncatedBits);
166                      pDst += dstStep;                      pDst += dstStep;
167                      pSrc += 3;                      pSrc += 3;
168                      copysamples--;                      copysamples--;
# Line 200  namespace gig { namespace { Line 232  namespace gig { namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            DecayCancel      = true;
351            ReleaseCancel    = true;
352        }
353    
354        void eg_opt_t::serialize(Serialization::Archive* archive) {
355            SRLZ(AttackCancel);
356            SRLZ(AttackHoldCancel);
357            SRLZ(DecayCancel);
358            SRLZ(ReleaseCancel);
359        }
360    
361    
362    
363  // *************** Sample ***************  // *************** Sample ***************
364  // *  // *
365    
366      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
367      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
368    
369      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
370         *
371         * Load an existing sample or create a new one. A 'wave' list chunk must
372         * be given to this constructor. In case the given 'wave' list chunk
373         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
374         * format and sample data will be loaded from there, otherwise default
375         * values will be used and those chunks will be created when
376         * File::Save() will be called later on.
377         *
378         * @param pFile          - pointer to gig::File where this sample is
379         *                         located (or will be located)
380         * @param waveList       - pointer to 'wave' list chunk which is (or
381         *                         will be) associated with this sample
382         * @param WavePoolOffset - offset of this sample data from wave pool
383         *                         ('wvpl') list chunk
384         * @param fileNo         - number of an extension file where this sample
385         *                         is located, 0 otherwise
386         * @param index          - wave pool index of sample (may be -1 on new sample)
387         */
388        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
389            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
390        {
391            static const DLS::Info::string_length_t fixedStringLengths[] = {
392                { CHUNK_ID_INAM, 64 },
393                { 0, 0 }
394            };
395            pInfo->SetFixedStringLengths(fixedStringLengths);
396          Instances++;          Instances++;
397            FileNo = fileNo;
398    
399          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
400          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          // if this is not a new sample, try to get the sample's already existing
401          SampleGroup = _3gix->ReadInt16();          // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
402            // checksum of the time when the sample was consciously modified by the
403          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          // user for the last time (by calling Sample::Write() that is).
404          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (index >= 0) { // not a new file ...
405          Manufacturer      = smpl->ReadInt32();              try {
406          Product           = smpl->ReadInt32();                  uint32_t crc = pFile->GetSampleChecksumByIndex(index);
407          SamplePeriod      = smpl->ReadInt32();                  this->crc = crc;
408          MIDIUnityNote     = smpl->ReadInt32();              } catch (...) {}
409          FineTune          = smpl->ReadInt32();          }
410          smpl->Read(&SMPTEFormat, 1, 4);  
411          SMPTEOffset       = smpl->ReadInt32();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
412          Loops             = smpl->ReadInt32();          if (pCk3gix) {
413          smpl->ReadInt32(); // manufByt              uint16_t iSampleGroup = pCk3gix->ReadInt16();
414          LoopID            = smpl->ReadInt32();              pGroup = pFile->GetGroup(iSampleGroup);
415          smpl->Read(&LoopType, 1, 4);          } else { // '3gix' chunk missing
416          LoopStart         = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
417          LoopEnd           = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
418          LoopFraction      = smpl->ReadInt32();          }
419          LoopPlayCount     = smpl->ReadInt32();  
420            pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
421            if (pCkSmpl) {
422                Manufacturer  = pCkSmpl->ReadInt32();
423                Product       = pCkSmpl->ReadInt32();
424                SamplePeriod  = pCkSmpl->ReadInt32();
425                MIDIUnityNote = pCkSmpl->ReadInt32();
426                FineTune      = pCkSmpl->ReadInt32();
427                pCkSmpl->Read(&SMPTEFormat, 1, 4);
428                SMPTEOffset   = pCkSmpl->ReadInt32();
429                Loops         = pCkSmpl->ReadInt32();
430                pCkSmpl->ReadInt32(); // manufByt
431                LoopID        = pCkSmpl->ReadInt32();
432                pCkSmpl->Read(&LoopType, 1, 4);
433                LoopStart     = pCkSmpl->ReadInt32();
434                LoopEnd       = pCkSmpl->ReadInt32();
435                LoopFraction  = pCkSmpl->ReadInt32();
436                LoopPlayCount = pCkSmpl->ReadInt32();
437            } else { // 'smpl' chunk missing
438                // use default values
439                Manufacturer  = 0;
440                Product       = 0;
441                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
442                MIDIUnityNote = 60;
443                FineTune      = 0;
444                SMPTEFormat   = smpte_format_no_offset;
445                SMPTEOffset   = 0;
446                Loops         = 0;
447                LoopID        = 0;
448                LoopType      = loop_type_normal;
449                LoopStart     = 0;
450                LoopEnd       = 0;
451                LoopFraction  = 0;
452                LoopPlayCount = 0;
453            }
454    
455          FrameTable                 = NULL;          FrameTable                 = NULL;
456          SamplePos                  = 0;          SamplePos                  = 0;
# Line 239  namespace gig { namespace { Line 460  namespace gig { namespace {
460    
461          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
462    
463          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
464            Compressed        = ewav;
465            Dithered          = false;
466            TruncatedBits     = 0;
467          if (Compressed) {          if (Compressed) {
468                uint32_t version = ewav->ReadInt32();
469                if (version == 3 && BitDepth == 24) {
470                    Dithered = ewav->ReadInt32();
471                    ewav->SetPos(Channels == 2 ? 84 : 64);
472                    TruncatedBits = ewav->ReadInt32();
473                }
474              ScanCompressedSample();              ScanCompressedSample();
475          }          }
476    
# Line 249  namespace gig { namespace { Line 479  namespace gig { namespace {
479              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
480              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
481          }          }
482          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
483    
484          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
485        }
486    
487        /**
488         * Make a (semi) deep copy of the Sample object given by @a orig (without
489         * the actual waveform data) and assign it to this object.
490         *
491         * Discussion: copying .gig samples is a bit tricky. It requires three
492         * steps:
493         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
494         *    its new sample waveform data size.
495         * 2. Saving the file (done by File::Save()) so that it gains correct size
496         *    and layout for writing the actual wave form data directly to disc
497         *    in next step.
498         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
499         *
500         * @param orig - original Sample object to be copied from
501         */
502        void Sample::CopyAssignMeta(const Sample* orig) {
503            // handle base classes
504            DLS::Sample::CopyAssignCore(orig);
505            
506            // handle actual own attributes of this class
507            Manufacturer = orig->Manufacturer;
508            Product = orig->Product;
509            SamplePeriod = orig->SamplePeriod;
510            MIDIUnityNote = orig->MIDIUnityNote;
511            FineTune = orig->FineTune;
512            SMPTEFormat = orig->SMPTEFormat;
513            SMPTEOffset = orig->SMPTEOffset;
514            Loops = orig->Loops;
515            LoopID = orig->LoopID;
516            LoopType = orig->LoopType;
517            LoopStart = orig->LoopStart;
518            LoopEnd = orig->LoopEnd;
519            LoopSize = orig->LoopSize;
520            LoopFraction = orig->LoopFraction;
521            LoopPlayCount = orig->LoopPlayCount;
522            
523            // schedule resizing this sample to the given sample's size
524            Resize(orig->GetSize());
525        }
526    
527        /**
528         * Should be called after CopyAssignMeta() and File::Save() sequence.
529         * Read more about it in the discussion of CopyAssignMeta(). This method
530         * copies the actual waveform data by disk streaming.
531         *
532         * @e CAUTION: this method is currently not thread safe! During this
533         * operation the sample must not be used for other purposes by other
534         * threads!
535         *
536         * @param orig - original Sample object to be copied from
537         */
538        void Sample::CopyAssignWave(const Sample* orig) {
539            const int iReadAtOnce = 32*1024;
540            char* buf = new char[iReadAtOnce * orig->FrameSize];
541            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
542            file_offset_t restorePos = pOrig->GetPos();
543            pOrig->SetPos(0);
544            SetPos(0);
545            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
546                               n = pOrig->Read(buf, iReadAtOnce))
547            {
548                Write(buf, n);
549            }
550            pOrig->SetPos(restorePos);
551            delete [] buf;
552        }
553    
554        /**
555         * Apply sample and its settings to the respective RIFF chunks. You have
556         * to call File::Save() to make changes persistent.
557         *
558         * Usually there is absolutely no need to call this method explicitly.
559         * It will be called automatically when File::Save() was called.
560         *
561         * @param pProgress - callback function for progress notification
562         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
563         *                        was provided yet
564         * @throws gig::Exception if there is any invalid sample setting
565         */
566        void Sample::UpdateChunks(progress_t* pProgress) {
567            // first update base class's chunks
568            DLS::Sample::UpdateChunks(pProgress);
569    
570            // make sure 'smpl' chunk exists
571            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
572            if (!pCkSmpl) {
573                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
574                memset(pCkSmpl->LoadChunkData(), 0, 60);
575            }
576            // update 'smpl' chunk
577            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
578            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
579            store32(&pData[0], Manufacturer);
580            store32(&pData[4], Product);
581            store32(&pData[8], SamplePeriod);
582            store32(&pData[12], MIDIUnityNote);
583            store32(&pData[16], FineTune);
584            store32(&pData[20], SMPTEFormat);
585            store32(&pData[24], SMPTEOffset);
586            store32(&pData[28], Loops);
587    
588            // we skip 'manufByt' for now (4 bytes)
589    
590            store32(&pData[36], LoopID);
591            store32(&pData[40], LoopType);
592            store32(&pData[44], LoopStart);
593            store32(&pData[48], LoopEnd);
594            store32(&pData[52], LoopFraction);
595            store32(&pData[56], LoopPlayCount);
596    
597            // make sure '3gix' chunk exists
598            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
599            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
600            // determine appropriate sample group index (to be stored in chunk)
601            uint16_t iSampleGroup = 0; // 0 refers to default sample group
602            File* pFile = static_cast<File*>(pParent);
603            if (pFile->pGroups) {
604                std::list<Group*>::iterator iter = pFile->pGroups->begin();
605                std::list<Group*>::iterator end  = pFile->pGroups->end();
606                for (int i = 0; iter != end; i++, iter++) {
607                    if (*iter == pGroup) {
608                        iSampleGroup = i;
609                        break; // found
610                    }
611                }
612            }
613            // update '3gix' chunk
614            pData = (uint8_t*) pCk3gix->LoadChunkData();
615            store16(&pData[0], iSampleGroup);
616    
617            // if the library user toggled the "Compressed" attribute from true to
618            // false, then the EWAV chunk associated with compressed samples needs
619            // to be deleted
620            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
621            if (ewav && !Compressed) {
622                pWaveList->DeleteSubChunk(ewav);
623            }
624      }      }
625    
626      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
627      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
628          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
629          this->SamplesTotal = 0;          this->SamplesTotal = 0;
630          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
631    
632          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
633          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 274  namespace gig { namespace { Line 643  namespace gig { namespace {
643                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
644                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
645                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
646                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
647    
648                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
649                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 293  namespace gig { namespace { Line 662  namespace gig { namespace {
662    
663                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
664                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
665                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
666    
667                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
668                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 309  namespace gig { namespace { Line 678  namespace gig { namespace {
678    
679          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
680          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
681          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
682          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
683          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
684          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
685              FrameTable[i] = *iter;              FrameTable[i] = *iter;
686          }          }
# Line 352  namespace gig { namespace { Line 721  namespace gig { namespace {
721       *                      the cached sample data in bytes       *                      the cached sample data in bytes
722       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
723       */       */
724      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
725          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
726      }      }
727    
# Line 411  namespace gig { namespace { Line 780  namespace gig { namespace {
780       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
781       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
782       */       */
783      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
784          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
785          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
786          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
787            SetPos(0); // reset read position to begin of sample
788          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
789          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
790          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 452  namespace gig { namespace { Line 822  namespace gig { namespace {
822          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
823          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
824          RAMCache.Size   = 0;          RAMCache.Size   = 0;
825            RAMCache.NullExtensionSize = 0;
826        }
827    
828        /** @brief Resize sample.
829         *
830         * Resizes the sample's wave form data, that is the actual size of
831         * sample wave data possible to be written for this sample. This call
832         * will return immediately and just schedule the resize operation. You
833         * should call File::Save() to actually perform the resize operation(s)
834         * "physically" to the file. As this can take a while on large files, it
835         * is recommended to call Resize() first on all samples which have to be
836         * resized and finally to call File::Save() to perform all those resize
837         * operations in one rush.
838         *
839         * The actual size (in bytes) is dependant to the current FrameSize
840         * value. You may want to set FrameSize before calling Resize().
841         *
842         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
843         * enlarged samples before calling File::Save() as this might exceed the
844         * current sample's boundary!
845         *
846         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
847         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
848         * other formats will fail!
849         *
850         * @param NewSize - new sample wave data size in sample points (must be
851         *                  greater than zero)
852         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
853         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
854         * @throws gig::Exception if existing sample is compressed
855         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
856         *      DLS::Sample::FormatTag, File::Save()
857         */
858        void Sample::Resize(file_offset_t NewSize) {
859            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
860            DLS::Sample::Resize(NewSize);
861      }      }
862    
863      /**      /**
# Line 475  namespace gig { namespace { Line 881  namespace gig { namespace {
881       * @returns            the new sample position       * @returns            the new sample position
882       * @see                Read()       * @see                Read()
883       */       */
884      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
885          if (Compressed) {          if (Compressed) {
886              switch (Whence) {              switch (Whence) {
887                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 493  namespace gig { namespace { Line 899  namespace gig { namespace {
899              }              }
900              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
901    
902              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
903              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
904              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
905              return this->SamplePos;              return this->SamplePos;
906          }          }
907          else { // not compressed          else { // not compressed
908              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
909              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
910              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
911                                              : result / this->FrameSize;                                              : result / this->FrameSize;
912          }          }
# Line 509  namespace gig { namespace { Line 915  namespace gig { namespace {
915      /**      /**
916       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
917       */       */
918      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
919          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
920          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
921      }      }
# Line 543  namespace gig { namespace { Line 949  namespace gig { namespace {
949       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
950       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
951       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
952         * @param pDimRgn          dimension region with looping information
953       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
954       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
955       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
956       */       */
957      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
958          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
959            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
960          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
961    
962          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
963    
964          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
965    
966              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
967                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
968    
969                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
970                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
971    
972                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
973                              // determine the end position within the loop first,                          do {
974                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
975                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
976                              // backward playback  
977                                if (!pPlaybackState->reverse) { // forward playback
978                              unsigned long swapareastart       = totalreadsamples;                                  do {
979                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
980                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
981                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
982                                        totalreadsamples += readsamples;
983                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
984                                            pPlaybackState->reverse = true;
985                              // read samples for backward playback                                          break;
986                              do {                                      }
987                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
988                                  samplestoreadinloop -= readsamples;                              }
989                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
990    
991                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
992                                    // determine the end position within the loop first,
993                                    // read forward from that 'end' and finally after
994                                    // reading, swap all sample frames so it reflects
995                                    // backward playback
996    
997                                    file_offset_t swapareastart       = totalreadsamples;
998                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
999                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1000                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1001    
1002                                    SetPos(reverseplaybackend);
1003    
1004                                    // read samples for backward playback
1005                                    do {
1006                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1007                                        samplestoreadinloop -= readsamples;
1008                                        samplestoread       -= readsamples;
1009                                        totalreadsamples    += readsamples;
1010                                    } while (samplestoreadinloop && readsamples);
1011    
1012                                    SetPos(reverseplaybackend); // pretend we really read backwards
1013    
1014                                    if (reverseplaybackend == loop.LoopStart) {
1015                                        pPlaybackState->loop_cycles_left--;
1016                                        pPlaybackState->reverse = false;
1017                                    }
1018    
1019                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1020                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1021                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1022                              }                              }
1023                            } while (samplestoread && readsamples);
1024                            break;
1025                        }
1026    
1027                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1028                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1029                          }                          if (!pPlaybackState->reverse) do {
1030                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1031                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1032                  }                              samplestoread    -= readsamples;
1033                                totalreadsamples += readsamples;
1034                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1035                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1036                      if (!pPlaybackState->reverse) do {                                  break;
1037                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1038                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1039    
1040                      if (!samplestoread) break;                          if (!samplestoread) break;
1041    
1042                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1043                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1044                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1045                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1046                      // backward playback                          // backward playback
1047    
1048                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1049                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1050                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1051                                                                                : samplestoread;                                                                                    : samplestoread;
1052                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1053    
1054                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1055    
1056                      // read samples for backward playback                          // read samples for backward playback
1057                      do {                          do {
1058                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1059                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1060                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1061                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1062                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1063                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1064                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1065                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1066                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1067                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1068                          }                              }
1069                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1070    
1071                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1072    
1073                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1074                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1075                      break;                          break;
1076                  }                      }
1077    
1078                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1079                      do {                          do {
1080                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1081                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1082                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1083                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1084                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1085                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1086                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1087                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1088                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1089                          }                              }
1090                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1091                      break;                          break;
1092                        }
1093                  }                  }
1094              }              }
1095          }          }
# Line 705  namespace gig { namespace { Line 1119  namespace gig { namespace {
1119       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1120       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1121       *       *
1122         * For 16 bit samples, the data in the buffer will be int16_t
1123         * (using native endianness). For 24 bit, the buffer will
1124         * contain three bytes per sample, little-endian.
1125         *
1126       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1127       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1128       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1129       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1130       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1131       */       */
1132      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1133          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1134          if (!Compressed) {          if (!Compressed) {
1135              if (BitDepth == 24) {              if (BitDepth == 24) {
1136                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1137              }              }
1138              else { // 16 bit              else { // 16 bit
1139                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 746  namespace gig { namespace { Line 1144  namespace gig { namespace {
1144          else {          else {
1145              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1146              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1147              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1148                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1149                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1150                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 765  namespace gig { namespace { Line 1163  namespace gig { namespace {
1163    
1164              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1165              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1166                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1167              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1168    
1169              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1170                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1171                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1172    
1173                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1174    
# Line 846  namespace gig { namespace { Line 1245  namespace gig { namespace {
1245                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1246                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1247    
1248                              Decompress24(mode_l, param_l, 2, pSrc, pDst, skipsamples, copysamples);                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1249                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                                           skipsamples, copysamples, TruncatedBits);
1250                                           skipsamples, copysamples);                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1251                              pDst += copysamples << 1;                                           skipsamples, copysamples, TruncatedBits);
1252                                pDst24 += copysamples * 6;
1253                          }                          }
1254                          else { // Mono                          else { // Mono
1255                              Decompress24(mode_l, param_l, 1, pSrc, pDst, skipsamples, copysamples);                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1256                              pDst += copysamples;                                           skipsamples, copysamples, TruncatedBits);
1257                                pDst24 += copysamples * 3;
1258                          }                          }
1259                      }                      }
1260                      else { // 16 bit                      else { // 16 bit
# Line 895  namespace gig { namespace { Line 1296  namespace gig { namespace {
1296          }          }
1297      }      }
1298    
1299        /** @brief Write sample wave data.
1300         *
1301         * Writes \a SampleCount number of sample points from the buffer pointed
1302         * by \a pBuffer and increments the position within the sample. Use this
1303         * method to directly write the sample data to disk, i.e. if you don't
1304         * want or cannot load the whole sample data into RAM.
1305         *
1306         * You have to Resize() the sample to the desired size and call
1307         * File::Save() <b>before</b> using Write().
1308         *
1309         * Note: there is currently no support for writing compressed samples.
1310         *
1311         * For 16 bit samples, the data in the source buffer should be
1312         * int16_t (using native endianness). For 24 bit, the buffer
1313         * should contain three bytes per sample, little-endian.
1314         *
1315         * @param pBuffer     - source buffer
1316         * @param SampleCount - number of sample points to write
1317         * @throws DLS::Exception if current sample size is too small
1318         * @throws gig::Exception if sample is compressed
1319         * @see DLS::LoadSampleData()
1320         */
1321        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1322            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1323    
1324            // if this is the first write in this sample, reset the
1325            // checksum calculator
1326            if (pCkData->GetPos() == 0) {
1327                __resetCRC(crc);
1328            }
1329            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1330            file_offset_t res;
1331            if (BitDepth == 24) {
1332                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1333            } else { // 16 bit
1334                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1335                                    : pCkData->Write(pBuffer, SampleCount, 2);
1336            }
1337            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1338    
1339            // if this is the last write, update the checksum chunk in the
1340            // file
1341            if (pCkData->GetPos() == pCkData->GetSize()) {
1342                __finalizeCRC(crc);
1343                File* pFile = static_cast<File*>(GetParent());
1344                pFile->SetSampleChecksum(this, crc);
1345            }
1346            return res;
1347        }
1348    
1349      /**      /**
1350       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1351       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 911  namespace gig { namespace { Line 1362  namespace gig { namespace {
1362       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1363       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1364       */       */
1365      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1366          buffer_t result;          buffer_t result;
1367          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1368                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1369          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1370          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1371          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1372          return result;          return result;
# Line 937  namespace gig { namespace { Line 1388  namespace gig { namespace {
1388          }          }
1389      }      }
1390    
1391        /**
1392         * Returns pointer to the Group this Sample belongs to. In the .gig
1393         * format a sample always belongs to one group. If it wasn't explicitly
1394         * assigned to a certain group, it will be automatically assigned to a
1395         * default group.
1396         *
1397         * @returns Sample's Group (never NULL)
1398         */
1399        Group* Sample::GetGroup() const {
1400            return pGroup;
1401        }
1402    
1403        /**
1404         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1405         * time when this sample's wave form data was modified for the last time
1406         * by calling Write(). This checksum only covers the raw wave form data,
1407         * not any meta informations like i.e. bit depth or loop points. Since
1408         * this method just returns the checksum stored for this sample i.e. when
1409         * the gig file was loaded, this method returns immediately. So it does no
1410         * recalcuation of the checksum with the currently available sample wave
1411         * form data.
1412         *
1413         * @see VerifyWaveData()
1414         */
1415        uint32_t Sample::GetWaveDataCRC32Checksum() {
1416            return crc;
1417        }
1418    
1419        /**
1420         * Checks the integrity of this sample's raw audio wave data. Whenever a
1421         * Sample's raw wave data is intentionally modified (i.e. by calling
1422         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1423         * is calculated and stored/updated for this sample, along to the sample's
1424         * meta informations.
1425         *
1426         * Now by calling this method the current raw audio wave data is checked
1427         * against the already stored CRC32 check sum in order to check whether the
1428         * sample data had been damaged unintentionally for some reason. Since by
1429         * calling this method always the entire raw audio wave data has to be
1430         * read, verifying all samples this way may take a long time accordingly.
1431         * And that's also the reason why the sample integrity is not checked by
1432         * default whenever a gig file is loaded. So this method must be called
1433         * explicitly to fulfill this task.
1434         *
1435         * @param pActually - (optional) if provided, will be set to the actually
1436         *                    calculated checksum of the current raw wave form data,
1437         *                    you can get the expected checksum instead by calling
1438         *                    GetWaveDataCRC32Checksum()
1439         * @returns true if sample is OK or false if the sample is damaged
1440         * @throws Exception if no checksum had been stored to disk for this
1441         *         sample yet, or on I/O issues
1442         * @see GetWaveDataCRC32Checksum()
1443         */
1444        bool Sample::VerifyWaveData(uint32_t* pActually) {
1445            //File* pFile = static_cast<File*>(GetParent());
1446            uint32_t crc = CalculateWaveDataChecksum();
1447            if (pActually) *pActually = crc;
1448            return crc == this->crc;
1449        }
1450    
1451        uint32_t Sample::CalculateWaveDataChecksum() {
1452            const size_t sz = 20*1024; // 20kB buffer size
1453            std::vector<uint8_t> buffer(sz);
1454            buffer.resize(sz);
1455    
1456            const size_t n = sz / FrameSize;
1457            SetPos(0);
1458            uint32_t crc = 0;
1459            __resetCRC(crc);
1460            while (true) {
1461                file_offset_t nRead = Read(&buffer[0], n);
1462                if (nRead <= 0) break;
1463                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1464            }
1465            __finalizeCRC(crc);
1466            return crc;
1467        }
1468    
1469      Sample::~Sample() {      Sample::~Sample() {
1470          Instances--;          Instances--;
1471          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 953  namespace gig { namespace { Line 1482  namespace gig { namespace {
1482  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1483  // *  // *
1484    
1485      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1486      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1487    
1488      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1489          Instances++;          Instances++;
1490    
1491          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1492            pRegion = pParent;
1493    
1494            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1495            else memset(&Crossfade, 0, 4);
1496    
1497          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1498    
1499          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1500          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1501          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1502          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1503          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1504          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1505          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1506          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1507          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1508          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1509          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1510          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1511          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1512          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1515          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1516          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1517          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1518          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1519          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1520          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1521          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1522          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1523          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1524          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1525          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1526          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1527          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1528          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1529          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1530          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1531          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1533          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1534          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1535          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1536          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1537          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1538          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1539          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1540          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1541          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1542          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1543          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1544          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1545          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1546          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1547          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1548          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1549          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1550          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1551              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1552              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1553          }                  VelocityResponseDepth = velocityresponse;
1554          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1555              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1556              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1557          }              } else if (velocityresponse < 15) {
1558          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1559              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1560              VelocityResponseDepth = velocityresponse - 10;              } else {
1561                    VelocityResponseCurve = curve_type_unknown;
1562                    VelocityResponseDepth = 0;
1563                }
1564                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1565                if (releasevelocityresponse < 5) {
1566                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1567                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1568                } else if (releasevelocityresponse < 10) {
1569                    ReleaseVelocityResponseCurve = curve_type_linear;
1570                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1571                } else if (releasevelocityresponse < 15) {
1572                    ReleaseVelocityResponseCurve = curve_type_special;
1573                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1574                } else {
1575                    ReleaseVelocityResponseCurve = curve_type_unknown;
1576                    ReleaseVelocityResponseDepth = 0;
1577                }
1578                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1579                AttenuationControllerThreshold = _3ewa->ReadInt8();
1580                _3ewa->ReadInt32(); // unknown
1581                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1582                _3ewa->ReadInt16(); // unknown
1583                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1584                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1585                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1586                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1587                else                                       DimensionBypass = dim_bypass_ctrl_none;
1588                uint8_t pan = _3ewa->ReadUint8();
1589                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1590                SelfMask = _3ewa->ReadInt8() & 0x01;
1591                _3ewa->ReadInt8(); // unknown
1592                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1593                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1594                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1595                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1596                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1597                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1598                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1599                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1600                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1601                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1602                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1603                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1604                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1605                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1606                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1607                                                            : vcf_res_ctrl_none;
1608                uint16_t eg3depth = _3ewa->ReadUint16();
1609                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1610                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1611                _3ewa->ReadInt16(); // unknown
1612                ChannelOffset = _3ewa->ReadUint8() / 4;
1613                uint8_t regoptions = _3ewa->ReadUint8();
1614                MSDecode           = regoptions & 0x01; // bit 0
1615                SustainDefeat      = regoptions & 0x02; // bit 1
1616                _3ewa->ReadInt16(); // unknown
1617                VelocityUpperLimit = _3ewa->ReadInt8();
1618                _3ewa->ReadInt8(); // unknown
1619                _3ewa->ReadInt16(); // unknown
1620                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1621                _3ewa->ReadInt8(); // unknown
1622                _3ewa->ReadInt8(); // unknown
1623                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1624                uint8_t vcfcutoff = _3ewa->ReadUint8();
1625                VCFEnabled = vcfcutoff & 0x80; // bit 7
1626                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1627                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1628                uint8_t vcfvelscale = _3ewa->ReadUint8();
1629                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1630                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1631                _3ewa->ReadInt8(); // unknown
1632                uint8_t vcfresonance = _3ewa->ReadUint8();
1633                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1634                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1635                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1636                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1637                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1638                uint8_t vcfvelocity = _3ewa->ReadUint8();
1639                VCFVelocityDynamicRange = vcfvelocity % 5;
1640                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1641                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1642                if (VCFType == vcf_type_lowpass) {
1643                    if (lfo3ctrl & 0x40) // bit 6
1644                        VCFType = vcf_type_lowpassturbo;
1645                }
1646                if (_3ewa->RemainingBytes() >= 8) {
1647                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1648                } else {
1649                    memset(DimensionUpperLimits, 0, 8);
1650                }
1651            } else { // '3ewa' chunk does not exist yet
1652                // use default values
1653                LFO3Frequency                   = 1.0;
1654                EG3Attack                       = 0.0;
1655                LFO1InternalDepth               = 0;
1656                LFO3InternalDepth               = 0;
1657                LFO1ControlDepth                = 0;
1658                LFO3ControlDepth                = 0;
1659                EG1Attack                       = 0.0;
1660                EG1Decay1                       = 0.005;
1661                EG1Sustain                      = 1000;
1662                EG1Release                      = 0.3;
1663                EG1Controller.type              = eg1_ctrl_t::type_none;
1664                EG1Controller.controller_number = 0;
1665                EG1ControllerInvert             = false;
1666                EG1ControllerAttackInfluence    = 0;
1667                EG1ControllerDecayInfluence     = 0;
1668                EG1ControllerReleaseInfluence   = 0;
1669                EG2Controller.type              = eg2_ctrl_t::type_none;
1670                EG2Controller.controller_number = 0;
1671                EG2ControllerInvert             = false;
1672                EG2ControllerAttackInfluence    = 0;
1673                EG2ControllerDecayInfluence     = 0;
1674                EG2ControllerReleaseInfluence   = 0;
1675                LFO1Frequency                   = 1.0;
1676                EG2Attack                       = 0.0;
1677                EG2Decay1                       = 0.005;
1678                EG2Sustain                      = 1000;
1679                EG2Release                      = 60;
1680                LFO2ControlDepth                = 0;
1681                LFO2Frequency                   = 1.0;
1682                LFO2InternalDepth               = 0;
1683                EG1Decay2                       = 0.0;
1684                EG1InfiniteSustain              = true;
1685                EG1PreAttack                    = 0;
1686                EG2Decay2                       = 0.0;
1687                EG2InfiniteSustain              = true;
1688                EG2PreAttack                    = 0;
1689                VelocityResponseCurve           = curve_type_nonlinear;
1690                VelocityResponseDepth           = 3;
1691                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1692                ReleaseVelocityResponseDepth    = 3;
1693                VelocityResponseCurveScaling    = 32;
1694                AttenuationControllerThreshold  = 0;
1695                SampleStartOffset               = 0;
1696                PitchTrack                      = true;
1697                DimensionBypass                 = dim_bypass_ctrl_none;
1698                Pan                             = 0;
1699                SelfMask                        = true;
1700                LFO3Controller                  = lfo3_ctrl_modwheel;
1701                LFO3Sync                        = false;
1702                InvertAttenuationController     = false;
1703                AttenuationController.type      = attenuation_ctrl_t::type_none;
1704                AttenuationController.controller_number = 0;
1705                LFO2Controller                  = lfo2_ctrl_internal;
1706                LFO2FlipPhase                   = false;
1707                LFO2Sync                        = false;
1708                LFO1Controller                  = lfo1_ctrl_internal;
1709                LFO1FlipPhase                   = false;
1710                LFO1Sync                        = false;
1711                VCFResonanceController          = vcf_res_ctrl_none;
1712                EG3Depth                        = 0;
1713                ChannelOffset                   = 0;
1714                MSDecode                        = false;
1715                SustainDefeat                   = false;
1716                VelocityUpperLimit              = 0;
1717                ReleaseTriggerDecay             = 0;
1718                EG1Hold                         = false;
1719                VCFEnabled                      = false;
1720                VCFCutoff                       = 0;
1721                VCFCutoffController             = vcf_cutoff_ctrl_none;
1722                VCFCutoffControllerInvert       = false;
1723                VCFVelocityScale                = 0;
1724                VCFResonance                    = 0;
1725                VCFResonanceDynamic             = false;
1726                VCFKeyboardTracking             = false;
1727                VCFKeyboardTrackingBreakpoint   = 0;
1728                VCFVelocityDynamicRange         = 0x04;
1729                VCFVelocityCurve                = curve_type_linear;
1730                VCFType                         = vcf_type_lowpass;
1731                memset(DimensionUpperLimits, 127, 8);
1732            }
1733            // format extension for EG behavior options, these will *NOT* work with
1734            // Gigasampler/GigaStudio !
1735            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1736            if (lsde) {
1737                unsigned char byte = lsde->ReadUint8();
1738                EGOptions.AttackCancel     = byte & 1;
1739                EGOptions.AttackHoldCancel = byte & (1 << 1);
1740                EGOptions.DecayCancel      = byte & (1 << 2);
1741                EGOptions.ReleaseCancel    = byte & (1 << 3);
1742            }
1743    
1744            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1745                                                         VelocityResponseDepth,
1746                                                         VelocityResponseCurveScaling);
1747    
1748            pVelocityReleaseTable = GetReleaseVelocityTable(
1749                                        ReleaseVelocityResponseCurve,
1750                                        ReleaseVelocityResponseDepth
1751                                    );
1752    
1753            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1754                                                          VCFVelocityDynamicRange,
1755                                                          VCFVelocityScale,
1756                                                          VCFCutoffController);
1757    
1758            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1759            VelocityTable = 0;
1760        }
1761    
1762        /*
1763         * Constructs a DimensionRegion by copying all parameters from
1764         * another DimensionRegion
1765         */
1766        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1767            Instances++;
1768            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1769            *this = src; // default memberwise shallow copy of all parameters
1770            pParentList = _3ewl; // restore the chunk pointer
1771    
1772            // deep copy of owned structures
1773            if (src.VelocityTable) {
1774                VelocityTable = new uint8_t[128];
1775                for (int k = 0 ; k < 128 ; k++)
1776                    VelocityTable[k] = src.VelocityTable[k];
1777            }
1778            if (src.pSampleLoops) {
1779                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1780                for (int k = 0 ; k < src.SampleLoops ; k++)
1781                    pSampleLoops[k] = src.pSampleLoops[k];
1782          }          }
1783          else {      }
1784              VelocityResponseCurve = curve_type_unknown;      
1785              VelocityResponseDepth = 0;      /**
1786         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1787         * and assign it to this object.
1788         *
1789         * Note that all sample pointers referenced by @a orig are simply copied as
1790         * memory address. Thus the respective samples are shared, not duplicated!
1791         *
1792         * @param orig - original DimensionRegion object to be copied from
1793         */
1794        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1795            CopyAssign(orig, NULL);
1796        }
1797    
1798        /**
1799         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1800         * and assign it to this object.
1801         *
1802         * @param orig - original DimensionRegion object to be copied from
1803         * @param mSamples - crosslink map between the foreign file's samples and
1804         *                   this file's samples
1805         */
1806        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1807            // delete all allocated data first
1808            if (VelocityTable) delete [] VelocityTable;
1809            if (pSampleLoops) delete [] pSampleLoops;
1810            
1811            // backup parent list pointer
1812            RIFF::List* p = pParentList;
1813            
1814            gig::Sample* pOriginalSample = pSample;
1815            gig::Region* pOriginalRegion = pRegion;
1816            
1817            //NOTE: copy code copied from assignment constructor above, see comment there as well
1818            
1819            *this = *orig; // default memberwise shallow copy of all parameters
1820            
1821            // restore members that shall not be altered
1822            pParentList = p; // restore the chunk pointer
1823            pRegion = pOriginalRegion;
1824            
1825            // only take the raw sample reference reference if the
1826            // two DimensionRegion objects are part of the same file
1827            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1828                pSample = pOriginalSample;
1829            }
1830            
1831            if (mSamples && mSamples->count(orig->pSample)) {
1832                pSample = mSamples->find(orig->pSample)->second;
1833            }
1834    
1835            // deep copy of owned structures
1836            if (orig->VelocityTable) {
1837                VelocityTable = new uint8_t[128];
1838                for (int k = 0 ; k < 128 ; k++)
1839                    VelocityTable[k] = orig->VelocityTable[k];
1840            }
1841            if (orig->pSampleLoops) {
1842                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1843                for (int k = 0 ; k < orig->SampleLoops ; k++)
1844                    pSampleLoops[k] = orig->pSampleLoops[k];
1845            }
1846        }
1847    
1848        void DimensionRegion::serialize(Serialization::Archive* archive) {
1849            // in case this class will become backward incompatible one day,
1850            // then set a version and minimum version for this class like:
1851            //archive->setVersion(*this, 2);
1852            //archive->setMinVersion(*this, 1);
1853    
1854            SRLZ(VelocityUpperLimit);
1855            SRLZ(EG1PreAttack);
1856            SRLZ(EG1Attack);
1857            SRLZ(EG1Decay1);
1858            SRLZ(EG1Decay2);
1859            SRLZ(EG1InfiniteSustain);
1860            SRLZ(EG1Sustain);
1861            SRLZ(EG1Release);
1862            SRLZ(EG1Hold);
1863            SRLZ(EG1Controller);
1864            SRLZ(EG1ControllerInvert);
1865            SRLZ(EG1ControllerAttackInfluence);
1866            SRLZ(EG1ControllerDecayInfluence);
1867            SRLZ(EG1ControllerReleaseInfluence);
1868            SRLZ(LFO1Frequency);
1869            SRLZ(LFO1InternalDepth);
1870            SRLZ(LFO1ControlDepth);
1871            SRLZ(LFO1Controller);
1872            SRLZ(LFO1FlipPhase);
1873            SRLZ(LFO1Sync);
1874            SRLZ(EG2PreAttack);
1875            SRLZ(EG2Attack);
1876            SRLZ(EG2Decay1);
1877            SRLZ(EG2Decay2);
1878            SRLZ(EG2InfiniteSustain);
1879            SRLZ(EG2Sustain);
1880            SRLZ(EG2Release);
1881            SRLZ(EG2Controller);
1882            SRLZ(EG2ControllerInvert);
1883            SRLZ(EG2ControllerAttackInfluence);
1884            SRLZ(EG2ControllerDecayInfluence);
1885            SRLZ(EG2ControllerReleaseInfluence);
1886            SRLZ(LFO2Frequency);
1887            SRLZ(LFO2InternalDepth);
1888            SRLZ(LFO2ControlDepth);
1889            SRLZ(LFO2Controller);
1890            SRLZ(LFO2FlipPhase);
1891            SRLZ(LFO2Sync);
1892            SRLZ(EG3Attack);
1893            SRLZ(EG3Depth);
1894            SRLZ(LFO3Frequency);
1895            SRLZ(LFO3InternalDepth);
1896            SRLZ(LFO3ControlDepth);
1897            SRLZ(LFO3Controller);
1898            SRLZ(LFO3Sync);
1899            SRLZ(VCFEnabled);
1900            SRLZ(VCFType);
1901            SRLZ(VCFCutoffController);
1902            SRLZ(VCFCutoffControllerInvert);
1903            SRLZ(VCFCutoff);
1904            SRLZ(VCFVelocityCurve);
1905            SRLZ(VCFVelocityScale);
1906            SRLZ(VCFVelocityDynamicRange);
1907            SRLZ(VCFResonance);
1908            SRLZ(VCFResonanceDynamic);
1909            SRLZ(VCFResonanceController);
1910            SRLZ(VCFKeyboardTracking);
1911            SRLZ(VCFKeyboardTrackingBreakpoint);
1912            SRLZ(VelocityResponseCurve);
1913            SRLZ(VelocityResponseDepth);
1914            SRLZ(VelocityResponseCurveScaling);
1915            SRLZ(ReleaseVelocityResponseCurve);
1916            SRLZ(ReleaseVelocityResponseDepth);
1917            SRLZ(ReleaseTriggerDecay);
1918            SRLZ(Crossfade);
1919            SRLZ(PitchTrack);
1920            SRLZ(DimensionBypass);
1921            SRLZ(Pan);
1922            SRLZ(SelfMask);
1923            SRLZ(AttenuationController);
1924            SRLZ(InvertAttenuationController);
1925            SRLZ(AttenuationControllerThreshold);
1926            SRLZ(ChannelOffset);
1927            SRLZ(SustainDefeat);
1928            SRLZ(MSDecode);
1929            //SRLZ(SampleStartOffset);
1930            SRLZ(SampleAttenuation);
1931            SRLZ(EGOptions);
1932    
1933            // derived attributes from DLS::Sampler
1934            SRLZ(FineTune);
1935            SRLZ(Gain);
1936        }
1937    
1938        /**
1939         * Updates the respective member variable and updates @c SampleAttenuation
1940         * which depends on this value.
1941         */
1942        void DimensionRegion::SetGain(int32_t gain) {
1943            DLS::Sampler::SetGain(gain);
1944            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1945        }
1946    
1947        /**
1948         * Apply dimension region settings to the respective RIFF chunks. You
1949         * have to call File::Save() to make changes persistent.
1950         *
1951         * Usually there is absolutely no need to call this method explicitly.
1952         * It will be called automatically when File::Save() was called.
1953         *
1954         * @param pProgress - callback function for progress notification
1955         */
1956        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1957            // first update base class's chunk
1958            DLS::Sampler::UpdateChunks(pProgress);
1959    
1960            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1961            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1962            pData[12] = Crossfade.in_start;
1963            pData[13] = Crossfade.in_end;
1964            pData[14] = Crossfade.out_start;
1965            pData[15] = Crossfade.out_end;
1966    
1967            // make sure '3ewa' chunk exists
1968            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1969            if (!_3ewa) {
1970                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1971                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1972                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1973          }          }
1974          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          pData = (uint8_t*) _3ewa->LoadChunkData();
1975          if (releasevelocityresponse < 5) {  
1976              ReleaseVelocityResponseCurve = curve_type_nonlinear;          // update '3ewa' chunk with DimensionRegion's current settings
1977              ReleaseVelocityResponseDepth = releasevelocityresponse;  
1978          }          const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1979          else if (releasevelocityresponse < 10) {          store32(&pData[0], chunksize); // unknown, always chunk size?
1980              ReleaseVelocityResponseCurve = curve_type_linear;  
1981              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1982          }          store32(&pData[4], lfo3freq);
1983          else if (releasevelocityresponse < 15) {  
1984              ReleaseVelocityResponseCurve = curve_type_special;          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1985              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;          store32(&pData[8], eg3attack);
1986    
1987            // next 2 bytes unknown
1988    
1989            store16(&pData[14], LFO1InternalDepth);
1990    
1991            // next 2 bytes unknown
1992    
1993            store16(&pData[18], LFO3InternalDepth);
1994    
1995            // next 2 bytes unknown
1996    
1997            store16(&pData[22], LFO1ControlDepth);
1998    
1999            // next 2 bytes unknown
2000    
2001            store16(&pData[26], LFO3ControlDepth);
2002    
2003            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2004            store32(&pData[28], eg1attack);
2005    
2006            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2007            store32(&pData[32], eg1decay1);
2008    
2009            // next 2 bytes unknown
2010    
2011            store16(&pData[38], EG1Sustain);
2012    
2013            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2014            store32(&pData[40], eg1release);
2015    
2016            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2017            pData[44] = eg1ctl;
2018    
2019            const uint8_t eg1ctrloptions =
2020                (EG1ControllerInvert ? 0x01 : 0x00) |
2021                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2022                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2023                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2024            pData[45] = eg1ctrloptions;
2025    
2026            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2027            pData[46] = eg2ctl;
2028    
2029            const uint8_t eg2ctrloptions =
2030                (EG2ControllerInvert ? 0x01 : 0x00) |
2031                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2032                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2033                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2034            pData[47] = eg2ctrloptions;
2035    
2036            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2037            store32(&pData[48], lfo1freq);
2038    
2039            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2040            store32(&pData[52], eg2attack);
2041    
2042            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2043            store32(&pData[56], eg2decay1);
2044    
2045            // next 2 bytes unknown
2046    
2047            store16(&pData[62], EG2Sustain);
2048    
2049            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2050            store32(&pData[64], eg2release);
2051    
2052            // next 2 bytes unknown
2053    
2054            store16(&pData[70], LFO2ControlDepth);
2055    
2056            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2057            store32(&pData[72], lfo2freq);
2058    
2059            // next 2 bytes unknown
2060    
2061            store16(&pData[78], LFO2InternalDepth);
2062    
2063            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2064            store32(&pData[80], eg1decay2);
2065    
2066            // next 2 bytes unknown
2067    
2068            store16(&pData[86], EG1PreAttack);
2069    
2070            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2071            store32(&pData[88], eg2decay2);
2072    
2073            // next 2 bytes unknown
2074    
2075            store16(&pData[94], EG2PreAttack);
2076    
2077            {
2078                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2079                uint8_t velocityresponse = VelocityResponseDepth;
2080                switch (VelocityResponseCurve) {
2081                    case curve_type_nonlinear:
2082                        break;
2083                    case curve_type_linear:
2084                        velocityresponse += 5;
2085                        break;
2086                    case curve_type_special:
2087                        velocityresponse += 10;
2088                        break;
2089                    case curve_type_unknown:
2090                    default:
2091                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2092                }
2093                pData[96] = velocityresponse;
2094          }          }
2095          else {  
2096              ReleaseVelocityResponseCurve = curve_type_unknown;          {
2097              ReleaseVelocityResponseDepth = 0;              if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2098                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2099                switch (ReleaseVelocityResponseCurve) {
2100                    case curve_type_nonlinear:
2101                        break;
2102                    case curve_type_linear:
2103                        releasevelocityresponse += 5;
2104                        break;
2105                    case curve_type_special:
2106                        releasevelocityresponse += 10;
2107                        break;
2108                    case curve_type_unknown:
2109                    default:
2110                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2111                }
2112                pData[97] = releasevelocityresponse;
2113          }          }
2114          VelocityResponseCurveScaling = _3ewa->ReadUint8();  
2115          AttenuationControllerThreshold = _3ewa->ReadInt8();          pData[98] = VelocityResponseCurveScaling;
2116          _3ewa->ReadInt32(); // unknown  
2117          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();          pData[99] = AttenuationControllerThreshold;
2118          _3ewa->ReadInt16(); // unknown  
2119          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();          // next 4 bytes unknown
2120          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
2121          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;          store16(&pData[104], SampleStartOffset);
2122          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
2123          else                                       DimensionBypass = dim_bypass_ctrl_none;          // next 2 bytes unknown
2124          uint8_t pan = _3ewa->ReadUint8();  
2125          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit          {
2126          SelfMask = _3ewa->ReadInt8() & 0x01;              uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2127          _3ewa->ReadInt8(); // unknown              switch (DimensionBypass) {
2128          uint8_t lfo3ctrl = _3ewa->ReadUint8();                  case dim_bypass_ctrl_94:
2129          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits                      pitchTrackDimensionBypass |= 0x10;
2130          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5                      break;
2131          InvertAttenuationController = lfo3ctrl & 0x80; // bit 7                  case dim_bypass_ctrl_95:
2132          AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));                      pitchTrackDimensionBypass |= 0x20;
2133          uint8_t lfo2ctrl       = _3ewa->ReadUint8();                      break;
2134          LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits                  case dim_bypass_ctrl_none:
2135          LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7                      //FIXME: should we set anything here?
2136          LFO2Sync               = lfo2ctrl & 0x20; // bit 5                      break;
2137          bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6                  default:
2138          uint8_t lfo1ctrl       = _3ewa->ReadUint8();                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2139          LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits              }
2140          LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7              pData[108] = pitchTrackDimensionBypass;
2141          LFO1Sync               = lfo1ctrl & 0x40; // bit 6          }
2142          VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
2143                                                      : vcf_res_ctrl_none;          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2144          uint16_t eg3depth = _3ewa->ReadUint16();          pData[109] = pan;
2145          EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
2146                                        : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2147          _3ewa->ReadInt16(); // unknown          pData[110] = selfmask;
2148          ChannelOffset = _3ewa->ReadUint8() / 4;  
2149          uint8_t regoptions = _3ewa->ReadUint8();          // next byte unknown
2150          MSDecode           = regoptions & 0x01; // bit 0  
2151          SustainDefeat      = regoptions & 0x02; // bit 1          {
2152          _3ewa->ReadInt16(); // unknown              uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2153          VelocityUpperLimit = _3ewa->ReadInt8();              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2154          _3ewa->ReadInt8(); // unknown              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2155          _3ewa->ReadInt16(); // unknown              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2156          ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay              pData[112] = lfo3ctrl;
2157          _3ewa->ReadInt8(); // unknown          }
2158          _3ewa->ReadInt8(); // unknown  
2159          EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2160          uint8_t vcfcutoff = _3ewa->ReadUint8();          pData[113] = attenctl;
2161          VCFEnabled = vcfcutoff & 0x80; // bit 7  
2162          VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits          {
2163          VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2164          VCFVelocityScale = _3ewa->ReadUint8();              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2165          _3ewa->ReadInt8(); // unknown              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2166          uint8_t vcfresonance = _3ewa->ReadUint8();              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2167          VCFResonance = vcfresonance & 0x7f; // lower 7 bits              pData[114] = lfo2ctrl;
2168          VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7          }
2169          uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
2170          VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7          {
2171          VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits              uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2172          uint8_t vcfvelocity = _3ewa->ReadUint8();              if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2173          VCFVelocityDynamicRange = vcfvelocity % 5;              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2174          VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);              if (VCFResonanceController != vcf_res_ctrl_none)
2175          VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2176          if (VCFType == vcf_type_lowpass) {              pData[115] = lfo1ctrl;
2177              if (lfo3ctrl & 0x40) // bit 6          }
2178                  VCFType = vcf_type_lowpassturbo;  
2179            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2180                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2181            store16(&pData[116], eg3depth);
2182    
2183            // next 2 bytes unknown
2184    
2185            const uint8_t channeloffset = ChannelOffset * 4;
2186            pData[120] = channeloffset;
2187    
2188            {
2189                uint8_t regoptions = 0;
2190                if (MSDecode)      regoptions |= 0x01; // bit 0
2191                if (SustainDefeat) regoptions |= 0x02; // bit 1
2192                pData[121] = regoptions;
2193            }
2194    
2195            // next 2 bytes unknown
2196    
2197            pData[124] = VelocityUpperLimit;
2198    
2199            // next 3 bytes unknown
2200    
2201            pData[128] = ReleaseTriggerDecay;
2202    
2203            // next 2 bytes unknown
2204    
2205            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2206            pData[131] = eg1hold;
2207    
2208            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2209                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2210            pData[132] = vcfcutoff;
2211    
2212            pData[133] = VCFCutoffController;
2213    
2214            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2215                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2216            pData[134] = vcfvelscale;
2217    
2218            // next byte unknown
2219    
2220            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2221                                         (VCFResonance & 0x7f); /* lower 7 bits */
2222            pData[136] = vcfresonance;
2223    
2224            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2225                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2226            pData[137] = vcfbreakpoint;
2227    
2228            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2229                                        VCFVelocityCurve * 5;
2230            pData[138] = vcfvelocity;
2231    
2232            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2233            pData[139] = vcftype;
2234    
2235            if (chunksize >= 148) {
2236                memcpy(&pData[140], DimensionUpperLimits, 8);
2237          }          }
2238    
2239          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // format extension for EG behavior options, these will *NOT* work with
2240          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          // Gigasampler/GigaStudio !
2241            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2242            if (!lsde) {
2243                // only add this "LSDE" chunk if the EG options do not match the
2244                // default EG behavior
2245                eg_opt_t defaultOpt;
2246                if (memcmp(&EGOptions, &defaultOpt, sizeof(eg_opt_t))) {
2247                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 1);
2248                    // move LSDE chunk to the end of parent list
2249                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2250                }
2251            }
2252            if (lsde) {
2253                unsigned char* pByte = (unsigned char*) lsde->LoadChunkData();
2254                *pByte =
2255                    (EGOptions.AttackCancel     ? 1 : 0) |
2256                    (EGOptions.AttackHoldCancel ? (1<<1) : 0) |
2257                    (EGOptions.DecayCancel      ? (1<<2) : 0) |
2258                    (EGOptions.ReleaseCancel    ? (1<<3) : 0);
2259            }
2260        }
2261    
2262        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2263            curve_type_t curveType = releaseVelocityResponseCurve;
2264            uint8_t depth = releaseVelocityResponseDepth;
2265            // this models a strange behaviour or bug in GSt: two of the
2266            // velocity response curves for release time are not used even
2267            // if specified, instead another curve is chosen.
2268            if ((curveType == curve_type_nonlinear && depth == 0) ||
2269                (curveType == curve_type_special   && depth == 4)) {
2270                curveType = curve_type_nonlinear;
2271                depth = 3;
2272            }
2273            return GetVelocityTable(curveType, depth, 0);
2274        }
2275    
2276        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2277                                                        uint8_t vcfVelocityDynamicRange,
2278                                                        uint8_t vcfVelocityScale,
2279                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2280        {
2281            curve_type_t curveType = vcfVelocityCurve;
2282            uint8_t depth = vcfVelocityDynamicRange;
2283            // even stranger GSt: two of the velocity response curves for
2284            // filter cutoff are not used, instead another special curve
2285            // is chosen. This curve is not used anywhere else.
2286            if ((curveType == curve_type_nonlinear && depth == 0) ||
2287                (curveType == curve_type_special   && depth == 4)) {
2288                curveType = curve_type_special;
2289                depth = 5;
2290            }
2291            return GetVelocityTable(curveType, depth,
2292                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2293                                        ? vcfVelocityScale : 0);
2294        }
2295    
2296        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2297        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2298        {
2299            double* table;
2300            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2301          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
2302              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
2303          }          }
2304          else {          else {
2305              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
2306                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
2307          }          }
2308            return table;
2309        }
2310    
2311          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));      Region* DimensionRegion::GetParent() const {
2312            return pRegion;
2313      }      }
2314    
2315    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2316    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2317    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2318    //#pragma GCC diagnostic push
2319    //#pragma GCC diagnostic error "-Wswitch"
2320    
2321      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2322          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2323          switch (EncodedController) {          switch (EncodedController) {
# Line 1240  namespace gig { namespace { Line 2429  namespace gig { namespace {
2429                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2430                  break;                  break;
2431    
2432                // format extension (these controllers are so far only supported by
2433                // LinuxSampler & gigedit) they will *NOT* work with
2434                // Gigasampler/GigaStudio !
2435                case _lev_ctrl_CC3_EXT:
2436                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437                    decodedcontroller.controller_number = 3;
2438                    break;
2439                case _lev_ctrl_CC6_EXT:
2440                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441                    decodedcontroller.controller_number = 6;
2442                    break;
2443                case _lev_ctrl_CC7_EXT:
2444                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445                    decodedcontroller.controller_number = 7;
2446                    break;
2447                case _lev_ctrl_CC8_EXT:
2448                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449                    decodedcontroller.controller_number = 8;
2450                    break;
2451                case _lev_ctrl_CC9_EXT:
2452                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453                    decodedcontroller.controller_number = 9;
2454                    break;
2455                case _lev_ctrl_CC10_EXT:
2456                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457                    decodedcontroller.controller_number = 10;
2458                    break;
2459                case _lev_ctrl_CC11_EXT:
2460                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461                    decodedcontroller.controller_number = 11;
2462                    break;
2463                case _lev_ctrl_CC14_EXT:
2464                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465                    decodedcontroller.controller_number = 14;
2466                    break;
2467                case _lev_ctrl_CC15_EXT:
2468                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469                    decodedcontroller.controller_number = 15;
2470                    break;
2471                case _lev_ctrl_CC20_EXT:
2472                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473                    decodedcontroller.controller_number = 20;
2474                    break;
2475                case _lev_ctrl_CC21_EXT:
2476                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477                    decodedcontroller.controller_number = 21;
2478                    break;
2479                case _lev_ctrl_CC22_EXT:
2480                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481                    decodedcontroller.controller_number = 22;
2482                    break;
2483                case _lev_ctrl_CC23_EXT:
2484                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485                    decodedcontroller.controller_number = 23;
2486                    break;
2487                case _lev_ctrl_CC24_EXT:
2488                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489                    decodedcontroller.controller_number = 24;
2490                    break;
2491                case _lev_ctrl_CC25_EXT:
2492                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493                    decodedcontroller.controller_number = 25;
2494                    break;
2495                case _lev_ctrl_CC26_EXT:
2496                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497                    decodedcontroller.controller_number = 26;
2498                    break;
2499                case _lev_ctrl_CC27_EXT:
2500                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501                    decodedcontroller.controller_number = 27;
2502                    break;
2503                case _lev_ctrl_CC28_EXT:
2504                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505                    decodedcontroller.controller_number = 28;
2506                    break;
2507                case _lev_ctrl_CC29_EXT:
2508                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509                    decodedcontroller.controller_number = 29;
2510                    break;
2511                case _lev_ctrl_CC30_EXT:
2512                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513                    decodedcontroller.controller_number = 30;
2514                    break;
2515                case _lev_ctrl_CC31_EXT:
2516                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517                    decodedcontroller.controller_number = 31;
2518                    break;
2519                case _lev_ctrl_CC68_EXT:
2520                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521                    decodedcontroller.controller_number = 68;
2522                    break;
2523                case _lev_ctrl_CC69_EXT:
2524                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525                    decodedcontroller.controller_number = 69;
2526                    break;
2527                case _lev_ctrl_CC70_EXT:
2528                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529                    decodedcontroller.controller_number = 70;
2530                    break;
2531                case _lev_ctrl_CC71_EXT:
2532                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533                    decodedcontroller.controller_number = 71;
2534                    break;
2535                case _lev_ctrl_CC72_EXT:
2536                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537                    decodedcontroller.controller_number = 72;
2538                    break;
2539                case _lev_ctrl_CC73_EXT:
2540                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541                    decodedcontroller.controller_number = 73;
2542                    break;
2543                case _lev_ctrl_CC74_EXT:
2544                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545                    decodedcontroller.controller_number = 74;
2546                    break;
2547                case _lev_ctrl_CC75_EXT:
2548                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549                    decodedcontroller.controller_number = 75;
2550                    break;
2551                case _lev_ctrl_CC76_EXT:
2552                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553                    decodedcontroller.controller_number = 76;
2554                    break;
2555                case _lev_ctrl_CC77_EXT:
2556                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557                    decodedcontroller.controller_number = 77;
2558                    break;
2559                case _lev_ctrl_CC78_EXT:
2560                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561                    decodedcontroller.controller_number = 78;
2562                    break;
2563                case _lev_ctrl_CC79_EXT:
2564                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565                    decodedcontroller.controller_number = 79;
2566                    break;
2567                case _lev_ctrl_CC84_EXT:
2568                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569                    decodedcontroller.controller_number = 84;
2570                    break;
2571                case _lev_ctrl_CC85_EXT:
2572                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573                    decodedcontroller.controller_number = 85;
2574                    break;
2575                case _lev_ctrl_CC86_EXT:
2576                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577                    decodedcontroller.controller_number = 86;
2578                    break;
2579                case _lev_ctrl_CC87_EXT:
2580                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581                    decodedcontroller.controller_number = 87;
2582                    break;
2583                case _lev_ctrl_CC89_EXT:
2584                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585                    decodedcontroller.controller_number = 89;
2586                    break;
2587                case _lev_ctrl_CC90_EXT:
2588                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589                    decodedcontroller.controller_number = 90;
2590                    break;
2591                case _lev_ctrl_CC96_EXT:
2592                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593                    decodedcontroller.controller_number = 96;
2594                    break;
2595                case _lev_ctrl_CC97_EXT:
2596                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597                    decodedcontroller.controller_number = 97;
2598                    break;
2599                case _lev_ctrl_CC102_EXT:
2600                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601                    decodedcontroller.controller_number = 102;
2602                    break;
2603                case _lev_ctrl_CC103_EXT:
2604                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605                    decodedcontroller.controller_number = 103;
2606                    break;
2607                case _lev_ctrl_CC104_EXT:
2608                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609                    decodedcontroller.controller_number = 104;
2610                    break;
2611                case _lev_ctrl_CC105_EXT:
2612                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613                    decodedcontroller.controller_number = 105;
2614                    break;
2615                case _lev_ctrl_CC106_EXT:
2616                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617                    decodedcontroller.controller_number = 106;
2618                    break;
2619                case _lev_ctrl_CC107_EXT:
2620                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621                    decodedcontroller.controller_number = 107;
2622                    break;
2623                case _lev_ctrl_CC108_EXT:
2624                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625                    decodedcontroller.controller_number = 108;
2626                    break;
2627                case _lev_ctrl_CC109_EXT:
2628                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629                    decodedcontroller.controller_number = 109;
2630                    break;
2631                case _lev_ctrl_CC110_EXT:
2632                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633                    decodedcontroller.controller_number = 110;
2634                    break;
2635                case _lev_ctrl_CC111_EXT:
2636                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637                    decodedcontroller.controller_number = 111;
2638                    break;
2639                case _lev_ctrl_CC112_EXT:
2640                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641                    decodedcontroller.controller_number = 112;
2642                    break;
2643                case _lev_ctrl_CC113_EXT:
2644                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645                    decodedcontroller.controller_number = 113;
2646                    break;
2647                case _lev_ctrl_CC114_EXT:
2648                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649                    decodedcontroller.controller_number = 114;
2650                    break;
2651                case _lev_ctrl_CC115_EXT:
2652                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653                    decodedcontroller.controller_number = 115;
2654                    break;
2655                case _lev_ctrl_CC116_EXT:
2656                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657                    decodedcontroller.controller_number = 116;
2658                    break;
2659                case _lev_ctrl_CC117_EXT:
2660                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661                    decodedcontroller.controller_number = 117;
2662                    break;
2663                case _lev_ctrl_CC118_EXT:
2664                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665                    decodedcontroller.controller_number = 118;
2666                    break;
2667                case _lev_ctrl_CC119_EXT:
2668                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669                    decodedcontroller.controller_number = 119;
2670                    break;
2671    
2672              // unknown controller type              // unknown controller type
2673              default:              default:
2674                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2675                    decodedcontroller.controller_number = 0;
2676                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2677                    break;
2678          }          }
2679          return decodedcontroller;          return decodedcontroller;
2680      }      }
2681        
2682    // see above (diagnostic push not supported prior GCC 4.6)
2683    //#pragma GCC diagnostic pop
2684    
2685        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2686            _lev_ctrl_t encodedcontroller;
2687            switch (DecodedController.type) {
2688                // special controller
2689                case leverage_ctrl_t::type_none:
2690                    encodedcontroller = _lev_ctrl_none;
2691                    break;
2692                case leverage_ctrl_t::type_velocity:
2693                    encodedcontroller = _lev_ctrl_velocity;
2694                    break;
2695                case leverage_ctrl_t::type_channelaftertouch:
2696                    encodedcontroller = _lev_ctrl_channelaftertouch;
2697                    break;
2698    
2699                // ordinary MIDI control change controller
2700                case leverage_ctrl_t::type_controlchange:
2701                    switch (DecodedController.controller_number) {
2702                        case 1:
2703                            encodedcontroller = _lev_ctrl_modwheel;
2704                            break;
2705                        case 2:
2706                            encodedcontroller = _lev_ctrl_breath;
2707                            break;
2708                        case 4:
2709                            encodedcontroller = _lev_ctrl_foot;
2710                            break;
2711                        case 12:
2712                            encodedcontroller = _lev_ctrl_effect1;
2713                            break;
2714                        case 13:
2715                            encodedcontroller = _lev_ctrl_effect2;
2716                            break;
2717                        case 16:
2718                            encodedcontroller = _lev_ctrl_genpurpose1;
2719                            break;
2720                        case 17:
2721                            encodedcontroller = _lev_ctrl_genpurpose2;
2722                            break;
2723                        case 18:
2724                            encodedcontroller = _lev_ctrl_genpurpose3;
2725                            break;
2726                        case 19:
2727                            encodedcontroller = _lev_ctrl_genpurpose4;
2728                            break;
2729                        case 5:
2730                            encodedcontroller = _lev_ctrl_portamentotime;
2731                            break;
2732                        case 64:
2733                            encodedcontroller = _lev_ctrl_sustainpedal;
2734                            break;
2735                        case 65:
2736                            encodedcontroller = _lev_ctrl_portamento;
2737                            break;
2738                        case 66:
2739                            encodedcontroller = _lev_ctrl_sostenutopedal;
2740                            break;
2741                        case 67:
2742                            encodedcontroller = _lev_ctrl_softpedal;
2743                            break;
2744                        case 80:
2745                            encodedcontroller = _lev_ctrl_genpurpose5;
2746                            break;
2747                        case 81:
2748                            encodedcontroller = _lev_ctrl_genpurpose6;
2749                            break;
2750                        case 82:
2751                            encodedcontroller = _lev_ctrl_genpurpose7;
2752                            break;
2753                        case 83:
2754                            encodedcontroller = _lev_ctrl_genpurpose8;
2755                            break;
2756                        case 91:
2757                            encodedcontroller = _lev_ctrl_effect1depth;
2758                            break;
2759                        case 92:
2760                            encodedcontroller = _lev_ctrl_effect2depth;
2761                            break;
2762                        case 93:
2763                            encodedcontroller = _lev_ctrl_effect3depth;
2764                            break;
2765                        case 94:
2766                            encodedcontroller = _lev_ctrl_effect4depth;
2767                            break;
2768                        case 95:
2769                            encodedcontroller = _lev_ctrl_effect5depth;
2770                            break;
2771    
2772                        // format extension (these controllers are so far only
2773                        // supported by LinuxSampler & gigedit) they will *NOT*
2774                        // work with Gigasampler/GigaStudio !
2775                        case 3:
2776                            encodedcontroller = _lev_ctrl_CC3_EXT;
2777                            break;
2778                        case 6:
2779                            encodedcontroller = _lev_ctrl_CC6_EXT;
2780                            break;
2781                        case 7:
2782                            encodedcontroller = _lev_ctrl_CC7_EXT;
2783                            break;
2784                        case 8:
2785                            encodedcontroller = _lev_ctrl_CC8_EXT;
2786                            break;
2787                        case 9:
2788                            encodedcontroller = _lev_ctrl_CC9_EXT;
2789                            break;
2790                        case 10:
2791                            encodedcontroller = _lev_ctrl_CC10_EXT;
2792                            break;
2793                        case 11:
2794                            encodedcontroller = _lev_ctrl_CC11_EXT;
2795                            break;
2796                        case 14:
2797                            encodedcontroller = _lev_ctrl_CC14_EXT;
2798                            break;
2799                        case 15:
2800                            encodedcontroller = _lev_ctrl_CC15_EXT;
2801                            break;
2802                        case 20:
2803                            encodedcontroller = _lev_ctrl_CC20_EXT;
2804                            break;
2805                        case 21:
2806                            encodedcontroller = _lev_ctrl_CC21_EXT;
2807                            break;
2808                        case 22:
2809                            encodedcontroller = _lev_ctrl_CC22_EXT;
2810                            break;
2811                        case 23:
2812                            encodedcontroller = _lev_ctrl_CC23_EXT;
2813                            break;
2814                        case 24:
2815                            encodedcontroller = _lev_ctrl_CC24_EXT;
2816                            break;
2817                        case 25:
2818                            encodedcontroller = _lev_ctrl_CC25_EXT;
2819                            break;
2820                        case 26:
2821                            encodedcontroller = _lev_ctrl_CC26_EXT;
2822                            break;
2823                        case 27:
2824                            encodedcontroller = _lev_ctrl_CC27_EXT;
2825                            break;
2826                        case 28:
2827                            encodedcontroller = _lev_ctrl_CC28_EXT;
2828                            break;
2829                        case 29:
2830                            encodedcontroller = _lev_ctrl_CC29_EXT;
2831                            break;
2832                        case 30:
2833                            encodedcontroller = _lev_ctrl_CC30_EXT;
2834                            break;
2835                        case 31:
2836                            encodedcontroller = _lev_ctrl_CC31_EXT;
2837                            break;
2838                        case 68:
2839                            encodedcontroller = _lev_ctrl_CC68_EXT;
2840                            break;
2841                        case 69:
2842                            encodedcontroller = _lev_ctrl_CC69_EXT;
2843                            break;
2844                        case 70:
2845                            encodedcontroller = _lev_ctrl_CC70_EXT;
2846                            break;
2847                        case 71:
2848                            encodedcontroller = _lev_ctrl_CC71_EXT;
2849                            break;
2850                        case 72:
2851                            encodedcontroller = _lev_ctrl_CC72_EXT;
2852                            break;
2853                        case 73:
2854                            encodedcontroller = _lev_ctrl_CC73_EXT;
2855                            break;
2856                        case 74:
2857                            encodedcontroller = _lev_ctrl_CC74_EXT;
2858                            break;
2859                        case 75:
2860                            encodedcontroller = _lev_ctrl_CC75_EXT;
2861                            break;
2862                        case 76:
2863                            encodedcontroller = _lev_ctrl_CC76_EXT;
2864                            break;
2865                        case 77:
2866                            encodedcontroller = _lev_ctrl_CC77_EXT;
2867                            break;
2868                        case 78:
2869                            encodedcontroller = _lev_ctrl_CC78_EXT;
2870                            break;
2871                        case 79:
2872                            encodedcontroller = _lev_ctrl_CC79_EXT;
2873                            break;
2874                        case 84:
2875                            encodedcontroller = _lev_ctrl_CC84_EXT;
2876                            break;
2877                        case 85:
2878                            encodedcontroller = _lev_ctrl_CC85_EXT;
2879                            break;
2880                        case 86:
2881                            encodedcontroller = _lev_ctrl_CC86_EXT;
2882                            break;
2883                        case 87:
2884                            encodedcontroller = _lev_ctrl_CC87_EXT;
2885                            break;
2886                        case 89:
2887                            encodedcontroller = _lev_ctrl_CC89_EXT;
2888                            break;
2889                        case 90:
2890                            encodedcontroller = _lev_ctrl_CC90_EXT;
2891                            break;
2892                        case 96:
2893                            encodedcontroller = _lev_ctrl_CC96_EXT;
2894                            break;
2895                        case 97:
2896                            encodedcontroller = _lev_ctrl_CC97_EXT;
2897                            break;
2898                        case 102:
2899                            encodedcontroller = _lev_ctrl_CC102_EXT;
2900                            break;
2901                        case 103:
2902                            encodedcontroller = _lev_ctrl_CC103_EXT;
2903                            break;
2904                        case 104:
2905                            encodedcontroller = _lev_ctrl_CC104_EXT;
2906                            break;
2907                        case 105:
2908                            encodedcontroller = _lev_ctrl_CC105_EXT;
2909                            break;
2910                        case 106:
2911                            encodedcontroller = _lev_ctrl_CC106_EXT;
2912                            break;
2913                        case 107:
2914                            encodedcontroller = _lev_ctrl_CC107_EXT;
2915                            break;
2916                        case 108:
2917                            encodedcontroller = _lev_ctrl_CC108_EXT;
2918                            break;
2919                        case 109:
2920                            encodedcontroller = _lev_ctrl_CC109_EXT;
2921                            break;
2922                        case 110:
2923                            encodedcontroller = _lev_ctrl_CC110_EXT;
2924                            break;
2925                        case 111:
2926                            encodedcontroller = _lev_ctrl_CC111_EXT;
2927                            break;
2928                        case 112:
2929                            encodedcontroller = _lev_ctrl_CC112_EXT;
2930                            break;
2931                        case 113:
2932                            encodedcontroller = _lev_ctrl_CC113_EXT;
2933                            break;
2934                        case 114:
2935                            encodedcontroller = _lev_ctrl_CC114_EXT;
2936                            break;
2937                        case 115:
2938                            encodedcontroller = _lev_ctrl_CC115_EXT;
2939                            break;
2940                        case 116:
2941                            encodedcontroller = _lev_ctrl_CC116_EXT;
2942                            break;
2943                        case 117:
2944                            encodedcontroller = _lev_ctrl_CC117_EXT;
2945                            break;
2946                        case 118:
2947                            encodedcontroller = _lev_ctrl_CC118_EXT;
2948                            break;
2949                        case 119:
2950                            encodedcontroller = _lev_ctrl_CC119_EXT;
2951                            break;
2952    
2953                        default:
2954                            throw gig::Exception("leverage controller number is not supported by the gig format");
2955                    }
2956                    break;
2957                default:
2958                    throw gig::Exception("Unknown leverage controller type.");
2959            }
2960            return encodedcontroller;
2961        }
2962    
2963      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2964          Instances--;          Instances--;
# Line 1260  namespace gig { namespace { Line 2973  namespace gig { namespace {
2973              delete pVelocityTables;              delete pVelocityTables;
2974              pVelocityTables = NULL;              pVelocityTables = NULL;
2975          }          }
2976            if (VelocityTable) delete[] VelocityTable;
2977      }      }
2978    
2979      /**      /**
# Line 1277  namespace gig { namespace { Line 2991  namespace gig { namespace {
2991          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2992      }      }
2993    
2994        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2995            return pVelocityReleaseTable[MIDIKeyVelocity];
2996        }
2997    
2998        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2999            return pVelocityCutoffTable[MIDIKeyVelocity];
3000        }
3001    
3002        /**
3003         * Updates the respective member variable and the lookup table / cache
3004         * that depends on this value.
3005         */
3006        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3007            pVelocityAttenuationTable =
3008                GetVelocityTable(
3009                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3010                );
3011            VelocityResponseCurve = curve;
3012        }
3013    
3014        /**
3015         * Updates the respective member variable and the lookup table / cache
3016         * that depends on this value.
3017         */
3018        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3019            pVelocityAttenuationTable =
3020                GetVelocityTable(
3021                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3022                );
3023            VelocityResponseDepth = depth;
3024        }
3025    
3026        /**
3027         * Updates the respective member variable and the lookup table / cache
3028         * that depends on this value.
3029         */
3030        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3031            pVelocityAttenuationTable =
3032                GetVelocityTable(
3033                    VelocityResponseCurve, VelocityResponseDepth, scaling
3034                );
3035            VelocityResponseCurveScaling = scaling;
3036        }
3037    
3038        /**
3039         * Updates the respective member variable and the lookup table / cache
3040         * that depends on this value.
3041         */
3042        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3043            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3044            ReleaseVelocityResponseCurve = curve;
3045        }
3046    
3047        /**
3048         * Updates the respective member variable and the lookup table / cache
3049         * that depends on this value.
3050         */
3051        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3052            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3053            ReleaseVelocityResponseDepth = depth;
3054        }
3055    
3056        /**
3057         * Updates the respective member variable and the lookup table / cache
3058         * that depends on this value.
3059         */
3060        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3061            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3062            VCFCutoffController = controller;
3063        }
3064    
3065        /**
3066         * Updates the respective member variable and the lookup table / cache
3067         * that depends on this value.
3068         */
3069        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3070            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3071            VCFVelocityCurve = curve;
3072        }
3073    
3074        /**
3075         * Updates the respective member variable and the lookup table / cache
3076         * that depends on this value.
3077         */
3078        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3079            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3080            VCFVelocityDynamicRange = range;
3081        }
3082    
3083        /**
3084         * Updates the respective member variable and the lookup table / cache
3085         * that depends on this value.
3086         */
3087        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3088            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3089            VCFVelocityScale = scaling;
3090        }
3091    
3092      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3093    
3094          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1310  namespace gig { namespace { Line 3122  namespace gig { namespace {
3122          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3123                               127, 127 };                               127, 127 };
3124    
3125            // this is only used by the VCF velocity curve
3126            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3127                                 91, 127, 127, 127 };
3128    
3129          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
3130                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
3131                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
3132    
3133          double* const table = new double[128];          double* const table = new double[128];
3134    
# Line 1356  namespace gig { namespace { Line 3172  namespace gig { namespace {
3172    
3173          // Actual Loading          // Actual Loading
3174    
3175            if (!file->GetAutoLoad()) return;
3176    
3177          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3178    
3179          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1364  namespace gig { namespace { Line 3182  namespace gig { namespace {
3182              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3183                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3184                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3185                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3186                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3187                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3188                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3189                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3190                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3191                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3192                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3193                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3194                  }                  }
3195                  else { // active dimension                  else { // active dimension
3196                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3197                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3198                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3199                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3200                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3201                      Dimensions++;                      Dimensions++;
3202    
3203                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
3204                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3205                  }                  }
3206                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3207              }              }
3208                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3209    
3210              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3211              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3212                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
3213    
3214              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
3215              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
3216                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3217              else              else
3218                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3219    
3220              // load sample references              // load sample references (if auto loading is enabled)
3221              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3222                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3223                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3224                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3225                    }
3226                    GetSample(); // load global region sample reference
3227                }
3228            } else {
3229                DimensionRegions = 0;
3230                for (int i = 0 ; i < 8 ; i++) {
3231                    pDimensionDefinitions[i].dimension  = dimension_none;
3232                    pDimensionDefinitions[i].bits       = 0;
3233                    pDimensionDefinitions[i].zones      = 0;
3234                }
3235            }
3236    
3237            // make sure there is at least one dimension region
3238            if (!DimensionRegions) {
3239                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3240                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3241                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3242                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3243                DimensionRegions = 1;
3244            }
3245        }
3246    
3247        /**
3248         * Apply Region settings and all its DimensionRegions to the respective
3249         * RIFF chunks. You have to call File::Save() to make changes persistent.
3250         *
3251         * Usually there is absolutely no need to call this method explicitly.
3252         * It will be called automatically when File::Save() was called.
3253         *
3254         * @param pProgress - callback function for progress notification
3255         * @throws gig::Exception if samples cannot be dereferenced
3256         */
3257        void Region::UpdateChunks(progress_t* pProgress) {
3258            // in the gig format we don't care about the Region's sample reference
3259            // but we still have to provide some existing one to not corrupt the
3260            // file, so to avoid the latter we simply always assign the sample of
3261            // the first dimension region of this region
3262            pSample = pDimensionRegions[0]->pSample;
3263    
3264            // first update base class's chunks
3265            DLS::Region::UpdateChunks(pProgress);
3266    
3267            // update dimension region's chunks
3268            for (int i = 0; i < DimensionRegions; i++) {
3269                pDimensionRegions[i]->UpdateChunks(pProgress);
3270            }
3271    
3272            File* pFile = (File*) GetParent()->GetParent();
3273            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3274            const int iMaxDimensions =  version3 ? 8 : 5;
3275            const int iMaxDimensionRegions = version3 ? 256 : 32;
3276    
3277            // make sure '3lnk' chunk exists
3278            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3279            if (!_3lnk) {
3280                const int _3lnkChunkSize = version3 ? 1092 : 172;
3281                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3282                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3283    
3284                // move 3prg to last position
3285                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3286            }
3287    
3288            // update dimension definitions in '3lnk' chunk
3289            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3290            store32(&pData[0], DimensionRegions);
3291            int shift = 0;
3292            for (int i = 0; i < iMaxDimensions; i++) {
3293                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3294                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3295                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3296                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3297                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3298                // next 3 bytes unknown, always zero?
3299    
3300                shift += pDimensionDefinitions[i].bits;
3301            }
3302    
3303            // update wave pool table in '3lnk' chunk
3304            const int iWavePoolOffset = version3 ? 68 : 44;
3305            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3306                int iWaveIndex = -1;
3307                if (i < DimensionRegions) {
3308                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3309                    File::SampleList::iterator iter = pFile->pSamples->begin();
3310                    File::SampleList::iterator end  = pFile->pSamples->end();
3311                    for (int index = 0; iter != end; ++iter, ++index) {
3312                        if (*iter == pDimensionRegions[i]->pSample) {
3313                            iWaveIndex = index;
3314                            break;
3315                        }
3316                    }
3317              }              }
3318                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3319          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3320      }      }
3321    
3322      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1445  namespace gig { namespace { Line 3326  namespace gig { namespace {
3326              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3327              while (_3ewl) {              while (_3ewl) {
3328                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3329                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3330                      dimensionRegionNr++;                      dimensionRegionNr++;
3331                  }                  }
3332                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1454  namespace gig { namespace { Line 3335  namespace gig { namespace {
3335          }          }
3336      }      }
3337    
3338      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3339          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3340              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3341            // update Region key table for fast lookup
3342            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3343        }
3344    
3345        void Region::UpdateVelocityTable() {
3346            // get velocity dimension's index
3347            int veldim = -1;
3348            for (int i = 0 ; i < Dimensions ; i++) {
3349                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3350                    veldim = i;
3351                    break;
3352                }
3353            }
3354            if (veldim == -1) return;
3355    
3356            int step = 1;
3357            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3358            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3359    
3360            // loop through all dimension regions for all dimensions except the velocity dimension
3361            int dim[8] = { 0 };
3362            for (int i = 0 ; i < DimensionRegions ; i++) {
3363                const int end = i + step * pDimensionDefinitions[veldim].zones;
3364    
3365                // create a velocity table for all cases where the velocity zone is zero
3366                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3367                    pDimensionRegions[i]->VelocityUpperLimit) {
3368                    // create the velocity table
3369                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3370                    if (!table) {
3371                        table = new uint8_t[128];
3372                        pDimensionRegions[i]->VelocityTable = table;
3373                    }
3374                    int tableidx = 0;
3375                    int velocityZone = 0;
3376                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3377                        for (int k = i ; k < end ; k += step) {
3378                            DimensionRegion *d = pDimensionRegions[k];
3379                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3380                            velocityZone++;
3381                        }
3382                    } else { // gig2
3383                        for (int k = i ; k < end ; k += step) {
3384                            DimensionRegion *d = pDimensionRegions[k];
3385                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3386                            velocityZone++;
3387                        }
3388                    }
3389                } else {
3390                    if (pDimensionRegions[i]->VelocityTable) {
3391                        delete[] pDimensionRegions[i]->VelocityTable;
3392                        pDimensionRegions[i]->VelocityTable = 0;
3393                    }
3394                }
3395    
3396                // jump to the next case where the velocity zone is zero
3397                int j;
3398                int shift = 0;
3399                for (j = 0 ; j < Dimensions ; j++) {
3400                    if (j == veldim) i += skipveldim; // skip velocity dimension
3401                    else {
3402                        dim[j]++;
3403                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3404                        else {
3405                            // skip unused dimension regions
3406                            dim[j] = 0;
3407                            i += ((1 << pDimensionDefinitions[j].bits) -
3408                                  pDimensionDefinitions[j].zones) << shift;
3409                        }
3410                    }
3411                    shift += pDimensionDefinitions[j].bits;
3412                }
3413                if (j == Dimensions) break;
3414          }          }
3415        }
3416    
3417        /** @brief Einstein would have dreamed of it - create a new dimension.
3418         *
3419         * Creates a new dimension with the dimension definition given by
3420         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3421         * There is a hard limit of dimensions and total amount of "bits" all
3422         * dimensions can have. This limit is dependant to what gig file format
3423         * version this file refers to. The gig v2 (and lower) format has a
3424         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3425         * format has a limit of 8.
3426         *
3427         * @param pDimDef - defintion of the new dimension
3428         * @throws gig::Exception if dimension of the same type exists already
3429         * @throws gig::Exception if amount of dimensions or total amount of
3430         *                        dimension bits limit is violated
3431         */
3432        void Region::AddDimension(dimension_def_t* pDimDef) {
3433            // some initial sanity checks of the given dimension definition
3434            if (pDimDef->zones < 2)
3435                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3436            if (pDimDef->bits < 1)
3437                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3438            if (pDimDef->dimension == dimension_samplechannel) {
3439                if (pDimDef->zones != 2)
3440                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3441                if (pDimDef->bits != 1)
3442                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3443            }
3444    
3445            // check if max. amount of dimensions reached
3446            File* file = (File*) GetParent()->GetParent();
3447            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3448            if (Dimensions >= iMaxDimensions)
3449                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3450            // check if max. amount of dimension bits reached
3451            int iCurrentBits = 0;
3452            for (int i = 0; i < Dimensions; i++)
3453                iCurrentBits += pDimensionDefinitions[i].bits;
3454            if (iCurrentBits >= iMaxDimensions)
3455                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3456            const int iNewBits = iCurrentBits + pDimDef->bits;
3457            if (iNewBits > iMaxDimensions)
3458                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3459            // check if there's already a dimensions of the same type
3460            for (int i = 0; i < Dimensions; i++)
3461                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3462                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3463    
3464            // pos is where the new dimension should be placed, normally
3465            // last in list, except for the samplechannel dimension which
3466            // has to be first in list
3467            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3468            int bitpos = 0;
3469            for (int i = 0 ; i < pos ; i++)
3470                bitpos += pDimensionDefinitions[i].bits;
3471    
3472            // make room for the new dimension
3473            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3474            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3475                for (int j = Dimensions ; j > pos ; j--) {
3476                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3477                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3478                }
3479            }
3480    
3481            // assign definition of new dimension
3482            pDimensionDefinitions[pos] = *pDimDef;
3483    
3484            // auto correct certain dimension definition fields (where possible)
3485            pDimensionDefinitions[pos].split_type  =
3486                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3487            pDimensionDefinitions[pos].zone_size =
3488                __resolveZoneSize(pDimensionDefinitions[pos]);
3489    
3490            // create new dimension region(s) for this new dimension, and make
3491            // sure that the dimension regions are placed correctly in both the
3492            // RIFF list and the pDimensionRegions array
3493            RIFF::Chunk* moveTo = NULL;
3494            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3495            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3496                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3497                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3498                }
3499                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3500                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3501                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3502                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3503                        // create a new dimension region and copy all parameter values from
3504                        // an existing dimension region
3505                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3506                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3507    
3508                        DimensionRegions++;
3509                    }
3510                }
3511                moveTo = pDimensionRegions[i]->pParentList;
3512            }
3513    
3514            // initialize the upper limits for this dimension
3515            int mask = (1 << bitpos) - 1;
3516            for (int z = 0 ; z < pDimDef->zones ; z++) {
3517                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3518                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3519                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3520                                      (z << bitpos) |
3521                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3522                }
3523            }
3524    
3525            Dimensions++;
3526    
3527            // if this is a layer dimension, update 'Layers' attribute
3528            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3529    
3530            UpdateVelocityTable();
3531        }
3532    
3533        /** @brief Delete an existing dimension.
3534         *
3535         * Deletes the dimension given by \a pDimDef and deletes all respective
3536         * dimension regions, that is all dimension regions where the dimension's
3537         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3538         * for example this would delete all dimension regions for the case(s)
3539         * where the sustain pedal is pressed down.
3540         *
3541         * @param pDimDef - dimension to delete
3542         * @throws gig::Exception if given dimension cannot be found
3543         */
3544        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3545            // get dimension's index
3546            int iDimensionNr = -1;
3547            for (int i = 0; i < Dimensions; i++) {
3548                if (&pDimensionDefinitions[i] == pDimDef) {
3549                    iDimensionNr = i;
3550                    break;
3551                }
3552            }
3553            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3554    
3555            // get amount of bits below the dimension to delete
3556            int iLowerBits = 0;
3557            for (int i = 0; i < iDimensionNr; i++)
3558                iLowerBits += pDimensionDefinitions[i].bits;
3559    
3560            // get amount ot bits above the dimension to delete
3561            int iUpperBits = 0;
3562            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3563                iUpperBits += pDimensionDefinitions[i].bits;
3564    
3565            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3566    
3567            // delete dimension regions which belong to the given dimension
3568            // (that is where the dimension's bit > 0)
3569            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3570                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3571                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3572                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3573                                        iObsoleteBit << iLowerBits |
3574                                        iLowerBit;
3575    
3576                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3577                        delete pDimensionRegions[iToDelete];
3578                        pDimensionRegions[iToDelete] = NULL;
3579                        DimensionRegions--;
3580                    }
3581                }
3582            }
3583    
3584            // defrag pDimensionRegions array
3585            // (that is remove the NULL spaces within the pDimensionRegions array)
3586            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3587                if (!pDimensionRegions[iTo]) {
3588                    if (iFrom <= iTo) iFrom = iTo + 1;
3589                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3590                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3591                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3592                        pDimensionRegions[iFrom] = NULL;
3593                    }
3594                }
3595            }
3596    
3597            // remove the this dimension from the upper limits arrays
3598            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3599                DimensionRegion* d = pDimensionRegions[j];
3600                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3601                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3602                }
3603                d->DimensionUpperLimits[Dimensions - 1] = 127;
3604            }
3605    
3606            // 'remove' dimension definition
3607            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3608                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3609            }
3610            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3611            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3612            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3613    
3614            Dimensions--;
3615    
3616            // if this was a layer dimension, update 'Layers' attribute
3617            if (pDimDef->dimension == dimension_layer) Layers = 1;
3618        }
3619    
3620        /** @brief Delete one split zone of a dimension (decrement zone amount).
3621         *
3622         * Instead of deleting an entire dimensions, this method will only delete
3623         * one particular split zone given by @a zone of the Region's dimension
3624         * given by @a type. So this method will simply decrement the amount of
3625         * zones by one of the dimension in question. To be able to do that, the
3626         * respective dimension must exist on this Region and it must have at least
3627         * 3 zones. All DimensionRegion objects associated with the zone will be
3628         * deleted.
3629         *
3630         * @param type - identifies the dimension where a zone shall be deleted
3631         * @param zone - index of the dimension split zone that shall be deleted
3632         * @throws gig::Exception if requested zone could not be deleted
3633         */
3634        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3635            dimension_def_t* oldDef = GetDimensionDefinition(type);
3636            if (!oldDef)
3637                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3638            if (oldDef->zones <= 2)
3639                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3640            if (zone < 0 || zone >= oldDef->zones)
3641                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3642    
3643            const int newZoneSize = oldDef->zones - 1;
3644    
3645            // create a temporary Region which just acts as a temporary copy
3646            // container and will be deleted at the end of this function and will
3647            // also not be visible through the API during this process
3648            gig::Region* tempRgn = NULL;
3649            {
3650                // adding these temporary chunks is probably not even necessary
3651                Instrument* instr = static_cast<Instrument*>(GetParent());
3652                RIFF::List* pCkInstrument = instr->pCkInstrument;
3653                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3654                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3655                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3656                tempRgn = new Region(instr, rgn);
3657            }
3658    
3659            // copy this region's dimensions (with already the dimension split size
3660            // requested by the arguments of this method call) to the temporary
3661            // region, and don't use Region::CopyAssign() here for this task, since
3662            // it would also alter fast lookup helper variables here and there
3663            dimension_def_t newDef;
3664            for (int i = 0; i < Dimensions; ++i) {
3665                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3666                // is this the dimension requested by the method arguments? ...
3667                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3668                    def.zones = newZoneSize;
3669                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3670                    newDef = def;
3671                }
3672                tempRgn->AddDimension(&def);
3673            }
3674    
3675            // find the dimension index in the tempRegion which is the dimension
3676            // type passed to this method (paranoidly expecting different order)
3677            int tempReducedDimensionIndex = -1;
3678            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3679                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3680                    tempReducedDimensionIndex = d;
3681                    break;
3682                }
3683            }
3684    
3685            // copy dimension regions from this region to the temporary region
3686            for (int iDst = 0; iDst < 256; ++iDst) {
3687                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3688                if (!dstDimRgn) continue;
3689                std::map<dimension_t,int> dimCase;
3690                bool isValidZone = true;
3691                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3692                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3693                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3694                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3695                    baseBits += dstBits;
3696                    // there are also DimensionRegion objects of unused zones, skip them
3697                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3698                        isValidZone = false;
3699                        break;
3700                    }
3701                }
3702                if (!isValidZone) continue;
3703                // a bit paranoid: cope with the chance that the dimensions would
3704                // have different order in source and destination regions
3705                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3706                if (dimCase[type] >= zone) dimCase[type]++;
3707                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3708                dstDimRgn->CopyAssign(srcDimRgn);
3709                // if this is the upper most zone of the dimension passed to this
3710                // method, then correct (raise) its upper limit to 127
3711                if (newDef.split_type == split_type_normal && isLastZone)
3712                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3713            }
3714    
3715            // now tempRegion's dimensions and DimensionRegions basically reflect
3716            // what we wanted to get for this actual Region here, so we now just
3717            // delete and recreate the dimension in question with the new amount
3718            // zones and then copy back from tempRegion      
3719            DeleteDimension(oldDef);
3720            AddDimension(&newDef);
3721            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3722                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3723                if (!srcDimRgn) continue;
3724                std::map<dimension_t,int> dimCase;
3725                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3726                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3727                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3728                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3729                    baseBits += srcBits;
3730                }
3731                // a bit paranoid: cope with the chance that the dimensions would
3732                // have different order in source and destination regions
3733                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3734                if (!dstDimRgn) continue;
3735                dstDimRgn->CopyAssign(srcDimRgn);
3736            }
3737    
3738            // delete temporary region
3739            delete tempRgn;
3740    
3741            UpdateVelocityTable();
3742        }
3743    
3744        /** @brief Divide split zone of a dimension in two (increment zone amount).
3745         *
3746         * This will increment the amount of zones for the dimension (given by
3747         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3748         * in the middle of its zone range in two. So the two zones resulting from
3749         * the zone being splitted, will be an equivalent copy regarding all their
3750         * articulation informations and sample reference. The two zones will only
3751         * differ in their zone's upper limit
3752         * (DimensionRegion::DimensionUpperLimits).
3753         *
3754         * @param type - identifies the dimension where a zone shall be splitted
3755         * @param zone - index of the dimension split zone that shall be splitted
3756         * @throws gig::Exception if requested zone could not be splitted
3757         */
3758        void Region::SplitDimensionZone(dimension_t type, int zone) {
3759            dimension_def_t* oldDef = GetDimensionDefinition(type);
3760            if (!oldDef)
3761                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3762            if (zone < 0 || zone >= oldDef->zones)
3763                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3764    
3765            const int newZoneSize = oldDef->zones + 1;
3766    
3767            // create a temporary Region which just acts as a temporary copy
3768            // container and will be deleted at the end of this function and will
3769            // also not be visible through the API during this process
3770            gig::Region* tempRgn = NULL;
3771            {
3772                // adding these temporary chunks is probably not even necessary
3773                Instrument* instr = static_cast<Instrument*>(GetParent());
3774                RIFF::List* pCkInstrument = instr->pCkInstrument;
3775                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3776                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3777                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3778                tempRgn = new Region(instr, rgn);
3779            }
3780    
3781            // copy this region's dimensions (with already the dimension split size
3782            // requested by the arguments of this method call) to the temporary
3783            // region, and don't use Region::CopyAssign() here for this task, since
3784            // it would also alter fast lookup helper variables here and there
3785            dimension_def_t newDef;
3786            for (int i = 0; i < Dimensions; ++i) {
3787                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3788                // is this the dimension requested by the method arguments? ...
3789                if (def.dimension == type) { // ... if yes, increment zone amount by one
3790                    def.zones = newZoneSize;
3791                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3792                    newDef = def;
3793                }
3794                tempRgn->AddDimension(&def);
3795            }
3796    
3797            // find the dimension index in the tempRegion which is the dimension
3798            // type passed to this method (paranoidly expecting different order)
3799            int tempIncreasedDimensionIndex = -1;
3800            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3801                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3802                    tempIncreasedDimensionIndex = d;
3803                    break;
3804                }
3805            }
3806    
3807            // copy dimension regions from this region to the temporary region
3808            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3809                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3810                if (!srcDimRgn) continue;
3811                std::map<dimension_t,int> dimCase;
3812                bool isValidZone = true;
3813                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3814                    const int srcBits = pDimensionDefinitions[d].bits;
3815                    dimCase[pDimensionDefinitions[d].dimension] =
3816                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3817                    // there are also DimensionRegion objects for unused zones, skip them
3818                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3819                        isValidZone = false;
3820                        break;
3821                    }
3822                    baseBits += srcBits;
3823                }
3824                if (!isValidZone) continue;
3825                // a bit paranoid: cope with the chance that the dimensions would
3826                // have different order in source and destination regions            
3827                if (dimCase[type] > zone) dimCase[type]++;
3828                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3829                dstDimRgn->CopyAssign(srcDimRgn);
3830                // if this is the requested zone to be splitted, then also copy
3831                // the source DimensionRegion to the newly created target zone
3832                // and set the old zones upper limit lower
3833                if (dimCase[type] == zone) {
3834                    // lower old zones upper limit
3835                    if (newDef.split_type == split_type_normal) {
3836                        const int high =
3837                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3838                        int low = 0;
3839                        if (zone > 0) {
3840                            std::map<dimension_t,int> lowerCase = dimCase;
3841                            lowerCase[type]--;
3842                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3843                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3844                        }
3845                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3846                    }
3847                    // fill the newly created zone of the divided zone as well
3848                    dimCase[type]++;
3849                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3850                    dstDimRgn->CopyAssign(srcDimRgn);
3851                }
3852            }
3853    
3854            // now tempRegion's dimensions and DimensionRegions basically reflect
3855            // what we wanted to get for this actual Region here, so we now just
3856            // delete and recreate the dimension in question with the new amount
3857            // zones and then copy back from tempRegion      
3858            DeleteDimension(oldDef);
3859            AddDimension(&newDef);
3860            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3861                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3862                if (!srcDimRgn) continue;
3863                std::map<dimension_t,int> dimCase;
3864                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3865                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3866                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3867                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3868                    baseBits += srcBits;
3869                }
3870                // a bit paranoid: cope with the chance that the dimensions would
3871                // have different order in source and destination regions
3872                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3873                if (!dstDimRgn) continue;
3874                dstDimRgn->CopyAssign(srcDimRgn);
3875            }
3876    
3877            // delete temporary region
3878            delete tempRgn;
3879    
3880            UpdateVelocityTable();
3881        }
3882    
3883        /** @brief Change type of an existing dimension.
3884         *
3885         * Alters the dimension type of a dimension already existing on this
3886         * region. If there is currently no dimension on this Region with type
3887         * @a oldType, then this call with throw an Exception. Likewise there are
3888         * cases where the requested dimension type cannot be performed. For example
3889         * if the new dimension type shall be gig::dimension_samplechannel, and the
3890         * current dimension has more than 2 zones. In such cases an Exception is
3891         * thrown as well.
3892         *
3893         * @param oldType - identifies the existing dimension to be changed
3894         * @param newType - to which dimension type it should be changed to
3895         * @throws gig::Exception if requested change cannot be performed
3896         */
3897        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3898            if (oldType == newType) return;
3899            dimension_def_t* def = GetDimensionDefinition(oldType);
3900            if (!def)
3901                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3902            if (newType == dimension_samplechannel && def->zones != 2)
3903                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3904            if (GetDimensionDefinition(newType))
3905                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3906            def->dimension  = newType;
3907            def->split_type = __resolveSplitType(newType);
3908        }
3909    
3910        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3911            uint8_t bits[8] = {};
3912            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3913                 it != DimCase.end(); ++it)
3914            {
3915                for (int d = 0; d < Dimensions; ++d) {
3916                    if (pDimensionDefinitions[d].dimension == it->first) {
3917                        bits[d] = it->second;
3918                        goto nextDimCaseSlice;
3919                    }
3920                }
3921                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3922                nextDimCaseSlice:
3923                ; // noop
3924            }
3925            return GetDimensionRegionByBit(bits);
3926        }
3927    
3928        /**
3929         * Searches in the current Region for a dimension of the given dimension
3930         * type and returns the precise configuration of that dimension in this
3931         * Region.
3932         *
3933         * @param type - dimension type of the sought dimension
3934         * @returns dimension definition or NULL if there is no dimension with
3935         *          sought type in this Region.
3936         */
3937        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3938            for (int i = 0; i < Dimensions; ++i)
3939                if (pDimensionDefinitions[i].dimension == type)
3940                    return &pDimensionDefinitions[i];
3941            return NULL;
3942        }
3943    
3944        Region::~Region() {
3945          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3946              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3947          }          }
# Line 1482  namespace gig { namespace { Line 3966  namespace gig { namespace {
3966       * @see             Dimensions       * @see             Dimensions
3967       */       */
3968      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3969          uint8_t bits[8] = { 0 };          uint8_t bits;
3970            int veldim = -1;
3971            int velbitpos = 0;
3972            int bitpos = 0;
3973            int dimregidx = 0;
3974          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3975              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3976              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
3977                  case split_type_normal:                  veldim = i;
3978                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
3979                      break;              } else {
3980                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
3981                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
3982                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3983                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3984                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3985                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3986                      break;                              }
3987                            } else {
3988                                // gig2: evenly sized zones
3989                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3990                            }
3991                            break;
3992                        case split_type_bit: // the value is already the sought dimension bit number
3993                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3994                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3995                            break;
3996                    }
3997                    dimregidx |= bits << bitpos;
3998              }              }
3999                bitpos += pDimensionDefinitions[i].bits;
4000          }          }
4001          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4002            if (!dimreg) return NULL;
4003            if (veldim != -1) {
4004                // (dimreg is now the dimension region for the lowest velocity)
4005                if (dimreg->VelocityTable) // custom defined zone ranges
4006                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4007                else // normal split type
4008                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4009    
4010                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4011                dimregidx |= (bits & limiter_mask) << velbitpos;
4012                dimreg = pDimensionRegions[dimregidx & 255];
4013            }
4014            return dimreg;
4015        }
4016    
4017        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4018            uint8_t bits;
4019            int veldim = -1;
4020            int velbitpos = 0;
4021            int bitpos = 0;
4022            int dimregidx = 0;
4023            for (uint i = 0; i < Dimensions; i++) {
4024                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4025                    // the velocity dimension must be handled after the other dimensions
4026                    veldim = i;
4027                    velbitpos = bitpos;
4028                } else {
4029                    switch (pDimensionDefinitions[i].split_type) {
4030                        case split_type_normal:
4031                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4032                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4033                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4034                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4035                                }
4036                            } else {
4037                                // gig2: evenly sized zones
4038                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4039                            }
4040                            break;
4041                        case split_type_bit: // the value is already the sought dimension bit number
4042                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4043                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4044                            break;
4045                    }
4046                    dimregidx |= bits << bitpos;
4047                }
4048                bitpos += pDimensionDefinitions[i].bits;
4049            }
4050            dimregidx &= 255;
4051            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4052            if (!dimreg) return -1;
4053            if (veldim != -1) {
4054                // (dimreg is now the dimension region for the lowest velocity)
4055                if (dimreg->VelocityTable) // custom defined zone ranges
4056                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4057                else // normal split type
4058                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4059    
4060                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4061                dimregidx |= (bits & limiter_mask) << velbitpos;
4062                dimregidx &= 255;
4063            }
4064            return dimregidx;
4065      }      }
4066    
4067      /**      /**
# Line 1535  namespace gig { namespace { Line 4098  namespace gig { namespace {
4098          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4099      }      }
4100    
4101      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4102          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4103          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4104          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4105          Sample* sample = file->GetFirstSample();          // for new files or files >= 2 GB use 64 bit wave pool offsets
4106          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4107              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
4108              sample = file->GetNextSample();              uint64_t soughtoffset =
4109                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4110                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4111                Sample* sample = file->GetFirstSample(pProgress);
4112                while (sample) {
4113                    if (sample->ullWavePoolOffset == soughtoffset)
4114                        return static_cast<gig::Sample*>(sample);
4115                    sample = file->GetNextSample();
4116                }
4117            } else {
4118                // use extension files and 32 bit wave pool offsets
4119                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4120                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4121                Sample* sample = file->GetFirstSample(pProgress);
4122                while (sample) {
4123                    if (sample->ullWavePoolOffset == soughtoffset &&
4124                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4125                    sample = file->GetNextSample();
4126                }
4127          }          }
4128          return NULL;          return NULL;
4129      }      }
4130        
4131        /**
4132         * Make a (semi) deep copy of the Region object given by @a orig
4133         * and assign it to this object.
4134         *
4135         * Note that all sample pointers referenced by @a orig are simply copied as
4136         * memory address. Thus the respective samples are shared, not duplicated!
4137         *
4138         * @param orig - original Region object to be copied from
4139         */
4140        void Region::CopyAssign(const Region* orig) {
4141            CopyAssign(orig, NULL);
4142        }
4143        
4144        /**
4145         * Make a (semi) deep copy of the Region object given by @a orig and
4146         * assign it to this object
4147         *
4148         * @param mSamples - crosslink map between the foreign file's samples and
4149         *                   this file's samples
4150         */
4151        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4152            // handle base classes
4153            DLS::Region::CopyAssign(orig);
4154            
4155            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4156                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4157            }
4158            
4159            // handle own member variables
4160            for (int i = Dimensions - 1; i >= 0; --i) {
4161                DeleteDimension(&pDimensionDefinitions[i]);
4162            }
4163            Layers = 0; // just to be sure
4164            for (int i = 0; i < orig->Dimensions; i++) {
4165                // we need to copy the dim definition here, to avoid the compiler
4166                // complaining about const-ness issue
4167                dimension_def_t def = orig->pDimensionDefinitions[i];
4168                AddDimension(&def);
4169            }
4170            for (int i = 0; i < 256; i++) {
4171                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4172                    pDimensionRegions[i]->CopyAssign(
4173                        orig->pDimensionRegions[i],
4174                        mSamples
4175                    );
4176                }
4177            }
4178            Layers = orig->Layers;
4179        }
4180    
4181    
4182    // *************** MidiRule ***************
4183    // *
4184    
4185        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4186            _3ewg->SetPos(36);
4187            Triggers = _3ewg->ReadUint8();
4188            _3ewg->SetPos(40);
4189            ControllerNumber = _3ewg->ReadUint8();
4190            _3ewg->SetPos(46);
4191            for (int i = 0 ; i < Triggers ; i++) {
4192                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4193                pTriggers[i].Descending = _3ewg->ReadUint8();
4194                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4195                pTriggers[i].Key = _3ewg->ReadUint8();
4196                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4197                pTriggers[i].Velocity = _3ewg->ReadUint8();
4198                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4199                _3ewg->ReadUint8();
4200            }
4201        }
4202    
4203        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4204            ControllerNumber(0),
4205            Triggers(0) {
4206        }
4207    
4208        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4209            pData[32] = 4;
4210            pData[33] = 16;
4211            pData[36] = Triggers;
4212            pData[40] = ControllerNumber;
4213            for (int i = 0 ; i < Triggers ; i++) {
4214                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4215                pData[47 + i * 8] = pTriggers[i].Descending;
4216                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4217                pData[49 + i * 8] = pTriggers[i].Key;
4218                pData[50 + i * 8] = pTriggers[i].NoteOff;
4219                pData[51 + i * 8] = pTriggers[i].Velocity;
4220                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4221            }
4222        }
4223    
4224        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4225            _3ewg->SetPos(36);
4226            LegatoSamples = _3ewg->ReadUint8(); // always 12
4227            _3ewg->SetPos(40);
4228            BypassUseController = _3ewg->ReadUint8();
4229            BypassKey = _3ewg->ReadUint8();
4230            BypassController = _3ewg->ReadUint8();
4231            ThresholdTime = _3ewg->ReadUint16();
4232            _3ewg->ReadInt16();
4233            ReleaseTime = _3ewg->ReadUint16();
4234            _3ewg->ReadInt16();
4235            KeyRange.low = _3ewg->ReadUint8();
4236            KeyRange.high = _3ewg->ReadUint8();
4237            _3ewg->SetPos(64);
4238            ReleaseTriggerKey = _3ewg->ReadUint8();
4239            AltSustain1Key = _3ewg->ReadUint8();
4240            AltSustain2Key = _3ewg->ReadUint8();
4241        }
4242    
4243        MidiRuleLegato::MidiRuleLegato() :
4244            LegatoSamples(12),
4245            BypassUseController(false),
4246            BypassKey(0),
4247            BypassController(1),
4248            ThresholdTime(20),
4249            ReleaseTime(20),
4250            ReleaseTriggerKey(0),
4251            AltSustain1Key(0),
4252            AltSustain2Key(0)
4253        {
4254            KeyRange.low = KeyRange.high = 0;
4255        }
4256    
4257        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4258            pData[32] = 0;
4259            pData[33] = 16;
4260            pData[36] = LegatoSamples;
4261            pData[40] = BypassUseController;
4262            pData[41] = BypassKey;
4263            pData[42] = BypassController;
4264            store16(&pData[43], ThresholdTime);
4265            store16(&pData[47], ReleaseTime);
4266            pData[51] = KeyRange.low;
4267            pData[52] = KeyRange.high;
4268            pData[64] = ReleaseTriggerKey;
4269            pData[65] = AltSustain1Key;
4270            pData[66] = AltSustain2Key;
4271        }
4272    
4273        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4274            _3ewg->SetPos(36);
4275            Articulations = _3ewg->ReadUint8();
4276            int flags = _3ewg->ReadUint8();
4277            Polyphonic = flags & 8;
4278            Chained = flags & 4;
4279            Selector = (flags & 2) ? selector_controller :
4280                (flags & 1) ? selector_key_switch : selector_none;
4281            Patterns = _3ewg->ReadUint8();
4282            _3ewg->ReadUint8(); // chosen row
4283            _3ewg->ReadUint8(); // unknown
4284            _3ewg->ReadUint8(); // unknown
4285            _3ewg->ReadUint8(); // unknown
4286            KeySwitchRange.low = _3ewg->ReadUint8();
4287            KeySwitchRange.high = _3ewg->ReadUint8();
4288            Controller = _3ewg->ReadUint8();
4289            PlayRange.low = _3ewg->ReadUint8();
4290            PlayRange.high = _3ewg->ReadUint8();
4291    
4292            int n = std::min(int(Articulations), 32);
4293            for (int i = 0 ; i < n ; i++) {
4294                _3ewg->ReadString(pArticulations[i], 32);
4295            }
4296            _3ewg->SetPos(1072);
4297            n = std::min(int(Patterns), 32);
4298            for (int i = 0 ; i < n ; i++) {
4299                _3ewg->ReadString(pPatterns[i].Name, 16);
4300                pPatterns[i].Size = _3ewg->ReadUint8();
4301                _3ewg->Read(&pPatterns[i][0], 1, 32);
4302            }
4303        }
4304    
4305        MidiRuleAlternator::MidiRuleAlternator() :
4306            Articulations(0),
4307            Patterns(0),
4308            Selector(selector_none),
4309            Controller(0),
4310            Polyphonic(false),
4311            Chained(false)
4312        {
4313            PlayRange.low = PlayRange.high = 0;
4314            KeySwitchRange.low = KeySwitchRange.high = 0;
4315        }
4316    
4317        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4318            pData[32] = 3;
4319            pData[33] = 16;
4320            pData[36] = Articulations;
4321            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4322                (Selector == selector_controller ? 2 :
4323                 (Selector == selector_key_switch ? 1 : 0));
4324            pData[38] = Patterns;
4325    
4326            pData[43] = KeySwitchRange.low;
4327            pData[44] = KeySwitchRange.high;
4328            pData[45] = Controller;
4329            pData[46] = PlayRange.low;
4330            pData[47] = PlayRange.high;
4331    
4332            char* str = reinterpret_cast<char*>(pData);
4333            int pos = 48;
4334            int n = std::min(int(Articulations), 32);
4335            for (int i = 0 ; i < n ; i++, pos += 32) {
4336                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4337            }
4338    
4339            pos = 1072;
4340            n = std::min(int(Patterns), 32);
4341            for (int i = 0 ; i < n ; i++, pos += 49) {
4342                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4343                pData[pos + 16] = pPatterns[i].Size;
4344                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4345            }
4346        }
4347    
4348    // *************** Script ***************
4349    // *
4350    
4351        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4352            pGroup = group;
4353            pChunk = ckScri;
4354            if (ckScri) { // object is loaded from file ...
4355                // read header
4356                uint32_t headerSize = ckScri->ReadUint32();
4357                Compression = (Compression_t) ckScri->ReadUint32();
4358                Encoding    = (Encoding_t) ckScri->ReadUint32();
4359                Language    = (Language_t) ckScri->ReadUint32();
4360                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4361                crc         = ckScri->ReadUint32();
4362                uint32_t nameSize = ckScri->ReadUint32();
4363                Name.resize(nameSize, ' ');
4364                for (int i = 0; i < nameSize; ++i)
4365                    Name[i] = ckScri->ReadUint8();
4366                // to handle potential future extensions of the header
4367                ckScri->SetPos(sizeof(int32_t) + headerSize);
4368                // read actual script data
4369                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4370                data.resize(scriptSize);
4371                for (int i = 0; i < scriptSize; ++i)
4372                    data[i] = ckScri->ReadUint8();
4373            } else { // this is a new script object, so just initialize it as such ...
4374                Compression = COMPRESSION_NONE;
4375                Encoding = ENCODING_ASCII;
4376                Language = LANGUAGE_NKSP;
4377                Bypass   = false;
4378                crc      = 0;
4379                Name     = "Unnamed Script";
4380            }
4381        }
4382    
4383        Script::~Script() {
4384        }
4385    
4386        /**
4387         * Returns the current script (i.e. as source code) in text format.
4388         */
4389        String Script::GetScriptAsText() {
4390            String s;
4391            s.resize(data.size(), ' ');
4392            memcpy(&s[0], &data[0], data.size());
4393            return s;
4394        }
4395    
4396        /**
4397         * Replaces the current script with the new script source code text given
4398         * by @a text.
4399         *
4400         * @param text - new script source code
4401         */
4402        void Script::SetScriptAsText(const String& text) {
4403            data.resize(text.size());
4404            memcpy(&data[0], &text[0], text.size());
4405        }
4406    
4407        /**
4408         * Apply this script to the respective RIFF chunks. You have to call
4409         * File::Save() to make changes persistent.
4410         *
4411         * Usually there is absolutely no need to call this method explicitly.
4412         * It will be called automatically when File::Save() was called.
4413         *
4414         * @param pProgress - callback function for progress notification
4415         */
4416        void Script::UpdateChunks(progress_t* pProgress) {
4417            // recalculate CRC32 check sum
4418            __resetCRC(crc);
4419            __calculateCRC(&data[0], data.size(), crc);
4420            __finalizeCRC(crc);
4421            // make sure chunk exists and has the required size
4422            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4423            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4424            else pChunk->Resize(chunkSize);
4425            // fill the chunk data to be written to disk
4426            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4427            int pos = 0;
4428            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4429            pos += sizeof(int32_t);
4430            store32(&pData[pos], Compression);
4431            pos += sizeof(int32_t);
4432            store32(&pData[pos], Encoding);
4433            pos += sizeof(int32_t);
4434            store32(&pData[pos], Language);
4435            pos += sizeof(int32_t);
4436            store32(&pData[pos], Bypass ? 1 : 0);
4437            pos += sizeof(int32_t);
4438            store32(&pData[pos], crc);
4439            pos += sizeof(int32_t);
4440            store32(&pData[pos], (uint32_t) Name.size());
4441            pos += sizeof(int32_t);
4442            for (int i = 0; i < Name.size(); ++i, ++pos)
4443                pData[pos] = Name[i];
4444            for (int i = 0; i < data.size(); ++i, ++pos)
4445                pData[pos] = data[i];
4446        }
4447    
4448        /**
4449         * Move this script from its current ScriptGroup to another ScriptGroup
4450         * given by @a pGroup.
4451         *
4452         * @param pGroup - script's new group
4453         */
4454        void Script::SetGroup(ScriptGroup* pGroup) {
4455            if (this->pGroup == pGroup) return;
4456            if (pChunk)
4457                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4458            this->pGroup = pGroup;
4459        }
4460    
4461        /**
4462         * Returns the script group this script currently belongs to. Each script
4463         * is a member of exactly one ScriptGroup.
4464         *
4465         * @returns current script group
4466         */
4467        ScriptGroup* Script::GetGroup() const {
4468            return pGroup;
4469        }
4470    
4471        /**
4472         * Make a (semi) deep copy of the Script object given by @a orig
4473         * and assign it to this object. Note: the ScriptGroup this Script
4474         * object belongs to remains untouched by this call.
4475         *
4476         * @param orig - original Script object to be copied from
4477         */
4478        void Script::CopyAssign(const Script* orig) {
4479            Name        = orig->Name;
4480            Compression = orig->Compression;
4481            Encoding    = orig->Encoding;
4482            Language    = orig->Language;
4483            Bypass      = orig->Bypass;
4484            data        = orig->data;
4485        }
4486    
4487        void Script::RemoveAllScriptReferences() {
4488            File* pFile = pGroup->pFile;
4489            for (int i = 0; pFile->GetInstrument(i); ++i) {
4490                Instrument* instr = pFile->GetInstrument(i);
4491                instr->RemoveScript(this);
4492            }
4493        }
4494    
4495    // *************** ScriptGroup ***************
4496    // *
4497    
4498        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4499            pFile = file;
4500            pList = lstRTIS;
4501            pScripts = NULL;
4502            if (lstRTIS) {
4503                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4504                ::LoadString(ckName, Name);
4505            } else {
4506                Name = "Default Group";
4507            }
4508        }
4509    
4510        ScriptGroup::~ScriptGroup() {
4511            if (pScripts) {
4512                std::list<Script*>::iterator iter = pScripts->begin();
4513                std::list<Script*>::iterator end  = pScripts->end();
4514                while (iter != end) {
4515                    delete *iter;
4516                    ++iter;
4517                }
4518                delete pScripts;
4519            }
4520        }
4521    
4522        /**
4523         * Apply this script group to the respective RIFF chunks. You have to call
4524         * File::Save() to make changes persistent.
4525         *
4526         * Usually there is absolutely no need to call this method explicitly.
4527         * It will be called automatically when File::Save() was called.
4528         *
4529         * @param pProgress - callback function for progress notification
4530         */
4531        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4532            if (pScripts) {
4533                if (!pList)
4534                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4535    
4536                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4537                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4538    
4539                for (std::list<Script*>::iterator it = pScripts->begin();
4540                     it != pScripts->end(); ++it)
4541                {
4542                    (*it)->UpdateChunks(pProgress);
4543                }
4544            }
4545        }
4546    
4547        /** @brief Get instrument script.
4548         *
4549         * Returns the real-time instrument script with the given index.
4550         *
4551         * @param index - number of the sought script (0..n)
4552         * @returns sought script or NULL if there's no such script
4553         */
4554        Script* ScriptGroup::GetScript(uint index) {
4555            if (!pScripts) LoadScripts();
4556            std::list<Script*>::iterator it = pScripts->begin();
4557            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4558                if (i == index) return *it;
4559            return NULL;
4560        }
4561    
4562        /** @brief Add new instrument script.
4563         *
4564         * Adds a new real-time instrument script to the file. The script is not
4565         * actually used / executed unless it is referenced by an instrument to be
4566         * used. This is similar to samples, which you can add to a file, without
4567         * an instrument necessarily actually using it.
4568         *
4569         * You have to call Save() to make this persistent to the file.
4570         *
4571         * @return new empty script object
4572         */
4573        Script* ScriptGroup::AddScript() {
4574            if (!pScripts) LoadScripts();
4575            Script* pScript = new Script(this, NULL);
4576            pScripts->push_back(pScript);
4577            return pScript;
4578        }
4579    
4580        /** @brief Delete an instrument script.
4581         *
4582         * This will delete the given real-time instrument script. References of
4583         * instruments that are using that script will be removed accordingly.
4584         *
4585         * You have to call Save() to make this persistent to the file.
4586         *
4587         * @param pScript - script to delete
4588         * @throws gig::Exception if given script could not be found
4589         */
4590        void ScriptGroup::DeleteScript(Script* pScript) {
4591            if (!pScripts) LoadScripts();
4592            std::list<Script*>::iterator iter =
4593                find(pScripts->begin(), pScripts->end(), pScript);
4594            if (iter == pScripts->end())
4595                throw gig::Exception("Could not delete script, could not find given script");
4596            pScripts->erase(iter);
4597            pScript->RemoveAllScriptReferences();
4598            if (pScript->pChunk)
4599                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4600            delete pScript;
4601        }
4602    
4603        void ScriptGroup::LoadScripts() {
4604            if (pScripts) return;
4605            pScripts = new std::list<Script*>;
4606            if (!pList) return;
4607    
4608            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4609                 ck = pList->GetNextSubChunk())
4610            {
4611                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4612                    pScripts->push_back(new Script(this, ck));
4613                }
4614            }
4615        }
4616    
4617  // *************** Instrument ***************  // *************** Instrument ***************
4618  // *  // *
4619    
4620      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4621            static const DLS::Info::string_length_t fixedStringLengths[] = {
4622                { CHUNK_ID_INAM, 64 },
4623                { CHUNK_ID_ISFT, 12 },
4624                { 0, 0 }
4625            };
4626            pInfo->SetFixedStringLengths(fixedStringLengths);
4627    
4628          // Initialization          // Initialization
4629          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4630          RegionIndex = -1;          EffectSend = 0;
4631            Attenuation = 0;
4632            FineTune = 0;
4633            PitchbendRange = 2;
4634            PianoReleaseMode = false;
4635            DimensionKeyRange.low = 0;
4636            DimensionKeyRange.high = 0;
4637            pMidiRules = new MidiRule*[3];
4638            pMidiRules[0] = NULL;
4639            pScriptRefs = NULL;
4640    
4641          // Loading          // Loading
4642          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1570  namespace gig { namespace { Line 4651  namespace gig { namespace {
4651                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4652                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4653                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4654    
4655                    if (_3ewg->GetSize() > 32) {
4656                        // read MIDI rules
4657                        int i = 0;
4658                        _3ewg->SetPos(32);
4659                        uint8_t id1 = _3ewg->ReadUint8();
4660                        uint8_t id2 = _3ewg->ReadUint8();
4661    
4662                        if (id2 == 16) {
4663                            if (id1 == 4) {
4664                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4665                            } else if (id1 == 0) {
4666                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4667                            } else if (id1 == 3) {
4668                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4669                            } else {
4670                                pMidiRules[i++] = new MidiRuleUnknown;
4671                            }
4672                        }
4673                        else if (id1 != 0 || id2 != 0) {
4674                            pMidiRules[i++] = new MidiRuleUnknown;
4675                        }
4676                        //TODO: all the other types of rules
4677    
4678                        pMidiRules[i] = NULL;
4679                    }
4680                }
4681            }
4682    
4683            if (pFile->GetAutoLoad()) {
4684                if (!pRegions) pRegions = new RegionList;
4685                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4686                if (lrgn) {
4687                    RIFF::List* rgn = lrgn->GetFirstSubList();
4688                    while (rgn) {
4689                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4690                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4691                            pRegions->push_back(new Region(this, rgn));
4692                        }
4693                        rgn = lrgn->GetNextSubList();
4694                    }
4695                    // Creating Region Key Table for fast lookup
4696                    UpdateRegionKeyTable();
4697                }
4698            }
4699    
4700            // own gig format extensions
4701            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4702            if (lst3LS) {
4703                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4704                if (ckSCSL) {
4705                    int headerSize = ckSCSL->ReadUint32();
4706                    int slotCount  = ckSCSL->ReadUint32();
4707                    if (slotCount) {
4708                        int slotSize  = ckSCSL->ReadUint32();
4709                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4710                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4711                        for (int i = 0; i < slotCount; ++i) {
4712                            _ScriptPooolEntry e;
4713                            e.fileOffset = ckSCSL->ReadUint32();
4714                            e.bypass     = ckSCSL->ReadUint32() & 1;
4715                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4716                            scriptPoolFileOffsets.push_back(e);
4717                        }
4718                    }
4719              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4720          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4721    
4722          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          __notify_progress(pProgress, 1.0f); // notify done
4723          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");      }
4724          pRegions = new Region*[Regions];  
4725          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;      void Instrument::UpdateRegionKeyTable() {
4726          RIFF::List* rgn = lrgn->GetFirstSubList();          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4727          unsigned int iRegion = 0;          RegionList::iterator iter = pRegions->begin();
4728          while (rgn) {          RegionList::iterator end  = pRegions->end();
4729              if (rgn->GetListType() == LIST_TYPE_RGN) {          for (; iter != end; ++iter) {
4730                  pRegions[iRegion] = new Region(this, rgn);              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4731                  iRegion++;              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4732              }                  RegionKeyTable[iKey] = pRegion;
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
4733              }              }
4734          }          }
4735      }      }
4736    
4737      Instrument::~Instrument() {      Instrument::~Instrument() {
4738          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4739              if (pRegions) {              delete pMidiRules[i];
4740                  if (pRegions[i]) delete (pRegions[i]);          }
4741            delete[] pMidiRules;
4742            if (pScriptRefs) delete pScriptRefs;
4743        }
4744    
4745        /**
4746         * Apply Instrument with all its Regions to the respective RIFF chunks.
4747         * You have to call File::Save() to make changes persistent.
4748         *
4749         * Usually there is absolutely no need to call this method explicitly.
4750         * It will be called automatically when File::Save() was called.
4751         *
4752         * @param pProgress - callback function for progress notification
4753         * @throws gig::Exception if samples cannot be dereferenced
4754         */
4755        void Instrument::UpdateChunks(progress_t* pProgress) {
4756            // first update base classes' chunks
4757            DLS::Instrument::UpdateChunks(pProgress);
4758    
4759            // update Regions' chunks
4760            {
4761                RegionList::iterator iter = pRegions->begin();
4762                RegionList::iterator end  = pRegions->end();
4763                for (; iter != end; ++iter)
4764                    (*iter)->UpdateChunks(pProgress);
4765            }
4766    
4767            // make sure 'lart' RIFF list chunk exists
4768            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4769            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4770            // make sure '3ewg' RIFF chunk exists
4771            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4772            if (!_3ewg)  {
4773                File* pFile = (File*) GetParent();
4774    
4775                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4776                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4777                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4778                memset(_3ewg->LoadChunkData(), 0, size);
4779            }
4780            // update '3ewg' RIFF chunk
4781            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4782            store16(&pData[0], EffectSend);
4783            store32(&pData[2], Attenuation);
4784            store16(&pData[6], FineTune);
4785            store16(&pData[8], PitchbendRange);
4786            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4787                                        DimensionKeyRange.low << 1;
4788            pData[10] = dimkeystart;
4789            pData[11] = DimensionKeyRange.high;
4790    
4791            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4792                pData[32] = 0;
4793                pData[33] = 0;
4794            } else {
4795                for (int i = 0 ; pMidiRules[i] ; i++) {
4796                    pMidiRules[i]->UpdateChunks(pData);
4797              }              }
4798          }          }
4799          if (pRegions) delete[] pRegions;  
4800            // own gig format extensions
4801           if (ScriptSlotCount()) {
4802               // make sure we have converted the original loaded script file
4803               // offsets into valid Script object pointers
4804               LoadScripts();
4805    
4806               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4807               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4808               const int slotCount = (int) pScriptRefs->size();
4809               const int headerSize = 3 * sizeof(uint32_t);
4810               const int slotSize  = 2 * sizeof(uint32_t);
4811               const int totalChunkSize = headerSize + slotCount * slotSize;
4812               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4813               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4814               else ckSCSL->Resize(totalChunkSize);
4815               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4816               int pos = 0;
4817               store32(&pData[pos], headerSize);
4818               pos += sizeof(uint32_t);
4819               store32(&pData[pos], slotCount);
4820               pos += sizeof(uint32_t);
4821               store32(&pData[pos], slotSize);
4822               pos += sizeof(uint32_t);
4823               for (int i = 0; i < slotCount; ++i) {
4824                   // arbitrary value, the actual file offset will be updated in
4825                   // UpdateScriptFileOffsets() after the file has been resized
4826                   int bogusFileOffset = 0;
4827                   store32(&pData[pos], bogusFileOffset);
4828                   pos += sizeof(uint32_t);
4829                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4830                   pos += sizeof(uint32_t);
4831               }
4832           } else {
4833               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4834               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4835               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4836           }
4837        }
4838    
4839        void Instrument::UpdateScriptFileOffsets() {
4840           // own gig format extensions
4841           if (pScriptRefs && pScriptRefs->size() > 0) {
4842               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4843               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4844               const int slotCount = (int) pScriptRefs->size();
4845               const int headerSize = 3 * sizeof(uint32_t);
4846               ckSCSL->SetPos(headerSize);
4847               for (int i = 0; i < slotCount; ++i) {
4848                   uint32_t fileOffset = uint32_t(
4849                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4850                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4851                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4852                   );
4853                   ckSCSL->WriteUint32(&fileOffset);
4854                   // jump over flags entry (containing the bypass flag)
4855                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4856               }
4857           }        
4858      }      }
4859    
4860      /**      /**
# Line 1614  namespace gig { namespace { Line 4865  namespace gig { namespace {
4865       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4866       */       */
4867      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4868          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4869          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4870    
4871          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4872              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4873                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1631  namespace gig { namespace { Line 4883  namespace gig { namespace {
4883       * @see      GetNextRegion()       * @see      GetNextRegion()
4884       */       */
4885      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4886          if (!Regions) return NULL;          if (!pRegions) return NULL;
4887          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4888          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4889      }      }
4890    
4891      /**      /**
# Line 1645  namespace gig { namespace { Line 4897  namespace gig { namespace {
4897       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4898       */       */
4899      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4900          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
4901          return pRegions[RegionIndex++];          RegionsIterator++;
4902            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4903        }
4904    
4905        Region* Instrument::AddRegion() {
4906            // create new Region object (and its RIFF chunks)
4907            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4908            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4909            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4910            Region* pNewRegion = new Region(this, rgn);
4911            pRegions->push_back(pNewRegion);
4912            Regions = (uint32_t) pRegions->size();
4913            // update Region key table for fast lookup
4914            UpdateRegionKeyTable();
4915            // done
4916            return pNewRegion;
4917        }
4918    
4919        void Instrument::DeleteRegion(Region* pRegion) {
4920            if (!pRegions) return;
4921            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4922            // update Region key table for fast lookup
4923            UpdateRegionKeyTable();
4924        }
4925    
4926        /**
4927         * Move this instrument at the position before @arg dst.
4928         *
4929         * This method can be used to reorder the sequence of instruments in a
4930         * .gig file. This might be helpful especially on large .gig files which
4931         * contain a large number of instruments within the same .gig file. So
4932         * grouping such instruments to similar ones, can help to keep track of them
4933         * when working with such complex .gig files.
4934         *
4935         * When calling this method, this instrument will be removed from in its
4936         * current position in the instruments list and moved to the requested
4937         * target position provided by @param dst. You may also pass NULL as
4938         * argument to this method, in that case this intrument will be moved to the
4939         * very end of the .gig file's instrument list.
4940         *
4941         * You have to call Save() to make the order change persistent to the .gig
4942         * file.
4943         *
4944         * Currently this method is limited to moving the instrument within the same
4945         * .gig file. Trying to move it to another .gig file by calling this method
4946         * will throw an exception.
4947         *
4948         * @param dst - destination instrument at which this instrument will be
4949         *              moved to, or pass NULL for moving to end of list
4950         * @throw gig::Exception if this instrument and target instrument are not
4951         *                       part of the same file
4952         */
4953        void Instrument::MoveTo(Instrument* dst) {
4954            if (dst && GetParent() != dst->GetParent())
4955                throw Exception(
4956                    "gig::Instrument::MoveTo() can only be used for moving within "
4957                    "the same gig file."
4958                );
4959    
4960            File* pFile = (File*) GetParent();
4961    
4962            // move this instrument within the instrument list
4963            {
4964                File::InstrumentList& list = *pFile->pInstruments;
4965    
4966                File::InstrumentList::iterator itFrom =
4967                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4968    
4969                File::InstrumentList::iterator itTo =
4970                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4971    
4972                list.splice(itTo, list, itFrom);
4973            }
4974    
4975            // move the instrument's actual list RIFF chunk appropriately
4976            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4977            lstCkInstruments->MoveSubChunk(
4978                this->pCkInstrument,
4979                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4980            );
4981        }
4982    
4983        /**
4984         * Returns a MIDI rule of the instrument.
4985         *
4986         * The list of MIDI rules, at least in gig v3, always contains at
4987         * most two rules. The second rule can only be the DEF filter
4988         * (which currently isn't supported by libgig).
4989         *
4990         * @param i - MIDI rule number
4991         * @returns   pointer address to MIDI rule number i or NULL if there is none
4992         */
4993        MidiRule* Instrument::GetMidiRule(int i) {
4994            return pMidiRules[i];
4995        }
4996    
4997        /**
4998         * Adds the "controller trigger" MIDI rule to the instrument.
4999         *
5000         * @returns the new MIDI rule
5001         */
5002        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5003            delete pMidiRules[0];
5004            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5005            pMidiRules[0] = r;
5006            pMidiRules[1] = 0;
5007            return r;
5008        }
5009    
5010        /**
5011         * Adds the legato MIDI rule to the instrument.
5012         *
5013         * @returns the new MIDI rule
5014         */
5015        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5016            delete pMidiRules[0];
5017            MidiRuleLegato* r = new MidiRuleLegato;
5018            pMidiRules[0] = r;
5019            pMidiRules[1] = 0;
5020            return r;
5021        }
5022    
5023        /**
5024         * Adds the alternator MIDI rule to the instrument.
5025         *
5026         * @returns the new MIDI rule
5027         */
5028        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5029            delete pMidiRules[0];
5030            MidiRuleAlternator* r = new MidiRuleAlternator;
5031            pMidiRules[0] = r;
5032            pMidiRules[1] = 0;
5033            return r;
5034        }
5035    
5036        /**
5037         * Deletes a MIDI rule from the instrument.
5038         *
5039         * @param i - MIDI rule number
5040         */
5041        void Instrument::DeleteMidiRule(int i) {
5042            delete pMidiRules[i];
5043            pMidiRules[i] = 0;
5044        }
5045    
5046        void Instrument::LoadScripts() {
5047            if (pScriptRefs) return;
5048            pScriptRefs = new std::vector<_ScriptPooolRef>;
5049            if (scriptPoolFileOffsets.empty()) return;
5050            File* pFile = (File*) GetParent();
5051            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5052                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5053                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5054                    ScriptGroup* group = pFile->GetScriptGroup(i);
5055                    for (uint s = 0; group->GetScript(s); ++s) {
5056                        Script* script = group->GetScript(s);
5057                        if (script->pChunk) {
5058                            uint32_t offset = uint32_t(
5059                                script->pChunk->GetFilePos() -
5060                                script->pChunk->GetPos() -
5061                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5062                            );
5063                            if (offset == soughtOffset)
5064                            {
5065                                _ScriptPooolRef ref;
5066                                ref.script = script;
5067                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5068                                pScriptRefs->push_back(ref);
5069                                break;
5070                            }
5071                        }
5072                    }
5073                }
5074            }
5075            // we don't need that anymore
5076            scriptPoolFileOffsets.clear();
5077        }
5078    
5079        /** @brief Get instrument script (gig format extension).
5080         *
5081         * Returns the real-time instrument script of instrument script slot
5082         * @a index.
5083         *
5084         * @note This is an own format extension which did not exist i.e. in the
5085         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5086         * gigedit.
5087         *
5088         * @param index - instrument script slot index
5089         * @returns script or NULL if index is out of bounds
5090         */
5091        Script* Instrument::GetScriptOfSlot(uint index) {
5092            LoadScripts();
5093            if (index >= pScriptRefs->size()) return NULL;
5094            return pScriptRefs->at(index).script;
5095        }
5096    
5097        /** @brief Add new instrument script slot (gig format extension).
5098         *
5099         * Add the given real-time instrument script reference to this instrument,
5100         * which shall be executed by the sampler for for this instrument. The
5101         * script will be added to the end of the script list of this instrument.
5102         * The positions of the scripts in the Instrument's Script list are
5103         * relevant, because they define in which order they shall be executed by
5104         * the sampler. For this reason it is also legal to add the same script
5105         * twice to an instrument, for example you might have a script called
5106         * "MyFilter" which performs an event filter task, and you might have
5107         * another script called "MyNoteTrigger" which triggers new notes, then you
5108         * might for example have the following list of scripts on the instrument:
5109         *
5110         * 1. Script "MyFilter"
5111         * 2. Script "MyNoteTrigger"
5112         * 3. Script "MyFilter"
5113         *
5114         * Which would make sense, because the 2nd script launched new events, which
5115         * you might need to filter as well.
5116         *
5117         * There are two ways to disable / "bypass" scripts. You can either disable
5118         * a script locally for the respective script slot on an instrument (i.e. by
5119         * passing @c false to the 2nd argument of this method, or by calling
5120         * SetScriptBypassed()). Or you can disable a script globally for all slots
5121         * and all instruments by setting Script::Bypass.
5122         *
5123         * @note This is an own format extension which did not exist i.e. in the
5124         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5125         * gigedit.
5126         *
5127         * @param pScript - script that shall be executed for this instrument
5128         * @param bypass  - if enabled, the sampler shall skip executing this
5129         *                  script (in the respective list position)
5130         * @see SetScriptBypassed()
5131         */
5132        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5133            LoadScripts();
5134            _ScriptPooolRef ref = { pScript, bypass };
5135            pScriptRefs->push_back(ref);
5136        }
5137    
5138        /** @brief Flip two script slots with each other (gig format extension).
5139         *
5140         * Swaps the position of the two given scripts in the Instrument's Script
5141         * list. The positions of the scripts in the Instrument's Script list are
5142         * relevant, because they define in which order they shall be executed by
5143         * the sampler.
5144         *
5145         * @note This is an own format extension which did not exist i.e. in the
5146         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5147         * gigedit.
5148         *
5149         * @param index1 - index of the first script slot to swap
5150         * @param index2 - index of the second script slot to swap
5151         */
5152        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5153            LoadScripts();
5154            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5155                return;
5156            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5157            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5158            (*pScriptRefs)[index2] = tmp;
5159        }
5160    
5161        /** @brief Remove script slot.
5162         *
5163         * Removes the script slot with the given slot index.
5164         *
5165         * @param index - index of script slot to remove
5166         */
5167        void Instrument::RemoveScriptSlot(uint index) {
5168            LoadScripts();
5169            if (index >= pScriptRefs->size()) return;
5170            pScriptRefs->erase( pScriptRefs->begin() + index );
5171        }
5172    
5173        /** @brief Remove reference to given Script (gig format extension).
5174         *
5175         * This will remove all script slots on the instrument which are referencing
5176         * the given script.
5177         *
5178         * @note This is an own format extension which did not exist i.e. in the
5179         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5180         * gigedit.
5181         *
5182         * @param pScript - script reference to remove from this instrument
5183         * @see RemoveScriptSlot()
5184         */
5185        void Instrument::RemoveScript(Script* pScript) {
5186            LoadScripts();
5187            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5188                if ((*pScriptRefs)[i].script == pScript) {
5189                    pScriptRefs->erase( pScriptRefs->begin() + i );
5190                }
5191            }
5192        }
5193    
5194        /** @brief Instrument's amount of script slots.
5195         *
5196         * This method returns the amount of script slots this instrument currently
5197         * uses.
5198         *
5199         * A script slot is a reference of a real-time instrument script to be
5200         * executed by the sampler. The scripts will be executed by the sampler in
5201         * sequence of the slots. One (same) script may be referenced multiple
5202         * times in different slots.
5203         *
5204         * @note This is an own format extension which did not exist i.e. in the
5205         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5206         * gigedit.
5207         */
5208        uint Instrument::ScriptSlotCount() const {
5209            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5210        }
5211    
5212        /** @brief Whether script execution shall be skipped.
5213         *
5214         * Defines locally for the Script reference slot in the Instrument's Script
5215         * list, whether the script shall be skipped by the sampler regarding
5216         * execution.
5217         *
5218         * It is also possible to ignore exeuction of the script globally, for all
5219         * slots and for all instruments by setting Script::Bypass.
5220         *
5221         * @note This is an own format extension which did not exist i.e. in the
5222         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5223         * gigedit.
5224         *
5225         * @param index - index of the script slot on this instrument
5226         * @see Script::Bypass
5227         */
5228        bool Instrument::IsScriptSlotBypassed(uint index) {
5229            if (index >= ScriptSlotCount()) return false;
5230            return pScriptRefs ? pScriptRefs->at(index).bypass
5231                               : scriptPoolFileOffsets.at(index).bypass;
5232            
5233        }
5234    
5235        /** @brief Defines whether execution shall be skipped.
5236         *
5237         * You can call this method to define locally whether or whether not the
5238         * given script slot shall be executed by the sampler.
5239         *
5240         * @note This is an own format extension which did not exist i.e. in the
5241         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5242         * gigedit.
5243         *
5244         * @param index - script slot index on this instrument
5245         * @param bBypass - if true, the script slot will be skipped by the sampler
5246         * @see Script::Bypass
5247         */
5248        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5249            if (index >= ScriptSlotCount()) return;
5250            if (pScriptRefs)
5251                pScriptRefs->at(index).bypass = bBypass;
5252            else
5253                scriptPoolFileOffsets.at(index).bypass = bBypass;
5254        }
5255    
5256        /**
5257         * Make a (semi) deep copy of the Instrument object given by @a orig
5258         * and assign it to this object.
5259         *
5260         * Note that all sample pointers referenced by @a orig are simply copied as
5261         * memory address. Thus the respective samples are shared, not duplicated!
5262         *
5263         * @param orig - original Instrument object to be copied from
5264         */
5265        void Instrument::CopyAssign(const Instrument* orig) {
5266            CopyAssign(orig, NULL);
5267        }
5268            
5269        /**
5270         * Make a (semi) deep copy of the Instrument object given by @a orig
5271         * and assign it to this object.
5272         *
5273         * @param orig - original Instrument object to be copied from
5274         * @param mSamples - crosslink map between the foreign file's samples and
5275         *                   this file's samples
5276         */
5277        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5278            // handle base class
5279            // (without copying DLS region stuff)
5280            DLS::Instrument::CopyAssignCore(orig);
5281            
5282            // handle own member variables
5283            Attenuation = orig->Attenuation;
5284            EffectSend = orig->EffectSend;
5285            FineTune = orig->FineTune;
5286            PitchbendRange = orig->PitchbendRange;
5287            PianoReleaseMode = orig->PianoReleaseMode;
5288            DimensionKeyRange = orig->DimensionKeyRange;
5289            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5290            pScriptRefs = orig->pScriptRefs;
5291            
5292            // free old midi rules
5293            for (int i = 0 ; pMidiRules[i] ; i++) {
5294                delete pMidiRules[i];
5295            }
5296            //TODO: MIDI rule copying
5297            pMidiRules[0] = NULL;
5298            
5299            // delete all old regions
5300            while (Regions) DeleteRegion(GetFirstRegion());
5301            // create new regions and copy them from original
5302            {
5303                RegionList::const_iterator it = orig->pRegions->begin();
5304                for (int i = 0; i < orig->Regions; ++i, ++it) {
5305                    Region* dstRgn = AddRegion();
5306                    //NOTE: Region does semi-deep copy !
5307                    dstRgn->CopyAssign(
5308                        static_cast<gig::Region*>(*it),
5309                        mSamples
5310                    );
5311                }
5312            }
5313    
5314            UpdateRegionKeyTable();
5315        }
5316    
5317    
5318    // *************** Group ***************
5319    // *
5320    
5321        /** @brief Constructor.
5322         *
5323         * @param file   - pointer to the gig::File object
5324         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5325         *                 NULL if this is a new Group
5326         */
5327        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5328            pFile      = file;
5329            pNameChunk = ck3gnm;
5330            ::LoadString(pNameChunk, Name);
5331        }
5332    
5333        Group::~Group() {
5334            // remove the chunk associated with this group (if any)
5335            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5336        }
5337    
5338        /** @brief Update chunks with current group settings.
5339         *
5340         * Apply current Group field values to the respective chunks. You have
5341         * to call File::Save() to make changes persistent.
5342         *
5343         * Usually there is absolutely no need to call this method explicitly.
5344         * It will be called automatically when File::Save() was called.
5345         *
5346         * @param pProgress - callback function for progress notification
5347         */
5348        void Group::UpdateChunks(progress_t* pProgress) {
5349            // make sure <3gri> and <3gnl> list chunks exist
5350            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5351            if (!_3gri) {
5352                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5353                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5354            }
5355            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5356            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5357    
5358            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5359                // v3 has a fixed list of 128 strings, find a free one
5360                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5361                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5362                        pNameChunk = ck;
5363                        break;
5364                    }
5365                }
5366            }
5367    
5368            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5369            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5370        }
5371    
5372        /**
5373         * Returns the first Sample of this Group. You have to call this method
5374         * once before you use GetNextSample().
5375         *
5376         * <b>Notice:</b> this method might block for a long time, in case the
5377         * samples of this .gig file were not scanned yet
5378         *
5379         * @returns  pointer address to first Sample or NULL if there is none
5380         *           applied to this Group
5381         * @see      GetNextSample()
5382         */
5383        Sample* Group::GetFirstSample() {
5384            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5385            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5386                if (pSample->GetGroup() == this) return pSample;
5387            }
5388            return NULL;
5389        }
5390    
5391        /**
5392         * Returns the next Sample of the Group. You have to call
5393         * GetFirstSample() once before you can use this method. By calling this
5394         * method multiple times it iterates through the Samples assigned to
5395         * this Group.
5396         *
5397         * @returns  pointer address to the next Sample of this Group or NULL if
5398         *           end reached
5399         * @see      GetFirstSample()
5400         */
5401        Sample* Group::GetNextSample() {
5402            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5403            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5404                if (pSample->GetGroup() == this) return pSample;
5405            }
5406            return NULL;
5407        }
5408    
5409        /**
5410         * Move Sample given by \a pSample from another Group to this Group.
5411         */
5412        void Group::AddSample(Sample* pSample) {
5413            pSample->pGroup = this;
5414        }
5415    
5416        /**
5417         * Move all members of this group to another group (preferably the 1st
5418         * one except this). This method is called explicitly by
5419         * File::DeleteGroup() thus when a Group was deleted. This code was
5420         * intentionally not placed in the destructor!
5421         */
5422        void Group::MoveAll() {
5423            // get "that" other group first
5424            Group* pOtherGroup = NULL;
5425            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5426                if (pOtherGroup != this) break;
5427            }
5428            if (!pOtherGroup) throw Exception(
5429                "Could not move samples to another group, since there is no "
5430                "other Group. This is a bug, report it!"
5431            );
5432            // now move all samples of this group to the other group
5433            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5434                pOtherGroup->AddSample(pSample);
5435            }
5436      }      }
5437    
5438    
# Line 1654  namespace gig { namespace { Line 5440  namespace gig { namespace {
5440  // *************** File ***************  // *************** File ***************
5441  // *  // *
5442    
5443        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5444        const DLS::version_t File::VERSION_2 = {
5445            0, 2, 19980628 & 0xffff, 19980628 >> 16
5446        };
5447    
5448        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5449        const DLS::version_t File::VERSION_3 = {
5450            0, 3, 20030331 & 0xffff, 20030331 >> 16
5451        };
5452    
5453        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5454            { CHUNK_ID_IARL, 256 },
5455            { CHUNK_ID_IART, 128 },
5456            { CHUNK_ID_ICMS, 128 },
5457            { CHUNK_ID_ICMT, 1024 },
5458            { CHUNK_ID_ICOP, 128 },
5459            { CHUNK_ID_ICRD, 128 },
5460            { CHUNK_ID_IENG, 128 },
5461            { CHUNK_ID_IGNR, 128 },
5462            { CHUNK_ID_IKEY, 128 },
5463            { CHUNK_ID_IMED, 128 },
5464            { CHUNK_ID_INAM, 128 },
5465            { CHUNK_ID_IPRD, 128 },
5466            { CHUNK_ID_ISBJ, 128 },
5467            { CHUNK_ID_ISFT, 128 },
5468            { CHUNK_ID_ISRC, 128 },
5469            { CHUNK_ID_ISRF, 128 },
5470            { CHUNK_ID_ITCH, 128 },
5471            { 0, 0 }
5472        };
5473    
5474        File::File() : DLS::File() {
5475            bAutoLoad = true;
5476            *pVersion = VERSION_3;
5477            pGroups = NULL;
5478            pScriptGroups = NULL;
5479            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5480            pInfo->ArchivalLocation = String(256, ' ');
5481    
5482            // add some mandatory chunks to get the file chunks in right
5483            // order (INFO chunk will be moved to first position later)
5484            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5485            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5486            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5487    
5488            GenerateDLSID();
5489        }
5490    
5491      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5492          pSamples     = NULL;          bAutoLoad = true;
5493          pInstruments = NULL;          pGroups = NULL;
5494            pScriptGroups = NULL;
5495            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5496      }      }
5497    
5498      File::~File() {      File::~File() {
5499          // free samples          if (pGroups) {
5500          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
5501              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
5502              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
5503                  delete (*SamplesIterator);                  delete *iter;
5504                  SamplesIterator++;                  ++iter;
5505              }              }
5506              pSamples->clear();              delete pGroups;
             delete pSamples;  
   
5507          }          }
5508          // free instruments          if (pScriptGroups) {
5509          if (pInstruments) {              std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5510              InstrumentsIterator = pInstruments->begin();              std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5511              while (InstrumentsIterator != pInstruments->end() ) {              while (iter != end) {
5512                  delete (*InstrumentsIterator);                  delete *iter;
5513                  InstrumentsIterator++;                  ++iter;
5514              }              }
5515              pInstruments->clear();              delete pScriptGroups;
             delete pInstruments;  
5516          }          }
5517      }      }
5518    
5519      Sample* File::GetFirstSample() {      Sample* File::GetFirstSample(progress_t* pProgress) {
5520          if (!pSamples) LoadSamples();          if (!pSamples) LoadSamples(pProgress);
5521          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5522          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5523          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1695  namespace gig { namespace { Line 5528  namespace gig { namespace {
5528          SamplesIterator++;          SamplesIterator++;
5529          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5530      }      }
5531        
5532        /**
5533         * Returns Sample object of @a index.
5534         *
5535         * @returns sample object or NULL if index is out of bounds
5536         */
5537        Sample* File::GetSample(uint index) {
5538            if (!pSamples) LoadSamples();
5539            if (!pSamples) return NULL;
5540            DLS::File::SampleList::iterator it = pSamples->begin();
5541            for (int i = 0; i < index; ++i) {
5542                ++it;
5543                if (it == pSamples->end()) return NULL;
5544            }
5545            if (it == pSamples->end()) return NULL;
5546            return static_cast<gig::Sample*>( *it );
5547        }
5548    
5549      void File::LoadSamples() {      /** @brief Add a new sample.
5550          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5551          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5552              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5553              RIFF::List* wave = wvpl->GetFirstSubList();       *
5554              while (wave) {       * @returns pointer to new Sample object
5555                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5556                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5557                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5558                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5559           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5560           // create new Sample object and its respective 'wave' list chunk
5561           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5562           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5563    
5564           // add mandatory chunks to get the chunks in right order
5565           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5566           wave->AddSubList(LIST_TYPE_INFO);
5567    
5568           pSamples->push_back(pSample);
5569           return pSample;
5570        }
5571    
5572        /** @brief Delete a sample.
5573         *
5574         * This will delete the given Sample object from the gig file. Any
5575         * references to this sample from Regions and DimensionRegions will be
5576         * removed. You have to call Save() to make this persistent to the file.
5577         *
5578         * @param pSample - sample to delete
5579         * @throws gig::Exception if given sample could not be found
5580         */
5581        void File::DeleteSample(Sample* pSample) {
5582            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5583            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5584            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5585            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5586            pSamples->erase(iter);
5587            delete pSample;
5588    
5589            SampleList::iterator tmp = SamplesIterator;
5590            // remove all references to the sample
5591            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5592                 instrument = GetNextInstrument()) {
5593                for (Region* region = instrument->GetFirstRegion() ; region ;
5594                     region = instrument->GetNextRegion()) {
5595    
5596                    if (region->GetSample() == pSample) region->SetSample(NULL);
5597    
5598                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5599                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5600                        if (d->pSample == pSample) d->pSample = NULL;
5601                  }                  }
                 wave = wvpl->GetNextSubList();  
5602              }              }
5603          }          }
5604          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5605        }
5606    
5607        void File::LoadSamples() {
5608            LoadSamples(NULL);
5609        }
5610    
5611        void File::LoadSamples(progress_t* pProgress) {
5612            // Groups must be loaded before samples, because samples will try
5613            // to resolve the group they belong to
5614            if (!pGroups) LoadGroups();
5615    
5616            if (!pSamples) pSamples = new SampleList;
5617    
5618            RIFF::File* file = pRIFF;
5619    
5620            // just for progress calculation
5621            int iSampleIndex  = 0;
5622            int iTotalSamples = WavePoolCount;
5623    
5624            // check if samples should be loaded from extension files
5625            // (only for old gig files < 2 GB)
5626            int lastFileNo = 0;
5627            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5628                for (int i = 0 ; i < WavePoolCount ; i++) {
5629                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5630                }
5631            }
5632            String name(pRIFF->GetFileName());
5633            int nameLen = (int) name.length();
5634            char suffix[6];
5635            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5636    
5637            for (int fileNo = 0 ; ; ) {
5638                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5639                if (wvpl) {
5640                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5641                    RIFF::List* wave = wvpl->GetFirstSubList();
5642                    while (wave) {
5643                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5644                            // notify current progress
5645                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5646                            __notify_progress(pProgress, subprogress);
5647    
5648                            file_offset_t waveFileOffset = wave->GetFilePos();
5649                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5650    
5651                            iSampleIndex++;
5652                        }
5653                        wave = wvpl->GetNextSubList();
5654                    }
5655    
5656                    if (fileNo == lastFileNo) break;
5657    
5658                    // open extension file (*.gx01, *.gx02, ...)
5659                    fileNo++;
5660                    sprintf(suffix, ".gx%02d", fileNo);
5661                    name.replace(nameLen, 5, suffix);
5662                    file = new RIFF::File(name);
5663                    ExtensionFiles.push_back(file);
5664                } else break;
5665            }
5666    
5667            __notify_progress(pProgress, 1.0); // notify done
5668      }      }
5669    
5670      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5671          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5672          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5673          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5674          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5675      }      }
5676    
5677      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5678          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5679          InstrumentsIterator++;          InstrumentsIterator++;
5680          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5681      }      }
5682    
5683      /**      /**
5684       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5685       *       *
5686         * @param index     - number of the sought instrument (0..n)
5687         * @param pProgress - optional: callback function for progress notification
5688       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5689       */       */
5690      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5691          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5692                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5693    
5694                // sample loading subtask
5695                progress_t subprogress;
5696                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5697                __notify_progress(&subprogress, 0.0f);
5698                if (GetAutoLoad())
5699                    GetFirstSample(&subprogress); // now force all samples to be loaded
5700                __notify_progress(&subprogress, 1.0f);
5701    
5702                // instrument loading subtask
5703                if (pProgress && pProgress->callback) {
5704                    subprogress.__range_min = subprogress.__range_max;
5705                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5706                }
5707                __notify_progress(&subprogress, 0.0f);
5708                LoadInstruments(&subprogress);
5709                __notify_progress(&subprogress, 1.0f);
5710            }
5711          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5712          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5713          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5714              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5715              InstrumentsIterator++;              InstrumentsIterator++;
5716          }          }
5717          return NULL;          return NULL;
5718      }      }
5719    
5720        /** @brief Add a new instrument definition.
5721         *
5722         * This will create a new Instrument object for the gig file. You have
5723         * to call Save() to make this persistent to the file.
5724         *
5725         * @returns pointer to new Instrument object
5726         */
5727        Instrument* File::AddInstrument() {
5728           if (!pInstruments) LoadInstruments();
5729           __ensureMandatoryChunksExist();
5730           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5731           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5732    
5733           // add mandatory chunks to get the chunks in right order
5734           lstInstr->AddSubList(LIST_TYPE_INFO);
5735           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5736    
5737           Instrument* pInstrument = new Instrument(this, lstInstr);
5738           pInstrument->GenerateDLSID();
5739    
5740           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5741    
5742           // this string is needed for the gig to be loadable in GSt:
5743           pInstrument->pInfo->Software = "Endless Wave";
5744    
5745           pInstruments->push_back(pInstrument);
5746           return pInstrument;
5747        }
5748        
5749        /** @brief Add a duplicate of an existing instrument.
5750         *
5751         * Duplicates the instrument definition given by @a orig and adds it
5752         * to this file. This allows in an instrument editor application to
5753         * easily create variations of an instrument, which will be stored in
5754         * the same .gig file, sharing i.e. the same samples.
5755         *
5756         * Note that all sample pointers referenced by @a orig are simply copied as
5757         * memory address. Thus the respective samples are shared, not duplicated!
5758         *
5759         * You have to call Save() to make this persistent to the file.
5760         *
5761         * @param orig - original instrument to be copied
5762         * @returns duplicated copy of the given instrument
5763         */
5764        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5765            Instrument* instr = AddInstrument();
5766            instr->CopyAssign(orig);
5767            return instr;
5768        }
5769        
5770        /** @brief Add content of another existing file.
5771         *
5772         * Duplicates the samples, groups and instruments of the original file
5773         * given by @a pFile and adds them to @c this File. In case @c this File is
5774         * a new one that you haven't saved before, then you have to call
5775         * SetFileName() before calling AddContentOf(), because this method will
5776         * automatically save this file during operation, which is required for
5777         * writing the sample waveform data by disk streaming.
5778         *
5779         * @param pFile - original file whose's content shall be copied from
5780         */
5781        void File::AddContentOf(File* pFile) {
5782            static int iCallCount = -1;
5783            iCallCount++;
5784            std::map<Group*,Group*> mGroups;
5785            std::map<Sample*,Sample*> mSamples;
5786            
5787            // clone sample groups
5788            for (int i = 0; pFile->GetGroup(i); ++i) {
5789                Group* g = AddGroup();
5790                g->Name =
5791                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5792                mGroups[pFile->GetGroup(i)] = g;
5793            }
5794            
5795            // clone samples (not waveform data here yet)
5796            for (int i = 0; pFile->GetSample(i); ++i) {
5797                Sample* s = AddSample();
5798                s->CopyAssignMeta(pFile->GetSample(i));
5799                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5800                mSamples[pFile->GetSample(i)] = s;
5801            }
5802    
5803            // clone script groups and their scripts
5804            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5805                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5806                ScriptGroup* dg = AddScriptGroup();
5807                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5808                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5809                    Script* ss = sg->GetScript(iScript);
5810                    Script* ds = dg->AddScript();
5811                    ds->CopyAssign(ss);
5812                }
5813            }
5814    
5815            //BUG: For some reason this method only works with this additional
5816            //     Save() call in between here.
5817            //
5818            // Important: The correct one of the 2 Save() methods has to be called
5819            // here, depending on whether the file is completely new or has been
5820            // saved to disk already, otherwise it will result in data corruption.
5821            if (pRIFF->IsNew())
5822                Save(GetFileName());
5823            else
5824                Save();
5825            
5826            // clone instruments
5827            // (passing the crosslink table here for the cloned samples)
5828            for (int i = 0; pFile->GetInstrument(i); ++i) {
5829                Instrument* instr = AddInstrument();
5830                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5831            }
5832            
5833            // Mandatory: file needs to be saved to disk at this point, so this
5834            // file has the correct size and data layout for writing the samples'
5835            // waveform data to disk.
5836            Save();
5837            
5838            // clone samples' waveform data
5839            // (using direct read & write disk streaming)
5840            for (int i = 0; pFile->GetSample(i); ++i) {
5841                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5842            }
5843        }
5844    
5845        /** @brief Delete an instrument.
5846         *
5847         * This will delete the given Instrument object from the gig file. You
5848         * have to call Save() to make this persistent to the file.
5849         *
5850         * @param pInstrument - instrument to delete
5851         * @throws gig::Exception if given instrument could not be found
5852         */
5853        void File::DeleteInstrument(Instrument* pInstrument) {
5854            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5855            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5856            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5857            pInstruments->erase(iter);
5858            delete pInstrument;
5859        }
5860    
5861      void File::LoadInstruments() {      void File::LoadInstruments() {
5862            LoadInstruments(NULL);
5863        }
5864    
5865        void File::LoadInstruments(progress_t* pProgress) {
5866            if (!pInstruments) pInstruments = new InstrumentList;
5867          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5868          if (lstInstruments) {          if (lstInstruments) {
5869                int iInstrumentIndex = 0;
5870              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5871              while (lstInstr) {              while (lstInstr) {
5872                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5873                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5874                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5875                        __notify_progress(pProgress, localProgress);
5876    
5877                        // divide local progress into subprogress for loading current Instrument
5878                        progress_t subprogress;
5879                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5880    
5881                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5882    
5883                        iInstrumentIndex++;
5884                  }                  }
5885                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5886              }              }
5887                __notify_progress(pProgress, 1.0); // notify done
5888          }          }
5889          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5890    
5891        /// Updates the 3crc chunk with the checksum of a sample. The
5892        /// update is done directly to disk, as this method is called
5893        /// after File::Save()
5894        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5895            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5896            if (!_3crc) return;
5897    
5898            // get the index of the sample
5899            int iWaveIndex = GetWaveTableIndexOf(pSample);
5900            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5901    
5902            // write the CRC-32 checksum to disk
5903            _3crc->SetPos(iWaveIndex * 8);
5904            uint32_t one = 1;
5905            _3crc->WriteUint32(&one); // always 1
5906            _3crc->WriteUint32(&crc);
5907        }
5908    
5909        uint32_t File::GetSampleChecksum(Sample* pSample) {
5910            // get the index of the sample
5911            int iWaveIndex = GetWaveTableIndexOf(pSample);
5912            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5913    
5914            return GetSampleChecksumByIndex(iWaveIndex);
5915        }
5916    
5917        uint32_t File::GetSampleChecksumByIndex(int index) {
5918            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5919    
5920            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5921            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5922            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5923            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5924    
5925            // read the CRC-32 checksum directly from disk
5926            size_t pos = index * 8;
5927            if (pos + 8 > _3crc->GetNewSize())
5928                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5929    
5930            uint32_t one = load32(&pData[pos]); // always 1
5931            if (one != 1)
5932                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5933    
5934            return load32(&pData[pos+4]);
5935        }
5936    
5937        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5938            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5939            File::SampleList::iterator iter = pSamples->begin();
5940            File::SampleList::iterator end  = pSamples->end();
5941            for (int index = 0; iter != end; ++iter, ++index)
5942                if (*iter == pSample)
5943                    return index;
5944            return -1;
5945        }
5946    
5947        /**
5948         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5949         * the CRC32 check sums of all samples' raw wave data.
5950         *
5951         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5952         */
5953        bool File::VerifySampleChecksumTable() {
5954            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5955            if (!_3crc) return false;
5956            if (_3crc->GetNewSize() <= 0) return false;
5957            if (_3crc->GetNewSize() % 8) return false;
5958            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5959            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5960    
5961            const file_offset_t n = _3crc->GetNewSize() / 8;
5962    
5963            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5964            if (!pData) return false;
5965    
5966            for (file_offset_t i = 0; i < n; ++i) {
5967                uint32_t one = pData[i*2];
5968                if (one != 1) return false;
5969            }
5970    
5971            return true;
5972        }
5973    
5974        /**
5975         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5976         * file's checksum table with those new checksums. This might usually
5977         * just be necessary if the checksum table was damaged.
5978         *
5979         * @e IMPORTANT: The current implementation of this method only works
5980         * with files that have not been modified since it was loaded, because
5981         * it expects that no externally caused file structure changes are
5982         * required!
5983         *
5984         * Due to the expectation above, this method is currently protected
5985         * and actually only used by the command line tool "gigdump" yet.
5986         *
5987         * @returns true if Save() is required to be called after this call,
5988         *          false if no further action is required
5989         */
5990        bool File::RebuildSampleChecksumTable() {
5991            // make sure sample chunks were scanned
5992            if (!pSamples) GetFirstSample();
5993    
5994            bool bRequiresSave = false;
5995    
5996            // make sure "3CRC" chunk exists with required size
5997            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5998            if (!_3crc) {
5999                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6000                // the order of einf and 3crc is not the same in v2 and v3
6001                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6002                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6003                bRequiresSave = true;
6004            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6005                _3crc->Resize(pSamples->size() * 8);
6006                bRequiresSave = true;
6007            }
6008    
6009            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6010                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6011                {
6012                    File::SampleList::iterator iter = pSamples->begin();
6013                    File::SampleList::iterator end  = pSamples->end();
6014                    for (; iter != end; ++iter) {
6015                        gig::Sample* pSample = (gig::Sample*) *iter;
6016                        int index = GetWaveTableIndexOf(pSample);
6017                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6018                        pData[index*2]   = 1; // always 1
6019                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6020                    }
6021                }
6022            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6023                // make sure file is in write mode
6024                pRIFF->SetMode(RIFF::stream_mode_read_write);
6025                {
6026                    File::SampleList::iterator iter = pSamples->begin();
6027                    File::SampleList::iterator end  = pSamples->end();
6028                    for (; iter != end; ++iter) {
6029                        gig::Sample* pSample = (gig::Sample*) *iter;
6030                        int index = GetWaveTableIndexOf(pSample);
6031                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6032                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6033                        SetSampleChecksum(pSample, pSample->crc);
6034                    }
6035                }
6036            }
6037    
6038            return bRequiresSave;
6039        }
6040    
6041        Group* File::GetFirstGroup() {
6042            if (!pGroups) LoadGroups();
6043            // there must always be at least one group
6044            GroupsIterator = pGroups->begin();
6045            return *GroupsIterator;
6046        }
6047    
6048        Group* File::GetNextGroup() {
6049            if (!pGroups) return NULL;
6050            ++GroupsIterator;
6051            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6052        }
6053    
6054        /**
6055         * Returns the group with the given index.
6056         *
6057         * @param index - number of the sought group (0..n)
6058         * @returns sought group or NULL if there's no such group
6059         */
6060        Group* File::GetGroup(uint index) {
6061            if (!pGroups) LoadGroups();
6062            GroupsIterator = pGroups->begin();
6063            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6064                if (i == index) return *GroupsIterator;
6065                ++GroupsIterator;
6066            }
6067            return NULL;
6068        }
6069    
6070        /**
6071         * Returns the group with the given group name.
6072         *
6073         * Note: group names don't have to be unique in the gig format! So there
6074         * can be multiple groups with the same name. This method will simply
6075         * return the first group found with the given name.
6076         *
6077         * @param name - name of the sought group
6078         * @returns sought group or NULL if there's no group with that name
6079         */
6080        Group* File::GetGroup(String name) {
6081            if (!pGroups) LoadGroups();
6082            GroupsIterator = pGroups->begin();
6083            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6084                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6085            return NULL;
6086        }
6087    
6088        Group* File::AddGroup() {
6089            if (!pGroups) LoadGroups();
6090            // there must always be at least one group
6091            __ensureMandatoryChunksExist();
6092            Group* pGroup = new Group(this, NULL);
6093            pGroups->push_back(pGroup);
6094            return pGroup;
6095        }
6096    
6097        /** @brief Delete a group and its samples.
6098         *
6099         * This will delete the given Group object and all the samples that
6100         * belong to this group from the gig file. You have to call Save() to
6101         * make this persistent to the file.
6102         *
6103         * @param pGroup - group to delete
6104         * @throws gig::Exception if given group could not be found
6105         */
6106        void File::DeleteGroup(Group* pGroup) {
6107            if (!pGroups) LoadGroups();
6108            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6109            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6110            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6111            // delete all members of this group
6112            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6113                DeleteSample(pSample);
6114            }
6115            // now delete this group object
6116            pGroups->erase(iter);
6117            delete pGroup;
6118        }
6119    
6120        /** @brief Delete a group.
6121         *
6122         * This will delete the given Group object from the gig file. All the
6123         * samples that belong to this group will not be deleted, but instead
6124         * be moved to another group. You have to call Save() to make this
6125         * persistent to the file.
6126         *
6127         * @param pGroup - group to delete
6128         * @throws gig::Exception if given group could not be found
6129         */
6130        void File::DeleteGroupOnly(Group* pGroup) {
6131            if (!pGroups) LoadGroups();
6132            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6133            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6134            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6135            // move all members of this group to another group
6136            pGroup->MoveAll();
6137            pGroups->erase(iter);
6138            delete pGroup;
6139        }
6140    
6141        void File::LoadGroups() {
6142            if (!pGroups) pGroups = new std::list<Group*>;
6143            // try to read defined groups from file
6144            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6145            if (lst3gri) {
6146                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6147                if (lst3gnl) {
6148                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6149                    while (ck) {
6150                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6151                            if (pVersion && pVersion->major == 3 &&
6152                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6153    
6154                            pGroups->push_back(new Group(this, ck));
6155                        }
6156                        ck = lst3gnl->GetNextSubChunk();
6157                    }
6158                }
6159            }
6160            // if there were no group(s), create at least the mandatory default group
6161            if (!pGroups->size()) {
6162                Group* pGroup = new Group(this, NULL);
6163                pGroup->Name = "Default Group";
6164                pGroups->push_back(pGroup);
6165            }
6166        }
6167    
6168        /** @brief Get instrument script group (by index).
6169         *
6170         * Returns the real-time instrument script group with the given index.
6171         *
6172         * @param index - number of the sought group (0..n)
6173         * @returns sought script group or NULL if there's no such group
6174         */
6175        ScriptGroup* File::GetScriptGroup(uint index) {
6176            if (!pScriptGroups) LoadScriptGroups();
6177            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6178            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6179                if (i == index) return *it;
6180            return NULL;
6181        }
6182    
6183        /** @brief Get instrument script group (by name).
6184         *
6185         * Returns the first real-time instrument script group found with the given
6186         * group name. Note that group names may not necessarily be unique.
6187         *
6188         * @param name - name of the sought script group
6189         * @returns sought script group or NULL if there's no such group
6190         */
6191        ScriptGroup* File::GetScriptGroup(const String& name) {
6192            if (!pScriptGroups) LoadScriptGroups();
6193            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6194            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6195                if ((*it)->Name == name) return *it;
6196            return NULL;
6197        }
6198    
6199        /** @brief Add new instrument script group.
6200         *
6201         * Adds a new, empty real-time instrument script group to the file.
6202         *
6203         * You have to call Save() to make this persistent to the file.
6204         *
6205         * @return new empty script group
6206         */
6207        ScriptGroup* File::AddScriptGroup() {
6208            if (!pScriptGroups) LoadScriptGroups();
6209            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6210            pScriptGroups->push_back(pScriptGroup);
6211            return pScriptGroup;
6212        }
6213    
6214        /** @brief Delete an instrument script group.
6215         *
6216         * This will delete the given real-time instrument script group and all its
6217         * instrument scripts it contains. References inside instruments that are
6218         * using the deleted scripts will be removed from the respective instruments
6219         * accordingly.
6220         *
6221         * You have to call Save() to make this persistent to the file.
6222         *
6223         * @param pScriptGroup - script group to delete
6224         * @throws gig::Exception if given script group could not be found
6225         */
6226        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6227            if (!pScriptGroups) LoadScriptGroups();
6228            std::list<ScriptGroup*>::iterator iter =
6229                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6230            if (iter == pScriptGroups->end())
6231                throw gig::Exception("Could not delete script group, could not find given script group");
6232            pScriptGroups->erase(iter);
6233            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6234                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6235            if (pScriptGroup->pList)
6236                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6237            delete pScriptGroup;
6238        }
6239    
6240        void File::LoadScriptGroups() {
6241            if (pScriptGroups) return;
6242            pScriptGroups = new std::list<ScriptGroup*>;
6243            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6244            if (lstLS) {
6245                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6246                     lst = lstLS->GetNextSubList())
6247                {
6248                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6249                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6250                    }
6251                }
6252            }
6253        }
6254    
6255        /**
6256         * Apply all the gig file's current instruments, samples, groups and settings
6257         * to the respective RIFF chunks. You have to call Save() to make changes
6258         * persistent.
6259         *
6260         * Usually there is absolutely no need to call this method explicitly.
6261         * It will be called automatically when File::Save() was called.
6262         *
6263         * @param pProgress - callback function for progress notification
6264         * @throws Exception - on errors
6265         */
6266        void File::UpdateChunks(progress_t* pProgress) {
6267            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6268    
6269            // update own gig format extension chunks
6270            // (not part of the GigaStudio 4 format)
6271            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6272            if (!lst3LS) {
6273                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6274            }
6275            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6276            // location of <3LS > is irrelevant, however it should be located
6277            // before  the actual wave data
6278            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6279            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6280    
6281            // This must be performed before writing the chunks for instruments,
6282            // because the instruments' script slots will write the file offsets
6283            // of the respective instrument script chunk as reference.
6284            if (pScriptGroups) {
6285                // Update instrument script (group) chunks.
6286                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6287                     it != pScriptGroups->end(); ++it)
6288                {
6289                    (*it)->UpdateChunks(pProgress);
6290                }
6291            }
6292    
6293            // in case no libgig custom format data was added, then remove the
6294            // custom "3LS " chunk again
6295            if (!lst3LS->CountSubChunks()) {
6296                pRIFF->DeleteSubChunk(lst3LS);
6297                lst3LS = NULL;
6298            }
6299    
6300            // first update base class's chunks
6301            DLS::File::UpdateChunks(pProgress);
6302    
6303            if (newFile) {
6304                // INFO was added by Resource::UpdateChunks - make sure it
6305                // is placed first in file
6306                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6307                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6308                if (first != info) {
6309                    pRIFF->MoveSubChunk(info, first);
6310                }
6311            }
6312    
6313            // update group's chunks
6314            if (pGroups) {
6315                // make sure '3gri' and '3gnl' list chunks exist
6316                // (before updating the Group chunks)
6317                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6318                if (!_3gri) {
6319                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6320                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6321                }
6322                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6323                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6324    
6325                // v3: make sure the file has 128 3gnm chunks
6326                // (before updating the Group chunks)
6327                if (pVersion && pVersion->major == 3) {
6328                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6329                    for (int i = 0 ; i < 128 ; i++) {
6330                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6331                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6332                    }
6333                }
6334    
6335                std::list<Group*>::iterator iter = pGroups->begin();
6336                std::list<Group*>::iterator end  = pGroups->end();
6337                for (; iter != end; ++iter) {
6338                    (*iter)->UpdateChunks(pProgress);
6339                }
6340            }
6341    
6342            // update einf chunk
6343    
6344            // The einf chunk contains statistics about the gig file, such
6345            // as the number of regions and samples used by each
6346            // instrument. It is divided in equally sized parts, where the
6347            // first part contains information about the whole gig file,
6348            // and the rest of the parts map to each instrument in the
6349            // file.
6350            //
6351            // At the end of each part there is a bit map of each sample
6352            // in the file, where a set bit means that the sample is used
6353            // by the file/instrument.
6354            //
6355            // Note that there are several fields with unknown use. These
6356            // are set to zero.
6357    
6358            int sublen = int(pSamples->size() / 8 + 49);
6359            int einfSize = (Instruments + 1) * sublen;
6360    
6361            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6362            if (einf) {
6363                if (einf->GetSize() != einfSize) {
6364                    einf->Resize(einfSize);
6365                    memset(einf->LoadChunkData(), 0, einfSize);
6366                }
6367            } else if (newFile) {
6368                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6369            }
6370            if (einf) {
6371                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6372    
6373                std::map<gig::Sample*,int> sampleMap;
6374                int sampleIdx = 0;
6375                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6376                    sampleMap[pSample] = sampleIdx++;
6377                }
6378    
6379                int totnbusedsamples = 0;
6380                int totnbusedchannels = 0;
6381                int totnbregions = 0;
6382                int totnbdimregions = 0;
6383                int totnbloops = 0;
6384                int instrumentIdx = 0;
6385    
6386                memset(&pData[48], 0, sublen - 48);
6387    
6388                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6389                     instrument = GetNextInstrument()) {
6390                    int nbusedsamples = 0;
6391                    int nbusedchannels = 0;
6392                    int nbdimregions = 0;
6393                    int nbloops = 0;
6394    
6395                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6396    
6397                    for (Region* region = instrument->GetFirstRegion() ; region ;
6398                         region = instrument->GetNextRegion()) {
6399                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6400                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6401                            if (d->pSample) {
6402                                int sampleIdx = sampleMap[d->pSample];
6403                                int byte = 48 + sampleIdx / 8;
6404                                int bit = 1 << (sampleIdx & 7);
6405                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6406                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6407                                    nbusedsamples++;
6408                                    nbusedchannels += d->pSample->Channels;
6409    
6410                                    if ((pData[byte] & bit) == 0) {
6411                                        pData[byte] |= bit;
6412                                        totnbusedsamples++;
6413                                        totnbusedchannels += d->pSample->Channels;
6414                                    }
6415                                }
6416                            }
6417                            if (d->SampleLoops) nbloops++;
6418                        }
6419                        nbdimregions += region->DimensionRegions;
6420                    }
6421                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6422                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6423                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6424                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6425                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6426                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6427                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6428                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6429                    // next 8 bytes unknown
6430                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6431                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6432                    // next 4 bytes unknown
6433    
6434                    totnbregions += instrument->Regions;
6435                    totnbdimregions += nbdimregions;
6436                    totnbloops += nbloops;
6437                    instrumentIdx++;
6438                }
6439                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6440                // store32(&pData[0], sublen);
6441                store32(&pData[4], totnbusedchannels);
6442                store32(&pData[8], totnbusedsamples);
6443                store32(&pData[12], Instruments);
6444                store32(&pData[16], totnbregions);
6445                store32(&pData[20], totnbdimregions);
6446                store32(&pData[24], totnbloops);
6447                // next 8 bytes unknown
6448                // next 4 bytes unknown, not always 0
6449                store32(&pData[40], (uint32_t) pSamples->size());
6450                // next 4 bytes unknown
6451            }
6452    
6453            // update 3crc chunk
6454    
6455            // The 3crc chunk contains CRC-32 checksums for the
6456            // samples. When saving a gig file to disk, we first update the 3CRC
6457            // chunk here (in RAM) with the old crc values which we read from the
6458            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6459            // member variable). This step is required, because samples might have
6460            // been deleted by the user since the file was opened, which in turn
6461            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6462            // If a sample was conciously modified by the user (that is if
6463            // Sample::Write() was called later on) then Sample::Write() will just
6464            // update the respective individual checksum(s) directly on disk and
6465            // leaves all other sample checksums untouched.
6466    
6467            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6468            if (_3crc) {
6469                _3crc->Resize(pSamples->size() * 8);
6470            } else /*if (newFile)*/ {
6471                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6472                // the order of einf and 3crc is not the same in v2 and v3
6473                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6474            }
6475            { // must be performed in RAM here ...
6476                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6477                if (pData) {
6478                    File::SampleList::iterator iter = pSamples->begin();
6479                    File::SampleList::iterator end  = pSamples->end();
6480                    for (int index = 0; iter != end; ++iter, ++index) {
6481                        gig::Sample* pSample = (gig::Sample*) *iter;
6482                        pData[index*2]   = 1; // always 1
6483                        pData[index*2+1] = pSample->crc;
6484                    }
6485                }
6486            }
6487        }
6488        
6489        void File::UpdateFileOffsets() {
6490            DLS::File::UpdateFileOffsets();
6491    
6492            for (Instrument* instrument = GetFirstInstrument(); instrument;
6493                 instrument = GetNextInstrument())
6494            {
6495                instrument->UpdateScriptFileOffsets();
6496            }
6497        }
6498    
6499        /**
6500         * Enable / disable automatic loading. By default this properyt is
6501         * enabled and all informations are loaded automatically. However
6502         * loading all Regions, DimensionRegions and especially samples might
6503         * take a long time for large .gig files, and sometimes one might only
6504         * be interested in retrieving very superficial informations like the
6505         * amount of instruments and their names. In this case one might disable
6506         * automatic loading to avoid very slow response times.
6507         *
6508         * @e CAUTION: by disabling this property many pointers (i.e. sample
6509         * references) and informations will have invalid or even undefined
6510         * data! This feature is currently only intended for retrieving very
6511         * superficial informations in a very fast way. Don't use it to retrieve
6512         * details like synthesis informations or even to modify .gig files!
6513         */
6514        void File::SetAutoLoad(bool b) {
6515            bAutoLoad = b;
6516        }
6517    
6518        /**
6519         * Returns whether automatic loading is enabled.
6520         * @see SetAutoLoad()
6521         */
6522        bool File::GetAutoLoad() {
6523            return bAutoLoad;
6524      }      }
6525    
6526    
# Line 1762  namespace gig { namespace { Line 6528  namespace gig { namespace {
6528  // *************** Exception ***************  // *************** Exception ***************
6529  // *  // *
6530    
6531      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6532        }
6533    
6534        Exception::Exception(String format, ...) : DLS::Exception() {
6535            va_list arg;
6536            va_start(arg, format);
6537            Message = assemble(format, arg);
6538            va_end(arg);
6539        }
6540    
6541        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6542            Message = assemble(format, arg);
6543      }      }
6544    
6545      void Exception::PrintMessage() {      void Exception::PrintMessage() {
6546          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6547      }      }
6548    
6549    
6550    // *************** functions ***************
6551    // *
6552    
6553        /**
6554         * Returns the name of this C++ library. This is usually "libgig" of
6555         * course. This call is equivalent to RIFF::libraryName() and
6556         * DLS::libraryName().
6557         */
6558        String libraryName() {
6559            return PACKAGE;
6560        }
6561    
6562        /**
6563         * Returns version of this C++ library. This call is equivalent to
6564         * RIFF::libraryVersion() and DLS::libraryVersion().
6565         */
6566        String libraryVersion() {
6567            return VERSION;
6568        }
6569    
6570  } // namespace gig  } // namespace gig

Legend:
Removed from v.406  
changed lines
  Added in v.3323

  ViewVC Help
Powered by ViewVC